
starlike domain. Such a domain can be interpreted as a non-isotropically stretched unit
circle (sphere). We write down the explicit solution in terms of a Fourier series whose
coefficients are determined by solving an infinite system of linear equations depending
on the boundary data. Similar results are obtained for the solution of the Dirichlet
problem for the Helmholtz equation. Numerical experiments show that our method
guarantees almost everywhere convergence, whenever the boundary data are sufficiently
smooth, in accordance with the results proved by L. Carleson.
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Introduction

These Lecture Notes address numerical solutions of long standing problems in mathematical
physics. The search for a uniform method for solving classical boundary value problems (BVP)
has occupied many eminent researchers, but exact solutions are limited to specific shapes only

Lecture Notes we show that the use of a suitable change of coordinates (here referred to as
anisotropically stretched polar or spherical coordinates) provides a uniform method to apply the

way we are able to achieve the “exact” solution of many classical BVP in terms of Fourier series,
where “exact” means that we can approximate a prescribed finite number of coefficients of the
Fourier expansion of the solution as closely as we wish.

Hence, the classical Dirichlet, Neumann, Robin problems for the Laplace or Helmholtz
equation are always the same, independent of the shape of the domain in which they are
considered, provided that this domain can be reduced to a circle (or a sphere) by a suitable
change of coordinates. This idea traces back to Euler, Gauss and the Italian mathematician A.M.
Ferrari, but was considered as a more general framework in the early 19th century by Gabriel
Lamé (1795-1870) who foresaw “l’avènement futur d’une science rationnelle unique”, i.e. a rise
to the throne of a unique rational science, which at present can be identified with Mathematical
Physics.

Lamé, like Fourier, was professor at the École Polytechnique and many of his achievements
are connected with the distribution of heat. His influence on science continues to be impressive.
In particular, Lamé’s work on curvilinear coordinates (considered by Darboux as immortal)
generalized the early work of Euler on curves and of Gauss on surfaces opening the door for
Cartan’s moving frames [1]. Cartan himself considered Lamé as a cofounder of the Riemannian
geometry. Lamé envisaged that, from the mathematical point of view, the study of a physical
system reduces to the study of a system of curvilinear coordinates, adapted to the given physical
situation (providing the initial geometrical support for a physical system). The study of that
physical problem, adapted with the appropriate system of curvilinear coordinates then becomes
the characterization of the system of differential invariants or the calculation of the Laplacian
in curvilinear coordinates. In his view this reduces to one equation only, namely the Poisson
equation in curvilinear coordinates, with boundary conditions.

Earlier, at the age of 21 Lamé had introduced equations of the type xn + yn = 1 and noted
that a special choice of exponents gave a uniform description of all conic sections [2]. These
Lamé curves gave the possibility of defining measures and metrics based on powers other than
two. In these Lecture Notes we give examples of “stretched” polar or spherical coordinates
using so called supershapes (or more generally Gielis curves or surfaces [3]), which actually
generalize Lamé curves and surfaces. Lamé-Gielis curves and surfaces describe natural shapes
in a uniform way, as a generalization of conic sections, and they give natural metrics in Riemann-
Finsler geometry and all natural processes that are modeled in this way. They provide intrinsic
coordinate systems or a geometric support adapted to the shape and so, almost two centuries
after Lamé and Fourier, in a straightforward way, their thoughts and visions are united here
in a straightforward (and unexpected) way. In this historical perspective the solution could be
considered canonical.

This computational method and the relevant numerical accuracy are documented in these
Lecture Notes by application to different examples. Here we focus on Laplace and Helmholtz
equations but the same method can be extended to other types of BVP and other types of
descriptors. Especially Lamé-Gielis curves and surfaces will benefit from this computational
method, combining a uniform description with a straightforward computational method, for a
wide range of applications.
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(∗) Università degli Studi Roma Tre, Dipartimento di Matematica,
Largo San Leonardo Murialdo, 1, 00146 - Roma, Italia
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domain, i.e. a domain which is normal with respect to polar co-ordinates. Such a domain can be
interpreted as a non-isotropically stretched unit circle.

We write down explicitly an infinite linear system for finding coefficients of the Fourier
expansion representing solution. This system can be derived from an integral equation whose
kernel belongs to L2. Therefore, by F. Riesz’ theory, its solution can be approximated by solving
a finite dimensional linear system.

The numerical examples, computed by using Mathematica c©, confirm our theoretical results,
mainly applied in general domains defined by the so called ”superformula” due to J. Gielis.

1 Introduction

Many applications of Mathematical Physics and Engineering are connected with the Laplacian,
however, the most part of BVPs relevant to the Laplacian are solved in explicit form only for
domains with a very special shape, namely intervals, cylinders or domains with special (circular
or spherical) symmetries [1].

We consider in this lecture an extension of the classical two-dimensional theory to the case
of a normal polar domain, i.e. a domain D, which is normal with respect to the polar co-ordinate
system.

∂D can be interpreted as an anisotropically stretched unit circle.
We introduce in the x, y plane the ordinary polar co-ordinates:

x = ρ cos θ , y = ρ sin θ , (1.1)

and the polar equation of ∂D
ρ = r(θ) ,

(
0 ≤ θ ≤ 2π

)
, (1.2)

where r(θ) ∈ C2[0, 2π]. We suppose the domain D satisfies

0 < A ≤ ρ ≤ r(θ)

and therefore minθ∈[0,2π] r(θ) > 0.

We introduce the stretched radius ρ∗ such that

ρ = ρ∗ r(θ) , (1.3)

7
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and the curvilinear (i.e. stretched) co-ordinates ρ∗, θ , in the plane x, y ,

x = ρ∗ r(θ) cos θ , y = ρ∗ r(θ) sin θ . (1.4)

Therefore, D is obtained assuming 0 ≤ θ ≤ 2π , 0 ≤ ρ∗ ≤ 1 .
We show how to modify some classical formulas, and we derive methods to compute the

coefficients of Fourier-type expansions representing solutions of some classical problems. Of
course, this theory can be easily generalized considering weakened hypotheses on the boundary
or initial data.

The case of the unit circle is recovered assuming ρ∗ = ρ and r(θ) ≡ 1.

2 The Laplacian in stretched polar co-ordinates

We consider a C2(
◦
D) function u(x, y) = u(ρ cos θ, ρ sin θ) = U(ρ, θ) and the Laplace

operator in polar co-ordinates

Δ2u :=
∂2u

∂x2
+

∂2u

∂y2
=

∂2U

∂ρ2
+

1
ρ

∂U

∂ρ
+

1
ρ2

∂2U

∂θ2
. (2.1)

We start representing this operator in the new stretched co-ordinate system ρ∗, θ.
Putting

V (ρ∗, θ) = u [ρ∗r(θ) cos θ, ρ∗r(θ) sin θ] = U(ρ, θ) ,

we find

∂U

∂ρ
=

1
r(θ)

∂V

∂ρ∗
, (2.2)

∂2U

∂ρ2
=

1
r2(θ)

∂2V

∂ρ∗2 , (2.3)

∂U

∂θ
= −ρ∗

r′(θ)
r(θ)

∂V

∂ρ∗
+

∂V

∂θ
, (2.4)

∂2U

∂θ2
= ρ∗

2r′2(θ) − r(θ)r′′(θ)
r2(θ)

∂V

∂ρ∗
+ ρ∗2 r′2(θ)

r2(θ)
∂2V

∂ρ∗2

− 2ρ∗
r′(θ)
r(θ)

∂2V

∂ρ∗∂θ
+

∂2V

∂θ2
.

(2.5)

Substituting we find our result, i.e.

2
∂2U

∂ρ2

1
ρ

∂U

∂ρ
+

1
ρ2

∂2U

∂θ2

=
1

r2(θ)

[
1 +

r′2(θ)
r2(θ)

]
∂2V

∂ρ∗2 +
1

ρ∗r2(θ)

[
1 +

2r′2(θ) − r(θ)r′′(θ)
r2(θ)

]
∂V

∂ρ∗

− 2
r′(θ)

ρ∗r3(θ)
∂2V

∂ρ∗∂θ
+

1
ρ∗2r2(θ)

∂2V

∂θ2
.

(2.6)

For ρ∗ = ρ , r(θ) ≡ 1, we recover the Laplacian in polar co-ordinates.
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3 An equivalent formulation

For further computations, it is more easy to change the polar equation of ∂D putting

ρ = r(θ) =
1

R(θ)
, (0 ≤ θ ≤ 2π). (3.1)

The unit circle is recovered again by putting R(θ) ≡ 1.

Using this polar equation, the corresponding stretched co-ordinates ρ∗, θ , in the plane x, y ,
are given by

x = ρ∗ cos θ/R(θ) , y = ρ∗ sin θ/R(θ) , (3.2)

and assuming
V (ρ∗, θ) = u [ρ∗ cos θ/R(θ), ρ∗ sin θ/R(θ)] ,

the Laplacian becomes:

Δ2u =
[
R2(θ) + R′2(θ)

] ∂2V

∂ρ∗2 +
2
ρ∗

R(θ)R′(θ)
∂2V

∂ρ∗∂θ

+
1
ρ∗
[
R2(θ) + R(θ)R′′(θ)

] ∂V

∂ρ∗
+

1
ρ∗2 R2(θ)

∂2V

∂θ2
.

(3.3)

For ρ∗ = ρ , R(θ) ≡ 1, we find again the Laplacian in polar co-ordinates.

4 Applications to the Dirichlet problem

Consider the Dirichlet problem for the Laplace equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂x2
+

∂2u

∂y2
= 0 , in

◦
D ,

u = f(x, y) on ∂D .

(4.1)

We prove the following result

Theorem 4.1. – Putting

u(x, y) = u(ρ cos θ, ρ sin θ) = U(ρ, θ) ,

F (θ) = f [r(θ) cos θ, r(θ) sin θ] =
α0

2
+

∞∑
m=0

(αm cos mθ + βm sinmθ) ,

the solution of the internal Dirichlet problem can be represented as

U(ρ, θ) =
∞∑

m=0

(am cos mθ + bm sin mθ) ρm , (4.2)

9



where a0 = α0/2, and the coefficients am, bm, (m = 1, 2, 3, . . . ) are given by solving the
infinite system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
m=1

am

∫ 2π

0

[r(θ)]m cos mθ cos hθ dθ +
∞∑

m=1

bm

∫ 2π

0

[r(θ)]m sin mθ cos hθ dθ = παh ,

∞∑
m=1

am

∫ 2π

0

[r(θ)]m cos mθ sin hθ dθ +
∞∑

m=1

bm

∫ 2π

0

[r(θ)]m sinmθ sin hθ dθ = πβh ,

(h = 1, 2, 3, . . . ) . (4.3)

Proof – Putting ρ∗ = ρR(θ) ,

u(ρ cos θ, ρ sin θ) = U(ρ, θ) = U [ρ∗/R(θ), θ] = V (ρ∗, θ) ,

i.e. using the normal polar co-ordinates, the problem becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
R2(θ) + R′2(θ)

] ∂2V

∂ρ∗2 +
2
ρ∗

R(θ)R′(θ)
∂2V

∂ρ∗∂θ

+
1
ρ∗
[
R2(θ) + R(θ)R′′(θ)

] ∂V

∂ρ∗
+

1
ρ∗2 R2(θ)

∂2V

∂θ2
= 0 ,

F (θ) = V (1, θ) = f [r(θ) cos θ, r(θ) sin θ] .

(4.4)

Searching for a solution of the form

U

(
ρ∗

R(θ)
, θ

)
= P

(
ρ∗

R(θ)

)
Θ(θ) = P (ρ) Θ(θ) , (4.5)

we find the equation

ρ2P ′′(ρ) Θ(θ) + ρP ′(ρ) Θ(θ) = −P (ρ) Θ′′(θ) , (4.6)

and therefore ⎧⎪⎨
⎪⎩

ρ2P ′′(ρ) + ρP ′(ρ) − λ2P (ρ) = 0

Θ′′(θ) + λ2Θ(θ) = 0 .

(4.7)

Since

Θ(θ) = c1 cos λθ + c2 sinλθ (4.8)

it follows for periodicity λ = m (integer number), and consequently⎧⎨
⎩

Θ(θ) = c1 cos mθ + c2 sin mθ

P (ρ) = d1ρ
m + d2ρ

−m

(4.9)

10



so that we have found elementary solutions

U(ρ, θ) = (c1 2 1
m

2
−m (m = 0, 1, 2, . . . ) . (4.10)

For the internal problem, we must put for a bounded solution: d2 = 0, then

U(ρ, θ) =
∞∑

m=0

(am cos mθ + bm sin mθ) ρm . (4.11)

The coefficients am, bm are determined by imposing the boundary condition, i.e. assuming
ρ∗ = 1 and therefore putting ρ = r(θ):

f [r(θ) cos θ, r(θ) sin θ] = V (1, θ) =
∞∑

m=0

[r(θ)]m (am cos mθ + bm sin mθ) , (4.12)

so that, by using the Fourier method, they are determined by solving the system (4.3).

Remark 1. Note that the system (4.3), assuming the unessential condition r(θ) ≤ M <
1, ∀θ ∈ [0, 2π], can be solved in an approximate way by considering the corresponding finite
system where m = 1, 2, . . . , N , and h = 2, . . . , N , and the solution is convergent when
N → +∞, since it is related to the solution of a compact vectorial integral operator with an L2

kernel [2]. In fact, substituting the discrete index m with a continuous parameter τ and putting
am = a(τ), bm = b(τ), A(τ) = [a(τ), b(τ)]T and similarly S(τ, θ) = [cos(τθ), sin(τθ)]T ,
the system (4.3) becomes ∫ +∞

0

[r(θ)]τS(τ, θ) · A(τ)dτ = F (θ) .

Assuming r(θ) ≤ M < 1, we find

∫ ∞

0

∫ 2π

0

|[r(θ)]τS(τ, θ)|2 dτdθ < 2π

∫ +∞

0

M2τdτ =
π

log (1/M)
,

so that the kernel belongs to L2.

The compactness of the above mentioned operator can be proved as follows.

Consider the internal Dirichlet problem for the unit circle corresponding to the same function

F (θ) = f [r(θ) cos θ, r(θ) sin θ] =
α0

2
+

∞∑
m=0

(αm cos mθ + βm sinmθ), considered on the unit

circle. The solution of this associated problem is given by

α0

2
+

∞∑
m=1

(αm cos mθ + βm sin mθ) ρm ,

while the solution of our problem on the boundary ∂D is

∞∑
m=0

(am cos mθ + bm sin mθ) [r(t)]m ,

11

cos mθ + c sin mθ) (d ρ + d ρ )



where the coefficients am, bm are derived by system (4.3).
The assumption 0 < r(θ) ≤ M < 1 implies that the solution of our problem is dominated

by the solution of the associated problem. This is a consequence of the maximum principle.
Therefore,∣∣∣∣∣

∞∑
m=0

(am cos mθ + bm sinmθ) [r(t)]m
∣∣∣∣∣ ≤
∣∣∣∣∣α0

2
+

∞∑
m=1

(αm cos mθ + βm sinmθ)

∣∣∣∣∣
and, by using the linearity of the operator, we find: |a0 ≤ α0/2| and

∀m ≥ 1, |am|[r(θ)]m ≤ |αm| , |bm|[r(θ)]m ≤ |βm| .

By Lebesgue’s theorem the Fourier coefficients αm, βm go to zero when m → ∞ and the order
of convergence to zero increases if we increase the regularity property of the function F (θ).
According to the last inequalities, even the coefficients am, bm are infinitesimal (since r(θ) is
bounded), and their order cannot be higher with respect to the order of αm, βm. This means that
the vectorial operator defined by the system (4.3) is compact. In fact we can split up this operator
in the sum of two parts, such that one of them is finite-dimensional and the maximum (or L2)
norm of the other is as small as we wish.

In a similar way the external problem can be treated.

4.1 Numerical examples

In the first four examples we consider a general polar equation of the type

r(θ) =

[
c

(∣∣∣∣∣cos
(

1
2mπθ

)
α

∣∣∣∣∣
n2

∣∣∣∣∣ sin
(

1
2mπθ

)
β

∣∣∣∣∣
n3
)]−1/n1

In numerical experiments, computed by using Mathematica c©, we assume different values
of the six parameters α, β, m;n1, n2, n3, obtaining very different shapes for the polar domain,
including ellipse, Lamé curves (also called Superellipse), ovals, m-fold symmetric figures, and
so on. We introduced furthermore an extra parameter c, in order to ensure the convergence
condition maxθ∈[0,2π] r(θ) ≤ M < 1 . It was noticed in [3] that many characteristic forms
occurring in Nature (starfish, equisetum, raspberry, and so on) can be obtained in such a way.
We emphasize that almost all two dimensional normal-polar domains are described (or at least
approximated as close as we need) by the above mentioned curves.

In the last example we consider the polar equation of the astroid

r(θ) =
|sec (2πθ)|√(

1 + 3

√
tan2 (2πθ)

)3
, θ ∈ [0, 1]. (4.14)

4.1.1 Example 1

By assuming in (4.13) c = 2, α = 1, β = 2, m = 2; n1 = n3 = 6, n2 = 2, we obtain the
following shape of the relevant domain D

12
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Let f(x, y) = x3y2 + 30x2y − 2xy3 be the function representing boundary values. Then
we obtain the results reported in the following table

The following graphs show us the convergence (in general a.e.) of the approximating
sequence of functions uh (dashed line) to the function f (solid line)
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4.1.2 Example 2

By assuming in (4.13) c = 8, α = 3, β = 5, m = 2; n1 = n3 = 8, n2 = 2, we obtain the
following shape of the relevant domain D

Let f(x, y) = sinh(xy) + log(x2 + y2 + 1) be the function representing boundary values.
Then we obtain the results reported in the following table

The following graphs show us the convergence (in general a.e.) of the approximating
sequence of functions uh (dashed line) to the function f (solid line)
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4.1.3 Example 3

By assuming in (4.13) c = 22, α = 5, β = 8, m = 10; n1 = n3 = 6, n2 = 4, we obtain the
following shape of the relevant domain D

Let f(x, y) = cosh(x + y) + 5x2y be the function representing boundary values. Then we
obtain the results reported in the following table

The following graphs show us the convergence (in general a.e.) of the approximating
sequence of functions uh (dashed line) to the function f (solid line)
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4.1.4 Example 4

By assuming in (4.13) c = 22, α = 3, β = 9, m = 12; n1 = n3 = 8, n2 = 2, we obtain the
following shape of the relevant domain D

Let f(x, y) = 500x3y2 + 100x2y + 2xy3 be the function representing boundary values.
Then we obtain the results reported in the following table

The following graphs show us the convergence (in general a.e.) of the approximating
sequence of functions uh (dashed line) to the function f (solid line)
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4.1.5 Example 5

The shape of the domain D relating to the polar equation (4.14) is the following

Here we consider two cases. In the first case we assume f(x, y) = exy2
/2 + 10x3y as

the function representing boundary values. Then we obtain the results reported in the following
table

The following graphs show us the convergence (in general a.e.) of the approximating
sequence of functions uh (dashed line) to the function f (solid line)
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In the second case we assume f(x, y) = 40x3y + 50x2y3 as the function representing
boundary values. Then we obtain the results reported in the following table

The following graphs show us the convergence (in general a.e.) of the approximating
sequence of functions uh (dashed line) to the function f (solid line)

Remark 2. We note that when the boundary values have wide oscillations, it is necessary to
increase the number N of terms in the relevant Fourier expansion, in order to obtain better
results.

Remark 3. The L2 norm of the difference between the exact solution and its approximate values
is always vanishing in the interior of the considered domain, and generally small on the boundary.
Point-wise convergence seems to be true on the whole boundary, with only exception of a set of
measure zero, corresponding to cusped or quasi-cusped points. In these points oscillations of
the approximate solution, recalling the classical Gibbs phenomenon, usually appear.

Remark 4. It seems that our numerical experiments confirm the outstanding results by Lennart
Carleson, the winner of 2006 Abel Prize, about the almost-everywhere point-wise convergence
of Fourier series [4].
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5 Conclusion

It seems that the use of the normal polar co-ordinates will allow us to find close formulas for a
wide set of classical problems, avoiding the use of conformal mappings [5]. A comparison with
the conformal mapping technique is in progress.

In forthcoming articles [6]- [7] we show that the above technique can be applied to solve
classical problems of a vibrating membrane and heat equation relevant to normal-polar shaped
domains.

Similar methods can also be used for particular sets of three-dimensional domains, and
numerical computations will be presented soon, in order to confirm our results.

University are gratefully recognized.
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cylindrical domain C := D× [0, 1], where D is a starlike domain of the (x, y)-plane. We show
how to construct the solution by using the Fourier series method. We derive some numerical
results defining ∂D by means of the so called “superformula” introduced by J. Gielis. By using
a computer algebra system we find a quite rapid convergence of the approximate solutions to the
real one, with only possible exceptions corresponding to singular points in which oscillations
recalling Gibbs’ phenomenon appear. Our findings are in agreement with the theoretical results
on Fourier series due to L. Carleson.

1 Introduction

In recent articles [1], [2] it was shown that for a plane starlike domain (even lying on a two fold
Riemann surface) the Dirichlet problem for the Laplace equation can be solved in explicit form
without using conformal mappings. Therefore, computation of approximate solutions can be
obtained by using symbolic computer algebra programs, avoiding the finite difference methods.

Different techniques were used in literature for solving this classical problem in general
domains, both from the theoretical and numerical point of view (see e.g. [5], representing solution
by using boundary layer techniques; [6], comparing several numerical methods; [7] , solving by
iterative methods the corresponding boundary integral equation; [8], approximating the relevant
Green function by the least squares method; [9], using the grid method; [10], considering the
system of linear equations arising from an unusual finite difference approximation; [11], solving
linear systems relevant to elliptic partial differential equations by relaxation methods). However,
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none of the above mentioned articles is connected with the approach we consider here, which
makes use of simple tools, tracing back to the original Fourier method.

We show in this article an extension of preceding results to the case of a bounded cylinder
C := D × [0, 1] , whose basic line (directrix) ∂D is the boundary of a starlike domain D , i.e. a
domain which is normal with respect to a suitable polar co-ordinate system.

It is worth to note that the technique we developed in [1] can be applied even in the case
when the boundary of the considered domain is interlaced [2] (i.e. the polar equation of the
boundary ∂D is of the type ρ = r (θ) , with 0 ≤ θ ≤ 4π , and the boundary data are periodic of
period 4π ). This more general case can be reduced to the classical one by considering the plane
as a two-fold Riemann surface, and therefore the relevant data are prescribed even on portion
of boundary curves lying inside the considered domain. This recalls the situation of non-local
boundary value problems, introduced and first studied by A.V. Bitsadze and A.A. Samarskii [12],
and subsequently by many authors (see e.g. [13]).

The boundary of domains we have considered in our last Section are defined by using the so
called “superformula” due to J. Gielis [14].

Several numerical examples, computed by using the Computer Algebra system
Mathematica c©, confirm, even in the considered case, the theoretical results by L. Carleson [15],
since we have found a point-wise convergence in all regular points of the boundary, with possible
oscillation usually occurring only in singular points (for the function or its derivative).

2 The problem

Let consider a cylindrical domain C of the R3 space defined by

(x, y) ∈ D , z ∈ [0, 1] ,

such that D is a starlike domain of the (x, y)-plane. We introduce in the plane the ordinary
polar co-ordinates:

x = ρ cos θ , y = ρ sin θ , (2.1)

and the polar equation of ∂D

where r (θ) is a piecewise C2 [0, 2π] function. We suppose the domain D satisfies

0 < A ≤ ρ ≤ r (θ)

and therefore minθ∈[0,2π] r (θ) > 0 .
We introduce the stretched radius 
∗ such that

ρ = 
∗r (θ) , (2.3)

and the curvilinear (i.e. stretched) co-ordinates 
∗

x = 
∗r (θ) cos θ , y = 
∗r (θ) sin θ . (2.4)

Therefore, D is obtained assuming 0 ≤ θ ≤ 2π , 0 ≤ 
∗ ≤ 1 , and ∂D is the basic line
(directrix) of the relevant cylindrical surface ∂D × [0, 1] .
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ρ = r (θ) (0 ≤ θ ≤ 2π) , (2.2)

, θ in the (x, y) -plane



We consider in C the Dirichlet problem for the Laplace equation

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δu :=
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0 , in

◦
C ,

u (x, y, 0) = f0 (x, y) ,

u (x, y, 1) = f1 (x, y) ,

u (x, y, z)|(x,y)∈∂D = g (x, y, z)|(x,y)∈∂D ,

(2.5)

where f0 , f1 , g are given L2 (but actually piecewise continuous) functions.
In order to find the solution, we split the problem into the following two

(PI)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΔuI :=
∂2uI

∂x2
+

∂2uI

∂y2
+

∂2uI

∂z2
= 0 , in

◦
C ,

uI (x, y, 0) = f0 (x, y) ,

uI (x, y, 1) = f1 (x, y) ,

uI (x, y, z)|(x,y)∈∂D = 0 ,

(2.6)

(PII)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΔuII :=
∂2uII

∂x2
+

∂2uII

∂y2
+

∂2uII

∂z2
= 0 , in

◦
C ,

uII (x, y, 0) = 0 ,

uII (x, y, 1) = 0 ,

uII (x, y, z)|(x,y)∈∂D = g (x, y, z)|(x,y)∈∂D .

(2.7)

Therefore, after finding the solutions uI of problem (PI) and uII of problem (PII), the
solution of problem (P ) is given by

u (x, y, z) = uI (x, y, z) + uII (x, y, z) . (2.8)

3 Solution of problem (PI)

According to the results in [2], we set

ρ = r (θ) =
1

Υ (θ)

By using this polar equation, the corresponding stretched co-ordinates 
∗ , θ in the (x, y)-plane
are given by

x = 
∗ cos θ/Υ (θ) , y = 
∗ sin θ/Υ (θ) . (3.2)

Assuming
V (
∗, θ, z) = u (
∗ cos θ/Υ (θ) , 
∗ sin θ/Υ (θ) , z) ,

the Laplacian becomes

Δu =
[
Υ2 (θ) + Υ′2 (θ)

] ∂2V

∂
∗2 +
2Υ (θ)Υ′ (θ)


∗
∂2V

∂
∗∂θ

+
Υ2 (θ) + Υ (θ)Υ′′ (θ)


∗
∂V

∂
∗
+

Υ2 (θ)

∗2

∂2V

∂θ2
+

∂2V

dz2
. (3.3)
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 (0 ≤ θ ≤ 2π) . (3.1)



For 
∗ = ρ , R (θ) ≡ 1 we find again the Laplacian in cylindrical co-ordinates.
We prove the following result

u (x, y, z) = u (ρ cos θ, ρ sin θ, z) = U (ρ, θ, z) ,

Φ0 (
∗, θ) = f0 (
∗r (θ) cos θ, 
∗r (θ) sin θ) =
∞∑

m=0

[αm (
∗) cosmθ + βm (
∗) sinmθ] ,

Φ1 (
∗, θ) = f1 (
∗r (θ) cos θ, 
∗r (θ) sin θ) =
∞∑

m=0

[γm (
∗) cosmθ + δm (
∗) sinmθ] ,

where αm (
∗) , βm (
∗) and γm (
∗) , δm (
∗) are the Fourier coefficients of Φ0 and Φ1 as
functions of θ , for every fixed 
∗ . Then, the solution of the interior Dirichlet problem (PI) can
be represented as

UI
∗

∞∑
m=0

∞∑
l=1

(
Am,l

(m)
l m,l

(m)
l

+Cm,l sinh ζ
(m)
l z cos mθ + Dm,l sinh ζ

(m)
l z sin mθ

)
· Jm

(
ζ
(m)
l 
∗

)
, (3.4)

where ζ
(m)
l denotes the l−th positive root of the Bessel function of the first type and order m .

The coefficients Am,l , Bm,l , Cm,l , Dm,l (m = 0, 1, 2, . . . ; l = 1, 2, 3, . . . ) , after setting⎧⎪⎪⎨
⎪⎪⎩

μm,l

νm,l

σm,l

τm,l

⎫⎪⎪⎬
⎪⎪⎭ =

2

Jm+1

(
ζ
(m)
l

)2

1∫
0

∗

⎧⎪⎪⎨
⎪⎪⎩

αm (
∗)
βm (
∗)
γm (
∗)
δm (
∗)

⎫⎪⎪⎬
⎪⎪⎭Jm

(
ζ
(m)
l

∗
)

d
∗

(m = 0, 1, 2, . . . ; l = 1, 2, 3, . . . )

are given by the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Am,l = μm,l ,

Bm,l = νm,l ,

Cm,l =
1

sinh ζ
(m)
l

(
σm,l − μm,l cosh ζ

(m)
l

)
,

Dm,l =
1

sinh ζ
(m)
l

(
m,l − νm,l cosh ζ

(m)
l

)
(3.6)

(m = 0, 1, 2, . . . ; l = 1, 2, 3, . . . ) .

Proof – Noting that in the stretched co-ordinates for the (x, y)-plane the cylinder C becomes a
cylinder having the unit circle as a directrix, we can use the usual eigenfunction method [16] and
separation of variables (with respect to the variables 
∗ , θ , z ).

By setting

V (ρ, θ, z) = P
(

ρ

r (ϑ)

)
Θ (θ) Z (z) ,
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Theorem 3.1. Set

(
 , θ, z) = cosh ζ z cos mθ + B cosh ζ z sin mθ


 
 (3.5)

τ



we find the ordinary differential equations⎧⎨
⎩

Θ′′ = −m2Θ , (m integral number)
Z ′′ = λ2Z ,
ρ2P′′ + ρP′ +

(
λ2ρ2 − m2

)
P = 0 ,

whose solutions are given by⎧⎨
⎩

Θ (θ) = Am cos mθ + Bm sin mθ ,
Z (z) = Cλ cosh λz + Dλ sinhλz ,
P (ρ) = Em,λJm (λρ) + Fm,λYm (λρ) .

As usual we have to assume Fm,λ = 0 for the boundedness of the solution. Furthermore,

imposing the boundary condition (2.6)4, we find that λ = ζ
(m)
l , (l = 1, 2, 3, . . . ), since it must

run over the set of zeros of the Bessel function Jm (·) . Therefore the solution of problem (PI)
can be searched in the form

UI (ρ, θ, z) =
∞∑

m=0

∞∑
l=1

(
Am,l cosh ζ

(m)
l z cos mθ + Bm,l cosh ζ

(m)
l z sin mθ +

+ Cm,l sinh ζ
(m)
l z cos mθ + Dm,l sinh ζ

(m)
l z sin mθ

)
· Jm

(
ζ
(m)
l ρ

r(θ)

)
. (3.7)

Imposing conditions (2.6)2, (2.6)3, and using Fourier’s method, the equations (3.5)-(3.6) follow.
Therefore we find the solution of problem (PI) in the form reported in equation ( 3.4).

4 Solution of problem (PII)

By using the same notations as before, we prove the following result

Theorem 4.1. Set

G (θ, z) = g (r (θ) cos θ, r (θ) sin θ, z) =
∞∑

n=1

ψn (θ) sinnπz , (4.1)

where ψn (θ) are the Fourier sine coefficients of G as function of z , for every fixed θ . Then,
the solution of the interior Dirichlet problem (PII) can be represented as

UII (
∗, θ, z) =
∞∑

m=0

∞∑
n=1

Im (nπ
∗r (θ))
(
Ãm,n cos mθ + B̃m,n sin mθ

)
sinnπz , (4.2)

where the coefficients Ãm,n , B̃m,n , (m = 0, 1, 2, . . . ; n = 1, 2, 3, . . . ) can be derived by
solving the infinite linear system

∞∑
m=0

m,n,k
˜

m,n n,k

(n = 1, 2, 3, . . . ; k = 0, 1, 2, . . . ) ,

being

Γ
m,n,k

=

2π∫
0

Im (nπr (θ))
[
cos mθ cos kθ sinmθ cos kθ
cos mθ sin kθ sin mθ sin kθ

]
dθ ,
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Γ · X = Ψ  (4.3)



Ψn,k =

2π∫
0

ψn (θ)
[
cos kθ
sin kθ

]
dθ ,

X̃m,n =
[
Ãm,n

B̃m,n

]

(m = 0, 1, 2, . . . ; n = 1, 2, 3, . . . ; k = 0, 1, 2, . . . ) .

Proof – To solve the problem (PII), after separating variables, it is convenient to set⎧⎨
⎩

Θ′′ = −m2Θ , (m integral number)
Z ′′ = −n2π2Z ,
ρ2P′′ + ρP′ − (n2π2ρ2 + m2

)
P = 0 ,

and therefore ⎧⎨
⎩

Θ (θ) = Ãm cos mθ + B̃m sinmθ ,
Z (z) = C̃n cos nπz + D̃n sin nπz ,
P (ρ) = Ẽm,nIm (nπρ) + F̃m,nKm (nπρ) .

Assuming again F̃m,n = 0 , the solution of problem (PII) can be searched in the form

UII (ρ, θ, z) =
∞∑

m=0

∞∑
n=0

Im (nπρ)
(
Ãm cos mθ + B̃m sin mθ

)
·

·
(
C̃n cos nπz + D̃n sinnπz

)
. (4.4)

Imposing conditions (2.8)2-(2.7)3, we find

∞∑
m=0

∞∑
n=0

C̃n m

(
˜

m
˜

m

)

and ∞∑
m=0

∞∑
n=0

n
C̃n m

(
˜

m
˜

m

)

respectively. These conditions can be easily satisfied by assuming C̃n

so that the solution is reduced to the form

UII (ρ, θ, z) =
∞∑

m=0

∞∑
n=1

Im (nπρ)
(
Ãm,n cos mθ + B̃m,n sinmθ

)
sin nπz . (4.5)

Therefore, imposing the condition (2.7)4, recalling (4.1) and using Fourier method, we get our
result.

5 Numerical examples

In the following examples we consider for ∂D a general polar equation of the type

r (θ) =

(∣∣∣∣∣cos m1θ
4

α

∣∣∣∣∣
n1

+

∣∣∣∣∣ sin
m2θ

4

β

∣∣∣∣∣
n2
)−1/n3

(5.1)
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I (nπρ) A cos mθ + B sinmθ = 0 ∀ (ρ, θ) ,

(−1) I (nπρ) A cos mθ + B sin mθ = 0 ∀ (ρ, θ) ,

= 0 (n = 0, 1, 2, . . . ),



introduced by J. Gielis [14] where, in particular, θ ∈ [0, 2π] in the first three examples, whereas
θ ∈ [0, 4π] in the last one.

In numerical experiments, computed by using Mathematica c©, we make different choice
for the seven parameters α , β , m1 , m2 , n1 , n2 , n3 , obtaining very different shapes for the
basic polar domain, including ellipse, Lamé curves (also called Superellipse), ovals, m−fold
symmetric figures, and so on. It was noticed in [14] that many characteristic forms occurring in
Nature (starfish, equisetum, raspberry, and so on) can be obtained in such a way. We emphasize
that almost all two dimensional normal-polar domains are described (or at least approximated as
close as we need) by the above mentioned curves, so that the solution of the Dirichlet problem
for the Laplace equation relevant to very general cylinders can be approximated in this way.

To assess the performance of the proposed technique in terms of numerical accuracy and
convergence rate, the relative boundary error has been evaluated as follows

eL,M,N =
‖uL,M,N (x, y, z) − h (x, y, z)‖

‖h (x, y, z)‖ , (5.2)

where ‖·‖ denotes the usual L2 (∂C) norm, and

h (x, y, z) =

⎧⎨
⎩

f0 (x, y) , (x, y) ∈ D , z = 0 ,
f1 (x, y) , (x, y) ∈ D , z = 1 ,
g (x, y, z) , (x, y) ∈ ∂D , z ∈ (0, 1) ,

is the function describing the boundary values. In (5.2) uL,M,N (x, y, z) is the Fourier-type
expansion of orders L , M , N approximating the solution of the Dirichlet problem for the
Laplace equation (2.5), namely

uL,M,N (x, y, z) = uIL,M
(x, y, z) + uIIM,N

(x, y, z) ,

being

uIL,M IL,M IL,M

=
M∑

m=0

L∑
l=1

(
Am,l

(m)
l m,l

(m)
l

+ Cm,l sinh ζ
(m)
l z cos mθ + Dm,l sinh ζ

(m)
l z sin mθ

)
· Jm

(
ζ
(m)
l ρ

r(θ)

)
,

and

uIIM,N IIM,N IIM,N

=
M∑

m=0

N∑
n=1

Im (nπρ)
(
Ãm,n cos mθ + B̃m,n sinmθ

)
sin nπz ,

respectively.

5.1 Example 1

By assuming in (5.1) α = 1/8 , β = 1 , m1 = m2 = 2 , n1 = 2 , n2 = n3 = 6 ,
and θ ∈ [0, 2π] , the domain C features the ovaloid-like shape shown in Fig. 1. Let
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(x, y, z) = u (ρ cos θ, ρ sin θ, z) = U (ρ, θ, z)

cosh ζ z cos mθ + B cosh ζ z sinmθ

(x, y, z) = u (ρ cos θ, ρ sin θ, z) = U (ρ, θ, z)



N = 8

eL,M,N L = 1 L = 4 L = 8
M = 0 91.895% 74.368% 74.307%
M = 5 61.718% 10.223% 8.918%

M = 10 61.199% 5.973% 3.112%
(a)

M = 10

eL,M,N L = 1 L = 4 L = 8
N = 1 86.085% 60.836% 60.622%
N = 4 61.228% 6.262% 3.636%
N = 8 61.199% 5.973% 3.112%

(b)

L = 8

eL,M,N M = 0 M = 5 M = 10
N = 1 74.307% 60.770% 60.622%
N = 4 74.307% 8.198% 3.636%
N = 8 74.307% 8.918% 3.112%

(c)

Table 1: Relative boundary error eL,M,N for different expansion orders of the Fourier-
like solution of the Dirichlet problem for the Laplace equation (2.5) in a cylindrical
domain C , whose directrix is described by the polar equation (5.1) with parameters
α = 1/8 , β = 1 , m1 = m2 = 2 , n1 = 2 , n2 = n3 = 6 .

f0 (x, y) =
(
1 − x2 − 2y2

)
/5 , f1 (x, y) = e−7(x2+y2) cos (9x + 5y) , and g (x, y, z) =

4xy log
(
1 + x2 + 2y2 + 3z2

)
sin (3πz) be the functions describing the boundary values. Then,

as regards the relative boundary error eL,M,N , the numerical results summarized in Table 1
are obtained. Finally, the maps in Fig. 1 clearly show the convergence of the approximating
sequence of functions uL,M,N (x, y, z) to the boundary values h (x, y, z) .

5.2 Example 2

By assuming in (5.1) α = β = 3/4 , m1 = m2 = 5 , n1 = n2 = 7 , n3 = 2 ,
and θ ∈ [0, 2π] , the domain C features the starfish-like shape shown in Fig. 2. Let
f0 (x, y) = 1 + 2x2 + 3y2 , f1 (x, y) = 17x y sech

(
1 + 7x2

)
sin (x + 2y) /

(
1 + 3y2 + 5y4

)
,

and g (x, y, z) = x3z +xyz + y2z + z2 −x3z2 −xyz2 − y2z2 − z3 be the functions describing
the boundary values. Then, as regards the relative boundary error eL,M,N , the numerical results
summarized in Table 2 are obtained. Finally, the maps in Fig. 2 clearly show the convergence of
the approximating sequence of functions uL,M,N (x, y, z) to the boundary values h (x, y, z) .

5.3 Example 3

By assuming in (5.1) α = β = 1/8 , m1 = 5 , m2 = 7 , n1 = n2 = 5 , n3 = 17 , and
θ ∈ [0, 2π] , the domain C features the shape shown in Fig. 3. Let f0 (x, y) = 4ex − 5y3 + 6y ,
f1 (x, y) = 17 sin

(
5xy2 + 3x2y

)
, and g (x, y, z) = 5 (x − cos πy + sinπz) /

(
2 − 5z + 6z2

)
be the functions describing the boundary values. Then, as regards the relative boundary error
eL,M,N , the numerical results summarized in Table 3 are obtained. Finally, the maps in Fig. 3
clearly show the convergence of the approximating sequence of functions uL,M,N (x, y, z) to
the boundary values h (x, y, z) .
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N = 7

eL,M,N L = 1 L = 20 L = 40
M = 0 74.812% 74.479% 74.455%

M = 20 108.604% 105.327% 105.156%
M = 40 27.579% 7.708% 4.822%

(a)

M = 40

eL,M,N L = 1 L = 20 L = 40
N = 1 29.618% 13.270% 11.830%
N = 4 27.664% 7.757% 4.841%
N = 7 27.578% 7.708% 4.822%

(b)

L = 40

eL,M,N M = 0 M = 20 M = 40
N = 1 51.820% 11.857% 11.830%
N = 4 74.206% 4.909% 4.841%
N = 7 74.455% 105.156% 4.822%

(c)

Table 2: Relative boundary error eL,M,N for different expansion orders of the Fourier-
like solution of the Dirichlet problem for the Laplace equation (2.5) in a cylindrical
domain C , whose directrix is described by the polar equation (5.1) with parameters
α = β = 3/4 , m1 = m2 = 5 , n1 = n2 = 7 , n3 = 2 .

N = 11

eL,M,N L = 1 L = 20 L = 40
M = 0 94.972% 87.623% 87.361%

M = 20 529.004% 526.539% 526.418%
M = 40 52.954% 14.204% 8.614%

(a)

M = 40

eL,M,N L = 1 L = 20 L = 40
N = 1 54.791% 19.993% 16.497%
N = 6 53.082% 14.674% 9.369%

N = 11 52.954% 14.204% 8.614%
(b)

L = 40

eL,M,N M = 0 M = 20 M = 40
N = 1 64.702% 16.592% 16.497%
N = 6 77.781% 9.535% 9.369%

N = 11 87.361% 526.418% 8.614%
(c)

Table 3: Relative boundary error eL,M,N for different expansion orders of the Fourier-
like solution of the Dirichlet problem for the Laplace equation (2.5) in a cylindrical
domain C , whose directrix is described by the polar equation (5.1) with parameters
α = β = 1/8 , m1 = 5 , m2 = 7 , n1 = n2 = 5 , n3 = 17 .

5.4 Example 4

By assuming in (5.1) α = β = 1 , m1 = m2 = 10 , n1 = n2 = 1 , n3 = 7 ,
and θ ∈ [0, 4π] , the domain C features the polygonal shape shown in Fig. 4. Let
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N = 11

eL,M,N L = 1 L = 20 L = 40
M = 0 91.353% 91.353% 91.353%

M = 20 30.397% 13.381% 12.641%
M = 40 30.378% 12.429% 11.298%

(a)

M = 40

eL,M,N L = 1 L = 20 L = 40
N = 1 32.164% 16.315% 15.471%
N = 6 30.382% 12.438% 11.308%

N = 11 30.378% 12.429% 11.298%
(b)

L = 40

eL,M,N M = 0 M = 20 M = 40
N = 1 91.479% 16.477% 15.471%
N = 6 91.353% 12.651% 11.308%

N = 11 91.353% 12.641% 11.298%
(c)

Table 4: Relative boundary error eL,M,N for different expansion orders of the Fourier-
like solution of the Dirichlet problem for the Laplace equation (2.5) in a cylindrical
domain C , whose directrix is described by the polar equation (5.1) with parameters
α = β = 1 , m1 = m2 = 10 , n1 = n2 = 1 , n3 = 7 .

f0 (x, y) =
(
1 − x2 − y2

)
(cos x sin y − xy) , f1 (x, y) = e−3x2−2y2

Im
{√−x + iy

}
, and

g (x, y, z) =
(
z − z2

) [
log
(
1 + x2 + y2 + z2

)
+ sin (8xyz)

]
be the functions describing the

boundary values. Then, as regards the relative boundary error eL,M,N , the numerical results
summarized in Table 4 are obtained. Finally, the maps in Fig. 4 clearly show the convergence of
the approximating sequence of functions uL,M,N (x, y, z) to the boundary values h (x, y, z) .

Remark 5. We note that when the boundary values have wide oscillations, it is necessary to
increase the number of terms in the relevant Fourier expansion, in order to obtain better results.

Remark 6. The L2 norm of the difference between the exact solution and its approximate
values is always vanishing in the interior of the considered domain, and generally small on the
boundary. Point-wise convergence seems to be true on the whole boundary, with only exception
of a set of measure zero, corresponding to singular points for the function or its derivative. In
these points oscillations of the approximate solution, recalling the classical Gibbs phenomenon,
usually appear.

6 Conclusion

It seems that the use of stretched co-ordinate system, reducing every starlike domain to a circle,
allows to use the classical Fourier methods to a very large class of domains, permitting to find
solutions in a closed form, and to avoid some more cumbersome techniques such as the conformal
mapping theorem, and the finite difference methods, since it is possible to use only quadrature
rules and solution of linear systems.

An extension to three dimensional starlike domains, by using the spherical co-ordinate
system, is presented in this volume.
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Figure 1: Boundary distribution of Fourier-type expansions uL,M,N (x, y, z)
approximating the solution of the Dirichlet problem for the Laplace equation (2.5) in
a cylindrical domain C , whose directrix is described by the polar equation (5.1) with
parameters α = 1/8 , β = 1 , m1 = m2 = 2 , n1 = 2 , n2 = n3 = 6 .
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Figure 2: Boundary distribution of Fourier-type expansions uL,M,N (x, y, z)
approximating the solution of the Dirichlet problem for the Laplace equation (2.5) in
a cylindrical domain C , whose directrix is described by the polar equation (5.1) with
parameters α = β = 3/4 , m1 = m2 = 5 , n1 = n2 = 7 , n3 = 2 . Gibbs-like
phenomena can be easily noticed at the quasi-cusped points of the domain.
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Figure 3: Boundary distribution of Fourier-type expansions uL,M,N (x, y, z)
approximating the solution of the Dirichlet problem for the Laplace equation (2.5) in
a cylindrical domain C , whose directrix is described by the polar equation (5.1) with
parameters α = β = 1/8 , m1 = 5 , m2 = 7 , n1 = n2 = 5 , n3 = 17 .
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Figure 4: Boundary distribution of Fourier-type expansions uL,M,N (x, y, z)
approximating the solution of the Dirichlet problem for the Laplace equation (2.5) in
a cylindrical domain C , whose directrix is described by the polar equation (5.1) with
parameters α = β = 1 , m1 = m2 = 10 , n1 = n2 = 1 , n3 = 7 .
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i.e. a domain which is normal with respect to a suitable spherical co-ordinates system. Such a
domain can be interpreted as a non-isotropically stretched unit sphere.

We write down the explicit solution in terms of a Fourier series whose coefficients are
determined by solving an infinite system of linear equations depending on the boundary data.

Numerical experiments show that our method guarantees almost everywhere convergence,
whenever the boundary data belong to L2, in accordance with the results proved by L. Carleson.

1 Introduction

Many applications of Mathematical Physics and Engineering are connected with the Laplacian.

• The wave equation vtt = a2 Δv

• The heat propagation vt = κ Δv

• The Laplace equation Δv = 0

• The Helmholtz equation Δv + k2v = 0

• The Poisson equation Δv = f

• The Schrödinger equation − h2

2m
Δψ + V ψ = Eψ ,

however, the most part of boundary value problems (shortly BVP) relevant to the Laplacian are
solved in explicit form only for domains with a very special shape, namely intervals, cylinders
or domains with special (circular or spherical) symmetries [1].
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The solution for more general domains is obtained by using the Riemann theorem on
conformal mappings, and the relevant invariance of the Laplacian [2]. However, explicit
conformal mappings are known only for particular domains. Of course, this method does not
exist in the three-dimensional case, and the usual approach makes use of discretization.

Different techniques was also used for solving the general problem, both from a theoretical
and computational point of view (see e.g. [3], representing solution by using boundary layer
techniques; [4], comparing several numerical methods; [5], solving by iterative methods the
corresponding boundary integral equation; [6], approximating the relevant Green function by
the least squares method; [7], considering the system of linear equations arising from an unusual
finite difference approximation; [8], solving linear systems relevant to elliptic partial differential
equations by relaxation methods). However, none of the articles we have found in literature
is connected with our approach, which makes use of simple tools, tracing back to the original
Fourier method.

We consider in this article an extension of the classical theory to the case of a starlike domain,
i.e. a domain D, which is normal with respect to a suitable spherical co-ordinate system.

In Chapter 1, considering the two-dimensional case, we have shown how to write down
explicitly the solution of the Dirichlet problem for the Laplace equation in terms of a Fourier
series whose coefficients are determined by solving an infinite linear system, depending on
the boundary data [9]. The integral operator which is naturally connected with this system
is compact, and therefore, by using F. Riesz’theory [10], its solution can be approximated by
solving a finite dimensional linear system, since the error term can be shown to be negligible,
when the finite dimension increases.

In this article we consider further applications of the above mentioned method extending
results to the case of three-dimensional domains. The boundary of the domains we have
considered in all our applications are defined by generalizing the so called ”superformula” due
to J. Gielis [12].

The numerical examples, computed by using the Computer Algebra program
Mathematica c©, confirm, even in the above mentioned more general case the theoretical results

boundary, with possible oscillation usually occurring only in singular points.

2 The Laplacian in stretched spherical co-ordinates

We introduce in the three-dimensional space the ordinary spherical co-ordinate system:

x = r cos ϕ sin ϑ , y = r sinϕ sin ϑ , z = r cos ϑ , (2.1)

and the polar equation of ∂D

where R(ϑ, ϕ) is a piece-wise C2 function in [0, π] × [0, 2π]. We suppose the domain D
satisfies

0 < A ≤ r ≤ R(ϑ, ϕ) ,

and therefore min
(ϑ,ϕ)∈[0,π]×[0,2π]

R(ϑ, ϕ) > 0.

We introduce the stretched radius ρ such that

r = ρR(ϑ, ϕ) , (2.3)
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of L. Carllson [13], since we have found a point-wise convergence in all regular points of the

r = R(ϑ, ϕ) (0 ≤ ϑ ≤ π ; 0 ≤ ϕ ≤ 2π) , (2.2)



and the curvilinear (i.e. stretched) co-ordinates ρ, ϑ, ϕ , in the space x, y, z,

x = ρR(ϑ, ϕ) cosϕ sin ϑ , y = ρR(ϑ, ϕ) sinϕ sin ϑ , z = ρR(ϑ, ϕ) cosϑ . (2.4)

Therefore, D is obtained assuming 0 ≤ ϑ ≤ π , 0 ≤ ϕ ≤ 2π , 0 ≤ ρ ≤ 1 .

Remark 7. – Note that, in the stretched co-ordinate system the original domain D is transformed
into the unit sphere, so that in this system we can use for the transformed Laplace equation all
the classical techniques, including separation of variables.

We consider a C2(D) function v(x, y, z) = v(r cos ϕ sin ϑ, r sinϕ sin ϑ, r cos ϑ) =
u(r, ϑ, ϕ) and the Laplace operator in spherical co-ordinates

Δu =
1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sinϑ

∂

∂ϑ

(
sin ϑ

∂u

∂ϑ

)
+

1
r2 sin2 ϑ

∂2u

∂ϕ2
. (2.5)

We start representing this operator in the new stretched co-ordinate system ρ, ϑ, ϕ. Setting

U(ρ, ϑ, ϕ) = u (ρR(ϑ, ϕ), ϑ, ϕ) , (2.6)

we find (denoting for shortness R := R(ϑ, ϕ)),

∂u

∂r
=

1
R

∂U

∂ρ
, (2.7)

∂2u

∂r2
=

1
R2

∂2U

∂ρ2
, (2.8)

∂u

∂ϑ
= −ρ

Rϑ

R

∂U

∂ρ
+

∂U

∂ϑ
, (2.9)

∂2u

∂ϑ2
= ρ

2R2
ϑ − RRϑϑ

R2

∂U

∂ρ
+ ρ2 R2

ϑ

R2

∂2U

∂ρ2
− 2ρ

Rϑ

R

∂2U

∂ρ∂ϑ
+

∂2U

∂ϑ2
. (2.10)

∂u

∂ϕ
= −ρ

Rϕ

R

∂U

∂ρ
+

∂U

∂ϕ
, (2.11)

∂2u

∂ϕ2
= ρ

2R2
ϕ − RRϕϕ

R2

∂U

∂ρ
+ ρ2

R2
ϕ

R2

∂2U

∂ρ2
− 2ρ

Rϕ

R

∂2U

∂ρ∂ϕ
+

∂2U

∂ϕ2
. (2.12)

Substituting we find our result, i.e.

Δu =
∂2u

∂r2

2
r

∂u

∂r
+

1
r2

∂2u

∂ϑ2

cot ϑ

r2

∂u

∂ϑ
+

1
r2 sin2 ϑ

∂2u

∂ϕ2

=
1

R2

[
1 +

R2
ϑ

R2
+

R2
ϕ

R2 sin2 ϑ

]
∂2U

∂ρ2

+
1

ρR2

[
2

(
1 +

R2
ϑ

R2
+

R2
ϕ

R2 sin2 ϑ

)
− 1

R

(
Rϑ cot ϑ + Rϑϑ +

Rϕϕ

sin2 ϑ

)]
∂U

∂ρ

− 2
Rϑ

ρR3

∂2U

∂ρ∂ϑ
− 2

Rϕ

ρR3 sin2 ϑ

∂2U

∂ρ∂ϕ

+
1

ρ2R2

∂2U

∂ϑ2
+

cot ϑ

ρ2R2

∂U

∂ϑ
+

1
ρ2R2 sin2 ϑ

∂2U

∂ϕ2
.

(2.13)
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For ρ = r , R(ϑ, ϕ) ≡ 1, we recover the Laplacian in spherical co-ordinates.

3 An equivalent formulation

For further computations, it is easier to change the spherical equation of ∂D by setting

Υ := Υ (ϑ, ϕ) :=
1

R (ϑ, ϕ)

The unit sphere is recovered whenever Υ (ϑ, ϕ) ≡ 1.

Using this spherical equation, the corresponding stretched co-ordinates ρ, ϑ, ϕ , in the space
x, y, z , are given by

x =
ρ

Υ (ϑ, ϕ)
cos ϕ sin ϑ , y =

ρ

Υ (ϑ, ϕ)
sinϕ sin ϑ , z =

ρ

Υ (ϑ, ϕ)
cos ϑ , (3.2)

and assuming again, for shortness:

U (ρ, ϑ, ϕ) = u

(
ρ

Υ (ϑ, ϕ)
, ϑ, ϕ

)
,

the Laplacian becomes:

Δu =

(
Υ2 + Υ2

ϑ +
Υ2

ϕ

sin2 ϑ

)
∂2U

∂ρ2
+

Υ
ρ

(
2Υ + Υϑ cot ϑ + Υϑϑ +

Υϕϕ

sin2 ϑ

)
∂U

∂ρ

+
2ΥΥϑ

ρ

∂2U

∂ρ∂ϑ
+

2ΥΥϕ

ρ sin2 ϑ

∂2U

∂ρ∂ϕ
+

Υ2

ρ2

∂2U

∂ϑ2

+
Υ2 cot ϑ

ρ2

∂U

∂ϑ
+

Υ2

ρ2 sin2 ϑ

∂2U

∂ϕ2
.

(3.3)

For ρ = r , Υ (ϑ, ϕ) ≡ 1, we find again the Laplacian in spherical co-ordinates.

4 Applications to the Dirichlet problem

Consider the Dirichlet problem for the Laplace equation

⎧⎨
⎩ (4.1)

We prove the following result
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(0 ≤ ϑ ≤ π ; 0 ≤ ϕ ≤ 2π). (3.1)

Δu(r, ϑ, ϕ) = 0 , r < R(ϑ, ϕ) (0 ≤ ϑ ≤ π , 0 ≤ ϕ < 2π) ,

u(r, ϑ, ϕ) = f(ϑ, ϕ) , r = R(ϑ, ϕ) (0 ≤ ϑ ≤ π , 0 ≤ ϕ < 2π) .



f(ϑ, ϕ) =
+∞∑
n=0

n∑
m=0

Pm
n (cos ϑ) (αn,m cos mϕ + βn,m sin mϕ) , (4.2)

where{
αn,m

βn,m

}
= εm

2n + 1
4π

(n − m)!
(n + m)!

∫ 2π

0

∫ π

0

f(ϑ, ϕ)Pm
n (cos ϑ)

{
cos mϕ
sinmϕ

}
sinϑdϑ dϕ ,

(4.3)

εm =
{

1 , m = 0
2 , m �= 0 , and Pm

n are the associated Legendre functions of the first kind (see [1]).

Then, the solution of the interior Dirichlet problem can be represented as

u(r, ϑ, ϕ) =
+∞∑
n=0

n∑
m=0

rnPm
n (cos ϑ) (An,m cos mϕ + Bn,m sinmϕ) , (4.4)

where the coefficients An,m, Bn,m can be found by solving the infinite linear system

+∞∑
n=0

n∑
m=0

[
X+

n,m,h,k Y +
n,m,h,k

X−
n,m,h,k Y −

n,m,h,k

]
·
[

An,m

Bn,m

]
=
[

αh,k

βh,k

]
,

(h ∈ N0 , k = 0, 1, . . . , h) , (4.5)

where

X±
n,m,h,k = εk

2h + 1
4π

(h − k)!
(h + k)!

∫ 2π

0

∫ π

0

[R(ϑ, ϕ)]n Pm
n (cos ϑ)P k

h (cos ϑ) cosmϕ

{
cos kϕ
sin kϕ

}
·

· sin ϑdϑ dϕ ,

Y ±
n,m,h,k = εk

2h + 1
4π

(h − k)!
(h + k)!

∫ 2π

0

∫ π

0

[R(ϑ, ϕ)]n Pm
n (cos ϑ)P k

h (cos ϑ) sinmϕ

{
cos kϕ
sin kϕ

}
·

· sin ϑdϑ dϕ .

the form

u(r, ϑ, ϕ) = U

(
ρ

R(ϑ, ϕ)
, ϑ, ϕ

)
= P (r)Θ(ϑ)Φ(ϕ) . (4.6)

Substituting into the Laplace equation we find that the functions P,Θ,Φ must satisfy the ordinary
differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2 d2P

dr2
+ 2r

dP

dr
− λ2P = 0 ,

1
sin ϑ

d

dϑ

(
sinϑ

dΘ
dϑ

)
+
(

λ2 − μ2

sin2 ϑ

)
Θ = 0 ,

d2Φ
dϕ2

+ μ2Φ = 0 ,

(4.7)
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Theorem 4.1. Let

Proof. Recalling Remark 1, elementary solutions of the problem (4.1) can be searched in



and therefore, by using very classical results, we find

μ = m ∈ Z ,

λ2 = n(n + 1) , n ∈ N0

and for the interior problem:

P (r) = cmrn , (cm arbitrary constant)

Θ(ϑ) = dn,mPm
n (cos ϑ) , (dn,m arbitrary constant) ,

where

Pm
n (η) = (−1)m(1 − η2)m/2 dmPn(η)

dηm
= (−1)m (1 − η2)m/2

2n n!
dn+m(η2 − 1)n

dηn+m
.

Therefore a general solution of the Laplace equation can be written in the form

u(r, ϑ, ϕ) =
+∞∑
n=0

n∑
m=0

rnPm
n (cos ϑ) (An,m cos mϕ + Bn,m sinmϕ) . (4.8)

Imposing the boundary condition

=
+∞∑
n=0

n∑
m=0

[R(ϑ, ϕ)]n Pm
n (cos ϑ) (An,m cos mϕ + Bn,m sin mϕ) ,

(4.9)

we find for the unknown constants An,m, Bn,m in the system (4.5).

Remark 8. – Note that, assuming the unessential condition R(ϑ, ϕ) ≤ M < 1, ∀(ϑ, ϕ) ∈
[0, π] × [0, 2π], the system (4.5) can be solved in an approximate way by considering the
corresponding finite system where n = 0, 1, . . . , N , and h = 0, 1, . . . , N, k = 0, 1, . . . , h,
and the solution is convergent when N → +∞.

Remark 9. – Note that the above considerations hold whenever the function R(ϑ, ϕ) is a
piecewise continuous function, and if the boundary data are given by square integrable functions,
not necessarily continuous, so that the relevant coefficients αh,k, βh,k in equation (4.3) are finite.

In a similar way the exterior problem could be treated, assuming the usual condition at
infinity:

lim
ρ→+∞u(ρ, ϑ, ϕ) = 0 ,

uniformly with respect to ϑ and ϕ.
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m m m mΦ(ϕ) = a cos mϕ + b sin mϕ (a , b arbitrary constants) ,

f(ϑ, ϕ) = U(1, ϑ, ϕ) = u [R(ϑ, ϕ), ϑ, ϕ]



5 Numerical examples

In the following examples we assume for the boundary ∂D a general spherical equation of the
type

R(ϑ, ϕ) = c

[∣∣∣∣∣ sin
pϑ
2 cos qϕ

4

γ1

∣∣∣∣∣
ν1

+

∣∣∣∣∣ sin
pϑ
2 sin qϕ

4

γ2

∣∣∣∣∣
ν2

+

∣∣∣∣∣cos pϑ
2

γ3

∣∣∣∣∣
ν3
]−1/ν0

, (5.1)

(p, q, γ1, γ2, γ3, ν0, ν1, ν2, ν3 integral numbers), extending to the three-dimensional case the
curves introduced by J. Gielis [12]. Moreover, let F (x, y, z) denote the function representing
boundary values. Under such assumptions, the following expression results

f(ϑ, ϕ) = F (R(ϑ, ϕ) cos ϕ sin ϑ,R(ϑ, ϕ) sin ϕ sin ϑ,R(ϑ, ϕ) cos ϑ) . (5.2)

In numerical experiments, computed by using Mathematica c©, we assume different values
of the nine parameters p, q, γ1, γ2, γ3, ν0, ν1, ν2, ν3, obtaining very different shapes for the
considered domain, including ellipsoids, Lamé-type domains (also called Superellipsoids),
ovaloids, (p, q)-fold symmetric figures, and so on. We introduced furthermore an extra
parameter c, in order to ensure the convergence condition max

(ϑ,ϕ)∈[0,π]×[0,2π]
R(ϑ, ϕ) ≤ M < 1.

We emphasize that almost all three-dimensional normal-polar domains are described (or at least
approximated in a close way) by the above mentioned surfaces.

In particular, to assess the performances of the proposed algorithm in terms of numerical
accuracy and convergence rate, the relative boundary error has been evaluated as follows

eN =
‖UN (1, ϑ, ϕ) − f(ϑ, ϕ)‖

‖f(ϑ, ϕ)‖ , (5.3)

where ‖·‖ denotes the usual L2 (∂D) norm, and

UN (ρ, ϑ, ϕ) =
N∑

n=0

n∑
m=0

[ρR(ϑ, ϕ)]n Pm
n (cos ϑ) (An,m cos mϕ + Bn,m sin mϕ) , (5.4)

is the N − th partial sum of the approximating spherical harmonics series (4.8).

5.1 Example 1

By assuming in (5.1) γ1 = 5, γ2 = γ3 = 4, m = 1, n = 2, ν0 = ν1 = ν2 = 6, ν3 = 2, the
domain D features the shape depicted in Fig. 1.

Let F (x, y, z) = sinh
(

x+y
4

)
+ log

(
1 + x2 + y2 + z2

)
be the function representing

boundary values. Then, the relative boundary error eN as function of the number N of
terms in the relevant expansion (5.4) exhibits the behavior shown in Fig. 2.

Finally, the maps in Fig. 3 clearly show the convergence rate of the approximating sequence
of functions UN (1, ϑ, ϕ) to the boundary values f(ϑ, ϕ).

5.2 Example 2

By assuming in (5.1) γ1 = γ2 = γ3 = 1, m = 2, n = 4, ν0 = ν1 = ν2 = ν3 = 1, the domain
D features the shape depicted in Fig. 4.

Let F (x, y, z) = x2y2 − 5x2z2 − 10y2z2 + sinh (x + y) be the function representing
boundary values. Then, the relative boundary error eN as function of the number N of terms
in the relevant expansion (5.4) exhibits the behavior shown in Fig. 5.

Finally, the maps in Fig. 6 clearly show the convergence rate of the approximating sequence
of functions UN (1, ϑ, ϕ) to the boundary values f(ϑ, ϕ).
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5.3 Example 3

By assuming in (5.1) γ1 = γ2 = 1, γ3 = 1/2, m = 2, n = 5, ν0 = ν3 = 2, ν1 = ν2 = 7, the
domain D features the shape depicted in Fig. 7.

Let F (x, y, z) = x + y + z + sin (xz) + cos (yz) be the function representing boundary
values. Then, the relative boundary error eN as function of the number N of terms in the
relevant expansion (5.4) exhibits the behavior shown in Fig. 8.

Finally, the maps in Fig. 9 clearly show the convergence rate of the approximating sequence
of functions UN (1, ϑ, ϕ) to the boundary values f(ϑ, ϕ).

to increase the number N of terms in the relevant spherical harmonics expansion, in order to
obtain better results.

2 norm of the difference between the exact solution and its approximate
value is always vanishing in the interior of the considered domain, and in general small on
the boundary. Point-wise convergence seems to be verified on the whole boundary, with only
exception of a set of measure zero, corresponding to cusped or quasi-cusped points. In this points
oscillations of the approximate solution, recalling the classical Gibbs phenomenon, usually
appear.

6 Conclusion

The use of the normal spherical co-ordinates allow us to find close formulas for a wide set of
classical problems, avoiding the use of mesh-based numerical techniques, such as the Finite
Element Method (FEM) [14].

The application of the proposed method to the solution of the classical problems of a
vibrating membrane and heat equation, relevant to normal-spherical shaped domains is in
progress.
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Figure 1: Three-dimensional view of the domain D obtained by assuming in (5.1)
γ1 = 5, γ2 = γ3 = 4, m = 1, n = 2, ν0 = ν1 = ν2 = 6, ν3 = 2. The parameter c has
been set in order to ensure the condition max

(ϑ,ϕ)∈[0,π]×[0,2π]
R(ϑ, ϕ) = 1.

Figure 2: Relative boundary error eN as function of the number N of terms in the
expansion (5.4). The relevant domain D is described by the spherical equation (5.1)
with γ1 = 5, γ2 = γ3 = 4, m = 1, n = 2, ν0 = ν1 = ν2 = 6, ν3 = 2.
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Figure 3: Angular behavior of the N − th partial sum of the approximating spherical
harmonics series UN (1, ϑ, ϕ) for different values of the expansion order N . A Gibbs-
like phenomenon can be observed at the cusped point ϑ = 180◦. The relevant domain
D is described by the spherical equation (5.1) with γ1 = 5, γ2 = γ3 = 4, m = 1,
n = 2, ν0 = ν1 = ν2 = 6, ν3 = 2.
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Figure 4: Three-dimensional view of the domain D obtained by assuming in (5.1)
γ1 = γ2 = γ3 = 1, m = 2, n = 4, ν0 = ν1 = ν2 = ν3 = 1. The parameter c has been
set in order to ensure the condition max

(ϑ,ϕ)∈[0,π]×[0,2π]
R(ϑ, ϕ) = 1.

Figure 5: Relative boundary error eN as function of the number N of terms in the
expansion (5.4). The relevant domain D is described by the spherical equation (5.1)
with γ1 = γ2 = γ3 = 1, m = 2, n = 4, ν0 = ν1 = ν2 = ν3 = 1.
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Figure 6: Angular behavior of the N − th partial sum of the approximating spherical
harmonics series UN (1, ϑ, ϕ) for different values of the expansion order N . Gibbs-like
phenomena can be observed along the edges ϑ = 90◦ and ϕ = 0◦, 90◦, 180◦, 270◦.
The relevant domain D is described by the spherical equation (5.1) with γ1 = γ2 =
γ3 = 1, m = 2, n = 4, ν0 = ν1 = ν2 = ν3 = 1.
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Figure 7: Three-dimensional view of the domain D obtained by assuming in (5.1)
γ1 = γ2 = 1, γ3 = 1/2, m = 2, n = 5, ν0 = ν3 = 2, ν1 = ν2 = 7. The parameter c
has been set in order to ensure the condition max

(ϑ,ϕ)∈[0,π]×[0,2π]
R(ϑ, ϕ) = 1.

Figure 8: Relative boundary error eN as function of the number N of terms in the
expansion (5.4). The relevant domain D is described by the spherical equation (5.1)
with γ1 = γ2 = 1, γ3 = 1/2, m = 2, n = 5, ν0 = ν3 = 2, ν1 = ν2 = 7.
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Figure 9: Angular behavior of the N − th partial sum of the approximating spherical
harmonics series UN (1, ϑ, ϕ) for different values of the expansion order N . Gibbs-like
phenomena can be clearly observed at the quasi-cusped points of the relevant domain
D, which is described by the spherical equation (5.1) with γ1 = γ2 = 1, γ3 = 1/2,
m = 2, n = 5, ν0 = ν3 = 2, ν1 = ν2 = 7.
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The Dirichlet problem for the Helmholtz

equation in a starlike domain

by Diego Caratelli (�) and Paolo E. Ricci (†)

(�) Delft University of Technology, IRCTR

(†) Università di Roma “La Sapienza”, Dipartimento di Matematica

equation in a bounded starlike domain. We show how to construct the solution by using the
Fourier series method. We derive some numerical results defining the boundary of the domain
by means of the so called “superformula” introduced by J. Gielis. By using a computer algebra
system we derive approximations satisfying properties similar to the classical ones. Our findings
are in agreement with the theoretical results on Fourier series due to L. Carleson.

1 Introduction

In recent articles [1], [2], [3], [4], the classical Fourier method [5], [6] for solving the Dirichlet
problem for the Laplace equation in domains with very special (circular or spherical) symmetries
was extended in order to solve the same problem in a starlike domain, i.e. a domain D, which
is normal with respect to a suitable spherical co-ordinate system. Note that D can be considered
as a stretched unit sphere, centered at the origin.

We show in this article that similar results can be achieved even for the Helmholtz equation.
The boundary of domains we have considered in our last Section are defined by using the so

called “superformula” due to J. Gielis [7].
Several numerical examples, computed by using the Computer Algebra system

Mathematica c©, confirm, even in the considered case, the theoretical results by L. Carleson [8],
since we have found a point-wise convergence in all regular points of the boundary, with possible
oscillation usually occurring only in singular points (for the function or its derivative).

2 The Laplacian in stretched spherical co-ordinates

We introduce in the three-dimensional space the ordinary spherical co-ordinate system:

x = r cos ϕ sin ϑ , y = r sinϕ sin ϑ , z = r cos ϑ , (2.1)

50

Mekelweg 4, 2628 CD, Delft, the Netherlands

P.le A. Moro, 2, 00185, Roma, Italia

Abstract. We consider the interior and exterior Dirichlet problem for the Helmholtz
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and the polar equation of ∂D
r = R(ϑ, ϕ) , (0 ≤ ϑ ≤ π ; 0 ≤ ϕ ≤ 2π) , (2.2)

where R(ϑ, ϕ) is a piece-wise C2 function in [0, π] × [0, 2π]. We suppose the domain D
satisfies

0 < A ≤ r ≤ R(ϑ, ϕ) ,

and therefore min
(ϑ,ϕ)∈[0,π]×[0,2π]

R(ϑ, ϕ) > 0.

We introduce the stretched radius ρ such that

r = ρR(ϑ, ϕ) , (2.3)

and the curvilinear (i.e. stretched) co-ordinates ρ, ϑ, ϕ , in the space x, y, z,

x = ρR(ϑ, ϕ) cosϕ sin ϑ , y = ρR(ϑ, ϕ) sinϕ sin ϑ , z = ρR(ϑ, ϕ) cosϑ . (2.4)

Therefore, D is obtained assuming 0 ≤ ϑ ≤ π , 0 ≤ ϕ ≤ 2π , 0 ≤ ρ ≤ 1 .

transformed into the unit sphere, so that in this system we can use for the transformed Helmholtz
equation all the classical techniques, including separation of variables.

We consider a C2(D) function v(x, y, z) = v(r cos ϕ sin ϑ, r sin ϕ sin ϑ, r cos ϑ) =
u(r, ϑ, ϕ) and the Laplace operator in spherical co-ordinates

Δu =
1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sinϑ

∂

∂ϑ

(
sin ϑ

∂u

∂ϑ

)
+

1
r2 sin2 ϑ

∂2u

∂ϕ2
. (2.5)

We recall the expression of the Laplacian in the new stretched co-ordinate system ρ, ϑ, ϕ.
Setting

U(ρ, ϑ, ϕ) = u (ρR(ϑ, ϕ), ϑ, ϕ) , (2.6)

we find (denoting for shortness R := R(ϑ, ϕ)) [3],

Δu =
∂2u

∂r2

2
r

∂u

∂r
+

1
r2

∂2u

∂ϑ2

cot ϑ

r2

∂u

∂ϑ
+

1
r2 sin2 ϑ

∂2u

∂ϕ2

=
1

R2

[
1 +

R2
ϑ

R2
+

R2
ϕ

R2 sin2 ϑ

]
∂2U

∂ρ2

+
1

ρR2

[
2

(
1 +

R2
ϑ

R2
+

R2
ϕ

R2 sin2 ϑ

)
− 1

R

(
Rϑ cot ϑ + Rϑϑ +

Rϕϕ

sin2 ϑ

)]
∂U

∂ρ

− 2
Rϑ

ρR3

∂2U

∂ρ∂ϑ
− 2

Rϕ

ρR3 sin2 ϑ

∂2U

∂ρ∂ϕ

+
1

ρ2R2

∂2U

∂ϑ2
+

cot ϑ

ρ2R2

∂U

∂ϑ
+

1
ρ2R2 sin2 ϑ

∂2U

∂ϕ2
.

(2.7)

For ρ = r , R(ϑ, ϕ) ≡ 1, we recover the Laplacian in spherical co-ordinates.
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3 An equivalent formulation

For further computations, it is easier to change the spherical equation of ∂D by setting

Υ := Υ(ϑ, ϕ) :=
1

R(ϑ, ϕ)

The unit sphere is recovered whenever Υ(ϑ, ϕ) ≡ 1.

Using this spherical equation, the corresponding stretched co-ordinates ρ, ϑ, ϕ , in the space
x, y, z , are given by

x =
ρ

Υ(ϑ, ϕ)
cos ϕ sin ϑ , y =

ρ

Υ(ϑ, ϕ)
sin ϕ sin ϑ , z =

ρ

Υ(ϑ, ϕ)
cos ϑ , (3.2)

and assuming again, for shortness:

U(ρ, ϑ, ϕ) = u

(
ρ

Υ(ϑ, ϕ)
, ϑ, ϕ

)
,

the Laplacian becomes:

Δu =

(
Υ2 + Υ2

ϑ +
Υ2

ϕ

sin2 ϑ

)
∂2U

∂ρ2
+

Υ
ρ

(
2Υ + Υϑ cot ϑ + Υϑϑ +

Υϕϕ

sin2 ϑ

)
∂U

∂ρ

+
2ΥΥϑ

ρ

∂2U

∂ρ∂ϑ
+

2ΥΥϕ

ρ sin2 ϑ

∂2U

∂ρ∂ϕ
+

Υ2

ρ2

∂2U

∂ϑ2

+
Υ2 cot ϑ

ρ2

∂U

∂ϑ
+

Υ2

ρ2 sin2 ϑ

∂2U

∂ϕ2
.

(3.3)

For ρ = r , Υ(ϑ, ϕ) ≡ 1, we find again the Laplacian in spherical co-ordinates.

4 Applications to the Helmholtz equation

Consider the Dirichlet problem for the Helmholtz equation

⎧⎨
⎩

Δu(r, ϑ, ϕ) + κ2

(4.1)

We prove the following result

Theorem 4.1. – Let

f(ϑ, ϕ) =
+∞∑
n=0

n∑
m=0

Pm
n (cos ϑ) (αn,m cos mϕ + βn,m sin mϕ) , (4.2)

where{
αn,m

βn,m

}
= εm

2n + 1
4π

(n − m)!
(n + m)!

∫ 2π

0

∫ π

0

f(ϑ, ϕ)Pm
n (cos ϑ)

{
cos mϕ
sinmϕ

}
sinϑdϑ dϕ ,

(4.3)
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  (0 ≤ ϑ ≤ π ; 0 ≤ ϕ ≤ 2π). (3.1)

u(r, ϑ, ϕ) = 0 , r < R(ϑ, ϕ) (0 ≤ ϑ ≤ π , 0 ≤ ϕ < 2π) ,

u(r, ϑ, ϕ) = f(ϑ, ϕ) , r = R(ϑ, ϕ) (0 ≤ ϑ ≤ π , 0 ≤ ϕ < 2π) .



εm =
{

1 , m = 0
2 , m �= 0 , and Pm

n are the associated Legendre functions of the first kind (see [9]).

Then, the solution of the interior Dirichlet problem for the Helmholtz equation can be represented
as

u(r, ϑ, ϕ) =
+∞∑
n=0

n∑
m=0

jn(κr)Pm
n (cos ϑ) (an,m cos mϕ + bn,m sin mϕ) , (4.4)

where the coefficients an,m, bn,m can be found by solving the infinite linear system

+∞∑
n=0

n∑
m=0

[
X+

n,m,h,k Y +
n,m,h,k

X−
n,m,h,k Y −

n,m,h,k

] [
an,m

bn,m

] [
αh,k

βh,k

]

(h ∈ N0 , k = 0, 1, . . . , h) , (4.5)

where

X±
n,m,h,k = εk

2h + 1
4π

(h − k)!
(h + k)!

∫ 2π

0

∫ π

0

jn [κR(ϑ, ϕ)] Pm
n (cos ϑ)P k

h (cos ϑ) cosmϕ

{
cos kϕ
sin kϕ

}
·

· sin ϑdϑdϕ ,

Y ±
n,m,h,k = εk

2h + 1
4π

(h − k)!
(h + k)!

∫ 2π

0

∫ π

0

jn [κR(ϑ, ϕ)] Pm
n (cos ϑ)P k

h (cos ϑ) sinmϕ

{
cos kϕ
sin kϕ

}
·

· sin ϑdϑdϕ .

the form

u(r, ϑ, ϕ) = U

(
ρ

R(ϑ, ϕ)
, ϑ, ϕ

)
= P (r)Θ(ϑ)Φ(ϕ) . (4.6)

Substituting into the Helmholtz equation we find that the functions P,Θ,Φ must satisfy the
ordinary differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2 d2P

dr2
+ 2r

dP

dr
+
(
κ2r2 − λ2

)
P = 0 ,

1
sin ϑ

d

dϑ

(
sinϑ

dΘ
dϑ

)
+
(

λ2 − μ2

sin2 ϑ

)
Θ = 0 ,

d2Φ
dϕ2

+ μ2Φ = 0 ,

(4.7)

and therefore, by using very classical results, we find

μ = m ∈ Z ,

λ2 = n(n + 1) , n ∈ N0
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m m m m

and consequently
P (r) = Cn n n

where

jn(z) =
√

π

2z
Jn+ 1

2
(z) = (2z)n

∞∑
m=0

(−1)m(n + m)!
m! [2(n + m) + 1]!

z2m

are the spherical Bessel functions of the first kind [9].
Furthermore,

Θ(ϑ) = Dn,m
m
n n,m

where

Pm
n (η) = (−1)m(1 − η2)m/2 dmPn(η)

dηm
= (−1)m (1 − η2)m/2

2n n!
dn+m(η2 − 1)n

dηn+m
.

Therefore a general solution of the Helmholtz equation can be written in the form

u(r, ϑ, ϕ) =
+∞∑
n=0

n∑
m=0

jn(κr)Pm
n (cos ϑ) (an,m cos mϕ + bn,m sin mϕ) . (4.8)

Imposing the boundary condition

=
+∞∑
n=0

n∑
m=0

jn [κR(ϑ, ϕ)] Pm
n (cos ϑ) (an,m cos mϕ + bn,m sin mϕ) ,

(4.9)

we find the unknown constants an,m, bn,m by solving the system (4.5).

[0, π] × [0, 2π], the system (4.5) can be solved in an approximate way by considering the
corresponding finite system where n = 0, 1, . . . , N , and h = 0, 1, . . . , N, k = 0, 1, . . . , h,
and the solution is convergent when N → +∞.

piecewise continuous function, and if the boundary data are given by square integrable functions,
not necessarily continuous, so that the relevant coefficients αh,k, βh,k in equation (4.3) are finite.

In a similar way we can treat the exterior problem subject to the Sommerfeld radiation
condition

lim r

[
∂

∂r
u(r, ϑ, ϕ) − iκu(r, ϑ, ϕ)

]
= 0 .

The only difference is that in solution (4.4) the spherical Bessel function of the first kind jn(z)
must be replaced by the spherical Bessel function of the third kind h(1)(z), defined by [10]

h(1)
n (z) =

√
π

2z
H

(1)

n+ 1
2
(z) =

√
π

2z

[
Jn+ 1

2
(z) + iYn+ 1

2
(z)
]

.
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Φ(ϕ) = A cos mϕ + B sin mϕ (A ,B arbitrary constants) ,

j (κr) (C arbitrary constant) ,

P (cos ϑ) (d arbitrary constant) ,

f(ϑ, ϕ) = U(1, ϑ, ϕ) = u [R(ϑ, ϕ), ϑ, ϕ]

Remark 13. Note that, assuming the unessential condition R(ϑ, ϕ) ≤ M < 1, ∀(ϑ, ϕ) ∈

Remark 14. Note that the above considerations hold whenever the function R(ϑ, ϕ) is a



5 Numerical examples

In the following examples we assume for the boundary ∂D a general spherical equation of the
type

R(ϑ, ϕ) = c

[∣∣∣∣∣ sin
pϑ
2 cos qϕ

4

γ1

∣∣∣∣∣
ν1

+

∣∣∣∣∣ sin
pϑ
2 sin qϕ

4

γ2

∣∣∣∣∣
ν2

+

∣∣∣∣∣cos pϑ
2

γ3

∣∣∣∣∣
ν3
]−1/ν0

, (5.1)

(p, q, γ1, γ2, γ3, ν0, ν1, ν2, ν3 integral numbers), extending to the three-dimensional case the
curves introduced by J. Gielis [7]. Moreover, let F (x, y, z) denote the function representing
boundary values. Under such assumptions, the following expression results

f(ϑ, ϕ) = F (R(ϑ, ϕ) cos ϕ sin ϑ,R(ϑ, ϕ) sin ϕ sin ϑ,R(ϑ, ϕ) cos ϑ) . (5.2)

In numerical experiments, computed by using Mathematica c©, we assume different values
of the nine parameters p, q, γ1, γ2, γ3, ν0, ν1, ν2, ν3, obtaining very different shapes for the
considered domain, including ellipsoids, Lamé-type domains (also called Superellipsoids),
ovaloids, (p, q)-fold symmetric figures, and so on. We introduced furthermore an extra
parameter c, in order to ensure the convergence condition max

(ϑ,ϕ)∈[0,π]×[0,2π]
R(ϑ, ϕ) ≤ M < 1.

We emphasize that almost all three-dimensional normal-polar domains are described (or at least
approximated in a close way) by the above mentioned surfaces.

Figure 1: Tridimensional view of the domain D obtained by assuming in (5.1)
γ1 = γ2 = γ3 = 1, p = 2, q = 4, ν0 = 2, ν1 = ν2 = ν3 = 3. The parameter c
has been set in order to ensure the condition max

(ϑ,ϕ)∈[0,π]×[0,2π]
R(ϑ, ϕ) = 1.

In particular, to assess the performances of the proposed algorithm in terms of numerical
accuracy and convergence rate, the relative boundary error has been evaluated as follows

eN =
‖UN (1, ϑ, ϕ) − f(ϑ, ϕ)‖

‖f(ϑ, ϕ)‖ , (5.3)
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Figure 2: Relative boundary error eN as function of the number N of terms in the
expansion series (5.4) approximating the solution of the interior Dirichlet problem for
the Helmholtz equation in the star-like domain D described by the spherical equation
(5.1) with γ1 = γ2 = γ3 = 1, p = 2, q = 4, ν0 = 2, ν1 = ν2 = ν3 = 3.

Figure 3: Angular behavior of the N − th partial sum UN (1, ϑ, ϕ) of the spherical
harmonics series approximating the solution of the interior Dirichlet problem for the
Helmholtz equation in the star-like domain D described by the spherical equation (5.1)
with γ1 = γ2 = γ3 = 1, p = 2, q = 4, ν0 = 2, ν1 = ν2 = ν3 = 3.
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Figure 4: Relative boundary error eN as function of the number N of terms in the
expansion series approximating the solution of the exterior Dirichlet problem for the
Helmholtz equation in the star-like domain D described by the spherical equation (5.1)
with γ1 = γ2 = γ3 = 1, p = 2, q = 4, ν0 = 2, ν1 = ν2 = ν3 = 3.

N

harmonics series approximating the solution of the exterior Dirichlet problem for the
Helmholtz equation in the star-like domain D described by the spherical equation (5.1)
with γ1 = γ2 = γ3 = 1, p = 2, q = 4, ν0 = 2, ν1 = ν2 = ν3 = 3.
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Figure 5: Angular behavior of the N − th partial sum U (1, ϑ, ϕ) of the spherical



where ‖·‖ denotes the usual L2 (∂D) norm, and

UN (ρ, ϑ, ϕ) =
N∑

n=0

n∑
m=0

jn [κρR(ϑ, ϕ)] Pm
n (cos ϑ) (An,m cos mϕ + Bn,m sin mϕ) , (5.4)

is the N -th partial sum of the approximating spherical harmonics series (4.8).

5.1 Example 1 – Interior problem

By assuming in (5.1) γ1 = γ2 = γ3 = 1, p = 2, q = 4, ν0 = 2, ν1 = ν2 = ν3 = 3, the domain
D features the shape depicted in Fig. 1.

Let F (x, y, z) = x3y3z3 + ex+y+z − x + 2y − 3z be the function representing boundary
values. Then, the relative boundary error eN as function of the number N of terms in the
relavant expansion (5.4) exhibits the behavior shown in Fig. 2.

Finally, the maps in Fig. 3 clearly show the convergence rate of the approximating sequence
of functions UN (1, ϑ, ϕ) to the boundary values f(ϑ, ϕ).

5.2 Example 2 – Exterior problem

Let us now focus the attention on the exterior Dirichlet problem for the Helmholtz equation in the
star-like domain complementary to that considered in the previous example, under the hypothesis
that the boundary values are still described by the function F (x, y, z) = x3y3z3 + ex+y+z −
x+2y− 3z. Then, the relative boundary error eN as function of the number N of terms in the
expansion series approximating the solution of the problem exhibits the behavior shown in Fig.
4.

Finally, the maps in Fig. 5 clearly show the convergence rate of the approximating sequence
of functions UN (1, ϑ, ϕ) to the boundary values f(ϑ, ϕ).

Remark 15. – If the boundary values have wide oscillations, it is necessary to increase the
number N of terms in the relevant Fourier expansion, in order to obtain better results.

Remark 16. – The L2 norm of the difference between the exact solution and its approximate
values is always vanishing in the interior (exterior) of the considered domain, and generally
small on the boundary. Point-wise convergence seems to be true on the whole boundary, with
only exception of a set of measure zero, corresponding to singular points for the function or its
derivative. In these points oscillations of the approximate solution, recalling the classical Gibbs
phenomenon, usually appear.

6 Conclusion

It seems that the use of stretched co-ordinate system, reducing every starlike domain to a circle,
allow to use the classical Fourier methods to a very large class of domains, permitting to find
solutions in a closed form, and to avoid some more cumbersome techniques such as the finite
difference methods or the finite element method (FEM) [11], since it is possible to use only
quadrature rules and solution of linear systems.
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Text [Style ["ŷ", FontFamily → TextFont,Text [Style ["ŷ", FontFamily → TextFont,Text [Style ["ŷ", FontFamily → TextFont, FontSlant → Italic, FontWeight → Bold,FontSlant → Italic, FontWeight → Bold,FontSlant → Italic, FontWeight → Bold,
FontSize → LabelPointSize],FontSize → LabelPointSize],FontSize → LabelPointSize],

{− 1
15Max[X,Y,Z], Y + 1

10Max[X,Y,Z], 0
}]

,
{− 1

15Max[X,Y,Z], Y + 1
10Max[X,Y,Z], 0

}]
,

{− 1
15Max[X,Y,Z], Y + 1

10Max[X,Y,Z], 0
}]

,
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DisplayFunction → Identity];DisplayFunction → Identity];DisplayFunction → Identity];

R[θ , ϕ ]:=r[θ, ϕ,K]R[θ , ϕ ]:=r[θ, ϕ,K]R[θ , ϕ ]:=r[θ, ϕ,K]

f [x , y , z ]:=ex+iy+z − x + 2iy − 3zf [x , y , z ]:=ex+iy+z − x + 2iy − 3zf [x , y , z ]:=ex+iy+z − x + 2iy − 3z
f [θ , ϕ ]:=f [R[θ, ϕ]Sin[θ]Cos[ϕ],f [θ , ϕ ]:=f [R[θ, ϕ]Sin[θ]Cos[ϕ],f [θ , ϕ ]:=f [R[θ, ϕ]Sin[θ]Cos[ϕ],
R[θ, ϕ]Sin[θ]Sin[ϕ],R[θ, ϕ]Cos[θ]]R[θ, ϕ]Sin[θ]Sin[ϕ],R[θ, ϕ]Cos[θ]]R[θ, ϕ]Sin[θ]Sin[ϕ],R[θ, ϕ]Cos[θ]]
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;
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Pi ,j = {R[iΔθ, jΔϕ]Sin[iΔθ]Cos[jΔϕ],Pi ,j = {R[iΔθ, jΔϕ]Sin[iΔθ]Cos[jΔϕ],Pi ,j = {R[iΔθ, jΔϕ]Sin[iΔθ]Cos[jΔϕ],R[iΔθ, jΔϕ]Sin[iΔθ]Sin[jΔϕ],R[iΔθ, jΔϕ]Sin[iΔθ]Sin[jΔϕ],R[iΔθ, jΔϕ]Sin[iΔθ]Sin[jΔϕ],
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M = Max[v ];M = Max[v ];M = Max[v ];

Clipping[v ]:=Which
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M−m ,Clipping[v ]:=Which
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FPlot =FPlot =FPlot = Graphics3D[Graphics3D[Graphics3D[Table
[{

EdgeForm[], JetFunction
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]]
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[{
EdgeForm[], JetFunction
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EdgeForm[], JetFunction
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Polygon [{Pi−1,j ,Pi,j ,Pi,j−1,Pi−1,j−1}]} ,Polygon [{Pi−1,j ,Pi,j ,Pi,j−1,Pi−1,j−1}]} ,Polygon [{Pi−1,j ,Pi,j ,Pi,j−1,Pi−1,j−1}]} ,{i,Mθ} , {j,Mϕ}] , Lighting → Automatic,{i,Mθ} , {j,Mϕ}] , Lighting → Automatic,{i,Mθ} , {j,Mϕ}] , Lighting → Automatic,
Boxed → False, AspectRatio → Automatic,Boxed → False, AspectRatio → Automatic,Boxed → False, AspectRatio → Automatic,DisplayFunction → Identity];DisplayFunction → Identity];DisplayFunction → Identity];

F = Show[FPlot, ReferenceSystem, PlotRange → All,F = Show[FPlot, ReferenceSystem, PlotRange → All,F = Show[FPlot, ReferenceSystem, PlotRange → All,ViewPoint → {2.0, 1.5, 1.5},ViewPoint → {2.0, 1.5, 1.5},ViewPoint → {2.0, 1.5, 1.5},
DisplayFunction → $DisplayFunction]DisplayFunction → $DisplayFunction]DisplayFunction → $DisplayFunction]
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εm :=If[m == 0, 1, 2]εm :=If[m == 0, 1, 2]εm :=If[m == 0, 1, 2]

αn ,m :=εm
2n+1
4π

(n−m)!
(n+m)!

αn ,m :=εm
2n+1
4π

(n−m)!
(n+m)!αn ,m :=εm
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(n+m)!NIntegrate[f [θ, ϕ]LegendreP[n,m, Cos[θ]]NIntegrate[f [θ, ϕ]LegendreP[n,m, Cos[θ]]NIntegrate[f [θ, ϕ]LegendreP[n,m, Cos[θ]]

Cos[mϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Cos[mϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Cos[mϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,
PrecisionGoal → 6]PrecisionGoal → 6]PrecisionGoal → 6]
βn ,m :=εm
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(n+m)!NIntegrate[f [θ, ϕ]LegendreP[n,m, Cos[θ]]NIntegrate[f [θ, ϕ]LegendreP[n,m, Cos[θ]]NIntegrate[f [θ, ϕ]LegendreP[n,m, Cos[θ]]

Sin[mϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Sin[mϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Sin[mϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,
PrecisionGoal → 6]PrecisionGoal → 6]PrecisionGoal → 6]

χ[n ]:=nχ[n ]:=nχ[n ]:=n
ξ[n ,m , θ , ϕ ]:=ξ[n ,m , θ , ϕ ]:=ξ[n ,m , θ , ϕ ]:=R[θ, ϕ]χ[n]LegendreP[n,m, Cos[θ]]Cos[mϕ]R[θ, ϕ]χ[n]LegendreP[n,m, Cos[θ]]Cos[mϕ]R[θ, ϕ]χ[n]LegendreP[n,m, Cos[θ]]Cos[mϕ]
η[n ,m , θ , ϕ ]:=η[n ,m , θ , ϕ ]:=η[n ,m , θ , ϕ ]:=R[θ, ϕ]χ[n]LegendreP[n,m, Cos[θ]]Sin[mϕ]R[θ, ϕ]χ[n]LegendreP[n,m, Cos[θ]]Sin[mϕ]R[θ, ϕ]χ[n]LegendreP[n,m, Cos[θ]]Sin[mϕ]

X+
n ,m ,h ,k :=X+
n ,m ,h ,k :=X+
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(h+k)!NIntegrate[ξ[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]NIntegrate[ξ[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]NIntegrate[ξ[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]

Cos[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Cos[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Cos[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,
PrecisionGoal → 6]PrecisionGoal → 6]PrecisionGoal → 6]
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(h+k)!NIntegrate[ξ[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]NIntegrate[ξ[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]NIntegrate[ξ[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]

Sin[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Sin[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Sin[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,
PrecisionGoal → 6]PrecisionGoal → 6]PrecisionGoal → 6]
Y+

n ,m ,h ,k :=Y+
n ,m ,h ,k :=Y+
n ,m ,h ,k :=εk

2h+1
4π

(h−k)!
(h+k)!

εk
2h+1
4π

(h−k)!
(h+k)!εk

2h+1
4π

(h−k)!
(h+k)!NIntegrate[η[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]NIntegrate[η[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]NIntegrate[η[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]

Cos[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Cos[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Cos[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,
PrecisionGoal → 6]PrecisionGoal → 6]PrecisionGoal → 6]
Y−

n ,m ,h ,k :=Y−
n ,m ,h ,k :=Y−
n ,m ,h ,k :=εk

2h+1
4π

(h−k)!
(h+k)!

εk
2h+1
4π

(h−k)!
(h+k)!εk

2h+1
4π

(h−k)!
(h+k)!NIntegrate[η[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]NIntegrate[η[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]NIntegrate[η[n,m, θ, ϕ]LegendreP[h, k, Cos[θ]]

Sin[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Sin[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Sin[kϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,Method → MultiDimensional, AccuracyGoal → 6,
PrecisionGoal → 6]PrecisionGoal → 6]PrecisionGoal → 6]

N :=4N :=4N :=4

E =E =E = Flatten[Flatten[Flatten[Join[Join[Join[Table[Table[Table[Table
[
−αh,k +

∑N
n=0

∑n
m=0 an,mX+

n,m,h,k+Table
[
−αh,k +

∑N
n=0

∑n
m=0 an,mX+

n,m,h,k+Table
[
−αh,k +

∑N
n=0

∑n
m=0 an,mX+

n,m,h,k+∑N
n=0

∑n
m=1 bn,mY+

n,m,h,k, {k, 0, h}
]
, {h, 0,N}

]
,

∑N
n=0

∑n
m=1 bn,mY+

n,m,h,k, {k, 0, h}
]
, {h, 0,N}

]
,

∑N
n=0

∑n
m=1 bn,mY+

n,m,h,k, {k, 0, h}
]
, {h, 0,N}

]
,Table[Table[Table[

Table
[
−βh,k +

∑N
n=0

∑n
m=0 an,mX−

n,m,h,k+Table
[
−βh,k +

∑N
n=0

∑n
m=0 an,mX−

n,m,h,k+Table
[
−βh,k +

∑N
n=0

∑n
m=0 an,mX−

n,m,h,k+
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∑N
n=0

∑n
m=1 bn,mY−

n,m,h,k, {k, 1, h}
]
, {h, 0,N}

]]]
;

∑N
n=0

∑n
m=1 bn,mY−

n,m,h,k, {k, 1, h}
]
, {h, 0,N}

]]]
;

∑N
n=0

∑n
m=1 bn,mY−

n,m,h,k, {k, 1, h}
]
, {h, 0,N}

]]]
;

NE = Length[E];NE = Length[E];NE = Length[E];

U = Flatten [Join [Table [Table [an,m, {m, 0, n}] , {n, 0,N}] ,U = Flatten [Join [Table [Table [an,m, {m, 0, n}] , {n, 0,N}] ,U = Flatten [Join [Table [Table [an,m, {m, 0, n}] , {n, 0,N}] ,
Table [Table [bn,m, {m, 1, n}] , {n, 0,N}]]] ;Table [Table [bn,m, {m, 1, n}] , {n, 0,N}]]] ;Table [Table [bn,m, {m, 1, n}] , {n, 0,N}]]] ;
NU = Length[U];NU = Length[U];NU = Length[U];

A = Table
[
Coefficient

[
E[[i]],U[[j]]

]
, {i,NE}, {j,NU}] ;A = Table

[
Coefficient

[
E[[i]],U[[j]]

]
, {i,NE}, {j,NU}] ;A = Table

[
Coefficient

[
E[[i]],U[[j]]

]
, {i,NE}, {j,NU}] ;

EPS:=10−6EPS:=10−6EPS:=10−6

b = Table
[
Chop

[
−E[[i]] +

∑NU
j=1 A[[i,j]]U[[j]], EPS

]
, {i,NE}

]
;b = Table

[
Chop

[
−E[[i]] +

∑NU
j=1 A[[i,j]]U[[j]], EPS

]
, {i,NE}

]
;b = Table

[
Chop

[
−E[[i]] +

∑NU
j=1 A[[i,j]]U[[j]], EPS

]
, {i,NE}

]
;

C = Chop[PseudoInverse[A].b, EPS];C = Chop[PseudoInverse[A].b, EPS];C = Chop[PseudoInverse[A].b, EPS];
i = 1;i = 1;i = 1;
For[N = 0,N ≤ N , ++N,For[N = 0,N ≤ N , ++N,For[N = 0,N ≤ N , ++N,
For[M = 0,M ≤ N, ++M,For[M = 0,M ≤ N, ++M,For[M = 0,M ≤ N, ++M,
AN,M = C[[i]];AN,M = C[[i]];AN,M = C[[i]];
i+=1;i+=1;i+=1;
]]]
]]]
For[N = 0,N ≤ N , ++N,For[N = 0,N ≤ N , ++N,For[N = 0,N ≤ N , ++N,
For[M = 0,M ≤ N, ++M,For[M = 0,M ≤ N, ++M,For[M = 0,M ≤ N, ++M,
If[M == 0,If[M == 0,If[M == 0,
BN,M = 0;BN,M = 0;BN,M = 0;
,,,
BN,M = C[[i]];BN,M = C[[i]];BN,M = C[[i]];
i+=1;i+=1;i+=1;
]]]
]]]
]]]

Print ["[an,m ]=",Print ["[an,m ]=",Print ["[an,m ]=", MatrixForm [Table [If [m > n, 0,An,m] , {n, 0,N},MatrixForm [Table [If [m > n, 0,An,m] , {n, 0,N},MatrixForm [Table [If [m > n, 0,An,m] , {n, 0,N}, {m, 0,N}]]];{m, 0,N}]]];{m, 0,N}]]];
Print ["[bn,m ]=",Print ["[bn,m ]=",Print ["[bn,m ]=", MatrixForm [Table [If [m > n‖m == 0, 0,Bn,m] ,MatrixForm [Table [If [m > n‖m == 0, 0,Bn,m] ,MatrixForm [Table [If [m > n‖m == 0, 0,Bn,m] , {n, 0,N}, {m, 0,N}]]];{n, 0,N}, {m, 0,N}]]];{n, 0,N}, {m, 0,N}]]];

[an,m ]=

⎛
⎜⎜⎜⎜⎝

1.13064 0 0 0 0
−1.92057 −0.0794314 0 0 0
0.350663 −0.353483 0.175331 0 0
0.0568304 −0.0730996 0.0349229 −0.0110986 0
−0.0679669 −0.00956732 0.00529085 −0.00159455 −0.0000266465

⎞
⎟⎟⎟⎟⎠

[bn,m ]=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 −3.08014i 0 0 0
0 −0.3536i 0.1768i 0 0
0 −0.0740652i 0.03502i −0.0123442i 0
0 −0.00964811i 0.00519477i −0.00171394i 0.000415244i

⎞
⎟⎟⎟⎟⎠

U [ρ , θ , ϕ ]:=U [ρ , θ , ϕ ]:=U [ρ , θ , ϕ ]:=∑N
n=0

∑n
m=0(ρR[θ, ϕ])χ[n]LegendreP[n,m, Cos[θ]]

∑N
n=0

∑n
m=0(ρR[θ, ϕ])χ[n]LegendreP[n,m, Cos[θ]]

∑N
n=0

∑n
m=0(ρR[θ, ϕ])χ[n]LegendreP[n,m, Cos[θ]](An,mCos[mϕ] + Bn,mSin[mϕ])(An,mCos[mϕ] + Bn,mSin[mϕ])(An,mCos[mϕ] + Bn,mSin[mϕ])

V = Table
[
Abs
[
N
[U [1,

(
i − 1

2

)
Δθ,
(
j − 1

2

)
Δϕ
]]]

,V = Table
[
Abs
[
N
[U [1,

(
i − 1

2

)
Δθ,
(
j − 1

2

)
Δϕ
]]]

,V = Table
[
Abs
[
N
[U [1,

(
i − 1

2

)
Δθ,
(
j − 1

2

)
Δϕ
]]]

, {i,Mθ} , {j,Mϕ}] ;{i,Mθ} , {j,Mϕ}] ;{i,Mθ} , {j,Mϕ}] ;
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BVPlot =BVPlot =BVPlot = Graphics3D[Graphics3D[Graphics3D[Table
[{

EdgeForm[], JetFunction
[
Clipping

[V[[i,j]]

]]
,Table

[{
EdgeForm[], JetFunction

[
Clipping

[V[[i,j]]

]]
,Table

[{
EdgeForm[], JetFunction

[
Clipping

[V[[i,j]]

]]
,

Polygon [{Pi−1,j ,Pi,j ,Pi,j−1,Pi−1,j−1}]} ,Polygon [{Pi−1,j ,Pi,j ,Pi,j−1,Pi−1,j−1}]} ,Polygon [{Pi−1,j ,Pi,j ,Pi,j−1,Pi−1,j−1}]} ,{i,Mθ} , {j,Mϕ}] , Lighting → Automatic,{i,Mθ} , {j,Mϕ}] , Lighting → Automatic,{i,Mθ} , {j,Mϕ}] , Lighting → Automatic,
Boxed → False, AspectRatio → Automatic,Boxed → False, AspectRatio → Automatic,Boxed → False, AspectRatio → Automatic,DisplayFunction → Identity];DisplayFunction → Identity];DisplayFunction → Identity];

BV = Show[BVPlot, ReferenceSystem, PlotRange → All,BV = Show[BVPlot, ReferenceSystem, PlotRange → All,BV = Show[BVPlot, ReferenceSystem, PlotRange → All,ViewPoint → {2.0, 1.5, 1.5},ViewPoint → {2.0, 1.5, 1.5},ViewPoint → {2.0, 1.5, 1.5},
DisplayFunction → $DisplayFunction]DisplayFunction → $DisplayFunction]DisplayFunction → $DisplayFunction]

e =e =e = 100×100×100×(NIntegrate
[
Abs[U [1, θ, ϕ] − f [θ, ϕ]]2R[θ, ϕ]Sin[θ],

(
NIntegrate

[
Abs[U [1, θ, ϕ] − f [θ, ϕ]]2R[θ, ϕ]Sin[θ],

(
NIntegrate

[
Abs[U [1, θ, ϕ] − f [θ, ϕ]]2R[θ, ϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},{θ, 0, π}, {ϕ, 0, 2π},{θ, 0, π}, {ϕ, 0, 2π},

Method → MultiDimensional,Method → MultiDimensional,Method → MultiDimensional,AccuracyGoal → 6, PrecisionGoal → 6]/AccuracyGoal → 6, PrecisionGoal → 6]/AccuracyGoal → 6, PrecisionGoal → 6]/
NIntegrate

[
Abs[f [θ, ϕ]]2R[θ, ϕ]Sin[θ],NIntegrate
[
Abs[f [θ, ϕ]]2R[θ, ϕ]Sin[θ],NIntegrate
[
Abs[f [θ, ϕ]]2R[θ, ϕ]Sin[θ], {θ, 0, π}, {ϕ, 0, 2π},{θ, 0, π}, {ϕ, 0, 2π},{θ, 0, π}, {ϕ, 0, 2π},

Method → MultiDimensional,Method → MultiDimensional,Method → MultiDimensional,AccuracyGoal → 6, PrecisionGoal → 6])
1
2 ;AccuracyGoal → 6, PrecisionGoal → 6])
1
2 ;AccuracyGoal → 6, PrecisionGoal → 6])
1
2 ;

Print ["eN =", CForm[Chop[e, EPS]],"%"] ;Print ["eN =", CForm[Chop[e, EPS]],"%"] ;Print ["eN =", CForm[Chop[e, EPS]],"%"] ;
eN = 0.4323351762477782%
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