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ON THE 3-REPRESENTATIONS OF GROUPS AND THE
2-CATEGORICAL TRACES

WEI WANG

ABSTRACT. To 2-categorify the theory of group representations, we introduce the no-
tions of the 3-representation of a group in a strict 3-category and the strict 2-categorical
action of a group on a strict 2-category. We also 2-categorify the concept of the trace
by introducing the 2-categorical trace of a 1-endomorphism in a strict 3-category. For a
3-representation p of a group G and an element f of G, the 2-categorical trace Trapy is
a category. Moreover, the centralizer of f in G acts categorically on this 2-categorical
trace. We construct the induced strict 2-categorical action of a finite group, and show
that the 2-categorical trace Tro takes an induced strict 2-categorical action into an in-
duced categorical action of the initia groupoid. As a corollary, we get the 3-character
formula of the induced strict 2-categorical action.

Contents

1 Introduction 1999
2 The 3-representations of groups 2002
3 The 2-categorical traces of 3-representations 2016
4 The induced strict 2-categorical action on the induced 2-category 2026
5 The 3-character of the induced strict 2-categorical action 2029
6 The categorical action of the centralizer of f on Trops 2034

1. Introduction

The notion of a group acting on a category goes back to Grothendieck’s Tohoku paper
[15]. Recently Ganter, Kapranov [13] and Bartlett [5] categorified the concept of the
trace of a linear transformation by introducing the notion of the category trace. This
is a set associated to any endofunctor on a small category, and is a vector space in
the linear case. Moreover, a functor commuting with the endofunctor defines a linear
transformation on this vector space, whose ordinary trace defines a joint trace. This
allowed these authors to define 2-characters. When a group acts on a k-linear category,
the joint trace of a commuting pair of group elements is the 2-character of the categorical
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action. This is an analogue of the character of the representation of a group on a vector
space and is a 2-class function. In general, an n-class function is a function defined on n-
tuples of commuting elements of a group and invariant under simultaneous conjugation.
Such functions already appear in equivariant Morava E-theory [16]. The theory of 2-
representations was developed further in [6] [10] [11] [12] [14] [23] [26] etc..

During the past two decades an active direction of research has been the categorifi-
cation of some algebraic, geometric or analytic concepts. For example, 2-vector spaces,
2-bundles (gerbes), 2-connections and 2-curvatures. All involve 2-categorical construc-
tions and have various applications, such as a geometric definition of elliptic cohomology
[1], 2-gauge theory [3] [4] and the 2-dimensional Langlands correspondence [17] [22]. It is
believed that higher categorification is necessary for many geometric and physical applica-
tions. 3-categorical constructions already appear in the theory of 2-gerbes (3-bundles) [7]
[8] and in 3-gauge theory [21] [24] [27], which involves more general Gray-categories. The
purpose of this paper is to 2-categorify the theory of group representations and characters
by introducing the notions of the 3-representation of a group in a 3-category, the strict
2-categorical action of a group on a 2-category and the 2-categorical trace. The problem
of investigating representations of groups in higher categories has already been mentioned
in [13).

A geometric motivation for considering higher representations of groups is as follows.
Suppose that G is a Lie group and that H is a Lie subgroup. Let V' be a finite dimensional
representation of H. We can construct a homogeneous vector bundle G x gy V' over the
homogeneous space G/H as G x V modulo the equivalent relation

(g,v) ~ (gh,h*w) for g€ G,he HveV.

The space of sections of this bundle is exactly the space IndgV of the induced represen-
tation. When V' is a 2- or 3-representation of H, a similar construction will give us a
homogeneous 2- or 3-bundle over the homogeneous space G/H. This will provide us good
examples of higher bundles in higher differential geometry and higher gauge theory. But
for a higher representation 7 of the Lie group H, the functors m(h) usually depend on
h € H “discontinuously”. Thus it is not easy to describe the space of “sections” of the
resulting higher bundles. However, when G and H are finite, G/H is discrete, and so we
have a clear picture. This is why we only consider 3-representations of a finite group in
this paper.

For simplicity, we only consider strict 2- and 3-categories. A 3-representation of a group
G in a 3-category is given by a l-isomorphism for each element of GG, a 2-isomorphism for
each pair of elements of G, and a 3-isomorphism for each triple of elements of G. These 3-
isomorphisms must satisfy the 3-cocycle condition. This condition has a simple geometric
interpretation: the composition of 3-isomorphisms corresponding to 5 tetrahedrons in the
boundary of a 4-simplex is equal to the identity 3-arrow. Given a 2-category V, a strict
2-categorical action of G on V is given by an endofunctor of V for each element of G,
a pseudonatural transformation between functors for each pair of elements of GG, and a
modification for each triple of elements of G. Details are given in Section 2.3-2.4.
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Recall that given a 2-representation p of a finite group G in a 2-category V and an
element f of GG, we have a 1-isomorphism

01 x =,

where z is an object of V that G acts on. In [5] [13], the authors introduced the notion
of the categorical trace Tros. This is the set of 2-arrows in V, whose 1-source is the unit
arrow 1, and whose 1-target is g;. The centralizer of f in G acts on this set naturally.
In our case, given a 3-representation p of G in a 3-category C and an element f of G, we
have a 1-isomorphism p; : @ — z in C. The 2-categorical trace Trop; is a category. Its
objects are 2-arrows with 1-source the unit arrow 1, and 1-target ps, and its morphisms
are 3-isomorphisms between such 2-isomorphisms:

~_VvV 7 ~ N Z 7

Moreover, the centralizer of f in G, denoted by Cqg(f), acts categorically on the 2-
categorical trace Tryps in the following sense. We can define an invertible functor ),
acting on Tryopy for each g € Ci(f), and for any h,g € Cg(f), define a natural isomor-
phism

Fh,g tp 0 wg — whg

between such functors on the category Trops. This construction is given in Section 3. To
prove the action to be categorical, we have to show the associativity in the definition of
categorical action, i.e.,

Crng# (Ve 0 Thg) = Ding# (Drn 0 Yg) = r 0 Yn 0 by — Py, (1)

for any k,h,g € Co(f), where # is the composition of natural transformations between
functors on the category Tropy. This is the most difficult and technical part of this paper.
By applying the 3-cocycle identity (15) repeatedly, we prove in Section 6 that

{@Z)gv Fh,g}g,hECG(f)

is a categorical action of the centralizer C(f) on the category Trap;.

An easy and interesting example of 3-representations is the 1-dimensional one, which
is given by a 3-cocycle on a finite group G. A 3-cocycle is a function ¢ : G x G x G — k*
such that

(93, g2, 91)c(9a, 9392, 91)c(94, g3, 92) = ¢(ga, g3, 9291)¢(9493, 92, G1) (2)

for any g4,...,91 € G. Here k is a field of characteristic 0. Such a 3-cocycle gives us
a strict action of G on a 2-category with only one object, one 1-arrow and the set of 2-
arrows isomorphic to k*. For an element f of G, its 2-categorical trace Trypy is a category
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with only one object and the set of 1-arrows isomorphic to £*. For any h and ¢ in the
centralizer C(f), we can construct an element I'y, , (48) from the 3-cocycle ¢ in (2) such
that I, , is a 2-cocycle on the centralizer. This can be proved quite easily and elementarily
by using the condition (2) for 3-cocycles repeatedly in Section 6.1. This corresponds step
by step to the proof of the general case carried out in Section 6.4. It can be viewed as
a simple model of the proof of (1). The difficulty in the general case is that we have to
handle diagrams, while in the 1-dimensional case we only need to handle element of the
field k.

Suppose that C is a k-linear 3-category. Then Trypy is also a k-linear category. If
k,g and f are pairwise commutative, then 1, and 9, are k-linear endofunctors acting on
Traps. We define the 3-character of a 3-representation p to be

Xo(f,9,k) = the joint trace of functors 1, and ), on Trops.

It is the trace of the linear transformation induced by the functor ¢, on the k-vector space
Tr,.

Suppose that a subgroup H of a finite group G acts strictly 2-categorically on a 2-
category V. In Section 4, we define the induced 2-category Ind$ (V) and strict 2-categorical
action of G on it. In Section 5, we calculate the 2-categorical trace of the induced strict

2-categorical action as
AG
Try(Ind%p) = IndAEH))Trg(p), (3)

where A(H) and A(G) are initia groupoids associated to groups H and G, respectively.
As a corollary, we derive the 3-character of the induced strict 2-categorical action, which
coincides with the formula in [16] for n-characters when n = 3. These results are the
generalization of induced categorical action and the 2-character formula in [13].

It would be interesting to investigate the m-representation of a group in an m-category,
the m-cocycle condition and (m — 1)-categorical trace for a positive integer m > 3.

I would like to thank the anonymous referee for his/her many inspiring and valuable
suggestions.

2. The 3-representations of groups

2.1. STRICT 2-CATEGORIES. A 2-category is a category enriched over the category of all
small categories. In particular, a strict 2-category C consists of collections Cy of objects,
C; of arrows and Cy of 2-arrows, together with

e functions s,,t, : C; — C, for all 0 < n < i < 2, called n-source and n-target,

e functions #,, : C,,y1 X Cpy1 — Cuyq for all n = 0,1, called vertical composition,

e a function #q : Cy X Co — Co, called the horizontal composition,

e a function 1, : C; — C;11 for i = 0, 1, called the identity.

For a l-arrow xiﬂ/, its O-source and 0O-target are x and y, respectively. For
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A

a 2-arrow T ﬂw Y in Co, its l-source and 1-target are r—2 -y and xi>y,

B
respectively, while its O-source and 0-target are x and y, respectively.

Two l-arrows A and A’ are called 0-composable if the 0-target of A coincides with the

0-source of A’. In this case, their vertical composition is A#qA" : x Ay A Two

2-arrows ¢ and 1 are called 1-composable if the 1-target of ¢ coincide with the 1-source
of . In this case, their vertical composition ¢#1 is

A
/l—lh
r—=-B—>1Y,

N

C

where A = 51(¢), B = t1(¢) = s51(¢), C = t1(¥), = s0(®) = s0(¥), y = to(9) = to(¥).
In general, two arrows are composable if the target matching condition is satisfied.

Two 2-arrows ¢ and 1 are called horizontally composable (0-composable) if the O-target
of ¢ coincides with the O-source of 4. In this case, their horizontal composition ¢#g1) is

/é\ /K
z ﬂ¢ y “w ..
\C/ \15/

In particular, when ¢ = 14 we call 14#0¢ whiskering from left by 1-arrow A, and denote
it by

B
S N
At r—2 >y ez,
’ \Q/

Similarly, we define whiskering from right by a 1-arrow.
The identities satisfy

L, #0A = A = A#ol,, for any 1—arrow A:z —y; (@)
1at10 = ¢ = o113, for any 2—arrow ¢:A=— B.

The composition #, satisfies the associativity

(D0 #pw = O (V) ()

if the corresponding arrows are p-composable, for p =0 or 1.
The horizontal composition satisfies the interchange law:

(A#to)#1(d#0 D) = d#oth = (¢#0B)#1(CHot)). (6)
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Namely,
:c/_:\y/j“z\{z :z:/—ﬂqs\y/i\{z

the vertical composition of left two 2-arrows coincides with the vertical composition of
right two 2-arrows. They are both equal to the horizontal composition ¢#(1. The inter-
change law allows us to change the order of compositions of 2-arrows, up to whiskerings.
This is essentially the paste theorem for 2-categories (cf. §2.13 in [18]).

The interchange law (6) is a special case of the following more general compatibility
condition for different compositions. If (5, 5'), (v,7) € Cr X Ci are p-composable and
(8,7), (B',7") € Cp x C), are g-composable, p,q = 0, 1, then we have

(ﬁ#pﬁ/)#q (7#;77/) = (6#:]7) #p (ﬁ/#rﬂ/)‘ (7)

The the left-hand side of the interchange law (6) is exactly the compatibility condition (7)
with p=0,g=1,8=14,08" = ¢,7 = ¢,7 = 1p, by using the property (4) of identities.
(4) (5) and (7) are the main axioms that a strict 2-category satisfies.

A l-arrow A : x — y is called invertible or a 1-isomorphism, if there exists another
l-arrow B @y — x such that 1, = A#,B and B#¢0A = 1,. A strict 2-category in
which every l-arrow is invertible is called a strict 2-groupoid. A 2-arrow ¢ : A = B is
called invertible or a 2-isomorphism if there exists another 2-arrow 1) : B = A such that
V#1p = 1g and p#1¢¥ = 14. ¢ is uniquely determined and called the inverse of .

Let & and T be two strict 2-categories. A (strict) 2-functor F': S — T is an assign-

ment of a 2-arrow
F(f)

F(X) “Fm F(Y)

F(g)

!

to each 2-arrow x “<P v such that I preserves compositions #, and identities. More

g
explicitly, we have

o F(p#1¢) = F(p)#1F(¢) and F(1y) = 1p(s) for all composable 2-arrows ¢ and ¢
and any 0- or 1-arrow f;

o F(g)#o0F(f) = F(g#of) for all composable 1-arrows g and f, and F(@)#oF(¢) =
F(p#ov) for all horizontally composable 2-arrows ¢ and .
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Let F7 and F; be two 2-functors from S to T. A pseudonatural transformation p : Fy —
F, is an assignment of a l-arrow p(X) in T to each object X in S and a 2-isomorphism

p(f)

()
Py (X) —— P (Y) (8)
X Y

p(X) o(F) p(Y)

Fo(X) ——— Fa(Y)
Fa(f)

in 7 to each l-arrow f: X — Y in S such that they satisfy two axioms
e The composition of 1-arrows in S:

FL(P) F1(0) F1(f#09)
Fr(x) —— FL(Y) —— > F(2) Fx) — mzy (9)
p(X) ﬂi) p(Z2) ———= p(X) p(Z)
p(f) ] p(9) p(f#09)
Fa(X) Fa(v) Fa(2) Fa(X) ————> Fy(2)
() F3(o) Fa(F#09)

e The compatibility with 2-arrows:

Fl(f) Fl(f)
F(X) ————— F1 (V)
F1(»)
p(f)
p(X) p(Y) Fy(X) F—()> Fy(Y)
v (10)
Fa(f)
Fo(X) ————— Fp(Y) p(X) p(Y)
p(g)
Fo(X) ———— > Fa(Y)
Fa(g) Fa(9)

for any 2-arrow ¢ : f = g¢.
Let Fi, F5 : S — T be two strict 2-functors and let py, ps : F; — F5 be pseudonatural
transformations. A modification ® : py == p, is an assignment of a 2-arrow

p1(X)
F1(X) “‘f’(X) Fao(X)

~_Vv 7

p2(X)
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in 7 to any object X in S, which satisfies

PP
Fy(X) —— Fi(Y) Fi(X) —— > (V)
B(X) l
pa(X) (== (%) PR Tt P2 (X) / " % p1(Y)
P1
Fy(X) Fy(Y) FX) FQ(Y)
Fa(f)

2.2. STRICT 3-CATEGORIES. A 3-category is a category enriched over the category of all
small strict 2-categories. In particular, a strict 3-category C consists of collections Cy of
objects, Cy of 1-arrows, Cy of 2-arrows, and Csz of 3-arrows, together with

e functions s,,t, : C; — C, for all 0 < n < i < 3, called n-source and n-target,

e functions #,, : C,,u1 X Cpa1 — Cpyq for all n = 0,1, 2, called vertical composition,

e a function #, : C; x C; = C;, p + 2 < 1, called the horizontal composition,

e a function 1, : C; — C;11 for i = 0, 1, called identity.

f
)

For a 3-arrow ¢ : = ~ ~ Y, its 2-source and 2-target are v and v respectively.

QLA
f/
f
The 3-arrows ¢ and ¢’ : @ 7/< 4y are 2-composable, and their composition p#,¢’ is
\_/
f/
f
77NN
A
\_/

In a strict 3-category, 0-, 1- and 2-arrows behave as in a 2-category. We call two 3-
arrows ¢ and ¥ horizontally p-composable if the p-target of ¢ coincides with the p-source
of ¢, p=0,1, and denote their horizontal composition as p#,1.

For a 2-arrow 9, 3-arrows 15 and ¢ are horizontally 1-composable if the 1-target of §
coincides with the 1-source of ¢. In this case,

0F1p0 = Ls#h1p T v

is called whiskering from above by a 2-arrow 6. It is similar to define whiskering from
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below:
f

YTEN
GV
Ny

n

gl

There is also whiskering from left ( or right) by a 1-arrow A#op := 11 ,#op (or p#oB):

The properties of identities, the associativity and the compatibility condition for dif-
ferent compositions, similar to (4) (5) and (7) for a strict 2-category, also hold in a strict
3-category. See page 8 of [19] for an explicit definition of a strict m-category.

A strict 3-functor (or a functor) is a map preserving compositions and identities.

2.3. REMARK. In a strict 3-category, the interchange law (6) for the horizontal compo-
sition of 2-arrows is also satisfied. But in general, a 3-category does not satisfy the inter-
change law. Gray-categories are the greatest possible semi-strictification of 3-categories,
and appear naturally in 3-gauge theory [27]. The 3-representation in a Gray-category is
more natural, but is much more complicated. So we restrict to the 3-representation in
strict 3-categories in this paper.

In a strict 3-category C, a l-arrow B : © — y is called a 1-isomorphism if there
exists l-arrow C' : y — x such that there exist 2-isomorphisms u : 1, = C#;B and
v: 1, = B#;C. We call C a quasi-inverse to B, and vise versa. However, when k = 2
or 3, we call a k-arrow a k-isomorphism if it is strictly invertible.

2.4. THE 3-REPRESENTATIONS OF A GROUP IN A STRICT 3-CATEGORY . Let C be a
strict 3-category and let GG be a group. GG can be viewed as a strict 3-category with only
one object o, G as the set of 1-arrows g : ¢ — e, the set of 2-arrows consisting of the
identities of 1-arrows, and the set of 3-arrows consisting of the identities of 2-arrows. A
3-representation of a group G in C is a weak functor p from G to C in the following sense.
We have

(1) an object x of C;

(2) for each g € G, a 1-isomorphism p, : © — x;

(3) for each h,g € G, a 2-isomorphism ¢y, , : prpy; = pny (here and in the following
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we write pp#Fopy as pppg for simplicity), corresponding to the 2-cell

Phg
o — >0 ;
Al
[
(4) for each g3, g2, 1 € G, a 3-isomorphism, called the associator,

DPys,02,01 - (p93#0¢g2791>#1¢93a9291 = (¢93792#0p91)#1¢g3927917

corresponding to the 3-cell

Pg39291

Pg2

Pg3

It can be viewed as exchanging the diagonals of the quadrilateral:

)

Pg1

o ———
P P
Pgo

$93,9291

° °
Pgs

which can also be drawn in the following form:

Pgs3 Pg2 Pg1 Pg3 Pga Pg1
r————>r———-—>r—— —>X T——==>T———>T— — —>T,
\ AN A4 \ A A
\ ¢ N / E \ / & 7
93,9291 ¢ 9392,9
NGES N 9291 , N ¢g3,92/ 392,91,

N ~N A AN e 7
~ ~Pg391”~ N~Pg3go~ -
~ 7 ~ 7~
\\ // \\ //

Pg39291 P939291

(5) a 2-isomorphism ¢ : p; = 1,;

(12)
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such that the following conditions are satisfied:

. ¢1,g = ¢1#oﬂg, ¢g,1 = Pg#0¢1-

e the 3-cocycle condition that for any g4, ..., g1 € G, we have

{[ﬂg4 #U(Dgg,gg,gl]#l ¢g47g39291 } #2 {[pg4 #0¢gs792 #Opgl}#lq)gzl,g:sgz,gl }
#2 {[q)gz;,gs,gz #Opgl]#1¢g49392791 } (15)
= {[(P94P93)#0¢g2,g1]#1®g4,g3,g291} #2 {[¢g4,gs #0<pgngl )]#1@9493792791} .

P94939291

Equivalently, the composition of the 3-isomorphisms represented by 5 tetrahedrons above
in the boundary of a 4-simplex is the identity. This comes from the fact that the boundary
of the corresponding 4-simplex in the 3-category G is the identity 3-arrow.

2.5. REMARK. (1) For simplicity, we assume in this paper that p; = 1, and that ¢y is
the identity.

(2) The 3-cocycle {®gy, 9,01} defines an element of the 3-dimensional non-abelian co-
homology. A first attempt at an explicit description of the 3-dimensional non-abelian
cohomology of a group goes back to Dedecker [9]. See section 4 of [7] for 3-dimensional
non-abelian Cech cocycles, which can be used to construct a 2-gerbe.

2.6. THE 3-COCYCLE CONDITION . We will give a clear geometric description of the
3-cocycle condition (15) in terms of 5 tetrahedrons in the boundary of a 4-simplex above.
This is equivalent to triviality of the 3-holonomy. See section 5 C of [27] for the 3-holonomy
in the lattice 3-gauge theory (the cubical case), where 3-gauge theory from the point of
view of Gray-categories is investigated.

In the left-hand side of the 3-cocycle condition (15), the first 3-isomorphism is

A= [pg4 #0@93792791]#1¢g4,g39291‘ (16)

Here &4, 4,4, is a 3-isomorphism whiskered from left by the 1-isomorphism p,4,, and
PgsFHF0Pgs.g0.9. 1S Whiskered from below by the 2-isomorphism ¢y, g40.4,- A1 corresponds
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to the 3-cell

Pg291

P94939291

Pg3
$94,939291

Pgy

The 3—arrow A;

whose 2-source and 2-target are the 2-isomorphisms

s9( A1) = [<P94P93>#0¢92791]#1[pg4#0(/593,9291]#1(/594,939291 * PgiPg3Pg2Pg1 —7 Pgagsgagr>
tQ(Al) - [pg4#0¢93,g2#0p91]#1[pg4#0¢9392,g1]#1¢94,939291 * PgiPg3PgaPgi — Pgagsgagn s
(17)
corresponding to 2-cells

94939291 Pgy —® > P94939291
o<\~
Pg3
Pgy
[ ] [ ] [ ]
The 2—arrow s2(A1) The 2—arrow t2(A1)

respectively, where pg := Pgygs, Pb = Pgsgagr- 1t is fundamental in this paper to write down
the p-arrow corresponding to p-cells as whiskered vertical compositions. For example,
$2(A1) in (17) is the composition of the following three whiskered 2-isomorphisms.

[ J [ °
N
\
Pg291 Pg291
\
Pg1 \
\ 992,91 2~
7 z _e o N ° Pg4939291 P939291
(R - 939291 \ $g3,9991
» -~
\./A - 7 Pg3
094939291
P93 Pg3
° ° ° ) °
Pgyq Pgq Pgq
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The second 3-isomorphism in the left-hand side of the 3-cocycle condition (15) is
Ay = [P FH0Dgs.0:F0P g1 |F1Pys gago.gr» cOrresponding to the 3-cell

The 3—arrow As

(here pg 1= Pgigsgsr Po = Pgsgo) With 2-source so(As) = t2(Ay) in (17) and 2-target

ta(Ag) = [Pg4 H#0Pgs,9:#0P g1 J#1 [¢g4,9392 #0Pg, J#1 Pgagsga.n (18)

corresponding to 2-cells

Pg1
[ ]
rogaon \ %
[} /
Pa \pb P93
Pgy
[ ] [ ] .

The 2—arrow t2(As2)

And the third 3-isomorphism in the left-hand side of the 3-cocycle condition (15) is

Az = [(1394,93792 #Opgl]#lﬁbgwwz,gn
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corresponding to the 3-cell

The 3—arrow As

(here po = Pgigsges Pb = Pgagsgs.g) With 2-source sq(Az) = t2(Ay) in (18) and 2-target

ta(Az) = [¢g47g3 #o (sz Pg1 )#1 [¢g493,gz #0Pg, ] F#19Pgag3g2.014 (19)

corresponding to the 2-cells

Pg1

P94939291 \ (/_pﬁ-/ hd
([ ]

™N

The 2—arrow t2(As)

Pgs

° , (20)

where p, = Pgigsgsr Pb = Pgags- Then the composition A;#,As#2As of 3-isomorphisms
is the left-hand side of the 3-cocycle condition (15), whose 2-source is s9(A;) in (17) and
2-target is to(As) in (19).

On the right-hand side of the 3-cocycle condition (15), the first 3-isomorphism is

A/l = [(Pguogs)#0¢g2,g1]#1®g4,g3,gag1a
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corresponding to the 3-cell

The 3—arrow A
with 2-source so(A;) in (17) and 2-target

1) (All) = [(pg4pgs)#0¢g2,gl]#l [¢g4,ga #OpQQQI]#1¢9493792917 (21)

corresponding to the left 2-cells in the following diagram:

Pg291
Pg1

(1)

Pg2

The 2—arrow t2(A}) The 2—arrow s2(A%)

By the interchange law (6) for horizontal compositions, we can interchange 2-isomorphism
(1) and (2) identically in the left 2-cells above to get the 2-isomorphism

52 (A/2) = [¢g4 g o (/092 Py )#1 [,09493 #0901 [#1 Pgags.g201» (22)

corresponding to the right 2-cells above. The last 3-isomorphism is

Al2 = [¢g4793#0<pg2pg1)]#1(1)9493,92,91
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The 3—arrow A}

whose 2-target is exactly the 2-isomorphism t5(Aj3) in (19)-(20).
It is not easy to draw several 3-cells corresponding to the composition of 3-arrows in
a 3-category C. For this reason, let us consider the associated 2-category C* such that

(C+)i = Ci+17

and i-source and i-target are s;11 and t;11, ¢ = 0,1,2, respectively. Functions %ép :
Cr x Cf — C;f are described by arrows #,41 : Ciy1 X Chy1 — Cri1, and identities
1: Cl | — C are defined in a similar manner. C is a strict 2-category since Home/(z,y)
is a strict 2-category for any objects x,y of C, by the fact that a strict 3-category is a
category enriched over the category of all small strict 2-categories. We also define C** to
be the category with

(C++)i = L2

and the i-source and i-target are now s;;» and t;49, @ = 0, 1, respectively. The function
#o : CFT x CfT — Cf becomes #5 : C3 x C3 — Cs. C* is a category by the same
reason.

In the corresponding strict 2-category C*, 3-isomorphism A; in (16) is represented by
the following 2-isomorphism:

PgsPgsPg2g1

¢g4 »939291
PgaPgsgag1 Pgig3g291

PgaF0Pg392.91

(Pg4P93 )#0¢92,g1
PgsPgsgzPg1

Pgs #H0Pgs,90F0P
PgaPgsPg2 Py e (23)
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Here the upper and lower boundaries in (23) (as l-arrows in CT) represent the source
s9(A;) and target ta(A;) in (17) (as 2-isomorphisms in C) respectively. To draw the
picture neatly, we omit the whiskering parts. Then the 3-cocycle condition (15) can be
expressed simply as an identity of 2-isomorphisms in C* as follows:

%94,939291 $94,939291
[ J [ ] [ J [ ]
%93,9291 #93,9291
Al ?b
° ° °
Ao %94,
ba $949392,91 993
Ay
Ag
bg9,91 bg9,91 E———————— 999,91
$94,9392
° ° °
%93,92
As $9493,92 $9493,92
° ° ° °
$94,93 $94,93
(24)
L L , . . .
where ¢, = @gugo.g1, Pb = Dgugs.g2.- Here o’'s above represent 1l-isomorphisms in C.

The 2-isomorphisms in (17), (18), (19), (21) and (22) are represented by 1l-isomorphisms
in (24). Now the 3-cocycle condition (24) can be viewed as the commutativity of the
2-isomorphisms in the boundary of the following cube in C*:

%94,939291

A %949392,91

7
993,92 ~ = o
- >
Phd Az~ X N $9493,92
7

. . (25)

%94,93

%92,91

2.7. REMARK. (1) In the upper boundaries of diagrams in (24), the number of group
elements in the second subscripts of ¢..’s is increasing: gi, gag1 gsgag1, while in the
lower boundaries it s the number of group elements in the first subscripts of ¢ .’s which
are increasing: G, gags 9agsgo-

(2) (24) or (25) is similar to the pentagon condition of bicategories, but here we actu-
ally have more complicated whiskering (cf. (23)).

Given a strict 2-category V, there exists an associated 3-category V* for which Vj
consists of one object V, V; consists of all functors from V to V, VJ consists of all pseudo-
natural transformations and Vj consists of all modifications. This is a 3-category. Because

$949392,91
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only 3-representations of a group in a strict 3-category are developed, we have to consider
a strict 3-subcategory W of V* for a strict 2-categories V. We call a 3-representation of
G in such a strict 3-subcategory W a strict 2-categorical action of G on V. In particular,
we have an endofunctor p, : V — V for each g € G, a pseudonatural transformation
Ghg * PrFFopy => png for each h,g € G, and a modification @, 4, ,, (the associator in
(12)) for each g3, g2, g1 € G. Here pp#0p, is the composition of functors:

pritopg(w) = pn(pg(w))

for w € V. By the definition of 3-representations, the endofunctor p,, the pseudonatural
transformation ¢, ; and the modification ®,4, 4, ,, must all be invertible in W C V*.

For example, for the 2-category V used in the 1-dimensional 3-representation in Sub-
section 3.8, its V* is a strict 3-category. For the general action of G on a 2-category
V), we need to develop 3-representation of a group in a Gray-category, since the semi-
strictification of a 3-category is a Gray-category.

When a 2-category V is viewed as a 3-category with only identity 3-arrow, a 3-
representation of G in V is a 2-representation if the the associator 3-isomorphism in
(12) is the identity, so that the 3-cocycle condition (15) holds trivially. This coincides
with the definition of the 2-representation in the strict sense in section 2.2 of [13]. And
for a category V, a 2-representation of GG in the 2-category V* is a categorical action of G

on V.

3. The 2-categorical traces of 3-representations

3.1. THE 2-CATEGORICAL TRACE OF A 1-ENDOMORPHISM. Let C be a 3-category, © € C
and A : z — x be a 1l-endomorphism. Then A is an object of the 2-category Home(x, x).
The 2-categorical trace of A is defined as

Try(A) = Home(1,, A),

which is a category. This is a subcategory of C*+.

Let A : x — x be a l-endomorphism for z € Cy, and let the l-arrow C' : y — x be a
quasi-inverse to a l-arrow B : xz — y. Then for any 2-arrow x : 1, = A in Try(A)o, the
composition

1, 2 CtoB == Ctol,#oB T8, o A4 B
defines a functor

\IJ(O, B7 U) : TTQ(A)O — TT’Q(O#OA#OB)O,
(X : 1o = A) > w1 [CHox#oB],
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corresponding to the diagram

\“]U
Try(A)y — Tro(CH#HoA#oB)1, c//;\\B

v uth[CHoy#o B, y_’x@}”—”*

3.2. PROPOSITION. ¥ (C, B, u) : Tro(A) — Tro(CH#oA#0B) is a functor.

PrOOF. For 2-arrows x,x,X : 1l = A and 3-artows v : x = X', 7 : X' = X,
we have the composition v#57 : x = X. Then by using repeatedly the compatibility
condition (7) for compositions, we find

U(C, B,u)(7)#:29(C, B,u)(7) = {u#1[CHov#oB]} #o{udt 1 [CHoV#0 B}
= U#1[C#0(7#2§)#OB]
- \D(Ca B, u) (7#2?)
Thus ¥(C, B, u) is a functor. n

3.3. THE 2-CATEGORICAL TRACE Trypy. Let p be a 3-representation of G in a 3-category

C. Fix an object z in C that G acts on. For f € G, let p; : © — x be a l-isomorphism in

C. Recall that Trep; is a category whose objects are 2-arrows with source 1, and target

ps and the morphisms are 3-arrows between them. In the sequel, we will use the notation
g=g

for simplicity. For any ¢ commuting with f and a 2-arrow x : 1, = py in (Trapy)o, we

define a 2-arrow ¢y(x) : 1, = py by

¢9(X) = ug#l [pg#OX#Opg*] #1 [¢g,f#0pg*] #lgbgf,g*' (26)

This is given by the composition of 2-arrows in the following diagram

Pgfg*=Pf
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where u, = (b;;* 1, = pypg. For a 3-arrow © : y = \/, we define 1),(0) as a 3-arrow
whiskered by corresponding 2-isomorphisms in (27). In other words,

Vg(0) = ug#ty [pg#0OFH0pg] #1 [(Dg. s F#00g ) F#1091.97] + by (X) = ¢9(X/> (28)

is a 3-arrow corresponding to the diagram

Pgfg*=Pf

in the 3-category C. Then v, defines an endofunctor 1, on Trep; by the proof of Propo-
sition 3.2. Namely, we have

g (07£00") = 1y(©)Fo1y(9)

for any 3-arrow ©' : v/ == Y, where #, is the composition in the category C*+ (%éo =
#2).

In Section 3.4, we will construction a natural isomorphism I', , : 1y 0 ¥y — Yy,
for given g,h € Cg(f). It gives us natural isomorphisms I'g« , : 9y« 0 ¢y, — 1 and
Lyge o g0t — 1. Thus ¢, for each g € Cg(f) is an equivalence of the category

Trops.

X1
3.4. THE ADJOINT 2-ISOMORPHISMS. For a 2-isomorphism =z ¢ Y in a 2-category

X2

-1
X1

/\
V, we define the adjoint 2-isomorphism ¢' to be ¥y \be by the composition of arrows

X2
X2
X71 Xfl
Yy———sux “¢1y—2>x. (29)
X1

This is a 2-isomorphism with inverted 1-source and 1-target. This operation will be used
later. See also section 2 of [20] for the definition of similar adjoint 2-arrows, but ¢! in
(29) is replaced there by ¢.
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X1 X2
3.5. PROPOSITION. (1) For any pair of 2-isomorphisms x ||[¢ Y and = |[v Y, we
N A YA

X2 X3

have (¢p#19)1 = ¢T#19)T.
(2) For any l-isomorphism xo : z — x, we have (xo#00d)! = d'#oxo"; and for
1-isomorphism Xo : y — 2, we have (¢#0X0) = Xo #00'.

N X xi
0N ~ ~ N IO
(8) For a 2-isomorphism Y “5 2, we have (¢p#00)" = ¢1#00T, ice., 2 ﬂ&’f Yy “dﬁ x .
N U
X2 Xz Xao

PROOF. (1) ¢'#10" = (¢#14)! follows from

X3
1N
X2 X3 u;g
Yy—mm™ 2 o1 Yy—=x w1 Yy—m2x Yy—2x “¢1y—>gj
X1 X2 X1
X3 X3
X2 R I s .
by « y x vl Y = x +»=1 Y and the interchange law (6) for hor-
\/ \_/

X2 X2
izontal compositions.

(2) follows from the fact that (yo#to)" is

X2
-1

—1
X1 Xo X0 SN X2 Xo
Y x z T s~ Y X Z

X1

since X, '#oXo is equal to the identity 1,.

(3) Note that ¢#0p = (x1#00)#1(dF0X2) by using the interchange law (6) . We see
that

(¢#0$>T = (Xl#ogg)T #1 (0#ox2)" = (&#0)(1_1) #1 (X2 '#00') = Ol #o!
by using (1), (2) and the interchange law (6) again. n

3.6. THE CATEGORICAL ACTION OF THE CENTRALIZER OF f ON Tryps. To construct a
categorical action of the centralizer C¢(f) of f on the category Trapy, let us write down
the composition law for the functors vy, and g,

wh ¢} % : Trgpf — TI‘Q,OJC,
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where h,g € Cg(f). For a fixed x € (Traps)o and © € (Tropy)1, by using the definition
(26)-(28) of 1, twice, we see that 1y, o ¢,(x) = ¥n(¢,(x)) is the composition of 2-arrows
in C in the following diagram:

and 1y, 0 1,(0) = Yp(1,(0)) is a 3-arrow in C defined similarly. Recall that we assume
pg1 = pgly and pp1 = ppl,. The upper half part of (30) is the same as the lower half with
f replaced by 1, and 2-isomorphisms inverted:

: (31)

namely, we have u;, = gbgll,h*#l[gbg}l #opn+] and similar identity for u,. Note that ¢ and
¢g1 are identities by our assumptions in Remark 2.2 (1).
Now let us write down the natural isomorphism

1_‘h,g : "l}h o ’lvbg — @Zjhg
between functors on the category Trops. The lower half of diagram (30) is

P P ps P+ P
AL r—Lsxrog (32)
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Here and in the following, for simplicity, we will use the notation

Pgigs = Pgi...g2>

i.e., we omit the group elements between ¢ and g, in the sequence h, g, f, g*, h* in diagram
(32).

Recall that the associator 3-isomorphism @, ,, , in (12)-(13) can be drawn in the
form (14). By definition, the 3-isomorphism

A = 11301 (@ g g+ Fopne 1172, (33)
is the associator @y, ;¢ o+ #opn+ Whiskered by two 2-isomorphisms

Ph Pg Pf Pg* Ph*

Y1 = [pr#odg s #o(pgrpr+)] : r T \x_/ r x T,
Pgf
Y2 = Pngr r e (34)
Phg*
Phh*

from above and below, respectively. This replaces the diagonal pyg- of the dotted quadri-
lateral in diagram (32) by the wavy diagonal pj s of the same quadrilateral in the following
diagram: B

(35)
Ay in (33) is the following 3-isomorphism
I
77NN
> @

N%

where y is the 2-arrow corresponding to the dotted quadrilateral in diagram (32), x’ is
the 2-arrow corresponding to the same quadrilateral in diagram (35) with the diagonal
changed, and 2-arrows 7; and -, are given by (34).
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The 3-isomorphism

Ay = [®rg, 10 (Pg* P )| FE1{[Pns g+ FoPns | #1Png= 1}, (37)

as a whiskered associator (14), then changes the diagonal pyf of the dotted-wavy quadri-
lateral in diagram (35) to the wavy diagonal pp, of the same quadrilateral in the following
diagram:

Ph Pg Pf Pg* Ph*
x x x r—L=x-"">x. (38)
See 7 7 7 7
N 7 e /
A 7z s
\\\phg P _ //
\\\\\ pﬂ // // Ve
\\\\\_’phg* - //
~N -~ = _ - P
\\ //
P

Similarly, the 3-isomorphism
As = {[dn.g#0(p1pg P N#1 [ng. 1 #0 (g 1o )} 1B f g e (39)

which is the whiskered associator @,;},g* ,+» changes the diagonal pjg- of the dotted quadri-

lateral in diagram (38) to the wavy diagonal pg+n+ of the same quadrilateral in the following
diagram:

Ph p Pf Pg* Ph*
T \f/97 x r——>x T . (40)
Phg Pg*h*
Phf
Phh*

Recall that the upper half of diagram (30) is the same as the lower half with f replaced
by 1 and 2-isomorphisms inverted. So by the corresponding 3-isomorphisms, denoted by
A, AL, A, the upper half of (31) is changed to

P1

(41)
Note that
Phg
SN "
r——2 oz (42)
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and the part involving pg-pp+ is also cancelled. As a result, the composition of (41) and
(40), together with 2-arrow x : 1, = py, gives us the diagram (27) with g replaced by gh.
This is exactly g, (x). Therefore, the composition of suitable whiskered 3-isomorphisms
A7, NS AS, Aq, Ay and Aj gives a natural isomorphism I'y, , @ 9y, 09y — 3,4 such that for
X € (Trapy)o
Lhg(X) : ¥n(¥g(x)) = ¥ng(X)

is a 3-isomorphism in C. R

It is not easy to draw 3-arrows A;’s in the 3-category C. But in the 2-category C*, the

first 3-arrow A; in (33) can be drawn as the 2-isomorphism corresponding to the following
diagram:

ph#od’g,f#o(pg*ph*) PRH#OPL g f g% FOPR* Ph,gg* #0pp* Phg* h*
PRPGP [P g* PR PhPgfPg* PR — > PhPgg*Ph* —— 5 Phg*Ph* — — — > Phh* |
Ay
¢h,gf#0(ﬂg* Pp* hf,g* FOPR*
PRfPg* PR*

Here the upper path

Pr#0Pg, H#o(Pg* Pr* Pr#F0dg s g* HoPn*
PhPgPf Py Ph+ s G PhPgfPgePhe —eLTTOT

corresponds to the 2-isomorphisms in C in (32) (the lower half of 15, (14(x))), while the
lower paths corresponds to the 2-isomorphisms in C in (35) (the lower half of ¢p,(x))).
And the 2-isomorphism Ay corresponds to the 3-isomorphism in C in (33). Since Tropy
is a subcategory of C*1, diagrams in the 2-category C* are sufficient for our purpose. In
the sequel, to simplify diagrams,

Ph* Pgrgy* Pre 1S simply written as  pg4,,

as an object in the 2-category C*. For simplicity, we also omit the whiskering part
of 1-isomorphisms ¢,,’s in diagrams. The 3-isomorphisms A; : (32) =>(35), A, :
(35) = (38) and Ag : (38) = (40) in the 3-category C correspond to 2-isomorphisms
in the 2-category C* in the following diagram:

. bgfia* Pn,gg* Png* n
Dy == Pf & Pgf oL “pgg* = Phg* =

Y\h,gf Al
Phtg* As Bhs ok
pﬂ\ hf,g*h

A
¢h,g 2 d)g*,h* pﬂpg*h*

Phh

Phyg
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respectively. Just as for the upper half of diagram (30), diagram (31) is changed to
diagram (41). In C*, this is the composition of 2-isomorphisms given by the following
diagram

¢;1* * ¢_1 * (z)_l d)_l
g*,h h,99* gl,g* g,1
Phh* Phg* Pgg* Pg1 P == :'@I (44)
AT “AJ{ 1
2 1 —
¢71 A3 ¢M»9* ¢h791
hl,g%h* pﬂ :T
A -1
Phr1Pg*h* ¢)q—*1h* 2 Ph g
-1
¢h9,1
phg

where Aj is the 2-isomorphism previously denoted by Aj (with f replaced by 1), and A;

(previously denoted by A;) is the 2-isomorphism adjoint to Aj, defined in §3.4 . Recall
that the adjoint 2-isomorphism is the inverse one with 1-source and 1-target inverted. We
apply the adjoint operation to diagram (43) to get diagram (44), the mirror-symmetric
diagram of (43), by using Proposition 3.5. Given x : 1, = py, we connect the diagrams
(44) and (43) to get I'y 4(x) as a 2-isomorphism in C:

9 X 9. (45)

For objects x, X" € (Traps)o and a morphism © : x — x’ in (Treps); (ie., a 3-arrow
in C), I',4(0) is also a 3-arrow. We connect diagrams (43) and (44) to get I', 4(O) as the
following diagram in the 2-category C*:

...... 2 . (46)

¢h g1 ¢h 9f
...... phl th e
b
¢hg 1 ¢h9 f

Note that ¢, 01,(x) in (30) is the upper boundary of diagram (46) and vy,(x’) is the lower
boundary of diagram (46). I',,4(x) is the diagram (46) with the 2-arrow © : x = X’
deleted, but l-arrow x : py — py remains, whereas I', () is the diagram (46) with
the 2-arrow © : x = X’ deleted, but l-arrow x’' : py — py remains. Applying the
interchange law (6) to the diagram (46), we see that I'; ; is a natural isomorphism in the
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category Trops C CtT, ie. the diagram

P10ty (O)
U 0 Ug(X) ————= 1y, 0 y(X')
Fh,g(X) Fh,g(X/)
/
Yng(x) ) Ung(X')

is commutative, where the 2-arrows 1y, o 1,(0) and 1,,(©) in C* are © whiskered by
1-isomorphisms corresponding to the upper and lower boundaries of diagram (46), re-
spectively.

3.7. THEOREM. {¢,, T4}
category Tropy.

g heCalf) is a categorical action of the centralizer Cq(f) on the

This theorem will be proved in Section 6 by checking the associative law (1) for I, .,
which is an identity of natural transformations between functors on Tryps. Note that in
(1), so(T'kng) = Yk © Yng = to(r 0 I'ny). So the composition of natural transformations
used in (1) is in the usual order, not in the natural order which we assumed in Remark
2.1 (1).

3.8. 1-DIMENSIONAL 3-REPRESENTATIONS. We fix a field k of characteristic 0 containing
all roots of unity. Let A be a 2-category with only one object, one 1-arrow and 2-arrows
Ay = k*. Fix a 3-cocycle ¢ satisfying the condition (2). Let ¢° be the strict 2-categorical
action of GG on A as follows: ¢f is the identity functor for each g € G;

Phg : la = 0,0, = 0y, = 1a
is also the identity pseudonatural isomorphism for any h,g € G; and

(I)g3,g2,91 Lid = (Qgg#ﬂ(bgmgl)#l(bgs,gwl = (¢93,gz#0ggl)#l¢gsgz,g1 = idv (47>

is a modification determined by the element c(gs, g2, g1) € k* for any g3, g2, g1 € G. Then
the 3-cocycle condition (24) for ® is reduced to the equation (2). The cohomology classes
of 3-cocycles are classified by H?(G, k*).

For f € G, it is easy to see that Try0§ is a category with a single object given by the
identity pseudonatural isomorphism xo : 14 — 0% = 14, and morphisms (Traps); = k*
(an element of &* provides a modification). For g € Cg(f), ¥y @ Tra0$ — Trp0f is the
identity functor by the definitions (26)-(28). And

Dhgt Xo =m0 g(X0) — ¥ng(X0) = Xo
is a natural isomorphism given by the element (also denoted by I'y, ;, by abuse of notations)

_clhygf,g%)e(h, g, Fe(hf, g h*) ™!

— . 48
b9 = . g 0ol g, elhg, g, B (48)
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This element is obtained by replacing ®g, 4, o, by the element ¢(gs, g2, ¢91) and all other
isomorphisms by 1 in A;’s in (33) (37) (39), and using the adjoint operation (29), .

3.9. PROPOSITION. I' given by (48) is a 2-cocycle on the centralizer Cq(f).
This proposition will be proved in Section 6.1.

3.10. REMARK. There exists a transgression map that maps a 3-cocycle ¢ on a finite
group G to a 2-cocycle on the inertia groupoid of G [26]. It is given by

o . clhig, flelhgfg ' h™" b, g)
o c(h,gfg1,9)

for given f € G (c¢f. Remark 3.17 in [1}]). Note that for h,g € Cq(f) we have Cj, 4 :=
c(h,g, fe(f, h,g)/c(h, f,g). So our2-cocycle I'y, ; in (48) is different from the transgressed
one. On the other hand, our 2-cocycle is only defined for elements which commute with a
given element f, not on the entire inertia groupoid of G.

Let o be a categorical action of a finite group GG on a k-linear category W. For a
commuting pair of elements g and f in G, the 2-character x,(f, g) of a categorical action
o is the joint trace of functors oy and gy, i.e., the trace of the linear transformation induced
by the functor g, on the categorical trace Troy (a k-vector space, which we assume to be
finite dimensional).

Now let p be a strict 2-categorical action of a finite group G on a k-linear 2-category
V. Then Tryp; is a k-linear category and ¢ defines a categorical action of the centralizer
of fin G on it by Theorem 3.7. If k, g, f € G are pairwise commutative, we define the
3-character of the 2-categorical action p to be

Xp(f>g> k) = Xll)(g? k)? (49)

the joint trace of functors ¢, and 94, acting on the k-linear category Trypy, i.e., the trace
of the linear transformation induced by the functor v, on the k-vector space Trv,, which
we assume to be finite dimensional.

By using the 2-character formula for 1-dimensional 2-representation in proposition 5.1
of [13], the 3-character of the 3-representation ¢ for pairwise commutative k, g, f € G is
given by
~ Thglrgr—

ch(fagak) - Fk 1Fk 1 )

where the expressions I', ,’s are defined by (48). It can also be derived from diagram (27).

4. The induced strict 2-categorical action on the induced 2-category

4.1. THE INDUCED 2-CATEGORY. Let H C GG be a subgroup of a finite group G and let
p: H — V* be a strict 2-categorical action of H on a strict 2-category V (cf. definitions
at the end of Section 2.4). Ind% (V) is a strict 2-category where
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e objects are maps ¥ : G —> V, together with a 1-isomorphism
g, V(gh) — ppe9(g)

for each g € G, h € H, satisfying the condition:
(1) ug1 : 9(g) — p19(g) coincides with ¢7'[9(g)];
(2) for each g € G, hy,hy € H, we have a 2-isomorphism:

9(ghyhy) ——212 o pyed(ghy)

Ug,h1ha Ph3Ug,hy

e l-arrows F': (J,u) — (¥, u’) between objects;
e 2-arrows v : ' — F.
For k € G, the action (ind%p),, on the 2-category Ind% (V) is given by

[(indfp)id] (9) = 9(k'g),  [(indfp)eu] ), = w14,

for an object (¥,u) in Ind% (V). And (ind$p)i(F) for a l-arrows F : (9,u) — (¢, u)
and (ind%p).(7) for a 2-arrow v : F — F can be defined similarly. In general, each
commutative diagram in the definition of the induced category in section 7.1 of [13] is
replaced by a 2-isomorphism.

We will not write down the definition of the induced 2-category Ind% (V) explicitly. It
is a little bit complicated. Since we only work on finite groups, we can simply identify
Ind% (V) with V™ as a 2-category, where m is the index of H in G. For a strict 2-category
VY, V™ is also a strict 2-category with

objects V' = {(z1,...,2m);z; € Vo},
p—arrows V' ={(y1, ) (@1, ) = (Y1 Um)i Ve D5 1 T = Y5t

p =1,2. The compositions are defined as

(o Vg )RV ) = o #0Y0 - ), (50)

if 75 and 7} are p-composable. The axioms for functions #;, and identities of V™ are

obviously satisfied. The identification Ind% (V) = V™ can be obtained by choosing a
system of representatives
%:{Tl,...,rm}
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of left cosets of H in G, and associating to each map ¥ : G — Vj an object (¥(r1), ..., (rm))
in Vg

Let ajp : V — V be functors such that the m x m matrix F' = (a;;) has only one
nonvanishing entry in each row or column. Then F' defines a strict functor from V™ to

V™ by
F(...,0;,..)= (...,Zajk((sk),..),

where we write ), a;x(0x) formally for 6, € V,, p = 0, 1, 2, since there exists only one term

in this sum. But when the 2-category is k-linear, such sums exist. If F' = (@) - Y™ — Y™
is another such functor, then we have

(F#Oﬁ>jk = Z aji -

l

Moreover, a pseudonatural transformation ¢ : F — F is given by an m X m matrix
¢ = (¢jx) With ¢ : ajr — a;, a pseudonatural transformation between functors on V.

Let 5 = (@k) . F — F be another pseudonatural transformation. Then their composition
is ¢#10 = (Pju#10jk).-
4.2. THE INDUCED STRICT 2-CATEGORICAL ACTION . Suppose that p is a strict 2-
categorical action of H on the 2-category V. For f € G, we define (indgp)f to be a
functor from V™ to V™ as follows. It is an m x m matrix whose entries are functors from
V to V, i.e., the (j,7)-entry is
. | pa, it fri=mr;h, for heH,

Kdep)f]ji - { 0, otherwise. (51)

This corresponds to the fact that for a map ¥ : G — Vy, we have [(ind%p)(9)])(r;) =

I(f ;) and I(f ') = I(r;h ™) — ppd(r;). Tt is clear that only one entry in each row
or column of the m x m matrix (ind%p); is nonvanishing. Then,

(indSp)(....0;,...) = ( 257 ((mdSp)p) (60). - ) , (52)

where 0; € V,, for p =0,1,2.
For simplicity, from now on the induced object will be denoted by the hatted one, e.g.
ind% p is denoted by p. The composition functor Py, and py, is defined as

~ PhaPhi s it giri =r;hi, gar; = 11he, for some hy,hy € H,
(Po:Pgs )i = { 0, otherwise.
(53)
Thus p,,p,, can be viewed as the product of two m x m matrices of functors. On the
other hand,

(/p\9291>ki = Phahy (54>
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since (gog1)ri = rr(h2hy) by (53). We define the pseudonatural transformation (as a
2-isomorphism in (V™)*)
Dga,g1 * PgaPgi == Dagagy

as the m x m matrix whose (k,7)-entry is the 2-isomorphism

(¢g2,91)k‘i = ¢h27h1 * PhaPhy — Phahys (55>

and all other entries vanish. For gy, g2, g3 € G, the 3-isomorphism in (V")*

Ds 92,91 © [Pas 0P gn,01 ) #1Pgs.0001 == [Pgs,00 70051 | #1Pgsg2.91

is a modification. Write
931, = 11hs

for some hsz € H. Then we have

[Ib\gg#0¢g2,g1]li = ph3#0¢h2,h1 and [¢gg,g2#0ﬁg1]li = ¢h3,h2#0ph17 (56>

etc.. We define 693,92791 as an m X m matrix whose ([, 7)-entry is the modification (as a
3-isomorphism in V*)

(Pgs,99.91)1i = Phig hoshy © [PhsFF0Pho bt | FF1Phs hahy == |Ohs ho FF0Ph1 |71 Phsha hi »

and all other entries vanish.
For g4 € G, write
gary = 1¢hy

for some hy € H. The (¢,i)-entry of the m x m matrix [ﬁg4#0593792791]#1@4,%5]291 is the
modification

[ph4 #OCDhg,hz,hJ#lgbh@hghzhl

of V, and similarly we obtain other terms in the 3-cocycle condition (15) for ®. So the
3-cocycle condition (15) for ® is reduced to the 3-cocycle condition for ®. Note that
functors or pseudonatural transformation or modification we consider are matrices, of
which entries are in a strict 3-subcategory W of V*. It follows from the strictness of W
that p is a strict 2-categorical action of G on V™ ~ Ind% (V).

5. The 3-character of the induced strict 2-categorical action

5.1. THE 2-CATEGORICAL TRACE OF THE INDUCED STRICT 2-CATEGORICAL ACTION.
As above p is a strict 2-categorical action of H on the 2-category V. Let R be a system
of representatives of G/H. We have the decomposition

R=R UR",
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where R’ := {re R;r'fre H}, R" := {r e R;r~'fr ¢ H}. For a fixed element f of
G, the decomposition
[fleNH = [h]g U~ [hn]n

induces a decomposition
R =|JR: with R;={reRyr 'frehlu}.
i=1

For fixed i, we pick r; € R; and write h; = r; ' fr;. For r € R;, we have r~1fr = h='h;h
for some h € H. From now on, by replacing r by r2~! in the representatives of R; C G/H,
we can assume

rfr =h, for all reR;. (57)

Denote
n
m; == | Ry, m':=|R'| = Zmi, m" = |R"|, m:=m'+m".
i=1

It follows from the definition (51)-(52) of py that

Ao Ao Aoz - Aon
Ap An 0 - 0 Ph;
ﬁf — A20 0 A22 s 0 , A“ = . , (58)
where i = 1,...,n, and Ay is a off-diagonal m” x m” matrix. So an object of Tryp; is a
pseudonatural transformation x : 1ym — py of the form
Om"X’m"
. Xmy+-4m;_1+1
X= D, D= . (59)
Xmi+-+m;
where Xomy 4+ t+m;_1+a © 1y = pp, is an object of Tropp,, « =1,...,m;. Also morphisms in

Tropy are diagonal. So we have

n

TT’Qﬁf = @(TTQphi)mi .

i=1
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5.2. LEMMA. ([13], Lemma 7.7) Left multiplication with r;* maps R; into a system of
representatives of Ca(h;)/Cr(h;).

For g € Cq(f) and r € R;, we write
gr =Th, (60)
for some ¥ € R and h € H. Also, r is uniquely determined by 7 for fixed g. Then
T =hrtg  fgrhTt = hhh !

by (57). Hence 7 € R; and so 7! f7 = h; by assumption (57). It follows that h € Cy(h;).
Then

gr =T7h gives (Pg)ir = Ph,
fT’ - rh’i giVeS (pf)rr = Phy>s
g 'Fr =rh! gives  (Pg-1)rv = Phe,

and all other entries vanish. Thus

(ﬁgﬁfﬁg*);’f = PhPh;Ph*

and all other entries in the last (m’ x m’)-block vanish (see (58)).

We denote by @Z the categorical action of the centralizer Co(f) of f on the category
Treps. By definition (26), @Eg for ¢ € Cg(f) is an invertible functor as follows. For
a pseudonatural transformation diag(...,x,,...) = x @ lym — py in (59), ibvg(x) is a
pseudonatural transformation given by

. ‘1’7 o PeHoXHDyr o bg Py bgr
diag(ly, ..., 1y) 2% PPy~ Bobiby —L Doty —255 Byser = Dy,

where the first m” diagonal terms of zzg(x) must vanish, and other diagonal terms are
<¢gg ) = = G- 1y = pupn,

(ﬁg#OX#Opg )M = (pg)w#err#o(ﬁg*)r? = PrFFoXrTF0PR* * PhPh* — PhPh; Ph*
<¢g,f#0ﬁg*>m = Oh,hi F0P* © PhPhi PR > Phhi Ph*

((bgfvg*),,, = thhi,h*  Phhi Ph* =7 Phhsh* = Phy-
T

All other entries vanish by definitions (54)-(55). Therefore, Jg(x) is a diagonal m x m
matrix of pseudonatural transformations, whose (7, 7)-entry for 7 € R’ is

(Jg(X))W = G F1 oo Xe Fopn- 1#1[Onp, Fopn= 1#1Onnns = 1y — pa,, (61)

and vanishes for all 7 € R”.
Now denote by 1) the categorical action of the centralizer C(h;) on the category
Tropn,, which is constructed from the strict 2-categorical action p of H on V. Recall that
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by definition (26), we have a functor @/J,(:) for each h € Cg(h;). For h € Cy(h;) and a

pseudonatural transformation w : 1y, — pj, , the pseudonatural transformation wﬁf) (w) is
again by definition (26) the composition of the following pseudonatural transformations
between functors:

¢h prtowFoppx Ph,h; FFOPR* Pnh;,h*
1y =25 ppppe D00, PhiPhs ————> Phh;Ph* ——— Phhsh* = Ph;-

Then we see that (61) can be written as

(% 00)_ = v00) : 1w = o, (62)

with r,7 € R; and h determined by (60). Namely, the resulting r-th diagonal term is the
image of the r-th diagonal term under the action of the functor 1/)}(?.

Note that we have the identification

IndgS ) Trapn, = (Trapn, )™, (63)

since |Cg(hi)/Cr(h;)| = m; by Lemma 5.2, and that (60) is equivalent to
(ri tgr)(ri'r) = (r;'T)h, b€ Cy(hy). (64)

The coset Cg(h;)/Cr(h;) are represented by r; 'r for r € R; by Lemma 5.2 again, and an
element of Cg(h;) can always be written as r; *gr; for some g € C(f). As above We denote

by (@ the induced action of the centralizer Cg(h;) of h; on the category Ind ']I‘rgph
Recall the definition (51)-(52) of the induced action. So the action of r; 'gr; € Cg(h ) on

the induced category (63) is given by the functor J(’T)T_—l gr; o0 (Tropp,)™ with

<¢<i>n_1gm_ (X)>r*mf1r = @ (x—) 1y = ph,. (65)

for x € (Tropp,)™, where h is given by (64), and all other entries vanish. Here we use the
expressions 7; 17 as indices of the components of (Trypy,,)™. Comparing (62) with (65),
we find that the action of g € C(f) on (Trops,)™ coincides with the induced action of
r7'gri € Cg(h;) on it, and so the action of the centralizer Cg(f) on Tryp; decomposes

into actions on
mi Cg(hi
PTraon )™ = Pl T, 6)

Recall that the initia groupoid A(G) of a group G has as objects, the elements of G,
and for two such elements u and v, there is one morphism in A(G) from u to v for every
g € G such that v = gug™'. Note that the initia groupoid A(G) is equivalent to the
groupoid with the set of objects consisting of the conjugacy classes [g;] and the set of
morphisms consisting of g : [¢;] — [g:] for ¢ € C(g;). Therefore the above result can be
summarized as follows.
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5.3. THEOREM. Let V be a k-linear 2-category. The 2-categorical trace Try takes in-
duced strict 2-categorical action into the induced categorical action of the associated initia
groupoids, i.e. (3) holds.

5.4. REMARK. Fven for the categorical action, Section 4 above and the present subsection
provide some details not written down explicitly in section 7.2 of [15].

5.5. THE 3-CHARACTER FORMULA. Recall the 2-character formula for an induced cate-
gorical action.

5.6. THEOREM. ([18], Corollary 7.6) Let o be a categorical action of a subgroup H of a
finite group G on a k-linear category WW. Suppose that Troy, is finite dimensional for each
h € H. Then the 2-character of the induced categorical action of G is given by

1 _ _
Xind(f7 g) = |_m Z XQ(S 1f37 S 198) (67)
s—l(f,zgscéHxH

fO’/’ g c Cg(f)

We now state:

5.7. THEOREM. Let H be a subgroup of a finite group G and let p be a strict 2-categorical
action of H on the 2-category V. Let 1 be the categorical actions of the centralizers on
the 2-categorical trace. Suppose that Triy, is finite dimensional for each h € H. Then the
3-character of the induced strict 2-categorical action of G is given by

1 _ _ _
Xind ([ 9, k)Zﬁ > Xo(s7' fs,57 gs, s ks) (68)
seG

s7V(f,9,k)s€Hx Hx H
for f,g and k pairwise commutative.

PROOF. By the decomposition (66) of the action of Cg(f) on Trypy and (62)-(65), we
have

Xind(f7g7 k) = ZX@ (ri_lgria 7"1-_1]{7“0.
i=1

Now apply Theorem 5.6 to the categorical action @ (65) of Cg(h;), which is induced
from the categorical action ¥ of Cy(h;) on Trypy,, to get

Xina(f. 9, k Z > Xoto (1 gt 670 kit
|CH teCq(hy)
t=1r7 Y (g,k)rit€Ch (hi) X Crr (hy)

Recall that w(i) is the categorical action of Cg(h;) on Trypp, constructed from the strict
2-categorical action p of H. So we have

Xop0) (t’lri’lgrit,flr;lknt) = Xp(hi,t’lfr’;lgrit,t’lfr;lkrit)
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by the definition of the 3-character (49) for the strict 2-categorical action p of group H.
Moreover, the decomposition of the action of Ce(f) on Trepy in Section 5.1 is independent
of the choice of h; € [h;]g, conjugacy class of h; in H. Therefore,

1 1 11
Xind(f, 9, k) = Z Tl 1ICa 0l Z Xp(h, s gs, s ks).

heH s~ fs=h,s€q,
571(g,k)s€Cx (h)xC (h)

Here we have used the fact that h; = s71fs = sfln»hiri_ls if and only if 7“2-_13 € Cg(hy).
Note that for s € G, we have s~'gs (resp. s tks) € H if and only if s~'gs (resp. s 1ks)
€ Cy(h) since g and k commute with f = shs™'. The 3-character formula (68) follows.

6. The categorical action of the centralizer of f on Trops

6.1. A MODEL: THE 1-DIMENSIONAL CASE. Let us prove by using the condition (2) for
3-cocycles repeatedly that the expression I' given in (48) is a 2-cocycle on the centralizer
Cq(f). This proof corresponds step by step to that of the general case carried out in
Section 6.4.

Proof of Proposition 3.9. By the definition of I, , in (48), we see that

Phglkng = E—:,
where
;= c(h,gf,g%)c(h, g, f)ethgf, g%, B*) 7t - e(k, hf, g*h*)e(k, hy, f)e(kf, g"h* k)7,
(69)
and II, is just II; with f replaced by 1. Similarly, we have
/
UnLlkng = H—Z,
where
IT; = c(k, hf, h*)e(k, h, f)c(khf, h*, k*)~' - c(kh, gf, g")c(kh, g, fekf, g%, (kh)*)~1,
(70)

and II} is just IT}; with f replaced by 1.
Apply the 3-cocycle condition (2) to the product of the two boldface terms in (70)
with g4 =k, 95 = h, g2 = gf, 91 = g" to get

Wy = c(h,gf, g7 )e(k, hgf, g% )e(k, b, gf)

e(k, hf, h*)c(khf, h* k*) e(kh, g, f)e(kf, g*, (kh)*) ™" (1)



ON THE 3-REPRESENTATIONS OF GROUPS 2035

Here the second line above is the right-hand side of (70) with the two boldface terms
deleted. Note that kfg* = khf. Apply the 3-cocycle condition (2) to the product of the
two boldface terms in (71) with g4 = kf, g3 = g%, 92 = h*, g1 = k* to get

H} — C(g*, h*, k*)—lc(ﬁ’ g*h*, k*)_lc(k_f, g*, h*)_l
'C(ha gf7 g*)C(k, h_fv g*)C(l{, ha gf) ' C(kv hfa h*) ’ C(kha g, f)a
Here the second line above is the right-hand side of (71) with the two boldface terms

deleted. Apply the 3-cocycle condition (2) to the product of the three boldface terms in
(72) with g4 = k, g3 = hf, go = g*,g1 = h* to get

I, = ok, hf,g*h*)e(hf,g*, h*)~"
(g, b k) te(kf, gt h k*)le(h, g f, g*)e(k, h, gf)c(kh, g, f),
by khf = kf and hfg* = hf. Here the second line above is the right-hand side of (72)

with the three boldface terms deleted. Apply the 3-cocycle condition (2) to the product
of the two boldface terms in (73) with g4, =k, g3 =h, go = g, g1 = f to get

Iy = c(h, g, f) - c(k, hy, f)e(k, h, g) (74)
c(k,hf, g"h*)e(hf, g7, h*)"te(g" b k") Tte(kf, g*h* k") ~te(h, g f . g7).

For f =1 in (74), we see that IT} also has the product c(k, h, g)c(g*, h*, k*)~" of the two
boldface terms, which is independent of f. They are cancelled in IT’ JTI}. So we get

(72)

(73)

0y _ 1y
TS
by comparing (74) and (69). Proposition 3.9 is proved.

6.2. THE NATURAL ISOMORPHISM D'y # (¢, o I'py) . Let us write down the natural
isomorphism T’y pg# (¢ 0 T'hg). For a fixed x € (Trapys)o, by using the definition of
compositions in (30) twice, we see that 1)y 0 ¢, 01,(x) is the composition of the following
2-arrows:

Pk Ph L [ Ph Pr*
r—szx-"sr—""szx ﬂx ey ey (75)
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Let us calculate the 3-isomorphism

[Crng# (VU 0 Trg)l(X) = %k © Y 0 g (X) = Yrng(x) (76)

for a fixed 2-arrow x € Tropy C CTF. We consider the lower half part of (75) first. The
3-isomorphism

A = Q#Halpe#oPhgr.gr FHo(prepis )| #1€, (77)

the associator ®, ;7 .+ (14) whiskered by 2-isomorphisms <) which we do not write down
explicitly, changes the diagonal py,« of the dotted quadrilateral in (75) to the wavy diag-
onal ppy of the same quadrilateral in the following diagram:

PK Ph p Py py* pp i
r——sr-TLer-Ter- - -2 - T ——>T x x. (78)

This is a 3-arrow as (36). The 2-arrows outside the quadrilateral are fixed as the whiskering
parts. The 3-isomorphism

Ao = OH#1[pr#oPh.g, 1 #0(Pg PP )| F1 €, (79)

as a whiskered associator (14), changes the diagonal p,; of the above dotted-wavy quadri-
lateral to the wavy diagonal pp, of the same quadrilateral in the following diagram:

(80)

The 3-isomorphism

As = <>#1[Pk#oq>;;;,g*,h* Hopr|#1<, (81)
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as a whiskered associator (14), changes the diagonal pjg+ of the above dotted quadrilateral
to the wavy diagonal pg«j- of the same quadrilateral in the following diagram:

Pk Ph p Pf Pg* Ph* Pr*
r-" =z r—"=ux r—"=ux T T . (82)

Note that the diagrams (78), (80) and (82) are exactly the diagrams (35), (38) and (40)
by adding from below to each of these the arrows:

Pk Pr*
r——2 r——2x

By definition, the composition Aj#oAs#-A3 is the 3-isomorphism

[V 0 Thgl(X) : ¥k 0 ¥n 0 hg(X) = Ui © Yng(x)

corresponding to the lower half of (75).
The 3-isomorphism

Ay = Q#1 [Py g n Fopre | #1,

as a whiskered associator (14), changes the diagonal p,,+ of the dotted-wavy quadrilateral
in (82) to the wavy diagonal pgs of the same quadrilateral in the following diagram:

Pk Ph Pg P Pg* Ph* Pr* (83)

ZE——>CL’—>I—;ZE —————— > T i xT .

NS

The 3-isomorphism

As = O#1 [Prng, 170 (g PP )] #1,
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as a whiskered associator (14), changes the diagonal pss of the above dotted-wavy quadri-
lateral to the wavy diagonal py, of the same quadrilateral in the following diagram:

Pk Ph Pg Pf Pg* Phx* Pl
x x x x x x rT—=>T. (84)
4 k4 7
A Phg . ~ _ - ,
A Pkg s Pg*n* / v
N - /
S~ Phd s s
X~ Pl — s v
X T~ kS - P - P
N ~ - _ e
N < P e
N o~ ~ -
~ >~ pkh* - -
~ - - - - - - -
- —~
- _ -
Plk*

The 3-isomorphism
O#lq)kf grh* k*>

as a whiskered associator (14), changes the diagonal pyp+ of the above dotted quadrilateral
to the wavy diagonal py«x+ of the same quadrilateral in the following diagram:

(85)

The composition Ay#sAs#2Ag is the 3-isomorphism

Ling(X) @ ¥k © Yrg(X) = Ying(X)

corresponding to the lower half of (75).
In the 2-category C*, the composition Aj#s - - - #9Ag of 3-isomorphisms corresponds
to the following diagram .@]lc =

) bgf.g* Ph,gg* Dhg* h* bk brenx
Pf il Pgf 2ho Pyg* > Py - Phh* S s P —— s e
A Phy /A3“ }Lg*h* A4ﬂ }Lg*h* ﬂAb‘%
Ao Ph,gf 229 kf.g* k"
¢
bh.g % * PhfPg*h* (Rl PkfPg*h* ¢—> Pk fPg* h* k>
y \ Py h
g *
phg H7
¢k hg pkg Phg,f

(86)
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where the symbol = in this diagram follows from the interchange law (6) for a horizontal
composition: the commutativity of ¢y 5,y and ¢« . Note that the part involving Ay, Ag, Ag
is just the diagram (43). Let 2! be the corresponding diagram in C* with f replaced
by 1, by using adjoint operations as in (44). Then as in (45), the 2-isomorphism in C*
corresponding to the morphism [y # (k0 'y )] (x) in Tropy is

9 == 9. (87)

6.3. THE NATURAL ISOMORPHISM D'y, # (L, 0 ¢y) . To calculate I'y j, 0 ¢y, we fix the

part

Pg Pf Pg*
x X x xr

Pyf

*

Pgg

in the lower half of (75), which corresponds to 1,. The 3-isomorphism

A = OFH 1P nge nF1, (88)

as a whiskered associator (14), changes the 1-isomorphism pps+« in the lower part of (75)
to the wavy diagonal py,+ of the same quadrilateral in the following diagram:

Pk Ph Pg Pf Pg* Ph* Pr*
r——>r— — > A e xXr s T .

PEk*

The 3-isomorphism B
Ao = OF#1[Prp o Fo (P pie ) | F1 0, (89)

as a whiskered associator (14), changes the diagonal Phg+ Of the above dotted-wavy quadri-
lateral to the wavy diagonal pg;, of the same quadrilateral in the following diagram:

Pk Ph Pg Py Pg* Ph* Pr*

X Xz x X x r——>r——>1.
W 7 7
N 7 / /
N Pkh Pgf 7 s s
A Dok 4 4 /s
N 99 " v .

e Ve v
X P 1 -
I~ Pha* ~ Phd -
NI - kg - P -
N o~ - - - - -
~
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The 3-isomorphism ~
Rs = 01D e s (90)

as a whiskered associator (14), changes the diagonal pyp+ of the above dotted quadrilateral
to the wavy diagonal pp«x« of the same quadrilateral in the following diagram:

Pk Ph Pg Pf Pg* Ph* P
x x x x r—Lsx——"Fsx—szx. (91)

The composition KI#QKZ#QK;; is the 3-isomorphism

Lhn 0 g 0 Y 0y 0 Yg(X) = Yn © Yy(X),

corresponding to the lower half of (75).
The 3-isomorphism

A= QH#1[Prngr.g #o(Prepre ) |1, (92)

as a whiskered associator (14), changes the diagonal Pgg= Of the dotted quadrilateral in
(91) to the wavy diagonal pis of the same quadrilateral in the following diagram:

The 3-isomorphism B
As = O#1[Prn.g, s #0(Pg= Pre P )1F#1€, (93)

as a whiskered associator (14), changes the diagonal p, of the above dotted quadrilateral
to the wavy diagonal py, of the same quadrilateral in the following diagram:

Pk Ph Pg Pf Pg* Ph* Pl
s xr xXr A r——>r——r——=T.
A\ 7 7 K4
e Pkh A/ - P S __-7
NN Plg - s Pr*k* s
N ST -7 4 e
N ~ - _ Pﬂ - e /

N - - -7 7
N~ - e
SO~ Pkg* -7 7
~ - = = -
~ -~
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At last, the 3-isomorphism N
Ro = 01Dy} o e (94)

as a whiskered associator (14), changes the diagonal Prg+ Of the above dotted quadrilateral
to the wavy diagonal py«x+ of the same quadrilateral in the following diagram:

Pkk*

The composition /N\4#21N\5#2./NX6 is the 3-isomorphism 'y ,(X) : Ykn © Yg(X) = Ying(X)
corresponding to the lower half of (75).
The composition of Ay#, - - - #2A¢ in the 2-category C is the following diagram 2} :=

bg.1 Dgf.g* Ph,gg* Phg* h Pk, hi* Prh* K
Pr——20 S pgp— = 2 s Pggr — — o s Phgr ——— 5 Ppir Pkh* Pkk* .
\ \ \
\ N N /
\ \
Pk, \\¢k’h n As ¢k,£ Ay Phg*.nx s Prg* h*k*
E) r— —_— ’ \
\ \ \
bg.f \ bgf,g* \ Prh,ggr N [T Phf,g*k*
Pkh ————> PkhPgf — — === — = PkhPgg" — — == > Phg* ———> Pkg* Ph*k*
N T s A\
~ _ - kf,g*
Pkh,g As Phh,gf N A - ~ ks g* —_— fg
Pkg Pkf = PrfPheks — > PfPgk*
Phg,f Prx o+ Gg* hxk*
(95)

Let 27 be the corresponding diagram in C* with f replaced by 1, by using adjoint
operations as in (44). Then the 2-isomorphism in C* corresponding to the morphism
[Ceng# (L © ¥g)](x) in Tropy is

97 == 9. (96)

6.4. THE PROOF OF THE ASSOCIATIVITY. Let us show the identity (1), i.e., that diagrams
7 9} in (87) and 27 % %} in (96) are identical in the 2-category C*, by using the
3-cocycle identity (24) repeatedly. This proof corresponds to that of the 1-dimensional
case in Section 6.1 step by step.

Apply the 3-cocycle identity (24) to the dotted diagram in (95) with g4 = k, g3 =
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h,go = gf, g1 = g* to get wavy isomorphisms in the following diagram

* ¢h * p* o) * Grpx ok
fs h,99* 9 k,hh* kh*,k
Pat.e" Pgg* Phg* Phh* ———— Pkh* — — — — — > Pkk*
7 7 A
e 7
- /
Ph,gf é Pk, hg* ¢kg* L i /
Pk,h hf.g* As Phg* h¥k*
fut
e /
7
- ¢h* k* - //¢ﬂvg*k*
Pkh T> PkhPgf Pkg* — — = 2 > Plkg* Ph*kx ,
" \ EV - 7 Re 7
_ - / . /
¢kh9 Prh gf — ¢7f = / d)ﬁ,g /
Phg — S PkfT - — — - - - - -~~~ — > PkfPh*k* — — — = PkfPg*k*
&J ¢’k:g f Phx Jo* — Ggr prpr
(97)

Note that As in (90) and Ag in (94) are the inverse of associators. Apply the 3-cocycle
identity, the inverse version of (24) (the lower and upper boundaries are exchanged), to the

above dotted diagram with g4 = kf, g3 = g%, 92 = h*, g1 = k* to get wavy isomorphisms
in the following:

ps 9.5 $gt.9% ®h.gg* Phg* h* $k,hh* Shh* k*

Pgf Pgg* Phg* — — —— — > Phh* — — — — — > Pkhr ———— Pkk*
4 N 7
\ e
. Ph,gf Snfg | \\¢k hg* e .
Pk,h [ / N L Ghog® h kf,g%h
/ \ P -
/ \ ~ A ¢ﬂ,g*k*
o7 ke, : - 5O
*RE ok
Pkh.g kh.gf a*. HERN
Pkg Pkf PrfPhsk* — > PkfPg*k*
- d)@,f ¢h*,k* - ¢g*,h*k* -

(98)
where A is the inverse of a whiskered associator. Note that the commutative cube in (25)
implies the following identity.

®94,939291 $94,939291
[ [ ] [ J [ ]
¢9493,9291 A’l ‘1)9493,9291
de
[ ] [ ] [ ]
o Az p $94,93
9392,91 Pa 9392,91
-1
Aq
/ pr—
o 5 1| Pg2.91 b93,91 ——— %92,91
94,9392
[ ]
d;k \ \ m
[ J [ ] [ J

¢g4 g3 ¢94 »93

where ¢q = @g,9590.91> P = Pgugs.go> Pe = Dgs.g.9:- The left-hand side is the back, bottom
and right (this 2-isomorphism is inverted) faces of the cube in (25), while the right-hand
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side is the left (this 2-isomorphism is inverted), top and front faces of the cube. Apply
this identity to the dotted-wavy diagram in (98) with g4 =k, g3 = hf, go = g*,g1 = h* to
get wavy isomorphisms in the following:

g, f, higg* “hg* h* kh* k
pr—— 20 pyy TS pyge Phg* Phh Pkh Plk*
\ \ >
\ ~ 9
\ \ ¢ h 9f Ph
¢k’h \ _ o f - ¢hf g*h* ¢kf g*h*
\
N d’g,f “{ ¢kf g*k:*
Pl = = == = thﬁgf th PhiPahe s g Py b
\ ~ \ Pk hf _ ¢’ g*h* k*
N
Okhg As Pkh,gf D4 e Pg* h*
Pkg— -/ — — — — — — > PLf PEfPh*k* — > pkf,og*k*
=4 d)@,f —_ ¢h*,k* - ¢g*,h*k* 2 i

(99)
Apply the 3-cocycle identity (24) to the above dotted diagrarri with gy =k, g3 =h, g2 = g,
g1 = [ to get wavy isomorphisms in the following diagram 7} :=

- Pn,gg* Ohg* n* e Pk, hh* Dok PLh* k¥ Dok
Ph,gf on
\\ hi.g* S gone O g
= ¢hg 1 G g% n* Pk, hf Okfg*k*
¢k S _ g*h* k*
Pkh.g Pk,hg Pg* n /
pkg pﬂ pkfph*k* —> pkfpg*k*
7‘ ¢h*,k* g*  h* k*
(100)

With f replaced by 1, by using adjoint operations as in (44), the diagram & corre-
sponding to the upper half is identically changed to the following diagram %} :=

S é ¢; h ®p,
kh* k* k,hh* hg*,h* ,99*
Pkk* Pkh Phh* Phg*

pklpg*h* —> Ph1Pg* h*

—1
¢g*,h*

szlpg*k* — pklph*k* —
¢ * h*k* ¢h*’k*

(101)
where Ej is the adjoint of =;, j = 1,2. Then the whole diagram %7 N Z; in (96) is
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identically changed to

namely,

(102)

Note that (100) is exactly 2} in (86) with two extra 2-isomorphisms Z; and Z,. But

by definition, the 2-isomorphisms Z; and Z! are the associators (13) corresponding to the
3-isomorphisms in C, which change

Pkg
Phg 1z PEkh 1z
—1
Pk, hg %z; Y ﬂ /ﬂm
Pk Ph Pg
X —Pk—>= T —Ph—> x r to x x X x
. Pf Py ’
¢k,hg“ h.g Pk.h ﬂ¢kh,g
Phg Pkh
Pkg Pkg
and we have
Pkg
Phg
Pk U p/h Pg Pkg
\phg
Pkg

by cancellation (42). So Z; and EI are cancelled. More precisely, as a 3-isomorphism,
=l #ox#o= is T
El#o)#1E1#0x) = E#ED) Hox = Lo, #ox,

and we have

(O ngF0Pno) #0(Pn.g#obhng)HoX = (PpngHobn o) HoXFHo(Png#oDrng)
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in the 2-category C*, up to whiskering, by the interchange law. Namely, é{ N @}" in
(102) is identical to

-1
Phg Ph,g

Similarly, the 2-isomorphisms Z, (100) and Z} in (101) are also cancelled. The resulting

diagram is exactly the diagram 2! TN .@} in (87). This completes the proof of Theorem

3.7.
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