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Chapter 0

Introduction

As soon as we move into the world of enriched, internal or fibered categories we are

challenged to consider the way in which categorical properties of those structures

transform as we pass from one category of discourse, or base, to another.

For example, in topos theory one is keen to describe what happens to the

(co)completeness or exactness properties of categories within (or indeed over) a topos

E when they are converted into categories within another topos F by an applica-

tion of the direct image of a geometric morphism f : E > F (say). In homotopy

theory, one might seek to study the relationship that holds between the theories of

groupoid and simplicially enriched categories; as induced by the nerve functor from

groupoids to simplicial sets and its left adjoint the fundamental groupoid functor.

In algebra, we may usefully consider the translation between category theories en-

riched in modules over related rings. Finally, one might even ask for an analysis of

the passage between the theories of enriched and internal categories relative to the

same base.

In this work we develop an abstract theory of change of base which is adequate

to capture all of these examples. We concentrate, in particular, on ensuring that this

is strong enough to allow us to prove some very precise results about the way that

(co)limits, Kan-extensions and exactness properties of category theories transform

under change of base. We go on to apply this framework to study the relationship

between certain enriched and internal category theories over the same base.

As an application, we consider (and prove) a conjecture due to Bob Paré [38]

regarding a certain well behaved class of limits in 2-category theory. We start

by reviewing this more concrete problem, whose solution originally motivated the

development of the change of base theory developed herein.
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0.1 Limits in 2-Categories

The theory of 2-categorical completeness presents us with subtleties which simply

do not arise in its unenriched counterpart. Indeed, many familiar limit notions –

such as pullbacks and equalisers – exhibit behaviours which, when viewed from the 2-

categorical perspective, can reasonably be described as being somewhat pathological.

On studying the archetypal 2-category Cat (of all small categories) in greater detail,

for example, we find that many of these pathologies arise simply because some limit

constructions require us to postulate the strict identity of pairs of objects in the

categories whose limit is being taken. Conversely, those 2-categorical limits that are

better behaved in Cat only require the, quintessentially categorical, condition that

certain objects become related by a given, possibly invertible, arrow. However, these

observations are far from formally identifying a well-behaved class of 2-categorical

limits, a task that has not proved to be an entirely trivial one.

In this context Bob Paré, in his talk to the Bangor category theory meeting

in 1989 [38], raised the following question. Suppose, informally, that we are given

“diagrams” D and D′ in a 2-category A which have “limits” lim←−D and lim←−D′ and

that these diagrams are related by a “natural transformation” α: D > D′. Then

certainly we know that α induces a map of limits lim←−α: lim←−D > lim←−D′ and,

furthermore, we know that this induced map is an isomorphism whenever α is an

isomorphism. However, when working in a 2-category it is equivalence, not isomor-

phism, of objects which matters to us, and so we might naturally be led to follow

Paré by asking what happens if α is only a point-wise equivalence, that is to say

comprises components which are equivalences. In general there is no reason to be-

lieve that under such conditions lim←−D′ should be equivalent to lim←−D; however one

might hope that for certain “reasonable” 2-categorical limits this would be the case.

More specifically, the notion of 2-dimensional limit used by Paré when asking

his original question involved diagrams parameterised by double categories. In that

context, he says that a double category D parameterises a persistent limit if for

any pair of diagrams D,D′:D > A, the map of their double limits induced by a

horizontal natural transformation α: D > D′, all of whose components are equiv-

alences, is itself an equivalence. Paré provided a simple characterisation of such

double categories D, a new proof of which is given in section 2.6 herein.

Various other classes of well behaved 2-categorical limits exist in the literature.

In particular, in [7] Bird, Kelly, Power and Street introduced the notion of flexible

limit and they show that these are precisely the ones that can be constructed using

products, inserters, equifiers and splitting of idempotents. Importantly this class of

2-categorical limits does not include equalisers and pullbacks, but it does include

all pseudo-limits and all (op)lax-limits. Indeed the flexible limits turn out to be

a particularly interesting and useful class since, for example, they are the limits

inherited by the 2-category T Alg of algebras and pseudo-algebra maps for a (nice)
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2-monad T .

In fact, in section 2.7 we will show that Paré’s class of persistent limits is closed,1

in the sense that “any limit which can be constructed out of persistent limits is

persistent”. Furthermore, we shall even show that the classes of persistent limits

and flexible limits are identical, in a suitable sense which we shall make precise later.

Now, in order to study the relationship between persistent and flexible limits

we must first frame them within the same abstract context. However, on the one

hand persistent limits have been defined and studied within the theory of double

categories, that is to say inside the 2-category Cat(CAT) of internal categories in

the category CAT of (large) categories and functors between them. So in discussing

limits indexed by double categories, we are really regarding 2-categories as certain

internal categories in CAT and defining double limits as conical limits in that internal

context. On the other hand, 2-categories can also be regarded as CAT-enriched

categories, for which we usually define limit notions that are weighted by enriched

profunctors (cf. Kelly [30]). Furthermore, and somewhat inconveniently for our

purposes here, it is this language of enriched categories that has traditionally been

used to frame the definitions of flexible limit and closed classes of limits.

A central part of our programme, then, is to establish the relationship between

internal categories possessing conically defined limits and enriched categories pos-

sessing weighted limits. However in carrying this out we meet an immediate tech-

nical obstacle: profunctors in Cat(CAT) do not compose! The problem here is that

profunctorial composition is defined using certain coequalisers which must be stable

under pullback, and this is not generally true of coequalisers in CAT. One solution

to this problem, which we adopt here, is to work not in Cat(CAT) but in the larger

category Cat(SS), where SS is the category of simplicial sets. Here composition of

profunctors is very well behaved, and so we may obtain the results we want as a

matter of elementary profunctorial calculation. The bulk of chapter 2, then, is de-

voted to establishing the relationship between double limits and 2-categorical limits

by studying them both in the common context of Cat(SS).

However this strategy involves us in a new task, that of establishing a more

formal relationship between the theories of CAT-enriched categories, on the one

hand, and categories internal to SS, on the other. Specifically, our approach will

be to provide an abstract account of change of base which is general enough to

relate these two category theories, via the reflective inclusion CAT ⊂ > SS, while

providing structure sufficient to allow us to translate (co)completeness properties

of CAT-categories into corresponding properties of categories in SS. With this in

mind, chapter 1 presents a general theory of change of base for category theories

as codified into structures called equipments. These provide an abstract framework

which combines the calculi of functors and profunctors of a given category theory

1in the time since this work was originally written, the terminology closed for this concept has

been supplanted by the more precise adjective saturated.
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into a single axiomatised structure, in a way which applies to enriched and internal

theories alike. In this context we may describe change of base structures between two

category theories as bicategorical adjunctions (or biadjunctions for short) between

their equipments. These share many of the formal properties of geometric morphisms

in topos theory, and indeed they may be seen as an indirect generalisation of such

things via the work of Carboni, Kelly and Wood [12].

It turns out that the greatest technical challenge of this work has been the

development of a fully justified theory of change of base at the level of generality

discussed above. This must both be general enough for wide applicability while being

specific enough to allow us to prove strong results about how (co)limit notions within

our category theories transform under change of base. In fact, along the way to this

goal we will need to prove very many 2- and 3-categorical results of a foundational

character. So finally this thesis contributes to 2-dimensional category theory on a

rather general level.

A more detailed, section by section, summary of the contents of this thesis fol-

lows.

0.2 Chapter 1: Change of Base for Abstract Cat-

egory Theories.

Section 1.1: We begin by discussing the notion of local adjunction between

bicategories. In theorem 1.1.6, we introduce (a generalised form of) their charac-

terisation in terms of a unit and counit. We then go on, in proposition 1.1.9 and

its corollary, to discuss questions of the preservation of Kan extensions and liftings

by local adjunctions. This section is little more than a compendium of results and

methods which we will be using throughout the remainder of this chapter.

Section 1.2: Here we review the notion of equipment, which generalises and ab-

stracts the calculi of functors and profunctors associated with enriched and internal

category theories. In summary, an equipment consists of two bicategoriesM and K
which share the same class of 0-cells and whose 1-cells are respectively thought of as

the profunctors and functors of an abstract category theory. These are related by

structures which carry functors f ∈ K to an adjoint pair of profunctors f∗ a f ∗ ∈M,

which we think of as being the left and right representables associated with f . Our

interest in equipments here is much the same as that which led Wood to introduce

them in [56] and [57], viz., they provide just enough abstract bicategorical structure

for one to develop within them a complete theory of weighted limits and colimits.

Our goal now is to reduce the question of change of base to that of constructing a

biadjoint pair of maps between equipments, and for this we first need to define maps

of equipments, along with their attendant transformations and modifications. Maps

of equipments do not necessarily preserve the composition of profunctors; instead
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they are designed to be well behaved with respect to certain squares of functors and

profunctors in our equipment. These squares are introduced in definition 1.2.4, and

their properties are discussed briefly there. However, a complete development of

the theory of the structures into which these squares fit is only developed in greater

detail in sections 1.3–1.5.

Two important examples of equipments discussed in this section are the equip-

ment of matrices derived from a bicategory that possesses stable local coproducts

and the equipment of spans in a finitely complete category. We also discuss a gen-

eral equipment of monads construction Mon(−) which yields an equipment whose

objects are monads within the bicategory of profunctors of an arbitrary equipment

satisfying a mild local cocompleteness property. When this construction is applied

to an equipment of matrices, this yields the corresponding equipment of enriched

categories and profunctors. Furthermore, when it is applied to an equipment of

spans this gives us the associated equipment of internal categories.

Section 1.3: As a step towards describing what change of base structures be-

tween equipments look like, we start by looking at the general problem of enrich-

ment over bicategories. Much in the same way that we introduce category enriched

categories (2-categories) in order to abstract the fundamental categorical notions

of equivalence and adjunction, our purpose in discussing bicategorical enrichment

here is to give an abstract presentation of the corresponding bicategorical notions

of biequivalence and biadjunction. Later on, in section 1.5, we shall construct a

number of bicategory enriched categories whose objects are equipments and demon-

strate that change of base notions for abstract category theories may be described

as biadjoint pair of maps within these structures.

One might hope to apply a fairly conventional approach to establishing a theory

of bicategorical enrichment, built upon an appropriate monoidal closed structure

on the category of bicategories and homomorphisms. In this case, the theory of

biadjointness that we seek forces us to adopt the bicategory HomS(A,B), of homo-

morphisms, strong transformations and modifications, as the internal hom between

bicategories A and B. Unfortunately, this is neither part of a closed category struc-

ture, since there exists no bicategory which can act as its identity object, nor does

it possess a corresponding monoidal structure. It does, however, act as the internal

hom for a biclosed multicategory structure on bicategories, and this is enough to

allow us to formulate an appropriate enrichment notion.

At the end of this section we develop a complete, and easily applicable, theory

of biadjoint pairs within such bicategory enriched categories. This is closely related

to the corresponding presentation of adjunctions in 2-categories in terms of unit,

counit and triangle identities. Of course, our definition here coincides with the usual

notion of biadjunction (given in terms of equivalences of hom-categories) when we

specialise to working within the bicategorically enriched category of bicategories and

homomorphisms itself.
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Section 1.4: Next we generalise the calculus of squares and cylinders which

should be familiar to the reader from, for instance, Benabou’s foundational work

on bicategories [3]. By abstracting this calculus we naturally arrive at a theory of

double bicategories, which may itself be viewed as a hybrid of the theories of dou-

ble categories and bicategories. Much of this section is given over to constructing

various bicategory enriched categories of double bicategories (for example see defi-

nition 1.4.7) and to formulating a recipe for constructing biadjunctions inside them

(cf. proposition 1.4.8).

Of course, double bicategories may prove to be interesting structures in their own

right. However, our primary interest in them here is a consequence of the fact that

definition 1.2.4 provides us with a way to build double bicategories from equipments.

Now we may define bicategory enriched categories of equipments by “pulling back”

the enriched structures that we have constructed between the associated double

bicategories introduced in definition 1.2.4.

Section 1.5: Having constructed bicategory enriched categories of equipments

indirectly via associated double bicategories, we now provide more concrete and

practical descriptions of the 1-cells of these structures, calling them equipment maps.

These come in a variety of flavours, depending upon how strongly the composi-

tional structure of the “profunctors” (sometimes called proarrows) of the domain

equipment is preserved. At the weakest level, where raw equipment maps live, we

only insist that certain very specific composites of profunctors should be preserved.

Stronger gadgets called equipment morphisms and equipment homomorphisms are

defined in a way which makes them into morphisms or homomorphisms (respec-

tively) of bicategories of profunctors.

In this section, we also tease out the structure possessed by the transformations

and modifications which mediate between equipment maps and check that every-

thing here behaves well with respect to the process of passing to dual equipments.

Finally we spell out the recipe for constructing biadjoints in this particular situation.

Applying these results, we obtain change of base biadjunctions for equipments

of matrices (example 1.5.16) and spans (example 1.5.17). As an aside, we note that

these examples generalise earlier results of Carboni, Kelly and Wood [12] on change

of base for poset enriched categories of relations.

Section 1.6: Our next step is to obtain change of base results for enriched

categories and internal categories by applying the equipment of monads construc-

tion Mon(−) to the equipments of matrices and spans. We do so by defining, in

proposition 1.6.5, a suitable enriched functor extending Mon(−), which we then

apply, in examples 1.6.6 and 1.6.7, to give us the desired change of base results. We

also show that representable profunctors are preserved by any morphism of equip-

ments obtained by an application of the enriched functor Mon(−). This allows

us to extend 1-categorical actions on categories of functors to 2-categorical ones

and to demonstrate, in section 1.7, certain results describing the way in which lim-

8



CHANGE OF BASE

its within enriched and internal categories transform under change of base. This

analysis provides us with the foundation upon which we shall build the work of

chapter 2.

We might mention in passing that there exists a very strong analogy between

the change of base notions we develop here and the theory of geometric morphisms

in (elementary) topos theory. Specifically, we demonstrate that the change of base

structures between category theories may be expressed as a biadjoint pair of equip-

ment maps. Furthermore, we also demonstrate that the left biadjoints of these pairs

satisfy the “left exactness” property that they act homomorphically on bicategories

of profunctors. That this homomorphism property deserves to be regarded as a form

of left exactness is most easily seen in the context of equipments of spans, where

it reduces immediately to the preservation of the pullbacks used to compose spans.

Indeed, as discussed by Carboni, Kelly and Wood in [12], when we specialise the

change of base notions discussed here to the very special case of locally ordered

categories of relations in a topos it actually reduces to a theory which is equivalent

to the classical theory of geometric morphisms.

Section 1.7: Finally, we would like to use our biadjunctions between equipments

to obtain local adjunctions between the corresponding bicategories of profunctors.

Having done that, we then apply corollary 1.1.10 to deduce results describing the

extent to which colimit cylinders are preserved by change of base. Theorem 1.7.1

presents a useful result of this form, with a yet stronger result being obtained in

lemma 1.7.7, which demonstrates that certain “inclusions” of category theories both

preserve and create colimit cylinders. It is this result that we apply in chapter 2

to support our representation of enriched colimits as internal ones. Now our care-

ful analysis of the duality construction for equipments, as summarised in corol-

lary 1.5.11, ensures that all of the results we have derived for colimit cylinders also

hold for limit cylinders.

0.2.1 Why Generalise to Bicategorical Enrichment?

In the narrative of sections 1.1 to 1.6, most of our examples could have been ex-

pressed within a suitable 2-category, constructed in much the same way as the more

general bicategorically enriched structures discussed in this thesis. In essence, the

structure of our maps of equipments is built upon the structure of their actions

on categories of functors and in these examples this is essentially 2-categorical in

nature.

However, we have two reasons for not restricting ourselves to a 2-categorical

description of these phenomena. The first is that it turns out that the bicategorically

enriched theory is not substantially more difficult to develop than the 2-categorical

one. The second is that this generalisation, and the full strength of using biadjoints

to represent change of base notions, is needed when we come to discussing the natural
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generalisations of the notion of “sheaf” which arise in enriched category theory.

As discussed at the end of section 1.7, it is natural to follow the lead of Betti [4]

and Walters [55] in regarding sheaves on a site as being Cauchy complete categories

enriched in a bicategory derived from that site. Abstracting this idea, we can define

a generalised site to be a bicategory B over which to enrich, along with a closed class

of absolute weights; that is, of weights for absolute colimits. Now the equipment

of sheaves over such a site has the usual bicategory of B-enriched categories and

B-profunctors between them as its bicategory of proarrows and has as its arrows a

certain sub-bicategory of adjoint profunctors in there. So here we have an example

where the arrows of an equipment actually form a genuine bicategory, rather than

a category or a 2-category. Furthermore, our generalised sites are related by co-

continuous homomorphisms which generalise the continuous maps of classical sites

and which are subject to a generalisation of the classical comparison lemma for

sheaves (theorem 1.7.13). This theory may, for example, be used to study change of

base processes for stacks over toposes. Now while it is easy to replace our bicategories

with biequivalent 2-categories (see appendix A) it is by no means quite so easy to

see how one might replace the biadjunctions constructed in our comparison lemma

with genuine adjunctions.

0.3 Chapter 2: Double Limits.

Section 2.1: The first section of this chapter simply lays a little groundwork, by

collecting together a number of well known technical results. As a general context

for this work we introduce a Gabriel theory J = (C, J) and let A denote the category

of J-models in Set, which we regard as being a monoidal category under cartesian

product. Of course, we know that A is a locally presentable category and that it is a

reflective full subcategory of C̃, the category of Set-valued presheaves on C. Against

this backdrop, one of our primary goals will be to study how that adjunction governs

the relationship between the theory of A-enriched categories and that of categories

internal to C̃. However, to obtain a well behaved such theory we will also find it

necessary to assume an extra, rather mild, technical condition which ensures that

the inclusion of A in C̃ preserves all (small) coproducts.

A canonical example of this setup is provided by the Gabriel theory (∆, J) whose

models are (small) categories. This will allow us to study the Cat-enriched theory of

2-categories by representing these as categories internal to the topos SS of simplicial

sets.

Section 2.2: In order to representA-enriched categories as categories internal to

C̃, we start by constructing a change of base inclusion of the equipment of A-enriched

categories into that of C̃-enriched ones, in the manner discussed in example 1.6.6.

We then observe that the category of (small) sets Set may be identified with the
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full subcategory of C̃ determined by the “discrete C-sets” (constant presheaves). Fur-

thermore, given an (X, Y )-indexed matrix with entries valued in C̃ we may construct

a span in C̃ between the discrete C-sets on X and Y by taking the coproduct of its

entries. This construction provides us with an equipment homomorphism from the

equipment of C̃-matrices into the corresponding equipment of spans in C̃. Applying

the functor Mon(−) we obtain an equipment homomorphism from the equipment

of C̃-enriched categories to the equipment of internal categories in C̃, and this in

turn possesses a left (bi)adjoint which is obtained by the adjoint lifting argument

of proposition 1.6.13. Thus change of base from C̃-enriched categories to internal

categories in C̃ is also an inclusion of equipments.

Now composing together the inclusions of equipments of the last two paragraphs,

we obtain the sought for representation of A-enriched categories. This brings with

it all of the colimit cylinder creation properties we might hope for, which tell us that

the theory of A-colimits may be represented faithfully within the theory of colimits

in categories internal to C̃.
Sections 2.3: Here we begin by recalling that the Grothendieck construction

for presheaves may be carried out in the internal setting. It turns out that it is

precisely this construction that allows us to reduce all weighted colimits in internal

category theory to conical ones. Indeed, there is a sense in which one might say

that the very lack of such a construction in the general enriched context is precisely

the factor which forces us to resort to the more involved weighted theory in the first

place.

So by passing along the inclusion of equipments derived in section 2.2 and then

applying the Grothendieck construction in C̃ we find ourselves able to reduce all

weighted colimits inA-enriched category theory to conical ones in the theory internal

to C̃.
Section 2.4: Returning now to study the specific case where our Gabriel theory

J is taken to be the theory of categories, we show that that the notion of conical

(co)limit defined in the previous section, in terms of Kan extensions of profunctors,

coincides with Paré’s double (co)limit notion. This is, of course, simply a matter of

unwinding the definitions.

Section 2.5: Having discussed individual colimits at some length, we move on

to deal with classes of colimits. We learn, from the work of Albert and Kelly [1],

that a class of weights for colimits is said to be closed precisely when any weight

for a colimit which may be constructed from that class is itself a member of that

class. They characterise classes of weights which have this property in terms of

the closure properties of certain enriched subcategories of the category P(A) of all

weights on each (small)A-enriched category. Consequently, if we wish to export their

characterisation to our internal setting in A (or more accurately C̃) then we must

first understand how to use the Grothendieck construction to represent the enriched

category P(A) in terms of internal discrete fibrations over the internalisation I?A

11
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of A.

To do this we start by enriching Cat(A), the category of internal categories and

functors inA, with the structure of anA-enriched category (proposition 2.5.4). Then

we show that this gives rise to an A-enriched structure on each slice of Cat(A) under

which it is (small) A-complete and A-cocomplete (proposition 2.5.6). Furthermore

we show that the Grothendieck construction actually lifts to an A-enriched and

A-fully faithful embedding GA:P(A) > Cat(A)/I?A whose image is the full A-

subcategory of discrete fibrations (theorem 2.5.7). Finally we find that GA preserves

all (small) A-colimits, so that the left adjoint possessed by its underlying ordinary

functor may be lifted to an A-enriched one (corollary 2.5.9).

We next consider the following situation. Suppose that we were given a (possibly

large) set X of categories internal to A whose purpose is to parameterise some class

of A-colimits. Then we may derive a corresponding class of A-enriched weights X ( )

describing the same class of A-colimits. Given such a class of weights, the work of

Albert and Kelly [1] tells us that a weight on a small A-category A parameterises

an A-colimit which is constructible from the colimits provided by the class X if

and only if it is a member of the category X ∗(A) obtained by closing the category

of representable weights on A under X -colimits within the category of all weights

P(A). However, for our purposes here it is more convenient to ask whether it is

possible to characterise this closure process directly in terms of the original class X
of categories in Cat(A).

Theorem 2.5.12 provides the bridge which allows us to do just this. It shows that

the A-enriched adjunction LA a GA exhibiting P(A) as reflective in Cat(A)/I?A
restricts to give an A-enriched adjunction exhibiting X ∗(A) as reflective in a slice

category X#/I?A. Here X# denotes the closure under X -colimits in Cat(A) of the

full A-subcategory T (A) of those internal categories possessing terminal objects (in

a global sense). In particular, this result tells us that the closure of the class of

weights X ( ) may be given by the formula:

X ∗(A) =
{
X ∈ P(A)

∣∣∣GA (X) ∈ X#
}

Section 2.6: Here we recall Paré’s persistent limit notion [38] and prove a

characterisation result for this class of double limits. Specifically we show that a

double category D parameterises a persistent limit if and only if each of the connected

components of its category of horizontal arrows posses a natural weak initial object

(theorem 2.6.6). This result is independent of the preceding general theory and was

first established by Paré in loc. cit., although the precise form of the persistency

notion given there was not quite correct as stated.

Section 2.7: In this final section, we turn our attention to the class of flexible

2-limits as introduced by Bird, Kelly, Power and Street in [7]. This class is known to

be the closed class of limits generated by products, inserters, equifiers and splittings

of idempotents. We show how to present these basic kinds of 2-limit as double limits

12
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and follow Paré by demonstrating that every flexible limit is persistent. However,

we are now in a position to go further than he did and apply the work of sections 2.2

through 2.5 to reverse this implication and demonstrate that all persistent limits

are actually flexible (theorem 2.7.1). So as our dénouement we find that these two

closed classes of 2-dimensional limits are identical, as originally conjectured by Paré

in his Bangor talk [38].

0.4 Appendix: Pasting in Bicategories

In this technical annex, we generalise John Power’s work [40] on 2-categorical pasting

schemes to show that this notion of pasting can also be made to make unambiguous

sense as a description of generalised composition within bicategories. Furthermore,

we show that such pasting composites are preserved by homomorphisms between

bicategories. Our main tool here is the fact that any bicategory is biequivalent to a

2-category.

0.5 Epilogue

In the time since this thesis was first prepared for examination, the field of higher

category theory has thrived. It is now one whose tentacles have propagated into

applications so diverse that one hesitates to list them here, simply for fear of missing

out a favourite. So it is amusing to recall that in the late 1980’s even the majority of

category theorists would have said, in a moment of candour, that 2-categories were

at best a necessary evil and at worst a complication to be avoided at all costs. Of

course, at that time we already knew a very great deal about the (pseudo-)algebra

of such structures, thanks to the diligent efforts of a small group of proponents

collected around trail-blazers like Max Kelly, Ross Street and Jean Benabou (to

name but a very few). However, the influence of these techniques was yet to be fully

felt in the broader community and they were certainly far from being accepted as

the fundamental part of the category theory toolbox that they are today.

Given this background, I feel that I should pay tribute to the foresight that

Martin Hyland showed in recognising in me what I recall him describing as “a

definite tendency towards exotic Australian category theory”. He had been early

to recognise the growing importance and utility of the higher category theory then

emerging from the Sydney Category Seminar, and from the very first week of my

PhD studies he strongly encouraged me to pursue this interest. I recall being a

little less convinced of this choice myself, especially given that my contemporaries

were engaged in apparently deeper and more worthwhile pursuits in topos theory

and theoretical computer science. However, this unease began to evaporate when I

attended the International Category Theory Meeting in 1989, which was held at the

13
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University College of North Wales in Bangor, where I had the good fortune to be

present at two talks, on quite distinct topics, which inspired me to pursue the work

described here. The first of these was Bob Paré’s beautiful exposition of his work on

2-categorical limits from a double categorical perspective [38]. The second I recall as

a double act, with Max Kelly and Richard Wood providing a condensed introduction

to their radical analysis of change of base for locally ordered categories [12]. Any

remaining qualms were completely dispelled for me later that year when I finally

got hold of a copy of Makkai and Paré’s book on accessible categories [34]. That

work makes such a good case for the utility of genuinely 2-categorical techniques

in describing and solving problems of broad interest that it finally convinced me to

take an Antipodean course, in the first instance mathematically and then later as a

naturalised Australian.

In retrospect, one might describe this work as an early tricategorical contribution

to the meta-theory of abstract category theories. While it does not rely directly

upon Gordon, Power and Street’s seminal account [21], since that work postdates

this by about 2 years, it certainly draws its inspiration from similar sources. Both

owe a great debt to John Gray’s work on formal category theory [23], which is

remarkable for taking such a fundamentally tricategorical approach so early in the

development of 2-category theory. The work here also derives great inspiration

from Ross Street’s labours in that tradition [47], [49], [50], [53] and [54] and most

particularly from his account of the theory of fibrations in bicategories [48]. The

lesson I learnt from the last mentioned work was that by approaching bicategorical

constructions at an appropriate level of abstraction we reduce them to arguments

which are only marginally more complicated than corresponding 1- or 2-categorical

ones. In contemporary terms, one might say that the complexity of their theory

is tamed by working at the level of the (semi-strict) tricategory in which they live,

by encoding any new structures we define at that level (wherever possible) and by

making judicious use of some basic and well known bicategorical coherence results.

In the past two decades a number of authors have formulated change of base

theories which are closely related to the one presented here. Indeed I am partially

responsible for the first of these, which may be found in [10]. This follows earlier

work of Carboni, Kelly and Wood [12] by expressing equipments, à la Wood [56],

as two-sided fibrations over their categories of arrows (functors) and building a 2-

category of such structures, wherein commonly occurring change of base processes

may be expressed as adjoint pairs of 1-cells. Notably, this theory does not ask that

the proarrows (profunctors, or as Max Kelly had it “the Greeks”) of these equip-

ments should themselves compose, instead it simply asks that arrows (or in Max’s

terminology “the Romans”) should act on proarrows on both sides. In the theory

presented in [10] we also start by ignoring general composites of proarrows, making

the mild assumption that they exist without insisting that the basic structure pre-

serving homomorphisms between proarrow equipments should preserve them. Later
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we enrich these basic maps by asking that they respect composites of proarrows in

an (op)lax- or pseudo- sense, and generalise Kelly’s doctrinal adjunction results [29]

to induce such structures across biadjunctions.

A more recent variation on this theme is provided by Shulman [45] which takes

an unapologetically double categorical approach to this theory from the very start.

His framed bicategories are double categories that are pseudo-associative in the hori-

zontal (profunctorial) direction, in the tradition of Grandis and Paré [22], and which

carry a certain kind of connection structure [8], expressed as a fibrational property,

reflecting vertical (functorial) information into the horizontal. He then builds a

family of interrelated 2-categories, whose 1-cells preserve vertical composites “on

the nose” and act in an (op)lax- or pseudo-functorial manner on horizontal compos-

ites. Here again he is able to express many change of base processes as adjoint pairs

in these 2-categories. One might also make similar comments about Cruttwell’s

thesis [14], which again uses this variety of double category to achieve a similar end.

The work presented here also takes a largely double categorical approach to

the change of base question. The double bicategories introduced in section 1.4 for

this purpose generalise the double categories used by Shulman, Grandis and Paré,

Garner [19], [20] and others by allowing composition to be pseudo-associative in

both directions. Furthermore, it also recognises, and takes fundamental advantage

of, the connection structure that lives on the double bicategory constructed from

any equipment. In section 1.5 these become our primary tool in translating the

homomorphisms, transformations and modifications of double bicategories, as de-

fined in section 1.3, into corresponding structures between equipments. However,

I should admit that I never really viewed the theory of double bicategories as an

end in itself, as suggested by my comments about these structures on page (8) in

the original introduction above. Instead I had already derived a homomorphism

notion for equipments through other, more prosaic means, and I introduced double

bicategories as a calculus of cylinders [3] designed to be sufficient only to explain my

homomorphism notion and to assemble such things into a bicategorically enriched

ensemble. Subsequently, however, these structures have enjoyed a certain life of

their own, most notably in the work of Jeffrey Morton [36], [37]. Not only does

he provide an account of such structures which is both broader and more detailed

than the one given here, but he also builds a double bicategory of cobordisms with

corners and applies that to the problem of formalising certain extended topological

quantum field theories.

In essence all of these works take as their starting points the same pair of abso-

lutely central observations, which in their most elemental form date back to the work

of Carboni, Kelly and Wood [12] on poset enriched categories. Firstly, they observe

that any change of base theory cannot simply be formulated in terms of the (op)lax

structures which operate at the level of the proarrows of our equipments. Instead

these must be supported by stronger (pseudo-)functorial structure at the level of
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the arrows in those equipments. Indeed, it is this fact which largely accounts for the

lack of success of the local adjunction notions which had been introduced by Betti

and Power [6] and Jay [25] to describe change of base at the purely profunctorial

level. Secondly, they demonstrate that the preservation of proarrow composition

is best regarded as a secondary consideration. Instead they start from the premiss

that the much more important property is the preservation of certain 2-cell squares

whose horizontal faces are arrows and whose vertical faces are general proarrows. It

is this last fact that leads to the ubiquity of certain double category notions in the

works discussed above.

It is worth noting, however, that all of the authors cited above provide a purely

categorical account of the arrow level structure in equipments. This in turn implies

that the collectives they build for their equipments are all 2-categories. The custom-

ary reason given for making this simplification is that it results in a theory which

is more easily developed because it does not require any, possibly unfamiliar, tri-

categorical machinery. While there is some veracity to this view, it is also arguable

that the presentation given here, while it does involve some aspects of the theory

of bicategories which may be unfamiliar, is not in any real sense more complicated

to develop or motivate. Its central constructions really are a matter of traditional

enriched category theory, albeit over the category of bicategories, and as such they

map directly onto their 2-categorical counterparts discussed above. The great ben-

efit of this more general approach is that our tricategories of equipments allow us

to actualise important examples which are not available in the 2-categorical theo-

ries simply because they give rise to biadjoint, rather than strictly adjoint, pairs.

For example, this extra expressiveness allows us to give an account of the cartesian

bicategories [11] discussed in example 1.5.19 and to express the comparison lemma

considerations discussed at the end of section 1.7.

As a postscript, I would like to mention some very recent work of Jonas Frey [17]

on the process of building toposes from triposes [24]. This work studies the extent

to which the tripos to topos construction bears a universal characterisation as some

kind of left adjoint to the forgetful functor from the 2-category of toposes and

left exact functors to a certain, naturally occurring, 2-category of triposes. While

results of this kind have been suggested or established by other authors, such as

Pitts [39] and Rosolini and Maietti [44], their work implicitly relies upon restricting

attention to those topos and tripos morphisms which are regular, in the sense that

they also preserve existential quantification and disjunction. This latter condition is

too restrictive if, for example, we wish to use this universal characterisation to refine

our understanding of geometric morphisms between toposes by making concrete

calculations with adjunctions in the 2-category of triposes. Put simply, the direct

images of geometric morphisms are not in general regular, so one cannot capture

them as adjunctions in the 2-category of toposes and regular left exact functors.

The considerations of the last paragraph lead us to seek an extension of this

16



CHANGE OF BASE

universal characterisation which relates the full 2-categories of triposes and toposes

whose 1-cells are not necessarily regular. However, in Frey’s own words “the aban-

donment of regularity leads to complications which require more sophisticated 2-

dimensional techniques” since, as he demonstrates, the most natural such extension

is only functorial in the oplax sense. This observation leads him to regard these

2-categories as weak equipments (in the sense of the comments following defini-

tion 1.2.1), in which the proarrows are all left exact morphisms between toposes or

triposes and the arrows are the regular morphisms amongst those, and to build a

bicategory enriched category of such weak equipments in which the homorphisms

are those oplax-functors that act pseudo-functorially on arrows. This construction is

a direct analogue of the one used here to derive EcoMor from HorizSC in section 1.5

and it gives rise to a structure within which the full tripos to topos construction

becomes left biadjoint to the underlying tripos 2-functor.

Observe that Frey’s analysis provides us with another important example for

which we require the full strength of the tricategorical framework developed here.

Of course, were we content to take a much stricter approach to the categorical

algebra inherent in Frey’s work then it is conceivable that we could devise a purely

2-categorical account of his central result. Unfortunately, such contrivances lead

us away from the concrete examples he has in mind by, for example, mandating a

preferred choice of (some of) the categorical structure of our triposes and toposes

and the “on the nose” preservation of those choices by the morphisms of such. So our

relatively inexpensive decision to embrace the tricategorical has paid off, providing

us with a biadjoint characterisation of the tripos to topos construction which is both

natural and intuitively appealing. However, for me the true appeal of Frey’s paper

is that it shows how one might apply the theory developed here to some of the very

same deeper problems that my compatriots were engaged in when I commenced this

work.

In preparing this reprint, I have tried to remain as true as possible to my original

text in both style and content. When I first started working on it I had hoped to

convert my LaTEX source into a more modern form and to replace my late-80’s style

diagrams with sparkling new 21st century ones (or even better with string diagrams).

However, even with the kind help of Micah McCurdy, I was never able to find the

time to complete a full conversion of this form and so I have reluctantly returned

to my old sources. Consequently, I would like to beg the reader’s indulgence and to

apologise for any frustration that my slightly clunky old typesetting may engender.

The text itself is much as it was when I first wrote it. In places I have corrected minor

misconceptions and mistakes that crept into my original account, but I have largely

avoided the urge to reinterpret and rewrite passages to “improve” their presentation

in light of subsequent developments. I have, however, taken the single liberty of

rephrasing the introduction above so that, while its content and structure are the

same as before, I hope it now reads more like a coherent passage and less like the
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scribblings of a student desperate to submit his work. Furthermore, the reader will

find that I have added a few bits and pieces here and there, which are flagged in

footnotes, including a new doctrinal adjunction result, proposition 1.4.13, which was

originally suggested by Jonas Frey, and the cartesian bicategory example discussed

in 1.5.19.
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Chapter 1

Change of Base for Abstract

Category Theories.

In this chapter we set out to provide abstract structures with which to talk about

questions of “change of base” in enriched (or other) category theories. An archetype

for the sort of question we are interested in might be:

Question 1.0.1 Suppose that B, C are distributive bicategories with small sets of

objects and

F: C > B

is a well behaved homomorphism of bicategories then what sort of structures encap-

sulate the behaviour of the actions it has on the bicategories of B- and C-enriched

categories and functors or profunctors? Does the structure we have chosen allow us

to deduce anything about, for instance, the stability of the cocompleteness properties

of a category under change of base?

To give a comprehensive answer to this sort of question it is necessary to encapsulate

together actions on the bicategories of functors and profunctors, relating them via

the left and right representable profunctors associated with each functor. In this

context we will see that change of base bears a striking similarity to the notion of

geometric morphism in elementary topos theory.

1.1 Local Adjunctions

In this section we introduce the notion of Local Adjunction, which will turn out

to constitute the action of change of base on bicategories of profunctors. Various

structures have been introduced under this name, notably in Betti and Power [6]

and Jay [25], but here when we refer to local adjunctions we will always mean the

former notion or strengthenings thereof.
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Firstly we re-iterate the main definition of [6], which requires a little familiar-

ity with the theory of bicategories as adumbrated in Benabou [3] and Street [48].

Let B, C be bicategories related by a morphism G:B > C and a comorphism

F: C > B from which we define two comorphisms

F#,G
#: Cop > Bicat(B,Cat)

where F#c = B(Fc, ) and G#c = C(c,C ). These definitions may remain a bit

unclear without reviewing a little notation. Bicat(B, C) denotes the bicategory

of Morphisms, Transformations and Modifications between B and C, as described

in [48]. An important (locally full) sub-bicategory of Bicat(B, C) is HomS(B, C)
consisting of Homomorphisms, Strong Transformations and Modifications. Notice

that we use the subscript S to remind us that we are interested only in strong

transformations. Notations for the various duals of a bicategory B are Bop ob-

tained by reversing 1-cells, Bco constructed by reversing 2-cells and Bcoop which we

leave up to the imagination of the reader. Related to Bicat(B, C) is the bicate-

gory Bicatop(B, C) of Morphisms, Optransformations (these are transformations in

which the 2-cellular structure has the opposite orientation) and Modifications, this

is (canonically) strictly isomorphic to the dual (Bicat(Bop, Cop))op.

The definition is:

Definition 1.1.1 (Betti & Power) We say that F is locally left adjoint to G me-

diated by a transformation ψ: F# > G# (in symbols F aψ G) iff each 1-cellular

component ψcb:B(Fc, b) > C(c,Gb) has a left adjoint ϕcb.

It it worth pointing out a dual, if F aψ G we have duals Gcoop: Ccoop > Bcoop

a comorphism and Fcoop:Bcoop > Ccoop a morphism. By taking mates of the

structure 2-cells of ψ under the various adjunctions ϕab a ψab we get 2-cells giving

the functors ϕco
ab: Ccoop(Gb, a) > Bcoop(b,Fa) the structure of a transformation

(Bcoop)op

(Gcoop)#

⇓ ϕco

(Fcoop)#

>

>
Bicat(Ccoop,Cat)

which clearly mediates a local adjunction Gcoop aϕco Fcoop.

As Betti and Power point out this notion has many satisfying properties, amongst

which are the duality above and the fact that we may compose two (compatible)

local adjoints to get a third one. They also demonstrate that a locally cocontinuous

homomorphism H:B > C between distributive bicategories gives rise to a locally

adjoint pair

C Prof
<

H∗

⊥−ψ

H∗
>
B Prof
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when B is small. Notice that if B is small and locally small cocomplete then it

must be locally posetal and so this result does not cover the majority of cases in

which we will be interested. Later on we prove a more general result, as part of the

abstract framework we will be building, then the smallness condition we impose on

B is simply that each of its “homsets” has a small set of generators.

In [6] the authors provide a method for constructing local adjunctions by a

one-sided universal property, this however is inherently non-symmetrical, unlike for

instance the one-sided description of adjoints in traditional category theory, and does

not suffice to construct all local adjoints. It does however point out the importance

of considering local adjoints equipped with some form “unit” or “counit”, and even

the idea of “triangle identities” for local adjunctions. Since all of the local adjoints

that we construct in latter sections will be defined in terms of this sort of machinery,

we take a little time to develop it here.

The choice of mediating transformation ψ, even for a fixed pair of (co)mor-phisms

F and G, is only (relatively) loosely constrained by the structure of those (co)mor-

phisms. In many of the naturally occurring examples, particularly in change of base

questions, ψ and ϕ are obtained from families of unit and counit 1-cells

c
Ψc

> GFc one for each 0-cell c ∈ C

FGb
Φb

> b one for each 0-cell b ∈ B

by setting

ψcb = B(Fc, b)
G
> C(GFc,Gb)

⊗Ψc
> C(c,Gb)

ϕcb = C(c,Gb) F
> B(Fc,FGb)

Φb ⊗
> B(Fc, b)

(1.1)

in fact this is exactly the sort of approach that is taken by Jay (in [25]) as part of

the definition of local adjunction. On its own this would not be enough structure

to allow us to prove the sorts of theorem we will examine later on since, not only

should each ϕcb be left adjoint to ψcb, but these should support complimentary

transformation structures (in the sense of the duality result above) derived by some

extra structure on the units and counits.

Betti and Power point out in remark 4.6 of [6] that if F and G are bicategory

homomorphisms then the composites FG and GF are well defined and we can take

the Ψc and Φb to be the 1-cellular components of optransformations:

IC
Ψ

> GF

FG
Φ

> IB

(1.2)

From this information we may derive the transformations ψ and ϕco and show that

adjunctions ψcb a ϕcb satisfying the various compatibility conditions with respect to
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the 2-cellular structure of ψ and ϕco correspond to having modifications

IG
α
> GΦ⊗ΨG

ΦF⊗ FΨ
β

> IF

satisfying two identities corresponding to the classical triangle identities.

What the authors of [6] do not mention is that this description may be extended

to include cases in which F and G are not homomorphisms. The important point is

that we are not really interested in forming the composites GF and FG as morphisms

(or comorphisms) but rather we are concerned with defining the optransformations

of (1.2) without having to explicitly compose F and G as follows:

Definition 1.1.2 If G:B > C is a morphism and F: C > B a comorphism

then a (generalised) optransformation Ψ: IC > GF is given by the following data:

1-cells (c
Ψc
> G(Fc)) ∈ C, one for each 0-cell c ∈ C.

and

c
Ψc

> G(Fc)

2-cells p

∨

⇑ Ψp

∨

G(Fp) in C, one for each 1-cell (c
p
> c′) ∈ C.

c′

Ψc′

> G(Fc′)

subject to the conditions:

c
Ψc

> G(Fc) c
Ψc

> G(Fc)

p

∨

α⇒

∨

q ⇑ Ψq

∨

G(Fc) = p

∨

Ψp ⇑ G(Fp)

∨

G(Fα)⇒

∨

G(Fq)

c′

Ψc′

> G(Fc′) c′

Ψc′

> G(Fc′)

(1.3)
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for each 2-cell (α: p > q) ∈ C.

c
Ψc

> G(Fc) c
Ψc

> G(Fc)

	�
�
�

p �
�
�

⇑ Ψp

	�
�
�G(Fp)

�
�
�

c′
Ψc′

> G(Fc′)
can⇒

∨

G(Fp′⊗Fp) = p′⊗p

∨

Ψp′⊗p ⇑ G(F(p′⊗p))

∨

G(can)⇒

∨

G(Fp′⊗Fp)

@
@
@
p′ @
@
@R

⇑ Ψp′

@
@
@G(Fp′)

@
@
@R

c′′

Ψc′′

> G(Fc′′) c′′

Ψc′′

> G(Fc′′)

(1.4)

for each compatible pair of 1-cells p, p′ ∈ C; and

c
Ψc

> G(Fc) c
Ψc

> G(Fc)

ic

∨

Ψic ⇑ G(Fic)

∨

G(can)⇒

∨

G(iFc) = ic

∨

can∼= iG(Fc)

∨

can⇒

∨

G(iFc)

c
Ψc

> G(Fc) c
Ψc

> G(Fc)

(1.5)

for each 0-cell c ∈ C.

Since we have expressed these conditions in terms of pasting diagrams it is worth

pointing out that appendix A contains a development of the theory of these as

extended to bicategories. In accordance with comments made there we will generally

write iterated composites of the 1-cells of a bicategory without explicit bracketing,

unless that might help with the exposition. Similarly we follow the usual convention

of only introducing identity 1-cells into a composite if they are necessary as the

domain or codomain of a 2-cell. We should point out that at some places in our

work with bicategories we will assume familiarity with the conventions and results

presented in that appendix, particularly with respect to the notion of applying a

homomorphism to a pasting cell.

We will usually denote the tensorial horizontal composition of a bicategory B by

⊗ with identity ib on each 0-cell b ∈ B, and use • for vertical composition of 2-cells.

The canonical 2-cells that form part of the structure of morphisms, comorphisms

etc. as well as the associativity and identity isomorphisms of bicategories (when

we display them explicitly) will generally all carry the name “can”. We rely on the
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context of a canonical 2-cell, in terms of its domain and codomain, to relate exactly

which one it is. For instance in (1.4) we have two instances of “can” in contexts

can: G(Fp′)⊗G(Fp) ⇒ G(Fp′ ⊗ Fp)

G(can): G(F(p′ ⊗ p)) ⇒ G(Fp′ ⊗ Fp)

from which we may infer that they are the compositional comparison maps of the

morphism G (instantiated at Fp′ ⊗ Fp) and comorphism F (instantiated at p′ ⊗ p)
respectively. The interpretation of the conditions of (1.3)–(1.5) should now be clear.

Returning to definition 1.1.2, if either of F or G is a homomorphism then the

composite GF may be formed as a morphism or comorphism (respectively) and our

definition becomes that of a traditional optransformation from the identity homo-

morphism IC on C to this composite. This justifies the use “optransformation” for

the structure presented in definition 1.1.2. By taking the ( )coop dual of every-

thing in definition 1.1.2 we obtain the concept of a (generalised) optransformation

Φ: FG > IB which we leave to the reader to spell out.

In their discussion of local adjoints induced by one-sided universal properties,

in section 4 of [6], its authors start with a morphism G and provide a method of

constructing local left adjoints to it. It turns out that the comorphism structure on

one of these, F say, is chosen precisely to ensure that the 1-cells Ψc: c > G(Fc),

involved in the construction process, lift to an optransformation Ψ: IC > GF of

definition 1.1.2.

As promised transformations ψ: F# > G# arise from the kind of optransfor-

mation we have defined, notice that the following lemma simply makes more explicit

a part of the construction in proposition 4.2 of [6]:

Lemma 1.1.3 If G:B > C is a morphism, F: C > B a comorphism and

Ψ: IC > GF an optransformation then the functors

ψcb = B(Fc, b)
G
> C(GFc,Gb)

⊗Ψc
> C(c,Gb)

may be given the structure of a transformation:

Cop

F#

⇓ ψ

G#

>

>
Bicat(B,Cat) (1.6)

Proof. Remark 3.2 of [6] sets out the 2-cellular structure lifting the collection of

functors ψcb to a transformation ψ, this consists of:
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(a) for each 0-cell c ∈ C and 1-cell (p: b > b′) ∈ B a 2-cell

B(Fc, b)
ψcb

> C(c,Gb)

B(Fc, p)

∨

⇓ ψcp
∨

C(c,Gp)

B(Fc, b′)
ψcb′

> C(c,Gb′)

in Cat, subject to the coherence conditions making ψc into a transformation

B(Fc, ) > C(c,G ) for each 0-cell c ∈ C.

In this case we let ψcp be given by the pasting

B(Fc, b)
G
> C(GFc,Gb)

⊗Ψc
> C(c,Gb)

p⊗

∨

can ⇓

∨

Gp⊗ ∼=

∨

Gp⊗

B(Fc, b′)
G
> C(GFc,Gb′)

⊗Ψc

> C(c,Gb′)

where the 2-cell “can” is the compositional comparison of the morphism G and

the isomorphism in the right hand square is the associativity of C. In other

words ψcp is the natural transformation with component at r ∈ B(Fc, b) given

by the composite:

Gp⊗ (Gr ⊗Ψc)
assoc
∼− > (Gp⊗Gr)⊗Ψc

can⊗Ψc
> G(p⊗ r)⊗Ψc

Notice that the definition of the ψcps does not involve the 2-cellular structure

of Ψ in any way and so checking that they satisfy the conditions necessary for

them to be the 2-cells of a transformation ψc :B(Fc, ) > C(c,G ) is easy,

directly from the coherence properties of the morphism G.

(b) for each 0-cell b ∈ B and 1-cell (q: c′ > c) ∈ C a 2-cell

B(Fc, b)
ψcb

> C(c,Gb)

B(Fq, b)

∨

⇓ ψqb
∨

C(q,Gb)

B(Fc′, b)
ψc′b

> C(c′,Gb)
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in Cat, subject to the coherence conditions making ψ b into a transformation

B(F , b) > C( ,Gb) for each 0-cell b ∈ B.

In this case we let ψqb be given by the pasting

B(Fc, b)
G
> C(GFc,Gb)

⊗Ψc
> C(c,Gb)

⊗ Fq

∨

can ⇓
⊗GFq

∨

⊗Ψq ⇓

∨

⊗ q

B(Fc′, b)
G
> C(GFc′,Gb)

⊗Ψc′

> C(c′,Gb)

where the 2-cell “can” is the compositional comparison of the morphism G so

ψqb is the natural transformation with component at r ∈ B(Fc, b) given by the

composite:

Gr ⊗Ψc ⊗ q
Gr ⊗Ψq

> Gr ⊗GFq ⊗Ψc′
can⊗Ψc′

> G(r ⊗ Fq)⊗Ψc′

These do involve the 2-cellular structure of the optransformation Ψ and as a

result the conditions that are necessary for them to constitute the 2-cells of a

transformation ψ b:B(F , b) > C( ,Gb) each follow from the corresponding

condition on Ψ and the coherence properties of the morphism G.

(c) finally this data must satisfy the cubical identity

B(Fc, b)
ψcb

> C(c,Gb)

B(Fq,b)

∨

ψqb ⇓

∨

C(q,Gb)

@
@
@ C(c,Gp)
@
@
@R

B(Fc′, b)
ψc′b
> C(c′,Gb) ∼= C(c,Gb′)

@
@
@

B(Fc′,p) @
@
@R

ψc′p ⇓

@
@
@ C(c′,Gp)
@
@
@R ∨

C(q,Gb′)

B(Fc′, b′)
ψc′b′

> C(c′,Gb′)

=

B(Fc, b)
ψcb

> C(c,Gb)

B(Fq,b)

∨

@
@
@B(Fc,p)
@
@
@R

⇓ ψcp

@
@
@ C(c,Gp)
@
@
@R

B(Fc′, b) ∼= B(Fc, b′)
ψcb′

> C(c,Gb′)
@
@
@B(Fc′,p)
@
@
@R

C(Fq,b′)

∨

⇓ ψqb′

∨

C(q,Gb′)

B(Fc′, b′)
ψc′b′

> C(c′,Gb′)

for each pair of 1-cells (p: b > b′) ∈ B and (q: c′ > c) ∈ C. From the

definitions of the 2-cells in this diagram as given in parts (a) and (b), estab-

lishing this condition is an easy diagram chase, involving only the coherence

properties of the morphism G. �
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Notice that it is not true in general that all transformations ψ: F# > G# arise

from optransformations by the construction of the last lemma. A case in which they

always do is that in which G is a homomorphism and ψcp is an isomorphism for each

0-cell c ∈ C and 1-cell (p: b > b′) ∈ B, implying that G# and ψ restrict to

Cop

F#

⇓ ψ

G#

>

>
HomS(B,Cat)

and so we may construct an optransformation by applying the bicategorical Yoneda

lemma in the form:

Lemma 1.1.4 (Street [48]) The functors

HomS(B,Cat)(B(b, ),H)
evib

> H(b) ,

denoting evaluation at the identity on the 0-cell b ∈ B, are the components of a

strong transformation

B ⇓
>

>
HomS(HomS(B,Cat),Cat)

and each one is an equivalence. �

It follows that we have equivalences

HomS(B,Cat)(B(Fc′, ), C(c′,G ))

eviFc′

∼ > C(c,GFc′)
(1.7)

which we exploit to obtain 1-cells Ψc: c > GFc and 2-cells Ψq: Ψc⊗q ⇒ GFq⊗Ψc′

from the corresponding cells of ψ. We verify that these cells satisfy each optrans-

formation condition from the corresponding condition on ψ using the “naturality”,

in c and c′, of the functors in (1.7). It is now a simple matter to demonstrate

that applying lemma 1.1.3 to this optransformation yields a transformation which

is isomorphic to ψ in Bicat(Cop,HomS(B,Cat))(F#,G
#).

Returning the main thrust of the argument, lemma 1.1.3 governs the way that the

transformation ψ: F# > G# in the definition of a local adjoint may be derived

from a “unit”. Taking its ( )coop dual provides us with the construction of the

transformation ϕco: (Gcoop)# > (Fcoop)# from a “counit”, but it is useful to re-

express this dual as we do in the following lemma. Here we exploit the fact that G#

and F# may also be considered to be comorphisms into Bicatop(B,Cat) and then

transformations ϕco correspond to optransformations ϕ: G# > F#:

Lemma 1.1.3coop If G:B > C is a morphism, F: C > B a comorphism and

Φ: FG > IB an optransformation then the functors

ϕcb = C(c,Gb) F
> B(Fc,FGb)

Φb ⊗
> B(Fc, b)
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may be given the structure of an optransformation:

Cop

G#

⇓ ϕ

F#

>

>
Bicatop(B,Cat) (1.8)

Proof. The 2-cellular structure of the optransformation ϕ is given by the pastings:

ϕcp =

C(c,Gb) F
> B(Fc,FGb)

Φb ⊗
> B(Fc, b)

Gp⊗

∨

can ⇑
FGp⊗

∨

⇑ Φp ⊗

∨

p⊗

C(c,Gb′)
F
> B(Fc,FGb′)

Φb′ ⊗
> B(Fc, b′)

ϕqb =

C(c,Gb) F
> B(Fc,FGb)

Φb ⊗
> B(Fc, b)

⊗ q

∨

can ⇑

∨

⊗ Fq ∼=

∨

⊗ Fq

C(c′,Gb)
F
> B(Fc′,FGb)

Φb ⊗
> B(Fc′, b)

�

For the remainder of the section assume that we have been given unit and counit

optransformations Ψ: IC > GF and Φ: FG > IB respectively and that ψ and

ϕ are defined from these as in the last lemma and its dual. We need to derive

conditions which ensure that ϕcb a ψcb for each pair of 0-cells b ∈ B, c ∈ C with the

proviso that ϕcp, ψcp and ϕqb, ψqb are pairs of mates under these adjunctions. To this

end we prove:

Lemma 1.1.5 Families of 2-cells

{κcb: iC(c,Gb) > ψcb ◦ ϕcb|c ∈ C, b ∈ B} (1.9)
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satisfying the conditions

C(c,Gb)

	�
�
�

ϕcb �
�
�
κcb⇐

∨

i

B(Fc, b)
ψcb

> C(c,Gb)

p⊗

∨

⇓ ψcp
∨

Gp⊗

B(Fc, b′)
ψcb′
> C(c,Gb′)

=

B(Fc, b) <
ϕcb

C(c,Gb)

p⊗

∨

⇑ ϕcp
∨

Gp⊗

B(Fc, b′) <
ϕcb′

C(c,Gb′)
@
@
@

ψcb′ @@
@R

⇐
κcb′

∨

i

C(c,Gb′)

(1.10)

for each 0-cell c ∈ C and 1-cell (p: b > b′) ∈ B and

C(c,Gb)

	�
�
�

ϕcb �
�
�
κcb⇐

∨

i

B(Fc, b)
ψcb

> C(c,Gb)

⊗ Fq

∨

⇓ ψqb
∨

⊗ q

B(Fc′, b)
ψc′b
> C(c′,Gb)

=

B(Fc, b) <
ϕcb

C(c,Gb)

⊗ Fq

∨

⇑ ϕqb
∨

⊗ q

B(Fc′, b) <
ϕc′b

C(c′,Gb)
@
@
@

ψcb′ @@
@R

⇐
κcb′

∨

i

C(c,Gb′)

(1.11)

for each 0-cell b ∈ B and 1-cell (q: c′ > c) ∈ C are in bijective correspondence

with families of 2-cells

Gb
ΨGb

> GFGb
@
@
@

iGb @@
@R

⇑ αb

∨

GΦb

Gb

(1.12)
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in C, one for each 0-cell b ∈ B, satisfying the identity

GΦb′ ⊗ΨGb′ ⊗Gp
GΦb′ ⊗ΨGp

> GΦb′ ⊗GFGp⊗ΨGb

�
�
�

αb′ ⊗Gp �
�
�� @

@
@ can⊗ΨGb

@
@
@R

Gp G(Φb′ ⊗ FGp)⊗ΨGb

@
@
@

Gp⊗ αb @@
@R 	�

�
� GΦp ⊗ΨGb

�
�
�

Gp⊗GΦb ⊗ΨGb

can⊗ΨGb

> G(p⊗ Φb)⊗ΨGb

(1.13)

for each 1-cell (p: b > b′) ∈ B.

Proof. It will help to rewrite conditions (1.10) and (1.11) by substituting the defini-

tions of ψ and ϕ given in the lemmas above and expressing the results “pointwise”, in

other words as equations on the components of the various natural transformations

at each r ∈ C(c,Gb):

Gp⊗ r
κGp⊗r
cb′

> G(Φb′ ⊗ F(Gp⊗ r))⊗Ψc

G(Φb′ ⊗ can)⊗Ψc
> G(Φb′ ⊗ FGp⊗ Fr)⊗Ψc

∨

Gp⊗ κrcb G(Φp ⊗ Fr)⊗Ψc

∨
Gp⊗G(Φb ⊗ Fr)⊗Ψc

can⊗Ψc

> G(p⊗ Φb ⊗ Fr)⊗Ψc

(1.10)pr
for each 1-cell (p: b > b′) ∈ B and

r ⊗ q
κrcb ⊗ q

> G(Φb ⊗ Fr)⊗Ψc ⊗ q
G(Φb ⊗ Fr)⊗Ψq

> G(Φb ⊗ Fr)⊗GFq ⊗Ψc′

κr⊗qc′b

∨ ∨

can⊗Ψc′

G(Φb ⊗ F(r ⊗ q))⊗Ψc′

G(Φb ⊗ can)⊗Ψc′

> G(Φb ⊗ Fr ⊗ Fq)⊗Ψc′

(1.11)rq
for each 1-cell (q: c′ > c) ∈ C1, where κrcb is the component of the natural trans-

formation κcb at r.

We first show that families of 2-cells of the kind portrayed in (1.9) and satisfying

condition (1.11) correspond to families like those shown in (1.12) with no conditions

to satisfy:
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θ
=⇒: for a family κ∼ = {κcb: iC(c,Gb) > ψcb ◦ ϕcb|c ∈ C, b ∈ B} satisfying (1.11)

define α∼ = θ(κ∼) with components αb given by the composite

iGb
κiGb

Gb,b
> G(Φb ⊗ FiGb)⊗ΨGb

G(Φb ⊗ can)⊗ΨGb
> G(Φb ⊗ iFGb)⊗ΨGb

G(can)⊗ΨGb

∼− > GΦb ⊗ΨGb

for each 0-cell b ∈ B.

φ⇐=: for a family α∼ = {αb: iGb > GΦb ⊗ ΨGb|b ∈ B} define the 2-cell κrcb to be

the composite

r
αb ⊗ r

> GΦb ⊗ΨGb ⊗ r
GΦb ⊗Ψr

> GΦb ⊗GFr ⊗Ψc

can⊗Ψc
> G(Φb ⊗ Fr)⊗Ψc

for each pair of 0-cells b ∈ B, c ∈ C and 1-cell r ∈ C(c,Gb).

Combining the interchange rule, naturality of the canonical 2-cells associated

with the morphism G and condition (1.3) in the definition of the optransfor-

mation Ψ in a simple diagram chase we demonstrate that these constitute the

components of natural transformations:

iC(c,Gb)
κcb

> ψcb ◦ ϕcb

Furthermore another chase, this time involving condition (1.4) on Ψ and the

properties of G, shows that they also satisfy the condition scheme (1.11)rq.

By simple diagram chases we show that φθα∼ = α∼ and θφκ∼ = κ∼ from condi-

tion (1.5) for the optransformation Ψ and condition scheme (1.11)rq for κ∼ respec-

tively.

All that remains is to prove that φ carries families satisfying condition (1.12) to

families satisfying scheme (1.10)pr, and vice versa for θ. To do this suppose that α∼
and κ∼ correspond under this bijection and consider the map σprcb , defined to be the

composite:

G(p⊗ Φb)⊗ΨGb ⊗ r
G(p⊗ Φb)⊗Ψr

> G(p⊗ Φb)⊗GFr ⊗Ψc

can⊗Ψc
> G(p⊗ Φb ⊗ Fr)⊗Ψc

It is a matter of easy diagram chases to show that the map obtained by applying the

functor ⊗ r to the upper (lower) leg of diagram (1.13) and then composing with

σprcb is equal to the upper (lower) leg of diagram (1.10)pr. Notice that condition (1.5)
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on the optransformation Ψ implies that if c = Gb and r = iGb then composing σprcb
with

G(p⊗ Φb ⊗ FiGb)⊗ΨGb

G(p⊗ Φb ⊗ can)⊗ΨGb
> G(p⊗ Φb ⊗ iFGb)⊗ΨGb

gives the canonical isomorphism:

G(p⊗ Φb)⊗ΨGb ⊗ iGb
can
∼− > G(p⊗ Φb)⊗ΨGb

G(can)⊗ΨGb

∼− > G(p⊗ Φb ⊗ iFGb)⊗ΨGb

It now becomes clear that the condition on α∼ holds iff the one on κ∼ does. �

Again it is worth mentioning the dual lemma 1.1.5coop relating families of natural

transformations

ϕcb ⊗ ψcb
τcb

> iB(Fc,b) ,

obeying similar compatibility conditions with respect to the 2-cells of ψ and ϕ, and

families of 2-cells
Fc
@
@
@ iFc
@
@
@R

FΨc

∨
βc ⇑

FGFc
ΦFc

> Fc

satisfying the dual condition (1.13)coop. Notice that if G and F are homomorphisms

then we may form (honest) optransformations

GFG
GΦ

> G

F
FΨc

> FGF

then (1.13) and (1.13)coop are exactly the conditions that the 2-cells αb and βc must

satisfy to be the components of modifications

IG
α

> GΦ ◦ΨG

ΦF ◦ FΨ
β

> IF

In interpreting lemma 1.1.5, and its dual, we think of κcb and τcb as the unit and

counit of the (hoped for) adjunction ϕcb a ψcb, then conditions (1.10) and (1.11)

will ensure that the structure of ϕ as an optransformation is that derived from ψ by

taking the mates of its structure 2-cells. All that remains is to formulate a condition

which makes sure that these proposed units and counits do in fact satisfy the triangle

identity. This motivates:
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Theorem 1.1.6 (Triangle Identities for Local Adjunctions)

The following are equivalent:

(i) F is a local left adjoint of G as mediated by a unit Ψ: IC > GF and counit

Φ: FG > IB, in symbols F aΨ,Φ G. In other words Ψ and Φ are (gener-

alised) optransformations, such that the transformation ψ: F# > G# and

optransformation ϕ: G# > F# derived from them are “pointwise adjoint”

(i.e. ϕcb a ψcb for each pair of 0-cells) and “compatible” (i.e. the structure

2-cells of ϕ are the mates of those of ψ under these adjunctions).

(ii) there exist families of 2-cells

Gb
ΨGb

> GFGb
@
@
@

iGb @@
@R

⇑ αb

∨

GΦb

Gb

one for each 0-cell b ∈ B and

Fc
@
@
@ iFc
@
@
@R

FΨc

∨
βc ⇑

FGFc
ΦFc

> Fc

one for each 0-cell c ∈ C, which satisfy conditions (1.13) and (1.13)coop re-

spectively. Furthermore they also satisfy the identity

GΦFc ⊗ΨGFc ⊗Ψc

GΦFc ⊗ΨΨc

> GΦFc ⊗GFΨc ⊗Ψc

can⊗Ψc
> G(ΦFc ⊗ FΨc)⊗Ψc

∧

αFc ⊗ Φc

∨

Gβc ⊗Ψc

iGFc ⊗Ψc

can⊗Ψc

> GiFc ⊗Ψc

(1.14)

for each 0-cell c ∈ C, and its dual (1.14)coop for each 0-cell b ∈ B, which

between them relate the two families.

Proof. It is clear from lemmas 1.1.3, 1.1.3coop, 1.1.5 and 1.1.5coop that all we need
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to prove is that condition (1.14) holds iff the triangle identity

ψcb
κcbψcb

> ψcbϕcbψcb
@
@
@
@

iψcb
@
@
@
@R ∨

ψcbτcb

ψcb

(1.15)

holds for all 0-cells c ∈ C and b ∈ B. The equivalence of condition (1.14)coop with

the other triangle identity would then follow by duality.

First substitute the expressions for ψcb, ϕcb, κcb and τcb in terms of Ψ, Φ, α

and β into (1.15) and consider the components of the resulting diagram of natural

transformations as evaluated at t ∈ B(Fc, b). It is a matter of an easy diagram chase

involving rule (1.4) for the optransformation Ψ and condition (1.13) on the αbs to

show that this reduces to the diagram

Gt⊗GΦFc ⊗GFΨc ⊗Ψc

��
��

Gt⊗GΦFc ⊗ΨΨc ��
��* HHHH can⊗Ψc

HHHHj
Gt⊗GΦFc ⊗ΨGFc ⊗Ψc G(t⊗ ΦFc ⊗ FΨc)⊗Ψc

∧
Gt⊗ αFc ⊗Ψc

∨
G(t⊗ βc)⊗Ψc

Gt⊗Ψc

i
> Gt⊗Ψc

(1.16)

and so the triangle identity (1.15) holds iff diagram (1.16) commutes for all 1-cells

(t: Fc > b) ∈ B.

Once expressed in this form it is clear, by easy diagram chases involving the

coherence properties of the canonical 2-cells associated with the morphism G, that

we may obtain diagram (1.16) by applying the functor Gt⊗ to (1.14) and composing

with:

Gt⊗GiFc ⊗Ψc

can⊗Ψc
> G(t⊗ iFc)⊗Ψc

G(can)⊗Ψc

∼− > Gt⊗Ψc

Conversely we get diagram (1.14) by setting b = Fc and t = iFc in (1.16) and then

composing with:

iGFc ⊗Ψc

can⊗Ψc
> GiFc ⊗Ψc

It follows therefore that, for any given pair of 0-cells c ∈ C and b ∈ B, the dia-

gram (1.14) commutes iff (1.16) commutes for all t ∈ B(Fc, b) iff the triangle identity

in (1.15) holds. �
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Example 1.1.7 (Biadjunctions) By definition a homomorphism G:B > C has

a left biadjoint if for each 0-cell c ∈ C there exists a 0-cell Fc ∈ B and a 1-cell

Ψc: c > GFc such that the functor

ψcb = B(Fc, b)
G
> C(GFc,Gb)

⊗Ψc
> C(c,Gb)

is an equivalence for each pair of 0-cells b ∈ B, c ∈ C.
Given a 1-cell (q: c′ > c) ∈ C we define Fq: Fc′ > Fc to be a 1-cell equipped

with some isomorphism

Ψc ⊗ q ∼−
Ψq

> GFq ⊗Ψc′

which exists and is unique up to isomorphism by the universal property of biadjoints

given above. Now define the action of F on a 2-cell γ: q > r of C to be the unique

2-cell Fγ: Fq > Fr such that:

Ψr • (Ψc ⊗ γ) = (GFγ ⊗Ψc′) •Ψq

This action is clearly functorial by the uniqueness clause of its definition. The iden-

tity and compositional comparison isomorphisms making F into a homomorphism

are the uniquely existing ones chosen precisely to ensure that the 1-cells Ψc and

2-cells Ψq become the components of a strong transformation Ψ: I > GF. This

sort of construction is illustrated in proposition 4.2 of [6] and will feature in latter

sections so we do not dwell on it here.

Of course we may pick an equivalence inverse ϕcb for each ψcb along with isomor-

phisms κcb: i ∼−> ψcb ◦ϕcb and τcb:ϕcb ◦ψcb ∼−> i satisfying the triangle identities

and displaying this as an adjoint equivalence. Applying lemma 1.1.3 to Ψ we give

the ψcb the structure of a strong transformation ψ: F# > G# and taking mates

of its structure 2-cells under the adjoint equivalences above we lift the ϕcb to a

strong transformation ϕ: G# > F#. By the ( )coop dual of the comment after

lemma 1.1.3 we know that since F is a homomorphism and ϕ is a strong transfor-

mation then there exists a strong transformation Φ: FG > IB which induces ϕ as

in lemma (1.1.3)coop. This is enough to demonstrate that F is a local left adjoint of

G mediated by unit Ψ and counit Φ.

Notice that when we express this local adjunction in terms of the triangle identi-

ties given in theorem 1.1.6 the 2-cells αb (b ∈ B) and βc (c ∈ C) are all isomorphisms.

In fact, reversing the process above, we see that the notion of triangle identities for

biadjoints consists of homomorphisms F and G, unit Ψ and counit Φ which are
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strong transformations and isomorphisms

G
ΨG

> GFG F
@
@
@
@

iG @@
@
@R

∼=
α

@
@
@
@ iF
@
@
@
@R∨

GΦ and FΨ

∨

β∼=

G FGF
ΦF

> F

in HomS(B, C)(G,G) and HomS(C,B)(F,F) respectively. The extra conditions on

this as a local adjunction, (1.14) and its dual, simply ensure that the equivalences

between B(Fc, b) and C(c,Gb) derived from this information are adjoint ones. Its is

clear though that for any biadjoint we may always choose the isomorphisms α and β

such that they satisfy these conditions, and we will often assume that this has been

done, for precisely the sorts of reason that we often assume that all equivalences are

presented as adjoint ones. We will return to biadjoints and their triangle identities

as a foundation for change of base in later sections.

Example 1.1.8 The local adjunctions in [6] are mediated by a unit and counit in

this way, but we leave detailed verification of that fact until later.

Local adjunctions mediated by a unit and counit suffer from a number of draw-

backs:

(i) There is no convenient way, in any great generality, of expressing them in

terms of a one-sided universal property. The one given in definition 4.1 of [6]

certainly produces local adjunctions with a unit, but there seems to be no

simple condition that we may use to ensure that we also get a counit.

(ii) They do not compose. Although a composite of two such locally adjoint pairs

will always be a local adjunction it will not necessarily be mediated by a unit

and counit. This stems from the fact that notion of applying a morphism to

an optransformation has no real meaning in general.

Their real utility will become apparent as we examine change of base in more

detail. For the moment we present a “Day type” result which will become important

later on when we consider colimits in enriched categories.

Proposition 1.1.9 If F aψ G:B > C is a local adjunction and

Fc′
Fq

> Fc
@
@
@
p @
@
@R

γ⇐
	�
�
� (p⇐ Fq)
�
�
�

b

(1.17)
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is a right Kan extension diagram in B then the diagram

c′
q

> c
@
@
@

ψc′b(p) @@
@R

γ̌⇐
	�
�
� ψcb(p⇐ Fq)
�
�
�

Gb

(1.18)

where γ̌ is the composite

ψcb(p⇐ Fq)⊗ q
ψ

(p⇐Fq)
qb

> ψc′b((p⇐ Fq)⊗ Fq)
ψc′b(γ)

> ψc′b(p)

is also a right extension diagram in C, so long as the natural transformation ϕqb is

an isomorphism.

Proof. We have the following series of bijections, which are natural in

r ∈ C(c,Gb):

r > ψcb(p⇐ Fq)

since ϕcb a ψcb
ϕcb(r) > p⇐ Fq

since (1.17) is a Kan extn.

ϕc′b(r ⊗ q)
ϕrqb
∼−> ϕcb(r)⊗ Fq > p

since ϕc′b a ψc′b
r ⊗ q > ψc′b(p)

(1.19)

This certainly identifies ψcb(p ⇐ Fq) as the right Kan extension of ψc′b(p) along q,

all that remains is to show that γ̌ is indeed to counit displaying that Kan extension.

To do this we simply follow what happens to the identity map

ψcb(p⇐ Fq)
iψcb(p⇐Fq)

> ψcb(p⇐ Fq)

under these bijections as follows:

ψcb(p⇐ Fq)
iψcb(p⇐Fq)

> ψcb(p⇐ Fq)

ϕcbψcb(p⇐ Fq)
τ

(p⇐Fq)
cb

> p⇐ Fq

ϕcbψcb(p⇐ Fq)⊗ Fq
τ

(p⇐Fq)
cb ⊗ Fq

> (p⇐ Fq)⊗ Fq
γ

> p
(1.20)
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We know that the structure 2-cells of ψ and ϕ are mates under the adjunctions

ϕcb a ψcb and so we have the identity:

B(Fc, b)

i

∨

τcb⇐

@
@
@ ψcb
@
@
@R

B(Fc, b) <
ϕcb

C(c,Gb)

⊗ Fq

∨

⇑ ϕqb
∨

⊗ q

B(Fc′, b) <
ϕc′b

C(c′,Gb)

=

B(Fc, b)
ψcb

> C(c,Gb)

⊗ Fq

∨

⇓ ψqb
∨

⊗ q

B(Fc′, b)
ψc′b
> C(c′,Gb)

i

∨

⇐
τcb′

	�
�
� ϕcb′
�
�
�

B(Fc, b′)

(1.21)

On composing the map at the bottom of (1.20) with ϕ
(p⇐Fq)
qb we get γ composed

with the component of the natural transformation on the left and side of the above

equality at (p ⇐ Fq). Applying this identity and the naturality of ϕc′b we get the

composite

ϕc′b(ψcb(p⇐ Fq)⊗ q)
ϕc′b(ψqb)

> ϕc′bψc′b((p⇐ Fq)⊗ Fq)
ϕc′bψc′b(γ)

> ϕc′bψc′b(p)
τ pc′b

> p

which corresponds under the last bijection in our sequence to γ̌. �

A useful and immediate corollary of this proposition is:

Corollary 1.1.10 If F aΨ,Φ G:B > C is a locally adjoint pair mediated by a

unit Ψ and counit Φ and

Fc′
Fq

> Fc
@
@
@
p @
@
@R

γ⇐
	�
�
� (p⇐ Fq)
�
�
�

b

(1.22)
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is a right Kan extension diagram in B then the pasting of

c′
q

> c

Ψc′

∨

Ψq⇐
∨

Ψc

GFc′
GFq

> GFc
@
@
@

Gp @@
@R

Gγ⇐
	�
�
� G(p⇐ Fq)
�
�
�

Gb

(1.23)

is also a right Kan extension diagram in C, so long as the comorphism F “preserves

pre-composition with q”. This means that for any 1-cell (r: c > Gb) ∈ C the

compositional comparison

F(r ⊗ q) can
> Fr ⊗ Fq

is an isomorphism. �

Notice that in order to interpret diagram (1.23) correctly we need to examine

more closely the context of the 2-cell denoted by Gγ. This cannot be that obtained

by merely applying G to γ, since that has codomain G((p⇐ Fq)⊗Fq), the natural

(and correct) interpretation is the composite:

G(p⇐ Fq)⊗GFq
can
> G((p⇐ Fq)⊗ Fq)

Gγ
> Gp
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1.2 Equipments.

In this section we introduce structures suited for an abstract study of category

theories in the context of change of base. We will call these equipments since they

are minor variants of the proarrow equipments introduced by Wood in [56] and [57].

Most of the material in this section is folklore, but seems to need a little elaboration

in order to fit in with an abstract approach to questions of base change. First the

definition:

Definition 1.2.1 An equipment (M,K, ( )∗) consists of bicategories M, K with

the same sets of 0-cells and a homomorphism

Kco
( )∗

>M

with the properties:

(i) ( )∗ is the identity on 0-cells,

(ii) if f : a > b is a 1-cell in K then f∗ has a right adjoint f ∗ in M,

An equipment becomes a proarrow equipment, in the sense of Wood, if it also satisfies

the condition:

(iii) ( )∗ is locally fully faithful, in other words the functor

Kco(a, b)
( )∗

>M(a, b)

is fully faithful for each pair of 0-cells a, b ∈ K.

While it is true that we may always replace an equipment with a proarrow

equipment, it is not true that this process always behaves well with respect to the

maps between those equipments introduced in latter sections. Often, without loss

of generality, we will also assume that the homomorphism ( )∗ is normal, in other

words it preserves identities on the nose rather than just up to isomorphism. So

by a slight abuse of notation we may confuse the identities on a 0-cell a in each

bicategory K and M and simply use the symbol ia for both of them.

Another variant of the equipments theme is that of a weak equipment in which

we also abandon condition (ii) of the definition. Our principle purpose in introducing

these is that much of the theory of change of base we will develop is independent

of condition (ii), a fact which holds some importance in later work which we do not

develop here. The extra axiom only begins to play a part in our considerations, and

in some cases simplify matters, much further on in the narrative.

The intended meaning of the definition becomes a little clearer on pointing out

that we think of K as a bicategory of categories and functors (or sets and func-

tions) and M as the corresponding bicategory of categories and profunctors (or
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sets and relations). In this context given a functor f :A > B ∈ K, the 1-cell

f∗ ∈ M becomes the left representable profunctor B(f(∗), ):A +> B and f ∗ the

corresponding right representable B(∗, f( )):B +> A. A few important examples

should make things clearer.

Example 1.2.2 (equipment of matrices) Let B be a bicategory with:

(i) a small set of 0-cells,

(ii) small local stable coproducts, in other words each “homset” B(b, b′) has all

small coproducts and all functors

B(b, b′)
p⊗

> B(b, c′) for each 1-cell p: b′ > c′,

B(b, b′)
⊗ q

> B(c, b′) for each 1-cell q: c > b

preserve these coproducts.

The bicategory of matrices in B, denoted by B Mat, is defined as follows:

0-cells pairs (A,α) where A is a small set and α:A > |B| is a function into the

(small) set of 0-cells of B. Of course these are simply the 0-cells of the slice

category Set/|B|.

1-cells m: (A,α) 	> (B, β) consist of a family of 1-cells:

{(mab:α(a) > β(b)) ∈ B |a ∈ A, b ∈ B }

Vertical composition of 2-cells in B Mat is simply pointwise composition of

2-cells in B.

2-cells τ :m⇒ n: (A,α) 	> (B, β) consist of a family of 2-cells:

{(τab:mab ⇒ nab) ∈ B |a ∈ A, b ∈ B }

composition this gives B Mat its name since it is, in essence, traditional ma-

trix multiplication. Given m: (A,α) 	> (B, β) and n: (B, β) 	> (C, γ) the

composite n⊗m is the family given by

(n~m)ac =
∐
b∈B

nbc ⊗mab

with a similar formula for horizontal composition of 2-cells. The associativity

isomorphism for this composite is a direct consequence of condition (ii) on B
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because if l: (C, γ) 	> (D, δ) is another 1-cell we have:

(l ~ (n~m))ad =
∐
c∈C

lcd ⊗
(∐
b∈B

nbc ⊗mab

)
∼=

rule (ii)

∐
c∈C

∐
b∈B

lcd ⊗ (nbc ⊗mab)

∼=
∐
b∈B

∐
c∈C

(lcd ⊗ nbc)⊗mab

∼=
rule (ii)

∐
b∈B

(∐
c∈C

lcd ⊗ nbc
)
⊗mab

= ((l ~ n)~m)ad

identity on a 0-cell (A,α) is the diagonal matrix

(
i(A,α)

)
aa′

=

{
iα(a) if a = a′

0 otherwise.

where the 0 symbol is used to denote the initial object in each “homset” of

B. These, being the coproducts of empty diagrams, are guarantied to exist

and be stable by condition (ii). To derive the isomorphism displaying this as

a right identity consider the composite m~ i(A,α):(
m⊗ i(A,α)

)
ab
∼=

(
mab ⊗

(
i(a,α)

)
aa

)
q
∐
a′∈a
a′ 6=a

(
ma′b ⊗

(
i(a,α)

)
aa′

)

∼=
(
mab ⊗ iα(a)

)
q
∐
a′∈a
a′ 6=a

(ma′b ⊗ 0)

but ma′b ⊗ 0 ∼= 0, since coproducts are stable, and so the expression at the

bottom of this display is canonically isomorphic to mab as required. Provi-

sion of the left identity isomorphism is similar; then verifying the coherence

conditions of these and the associativity isomorphisms is easy.

Now define an equipment (B Mat, Set/|B|, ( )◦), where the homomorphism ( )◦

maps a function f : (A,α) > (B, β) in Set/|B| to the matrix f◦: (A,α) 	> (B, β)

given by

(f◦)ab =

{
iα(a) if f(a) = b

0 otherwise.

which is well defined since when f(a) = b it follows that β(b) = (β ◦f)(a) = α(a). It

is a matter of routine calculations to check that this defines a normal homomorphism

( )◦ which acts as the identity on objects.
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Of course we have another matrix f ◦: (B, β) 	> (A,α) associated with f which

is simply the matrix transpose of f◦, and f◦ a f ◦ in B Mat because

(f◦ ~ f ◦)bb′ =
∐
a∈A

(f◦)ab′ ⊗ (f ◦)ba ∼=


∐

a∈f−1({b})
iβ(b) if b = b′

0 otherwise

(f ◦ ~ f◦)aa′ =
∐
b∈B

(f ◦)ba ⊗ (f◦)a′b ∼=
{

iα(a) if f(a) = f(a′)

0 otherwise

suggesting natural candidates for unit and counit.

Notice that we may express re-indexing of matrices in terms of composition with

matrices g◦ and h◦. If

m: (A,α) 	> (B, β)

is a matrix and
g: (A′, α′) > (A,α),

h: (B′, β′) > (B, β)

are functions in Set/|B| then:

(m~ g◦)a′b ∼= (m(ga′)b ⊗ iα′(a′))q

 ∐
a∈A

a6=g(a′)

mab ⊗ 0

 ∼= m(ga′)b

(h◦ ~m)ab′ ∼= (iβ′(b′) ⊗ma(hb′))q

 ∐
b∈B

b 6=h(b′)

0⊗mab

 ∼= ma(hb′)

Clearly equipments of matrices will play a part in the theory of enriched cate-

gories, and were introduced in [5] to just that end. The corresponding equipment in

the theory of internal categories is:

Example 1.2.3 (equipment of spans) Suppose that E is a category with finite

limits then the bicategory of spans in E , denoted by Span(C), is defined as follows:

0-cells are simply the objects of E ,

1-cells (s0, S, s1):A 	> B are spans

S

	��

s0 �� @@ s1

@@R
B A

in E .
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2-cells τ : (r0, R, r1)⇒ (s0, S, s1):A 	> B are maps (τ :R > S) ∈ E such that

the diagram
R

	��

r0 �� @@ r1

@@R
B τ

∨

A
I@@
s0 @@ ��

s1

���

S

commutes. The vertical composition of 2-cells is achieved by composing the

underlying maps in E .

composition given spans (s0, S, s1):A > B and (t0, T, t1):B > C their com-

posite denoted (t0, T, t1)×
B

(s0, S, s1) is the span (t0 ◦ πT , T ×
B
S, s1 ◦ πS) where

T ×
B
S is the pullback of T and S over B with canonical projections πT and

πS, pictorially:

T ×
B
S

@�

	��

πT �� @@ πS
@@R

T S

	��

t0 �� @@ t1
@@R 	��

s0 �� @@ s1

@@R
C B A

The horizontal composite of 2-cells τ and τ ′: (r′0, R
′, r′1) ⇒ (s′0, S

′, s′1) is the

unique map τ ′ ×
B
τ :R′ ×

B
R > S ′ ×

B
S induced by the universal property of

S ′×
B
S. We are furnished with associativity isomorphisms as a simple corollary

of the composition lemma for pullback squares.

identity on a 0-cell A ∈ Span(E) is the span:

A

	��

iA �� @@ iA
@@R

A A

The canonical isomorphisms

(iB, B, iB)×
B

(s0, S, s1) ∼= (s0, S, s1) and

(s0, S, s1)×
B

(iA, A, iA) ∼= (s0, S, s1)

are a direct consequence of the fact that the pullback functor

E/A
i∗A

> E/A
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is canonically (naturally) isomorphic to the identity functor for each object

A ∈ E . Verifying the coherence conditions for these and the associativity

isomorphisms is an easy exercise.

Now define an equipment (Span(E), E , ( )◦), where ( )◦ maps a morphism

A
f

> B ∈ E

to the span:
A

	��

f �� @@ iA
@@R

B A

It is straightforward to show that this is the action of a (normal) homomorphism,

again as a direct consequence of the fact that each pullback functor i∗B is isomorphic

to the identity. Finally the right adjoint to f◦, in Span(E), is its transpose f ◦:

A

	��

iA �� @@ f
@@R

A B

This adjunction is easy to demonstrate since

f ◦ ×
B
f◦ ∼= (k0, K, k1) and

f◦ ×
A
f ◦ ∼= (f, A, f)

where

K

k0

k1

>
> A

is the kernel pair of the morphism f . Then the unit of f◦ a f ◦ is the “diagonal”

map ∆:A > K and its counit is f :A > B itself.

Before moving on to the next example, in which we construct equipments of

enriched and internal categories from the previous two examples, we should re-

view a few of the notational conventions appropriate to the study of equipments

and introduce a “calculus of squares” for them. When working with an equipment

(M,K, ( )∗) we will tend to use letters

a, b, c, d to denote its 0-cells,

f, g, h, k " " the 1-cells of K and

p, q, r, s " " the 1-cells of M.
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When no confusion will result we often drop the use of subscripted asterisks and

simply rely on context to convey whether we are talking about a 1-cell f ∈ K or the

corresponding representable f∗ ∈M. In order to aid this rule we write composition

in K as g◦f and that inM tensorially as q⊗p (q~p or q×
•
p for matrices and spans).

In diagrams we distinguish between the 1-cells in each bicategory by displaying those

of K as plain arrows f : a > b and those ofM as adorned ones, using p: a 	> b

if we are thinking of them as matrices, spans or relations and p: a +> b if they are

profunctors.

It is well known that from a homomorphism H:B > C and any bicategory A
we may naturally derive a homomorphism,

Bicat(A,B)
Bicat(A,H)

> Bicat(A, C)

furthermore it is also a matter of folklore that this result no longer applies on re-

placement of H with a mere morphism M:B > C. On closer analysis it becomes

apparent that M fails to act well on transformations. Suppose that α: F ⇒ G is a

transformation in Bicat(A,B) then we might reasonably try to define a transforma-

tion Mα: MF⇒ MG with 1-cellular components

(Mα)a = M(Fa)
M(αa)

> M(Ga)

but now what do we do to provide 2-cellular components:

M(Fa)
M(αa)

> M(Ga)

M(Fp)

∨
(Mα)p ⇓

∨
M(Gp)

M(Fa′)
M(αa′)

> M(Ga′)

Attempting to extend the definition of these which works when M is a homomorph-

ism would fail since it would culminate in trying to compose the incompatible 2-cells:

M(Gp)⊗M(αa)
can
> M(Gp⊗ αa)

M(αp)
> M(αa′ ⊗ Fp) <

can
M(αa′)⊗M(Fp)

This is no problem for a homomorphism since both of the cells marked “can” would

be isomorphisms.

In subsequent sections we will work on reducing change of base to “biadjoint”

pairs of maps between equipments, in a way which gives rise both to local adjoints

on bicategories of profunctors and true biadjoints on categories of functors (as we

might expect). An important part of this program is to unify equipments together

into some sort of “bicategorically enriched category”, but for this to work we need

the sort of property examined in the last paragraph.
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Is this program feasible? We know that local adjoints commonly consist of a

morphism, comorphism pair one of which, but rarely both, may be a homomorphism

(just consider the examples furnished by [6]) and so we cannot rely on them both

acting well on the sort of “squares” shown above. The solution that we develop

ensures that we only need worry about squares of the form

a
f

> a′

p+

∨
⇑ λ +

∨
p′

ā
f̄

> ā′

(1.24)

with f, f̄ ∈ K and p, p′ ∈M. A map of equipments

(M,K, ( )∗)
(Ḡ,G)

> (N ,L, ( )∗)

will turn out to consist of separate actions on bicategories of profunctors and func-

tors, which need not even coincide on representables. The important question is now

no longer whether or not M is a homomorphism (or even a morphism), but rather

do we have the kind of structure relating the actions of functors and profunctors

which would allow us to derive a well behaved action on the kind of squares above?

It would therefore seem appropriate to examine the structure that these squares

fit into, which might reasonably be dubbed a Double Bicategory. The slightly de-

tailed definition of this concept is presented in section 1.4, to which we refer the

reader now. We have not given the definition here since it would break up the

narrative flow too much, but will use the concepts and notational conventions intro-

duced there from now on. Our principle motivation for crystallising the algebra of

squares into a definition is to make explicit exactly what information we will wish

to have preserved later on.

Definition 1.2.4 Given a (weak) equipment (M,K, ( )∗) we define a double bicat-

egory of squares Sq(M,K, ( )∗) with

• bicategories K, M of horizontal and vertical cells respectively,

• the set squares of the type shown in 1.24, more explicitly these are 5-tuples

(f, f̄ , p, p′, α) where f, f̄ ∈ K and p, p′ ∈M are 1-cells and λ: f̄∗ ⊗ p⇒ p′ ⊗ f∗
is a 2-cell in M.

Looking at the diagrams in definition 1.4.1 it is clear that the actions of the

2-cells of K and M on these squares should be given by the natural pastings,
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explicitly:

λ ∗
H
β = f̄∗ ⊗ q

f̄∗ ⊗ β
> f̄∗ ⊗ p

λ
> p′ ⊗ f∗ , β: q ⇒ p ∈M

β′ ∗
H
λ = f̄∗ ⊗ p

λ
> p′ ⊗ f∗

β′ ⊗ f∗
> q′ ⊗ f∗ , β′: p′ ⇒ q′ ∈M

λ ∗
V
α = f̄∗ ⊗ p

λ
> p′ ⊗ f∗

p′ ⊗ α∗
> q′ ⊗ g∗ , α: g ⇒ f ∈ K

ᾱ ∗
V
λ = ḡ∗ ⊗ p

ᾱ∗ ⊗ p
> f̄∗ ⊗ p

λ
> p′ ⊗ f∗ , ᾱ: f̄ ⇒ ḡ ∈ K

Notice that the orientation of the 2-cells in squares and the assumption that

( )∗ is a homomorphism from Kco (instead of K) are compatible, in the sense

that the actions of the 2-cells of K are correctly left or right handed as defined.

Checking that all of these are indeed well defined actions and obey the six

mutual compatibility conditions of definition 1.4.1 is routine.

• We may picture the horizontal composite of two squares as

a
f

> a′
f ′

> a′′ a
f ′ ◦ f

> a′′

p+

∨
λ ⇑ p′+

∨
λ′ ⇑ +

∨
p′′ 7−→ p+

∨
⇑ (λ′ ◦ λ) +

∨
p′′

ā
f̄

> ā′

f̄ ′
> ā′′ ā

f̄ ′ ◦ f̄
> ā′′

where the 2-cell λ′ ◦ λ is the composite:

(f̄ ′ ◦ f̄)∗ ⊗ p
can⊗ p
∼− > f̄ ′∗ ⊗ f̄∗ ⊗ p

f̄ ′∗ ⊗ λ
> f̄ ′∗ ⊗ p′ ⊗ f∗

λ′ ⊗ f∗
> p′′ ⊗ f ′∗ ⊗ f∗

p′′ ⊗ can
∼− > p′′ ⊗ (f ′ ◦ f)∗

Similarly picture vertical composition as

a
f

> a′ a
f

> a′

p+

∨
λ ⇑ +

∨
p′

ā
f̄

> ā′ 7−→ p̄⊗ p+

∨

⇑
(λ̄⊗ λ)

+

∨

p̄′ ⊗ p′

p̄+

∨
λ̄ ⇑ +

∨
p̄′

ã

f̃

> ã′ ã

f̃

> ã′
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where the 2-cell λ̄⊗ λ is the composite:

f̃∗ ⊗ p̄⊗ p
λ̄⊗ p

> p̄′ ⊗ f̄∗ ⊗ p
p̄′ ⊗ λ

> p̄′ ⊗ p′ ⊗ f∗
Notice that in order to agree with our conventional use of ◦ and ⊗ for the

composition in K andM we also use these symbols for horizontal and vertical

composition of squares. Given 1-cells f ∈ K and p ∈ M the corresponding

vertical and horizontal identity squares are

a
ia

> a

p+

∨

can∼= +

∨
p

ā
iā

> ā

a
f

> a′

ia +

∨

can∼= +

∨
ia′

a
f

> a′

where the maps marked “can” are the composites

ia ⊗ p
can
∼− > p <

can
∼− p⊗ iā

and

f∗ ⊗ ia
can
∼− > f∗ <

can
∼− ia′ ⊗ f∗

respectively. The verification that the data we have presented satisfies all of

the conditions given in definition 1.4.1 is routine (and moderately tedious) and

we do not propose to waste time spelling it out here.

Use the notations SqH(M,K, ( )∗) and SqH(M,K, ( )∗) for the bicategories of

cylinders CylH and CylV associated with this double bicategory and defined in def-

inition 1.4.1. �

From now on, in agreement with the terminology to be introduced in section 1.4,

we will often use the qualifier depth-wise rather than vertical when talking about

composition of 2-cells in bicategory. When working with an equipment (M,K, ( )∗)

we may now reserve the terms vertical and horizontal for horizontal composition in

M and K respectively, or the corresponding operations on squares. We exploit an

understanding of the double bicategory above in the next example:

Example 1.2.5 (equipment of monads) Let (M,K, ( )◦) be an equipment in

which the bicategory M has local stable coequalisers of reflexive pairs. In other

words each “homset”M(a, a′) is a category with coequalisers of reflexive pairs, and

the functors p⊗ and ⊗ p preserve these for each 1-cell p ∈M. Think of this as a

bicategory of matrices or spans (and use the appropriate notations) from which we

may define an equipment of monads Mon(M,K, ( )◦) which comprises:

The bicategory of modules Mon(M):
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0-cells monads (a,A, µa, ηa) in M. These are simply bicategorical morphisms

1 >M

where 1 the trivial one object category considered as a bicategory. Explicitly

this consists of a 0-cell a ∈ M, an endo-1-cell A: a 	> a and 2-cells µa:A~
A⇒ A and ηa: ia ⇒ A satisfying the condition that the diagrams

A~ A~ A
A~ µa

> A~ A A
A~ ηa

> A~ A <
ηa ~ A

A

µa ~ A

∨ ∨

µa

@
@
@

iA @@
@R

µa

∨ 	�
�
� iA
�
�
�

A~ A
µa

> A A

commute (see [3]).

1-cells which are bimodules (lp, p, rp): (a,A) +> (b,B), where p: a 	> b is a 1-

cell and rp: p ~ A ⇒ p, lp:B ~ p ⇒ p are 2-cells which satisfy the usual rules

for a left-B right-A action, in other words we have identities

p~ A~ A
p~ µa

> p~ A p
p~ ηa

> p~ A

rp ~ A

∨ ∨

rp

@
@
@

ip @@
@R ∨

rp

p~ A
rp

> p p

with two similar identities for lp, and a mutual compatibility condition:

B~ p~ A
B~ rp

> B~ p

lp ~ A
∨ ∨

lp

p~ A
rp

> p

2-cells α: (lp, p, rp)⇒ (lq, q, rq) are 2-cells α: p⇒ q in M which are equivariant for

the given actions of A and B on p and q, which we may express in terms of
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commutative squares:

p~ A
rp

> p B~ p
lp

> p

α~ A
∨ ∨

α B~ α
∨ ∨

α

q ~ A
rq

> q B~ q
lq

> q

Of course right-A left-B bimodules are simply the algebras of a monad on

M(a, b) with functor part B ~ ~ A, for which algebra homomorphisms are

exactly equivariant maps.

composition is the usual tensor product of modules. Given bimodules (lp, p, rp)

and (lq, q, rq): (b,B) > (c,C) their tensor product (lq, q, rq) ⊗ (lp, p, rp) has

underlying 1-cell given by the coequaliser

q ~ B~ p
rq ~ p

q ~ lp

>
> q ~ p

cq⊗p
. q ⊗ p

which exists, by assumption, inM(a, c) since the pair concerned has a reflector

(q~ ηb~ p): q~ p > q~B~ p. The functors ~A and C~ preserve this

coequaliser and the diagrams

q ~ B~ p~ A
rq~p~A

q~lp~A

>
> q ~ p~ A C~ q ~ B~ p

C~rq~p

C~q~lp

>
> C~ q ~ p

q~B~rp

∨ ∨
q~rp lq~B~p

∨ ∨
lq~p

q ~ B~ p
rq~p

q~lp

>
> q ~ p q ~ B~ p

rq~p

q~lp

>
> q ~ p

commute serially, inducing a natural right-A left-C action on q ⊗ p. For more

detail on, for instance, the provision of associativity isomorphisms etc. see

[28].

identity on a monad (a,A, µa, ηa) is the bimodule (µa,A, µa).

The bicategory Mnd(M,K, ( )◦):

The definition of Mnd(M,K, ( )◦) is best explained in terms of the work of sec-

tion 1.4 on double bicategories, formally it is BicatH(1, Sq(M,K, ( )◦)) the con-

struction of which is described in observation 1.4.2. We give a brief description:

0-cells the monads in M,
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1-cells (f, λ): (a,A) > (b,B) consist of a 1-cell (f : a > b) ∈ K and a 2-cell

λ: f◦ ~A⇒ B~ f◦ such that (f◦, λ) is a monad opfunctor inM (in the sense

of [46]). When interpreting monads as morphisms, with domain 1, monad

opfunctors correspond to optransformations of morphisms.

2-cells α: (f, λ)⇒ (ḟ , λ̇) consist of a 2-cell α: f ⇒ ḟ in K such that α◦ is a monad

opfunctor transformation (or modification!) in M from (ḟ◦, λ̇) to (f◦, λ).

There is no mistake here, the homomorphism ( )∗ reverses the orientation

of 2-cells.

The homomorphism ( )∗: Mnd(M,K, ( )◦)
co > Mon(M):

Given a 1-cell (f, λ): (a,A) > (b,B) ∈ Mnd(M,K, ( )◦) define a bimodule (f, λ)∗
with underlying 1-cell B~ f◦: a 	> b in M and actions given by the composites:

r(f,λ)∗ = B~ f◦ ~ A
B~ λ

> B~ B~ f◦
µb ~ f◦

> B~ f◦

l(f,λ)∗ = B~ B~ f◦
µb ~ f◦

> B~ f◦

That r(f,λ)∗ is a well defined right action of (a,A) follows directly from the conditions

on (f◦, λ) as a monad opfunctor. With no further effort it is clear that l(f,λ)∗ is a

left action and that these two actions commute. Now suppose that α: (f, λ) ⇒
(ḟ , λ̇) is a 2-cell in Mnd(M,K, ( )◦) then since α◦: ḟ◦ ⇒ f◦ is a monad opfunctor

transformation we know that λ•(α◦~A) = (B~α◦)•λ̇ and so B~α◦:B~ḟ◦ ⇒ B~f◦
is an equivariant map. It follows therefore that we have a naturally defined functor

Mnd(M,K, ( )◦)
co((a,A), (b,B))

( )∗
> Mon(M)((a,A), (b,B))

(1.25)

for each pair of monads in M. We postpone the proof that these functors are the

“homset” actions of a naturally defined homomorphism until after the next lemma.

The derivation of a right representable (f, λ)∗, which will turn out to be right

adjoint to (f, λ)∗ in Mon(M), is only slightly more involved. First take the mate

λ◦:A ~ f ◦ ⇒ f ◦ ~ B of the 2-cell λ under the adjunction f◦ a f ◦, then it is a

matter of the standard properties of mates (cf. [32]) to show that the pair (f ◦, λ◦)

is a monad functor from (b,B) to (a,A) (or in other words a transformation of the

corresponding bicategorical morphisms). All that remains is to define (f, λ)∗ from

this monad functor dually to the definition of (f, λ)∗, so we have underlying 1-cell

f ◦ ~ B: b 	> a in M with actions:

l(f,λ)∗ = A~ f ◦ ~ B
λ◦ ~ B

> f ◦ ~ B~ B
f ◦ ~ µb

> f ◦ ~ B

r(f,λ)∗ = f ◦ ~ B~ B
f ◦ ~ µb

> f ◦ ~ B
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Again the fact that l(f,λ)∗ is a well defined left action hinges on the conditions that

(f ◦, λ◦) satisfies as a monad functor, and we postpone the proof that (f, λ)∗ a (f, λ)∗

until after the subsequent lemma.

For a little more insight into this sort of construction see [9]. �

As well as being crucial to the completion of the previous example, the following

lemma will become more important once we have unified equipments together into

a bicategorically enriched category and wish to show that the Mon() construction

becomes functorial with respect that sort of structure:

Lemma 1.2.6 Consider the constructions of observation 1.2.5. The following hold:

(i) Given 1-cells

(a,A)
(f, λ)

> (a′,A′) (a′,A′)
p′

+ > (ā′,A′)
in Mnd(M,K, ( )◦) and Mon(M) respectively, then the bimodule p′ ⊗ (f, λ)∗
is isomorphic to the profunctor with underlying 1-cell p′ ~ f◦: a 	> ā′ and

actions:

rp′~f◦ = p′ ~ f◦ ~ A
p′ ~ λ

> p′ ~ A′ ~ f◦
rp′ ~ f◦

> p′ ~ f◦

lp′~f◦ = B~ p′ ~ f◦
lp′ ~ f◦

> p′ ~ f◦

This isomorphism is natural in both p′ and (f, λ).

(ii) Given 1-cells

(a,A)
p
+ > (ā,A) (a,A)

q
+ > (ā′,A′)

in Mon(M) and

(ā,A)
(f̄ , λ̄)

> (ā′,A′)
in Mnd(M,K, ( )◦) then equivariant maps

(f̄ , λ̄)∗ ⊗ p
γ̄

> q

are in bijective correspondence (naturally in p,q and (f̄ , λ̄)) with 2-cells

f̄◦ ~ p
γ

> q

in M, subject to the condition that the diagrams

f̄◦ ~ p~ A
f̄◦ ~ rp

> f̄◦ ~ p f̄◦ ~ A~ p
λ̄~ p

> A′ ~ f̄◦ ~ p

γ ~ A
∨

(a)

∨
γ f̄◦ ~ lp

∨
(b)

∨
A′ ~ γ

q ~ A
rq

> q f̄◦ ~ p
γ

> q <
lq

A′ ~ q

(1.26)
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commute.

(iii) There are dual results for the right representables (f, λ)∗.

Proof.

(i) It is a routine verification, directly from the conditions on rp′ as a right action,

to check that the maps

p′ ~ A′ ~ A′ ~ f◦
<
p′~A′~ηa′~f◦

rp′~A′~f◦

p′~µa′~f◦

>
>
p′ ~ A′ ~ f◦ <

p′~ηa′~r◦

rp′~f0

> p′ ~ f◦ (1.27)

fit together into a diagram

p′ ~ A′ ~ f◦
p′~A′~ηa′~f◦

> p′ ~ A′ ~ A′ ~ f◦
p′~µa′~f◦

> p′ ~ A′ ~ f◦

rp′~f0

∨

rp′~A′~f◦

∨ ∨

rp′~f0

p′ ~ f◦
p′~ηa′~f◦

> p′ ~ A′ ~ f◦
rp′~f◦

> p′ ~ f◦

in which both squares commute and both horizontal composites are equal to

identities. In other words (1.27) is a reflexive coequaliser diagram, and is in

fact the coequaliser we use to construct the underlying 1-cell of p′⊗(f, λ)∗. We

check that the maps rp~f◦ and lp~f◦ are the actions given in the definition of

p′⊗ (f, λ)∗ by two easy diagram chases, one involving the fact that the actions

on p′ commute, which we leave to the reader.

(ii) Equivariant maps γ̄: (f̄ , λ̄)∗ ⊗ p > q correspond,via composition with the

canonical quotient map (f, λ)∗ ~ p . (f, λ)∗ ⊗ p, to maps

A′ ~ f̄◦ ~ p
γ̃

> q

with the properties represented in the commutative diagrams

A′ ~ A′ ~ f̄◦ ~ p
A′~γ̃

> A′ ~ q A′ ~ f̄◦ ~ p~ A
A′~f̄◦~rp

> A′ ~ f̄◦ ~ p

µā′ ~ f̄◦ ~ p
∨

(a)

∨
lq γ̃ ~ A

∨
(b)

∨
γ̃

A′ ~ f̄◦ ~ p
γ̃

> q q ~ A
rq

> q

(1.28)
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(corresponding to the equivariance of γ̄), and

A′ ~ f̄◦ ~ A~ p
A′ ~ f̄◦ ~ lp

> A′ ~ f̄◦ ~ p

A′ ~ λ̄~ p
∨ ∨

γ̃

A′ ~ A′ ~ f̄◦ ~ p
µā′ ~ f̄◦ ~ p

> A′ ~ f̄◦ ~ p
γ̃

> q

(1.29)

(representing γ̃’s invariance under “middle action” by A).

In turn we have a bijection between maps γ̃ satisfying condition 1.28(a) alone

and 2-cells γ: f◦~ p⇒ q inM with no conditions to satisfy. This is given by:

θ:~γ 7→ γ; given γ̃ define θ(γ̃) to be the composite:

f̄◦ ~ p
ηā′ ~ f̄◦ ~ p

> A′ ~ f̄◦ ~ p
γ̃

> q

φ: γ 7→ ~γ; given γ define φ(γ) to be the composite:

A′ ~ f̄◦ ~ p
A′ ~ γ

> A′ ~ q
lq

> q

This satisfies condition 1.28(a) by a simple diagram chase starting from

the fact that lq is a left action map and therefore satisfies lq • (A′ ~ lq) =

lq • (µā′ ~ q).

Straightforward diagram chases demonstrate that θφ = “identity”, by start-

ing from the identity rule for the left action lq, and φθ = “identity”, from

condition 1.28(a). All that remains is the routine task of showing that under

this bijection conditions 1.28(b) and 1.29 correspond to 1.26(a) and 1.26(b)

respectively, which we leave up to the reader.

(iii) The dual result mentioned gives an isomorphism between (f̄ , λ̄)∗⊗p′ and f̄ ◦~p′,
equipped with the canonical actions, and a bijection between equivariant maps

out of p ⊗ (f, λ)∗ and maps p ~ f ◦ satisfying dual conditions to 1.26 and

involving λ◦, the mate of λ under the adjunction f◦ a f ◦. �

Corollary 1.2.7 The functors of (1.25) are the homset actions of a homomorphism

( )∗: Mnd(M,K, ( )◦) > Mon(M) with the property that for each 1-cell (f, λ)

in Mnd(M,K, ( )◦) we have (f, λ)∗ a (f, λ)∗. This completes the verification that,

under the conditions of example 1.2.5), we get an equipment:

Mon(M,K, ( )◦) = (Mon(M),Mnd(M,K, ( )◦), ( )∗)
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Proof. It is now easy to demonstrate that ( )∗ is a homomorphism. Firstly direct

verification reveals that (i(a,A))∗ ∼= i(a,A). For 1-cells (f, λ): (a,A) > (a′,A′) and

(f ′, λ′): (a′,A′) > (a′′,A′′) in Mnd(M,K) lemma 1.2.6(i) shows that the compos-

ite (f ′, λ′)∗ ⊗ (f, λ)∗ has underlying 1-cell (f ′, λ′)∗ ~ f◦ ∼= A′′ ~ f ′◦ ~ f◦ with actions

which make the isomorphism A′′ ~ f ′◦ ~ f◦ ∼= A′′ ~ (f ′ ◦ f)◦ into an equivariant

isomorphism (f ′, λ′)∗ ⊗ (f, λ)∗ ∼= ((f ′, λ′) ◦ (f, λ))∗.

Suppose that (f, λ): (a,A) > (a′,A′) is a 1-cell in Mnd(M,K, ( )◦) then we

have the following sequence of natural bijections

(f, λ)∗ ⊗ p > q equivariant
lemma 1.2.6(ii)

f◦ ~ p > q sats. (1.26)(a),(b)
f◦ a f ◦

p > f ◦ ~ q sats. mates of (1.26)(a),(b)

but we know that (f, λ)∗ ⊗ q ∼= f ◦ ~ q, by lemma 1.2.6(iii), and under this isomor-

phism the conditions on the last map in the display above simply state that it is

an equivariant map p > (f, λ)∗ ⊗ q. It is a matter of direct calculation to check

that this correspondence satisfies the following rule

(f, λ)∗ ⊗ p
γ

> q (f, λ)∗ ⊗ p⊗ r
γ ⊗ r

> q ⊗ r
=⇒

p
γ̂
> (f, λ)∗ ⊗ q p⊗ r

γ̂ ⊗ r
> (f, λ)∗ ⊗ q ⊗ r

which is equivalent to saying that the 2-cell

(a′A)

	�
�
�

(f, λ)∗×�
�
�

⇒
ε

@
@
@×i(a′,A′)
@
@
@R

(a,A) +
(f, λ)∗

> (a′A′)

corresponding to the identity on (f, λ)∗, has the absolute right lifting property as

in Street and Walters [54]. Proposition 2 of that paper then demonstrates that

(f, λ)∗ a (f, λ)∗. �

We introduced examples 1.2.2 and 1.2.3 as halfway houses towards equipments of

enriched and internal categories respectively; the next two examples reveal that this

may be achieved by applying the equipment of monads construction. An approach

like this is immediately open to the accusation of being rather a roundabout way of

defining these equipments, but is motivated by more than a desire to simply unify

these two principal examples. This will become more apparent when we come to

construct change of base structures between equipments of categories. While these

are often quite complicated the corresponding structures between equipments of

spans and matrices are far easier to define and study; the functoriality of Mon( ),
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which we shall establish, then allows those results to be lifted to the more complex

arena of category theory itself:

Example 1.2.8 (equipments of enriched categories) Return to example 1.2.2

and suppose that the bicategory B also has stable local coequalisers of reflexive pairs,

then it is quite clear that the bicategory of matrices B Mat does as well. It follows

that we may apply the equipment of monads construction to (B Mat, Set/|B|, ( )◦)

so we shall look at the resulting equipment in more detail.

In fact the work has already been done for us; our equipment of matrices is

precisely the structure described in section 1 of [5]; from which its authors derive the

(traditional) 2-category of B-enriched categories B Cat, cf. section 2 of that paper.

Their construction clearly demonstrates that the 1-skeleton B Cat1, or |B Cat| in

their notation, is identical to our category Mnd(B Mat, Set/|B|, ( )◦).

Section 3 of [5] identifies Mon(B Mat) as the (traditional) bicategory of B-

profunctors B Prof; now it is a matter of a straightforward calculation to show that

the homomorphism ( )∗ is the usual one taking a B-functor to its associated left

representable profunctor. With this we have identified Mon(B Mat, Set/|B|, ( )◦)

as the equipment in which to study B-enriched category theory. Notice that theo-

rem 8 of loc. cit. shows that if B has all right extensions and liftings and all small

local limits then so do B Mat and Prof(B), we return to this a little later on.

To sum this all up:

(B Prof,B Cat1, ( )∗)
def
= Mon(B Mat, Set/|B|, ( )◦)

It is worth pointing out that the argument given for lemma 1.2.6(ii) shows that

natural transformations (f, λ) ⇒ (f ′, λ′), as defined in section 2 of [5], correspond

to equivariant maps (f ′, λ′)∗ ⇒ (f, λ)∗. �

Example 1.2.9 (equipments of internal categories) Let E be a locally small

category with finite limits and coequalisers of reflexive pairs which are stable under

pullback; then we may apply the monads construction to the equipment of spans in

A, as defined in example 1.2.3.

In identifying the equipment Mon(Span(E), E , ( )◦) notice that a monad A in

Span(E) is no more than an internal category in E . For a 1-cell (f, λ):A > A′ in

Mnd(Span(E), E) the 2-cell λ: f◦ ×• A⇒ A′ ×
•
f◦ corresponds (under the adjunction

f◦ a f ◦) to another λ̂: f◦ ×• A ×
•
f ◦ ⇒ A′ or in other words a map λ̂:A1 > A′1

making

A0 <
d0 A1

d1
> A0

f

∨

λ̂

∨ ∨

f

A′0 <
d0 A′1

d1
> A′0
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commute, the top and bottom lines of which are simply the spans underlying the

monads A and A′. The conditions on λ as the 2-cellular part of a monad opfunc-

tor simply translate to saying that the maps f and λ̂ are the actions on objects

and morphisms of an internal functor, it follows that Mnd(Span(E), E) is the usual

category Cat(E)1 of categories and functors internal to E .

An examination of Mon(Span(E)) reveals that it is simply Prof(E), the bicategory

of categories and profunctors internal to E , as described in chapter 2 of [28], so thi

completes our identification of

Mon(Span(E), E , ( )◦) = (Prof(E),Cat(E)1, ( )∗)

as the equipment in which to study the internal category theory of E . Again internal

natural transformations (f, λ)⇒ (f ′, λ′) in the traditional sense (cf [28]) correspond

to equivariant maps (f ′, λ′)∗ ⇒ (f, λ)∗.

Notice that the presentation of these matters in [28] demonstrates that if E is

locally cartesian closed then Prof(E) has all right extensions and liftings. Later

on we will need to make explicit calculations with these so we’ll describe how to

construct them, leaving the necessary verifications up to the reader. Given a pair of

1-cells

A
X
+ > B

@@

Y
×
@@R

C
in Prof(E) the underlying “set” of the right extension of Y along X is given sym-

bolically by:

∣∣∣∣Y ⇐B X
∣∣∣∣ =

(c, f, b)

∣∣∣∣∣∣∣∣∣∣
c ∈ C0, b ∈ B0, f : bX > cY , s.t.

(∀x ∈ bX)(y1(f(x)) = x1(x)) and

(∀x ∈ bX)(∀α ∈ A1)((d0(α) = x1(x))

⇒ (f(x · α) = f(x) · α))

 (1.30)

Here the identity of the maps x0, x1, y0 and y1 is established by noting that the spans

which underlie our profunctors are:

B0 <
x0

X
x1

> A0

C0 <
y0

Y
y1

> A0

The notation f : bX > cY is interpreted as saying “f is a function from the left

fibre of X over b ∈ B0 to that of Y over c ∈ C0. To be more precise consider the

objects

X × C0

x0 × C0
> B0 × C0

B0 × Y
B0 × y0

> B0 × C0
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in the slice category E/B0 × C0
, this is cartesian closed (since E is locally so) and f

is simply an element of (B0 × Y → B0 × C0)(X×C0→B0×C0) in the fibre over (b, c).

The object
∣∣∣Y ⇐

B
X
∣∣∣ becomes a span with projections

C0 <
∣∣∣∣Y ⇐B X

∣∣∣∣ > B0

c < (c, f, b) > b

and a profunctor with actions:

(c, f, b) · β = (c, f(β · ), b′) for β: b′ > b ∈ B
γ · (c, f, b) = (c′, γ · f( ), b) for γ: c > c′ ∈ C

�

Observation 1.2.10 In both of the last two examples we commented that natural

transformations (f, λ) ⇒ (f ′, λ′) correspond to equivariant maps (f ′, λ′)∗ ⇒ (f, λ)∗
this suggests the following “repletion” operation on equipments. Suppose that

(M,K, ( )∗) is a (possibly weak) equipment then we may factor the homomorphism

( )∗ as

Kco
He

> A
Hm

>M
where He is essentially surjective on 0- and 1-cells and Hm is locally fully faithful,

see appendix A for a description of this factorisation. Now let K∗ = Aco and we get

an equipment

(M,K, ( )∗)rep
def
= (M,K∗, ( )∗)

where the homomorphism ( )∗:Kco
∗ >M is simply Hm, the important point

being that (by construction) the repletion of an equipment is a proarrow equipment

in the sense of [56]. Applying this to the equipments in the last two examples gives

B Equip
def
= (Mon(B Mat, Set/|B|, ( )◦))rep

= (B Prof,B Cat, ( )∗)

Equip(E)
def
= (Mon(Span(E), E , ( )◦))rep

= (Prof(E),Cat(E), ( )∗)

where B Cat and Cat(E) are the usual 2-categories of enriched and internal cate-

gories, functors and natural transformations. Now use the notations B Equip1 and

Equip(E)1 to denote the non-replete equipments of the last two examples.

Observation 1.2.11 In the introduction of (proarrow) equipments an important

consideration was the fact that within them we can express the notion of weighted

enriched colimit. To see how this works lets take a simple example; that of V-

enriched category theory, where V is a locally small, small complete and cocomplete,
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symmetric monoidal closed category. Of course this is precisely the example studied

in detail in [30].

First the traditional approach, in [30] an indexing type, which is more commonly

known now as a weight , consists of a small V-enriched category A and a V-functor

Aop W
> V

where V is enriched over itself because it is a closed category. Recall also that we

may form an enriched functor category [Aop,V ] with homsets given by the end

[Aop,V ](F,F′) ∼=
∫
A∈A
V(F(a),F′(a)) (1.31)

which exists in V since A is small and V possesses all small limits.

Now we are in a position to define the notion of weighted V-colimit. Say that a

diagram (enriched functor) G: A > B in a V-category B has a colimit weighted

by W iff there exists an object colim (W,G) ∈ B with family of isomorphisms

B(colim (W,G), B) ∼= [Aop,V ](W,B(G( ), B)) (1.32)

V-natural in the object B ∈ B.

To see how we might express this in the equipment V Equip notice first that the

weight W is no more or less than a profunctor:

A
W
+ > 1

Furthermore for any other profunctor V: A +> B the right Kan extension

A
W
+ > 1

@@

V
×
@@R
⇐
	��
×

V⇐W
��

B

in V Prof is given by the formula:

V⇐W(·, B) ∼=
∫
A∈A
V(W(A, ·),V(A,B))

and finally notice that objects of B correspond to V-functors 1 > B and for a

V-functor G: A > B the left representable G∗ is given by:

G∗(A,B) ∼= B(G(A), B)

Compare this with our definition of the homsets of [Aop,V ] in (1.31) and that

of the enriched colimit in (1.32). It is now clear that colim (W,G): 1 > B, if it

exists, is the (essentially unique) V-functor with the property that

colim (W,G)∗
∼= G∗ ⇐W

in V Prof. This motivates the following definition in any equipment:
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Definition 1.2.12 (weighted colimits and cylinders) Suppose (M,K, ( )∗) is

an equipment and that we are given a pair of 1-cells

a
p
+ > b

@@

f @@R
c

with p ∈ M and f ∈ K. We say that a 1-cell colim (p, f): b > c ∈ K is a colimit

of f weighted by p if and only if there is a right Kan extension diagram

a
p
+ > b

@@

f∗
×
@@R

γ⇐
	��
×

colim (p, f)∗

��

c

in M. We say that this diagram is a colimit cylinder displaying colim (p, f). �

The dual notion of weighted limit involves right liftings and the right representa-

bles f ∗, but a better way of expressing them is as weighted colimit in some dual of

the equipment we started with:

Definition 1.2.13 (Dual Equipments) If (M,K, ( )∗) is an equipment, we may

form a homomorphism

K
( )∗

>Mop

which is the identity on 0-cells, takes a 1-cell f : a > a′ ∈ K to f ∗, the right

adjoint to f∗ in M, and a 2-cell α: f ⇒ ḟ to the mate α∗: f ∗ ⇒ ḟ ∗ of α∗: ḟ∗ ⇒ f∗
under the adjunctions f∗ a f ∗ and ḟ∗ a ḟ ∗. The canonical 2-cells making these

actions into a homomorphism are again mates of those associated with ( )∗, under

the various adjunctions f∗ a f ∗. Having defined this homomorphism we get an

equipment

(M,K, ( )∗)
op def

= (Mop,Kco, ( )∗)

which satisfies rule (ii) of definition 1.2.1 by dint of the fact that an adjunction f∗ a
f ∗ in M may be re-interpreted as f ∗ a f∗ in Mop. As is easily checked the process

of taking the dual of an equipment is involutive, in other words ((M,K, ( )∗)
op)op =

(M,K, ( )∗).

It is important to notice that any limit cylinder in (M,K, ( )∗) corresponds to

a colimit cylinder in (M,K, ( )∗)
op. This allows us to state any theorem concerning

cylinders only in its colimit form, using (M,K, ( )∗)
op to derive results about limit

cylinders. For more information on dual equipments see section 1.5. �
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1.3 Bicategory Enriched Categories.

In order to interpret change of base as a biadjoint pair of maps between equipments

we must first introduce some kind of structure in which the notion of a biadjoint

may be interpreted. Think of this in much the same way as you would the introduc-

tion of 2-categories in which to interpret the notion of adjunction in terms of unit

and counit. In particular we will seek to provide natural notions of homomorph-

ism, transformation and modification of equipments and unify these together into a

“bicategorically enriched category”.

It is worth pointing out that by this phrase we do not mean gadgets which might

correctly be called weak or pseudo 3-categories, the as yet undefined1 3-dimensional

analogue of the bicategory notion, involving an outer level composition which is only

associative up to coherent equivalences (see [26] and [51]). In fact in the structures

we will be considering this composition is strictly associative, essentially due to the

fact that composition of bicategorical morphisms is so. In this sense these are really

an abstraction on the level of 2-categories rather than bicategories2 being principally

concerned with structure preserving maps between algebraic objects rather than

relations or spans between them. In fact we will be considering categories which are

bicategory enriched in a slightly modified but still essentially traditional sense.

Let Hom0 denote the category of (small) bicategories and homomorphisms be-

tween them. Traditionally if we wished to consider categories enriched in Hom0

we would firstly need to endow it with some kind of monoidal (or closed) category

structure. A first candidate for this might be product of bicategories, but this will

not do since we would also like to have a natural bijection

A⊗ B > C

A > HomS(B,A)

so as to ensure that when we enrich Hom0 over itself its “homsets” consist of homo-

morphisms, strong transformations and modifications, as we might n̈ıavely expect.

In [23] Gray examines an entirely analogous problem, that of providing 2-Cat,

the category of 2-category and 2-functors, with tensors ⊗p (or ⊗l) which provide

natural bijections

A⊗p B > C A⊗l B > C

A > PSEUDO(B,C) A > LAX(B,C)

1the structures envisaged when I made this comment are now called tricategories and were

introduced and studied by Gordon, Power and Street [21] some three years after this thesis was

complete.
2however by the coherence result presented in [21] the structures introduced here are in a sense

no less general than tricategories.
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where PSEUDO(B,C) is the 2-category of 2-functors, pseudo transformations and

modifications and LAX(B,C) that of 2-functors, lax transformations and modifica-

tions. He is only able to do so by imposing a strictness condition on himself from

the outset which we do not, in essence he considers only strict homomorphisms (or

2-functors in his context), i.e. those with structural isomorphisms which are in fact

identities. A little later on we will give an example which demonstrates that we may

not drop this restriction and still expect to define such tensors.

The solution to our problem may also be found in [23], rather than relying on a

tensor product, why not return to the concept of “multi-linear map”, pictured

[A1 · · · An] > B

which we define to ensure suitably natural bijections:

[A1 · · · An] > B
?

[A1 · · · An−1] > HomS(An,B)

Enrichment over such a calculus of multi-linear maps has a natural definition, closely

related to enrichment over a closed category, but notice that Hom0 is not one of

these, lacking as it does a bicategory I such that homomorphisms I > B are in

natural bijective correspondence with the 0-cells of B. If such a bicategory were to

exist then Yoneda’s lemma would imply that it had a 0-cell a ∈ I such that each

map

Hom 0(I,B)
eva

> B0

H: I → B > H(a)

(1.33)

is a bijection. Now pick any bicategory B possessing a 0-cell b ∈ B on which there

is an endo-1-cell p: b > b isomorphic, but not equal, to ib. We have at least

one homomorphism H: I > B with H(a) = b since eva is surjective, from which

we may construct two distinct homomorphisms H0 and H1, with H0(ia) = ib and

H1(ia) = p. Therefore H0 6= H1 and H0(a) = H1(a) = b contradicting the injectivity

of eva.

Of course were we willing to insist that all homomorphisms should be normal ,

that is to say preserve identities “on the nose”, there is no block to making Hom0

into a closed category. We could then exploit the usual definition of enrichment over

such a structure in the development of the theory presented in the next few sections.

Although using only normal homomorphisms is no real restriction, since most that

we meet are naturally normal and anyway all homomorphisms may be canonically

replaced with a normal one, we still opt to approach our work from the point of

view of multi-linear maps. This choice is basically motivated by necessity; in order

to get a practical grip on the enriched categories of interest here we will always need
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to resort to considering (explicitly or implicitly) the multi-linear maps we describe

later.

The properties of multi-linear maps are abstracted to form what Lambek, in [33],

calls a multicategory; we review his definition:

Definition 1.3.1 (multigraph) Given a set M0 let M∗
0 denote the free monoid

generated by M0, which has elements which are finite, possibly empty, sequences of

the elements of M0. We write sequences in square brackets [A1, · · · , An] reserving [·]
to denote the empty sequence, and sometimes we may drop the brackets around a

sequence of length 1. We use vector notation ~A to denote arbitrary sequences and

define lh( ~A) to be the sequence length function.

A multigraph consists of sets M0 and M1, of objects and multi-maps respectively,

and functions

M1
s

> M∗
0

M1
t

> M0

denoting source and target . As usual we write a multi-map f with source ~B and

target A as

~B
f

> A

and say that it is an n-map if lh( ~B) = n.

Definition 1.3.2 (multicategory) A multicategory M consists of a multigraph

(M0,M1, s, t) with

(a) For each object A ∈M0 an identity multi-map:

A
iA

> A

(b) A partially defined operation which assigns to each pair of multi-maps

~C
g

> B [ ~B0, B, ~B1]
f

> A

a “composite”:

[ ~B0, ~C, ~B1]
f〈 ~B0, g, ~B1〉

> A

We might think of this as the process of substituting the map g into the map

f .

This data is subject to the conditions:

(i) f〈 ~B0, iB, ~B1〉 = f ;

(ii) iA〈f〉 = f ’
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(iii) given

[~C0, A, ~C1, B, ~C2]
h

> C

~A
g

> A

~B
k

> B

then
(h〈~C0, g, ~C1, B, ~C2〉)〈~C0, ~A, ~C1, k, ~C2〉 =

(h〈~C0, A, ~C1, k, ~C2〉)〈~C0, g, ~C1, ~B, ~C2〉

which we may shorten to h〈g〉〈k〉 = h〈k〉〈g〉, so long as no confusion then

arises;

(iv) given

[ ~B0, B, ~B1]
h

> A

[~C0, C, ~C1]
g

> B

~D
k

> C

then h〈 ~B0, (g〈~C0, k, ~C1〉), ~B1〉 = (h〈 ~B0, g, ~B1〉)〈~C0, k, ~C1〉 which we shorten to

h〈g〈k〉〉 = h〈g〉〈k〉.

We adopt the notation ob(M) and map(M) for the sets of objects and multi-maps

of M. �

Of course multicategories are not of primary interest here and so we refer the

reader to [33] for details of notation etcetera. In particular we will be using the

notions of left and right closed multicategory, hoping that our description of the

cases of interest here contain enough information for the reader to gather a flavour

of the general theory. In recalling the definition above we have two particular mul-

ticategories in mind, both of which have objects which are (small) bicategories, for

which we use the names Hom and HomS:

Definition 1.3.3 (the multicategory Hom) Has as its objects small bicategories

(relative to some fixed set theoretic universe) and multi-maps, called n-homomorph-

isms

[B1, · · · ,Bn]
F

> A
given by the following information

(i) F maps each n-tuple (b1, · · · , bn) of 0-cells, with bi ∈ Bi for each i, to a 0-

cell F(b1, · · · , bn) ∈ A, a 0-homomorphism [·] > A simply corresponds to a

0-cell of A.
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(ii) for each fixed 1 ≤ i ≤ n and (n − 1)-tuple of 0-cells b1, · · · , bi−1, bi+1, · · · , bn
the function

0 cell(Bi)
F(b1, · · · , bi−1, , bi+1, · · · , bn)

> 0 cell(A)

comes enriched with the structure of a bicategorical homomorphism from Bi
to A. In future we are unlikely to explicitly quote all of the variables in the

domain of F, in which case we will assume that the structure, definition or

result under consideration is understood as being applied for each fixed set

of 0-cells filling up the remaining positions in that domain. When using this

convention we may subscript the cyphers and ∗, for instance F( i) denotes

any of the homomorphisms F(b1, · · · , bi−1, , bi+1, · · · , bn):Bi > A.

(iii) These homomorphisms are related as follows, fix numbers 1 ≤ i < j ≤ n and

then for each pair of 1-cells

bi
fi

> b′i ∈ Bi

bj
fj

> b′j ∈ Bj

we have a 2-cell

F(bi, bj)
F(fi, bj)

> F(b′i, bj)

F(bi, fj)

∨

⇓ F(fi, fj)

∨

F(b′i, fj)

F(bi, b
′
j)

F(fi, b
′
j)
> F(b′i, b

′
j)

or to be pedantic one of these for each vector (bk)k 6=i,j of 0-cells. These must

collectively satisfy the usual conditions making them into the structure 2-cells

of

(a) a transformation F(fi, j): F(bi, j) > F(b′i, j) in the horizontal direc-

tion and

(b) an optransformation F( i, fj): F( i, bj) > F( i, b
′
j) in the vertical di-

rection.

(iv) These squares are subject to the condition that given j < k ≤ n and a third

1-cell

bk
fk

> b′k ∈ Bk
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the following cubical pasting equality holds:

F(bi, bj, bk) > F(b′i, bj, bk)

	�
�
�
�
�
�
�
�

∨

⇓ F(fi, fj, bk)

∨
F(bi, bj, b

′
k) ⇐

F(bi, fj, fk)

F(bi, b
′
j, bk) > F(b′i, b

′
j, bk)

∨ 	�
�
�
�
�
�
�
�

F(fi, b
′
j, fk)⇐

	�
�
�
�
�
�
�
�

= F(bi, bj, bk) > F(b′i, bj, bk)

F(bi, b
′
j, b
′
k) > F(b′i, b

′
j, b
′
k)

	�
�
�
�
�
�
�
�

⇐
F(fi, bj, fk)

	�
�
�
�
�
�
�
�

∨
F(bi, bj, b

′
k) > F(b′i, bj, b

′
k) ⇐

F(b′i, fj, fk)

F(b′i, b
′
j, bk)

∨

⇓ F(fi, fj, b
′
k)

∨ 	�
�
�
�
�
�
�
�

F(bi, b
′
j, b
′
k) > F(b′i, b

′
j, b
′
k)

Notice the strong similarity between this definition and Remark 3.2 of [6] which

we exploited in lemma 1.1.3. To complete the definition of Hom we set about giving

a notion of substitution for multi-homomorphisms, given two such

[B1, · · · ,Bn]
F

> A

[C1, · · · , Cm]
G

> Bi
we may define an (n+m− 1)-homomorphism F〈G〉 with

F〈G〉(~b0,~c,~b1) = F(~b0,G(~c ),~b1)

and homomorphism structures

F〈G〉(~b0, ,~b1,~c,~b2) = F(~b0, ,~b1,G(~c ),~b2)

F〈G〉(~b0,~c0, ,~c1,~b1) = F(~b0, ∗,~b1) ◦G(~c0, ,~c1)

F〈G〉(~b0,~c,~b1, ,~b2) = F(~b0,G(~c ),~b1, ,~b2)

where ◦ denotes the usual composition of homomorphisms. Let fk ∈ Bk, fl ∈ Bl,
gr ∈ Cr and gs ∈ Cs denote arbitrary 1-cells of distinct bicategories in the domain
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of the (n+m− 1)-homomorphism we are constructing, now define the 2-cells which

unify the homomorphisms above by:

F〈G〉(fk, fl) = F(fk, fl)

F〈G〉(fk, gr) = F(fk,G(gr))

F〈G〉(gr, fl) = F(G(gr), fl)

The only case which remains is F〈G〉(gr, gs), the natural definition of which is forced

by its intended context, meaning the 2-cell obtained by applying the homomorphism

F(~b0, i,~b1) to the pasting cell

G(cr, cs)
G(gr, cs)

> G(c′r, cs)

G(cr, gs)

∨

⇓ G(gr, gs)

∨

G(c′r, gs)

G(cr, c
′
s)

G(gr, c
′
s)
> G(c′r, c

′
s)

as described in definition A.0.8 of appendix A, in other words the composite:

F(G(c′r, gs))⊗ F(G(gr, cs))
can
∼− > F(G(c′r, gs)⊗ G(gr, cs))

F(G(gr, gs))
> F(G(gr, c

′
s)⊗G(cr, gs))

can
∼− > F(G(gr, c

′
s))⊗ F(G(cr, gs))

(1.34)

The proof that these data do indeed satisfy the conditions required of a multi-

homomorphism is a matter of routine case checking, and is closely related to, but

no more general than, (the proof of) the fact that a homomorphism H:B > C
naturally gives rise to homomorphisms:

Bicat(A,B)
Bicat(A,H)

> Bicat(A, C)

In fact most work goes into verifying that the formulae above give a well defined

result when substituting a multi-homomorphism into a plain (1-) homomorphism,

since this solely concerns the more complex 2-cells of composite 1.34. Of course,

with a little effort, we may prove this result by direct calculation and a few tedious

diagram chases, but by far the easiest and most intuitive approach is to express

everything in terms of pasting diagrams and then apply the clause of lemma A.0.12

concerning the preservation of pasting composites by homomorphisms. We commend

a closer look at these verifications to the reader as a way of building an intuition

for the interactions between pasting and homomorphisms, but do not propose to

expand on them here due to restrictions on space.
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Simple case checking also demonstrates that this notion of substitution, along

with the usual identity homomorphism IA on each bicategory A, satisfy all of the

conditions required of a multicategory. Again we leave detailed verification up to

the reader. �

To provide a motivation for the notion of n-homomorphism we first define, for

each pair of bicategories A and B, the bicategory Hom(B,A) which is the full

sub-bicategory of Bicat(B,A) on those morphisms which are homomorphisms, and

Homop(B,A) to be the corresponding full sub-bicategory of Bicatop(B,A). We may

also define a canonical evaluation 2-homomorphism

[Hom(B,A),B]
evr

> A

given by evr(H, b) = H(b), evr(H, ) = H( ) and

Hom(B,A)
evr( , b)

> A g.b.

H > H(b)

Ψ: H→ H′ > Ψb: H(b)→ H′(b)

α: Ψ⇒ Ψ̇ > αb: Ψb ⇒ Ψ̇b

which is a strict homomorphism (for each 0-cell b ∈ B) because composition of

transformations and modifications is performed “pointwise” in A. Lastly the 2-cells

unifying these are provided by the structure 2-cells of each transformation:

evr(Ψ, f) =

H(b)
Ψb

> H′(b)

H(f)

∨

Ψf ⇓

∨

H′(f)

H(b̄)
Ψb̄

> H′(b̄)

Notice that we also have a dually defined 2-homomorphism:

[B,Homop(B,A)]
evl

> A

It should come as no surprise that these evaluations play the same rôle in the

theory of multicategories as do the traditional evaluation maps of monoidal closed

categories:

Lemma 1.3.4 Substitution into the evaluation 2-homomorphism

[Hom(Bn+1,A),Bn+1]
evr

> A
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sets up a bijection:

[B1, · · · ,Bn]
F̃

> Hom(Bn+1,A)

[B1, · · · ,Bn+1]
F

> A

Dually substitution into

[B1,Homop(B1,A)]
evl

> A

gives a bijection:

[B2, · · · ,Bn+1]
F̂

> Homop(B1,A)

[B1, · · · ,Bn+1]
F

> A

In other words Hom is what Lambek calls a biclosed multicategory.

Proof. We establish the first bijection, the second is quite clearly dual to that.

Consider cases:

n = 0:n = 0:n = 0: By definition a 0-homomorphism F̃: [·] > Hom(B,A) simply picks out a

0-cell of its domain, or in other words a homomorphism F:B > A. Examining

the definitions of evr and the substitution operation we see that F = evr〈F̃,B〉.

n = 1:n = 1:n = 1: given a 2-homomorphism

[B1,B2]
F

> A

we may define a (1-)homomorphism

B1
F̃
> Hom(B2,A)

where F̃(b1) is the homomorphism F(b1, ), for each 0-cell b1 in B1, and F̃(f1) is

the transformation F(f1, ): F(b1, ) > F(b′1, ), for each 1-cell f1: b1 > b′1 in

B1, both of which are guarantied by the definition of 2-homomorphism.

In order to derive the action of F̃ on 2-cells, and provide it with structural

isomorphisms, we consider condition (b) on the 2-cells F(fi, fj). By plotting

out the pasting equalities which ensure that F( , f2): F( , b2) > F( , b′2) is an

optransformation for each 1-cell f2 ∈ B2, we see that this condition is equivalent

to:
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• given a 2-cell α1: f1 ⇒ ḟ1 in B1 the 2-cells

F(f1, b2)
F(α1, b2)

> F(ḟ1, b2)

one for each 0-cell b2 ∈ B2, satisfy the conditions required of a modification

from F̃(f1) to F̃(ḟ1).

• given a pair of 1-cells f1: b1 > b′1 and f ′1: b′1 > b′′1 in B1 the canonical

2-cell isomorphisms

F(f ′1, b2)⊗ F(f1, b2)
can
∼−> F(f ′1 ⊗ f1, b2)

one for each 0-cell b2 ∈ B2, form an (isomorphic) modification from F̃(f ′1)⊗
F̃(f1) to F̃(f ′1 ⊗ f1).

• given a 0-cell b1 ∈ B1 the canonical 2-cells

iF(b1,b2)

can
∼− > F(ib1 , b2)

one for easy 0-cell b2 ∈ B2, form an (isomorphic) modification from iF̃(b1) to

F̃(ib1).

These modifications satisfy all of the coherence conditions required of a homo-

morphism, simply since they do so “pointwise”, and therefore complete the defi-

nition of F̃. Returning to our examinations of substitution and evr it is clear that

F̃ is the unique homomorphism such that F = evr〈F̃,B2〉.

n > 1:n > 1:n > 1: Given a (n+ 1)-homomorphism

[B1, · · · ,Bn+1]
F

> A

we construct an n-homomorphism

[B1, · · · ,Bn]
F̃

> A

by letting F̃(b1, · · · , bn) = F(b1, · · · , bn, ) and defining the homomorphism struc-

tures in each variable in exactly the same way as in case n = 1. All that remains

is to provide unifying modifications F̃(fi, fj) for 1 ≤ i < j ≤ n and each pair of

2-cells fi ∈ Bi and fj ∈ Bj. But the cubical condition (iv) on F clearly implies

that the collection of 2-cells

F(b′i, fj, bk)⊗ F(fi, bj, bk)
F(fi, fj, bk)

> F(fi, b
′
j, bk)⊗ F(bi, fj, bk)

where bk ranges over the 0-cells of Bk, form a modification from F̃(b′i, fj)⊗F̃(fi, bj)

to F̃(fi, b
′
j)⊗ F̃(bi, fj). These modifications satisfy the conditions required of an n

-homomorphism “pointwise”, providing us with F̃ which is again the unique multi

-homomorphism such that F = evr〈F̃,B2〉. �
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It would now seem to be little more than a formality to define the concept of bi-

categorical enrichment, by first generalising the notion of enrichment from monoidal

to multicategories and then applying it to Hom. This is not however really the

multicategory of interest when studying biadjoints, although we will see later that

it is appropriate when used in the interpretation of the triangle identities for lo-

cal adjunctions between homomorphisms. In essence enrichment over Hom gives

categories with “homsets” which look like bicategories of homomorphisms, trans-

formations and modifications, but when describing biadjoints in terms of triangle

identities it is important that unit and counit should both be strong transformations.

As indicated in the last paragraph, for some purposes we might wish to restrict

attention to strong multi-homomorphisms, that is those

[B1, · · · ,Bn]
F

> A
in Hom such that for each pair integers 1 ≤ i < j ≤ n and 1-cells fi ∈ B1, fj ∈ Bj
the 2-cells F(fi, fj) are isomorphisms. Quite clearly this subset is closed in Hom
under substitution (and identities) and so constitutes a sub-multicategory HomS.

Notice that HomS is symmetric in the sense that Sn, the group of permutations

of {1, · · · , n}, admits an obvious left action on the set of strong n-homomorphisms

under which a permutation σ ∈ Sn acts on F to permute its variables and give

another strong n-homomorphism:

[Bσ(1), · · · ,Bσ(n)]
σ · F

> A
The property that completes the notion of symmetry is the compatibility of these

actions with respect to substitution, a concept which we leave up to the imagination

of the reader. Notice that Hom itself is certainly not symmetric in this way, the

orientations of the 2-cells F(fi, fj) are determined by the order of the variables in

the domain of F and on permuting these there is little chance that this orientation

rule will be preserved. The symmetry properties of strong multi-homomorphisms

stem from the fact that after any permutation we may correct any badly oriented

2-cells by replacing them with their inverses.

Symmetry also finds expression in the restriction of lemma 1.3.4 toHomS. Recall

thatHomS(B,A) denotes the bicategory of homomorphisms, strong transformations

and modifications, which we may consider to be a (locally full) sub-bicategory of

bothHom(B,A) andHomop(B,A). The evaluation 2-homomorphisms of the lemma

then restrict to strong 2-homomorphisms

[HomS(B,A),B]
evr

> A [B,HomS(B,A)]
evl

> A
and substitution into these gives bijections

[B1, · · · ,Bn]
F̃
> HomS(Bn+1,A) [B2, · · · ,Bn+1]

F̂
> HomS(B1,A)

[B1, · · · ,Bn+1]
F

> A [B1, · · · ,Bn+1]
F

> A
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of strong multi-homomorphisms.

Now we give the definition of multicategory enrichment:

Definition 1.3.5 If M is a multicategory then a M-enriched category consists of a

set ob(A) of objects and for each pair a, a′ ∈ ob(A) an object A(a, a′) ∈M equipped

with multi-homomorphisms

[A(a′, a′′),A(a, a′)]
◦

> A(a, a′′) for each triple a, a′, a′′ ∈ ob(A)

[·]
ia

> A(a, a) for each a ∈ ob(A)

composition and identity which satisfy:

◦〈A(a′′, a′′′), ◦〉 = ◦〈◦,A(a, a′)〉 : [A(a′′, a′′′),A(a′, a′′),A(a, a′)] > A(a′′′, a)

◦〈A(a, a′), ia〉 = iA(a,a′) :A(a, a′) > A(a, a′)

◦〈ia′ ,A(a, a′)〉 = iA(a,a′) :A(a, a′) > A(a, a′)
�

A natural example is that of the enrichment of a right closed multicategory M
over itself. Such a multicategory has, by definition, an operation which associates

with any pair of objects A,B ∈ ob(M) a third one (B ⇐ A) and a 2-map

[B ⇐ A,A]
evr

> B

substitution into which gives the kind of bijections we saw in lemma 1.3.4. When

this condition holds an essentially standard proof (cf. [30] section 1.6) provides

us with an M-enriched category with set of objects ob(M) itself and “homsets”

M(A,B) = (B ⇐ A). The composition and identities making these into an M-

category are given by the correspondences:

[C ⇐ B,B ⇐ A,A]
evr〈C ⇐ B, evr〉

> C A
iA

> A

[C ⇐ B,B ⇐ A]
◦

> C ⇐ A [·]
iA
> A⇐ A

Lemma 1.3.4 provides us with a second bijection, and we say as a result that

Hom is also left closed. This we deal with this by defining a dual multicategory Mop

which has the same objects and multi-maps as M but in which the domain of each

multi-map is formed by reversing the order of the objects in its domain sequence in

M, then M is left closed iff Mop is right closed giving rise to another enrichment, this

time over Mop. Of course if M is biclosed then it admits both of these enrichments,

furthermore symmetry would ensure an isomorphism with its dual Mop, implying

that left and right internal homs coincide thus demonstrating that the two possible

enrichments do as well.

To fix our nomenclature we say that a category is “bicategory enriched” if it is

enriched over Hom and “strongly bicategory enriched” if its composition is a strong
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2-homomorphism, which is to say that it’s enriched overHomS. We may also use the

term “bicategory op-enriched” to denote Homop-categories, although our principle

interest is in enrichment of the strong variety. Associated with each of these we have

an enriched category of bicategories, for which we use the notations Hom, Homop

and HomS where we use three underlines to emphasise their 3-dimensional nature.

It seems appropriate to give a more detailed description of bicategorical enrichment:

Description 1.3.6 A bicategory enriched category A consists of

• a set of objects ob(A),

• for each pair of objects A,A′ ∈ ob(A) a bicategory A(A,A′),

• for each pair of 0-cells F ∈ A(A,A′) and G ∈ A(A′, A′′) a composite 0-cell

G ◦ F ∈ A(A,A′′) and enrichments of this operation to homomorphisms

A(A,A′)
G ◦

> A(A′, A′′)

A(A′, A′′)
◦ F

> A(A,A′′)

These should collectively satisfy the associativity rules

(H ◦G) ◦ = H ◦ (G ◦ ) :A(A,A′) > A(A,A′′′)

− ◦ (G ◦ F) = ( ◦G) ◦ F :A(A′′, A′′′) > A(A,A′′′)

(G ◦ ) ◦ F = G ◦ ( ◦ F) :A(A′, A′′) > A(A,A′′′)

where H ∈ A(A′′, A′′′) is a third, arbitrary, 0-cell.

• for each object A an identity 0-cell IA ∈ A(A,A) such that the homomorphisms

A(A,B)
IB ◦

> A(A,B)

A(A,B)
◦ IA

> A(A,B)

are both equal to the identity on A(A,B) for all objects A,B ∈ ob(A)

• for each pair of 1-cells

F
Φ

> F ∈ A(A,A′)

G
Ψ

> G ∈ A(A′, A′′)

a 2-cell

G ◦ F
Ψ ◦ F

> G ◦ F

G ◦ Φ

∨
⇓ Ψ ◦ Φ

∨
G ◦ Φ

G ◦ F
Ψ ◦ F

> G ◦ F

(1.35)
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in the bicategoryA(A,A′′). These must collectively satisfy the rules which ensure

that they form the structure 2-cells of:

(a) a transformation Ψ ◦ : (G ◦ ) > (G ◦ ),

(b) an optransformation ◦ Φ : ( ◦ F) > ( ◦ F).

• finally these 2-cells must also satisfy an associativity condition, so suppose that

H
Ω

> H ∈ A(A′′, A′′′)

is another 1-cell then we have 2-cells

H ◦ (G ◦ F)
H◦(Ψ◦F)

> H ◦ (G ◦ F) (H ◦G) ◦ F
(Ω◦G)◦F

> (H ◦G) ◦ F

H◦(G◦Φ)

∨

⇓ H ◦ (Ψ ◦ Φ)

∨

H◦(G◦Φ) (H◦Ψ)◦F

∨

⇓ (Ω ◦Ψ) ◦ F

∨

(H◦Ψ)◦F

H ◦ (G ◦ F)
H◦(Ψ◦F)

> H ◦ (G ◦ F) (H ◦G) ◦ F
(Ω◦G)◦F

> (H ◦G) ◦ F

which have the natural definitions demanded by their context. In other words

they are the results of applying the homomorphisms H ◦ and ◦ F to the

square pasting cells Ψ ◦ Φ and Ω ◦ Ψ (respectively) in the way described in

definition A.0.8 of appendix A. This notation allows us to express the remaining

three associativity conditions as:

Ω ◦ (G ◦ Φ) = (Ω ◦G) ◦ Φ

H ◦ (Ψ ◦ Φ) = (H ◦Ψ) ◦ Φ

(Ω ◦Ψ) ◦ F = Ω ◦ (Ψ ◦ F)

Each of these postulate an equality between 2-cells which the earlier associativity

conditions already ensure to have the same domain and codomain.

The descriptions of strong and op-enrichment only differ from this in requiring that

the 2-cells Ψ ◦ Φ should be isomorphisms in the first case or have the opposite

orientation in the second. We will meet a number of related examples of strongly

bicategory enriched categories specifically designed to cope with change of base

questions in terms of equipments and double bicategories in the next section.

In future we follow the naming conventions of bicategory theory and refer to the

0,1 and 2-cells of the “homsets” of a bicategory enriched category as its homomorph-

isms, transformations (with the modifier “strong” or “op-” where appropriate) and

modifications. This will serve to emphasise the pivotal relationship between calcu-

lations inside these categories and those with which we are already well accustomed

in bicategory theory itself. This resemblance is heightened by dropping the use of ◦
and writing these composites by superposition alone, thus clarifying the relationship

between the notions of composition and application of homomorphisms etcetera. �
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We also expand on the notion of a bicategorically enriched functor:

Description 1.3.7 A bicategorically enriched functor ( )�:A > B consists of a

map taking each object A ∈ A to some object A� ∈ B and for each pair of objects

A,A′ ∈ A a homomorphism of bicategories ( )�:A(A,A′) > B(A�, A
′
�) which

satisfy:

• for each homomorphism F:A > A in A the equality

( )� ◦ F� = ( ◦ F)�:A(A,A′) > B(A�, A
′
�)

of homomorphisms (of bicategories) holds.

• for each homomorphism F′:A′ > A
′

in A the equality

F′� ◦ ( )� = (F′ ◦ )�:A(A,A′) > B(A�, A
′
�)

of homomorphisms (of bicategories) holds.

• for each pair of transformations

F
Φ

> F ∈ A(A,A′)

G
Ψ

> G ∈ A(A′, A′′)

the equality of modifications

(Ψ ◦ Φ)� = Ψ� ◦ Φ� : (G� ◦ Φ�)⊗ (Φ� ◦ F) > (Ψ� ◦ F�)⊗ (G� ◦ Φ�)

holds. In this expression (Ψ ◦ Φ)� is the modification obtained by applying the

homomorphism ( )� to the square pasting cell (1.35) (as described in appendix A)

whereas Ψ� ◦Φ� is the canonical modification associated with the transformations

Ψ� and Φ� in B. The domain and codomain of these already match up by the

previous two conditions on ( )�.

An obvious example of such a functor is the representableA(A, ) associated with

an object A ∈ A, which maps an object A′ ∈ A to the bicategory A(A,A′) ∈ Hom
and has action on the “homset” A(A′, A′′) derived from the composition of A via

the correspondence:

[A(A′, A′′),A(A,A′)]
◦

> A(A,A′′)

A(A′, A′′)
A(A, )

> Hom(A(A,A′),A(A,A′′))

Clearly if A is strongly enriched then each representable A(A, ) restricts to an

enriched functor A > HomS. �
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Having introduced the material of this section as a context in which to interpret

and generalise the notion of biadjunction we should really take this opportunity to

elaborate upon that idea. Recall that example 1.1.7 of section 1.1 provided us with

a triangle identity description of biadjunctions, which may naturally be cast into the

context of the strongly bicategory enriched HomS. Expressing this in an arbitrary

HomS -category we get:

Definition 1.3.8 A biadjoint pair (G ab F,Ψ,Φ, α, β):A > B in a strongly bi-

category enriched category A is given by the following data:

• a pair of homomorphisms G ∈ A(A,B) and F ∈ A(B,A),

• two strong transformations

IB
Ψ

> G ◦ F

F ◦G
Φ

> IA

called the unit and counit respectively.

• triangle identities which consist of two isomorphic modifications

G
ΨG

> GFG F
@
@
@
@

iG @@
@
@R

∼=
α

@
@
@
@ iF
@
@
@
@R∨

GΦ and FΨ

∨

β∼=

G FGF
ΦF

> F

(1.36)

in A(A,B)(G,G) and A(B,A)(F,F) respectively.

This is certainly enough to specify a biadjunction but, as we pointed out in

example 1.1.7, it is often useful to assume two extra coherence conditions on α and

β which ensure that the equivalences B(Fc, b) ' C(c,Gb), as derived from them, are

in fact adjoint equivalences. Therefore we say that a biadjoint pair is locally adjoint

if the diagrams

GΦF⊗ΨGF⊗Ψ ∼−
GΦF⊗ (ΨΨ)

> GΦF⊗GFΨ⊗Ψ ∼−
can⊗Ψ

> G(ΦF⊗ FΨ)⊗Ψ
∧

can⊗Ψ o

(GΦ⊗ΨG)F⊗Ψ (a) o

∨

Gβ ⊗Ψ
∧

αF⊗Ψ o

iGF⊗Ψ
can⊗Ψ
∼− > iGF ⊗Ψ

can⊗Ψ
∼− > GiF ⊗Ψ
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Φ⊗ FGΦ⊗ FΨG ∼−
(ΦΦ)⊗ FΨG

> Φ⊗ ΦFG⊗ FΨG ∼−
Φ⊗ can

> Φ⊗ (ΦF⊗ FΨ)G
∧

Φ⊗ can o

Φ⊗ F(GΦ⊗ΨG) (b) o

∨

Φ⊗ βG
∧

Φ⊗ Fα o

Φ⊗ FiG
Φ⊗ can
∼− > Φ⊗ iFG

Φ⊗ can
∼− > Φ⊗ iFG

are commutative. The genesis of these conditions is clear on comparing them with

display (1.14) of section 1.1. Re-expressing these in terms of pasting diagrams (as

described in appendix A) they simply say that the pastings of diagrams

IB FG

	�
�
�

Ψ �
�
� @

@
@ Ψ
@
@
@R ��

�
�
�
�
�

FΨG

∨

@
@
@
@
@
@@

GF
ΨΨ∼= GF �

βG∼= FGFG
Fα∼= @

iGF

@
@
@ ΨGF
@
@
@R 	�

�
�

GFΨ �
�
�

iGF iFG

∨ 	��
� ΦFG
�
�
� @

@
@

FGΦ @
@
@R ∨

iFG

@

αF∼= GFGF
Gβ∼= �

FG ∼=
ΦΦ

FG
@
@
@
@
@
@R

GΦF

∨ 	�
�
�
�
�
� @

@
@

Φ @
@
@R 	�

�
� Φ
�
�
�

GF (a) IA (b)
(1.37)

are equal to the identity 2-cells on Ψ and Φ respectively. �

This definition is justified and supported by the following lemma:

Lemma 1.3.9 Biadjoints in strongly bicategory enriched categories enjoy the fol-

lowing properties:

(i) We may compose biadjoints in A in such a way that the composite of two

locally adjoint biadjoints is also locally adjoint.

(ii) If ( )�:A > B is a bicategory enriched functor then it maps a biadjoint

F ab G in A to a biadjoint F� ab G� in B. This mapping preserves the

local adjointness property and is well behaved with respect to composites of

biadjoints.

(iii) If G:B > C and F:C > B are homomorphisms and Ψ: IC > GF a

transformation in A then tfae:
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(a) For each object A ∈ A the representable A(A, ):A > HomS maps Ψ

to a transformation which constitutes the unit of a traditional biadjoint

A(A,F) ab A(A,G):A(A,B) > A(A,C).

(b) There exists a transformation Φ: FG > IA and isomorphic modifica-

tions α and β as in (1.36) displaying a biadjoint F ab G in A.

(c) We may find Φ, α and β as in (b) so that they satisfy the conditions

required of a locally adjoint biadjunction.

(iv) Biadjoints are essentially unique, in the sense that if G:B > C ∈ A is

a homomorphism and F,F′:C > B are both left (respectively right) biad-

joints to G then there exists a canonical equivalence between F and F′ in the

bicategory A(C,B).3

Proof.

(i) Suppose that

(G,F,Ψ,Φ, α, β):A > A′

(G′,F′,Ψ′,Φ′, α′, β′):A′ > A′′

are a pair of biadjunctions in A, we demonstrate that F ◦ F′ ab G′ ◦ G by

providing unit and counit given by the composites

IA′′
Ψ′

> G′F′
G′ΨF′

> G′GFF′

FF′G′G
FΦ′G

> FG
Φ

> IA

and triangle isomorphisms given by the pastings

FF′

FF′Ψ′

∨

@
@
@
∼=

Fβ′

iFF′

@
@
@R

FF′G′F′

FΦ′F′
> FF′

FF′G′ΨF′

∨

∼=
(FΦ′)(ΨF′)

FΨF′

∨

@
@
@
∼=
βF′

iFF′

@
@
@R

FF′G′GFF′

FΦ′GFF′
> FGFF′

ΦFF′
> FF′

G′G
Ψ′G′G

> G′F′G′G
G′ΨF′G′G

> G′GFF′G′G
@
@
@

iG′G

α′G∼=
@
@
@R ∨

G′Φ′G

(G′Ψ)(Φ′G)∼=

∨

G′GFΦ′G

G′G
G′ΨG

> G′GFG
@
@
@

iG′G

G′α∼=
@
@
@R ∨

G′GΦ

G′G

(1.38)

3this clause was not included in the original 1992 version of this work and I would like to thank

Jonas Frey for suggesting its inclusion here.

80



CHANGE OF BASE

or to be more precise these pastings composed with the canonical isomor-

phisms:

FF′G′ΨF′ ⊗ FF′Ψ′
can∼= FF′(G′ΨF′ ⊗Ψ′)

ΦFF′ ⊗ FΦ′GFF′
can∼= (Φ⊗ FΦ′G)FF′

G′ΨF′G′G⊗Ψ′G′G
can∼= (G′ΨF′ ⊗Ψ′)G′G

G′GΦ⊗G′GFΦ′G
can∼= G′G(Φ⊗ FΦ′G)

(1.39)

The correct interpretation of each 2-cell in these pastings is easily derived

from its context as described in appendix A. We postpone checking that

composition of biadjunctions behaves well with respect to the local adjointness

property until the end of this proof.

(ii) This result is straightforward given the work and conventions of appendix A,

though more involved otherwise. Suppose that (G,F,Ψ,Φ, α, β):A > B is

a biadjoint in A then simply applying the homomorphisms which constitute

the actions of ( )� on the “homsets” A(B,C) and A(C,B) to the triangles in

(1.36) (as in definition A.0.8) gives

G�
Ψ�G�

> G�F�G� F�
@
@
@
@

iG� @@
@
@R

∼=
α�

@
@
@
@ iF�
@
@
@
@R∨

G�Φ� and F�Ψ�

∨

β�∼=

G F�G�F�
Φ�F�

> F�

(1.40)

the triangle isomorphisms for a biadjunction F� a G� with unit Ψ� and counit

Ψ�.

Now suppose that α and β satisfy the local adjointness condition and observe

that applying ( )� to the pasting diagrams in (1.37), in the way described

in definition A.0.8, simply produces the corresponding diagrams for the biad-

junction F� ab G�. Corollary A.0.12 demonstrates that pastings are preserved

by homomorphisms so in particular since the diagrams we start with paste to

identities on Ψ and Φ respectively the diagrams they map to under applica-

tion of ( )� must paste to the identities on Ψ� and Φ�. Finally, by our initial

observation, this simply states that the modifications α� and β� satisfy the

local adjointness condition.

(iii) Prove this in the following natural order:

(c)⇒(b) Nothing to prove.

(b)⇒(a) By part (ii) of this lemma applying the representable A(A, ) to a

biadjunction in A gives a biadjoint A(A,F) ab A(A,G) in HomS of the type
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defined in 1.3.8. All that remains is to show that these biadjoints coincide

with the traditional variety, but certainly we already know from example 1.1.7

that every traditional biadjoint gives rise to unit and counit related by triangle

isomorphisms.

Conversely suppose we have a biadjunction (G,F,Ψ,Φ, α, β) in HomS then

consider the homomorphism G:B > C, for each pair of 0-cells c ∈ C and

b ∈ B the functor

ψcb = B(Fc, b)
G
> C(GFc,Gb)

⊗Ψc
> C(c,Gb) (1.41)

is an equivalence with inverse:

φcb = C(c,Gb) F
> B(Fc,FGb)

Φb ⊗
> B(Fc, b)

We check the truth of this statement by observing that we have isomorphisms

p
αb ⊗ p
∼− > GΦb ⊗ΨGb ⊗ p

GΦb ⊗Ψp

∼− > GΦb ⊗GF(p)⊗Ψc

can⊗Ψc
∼− > G(Φb ⊗ F(p))⊗Ψc

Φb ⊗ F(G(q)⊗Ψc)
Φb ⊗ can
∼− > Φb ⊗ FG(q)⊗ FΨc

Φq ⊗ FΨc

∼− > q ⊗ ΦFc ⊗ FΨc

q ⊗ βc
∼− > q

(1.42)

which are natural in p ∈ C(c,Gb) and q ∈ B(Fc, b), these are just the com-

ponents of the natural transformations κcb and τcb (respectively) as defined in

lemma 1.1.5. Returning to the definition at the beginning of example 1.1.7

this exactly says that the homomorphism G has a left biadjoint.

(a)⇒(c) This implication essentially follows from the bicategorical Yoneda

lemma (lemma 1.1.4), however we choose to take a more elementary approach

here. The fact that each A(A,Ψ) is the unit of a biadjoint A(A,F) ab A(A,G)

implies that for each pair of homomorphisms H ∈ A(A,C) and K ∈ A(A,B)

we have:

• For each transformation ∆: H > GK there exists another ∆̂: FH > K

and an isomorphic modification:

H
ΨH

> GFH
@
@
@

∆

δ∼=
@
@
@R ∨

G∆̂

GK
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• Given two such pairs 〈∆̂i, δi〉 (i = 0, 1), associated with ∆ as above, there

exists a unique isomorphism γ: ∆0
∼−> ∆1 such that

∆
δ0
∼− > (G∆̂0)⊗Ψ

@
@
@

δ1
@
@
@R

o
∨

(Gγ)⊗Ψ

(G∆̂1)⊗Ψ

commutes.

Applying the first of these rules with A = B, H = G, K = IB and ∆ = iG we get

a counit Φ: FG > IB and an isomorphic modification α: iG ∼−> GΦ⊗ΨG.

The second rule may be applied to the two diagrams

IB

	�
�
�

Ψ �
�
� @

@
@ Ψ
@
@
@R

IB

GF
ΨΨ∼= GF Ψ

∨
iGF

@
@
@ ΨGF
@
@
@R 	�

�
�

GFΨ �
�
�

GF

@

αF∼= GFGF
can∼=

�
iGF

∨

can∼=
∨

GiF
@
@
@
@
@
@R

GΦF

∨ 	��
� G(ΦF⊗ FΨ)
�
�
�

GF

GF

to get a unique isomorphism β: ΦF ⊗ FΨ ∼−> iF with the defining property

that it and α together satisfy local adjointness condition (1.37)(a).

To prove that condition (1.37)(b) holds notice that (by part (ii) of this lemma)

if we apply any representable A(A, ) to the data we have constructed so far

we get a biadjoint A(A,F) ab A(A,G) in HomS satisfying (1.37)(a). For

a biadjoint in HomS we have already pointed out that (1.37)(a) is exactly

condition (1.14) of lemma 1.1.6, so by that lemma we know that the natural

transformations κcb and τcb of (1.42) above satisfy the triangle identity

ψcb

κcbψcb
∼− > ψcbϕcbψcb

@
@
@

iψcb
@
@
@R

o

∨

ψcbτcb

ψcb
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for each pair of 0-cells b ∈ B and c ∈ C. It is a matter of routine verification

to check that if we choose a unit and counit for an equivalence (of categories)

in such a way that they satisfy one of the triangle identities then they must

also satisfy the other. Therefore making this inference for κcb and τcb then

applying the “coop” dual of lemma 1.1.6 (in reverse) we show that condition

(1.14)coop, or in other words (1.37)(b), holds for our biadjoint as well.

Returning to the biadjoint F ab G in A, all that remains is to note that the

pasting diagram of (1.37)(b) for this is exactly the component at IB ∈ A(B,B)

of the corresponding pasting for A(B,F) a A(B,G). We already know from

the last paragraph that this latter diagram pastes to the identity on A(B,Φ),

therefore since pasting of modifications in HomS is calculated pointwise we

may examine components at IB to re-assure ourselves that condition (1.37)(b)

holds for the data (G,F,Ψ,Φ, α, β) in A as defined above.

Notice that by this proof we have immediately that for any biadjunction

(G,F,Ψ,Φ, α, β) in A there is always a uniquely determined isomorphic mod-

ification β′: ΦF ⊗ FΨ ∼−> iF such that (G,F,Ψ,Φ, α, β′) is a locally adjoint

biadjunction. Alternatively, of course, we could choose to replace α instead

and still achieve the same result.

(iv) Suppose that (G,F,Ψ,Φ, α, β) and (G,F′,Ψ′,Φ′, α′, β′) are two biadjunctions

which share the same right biadjoint G:B > C ∈ A then we have two

transformations between the left biadjoints F and F′ given by the composites:

F
FΨ′

> FGF′
ΦF′

> F′

F′
F′Ψ

> F′GF
Φ′F

> F

Now the following composite of isomorphic modifications

Φ′F⊗ F′Ψ⊗ ΦF′ ⊗ FΨ′
Φ′F⊗ ΦF′Ψ⊗ FΨ′

∼− > Φ′F⊗ ΦF′GF⊗ FGF′Ψ⊗ FΨ′

canF
∼− > (Φ′ ⊗ ΦF′G)F⊗ F(GF′Ψ⊗Ψ′)

ΦΦ′F⊗ FΨ′Ψ
∼− > (Φ⊗ FGΦ′)F⊗ F(Ψ′GF⊗Ψ)

canF
∼− > ΦF⊗ F(GΦ′ ⊗Ψ′G)F⊗ FΨ

ΦF⊗ Fα′F⊗ FΨ
∼− > ΦF⊗ FΨ

α
∼−> iF

and a corresponding one obtained by swapping the roles of these two biad-

junctions shows that these transformations are mutual equivalence inverses in

A(C,B) as required.
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Finally we return again to the proof that local adjointness of biadjoints is pre-

served by composition. Since pasting is preserved under the application of homo-

morphisms we know that the composition of biadjoints, as presented in the proof

of (i) above, is preserved by all functors of (strongly) bicategory enriched cate-

gories. Following the sort of representability argument that we used to establish

condition (1.37)(b) in the previous construction, it should be clear that a biadjoint

(G,F,Ψ,Φ, α, β) in A is locally adjoint iff the application of each representable

A(A, ) gives a locally adjoint biadjoint in HomS. Combining these two results we

have reduced the problem to checking the proposition for biadjunctions in HomS.

In order to verify the latter result consider two (composable) biadjoints F ab
G:A → B and F′ ab G′:B → C in HomS. We know that saying these are locally

adjoint simply means that we have adjunctions

κba, τba:ψba a ϕba:A(Fb, a) > B(b,Ga)

κ′cb, τ
′
cb:ψ

′
cb a ϕ′cb:B(F′c, b) > C(c,G′b)

derived, as above, from the given structure of the two biadjoints. Now consider

the composite biadjoint FF′ a G′G with the unit, counit and triangle isomorphisms

we gave earlier. Simple calculations show that the functors ψ′′ca and ϕ′′ca given by

this structure in the usual way are (naturally) isomorphic to (ψ′c,Ga · ψF′c,a) and

(ϕF′c,a · ϕ′c,Ga). Furthermore under these isomorphisms the unit κ′′ca and counit τ ′′ca
obtained from the triangle isomorphisms of our composite turn out to be exactly

those of the adjunction (ψ′c,Ga ·ψF′c,a) a (ϕF′c,a ·ϕ′c,Ga). In this way we establish that

our composite biadjoint is indeed locally adjoint. �

Before winding up this section we should, as promised, give an example demon-

strating that there is no monoidal structure onHom 0 over which we may re-interpret

the notions of bicategory enrichment presented here in terms of traditional enriched

category theory. Such a structure would correspond to the multicategories Hom and

HomS having tensor products , recall (from [33]) that for a multicategory M this is

defined to mean that given a pair of objects A,B ∈M there exists a third one A⊗B
and a 2-map

[A,B]
mAB

> A⊗B
with the universal property that there are bijections

[ ~A,A⊗B, ~B] > C

[ ~A,A,B, ~B] > C

mediated by substitution of mAB.

To show that Hom (or by the same argument HomS) does not in general admit

such tensor products consider 2-homomorphisms F: [2, 2] > B, where 2 is the

ordinal “2” considered as a bicategory. Such a 2-map is simply determined by a
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choice of four 0-cells, each one accompanied by an endo-1-cell isomorphic to its

identity, related by 1- and 2-cells which we may display as a square:

F(0, 0)
F(0, <)

> F(0, 1)

F(<, 0)

∨

F(<,<) ⇓

∨

F(<, 1)

F(1, 0)
F(1, <)

> F(1, 1)

Now suppose that there exists a tensor product 2⊗l 2 displayed by a 2-homomorph-

ism M, then by definition the 2-homomorphisms F described above are in bijective

correspondence with homomorphisms F̂: 2⊗l 2 > B such that F̂〈M〉 = F. There

certainly exist such 2-homomorphisms for which no pair of the four chosen 0-cells are

identical and since these 2-maps factor through 2⊗l 2 it follows that this property

must also hold true for M. So consider the 1-cell

M(<, 1)⊗M(0, <): M(0, 0) > M(1, 1) .

None of the 1-cells specified by the 2-homomorphism M have the same domain and

codomain therefore it cannot be equal to one of these cells.

What exactly do we impose on a homomorphism F̂: 2⊗l2 > B by saying that

it satisfies F̂〈M〉 = F? Clearly we are only requiring conditions on images of the

cells M(•, •) amongst which M(<, 1)⊗M(0, <) is not counted, so its image is only

constrained up to an isomorphism F̂(M(<, 1) ⊗ M(0, <)) ∼= F(<, 1) ⊗ F(0, <). It

should now be apparent that we may construct distinct homomorphisms F̂0, F̂1: 2⊗l
2 > B differing on M(<, 1) ⊗M(0, <) but with F0〈M〉 = F1〈M〉, contradicting

the assumption that M displays 2⊗l 2 as a tensor.

This result only proscribes us from having a suitable monoidal structure on

Hom 0, it does not of course prevent us from extending this category to one with a

nicely behaved tensor, and to this end we will see that what Hom 0 does support

is a number of interesting promonoidal structures. A (small) promonoidal category

(C, p, i), as defined by Day in [15], consists of a (small) category C and two functors

Cop × Cop × C
p( , ; )

> Set

C
i( )

> Set

supported by “associativity” and “identity” isomorphisms∫ e∈C
p(e, c; d)× p(a, b; e) ∼=

∫ e∈C
p(a, e; d)× p(b, c; e)∫ a∈C

p(a, b; c)× i(a) ∼= C(b, c)∫ b∈C
p(a, b; c)× i(b) ∼= C(a, c)
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where the integral signs denote coends as usual, which all exist in Set since C is small.

These isomorphisms must satisfy coherence conditions closely related to MacLane’s

conditions for monoidal categories. The importance of the promonoidal structures

on a (small) category C lies in their correspondence with monoidal closed structures

on the presheaf category [C, Set]. Given a promonoidal category (C, p, i) we define

tensor F ⊗G, left internal hom F ⇒ H and right internal hom H ⇐ G on [C, Set]

by

(F ⊗G)(c) =
∫ a,b∈C

p(a, b; c)× F (a)×G(b)

(F ⇒ H)(b) =
∫
a,c∈C

Set(p(a, b; c)× F (a), H(c))

(H ⇐ G)(a) =
∫
b,c∈C

Set(p(a, b; c)×G(b), H(c))

the identity for this structure is the presheaf i( ). As an indication of how we may

derive a promonoidal structure on C from a monoidal closed one on [C, Set] notice

that, by the Yoneda lemma and the usual results concerning coends, we have the

natural isomorphisms:

[C, Set](C(c, ),C(a, )⊗ C(b, )) ∼=
∫ x,y∈C

p(x, y; c)× C(a, x)× C(b, y)

∼= p(a, b; c) (1.43)

Of course promonoidal categories and multicategories are not unrelated, and

while it is not necessarily true that all multicategories naturally give rise to promon-

oidal categories it is certainly true that the examples we have studied do. Suppose

that M is a (small) multicategory and let M0 denote the category with the same

set of objects and morphisms the 1-maps with substitution as composition, further-

more use M([A0, · · · , An], B) to denote the set on n-maps with the given domain

and codomain. If M is closed then we may define a promonoidal structure on M0

by setting:

p(A,B;C) = M([A,B], C)

i(C) = M([·], C)

Since M is closed we know that there exist natural isomorphisms p(A,B;C) ∼=
M0(A,C ⇐ B) ∼= M0(B,A⇒ C) implying that∫ E∈M0

p(E,C;D)× p(A,B;E) ∼=
∫ E∈M0

M0(E,D ⇐ C)× p(A,B;E)

∼= p(A,B;D ⇐ C)

∼= M([A,B,C], D) (1.44)

naturally in each variable. By an identical argument we get a second isomorphism∫ E∈M0

p(A,E;D)× p(B,C;E) ∼= M([A,B,C], D)
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which we compose with the previous one to obtain an associativity isomorphism. We

leave the identity isomorphisms up to the reader, checking the coherence conditions

is routine.

An important property of the monoidal closed category ([M0, Set],⊗,⇐,⇒),

as derived from this promonoidal one, is that we may extend and combine the

calculations of (1.43) and (1.44) to give isomorphisms:

M ([A1, · · · , An], B) ∼= [M0, Set] (M0(B, ),M0(A1, )⊗ · · · ⊗M0(An, ))

Indeed it is in general true that from any monoidal category (V,⊗) we may define

a multicategory with the same objects and n-maps B → A1 ⊗ · · · ⊗An, the isomor-

phisms above identify M with the full sub-multicategory on the representables of

that derived in this way from ([M0, Set],⊗). The crucial inference that we may draw

is that categories enriched in the opposite monoidal category ([M0, Set]op,⊗) with

“homsets” which are representables may be identified with those enriched over the

multicategory M. Naturally we apply this to Hom and HomS to reduce the notion

of bicategory enrichment to a classical situation

It might seem something of an advance to reduce multicategory enrichment to

a traditional context but in fact we get no further. This is principally due to the

fact that while ([M0, Set],⊗) is closed, and therefore supports the kind of enriched

category theory described in [30], it by no means follows that the category we are

actually interested in enriching over ([M0, Set]op,⊗) is closed as well. The important

point about multi-maps in the cases we are considering is that we have a clear

intuition for their manipulation.
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1.4 Double Bicategories

In this section we introduce the notion of a double bicategory, which formalises

the properties of “squares” and “cylinders” in bicategory theory. An introduc-

tion to cylinders and an account of their importance may be found in section 8 of

Benabou [3]. Most significantly to our study of change of base we will see that

double bicategories may be marshalled together into a number of natural and re-

lated (strongly) bicategory enriched categories, from which we may derive similar

structures relating equipments via the construction given in definition 1.2.4.

Definition 1.4.1 A double bicategory D̃ = (A,H,V ,S,⊗
H
,⊗
V
, ih, iv, ∗

H
, ∗
V

) consists of

(i) Two bicategories (H,⊗
H
, ih) and (V ,⊗

V
, iv) which share the same set of 0-cells

A. The 1/2-cells of H are said to be horizontal and those of V vertical . To

avoid confusion later on we refer to vertical composition of 2-cells in these

bicategories as depth-wise composition and use the symbol •.
For notational convenience define categories

H =
∐

a,a′∈A
H(a, a′)

V =
∐

a,a′∈A
V(a, a′)

using single underlines to distinguish these from the bicategories H,V them-

selves. We have domain and codomain functions

dom, cod:H0 > A

dom, cod:V0 > A

taking an object of H (V), which is simply a 1-cell of H (V), to the 0-cell

which is its domain (codomain).

(ii) A set S with domain and codomain functions

S

	�
�
�

〈codH , codV 〉 ��
� @

@
@ 〈domH , domV 〉
@
@
@R

V0 ×H0 V0 ×H0

which satisfy the conditions

dom(domH(λ)) = dom(domV (λ)) cod(domH(λ)) = dom(codV (λ))

dom(codH(λ)) = cod(domV (λ)) cod(codH(λ)) = cod(codV (λ))

for each λ ∈ S, and this comes equipped with compatible left and right actions

by the category V ×H. In other words S is a profunctor V ×H +> V ×H.
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In concrete terms this means that we may visualise each element of S as a

square

a
domV (λ)

> a′

domH(λ) +

∨
λ +

∨
codH(λ)

ā
codV (λ)

> ā′

where we use adorned arrows to distinguish vertical and horizontal 1-cells. We

may also use symbols ⇒H and ⇒V to indicate and distinguish horizontal and

vertical 2-cells where confusion might otherwise arise.

Giving compatible left and right actions of V ×H amounts to giving separate

actions of the 2-cells of V and H, for which we gain a little more intuition by

rendering them into pictorial form

a a
g

> a′ a
g

> a′

p+

∨

β⇒+

∨

q + q+

∨

λ +

∨

p′ 7−→ p+

∨

λ ∗
H
β +

∨

p′

ā ā
f̄

> ā′ ā
f̄

> ā′

a
g

> a′ a′ a
g

> a′

q+

∨

λ +

∨

p′ + p′+

∨

β′⇒+

∨

q′ 7−→ q+

∨

β′ ∗
H
λ +

∨

q′

ā
f̄

> ā′ ā′ ā
f̄

> ā′

with similar diagrams for horizontal actions λ ∗
V
α, ᾱ ∗

V
λ (where α: f ⇒ g

and ᾱ: f̄ ⇒ ḡ are 2-cells in H). Of course these each satisfy the usual action

conditions with respect to identities and depth-wise composition of 2-cells in

H and V , but in order to unify them into an endo-profunctor on V × H they

must also satisfy six extra “mutual compatibility” conditions:

(β′ ∗
H
λ) ∗

H
β = β′ ∗

H
(λ ∗

H
β) (β′ ∗

H
λ) ∗

V
α = β′ ∗

H
(λ ∗

V
α)

(ᾱ ∗
V
λ) ∗

H
β = ᾱ ∗

V
(λ ∗

H
β) (ᾱ ∗

V
λ) ∗

V
α = ᾱ ∗

V
(λ ∗

V
α)

ᾱ ∗
V

(β′ ∗
H
λ) = β′ ∗

H
(ᾱ ∗

V
λ) (λ ∗

V
α) ∗

H
β = (λ ∗

H
β) ∗

V
α

Once we have this much structure we may define a category CylH(p, p′), for

each pair of vertical 1-cells p, p′ ∈ V , with
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objects squares λ ∈ S with domH(λ) = p and codH(λ) = p′,

maps (αd, αc):λ⇒H λ̇ consist of pairs of 2-cells αd: domV (λ)⇒ domV (λ̇) and

αc: codV (λ) ⇒ codV (λ̇) in H satisfying αc ∗
V
λ = λ̇ ∗

V
αd , these are called

horizontal cylinders.

composition is pointwise in H, in other words if (α̇d, α̇c): λ̇⇒H λ̈ is another

horizontal cylinder then

(α̇d, α̇c) • (αd, αc) = (α̇d • αd, α̇c • αc)

which is well defined since:

(α̇c • αc) ∗
V
λ = α̇c ∗

V
(αc ∗

V
λ) = α̇c ∗

V
(λ̇ ∗

V
αd)

= (α̇c ∗
V
λ̇) ∗

V
αd = (λ̈ ∗

V
α̇d) ∗

V
αd = λ̈ ∗

V
(α̇d • αd)

Dually we also have a category CylV (f, f̄) for each pair of horizontal 1-cells

f, f̄ ∈ H, the maps of which are called vertical cylinders.

(iii) Equivariant maps

SV ⊗ SV
⊗
H

> SV V1
ih

> SV

SH ⊗ SH
⊗
V

> SH H1
iv

> SH

where SV (SH) is S considered simply as an endo-profunctor on V (H), ⊗ is

used to denote tensor product of profunctors and V1, H1 are imbued with the

canonical actions making them into identities, on their respective categories,

under ⊗.

Unravelling these definitions we get an operation λ′ ⊗
H
λ, acting on pairs of

squares λ′, λ ∈ S with domH(λ′) = codH(λ), such that

• domH(λ′ ⊗
H
λ) = domH(λ) and codH(λ′ ⊗

H
λ) = codH(λ′),

• for vertical 2-cells β, β′′ ∈ V with cod(β) = domH(λ) and codH(λ′) =

dom(β′′) we have

(λ′ ⊗
H
λ) ∗

H
β = λ′ ⊗

H
(λ ∗

H
β)

β′′ ∗
H

(λ′ ⊗
H
λ) = (β′′ ∗

H
λ′)⊗

H
λ ,

• if λ̇ is another square and β′: codH(λ)⇒V domH(λ̇) is a vertical 2-cell

then:

λ̇⊗
H

(β′ ∗
H
λ) = (λ̇ ∗

H
β′)⊗

H
λ
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Likewise giving an equivariant map ih, as above, corresponds to providing a

square ihp ∈ S, for each vertical 1-cell p ∈ V , with domH(ihp) = codH(ihp) = p

such that these collectively satisfy

β ∗
H

ihp = ihq ∗
H
β

for each vertical 2-cell β: p⇒V q. Explicit descriptions of ⊗
V

and iv are dual to

these.

It is immediate that we may define a horizontal composite of vertical cylinders,

if (βd, βc):λ⇒V λ̇ and (β′d, β
′
c):λ

′⇒V λ̇
′ are cylinders with β′d = βc then (βd, β

′
c)

is a vertical cylinder from λ′ ⊗
H
λ to λ̇′ ⊗

H
λ̇ since:

β′c ∗
H

(λ′ ⊗
H
λ) = (β′c ∗

H
λ′)⊗

H
λ = (λ̇′ ∗

H
β′d)⊗

H
λ

= λ̇′ ⊗
H

(βc ∗
H
λ) = λ̇′ ⊗

H
(λ̇ ∗

H
βd) = (λ̇′ ⊗

H
λ̇) ∗

H
βd

We also get vertical composites of horizontal cylinders dually.

Finally all of the preceding data is subject to the following rules. In each

case if we state a rule which only involves horizontal properties of squares

then a dual rule must also hold for the corresponding vertical property, thus

preserving the symmetry of our definition:

(iv) For compatible squares λ, λ′ ∈ S:

domV (λ′ ⊗
H
λ) = domV (λ′)⊗

H
domV (λ)

codV (λ′ ⊗
H
λ) = codV (λ′)⊗

H
codV (λ)

In diagrammatic terms this means that horizontal composition of squares looks

like:

a
f

> a′
f ′

> a′′ a

f ′ ⊗
H
f

> a′′

p+

∨
λ p′+

∨
λ′ +

∨
p′′ 7−→ p+

∨
λ′ ⊗

H
λ +

∨
p′′

ā
f̄

> ā′

f̄ ′
> ā′′ ā

f̄ ′ ⊗
H
f̄

> ā′′

(v) For each vertical 1-cell p ∈ V :

domV (ihp) = ihdomV (p)

codV (ihp) = ihcodV (p)
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In diagrammatic terms this means that ihp looks like:

a
iha

> a

p+

∨
ihp +

∨
p

ā
ihā

> ā

(vi) Horizontal composition preserves horizontal cylinders. In other words suppose

that (αd, αc):λ⇒H λ̇ ∈ CylH(p, p′) and (α′d, α
′
c):λ

′ ⇒H λ̇′ ∈ CylH(p′, p′′) are

horizontal cylinders, then the pair (α′d⊗
H
αd , α

′
c⊗
H
αc) is a cylinder from λ′⊗

H
λ

to λ̇′ ⊗
H
λ̇.

We may re-express this in terms of a “middle four interchange” rule, for any

(domain/codomain compatible) horizontal 2-cells and squares we have cylin-

ders:
(ihdomV (λ), αc):λ⇒H αc ∗

V
λ (ihdomV (λ′), α

′
c):λ

′⇒H α
′
c ∗
V
λ′

(αd, i
h
codV (λ̇)

): λ̇⇒H λ̇ ∗
V
αd (α′d, i

h
domV (λ̇′)

): λ̇′⇒H λ̇
′ ∗
V
α′d

Now write out what it means to say that horizontal composition of these pairs

preserves the cylinder property and we get the equalities

(α′c ⊗
H
αc) ∗

V
(λ′ ⊗

H
λ) = (α′c ∗

V
λ′)⊗

H
(αc ∗

V
λ)

(λ̇′ ⊗
H
λ̇) ∗

V
(α′d ⊗

H
αd) = (λ̇′ ∗

V
α′d)⊗

H
(λ̇ ∗

V
αd)

from which, in turn, we may clearly re-derive our original condition. This

axiom gives us a functor

CylH(p′, p′′)× CylH(p, p′)

⊗
H
> CylH(p, p′′)

enriching the horizontal composite of squares.

(vii) given three squares

a
f

> a′
f ′

> a′′
f ′′

> a(3)

p+

∨
λ p′+

∨
λ′ p′′+

∨
λ′′ +

∨
p(3)

ā
f̄

> ā′

f̄ ′
> ā′′

f̄ ′′
> ā(3)
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the canonical isomorphisms

(f ′′ ⊗
H
f ′)⊗

H
f

can
∼−> f ′′ ⊗

H
(f ′ ⊗

H
f)

(f̄ ′′ ⊗
H
f̄ ′)⊗

H
f̄

can
∼−> f̄ ′′ ⊗

H
(f̄ ′ ⊗

H
f̄)

ofH form a horizontal cylinder (λ′′⊗
H
λ′)⊗

H
λ⇒Hλ

′′⊗
H

(λ′⊗
H
λ) which is necessarily

then an isomorphism in CylH(p, p(3)).

(viii) for any square λ (as in the diagram above) the canonical isomorphisms

f ⊗
H

iha

can
∼− > f and iha′ ⊗

H
f

can
∼− > f

f̄ ⊗
H

ihā

can
∼− > f̄ ihā′ ⊗

H
f̄

can
∼− > f̄

of H are the components of horizontal cylinders λ⊗
H

ihp⇒H λ and ihp′ ⊗
H
λ⇒H λ,

which are necessarily then isomorphisms in CylH(p, p′).

The functors defined at the end of (vi) and the isomorphisms provided by this

and the previous axiom render the categories CylH(p, p′) into the “homsets” of

a bicategory of horizontal cylinders CylH , whose 0-cells are the vertical 1-cells.

Since the various composites of cylinders are all defined pointwise in H the

required coherence conditions on the canonical isomorphisms follow trivially

from the corresponding properties in there. Immediately the vertical domain

and codomain functions on squares enrich to strict homomorphisms:

codV , domV : CylH > H

Dually we have a bicategory of vertical cylinders CylV , and strict homomorph-

isms:
codH , domH : CylV > V

(ix) given four compatible squares

a
f

> a′
f ′

> a′′

p+

∨

λ p′+

∨

λ′ +

∨
p′′

ā
f̄

> ā′
f̄ ′

> ā′′

p̄+

∨
λ̄ p̄′+

∨
λ̄′ +

∨
p̄′′

ã

f̃

> ã′

f̃ ′
> ã′′
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the middle four interchange rule holds, in other words:

(λ̄′ ⊗
H
λ̄)⊗

V
(λ′ ⊗

H
λ) = (λ̄′ ⊗

V
λ′)⊗

H
(λ̄⊗

V
λ)

As was pointed out in [3] proposition 7.4.1 the theory of bicategories (and strict

homomorphisms) is essentially algebraic and that the inclusion of this category

into the category of bicategories and morphisms preserves limits. In particular

we may form the limit of a diagram of strict homomorphisms in the näıve way,

that is to say pointwise, and so compose the spans (codH ,CylV , domH) and

(codV ,CylH , domV ) with themselves by pulling back. Now a combination of

the comment at the end of (iii), about composition of cylinders, and the middle

four interchange rule provides us with strict homomorphisms of spans:

(codV ,CylH , domV )×
H

(codV ,CylH , domV )

⊗
V
> (codV ,CylH , domV )

(codH ,CylV , domH)×
V

(codH ,CylV , domH)

⊗
H
> (codH ,CylV , domH)

enriching the corresponding composition of squares.

And finally:

(x) for any 0-cell a ∈ A the squares ihiva and iviha are identical. In other words the

horizontal identity square on the identity iva ∈ V is equal to the vertical identity

square on iha ∈ H. Furthermore horizontal (vertical) identity squares are well

behaved with respect to vertical (horizontal) composition, i.e.:

ihq ⊗
V

ihp = ihq⊗
V
p

ivg ⊗
H

ivf = ivg⊗
H
f

This axiom and the conditions imposed on identity squares in rules (iii) and (v)

ensure that ih and iv enrich to canonical strict homomorphisms

H iv
> CylH

V ih
> CylV

Notice that, as we pointed out in the course of the definition, double bicategories

are inherently symmetrical. To be precise we may swap the rôles of horizontal and

vertical cells of D̃ and reflect all squares about their leading diagonals to obtain

another double bicategory D̃rf
. �
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We presented an example of this sort of structure in section 1.2, the double

bicategory Sq(M,K, ( )∗) associated with a (weak) equipment. Another canonical

example related to that one is Sq(B), the double bicategory of squares derived from

a single bicategory B. This has H = Bco, V = B and squares of the form

a
q
+ > a′

p+

∨
λ ⇑ +

∨
p′

ā +
q̄
> ā′

where p, p′, q, q̄ ∈ B are 1-cells and (λ: p′ ⊗ q ⇒ q̄ ⊗ p) ∈ B is a 2-cell. This example

is exactly the double bicategory of squares associated with the weak equipment

(B,Bco, IB). The work (and notation) on cylinders in [3] is clearly related to that

presented here via this example. The principle reason for introducing squares and

cylinders seems to have been to facilitate the definition of the bicategory Bicat(B, C),
this is subsumed by the slightly more general version:

Observation 1.4.2 Suppose that D̃ = (A,H,V ,S) is a double bicategory and B a

bicategory then we may define a natural bicategory BicatH(B, D̃) with:

0-cells bicategory morphisms M:B > V ,

1-cells bicategory morphisms Ω:B > CylV , which we call horizontal transfor-

mations. Such cells have domain and codomain given by the composites

(domH ◦Ω) and (codH ◦Ω) respectively, where domH , codH : CylV > V are

the strict homomorphisms defined at the end of definition 1.4.1(viii).

More explicitly a transformation Ω: M > M′ consists of a family of hori-

zontal 1-cells

M(b)
Ωb

> M′(b)

one for each 0-cell b ∈ B, and a square

Mb
Ωb

> M′b

Mp+

∨

Ωp +

∨

M′p

Mb̄
Ωb̄

> M′b̄

for each 1-cell (p: b > b̄) ∈ B. These must satisfy the rules
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• for any 2-cell β: p⇒ ṗ the vertical 2-cells

Mp
Mβ

> Mṗ

M′p
M′β

> M′ṗ

are the components of a vertical cylinder Ωp⇒V Ωṗ.

• for any pair of 1-cells p and p̄: b̄ > b̃ in B the canonical 2-cells

Mp̄⊗
V

Mp
can

> M(p̄⊗ p)

M′p̄⊗
V

M′p
can

> M′(p̄⊗ p)

constitute a cylinder Ωp̄ ⊗
V

Ωp⇒V Ωp̄⊗p.

• for any 0-cell b ∈ B the canonical identity comparison 2-cells

ivMb

can
> M(ib)

ivM′b
can

> M′(ib)

constitute a vertical cylinder ivΩb
⇒V Ωib .

2-cells m: Ω⇒ Ω̇, called horizontal modifications, consist of a family of horizontal

2-cells mb: Ωb ⇒H Ω̇b, one for each 0-cell b ∈ B, such that for each 1-cell

(p: b > b̄) ∈ B the pair of cells (mb,mb̄) is a horizontal cylinder Ωp⇒H Ω̇p.

As usual depth-wise composition of 2-cells is calculated pointwise in H.

composition given transformations Ω and Ω′ with (codH ◦Ω) = (domH ◦Ω′), in

other words they may be composed, we get a unique morphism

〈Ω′,Ω〉:B > CylV ×
V

CylV

and we obtain a third transformation Ω′ ⊗
H

Ω as the composite

B
〈Ω′,Ω〉

> CylV ×
V

CylV

⊗
H

> CylV

where ⊗
H

is the strict homomorphism defined at the end of 1.4.1(ix). Since ⊗
H

is in fact a homomorphism of suitable spans it follows that domH(Ω′ ⊗
H

Ω) =

domH Ω and codH(Ω′ ⊗
H

Ω) = codH Ω′. More explicitly the formulae for the

structure cells of Ω′ ⊗
H

Ω are

(Ω′ ⊗ Ω)b = Ω′b ⊗
H

Ωb for 0-cells b ∈ B

(Ω′ ⊗ Ω)p = Ω′p ⊗
H

Ωp for 1-cells p ∈ B
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from which it is clear how to extend this composition to horizontal modifica-

tions, simply calculate pointwise in H. Rule (vii) of definition 1.4.1 provides

us with associativity modifications.

identity on the 0-cell M is the composite

B M
> V ih

> CylV

where ih denotes the strict homomorphism defined at the end of 1.4.1(x),

explicitly:

(iM)b = ihMb for 0-cells b ∈ B
(iM)p = ihMp for 0-cells p ∈ B

The modifications displaying this as an identity, in the bicategorical sense, are

provided pointwise by definition 1.4.1(viii).

Some examples of this construction are Bicat(B, C) which is just BicatH(B, Sq(C))
and the bicategory Mnd(M,K, ( )◦) introduced in section 1.2, which is simply

BicatH(1, Sq(M,K, ( )◦)). Notice that if H is a 2-category, rather than just a

bicategory, then so is any bicategory BicatH(B, D̃).

We now set about presenting a number of natural (strongly) bicategory enriched

categories of double bicategories. In essence we start by presenting notions which

only involve the horizontal structure of each double bicategory, and then build layers

of vertical information upon that. On turning back to equipments in later sections

we will see that this corresponds to first providing important foundational structure

at the level of bicategories of functors and then building the actions upon profunctors

on top of this. First the following technical lemmas:

Observation 1.4.3 The category SHom of (small) bicategories and strict homo-

morphisms has all small limits which are calculated pointwise, furthermore the func-

tors

SHom
Hom(A, )

> SHom

SHom
HomS(A, )

> SHom
preserve these for each bicategory A.

Proof. Notice that this is essentially just proposition 7.4.1 of [3], SHom is es-

sentially algebraic and therefore possesses all small limits which are calculated

pointwise. Describing the construction of these limits explicitly gives an indica-

tion of why the functors given should preserve them, let I be a small category and

D: I > SHom a diagram, then lim←−I
[D(−)] has:
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0-cells families {di}i∈I of 0-cells di ∈ Di satisfying the condition Dγ(di) = di′ for

all maps γ: i > i′.

1-cells {fi}i∈I: {di}i∈I > {d′i}i∈I families of 1-cells fi ∈ Di satisfying the same

condition with respect to the maps of I.
2-cells {αi}i∈I: {fi}i∈I ⇒ {f ′i}i∈I families of 2-cells αi ∈ Di again satisfying this

naturality condition.

composition All compositions of families are calculated pointwise, at this stage

strictness of the transition homomorphisms Dγ becomes necessary, allowing us to

establish that pointwise horizontal composition is well defined. For instance if

{fi}i∈I and {gi}i∈I are compatible families then the calculation

Dγ(gi ⊗ fi) = Dγ(gi)⊗Dγ(fi) = gi′ ⊗ fi′

establishes that the family {gi ⊗ fi}i∈I satisfies the required naturality condition,

but is only made possible by requiring strictness of Dγ.
identities Also defined pointwise, again strictness of the transition homomorphisms

ensure that this is well defined.

The limit cone πi: lim←−I
[D( )] > Di simply consists of the strict homomorphisms

which project families on to each of their components.

Now consider the limit of the diagram Hom(A,D( )), a family of homomorph-

isms {Fi ∈ Hom(A,Di)}i∈I is a 0-cell of lim←−I
[Hom(A,D( ))] iff Dγ ◦ Fi = Fi′ for

all maps γ ∈ I. Of course this means that if a is a (0-, 1- or 2-) cell of A then the

family {Fi(a)}i∈I satisfies the naturality condition making it a (0-, 1- or 2-) cell of

lim←−I
[D( )], but this is not enough to characterise an equality of homomorphisms.

We must also insist that the families of canonical isomorphisms

Fi(q)⊗ Fi(p)
cani
∼− > Fi(q ⊗ p)

iFi(a)

cani
∼− > Fi(ia)

are natural and therefore 2-cells of lim←−I
[D( )], here again we require the strictness of

transition homomorphisms. The compositions of lim←−I
[D( )] are defined pointwise, so

we see straightaway that natural families of homomorphisms Fi ∈ Hom(A,Di) are in

bijective correspondence with homomorphisms F ∈ Hom(A, lim←−I
[D( )]). It should

be no surprise that this bijection is exactly the action of the canonical comparison

homomorphism

Hom(A, lim←−I
[D( )]) > lim←−I

[Hom(A,D( ))] (1.45)

on 0-cells.

With this we have certainly established that the limit of D( ) is preserved by

the embedding SHom ⊂ > Hom 0, which might profitably be rephrased by saying
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that Hom 0 has limits of all (small) diagrams with transition homomorphisms which

are strict, and these are calculated as in SHom. A little work is needed to establish

our preservation result, but this amounts to no more than noticing that families

of transformations {Ψi ∈ Hom(A,Di)}i∈I are natural iff the family {(Ψi)a}i∈I is

a (1- or 2-) cell of lim←−I
[D( )] for all (0- or 1-) cells a ∈ A along with a similar

component-wise result for modifications. Using these we finally establish that the

comparison homomorphism of (1.45) is also bijective on 1- and 2-cells. The proof

for HomS(A, ) is identical. �

Corollary 1.4.4 The multicategories Hom and HomS have limits of (small) dia-

grams of strict homomorphisms calculated as in SHom. This means that for any

diagram D( ) in SHom, families of (strong) n-homomorphisms

[B1, · · · ,Bn]
Fi

> Di

satisfying Dγ〈Fi〉 = Fi′ for all γ ∈ I (call this an n-cone) factor uniquely though the

limit cone πi: lim←−I
[D( )] > Di as

[B1, · · · ,Bn]
F
> lim←−I

[D( )]

with πi〈F〉 = Fi.

Proof. Simple induction on n the order of n-homomorphisms.

n =  : 0-homomorphisms into a bicategory correspond to its 0-cells therefore all

the corollary says for this case is that we form the set of 0-cells of a limit in SHom
by taking the limit of the composite diagram:

I
D( )

> SHom 0-cells
> Set

n >  : and assuming result is true for m-homomorphisms with m < n. Simply

use the natural bijective correspondence of lemma 1.3.4 to reduce an n-cone, as

in the statement of the lemma, to an (n− 1)-cone:

[B1, · · · ,Bn−1]
F̂i
> Hom(Bn,Di)

The last observation demonstrated that Hom(Bn, ) preserves limits in SHom so

we may apply the induction hypothesis to get a unique (n− 1)-homomorphism

[B1, · · · ,Bn−1]
F̂
> Hom(Bn, lim←−I

[D( )])

which in turn corresponds to a unique n-homomorphism factoring the n-cone we

started with. Again the proof for HomS is identical. �
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Definition 1.4.5 Let A be a (strongly) bicategory enriched category, we say that

a homomorphism H ∈ A(A,B) is strict iff each homomorphism of bicategories

A(A′, A)
A(A′,H)

> A(A′, B) and

A(B,B′)
A(H, B′)

> A(A,B′)

is strict in the traditional sense. The strict homomorphisms in A are well behaved

with respect to composition and identities so therefore constitute the maps of an (un

-enriched) subcategory A
st

of A
0
. Notice that the strict homomorphisms of Hom,

Homop and HomS coincide with the traditional notion, eg. Hom st = SHom.

Lemma 1.4.6 Given any small (un-enriched) category C we may naturally form a

(strongly) bicategory enriched category AC the objects of which are (honest) functors

F :C > A
st

.

Proof. This is essentially the same as the usual construction of enriched functor

categories by dint of corollary 1.4.4, for comparison see [30] chapter 2. Define the

(strongly) bicategory enriched category AC with objects functors F :C > A
st

and homsets given by the end formula:

AC(F ,G) =
∫
c∈C
A(Fc,Gc)

This limit only exists in Hom 0 since we have insisted on restricting our attention

to those functors on C which map only to strict homomorphisms in A. It is formed

by taking the limit of a diagram of disjoint components

A(Fc,Gc)

∨
A(Fc,Gγ)

A(Fc′,Gc′)
A(Fγ,Gc′)

> A(Fc,Gc′)

one for each map (γ: c > c′) ∈ C, which we are assured is in SHom by virtue

of the fact that each Gγ and Fγ is a strict homomorphism in A. Applying corol-

lary 1.4.4 we may define a unique 2-homomorphism

[AC(G,H),AC(F ,G)]
◦
> AC(F ,H)

with the property that

[
∫
c∈C
A(Gc,Hc),

∫
c∈C
A(Fc,Gc)]

◦
>
∫
c∈C
A(Fc,Hc)

πc∨ ∨
πc ∨

πc

[A(Gc,Hc),A(Fc,Gc)]
◦

> A(Fc,Hc)
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commutes (in other words ◦〈πc, πc〉 = πc〈◦〉) for each object c ∈ C. In a similar

fashion we may define a 0-homomorphism

[·]
IF

> AC(F ,F)

by requiring that it be the unique one making

[·]
IF

>
∫
c∈C
A(Fc,Fc)

HHH

IFc
HHHj ∨

πc

A(Fc,Fc)

commute for each object c ∈ C. By the usual arguments involving uniqueness

properties of universals and the associativity / identity rules of A we establish that

this data satisfies the conditions required of the compositions and identities of a

(strongly) bicategory enriched category AC.

Explicitly the homomorphisms, transformations and modifications of AC are

families {Fc ∈ A(Fc,Gc)}c∈C, {Φc ∈ A(Fc,Gc)}c∈C and {αc ∈ A(Fc,Gc)}c∈C of

the corresponding structures in A, satisfying the obvious naturality condition with

respect to the maps of C. The various composites making these a (strongly) bicat-

egory enriched category are all defined pointwise from those of A. �

Armed with these lemmas we may now define a fundamental (strongly) bicate-

gory enriched category of (small) double bicategories:

Definition 1.4.7 (Horiz and HorizS) Given a double bicategory D̃ we have

already constructed the bicategory of horizontal cylinders CylH and strict homo-

morphisms

CylH

domV

codV

>
> H (1.46)

this of course is simply an object of the (strongly) bicategory enriched category

HomP (HomP
S), where P is the category given pictorially by:

P = • >
>
•

Let DBicat denote the set of (small) double bicategories and

DBicat Hor
> ob(HomP)

the function taking D̃ to the diagram of strict homomorphisms in 1.46.

102



CHANGE OF BASE

Notice that any enriched functor F:A > B between (strongly) bicategory

enriched categories may be factored uniquely as Fm ◦ Fe, where Fm is fully faithful

and Fe is an isomorphism on objects. Of course we may consider DBicat to be a

discrete (strongly) bicategory enriched category and then Hor becomes an enriched

functor into either HomP or HomP
S. The enriched categories Horiz and HorizS are

simply the intermediate categories obtained by applying our factorisation to those

versions of Hor. In a little more detail:

• ob(Horiz) = DBicat,

• Horiz(D̃, D̃′) = HomP(Hor(D̃),Hor(D̃′)),
• compositions and identities are those of HomP. �

As usual we really ought to elucidate a little on the structure of the entities

which comprise Horiz (HorizS):

homomorphisms: called horizontal maps. Given a pair of double bicategories

D̃ = (A,H,V ,S) and D̃′ = (A′,H′,V ′,S ′) a horizontal map

D̃
G̃ = (G,GH ,GV ,GS)

> D̃′

consists of:

(i) A homomorphism GH :H > H′ with action G:A > A′ on 0-cells.

(ii) A function GV acting on vertical 1-cells, mapping p: a +> ā ∈ V to

some GV p: Ga +> Gā ∈ V ′.
(iii) A map of squares GS:S > S ′ given pictorially by:

a
f

> a′ Ga
GH(f)

> Ga′

p+

∨

λ +

∨
p′ > GV (p) +

∨
GSλ +

∨
GV (p′)

ā
f̄

> ā′ Gā
GH(f̄)

> Gā′

(1.47)

This data must satisfy the following three “cylinder” conditions.

(iv) For any horizontal cylinder (α, ᾱ):λ⇒H λ̇ the pair of horizontal 1-cells

(GH(α),GH(ᾱ)) form a cylinder GS(λ) ⇒H GS(λ̇). This condition is

clearly equivalent to saying that the action of horizontal 2-cells on squares

is preserved, in the sense that:

GS(λ̇ ∗
V
α) = GS(λ̇) ∗

V
GH(α) GS(ᾱ ∗

V
λ) = GH(ᾱ) ∗

V
GS(λ)
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(v) Given a second square

a′
f ′

> a′′

p′+

∨
λ′ +

∨
p′′

ā′

f̄ ′
> ā′′

the (isomorphic) canonical horizontal 2-cells

GH(f ′)⊗
H

GH(f)⇒H GH(f ′ ⊗
H
f) GH(f̄ ′)⊗

H
GH(f̄)⇒H GH(f̄ ′ ⊗

H
f̄)

are the components of a horizontal cylinder:

GS(λ′)⊗
H

GS(λ)⇒H GS(λ′ ⊗
H
λ)

(vi) For each vertical 1-cell p: a +> ā ∈ V the (isomorphic) canonical hor-

izontal 2-cells ihGa ⇒H GH(iha), ihGā ⇒H GH(ihā) are the components of a

horizontal cylinder ihGV p
⇒H GS(ihp).

transformations: Ψ̃ = (Ψ,Ψ): F̃ > G̃ called horizontal transformations consist

of:

(i) A traditional (strong) transformation Ψ: FH > GH .

(ii) For each vertical 1-cell p: a > ā ∈ V a square:

Fa
Ψa

> Ga

FV p+

∨

Ψp +

∨
GV p

Fā
Ψā

> Gā

This data must satisfy the cylinder condition:

(iii) Given any square λ ∈ S as in (1.47) the horizontal structure 2-cells

GH(f)⊗
H

Ψa =====
Ψf

====⇒ Ψa′ ⊗
H

FH(f)

GH(f̄)⊗
H

Ψā ====
Ψf̄

====⇒ Ψā′ ⊗
H

FH(f̄)

of the transformation Ψ constitute the components of a cylinder:

GH(λ)⊗
H

Ψp =====
Ψλ
====⇒ Ψp′ ⊗

H
FH(λ)
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modifications: α: (Ψ,Ψ)⇒ (Φ,Φ) again called horizontal modifications comprise:

(i) A (traditional) modification α: Ψ ⇒ Φ, satisfying the supplementary

cylinder condition:

(ii) For each vertical 1-cell p: a +> ā the horizontal 2-cells αa: Ψa ⇒H Φa

and αā: Ψā ⇒H Φā are the components of a cylinder αp: Ψp⇒H Φp.

The following proposition elucidates the structure of biadjoints in HorizS by

giving a “one sided” universal property:

Proposition 1.4.8 A horizontal map of double bicategories G̃: D̃ > D̃′ has a

left biadjoint in HorizS iff

(i) The homomorphism GH :H > H′ has a left biadjoint FH :H′ > H (in

the traditional sense) with a unit we will call Ψ: IH′ > GH ◦ FH .

(ii) For all vertical 1-cells q: b +> b̄ in D̃′ there exists a vertical 1-cell

FV (q): Fb +> Fb̄

in D̃ and a square

b
Ψb

> GFb

q+

∨

Ψq +

∨
GV FV (q)

b̄
Ψb̄

> GFb̄

with the property that for each fixed collection of 1-cells

q: b +> b̄ ∈ V ′ p: a +> ā ∈ V
f : Fb > a ∈ H f̄ : Fb̄ > ā ∈ H

there is a bijection between squares

b

GH(f)⊗
H

Ψb

> Ga Fb
f

> a

q+

∨

λ +

∨

GV (p) < > FV (q) +

∨

λ̃ +

∨

p

b̄
GH(f̄)⊗

H
Ψb

> Gā Fb̄
f̄

> ā

(1.48)

satisfying the equation λ = GS(λ̃)⊗
H

Ψq.
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Proof.

“⇒” Suppose we are given a horizontal map F̃: D̃′ > D̃ which is left biadjoint

to G̃ in HorizS. Examining the construction of this enriched category, which we

gave in terms of HomP
S, and recalling the properties of biadjunctions discussed in

section 1.3 we see that we have biadjoints

(Ψ,Φ, α, β) : H
<

FH

⊥b
GH

>
H′

(Ψ,Φ, ᾱ, β̄) : CylH
<

FS

⊥b
GS

>
Cyl′H

in HomS, related by conditions which are all of the same form as the following few:

domV ◦FS = FH ◦ domV domV ◦Ψ = Ψ ◦ domV domV ◦ᾱ = α ◦ domV

codV ◦FS = FH ◦ codV codV ◦Φ = Φ ◦ codV codV ◦β̄ = β ◦ codV

This certainly provides us with a left biadjoint to GH , but what about condition

(ii) of the lemma? As usual adopt the notation F for the action of FH on 0-cells

and FV for that of FS on vertical 1-cells, then the conditions relating the two bi-

adjunctions ensure that given a vertical 1-cell q ∈ V ′ we may take FV (q) and the

component of Ψ at q as suitable candidates for the 1-cell and square stipulated in

our condition. To check the universal property of these first consider a square λ as

on the left hand side of (1.48), since GS has a left biadjoint with unit Ψ we certainly

know that there exists a square

Fb
ĝ

> a

FV (q) +
∨

λ̂ +

∨
p

Fb̄
g̈

> ā

(1.49)

and an (isomorphic) horizontal cylinder (δ, δ̄): GS(λ̂) ⊗
H

Ψq ==∼⇒H λ. Consider the

components of this cylinder

GH(ĝ)⊗
H

Ψb ==
δ
∼⇒H GH(f)⊗

H
Ψb

GH(g̈)⊗
H

Ψb̄ ==
δ̄
∼⇒H GH(f̄)⊗

H
Ψb̄

we know that the functor GH( ) ⊗
H

Ψb:H(Fb, a) > H′(b,Ga) is fully faithful for

all 0-cells a ∈ H and b ∈ H′ because FH ab GH with unit Ψ, therefore there exist
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(unique) horizontal 2-cells δ̂: ĝ ==∼⇒H f with δ = GH(δ̂) ⊗
H

Ψb and δ̈: g̈ ==∼⇒H f̄ with

δ̄ = GH(δ̈)⊗
H

Ψb̄. Now set λ̃ = δ̈ ∗
V
λ̂ ∗
V
δ̂−1 and we get the calculation

GS(λ̃)⊗
H

Ψq = (GH(δ̈) ∗
V

GS(λ̂) ∗
V

GH(δ̂−1))⊗
H

Ψq

= (GH(δ̈)⊗
H

Ψb̄) ∗
V

(GS(λ̂)⊗
H

Ψq) ∗
V

(GH(δ̂−1)⊗
H

Ψb)

= δ̄ ∗
V

(GS(λ̂)⊗
H

Ψq) ∗
V
δ−1 = λ

where the last equality holds since (δ, δ̄) is a horizontal cylinder.

Suppose now that we were given two squares λ̃ and λ̃′, as on the right hand

side of (1.48), with GS(λ̃) ⊗ Ψq = GS(λ̃′) ⊗ Ψq(= λ) then there exists a horizontal

cylinder (κ, κ̄): λ̃ ==∼⇒H λ̃′ with GS(κ, κ̄) ⊗
H

Ψq = ihλ, simply because FS ab GS with

unit Ψ. Look at the components of this cylinder, κ is a horizontal endo-2-cell on f

such that GH(κ) ⊗
H

Ψb = ih• therefore, by the faithfulness of GH( ) ⊗
H

Ψb, we have

κ = ihf . Similarly κ̄ = ihf̄ and so λ̃′ = λ̃′ ∗
V
κ = κ̄ ∗

V
λ̃ = λ̃, where the middle equality

is exactly a statement of the fact that (κ, κ̄) is a cylinder. Thus we have established

the bijection of (1.48).

“⇐” First notice the following two simple consequences of condition (ii) of the

lemma:

(a) For any square

b
g

> Ga

p+
∨

λ +

∨
GV (q)

b̄
ḡ

> Gā

and horizontal 1-cells ĝ and g̈ as in (1.49) with given (isomorphic) horizontal 2-

cells δ: G(ĝ)⊗
H

Ψb ==∼⇒H g and δ̄: G(g̈)⊗
H

Ψb̄ ==∼⇒H ḡ there exists a unique square

λ̂, as in (1.49), such that (δ, δ̄) is a cylinder G(λ̂)⊗
H

Ψq ==∼⇒H λ. This is simply

the square corresponding to (δ̄)−1 ∗
V
λ ∗
V
δ under the bijection of (1.48).

(b) For any pair of squares λ̃ as in (1.48) and

Fb
h

> a

GV (q) +
∨

µ̃ +

∨
p

Fb̄
h̄

> ā
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a pair of horizontal 2-cells α: f⇒Hh and ᾱ: f̄⇒H h̄ constitute a cylinder λ̃⇒H µ̃

iff (GH(α)⊗
H

Ψb , GH(ᾱ)⊗
H

Ψb̄) is a cylinder GH(λ̃)⊗
H

Ψq⇒H GH(µ̃)⊗
H

Ψq. The

proof of the “if” part is clear, so to get the reverse implication consider the

calculation

GS(ᾱ ∗
V
λ̃)⊗

H
Ψq = (GH(ᾱ)⊗

H
Ψb) ∗

V
(GS(λ̃)⊗

H
Ψq)

= (GS(µ̃)⊗
H

Ψq) ∗
V

(GH(α)⊗
H

Ψb̄) = GS(µ̃ ∗
V
α)⊗

H
Ψq

in which the middle equality simply states that (GH(α)⊗
H

Ψb , GH(ᾱ)⊗
H

Ψb̄) is

a cylinder, the other two follow from the preservation of ∗
V

by G̃ and rule (vi)

in the definition of a double bicategory. Applying the bijection of (1.48) to

this equality we get ᾱ ∗
V
λ̃ = µ̃ ∗

V
α which simply states that (α, ᾱ) is a cylinder

as required.

Using these observations we turn to constructing the postulated left biadjoint to

G̃ inHorizS, first we provide a candidate horizontal map F̃ and unit Ψ̃: ID̃′ > G̃F̃.

Condition (i) states that we already have a homomorphism FH left biadjoint to GH

in HomS (with unit Ψ), which we set about enriching to a horizontal map of double

bicategories by supplementing it with the action on vertical 1-cells FV as given in

condition (ii). We define a map of squares

b
g

> b′ Fb
FH(g)

> Fb′

q+
∨

µ +
∨
q′ > FV (q) +

∨
FS(µ) +

∨
FV (q′)

b̄
ḡ

> b̄′ ∈ D̃′ F(b̄)
FH(ḡ)

> F(b̄′) ∈ D̃

using observation (a) above by insisting that FS(µ) is the unique square for which

the pair (Ψg,Ψḡ), comprising 2-cellular components of the (traditional) strong trans-

formation Ψ, is a cylinder GSFS(µ)⊗
H

Ψq ==∼⇒H Ψq′ ⊗
H
µ.

In order to demonstrate that (F,FH ,FV ,FS) defined in this way is a horizontal

map we need to demonstrate that it satisfies the three “cylinder conditions” of the

explicit description we gave above. For instance the first of these states that it

should preserve horizontal cylinders, so let (α, ᾱ):µ1⇒H µ2 be a cylinder in CylH
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and notice that we have commutative diagrams

GHFH(g1)⊗
H

Ψb

Ψg1

∼− > Ψb′ ⊗
H
g1 GHFH(ḡ1)⊗

H
Ψb̄

Ψḡ1

∼− > Ψb̄′ ⊗
H
ḡ1

∨

GHFH(α)⊗
H

Ψb

∨

Ψb′ ⊗
H
α

∨

GHFH(ᾱ)⊗
H

Ψb̄

∨

Ψb̄′ ⊗
H
ᾱ

GHFH(g2)⊗
H

Ψb
∼−

Ψg2

> Ψb′ ⊗
H
g2 GHFH(ḡ2)⊗

H
Ψb̄

∼−
Ψḡ2

> Ψb̄′ ⊗
H
ḡ2

since Ψ is a transformation. Of course we defined FS(µ1) and FS(µ2) precisely to

ensure that we get the first two cylinders in the following display

(Ψg1 ,Ψḡ1): GHFH(µ1)⊗
H

Ψq ==∼⇒H Ψq′ ⊗
H
µ1

(Ψg2 ,Ψḡ2): GHFH(µ2)⊗
H

Ψq ==∼⇒H Ψq′ ⊗
H
µ2

(Ψb′ ⊗
H
α,Ψb̄′ ⊗

H
ᾱ): Ψq′ ⊗

H
µ1⇒H Ψq′ ⊗

H
µ2

the last of which is also a cylinder by the assumption that (α, ᾱ) is. It follows

that (GSFS(α) ⊗
H

Ψb,GSFS(ᾱ) ⊗
H

Ψb̄), as the component-wise composite of three

cylinders, is itself one to which we may apply observation (b) completing the proof

that application of F̃ gives a cylinder (FH(α),FH(ᾱ)): FS(µ1)⇒H FS(µ2).

Similar proofs establish the other two cylinder conditions, which are imposed

on the canonical isomorphisms of the homomorphism FH , this time we start with

commutative diagrams of the form

GH(FH(g′)⊗
H

FH(g))⊗
H

Ψb

GH(can)⊗H Ψb

∼− > GH(FH(g′ ⊗
H
g))⊗

H
Ψb

∧
can⊗

H
Ψb
o o

∨

Ψ(g′⊗
H
g)

GHFH(g′)⊗
H

GHFH(g)⊗
H

Ψb
∼−

GHFH(g′)⊗
H

Ψg

> GHFH(g′)⊗
H

Ψb′ ⊗
H
g ∼−

Ψg′ ⊗
H
g

> Ψb′′ ⊗
H
g′ ⊗

H
g

for one of the conditions and

GH(ihFb)⊗
H

Ψb

GH(can)⊗
H

Ψb

∼− > GHFH(ihb )⊗
H

Ψb

∧
can⊗Ψb

o o

∨
Ψih

b

ihGFb ⊗
H

Ψb
∼−

can
> Ψb ⊗

H
ihb
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for the other, which are again well known coherence properties of a (strong) transfor-

mation. This completes the proof that F̃ is a horizontal map. Of course we selected

the defining property of its action FS on squares exactly to ensure that the squares

Ψq satisfy the cylinder condition allowing them to enrich the unit Ψ: IH′ > GHGF

to a horizontal transformation Ψ̃: ID̃′ > G̃F̃.

Consulting lemma 1.3.9, and in particular the proof of its clause (iii) (c)⇒(a),

it is clear we may check that Ψ̃ is the unit of a biadjoint F̃ ab G̃ in HorizS by

establishing two “generalised element” properties. The first of these states that for

an arbitrary pair of horizontal maps H̃ ∈ HorizS(C̃, D̃′) and K̃ ∈ HorizS(C̃, D̃) and

each horizontal transformation ∆̃: H̃ > G̃F̃ there exists a horizontal transforma-

tion Γ̃: F̃H̃ > K̃ accompanied by an isomorphic horizontal modification:

H̃
Ψ̃H̃

> G̃F̃H̃
@
@
@

∆̃

δ∼=
@
@
@R ∨

G̃Γ̃

G̃K̃

(1.50)

We are given that FH ab GH with unit Ψ in HomS, therefore by lemma 1.3.9 we get

a transformation Γ: FHHH > KH and an isomorphic modification:

HH

ΨHH
> GHFHHH

@
@
@

∆

δ∼=
@
@
@R ∨

GHΓ

GHKH

We enrich Γ to a horizontal transformation by the addition of squares

FHc
Γc

> Kc

FV HV (r) +

∨

Γr +

∨

KV (r)

FHc̄
Γc̄

> Kc̄

one for each vertical 1-cell r ∈ C̃, defined (using observation (a) above) by the

property that it is the unique such square making the pair (δc, δc̄) into a cylinder

GS(Γr)⊗
H

ΨHV (r) ==∼⇒H ∆r. Of course we need to check that these satisfy a cylinder
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condition, so suppose that

c
h

> c′

r+

∨
ν +

∨
r′

c̄
h̄

> c̄′

is a square in C̃ then we show that (Γh,Γh̄): KS(ν) ⊗
H

Γr ⇒H Γr′ ⊗
H

FSHS(ν) is a

cylinder with reference to the commutative diagram

GH(KH(h)⊗
H

Γc)⊗
H

ΨHc

GH(Γh)⊗
H

ΨHc

∼− > GH(Γc′ ⊗
H

FHHH(h))⊗
H

ΨHc

can⊗
H

ΨHc
o

∨

o

∨

can⊗
H

ΨHc

GHKH(h)⊗
H

GH(Γc)⊗
H

ΨHc GH(Γc′)⊗
H

GHFHHH(h)⊗
H

ΨHc

GHKH(h)⊗
H
δc o

∨

o

∨

GH(Γc′)⊗
H

ΨH(h)

GHKH(h)⊗
H

∆c
∼−
∆h

> ∆c′ ⊗
H

HH(h) < ∼−
δc′ ⊗

H
HH(h)

GH(Γc′)⊗
H

ΨHc′ ⊗
H

HH(h)

alongside a similar one for h̄, which are of course instances of the condition that δ

satisfies as a modification. Pairs of corresponding maps in these diagrams, except

for (GH(Γh) ⊗
H

ΨHc,GH(Γh̄) ⊗ ΨHc̄), are known to be cylinders between suitably

defined squares, either because G̃ is a horizontal map, Ψ̃ and ∆̃ are horizontal

transformations or by the defining property of each Γr. Therefore, as a pointwise

composite of cylinders, the remaining pair is a cylinder with domain and codomain

GS(KS(ν)⊗
H

Γr)⊗
H

ΨHV (r) and GS(Γr′ ⊗
H

FSHS(ν))⊗
H

ΨHV (r) respectively, to which we

may apply observation (b), completing the proof that (Γh,Γh̄) is itself a cylinder. So

Γ̃ is a horizontal transformation. Furthermore the defining property of each Λ̃r was

selected so as to ensure that the modification δ would satisfy the cylinder condition

making it into a horizontal modification as in (1.50).

Of course we may restate this result by saying that the functor

HorizS(C̃, D̃)(F̃H̃, K̃)
(G̃ )⊗ Ψ̃H̃

> HorizS(C̃, D̃′)(H̃, G̃K̃)

is essentially surjective; the second of the “generalised element” properties we men-

tioned simply stipulates that it should be fully faithful as well. To establish this sup-

pose that γ: G̃Γ̃⊗Ψ̃H̃ ===⇒ G̃Γ̃′⊗Ψ̃H̃ is a horizontal modification, then since FH ab

111



DOMINIC VERITY

GH we know (by lemma 1.3.9) that there exists a unique modification γ̂: Γ ===⇒ Γ′

in HomS with γ = GH γ̂ ⊗ ΨHH . All that remains is to demonstrate the cylinder

property required of γ̂ as a horizontal modification, which states that for each verti-

cal 1-cell r: c > c̄ ∈ C̃ the pair (γ̂c, γ̂c̄) is a cylinder from Γr to Γ
′
r. Notice though

that γ is a horizontal modification therefore (γc, γc̄) = (GH(γ̂c)⊗
H

ΨHc,GH(γ̂c̄)⊗
H

ΨHc̄)

is a cylinder from GS(Γr)⊗
H

ΨHV (r) to GS(Γ
′
r)⊗

H
ΨHV (r); but now applying observation

(b) from above we see that (γ̂c, γ̂c̄) is also a cylinder as required. �

It should be clear that the definition of HorizS takes little account of the vertical

structure of double bicategories, to fix this omission we turn to the process of “layer-

ing” vertical information on top of the fundamental horizontal maps. The (strongly)

bicategory enriched categories presented in the remainder of this section are all con-

structed in a similar way, their objects are double bicategories and homomorphisms

between them consist of horizontal maps enriched with extra “structure”, for in-

stance actions on vertical 2-cells or added canonical isomorphisms. Transformations

between these are not specified by adding structure to those of HorizS, but rather

by imposing extra conditions stipulating compatibility with the data enriching the

underlying horizontal maps of their proposed domains and codomains. So long as

these conditions commute with composition of horizontal transformations in the

homsets of HorizS we may go on to define bicategories Horiz′S(D̃, D̃′) of enriched

maps, compatible transformations and all modifications between them (with no ex-

tra conditions to fulfil). Of course these are defined precisely to ensure the existence

of strict homomorphisms

Horiz′S(D̃, D̃′)
( )�

> HorizS(D̃, D̃′)

which are both locally fully faithful and locally injective on 1-cells. We define a

composition of homomorphisms in Horiz′S using that of their underlying horizontal

maps alongside a choice of (associative) composition of enriching data. Checking

again that this commutes with the supplementary compatibility conditions on trans-

formations we get a strongly bicategory enriched category supplied with a canonical

functor:

Horiz′S
( )�

> HorizS
In presenting our particular cases of this construction we will describe homomorph-

isms and transformations explicitly, leaving the rest up to the reader. This we do to

simplify rather than complicate matters, the natural composition of any enriching

material should suggest itself immediately while the verifications mentioned above

will turn out to be no more than routine.

As an easy first example we supplement horizontal maps with a functorial action

on vertical 2-cells thus obtaining a strongly bicategory enriched category HorizS∗
which has:
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homomorphisms: which comprise a horizontal map

(A,H,V ,S)
G̃
> (A′,H′,V ′,S ′)

and for each pair of 0-cells a, ā ∈ A a functor

V(a, ā)
GV

> V ′(Ga,Gā)

enriching the action of G̃ on vertical 1-cells. These must satisfy a “cylinder

condition” which requires that for any vertical cylinder (β, β′):λ⇒V λ̇ the pair

(GV (β),GV (β′)) is also a cylinder GS(λ)⇒V GS(λ̇). This is equivalent to saying

that the actions of vertical 2-cells on squares are preserved by G̃, in the sense

that:

GS(λ̇ ∗
H
β) = GS(λ̇) ∗

H
GV (β) GS(β′ ∗

H
λ) = GV (β′) ∗

H
GS(λ)

transformations: are horizontal transformations Ψ̃: F̃ > G̃ between underlying

horizontal maps satisfying the additional condition that for each vertical 2-cell

β: p⇒V q ∈ V the pair of 2-cells (FV (β),GV (β)) forms a vertical cylinder Ψp⇒V Ψq.

In fact the following lemma shows that when we restrict attention to double bi-

categories of the form Sq(M,K, ( )∗) all horizontal maps admit a unique enrichment

to a homomorphism of HorizS∗ and all transformations are compatible with that

enrichment.

Lemma 1.4.9 Suppose that the double bicategory D̃′ satisfies a property which states

that for each pair of vertical 1-cells q, q̇: b > b̄ there exists a bijection

b
ihb

> b b

q+

∨
pδq +

∨
q̇ < > q+

∨

δ⇒+

∨
q̇

b̄
ihb̄

> b̄ b̄

(1.51)

with the defining property pδq = ihq̇ ∗
H
δ (= δ ∗

H
ihq ). For instance each double bicategory

Sq(M,K, ( )∗) has this property. It follows that the canonical strict homomorphism

HorizS∗(D̃, D̃
′
)

( )�
> HorizS(D̃, D̃′)

is an isomorphism of bicategories.
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Proof. Given a horizontal map G̃ ∈ HorizS(D̃, D̃′) we provide an action on vertical

2-cells β: p ⇒V ṗ: a → ā ∈ V by letting GV (β): GV (p) ⇒V GV (ṗ) be the unique

vertical 2-cell with the property that the canonical isomorphisms

can: ihGa ==∼⇒H GH(iha) can: ihGā ==∼⇒H GH(ihā) (1.52)

constitute a horizontal cylinder pGV (β)q⇒H GS(pβq). This property may be re-

phrased by saying that under the bijection of (1.51) GV (β) corresponds to the square

can−1 ∗
H

GS(pβq) ∗
H

can.

Notice that for any horizontal map G̃ the 2-cells of (1.52) form a horizontal cylin-

der from ihGV (p) to GS(ihp), therefore if G̃ underlies some homomorphism of HorizS∗
these 2-cells also constitute a cylinder:

GS(β ∗
H

ihp) ==== GV (β) ∗
H

GS(ihp) ======

(can, can)
∼====⇒H GS(β) ∗

H
ihGV (p)

This of course simply states that GV (β) satisfies the defining property of the previous

paragraph therefore if D̃′ obeys the condition in the statement of this lemma there

can be at most one enrichment of G̃ to a homomorphism of HorizS∗.
We proceed by proving that GV (β) as given above is a well defined action en-

riching G̃ to a homomorphism of HorizS∗. In D̃′ we may characterise the left action

of vertical 2-cell δ′ on a square θ as follows, δ′ ∗
H
θ is the unique square such that the

canonical horizontal 2-cells

can: ihb′ ⊗
H
g ==∼⇒H g can: ihb̄′ ⊗

H
ḡ ==∼⇒H ḡ

are the components of a cylinder pδ′q ⊗
H
θ ==∼⇒H δ′ ∗

V
θ. Suppose that λ is a square

of D̃, as in (1.47), and β′: p⇒H ṗ
′ a vertical 2-cell then the coherence conditions on

GH as a homomorphism ensure that we have commutative diagrams:

GH(iha)⊗
H

GH(f)
can
∼−> GH(iha ⊗

H
f) GH(ihā)⊗

H
GH(f̄)

can
∼−> GH(ihā ⊗

H
f̄)

∧ ∧
can⊗

H
GH(f) o GH(can) o

∨
can⊗

H
GH(f̄) o GH(can) o

∨
ihGa ⊗

H
GH(f) ∼−

can
> GH(f) ihGā ⊗

H
GH(f̄) ∼−

can
> GH(f̄)

Taking corresponding pairs of 2-cells in the upper legs of these two diagrams we get

cylinders

(can⊗
H

GH(f), can⊗
H

GH(f̄)): pGV (β′)q⊗
H

GS(λ) ==∼⇒H GS(pβ′q)⊗
H

GS(λ)

(can, can): GS(pβ′q)⊗
H

GS(λ) ==∼⇒H GS(pβ′q⊗
H
λ)

(GH(can),GH(can)): GS(pβ′q⊗
H
λ) ==∼⇒H GS(β′ ∗

H
λ)
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the first by the definition of GV (β′), the second since G̃ is a horizontal map and

the last because as such G̃ preserves horizontal cylinders. It follows therefore that

the pair of 2-cells at the bottom of our squares are the components of a cylinder

pGV (β′)q ⊗
H

GS(λ) ==∼⇒H GS(β′ ∗
H
λ); but by our characterisation of the left actions

of vertical 2-cells in D̃′ this simply establishes that GV (β′) ∗
H

GS(λ) = GS(β′ ∗
V
λ).

An identical proof establishes this preservation result for right actions.

Consider composable vertical 2-cells β, β̇ ∈ V . We know that pβ̇ • βq = (β̇ •
β) ∗

H
ihp = β̇ ∗

H
(β ∗

H
ihp) = β̇ ∗

H
pβq and by the same argument pGV (β̇) • GV (β)q =

GV (β̇) ∗
H
pGV (β)q. We have already shown that GS(β̇ ∗

H
pβq) = GV (β̇) ∗

H
GS(pβq)

and the defining property of GV (β̇) implies that the 2-cells in (1.52) form a cylinder:

pGV (β̇) •GV (β)q = GV (β̇) ∗
H
pGV (β)q ==∼⇒H GV (β̇) ∗

H
GS(pβq) = GS(pβ̇ • βq) .

This establishes that GV (β̇) • GV (β) satisfies the definition of GV (β̇ • β), in other

words the two are equal and as a result GV is functorial on vertical 2-cells.

It remains to show that if Ψ̃: F̃ > G̃ is a transformation in HorizS(D̃, D̃′)
then it satisfies the compatibility condition required of transformations in HorizS∗
for the unique structures enriching its domain and codomain. Let β: p⇒V ṗ: a +> ā

be any vertical 2-cell in D̃. Then because Ψ: FH > GH is a transformation (in

HomS) ensures we have a commutative diagram

ihGa ⊗
H

Ψa

can1
∼− > Ψa <

can2
∼− Ψa ⊗

H
ihFa

can⊗
H

Ψa
o
∨

o
∨

Ψa ⊗
H

can

GH(iha)⊗
H

Ψa
∼−

Ψiha

> Ψa ⊗
H

FH(iha)

for a and a similar one for ā. We may pair the maps at the left, right and bottom

of these diagrams to get horizontal cylinders

(can⊗
H

Ψa, can⊗
H

Ψā): pGV (β)q⊗
H

Ψp ==∼⇒H GS(pβq)⊗
H

Ψp

(Ψiha
,Ψihā

): GS(pβq)⊗
H

Ψp ==∼⇒H Ψṗ ⊗
H

FS(pβq)

(Ψa ⊗
H

can,Ψā ⊗
H

can): Ψṗ ⊗
H
pFV (β)q ==∼⇒H Ψṗ ⊗

H
FS(pβq)

the first and third by the definition of GV (β), FV (β) respectively and the second

since Ψ̃ is a horizontal transformation. From this it follows that the pair of 2-cells

(can−1
2 • can1, can−1

2 • can1) is also a cylinder, a condition which translates to the

equality:

can1 ∗
V

(pGV (β)q⊗
H

Ψp) ∗
V

can−1
1 = can2 ∗

V
(Ψṗ ⊗

H
pFV (β)q) ∗

V
can−1

2
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Of course we already know that

can1 ∗
V

(pGV (β)q⊗
H

Ψp) ∗
V

can−1
1 = GV (β) ∗

H
Ψp

can2 ∗
V

(Ψṗ ⊗
H
pFV (β)q) ∗

V
can−1

2 = Ψṗ ∗
H

FV (β)

therefore we get GV (β) ∗
H

Ψp = Ψṗ ∗
H

FV (β) which is exactly the desired compatibility

condition. �

To go a step further we enrich the homomorphisms ofHorizS∗ with the structural

2-cells of vertical morphisms so as to obtain a strongly bicategory enriched category

HorizSM with:

homomorphisms: comprising a horizontal map

(A,H,V ,S)
G̃
> (A′,H′,V ′,S ′)

and a morphism

V
GV

> V ′

enriching the action of G̃ on vertical 1-cells. The local action of GV must satisfy

the cylinder condition required of a homomorphism in HorizS∗ and its canonical

isomorphisms the following conditions:

(a) Given squares

a
f

> a′ ā
f̄

> ā′

p+

∨
λ +

∨
p′ p̄+

∨
λ̄ +

∨
p̄′

ā
f̄

> ā′ ã

f̃

> ã′

in S, the canonical vertical 2-cells

can: GV (p̄)⊗
V

GV (p)⇒V GV (p̄⊗
V
p) can: GV (p̄′)⊗

V
GV (p′)⇒V GV (p̄′ ⊗

V
p′)

of the morphism GV are the components of a vertical cylinder:

GS(λ̄)⊗
V

GS(λ)⇒V GS(λ̄⊗
V
λ)

(b) For each horizontal 1-cell f : a > a′ ∈ H the canonical vertical cells

can: ivG(a)⇒V GV (iva) can: ivG(a′)⇒V GV (iva′)

are the components of a vertical cylinder ivGH(f)⇒V GS(ivf ).
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transformations: horizontal ones Ψ̃: F̃ > G̃ satisfying the cylinder condition

required of those in HorizS∗ and:

(i) Given vertical 1-cells p: a +> ā and p̄: ā +> ã in V the canonical vertical

2-cells

can: GV (p̄)⊗
V

GV (p)⇒V GV (p̄⊗
V
p) can: FV (p̄)⊗

V
FV (p)⇒V FV (p̄⊗

V
p)

are the components of a cylinder Ψp̄ ⊗
V

Ψp⇒V Ψp̄⊗
V
p.

(ii) For each 0-cell a ∈ A the canonical 2-cells

can: ivG(a)⇒V GV (iva) can: ivF(a)⇒V FV (iva)

are the components of a cylinder ivΨa
⇒V Ψiva .

In a similar fashion we get strongly bicategory enriched categories HorizSC and

HorizSH by enriching actions on vertical cells with the structure of comorphisms

or homomorphisms respectively and imposing corresponding cylinder conditions on

the map transformations between these.

Observation 1.4.10 The various forgetful (enriched) functors between these cate-

gories now fit into a commutative diagram:

HorizSM

�
�
�
�
�
�� @

@
@
@
@
@R

HorizSH HorizS∗ > HorizS
@
@
@
@
@
@R �

�
�
�
�
��

HorizSC
Here the construction methodology discussed on page 112 onward ensures that each

of these forgetful functors has a full and faithful action on modifications and a

faithful action on transformations.

Now when carrying a homomorphism F̃ from HorizSH to HorizSM or HorizSC
we don’t actually forget any of its structure. Instead all we do is to forget the

property that some pieces of that structure are invertible. Furthermore, suppose that

F̃ and G̃ are homomorphisms in HorizSH and that Φ̃: F̃ > G̃ is a transformation

between underlying homomorphisms in HorizS∗. Then it is clear that Φ̃ satisfies

the cylinder conditions which apply to make it a transformation in HorizSH if and

only if it satisfies those that apply to transformations in HorizSM or HorizSC .

Consequently we find that the forgetful enriched functors HorizSH > HorizSM
and HorizSH > HorizSC also act in a full manner on transformations and in a

faithful manner on homomorphisms.
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The most important proposition of this section follows:

Proposition 1.4.11 Suppose that we are given a biadjunction

(F̃ ab G̃, Ψ̃, Φ̃, α, β): D̃ > D̃′

in HorizS∗ where D̃ and D̃′ both satisfy the condition in lemma 1.4.9 then there is

a bijection:{
Enrichments of F̃ to a homo-

morphism in HorizSC.

}
< >

{
Enrichments of G̃ to a homo-

morphism in HorizSM .

}

Furthermore if we use canF and canG to denote the various instances of the canonical

2-cells of corresponding enrichments of F̃ and G̃ they satisfy:

canG ∗
H

(Ψq̄ ⊗
V

Ψq) = GV (canF) ∗
H

Ψq̄⊗
V
q for 1-cells q: b→ b̄′, q̄: b̄→ b̃ in V ′.

canG ∗
H

ivΨb
= GV (canF) ∗

H
Ψiv

b
for each 0-cell b ∈ A′.

(1.53)

and:

(Φp̄ ⊗
V

Φp) ∗
H

canF = Φp̄⊗
V
p ∗
H

FV (canG) for 1-cells p: a→ ā, p̄: ā→ ã in V.

ivΦa
∗
H

canF = Φiva ∗H FV (canG) for each 0-cell a ∈ A.
(1.54)

Proof. Most importantly it should be noted that on combining the condition of

lemma 1.4.9 with the one sided universal property for F̃ ab G̃, as furnished by

proposition 1.4.8, we get a bijection

b
Ψb

> GFb Fb

q+
∨

λ +
∨

GV (p) < > FV (q) +
∨

λ̂⇒+
∨
p

b̄
Ψb̄

> GFb̄ Fb̄

(1.55)

with the defining property λ = GV (λ̂) ∗
H

Ψq. This rule allows us to define unique

vertical 2-cells

canF: FV (q̄ ⊗
V
q)⇒V FV (q̄)⊗

V
FV (q) , canF: FV (ivb)⇒V ivFb

exactly so as to satisfy the equations in (1.53). That these also satisfy the coherence

and naturality properties required of the canonical cells of a comorphism FV follows

from the corresponding rules for GV and the uniqueness properties of bijection (1.55),
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via a few easy calculations. For instance in order to prove the rule

FV (q̃ ⊗
V
q̄ ⊗
V
q) ========

canF
========⇒ FV (q̃)⊗

V
FV (q̄ ⊗

V
q)

‖
‖

‖
‖canF

‖⇓
=

‖⇓
FV (q̃)⊗

V
canF

FV (q̃ ⊗
V
q̄)⊗

V
FV (q) ======

canF ⊗
V

FV (q)
======⇒ FV (q̃)⊗

V
FV (q̄)⊗

V
FV (q)

(1.56)

it is a routine matter to show that

GV ((FV (q̃)⊗
V

canF) • canF) ∗
H

Ψq̃⊗
V
q̄⊗
V
q = (canG • (GV FV (q̃)⊗

V
canG)) ∗

H
(Ψq̃ ⊗

V
Ψq̄ ⊗

V
Ψq)

GV ((canF ⊗
V

FV (q)) • canF) ∗
H

Ψq̃⊗
V
q̄⊗
V
q = (canG • (canG ⊗

V
GV FV (q))) ∗

H
(Ψq̃ ⊗

V
Ψq̄ ⊗

V
Ψq)

by using the definition of the 2-cells canF, then applying the corresponding coherence

rule for GV we see that the expressions on the right hand side are equal. This

establishes the equality of the terms on the left and we apply bijection (1.55) to

demonstrate that (1.56) holds. Notice that we have followed our usual conventions

and eliminated explicit mention of the canonical associativity isomorphisms of the

bicategories in question.

We use a similar sort of argument to verify the identities in (1.54). Applying the

definition of the 2-cells canF we get equalities:

GS((Φp̄ ⊗
V

Φp) ∗
H

canF)⊗
H

ΨGV (p̄)⊗
V

GV (p) = canG ∗
H

((GS(Φp̄)⊗
H

ΨGV (p̄))⊗
V

(GS(Φp)⊗
H

ΨGV (p)))

(GS(Φp̄⊗
V
p)⊗

H
ΨGV (p̄⊗

V
p)) ∗

H
canG = GS((Φp̄⊗

V
p) ∗

H
FV (canG))⊗

H
ΨGV (p̄)⊗

V
GV (p) .

(1.57)

Consider now the transformation G̃Φ̃ ⊗ Ψ̃G̃ in HorizS, this is isomorphic to the

identity iG̃: G̃ > G̃ by the triangle isomorphism α of the biadjoint F̃ ab G̃. Now iG̃
is also the identity transformation on G̃ as enriched to a homomorphism inHorizSM ,

and it is easily shown that any transformation isomorphic, in HorizS, to one from

HorizSM also satisfies the cylinder conditions required of those inHorizSM therefore

G̃Φ̃⊗ Ψ̃G̃ is a transformation in HorizSM .

Returning to the equations in (1.57), the equality of their right hand terms simply

expresses one of the cylinder conditions required of G̃Φ̃⊗ Ψ̃G̃ as a transformation in

HorizSM . Finally applying the uniqueness clause of the one sided universal property

possessed by F̃ ab G̃ to the resulting equality of left hand terms in (1.57) we get the

first equation in (1.54); the second follows by a similar argument.

This completes the construction of the unique vertical comorphism structure

on F̃ induced by a given enrichment of G̃ to HorizSM and satisfying the conditions

given in (1.53) and (1.54). Dually we may construct a unique morphism structure on

G̃ when given a comorphism one on F̃, with which we have established the bijection

required in the statement of the proposition.
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Notice that the archetype for this kind of argument was given by Kelly in [29].

�

The last proposition gives us an important way of constructing biadjoints in

HorizSM (or dually in HorizSC):

Corollary 1.4.12 If F̃: D̃′ > D̃ is a homomorphism in HorizSH admitting a

right biadjoint in HorizS, and D̃,D̃′ both satisfy the condition of lemma 1.4.9; then

there is a unique enrichment of G̃ lifting F̃ ab G̃ to a biadjoint in HorizSM .

Proof. We may consider F̃ to be a homomorphism in HorizSC (as well as in

HorizSM) and so the last proposition provides us with a unique enrichment of G̃

to a homomorphism in HorizSM with the proviso that the conditions in (1.53) and

(1.54) hold. In these conditions all instances of canF are isomorphisms, since F̃ is

in HorizSH , allowing them to be translated into a form in which they simply state

that Ψ̃ and Φ̃ are transformations in HorizSM ; that is once we have re-interpreted

F̃ as a homomorphism in HorizSM . In other words we have (uniquely) lifted F̃ ab G̃

to HorizSM as required. �

The following result was not included in the original version of this work. While

it is not required in the sequel, it is a useful result whose omission was a clear

oversight. Where our proposition 1.4.11 may be thought of as a direct analogue of

Kelly’s theorem 1.2 in [29] we should regard the following proposition as a direct

analogue of proposition 1.3 of that same work.

I should like to thank Jonas Frey for pointing out that this result holds and for

encouraging me to include it here.

Proposition 1.4.13 Suppose that we are given a biadjunction

(F̃ ab G̃, Ψ̃, Φ̃, α, β): D̃ > D̃′

in HorizSM where D̃ and D̃′ both satisfy the condition in lemma 1.4.9. Now by

applying proposition 1.4.11 we find that the homomorphism in HorizS∗ which un-

derlies F̃ has a (unique) enrichment to a homomorphism in HorizSC induced by the

structure of G̃ as a homomorphism in HorizSM .

Let canF and canG denote the various instances of the canonical vertical 2-cells

that enrich F̃ and G̃ with the structure of homomorphisms in HorizSM and let

canF denote the various instances of the induced vertical 2-cells which enrich F̃ to a

homomorphism in HorizSC under proposition 1.4.11.

Then for each pair of 1-cells q: b→ b̄, q̄: b̄→ b̃ in V ′ the canonical 2-cells

canF: FV (q̄)⊗
V

FV (q)⇒V FV (q̄ ⊗
V
q) and canF: FV (q̄ ⊗

V
q)⇒V FV (q̄)⊗

V
FV (q) (1.58)

are mutual inverses and for each 0-cell b in A′ the canonical 2-cells

canF: ivFb⇒V FV (ivb) and canF: FV (ivb)⇒V ivFb (1.59)

are also mutual inverses. It follows therefore that F̃ is a homomorphism in HorizSH .
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Proof. We show that the 2-cells in equation (1.58) are mutually inverse. Observe

first that the biadjunction of the statement takes place in HorizSM so we know that

the unit Ψ̃ is a horizontal transformation in HorizSM . Consequently, Ψ̃ satisfies

the cylinder conditions page 117 which, in particular, provide us with the specific

equation:

(GV (canF) • canG) ∗
H

(Ψq̄ ⊗
V

Ψq) = Ψq̄⊗
V
q (1.60)

Furthermore, we also have the defining equation for canF

canG ∗
H

(Ψq̄ ⊗
V

Ψq) = GV (canF) ∗
H

Ψq̄⊗
V
q (1.61)

from equation (1.53) of the statement of proposition 1.4.11. Combining these two

we find that

GV (canF • canF) ∗
H

Ψq̄⊗
V
q = GV (canF) ∗

H
(GV (canF) ∗

H
Ψq̄⊗

V
q)

= GV (canF) ∗
H

(canG ∗
H

(Ψq̄ ⊗
V

Ψq)) by (1.61)

= (GV (canF) • canG) ∗
H

(Ψq̄ ⊗
V

Ψq)

= Ψq̄⊗
V
q by (1.60)

(1.62)

to which we may apply the uniqueness property of the bijection displayed in equa-

tion (1.55) to show that canF is left inverse to canF.

Now to prove that canF is also right inverse to canF we apply a similar argument

to the counit Φ̃ in HorizSM . Starting with a pair of vertical 1-cells p
def
= FV (q)

and p̄
def
= FV (q̄) in V , we combine the cylinder condition from page 117 for Φ̃ as a

homomorphism in HorizSM

ΦFV (q̄) ⊗
V

ΦFV (q) = ΦFV (q̄)⊗
V

FV (q) ∗
H

(FV (canG) • canF)

with the equality from equation (1.54) of the statement of proposition 1.4.11

(ΦFV (q̄) ⊗
V

ΦFV (q)) ∗
H

canF = ΦFV (q̄)⊗
V

FV (q) ∗
H

FV (canG)

to obtain the equation

(ΦFV (q̄) ⊗
V

ΦFV (q)) ∗
H

(canF • canF) = ΦFV (q̄) ⊗
V

ΦFV (q)

by arguing much as before. At this point it is worth saying that our overloading of the

notation can for canonical 2-cells involved in the last equation has probably obscured

a little more information than we might hope for in this expression. However, a

second look reveals that the sub-expression canF • canF of the last equation actually

refers to the composite:

FV GV FV (q̄)⊗
V

FV GV FV (q)
canF==⇒V FV (GV FV (q̄)⊗

V
GV FV (q))

canF==⇒V FV GV FV (q̄)⊗
V

FV GV FV (q)
(1.63)
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Next we may horizontally right tensor each side of equation (1.62) by the square

FS(Ψq̄)⊗
V

FS(Ψq) to obtain the equation:

(ΦFV (q̄) ⊗
V

ΦFV (q))⊗
H

(FS(Ψq̄)⊗
V

FS(Ψq))

= ((ΦFV (q̄) ⊗
V

ΦFV (q)) ∗
H

(canF • canF))⊗
H

(FS(Ψq̄)⊗
V

FS(Ψq))

= (ΦFV (q̄) ⊗
V

ΦFV (q))⊗
H

(canF ∗
H

(canF ∗
H

(FS(Ψq̄)⊗
V

FS(Ψq))

(1.64)

However, we know that the maps labelled canF are the canonical maps of a HorizSM
structure on F̃ and that those labelled canF are the canonical maps of a HorizCM
structure on F̃, so the cylinder condition (a) of page 116 provides us with the equa-

tions:
canF ∗

H
(FS(Ψq̄)⊗

V
FS(Ψq)) = FS(Ψq̄ ⊗

V
Ψq) ∗

H
canF

canF ∗
H

FS(Ψq̄ ⊗
V

Ψq) = (FS(Ψq̄)⊗
V

FS(Ψq)) ∗
H

canF
(1.65)

These allow us to reduce the expression on the right hand side of equation (1.64) to

(ΦFV (q̄) ⊗
V

ΦFV (q))⊗
H

(((FS(Ψq̄)⊗
V

FS(Ψq)) ∗
H

canF) ∗
H

canF)

= ((ΦFV (q̄) ⊗
V

ΦFV (q))⊗
H

(FS(Ψq̄)⊗
V

FS(Ψq))) ∗
H

(canF • canF)

(1.66)

where the sub-expression canF • canF now refers to the composite:

FV (q̄)⊗
V

FV (q)
canF==⇒V FV (q̄ ⊗

V
q)

canF==⇒V FV (q̄)⊗
V

FV (q) (1.67)

Now the sub-expression (ΦFV (q̄)⊗
V

ΦFV (q))⊗
H

(FS(Ψq̄)⊗
V

FS(Ψq)) is equal to (ΦFV (q̄)⊗
H

FS(Ψq̄))⊗
V

(ΦFV (q)⊗
H

FS(Ψq)) my the middle four interchange rule. Furthermore, the

triangle isomorphism β of our biadjunction is an isomorphic modification inHorizSM
from Φ̃F̃ ⊗ F̃Φ̃ to iF̃. So in particular we know, from modification condition (ii) of

page 105, that its pair of components (βb, βb̄) is a horizontal cylinder from ΦFV (q) ⊗
H

FS(Ψq) to ihq and that its pair of components (βb̄, βb̃) is a horizontal cylinder from

ΦFV (q̄) ⊗
H

FS(Ψq̄) to ihq̄ . It follows that (βb, βb̃) is also a horizontal cylinder from

(ΦFV (q̄)⊗
H

FS(Ψq̄))⊗
V

(ΦFV (q)⊗
H

FS(Ψq)) to ihq̄ ⊗
V

ihq = ihq̄⊗
V
q. So combining this with our

earlier middle four observation we find that:

βb̃ ∗V (ΦFV (q̄) ⊗
V

ΦFV (q))⊗
H

(FS(Ψq̄)⊗
V

FS(Ψq)) ∗
V
β−1
b = ihq̄⊗

V
q (1.68)

Finally, by applying βb̃ ∗V − and − ∗
V
β−1
b to equations (1.64) and (1.66) and reducing

using the last equation we obtain

iq̄⊗
V
q = iq̄⊗

V
q ∗
H

(canF • canF) (1.69)
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which, when combined with our assumption that the condition of lemma 1.4.9 holds

for D̃′, implies that canF is also right inverse to canF as required.

A similar argument establishes the corresponding result for the 2-cells in equa-

tion (1.59), and that is left to the reader. �
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1.5 Bicategory Enriched Categories of Equipments.

Recall from definition 1.2.4 the construction of the double bicategory of squares

associated with a (weak) equipment. This gives a map

Equipments
Sq

> ob(HorizS)

to which we may apply the construction introduced in definition 1.4.7 (with which

we defined HorizS itself) to obtain strongly bicategory enriched categories:

EMap derived from HorizS∗
EMor derived from HorizSM
EcoMor derived from HorizSC
EHom derived from HorizSH

We refer to the homomorphisms in these categories as maps, morphisms, comor-

phisms and homomorphisms of equipments respectively. To elucidate this definition

consider EMap in a little more detail:

• ob(EMap) = the collection of (small, weak) equipments,

• EMap((M,K, ( )∗), (N ,L, ( )∗)) = HorizS∗(Sq(M,K, ( )∗), Sq(N ,L, ( )∗)),

• composition and identities are those of HorizS∗.

Observation 1.4.10 provides us with a commuting diamond of enriched forgetful

functors
EMor

�
�
�
�
�
�� @

@
@
@
@
@R

EHom EMap
@
@
@
@
@
@R �

�
�
�
�
��

EcoMor

which all act in a full and faithful manner on modifications and in a faithful manner

on transformations. That observation also tells us that the forgetful functors from

EHom to EMor and EcoMor also act in a full manner on transformations and in a

faithful manner on homomorphisms.

Notice that since each Sq(M,K, ( )∗) satisfies the condition of lemma 1.4.9 we

could equally well have used HorizS to define EMap. It follows therefore that

biadjoints in EMap have, and may be constructed using, the one sided universal

property of proposition 1.4.8; furthermore proposition 1.4.11 and corollary 1.4.12
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hold, allowing us to relate enrichments to EMor and EcoMor via biadjoints in

EMap.

From now onwards, in order to agree with the notation we introduced for equip-

ments, we will use ◦ and ⊗ to denote horizontal and vertical composition (respec-

tively) in the double bicategory Sq(M,L, ( )∗). For some purposes it is useful to

translate the definitions given above into a form more suited to the study of equip-

ments:

Proposition 1.5.1 EMap has homomorphisms, transformations and modifications

which admit more concrete descriptions as follows:

Definition 1.5.2 (Equipment Maps) the homomorphisms of EMap, such a map

G̈: (M,K, ( )∗) > (N ,L, ( )∗) consists of:

(a) A homomorphism G:K > L.

(b) For each pair of 0-cells a, ā ∈ K a functor:

M(a, ā)
Gaā

> N (G(a),G(ā))

(c) For each pair f : a > a′ ∈ K, p′: a′ +> ā′ ∈M a 2-cell:

G(p′ ⊗ f∗) ==
ρp′f

=⇒ G(p′)⊗ (Gf)∗ in N (G(a),G(ā′))

These must be natural in both p′ ∈M(a′, ā′) and f ∈ K(a, a′). Dually for each

pair p: a +> ā ∈M, f̄ : ā > ā′ ∈ K a 2-cell:

(Gf̄)∗ ⊗G(p) ==
µf̄p

==⇒ G(f̄∗ ⊗ p) in N (G(a),G(ā′))

Again these must be natural in both p ∈M(a, ā) and f̄ ∈ K(ā, ā′). These data

must satisfy the following conditions:

(d) For any (domain/codomain compatible) 1-cells p′′ ∈ M and f, f ′ ∈ K the

diagram

G(p′′ ⊗ f ′∗ ⊗ f∗)
ρ(p′′⊗f ′∗)f

> G(p′′ ⊗ f ′∗)⊗ (Gf)∗

G(p⊗ can) o

∨ ∨

ρp′′f ′ ⊗ (Gf)∗

G(p′′ ⊗ (f ′ ◦ f)∗)
ρp′′(f ′◦f)

> G(p′′)⊗ (G(f ′ ◦ f))∗ < ∼−
G(p′′)⊗ can

G(p′′)⊗ (Gf ′)∗ ⊗ (Gf)∗

commutes. We also stipulate that the comparison maps µf̄p must satisfy the

obvious dual rule.
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(e) For each 1-cell p ∈M the diagram

G(p)
can
∼− > G(p)⊗ (iGa)∗

G(can) o

∨

o

∨

G(p)⊗ can∗

G(p⊗ (ia)∗)
ρp ia

> G(p)⊗ (Gia)∗

commutes. We also require that a dual rule applies to comparison maps µiā p.

(f) For any (domain/codomain compatible) 1-cells f̄ ′, f ∈ K and p′ ∈ M the

diagram

(Gf̄ ′)∗ ⊗G(p′ ⊗ f∗)
(Gf̄ ′)∗ ⊗ ρp′f

> (Gf̄ ′)∗ ⊗G(p′)⊗ (Gf)∗

µf̄ ′(p′⊗f∗)

∨

µf̄ ′p′ ⊗ (Gf)∗

∨
G(f̄ ′∗ ⊗ p′ ⊗ f∗)

ρ(f̄ ′∗⊗p′)f
> G(f̄ ′∗ ⊗ p′)⊗ (Gf)∗

commutes.

Definition 1.5.3 (Transformations of Equipment Maps) Such a transforma-

tion Ψ̈: G̈ > Ḧ consists of:

(i) A strong transformation Ψ: G > H.

(ii) For each p: a > ā ∈M a 2-cell:

G(a)
(Ψa)∗

> H(a)

G(p) +

∨

Ψp ⇑ +

∨

H(p)∈ N

G(ā)
(Ψā)∗

> H(ā)

These data must satisfy:

(iii) For each 2-cell γ: p⇒ ṗ ∈M the following pasting equality holds:

G(a)
(Ψa)∗

> H(a) G(a)
(Ψa)∗

> H(a)

G(p) +

∨

G(γ)⇒+

∨

G(ṗ) ⇑ Ψṗ +

∨

H(ṗ) = G(p) +

∨

Ψp ⇑ H(p) +

∨

H(γ)⇒+

∨

H(ṗ)

G(ā)
(Ψā)∗

> H(ā) G(ā)
(Ψā)∗

> H(ā)

126



CHANGE OF BASE

(iv) For 1-cells f : a > a′ ∈ K and p′: a′ +> ā′ ∈M the pasting equality

G(a)
(Ψa)∗

> H(a) G(a)
(Ψa)∗

> H(a)
@
@
@ (Gf)∗

@
@
@R

∼=
(Ψf )∗

@
@
@ (Hf)∗

@
@
@R

Ψp′⊗f∗ ⇑
@
@
@ (Hf)∗

@
@
@R

G(p′⊗f∗)+

∨

ρp′f⇒ G(a′)
(Ψa′ )∗

> H(a′) = G(p′⊗f∗)+

∨

H(p′⊗f∗)+

∨

ρp′f⇒ H(a′)

	�
�
�

G(p′)×�
�
�

⇑ Ψp

	�
�
�
×

H(p′)

�
�
�

	�
�
�
×

H(p′)

�
�
�

G(ā′)
(Ψā′ )∗

> H(ā′) G(ā′)
(Ψā′ )∗

> H(ā′)

in N holds. The dual rule involving the 2-cells µf̄p of G̈ and Ḧ must also hold

true.

Definition 1.5.4 Modifications α̈: Ψ̈⇒ Φ̈ in EMap consist of a strong transforma-

tion α: Ψ⇒ Φ satisfying the pasting condition

G(a)

(Ψa)∗

⇑ (αa)∗

(Φa)∗

>

>
H(a) G(a)

(Ψa)∗
> H(a)

G(p) +

∨

⇑ Φp
+

∨

H(p) = G(p) +

∨

⇑ Ψp +

∨

H(p)

G(ā)
(Φā)∗

> H(ā) G(ā)

(Ψā)∗

⇑ (αā)∗

(Φā)∗

>

>
H(ā)

for each 1-cell p: a +> ā ∈M.

Proof. (of proposition 1.5.1) Given an equipment map

(M,K, ( )∗)
G̈
> (N ,L, ( )∗)

clauses (a) and (b) of its definition provide us with the actions, on horizontal and

vertical cells, of a homomorphism

Sq(M,K, ( )∗)
G̃
> Sq(N ,L, ( )∗)

(1.70)
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in HorizS∗, for which the action on squares

a
f

> a′ G(a)
G(f)

> G(a′)

p+

∨

⇑ λ +

∨

p′ > G(p) +

∨

⇑ GS(λ) +

∨

G(p′)

ā
f̄

> ā′ G(ā)
G(f̄)

> G(ā′)

is given by the composite:

(Gf̄)∗ ⊗G(p) ==
µf̄p

==⇒ G(f̄∗ ⊗ p) ==
G(λ)

==⇒ G(p′ ⊗ f) ===
ρp′f

=⇒ G(p′)⊗ (Gf)∗
(1.71)

The naturality of µf̄p and ρp′f in both variables ensures that G̃ defined in this way

preserves the actions of horizontal and vertical 2-cells on squares. Straightforward

diagram chases serve to establish the two remaining cylinder conditions (v) and

(vi) in the definition of horizontal maps on page 104. To demonstrate (v) we use

conditions (d) and (f) of definition 1.5.2 and (vi) follows from clause (e).

To prove the converse consider the double bicategory Sq(M,K, ( )∗), we have

canonical squares

a
ia

> a a
f

> a′

p+

∨

Θf̄p∼= +

∨

f̄∗ ⊗ p p′ ⊗ f∗+

∨

Πp′f∼= +

∨

p′

ā
f̄

> ā′ ā′

iā′
> ā′

for each pair of 2-cells p ∈ M, f̄ ∈ K and f ∈ K, p′ ∈ M. With the help of

these we may usefully describe the connection between squares and vertical 2-cells

in Sq(M,K, ( )∗), there is a bijection

a
f

> a′ a

p+

∨

λ +

∨

p′ < > f̄∗ ⊗ p+

∨

λ⇒+

∨

p′ ⊗ f∗

ā
f̄

> ā′ ā′

such that the canonical 2-cells

can: f ◦ ia ==∼=⇒ f can: iā′ ◦ f̄ ==∼=⇒ f̄
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in K constitute the components of a (horizontal) cylinder:

(Πp′f ∗
H
λ) ◦Θf̄p ======⇒H λ (1.72)

Here we hope that no confusion arises in using λ in the codomain for the square and

in the domain for the vertical 2-cell f̄∗ ⊗ p⇒ p′ ⊗ f∗.
Given a horizontal map as in (1.70) use G and G to denote its actions on hori-

zontal and vertical cells respectively, so as to agree with the notation introduced for

equipment maps, furthermore define 2-cells µf̄p and ρp′f to be the composites

(Gf̄)∗ ⊗G(p) ====
GS(Θf̄p)

===⇒ G(f̄∗ ⊗ p)⊗ (Gia)∗ =====

G(f̄∗⊗p)⊗can

∼======⇒ G(f̄∗ ⊗ p)⊗ iGa

=====
can
∼=======⇒ G(f̄∗ ⊗ p) and

G(p′ ⊗ f∗) =====
can
∼====⇒ iGā′ ⊗G(p′ ⊗ f∗) ======

can⊗G(p′⊗f∗)
∼====⇒ (Giā′)∗ ⊗G(p′ ⊗ f∗)

======
GS(Πp′f )

=======⇒ G(p′)⊗ (Gf)∗
(1.73)

respectively. As a horizontal map we know that G̃ preserves the actions of vertical

and horizontal 2-cells on squares. Therefore applying it to the cylinder in (1.72)

and appealing to the cylinder condition satisfied by the compositional comparisons

of G:K > L ((v) page 104) we see that the pair

G(f) ◦G(ia) ==
can
∼==⇒ G(f ◦ ia) ===

G(can)
∼====⇒ G(f)

G(iā′) ◦G(f̄) ==
can
∼==⇒ G(iā′ ◦ f̄) ===

G(can)
∼====⇒ G(f̄)

constitute a cylinder:

(GS(Πp′f ) ∗
H

G(λ)) ◦GS(Θf̄p) ====⇒H GS(λ)

Starting with this cylinder a straightforward diagram chase demonstrates that with

µf̄p and ρp′f defined as in (1.73) the square GS(λ) is given by the composite in

(1.71). Notice that these families are the unique ones which satisfy both condition

(e) of definition 1.5.2 and our property relating them to the action of G̃ on squares.

The first step in demonstrating that the data (G,G, µ, ρ) derived from G̃ (as

above) satisfies the conditions required of an equipment map is to notice that µ and

ρ are natural in both variables since G̃ preserves actions of 2-cells on squares. In

order to establish the remaining three conditions consider the following equalities in

Sq(M,K, ( )∗):

(i) For 1-cells p′′ ∈M and f ′, f ∈ K as in 1.5.2(d) we have

can1 ∗
V

(Πp′′f ′ ◦ Π(p′′⊗f ′∗)f ) = Πp′′(f ′◦f) ∗
H

(p′′ ⊗ can2)
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where the 2-cells denoted “can” are the canonical cells:

iā′′ ◦ iā′′ ====

can1
∼=⇒H iā′′ ∈ K f ′∗ ⊗ f∗ ====

can2
∼⇒V (f ′ ◦ f)∗ ∈M

A similar identity holds amongst the squares Θf̄p.

(ii) For a 1-cell p ∈M as in 1.5.2(e) we have

Πp ia = ihp ∗
H

can

where “can” denotes the canonical isomorphism:

p⊗ (ia)∗ ==
can
∼====⇒ p

A similar identity holds for squares Θiāp.

(iii) For 1-cells f̄ ′, f ∈ K and p′ ∈ M as in 1.5.2(f) the pair of canonical isomor-

phisms
ia′ ◦ f ==∼====⇒ f ====∼==⇒ f ◦ ia

f̄ ′ ◦ iā′ ==∼====⇒ f̄ ′ ====∼=⇒ iā′′ ◦ f̄ ′

in K comprise the components of a cylinder:

Θf̄ ′p′ ◦ Πp′f ====∼==⇒H Π(f̄ ′∗⊗p′)f ◦Θf̄ ′(p′⊗f)

Each is easily verified and follows directly from the coherence properties of the

homomorphism ( )∗:K >M.

On examining these properties and recalling the definitions of µf̄p and ρp′f in

terms of GS(Θf̄p) and GS(Πp′f ) we see a strong resemblance to conditions (d)–(f) of

definition 1.5.2. Indeed it is clear that by applying G̃ to each one then arguing as

we did on page 129 (for the cylinder in (1.72)) we obtain equations in Sq(N ,L, ( )∗)

which, with a little elementary diagram chasing, yield each of the required conditions

(d)–(f) in turn.

We have already demonstrated (page 129) that on applying both constructions

described above to a horizontal map we regain the structure we started with. Con-

versely it is easy to show, using condition (e) of definition 1.5.2, that the same is

true if we begin with an equipment map instead, it follows that equipment maps

correspond to homomorphisms in EMap. We leave it up to the reader to verify that

the structures of definitions 1.5.3 and 1.5.4 do indeed describe the transformations

and modifications of EMap, we hope that the method for doing so should be clear.

We also leave it up to the reader identify the various compositions of EMap in terms

of the descriptions given in this proposition, but pause to point out that they all

present themselves naturally from the information given. �
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We will also need a concrete description of the homomorphisms of EMor:

Lemma 1.5.5 Homomorphisms in EMor, called equipment morphisms, admit a

description with the flavour of the last proposition. These consist of an equipment

map G̈: (M,K, ( )∗) > (N ,L, ( )∗) and a morphism G:M > N enriching

G̈s action on the homsets of M, satisfying:

(i) For any (domain/codomain compatible) 1-cells p̄′, p′ ∈ M and f ∈ K the

diagram

G(p̄′)⊗G(p′ ⊗ f∗)
G(p̄′)⊗ ρp′f

> G(p̄′)⊗G(p′)⊗ (Gf)∗

can

∨ ∨

can⊗ (Gf)∗

G(p̄′ ⊗ p′ ⊗ f∗)
ρ(p̄′⊗p′)f

> G(p̄′ ⊗ p′)⊗ (Gf)∗

commutes. We also insist that the maps µf̄p satisfy the obvious dual rule.

(ii) For each f : a > a′ ∈ K we have a commutative diagram:

(Gf)∗ ⊗G(ia)
µf ia

> G(f∗ ⊗ ia)

�
�
�

(Gf)∗ ⊗ can �
�
�� @

@
@
∼=

G(can)
@
@
@R

(Gf)∗ G(f∗)
@
@
@

can⊗ (Gf)∗ @@
@R 	�

�
�

∼=
G(can)
�
�
�

G(ia′)⊗ (Gf)∗ <
ρia′f

G(ia′ ⊗ f∗)

(iii) For any (domain/codomain compatible) 1-cells f̄ ∈ K and p̄′, p ∈ M we have

a commutative diagram:

G(p̄′ ⊗ f̄∗)⊗G(p)
ρp̄′f̄ ⊗G(p)

> G(p̄′)⊗ (Gf̄)∗ ⊗G(p)

can o

∨ ∨

G(p̄′)⊗ µf̄p

G(p̄′ ⊗ f̄∗ ⊗ p) < ∼−
can

G(p̄′)⊗G(f̄∗ ⊗ p)

131



DOMINIC VERITY

Proof. Under the bijection established in the last proposition the equipment map

G̈ corresponds to some horizontal map

Sq(M,K, ( )∗)
G̃
> Sq(N ,L, ( )∗)

and the morphism G:M > N is exactly an enrichment of the action of G̃ on

vertical cells. All that remains is to demonstrate that the conditions in the statement

of this lemma correspond to the cylinder conditions given in the definition of the

homomorphisms in HorizSM
It should be clear, once we take into account the definition of G̃s action on squares

as given in (1.71), that condition (ii) above is a literal restatement of condition (b)

on page 116. Furthermore a simple diagram chase involving (i) and (iii) establishes

condition (a) (of the same definition), therefore G does enrich G̃ to a homomorphism

in HorizSM .

To show the converse (eg. verify (i) and (iii) once we know that G enriches G̃

to HorizSM) consider the following identities in Sq(M,K, ( )∗) (which are easily

verified):

(i)′ For 1-cells p̄′, p′ ∈M and f ∈ K as in condition (i) of this lemma we have

(ihp̄′ ⊗ Πp′f ) ∗
H

can = Π(p̄′⊗p′)f

where “can” denotes the associativity isomorphism:

(p̄′ ⊗ p′)⊗ f∗ ==
can
∼=⇒ p̄′ ⊗ (p′ ⊗ f∗)

A dual property holds amongst squares Θf̄p.

(iii)′ For 1-cells p̄′, p ∈M and f̄ ∈ K as in condition (iii) of this lemma we have

(Πp̄′f̄ ⊗Θf̄p) ∗
H

can = ihp̄′⊗(f̄∗⊗p)

where the vertical 2-cell named “can” is the canonical associativity:

p̄′ ⊗ (f̄∗ ⊗ p) ==
can
∼⇒V (p̄′ ⊗ f̄∗)⊗ p

Following the argument at the end of the proof of proposition 1.5.1, notice that the

resemblance between these identities and conditions (i) and (iii) becomes clear as

soon as we recall the definitions of µf̄p and ρp′f in terms of GS(Θf̄p) and GS(Πp′f ).

Simply apply the homomorphism G̃ ∈ HorizSM to each identity then argue as we

did before, using the cylinder conditions on page 116, to obtain (i) and (iii) from

(i)′ and (iii)′ respectively. �
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Let us look in a little more detail at these equipment morphisms:

Lemma 1.5.6 Suppose that G̈ is an equipment morphism (as in the last lemma)

then each 2-cell

G(p′ ⊗ f∗) ==
ρp′f

=⇒ G(p′)⊗ (Gf)∗

is an isomorphism.

Proof. For each 1-cell f ∈ K define the 2-cell

(Gf)∗ ====
νf
====⇒ G(f∗)

in N to be the composite;

(Gf)∗ ======
(Gf)∗ ⊗ can

=====⇒ (Gf)∗ ⊗G(ia) ==
µf ia

==⇒ G(f∗ ⊗ ia) ===

G(can)
∼====⇒ G(f∗)

which we use to get another 2-cell

G(p′)⊗ (Gf)∗ ==
ρ−1
p′f

==⇒ G(p′ ⊗ f∗)

for each 1-cell p′ ∈M, given by the composite:

G(p′)⊗ (Gf)∗ =====
G(p′)⊗ νf

====⇒ G(p′)⊗G(f∗) ==
can

==⇒ G(p′ ⊗ f∗)
(1.74)

Straightforward diagram chases now demonstrate that conditions (i) and (ii) on G̈

(see statement of lemma 1.5.5) imply that ρp′f •ρ−1
p′f = iG(p′)⊗(Gf)∗ and condition (iii)

implies the other identity ρ−1
p′f • ρp′f = iG(p′⊗f∗). �

This proof of the previous lemma opens up the possibility of a more useful

description of equipment morphisms:

Lemma 1.5.7 Given equipments (M,K, ( )∗) and (N ,L, ( )∗) and a pair (G,G)

consisting of a homomorphism G:K > L and a morphism G:M > L with

the same actions on 0-cells then there is a bijection between:

(A) Families of 2-cells

G(p′ ⊗ f∗) ===
ρp′f

=⇒ G(p′)⊗ (Gf)∗ p′ ∈M, f ∈ K

(Gf̄)∗ ⊗G(p) ==
µf̄p

===⇒ G(f̄∗ ⊗ p) p ∈M, f̄ ∈ K

natural in all variables and satisfying conditions (i)-(iii) of lemma 1.5.5.
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(B) A family of 2-cells

(Gf)∗ ====
νf
====⇒ G(f∗) (f ∈ K)

natural in the variable f and satisfying the condition that each 2-cell ρ−1
p′f derived

from νf as in display (1.74) is an isomorphism.

Proof. We set this bijection up as follows:

(A) 7→ (B) Given the families ρp′f and µf̄p of (A) define νf as in lemma 1.5.6,

which ensures naturality in the variable f and that each ρ−1
p′f is invertible.

(B) 7→ (A) Given the family νf (f ∈ K) as in (B), define ρ−1
p′f from νf as in

lemma 1.5.5 and these are isomorphisms (by assumption) therefore we get a family

of their inverses ρp′f , similarly we define µf̄p to be the composite:

(Gf̄)∗ ⊗G(p) =====
νf̄ ⊗G(p)

====⇒ G(f̄∗)⊗G(p) ==
can

==⇒ G(f̄∗ ⊗ p)

The naturality of νf ensures that families defined in this way are natural in both

variables, and once we have translated conditions (i)-(iii) of lemma 1.5.5 so as

to refer to ρ−1
p′f (rather than ρp′f ) they too may be established by easy diagram

chases.

We leave the (easy) demonstration that these two constructions are mutual inverses

up to the reader. �

Proposition 1.5.8 Under the bijection of the last lemma equipment morphisms

(M,K, ( )∗)
G̈
> (N ,L, ( )∗)

correspond to triples (G,G, ν). These consist of a homomorphism

K G
> L

a morphism

M G
> N

with the same action on 0-cells as G, and a family of 2-cells

(Gf)∗ ====
νf
====⇒ G(f∗)

natural in f ∈ K and satisfying:

(c)′ Each 2-cell ρ−1
p′f defined as in (1.74) from νf is an isomorphism.
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(d)′ For each (compatible) pair of 1-cells f, f ′ ∈ K the following diagram commutes:

(Gf ′)∗ ⊗ (Gf)∗
νf ′ ⊗ νf

> G(f ′∗)⊗G(f∗)

can o

∨ ∨

can

(G(f ′ ◦ f))∗
νf ′◦f

> G((f ′ ◦ f)∗)

(e)′ For each 0-cell a ∈ K the following diagram commutes:

iGa
can

> G(ia)

can o

∨

o

∨

G(can)

(Gia)∗
νia

> G((ia)∗)

Proof. To prove this first convert conditions (d)-(f) of definition 1.5.2 to refer to

ρ−1
p′f rather than ρp′f itself. Now substituting the definitions of ρ−1 and µ in terms

of ν into condition (f) we see that it holds without having to assume (d)′ or (e)′,

therefore it remains to prove that under the bijection of the last lemma (d)′ ⇔ (d)

and (e)′ ⇔ (e)

The forward implications follow by substituting the expressions for ρ−1 and µ

in terms of ν into (d) and (e) then performing simple diagram chases involving (d)′

and (e)′ respectively. Conversely let p = ia in the portions of (d) and (e) relating to

µ, then apply the definition of ν in terms of µ easy diagram chases to reduce them

to (d)′ and (e)′ in turn. �

It may also be of use to give some indication of how to describe the transfor-

mations and modifications of EMor in the manner of the last proposition, we leave

verifications of these up to the reader:

transformations: (Ψ,Ψ): (G,G, ν) > (H,H, ξ) in EMor consisting of a strong

transformation Ψ: G > H and an optransformation Ψ: G > H satisfying:

• For each 0-cell a ∈ K we have Ψa = (Ψa)∗ and
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• For each 1-cell f : a > a′ ∈ K the following pasting identity holds:

G(a)
(Ψa)∗

+ > H(a) G(a)
(Ψa)∗

+ > H(a)

(Gf)∗+

∨

νf⇒+

∨

G(f∗) ⇑ Ψf∗ +

∨

H(f∗) = (Gf)∗+

∨

(Ψf )∗∼= (Hf)∗+

∨

ξf⇒+

∨

H(f∗)

G(a′) +
(Ψa′)∗

> H(a′) G(a′) +
(Ψa′)∗

> H(a′)

modifications: α: (Ψ,Ψ) ⇒ (Φ,Φ) consisting of 2-cells {αa: Ψa ⇒ Φa}a∈0 cell(K)

such that:

• The family {αa: Ψa ⇒ Φa}a∈0 cell(K) is a modification from Ψ to Φ and

• The family {(αa)∗: Φa ⇒ Ψa}a∈0 cell(K) is a modification from Φ to Ψ.

While the descriptions given above of equipment maps and morphisms all seem

highly asymmetrical with respect to the process of taking dual equipments, as pre-

sented in definition 1.2.13, that perception is no more than an illusion. Our choice to

display these structures in this way is intended to illustrate that most of our theory

works for weak equipments. For the remainder of this section we assume that our

equipments are not weak, so let us briefly examine a more symmetrical description

of equipment morphisms:

Definition 1.5.9 (The Vertical Dual of a Double Bicategory)

If D̃ = (A,H,V ,S) is a double bicategory then we may construct a (vertical) dual

D̃vop
by “reflecting squares through a horizontal axis”. More formally D̃vop def

=

(A,Hco,Vop,S), we reverse the orientation of vertical 1-cells and correspondingly

swap the rôles of domV (λ) and codV (λ) for each square λ, in other words there is a

correspondence of squares:

ā
f̄

> ā′ a
f

> a′

pop +

∨

λvop +

∨

(p′)op ∈ D̃vop
< > p+

∨

λ +

∨

p′ ∈ D̃

a
f

> a′ ā
f̄

> ā′

Clearly we endow D̃vop
with the horizontal and vertical compositions of squares

possessed by D̃. When carrying the actions of 2-cells on squares over from D̃ notice

that we need to take the dual Hco (reversing 2-cells) as the bicategory of horizontal
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cells in D̃vop
thereby ensuring that the actions of horizontal 2-cells on vertically

reflected squares is correct.

Looking at the bicategories of cylinders derived from D̃vop
we see that we have

canonical strict isomorphisms

CylH(D̃vop
) ∼= (CylH D̃)co CylV (D̃vop

) ∼= (CylV D̃)op

therefore the pair of strict homomorphisms

CylH(D̃vop
)

domvop
V

codvop
V

>
> K

co

used in the definition of HorizS is strictly isomorphic to:

(CylH D̃)co

(codV )co

(domV )co

>
> K

co

We may exploit this fact to demonstrate that vertical duality may be made into

a (strongly) bicategory enriched functor. Consider first the duality of bicategories

( )co, it is not true that there exists an enriched functor

HomS

( )co

> HomS

since in changing the polarity of 2-cells in each bicategory we also reverse the ori-

entation of modifications. We may fix this fault by restricting ourselves to the

enriched subcategory HomG of HomS with the same objects, homomorphisms and

transformations but only those modifications which are isomorphisms. Of course

we may do this for any strongly bicategory enriched category A thereby obtaining

an enriched subcategory denoted A
G

, the subscript indicates that each bicategory

A(A,A′) is locally groupoidal. Notice that the distinction between the strong and

weak forms of bicategory enrichment disappears once we assume that each homset is

locally groupoidal. Moving to the subcategory A
G

makes no difference to the study

of biadjunctions in A, since all modifications we encounter in that endeavour are

already isomorphisms. So we have an involutive enriched functor:

HomG

( )co

> HomG .

This preserves strict homomorphisms therefore we get another enriched functor:

HomP
G

{( )co}P
> HomP

G .
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Referring to definition 1.4.7, which describes HorizG in terms of HomG, and using

the isomorphism CylH(D̃vop
) ∼= (CylH D̃)co it is clear that {( )co}P provides us with

an involutive enriched endo-functor:

HorizG
( )vop

> HorizG .

With no further comment it is immediate that this functor extends to an enriched

involution on each of the categories HorizG∗, HorizGM , HorizGC and HorizGH
(subcategories of HorizS∗, HorizSM , HorizSC and HorizSH respectively). �

In terms of equipments the importance of vertical duals lies in:

Lemma 1.5.10 There is a bijection between the squares of (Sq(M,K, ( )∗))
vop and

Sq((M,K, ( )∗)
op), where (M,K, ( )∗)

op is the dual equipment described in defini-

tion 1.2.13. Identifying squares via that correspondence we get the following equality

of double bicategories:

Sq((M,K, ( )∗)
op) = (Sq(M,K, ( )∗))

vop (1.75)

Proof. First notice that (Sq(M,K, ( )∗))
vop and Sq((M,K, ( )∗)

op) possess the

same bicategories of horizontal and vertical cells, Kco and Mop respectively. A

square in Sq((M,K, ( )∗)
op)

ā
f̄

> ā′

pop +

∨

λ̂ ⇑ +

∨

(p′)op

a
f

> a′

(1.76)

is simply a 2-cell λ̂: p⊗ f ∗ ⇒ f̄ ∗⊗ p′ inM, so let λ: f̄∗⊗ p⇒ p′⊗ f∗ be the mate of

that 2-cell under the adjunctions f∗ a f ∗ and f̄∗ a f̄ ∗ inM. Of course λ is a square

a
f

> a′

p+

∨

λ ⇑ +

∨

p′

ā
f̄

> ā′

in Sq(M,K, ( )∗), which has a vertical reflection λvop in (Sq(M,K, ( )∗))
vop which

we may identify with the square λ̂ that we started with in (1.76).
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To establish the equality in (1.75) we only need to check that our bijection be-

tween the squares of (Sq(M,K, ( )∗))
vop and Sq((M,K, ( )∗)

op) respects the actions

on, and compositions of the squares in each double bicategory. This is no more than

routine verification, simply apply the usual properties of mates and recall that the

action of the homomorphism ( )∗ on 2-cells, as well as its canonical isomorphisms,

are derived from those of ( )∗ by taking mates. �

Corollary 1.5.11 The dual equipment construction of definition 1.2.13 extends

naturally to an involutive endo-functor on each of the bicategory enriched categories

EMapG, EMorG, EcoMorG and EHomG.

Proof. These enriched categories are defined in terms of HorizG∗, HorizGM ,

HorizGC and HorizGH (respectively) using the “Sq” construction on equipments.

We already know that vertical duality of double bicategories ( )vop extends to an

involutive enriched functor on each of these latter categories therefore it follows

that the equality in (1.75) ensures the same is true for ( )op on the corresponding

enriched categories of equipments.

One important consequence of this lemma is that any property of equipment

maps or morphisms relating to colimit cylinders may be translated to a dual property

with respect to limit cylinders. �

Lemma 1.5.12 Suppose we are given an equipment map

(M,K, ( )∗)
G̈ = (G,G, ρ, µ)

> (N ,L, ( )∗)

then a second map

(M,K, ( )∗)
op

G̈′ = (Gop,Gco, ρ′, µ′)
> (N ,L, ( )∗)

op

is the dual of the first, under the duality functor constructed above, iff the 2-cells

G(p)⊗ (Gf)∗ ==
µ′pf

===⇒ G(p⊗ f ∗)

G(f̄ ∗ ⊗ p′) ===
ρ′f̄p′

=⇒ (Gf̄)∗ ⊗G(p′)

correspond to the composites

G(p) ===========
G(p⊗ ηf )

====⇒ G(p⊗ f ∗ ⊗ f∗) =====
ρ(p⊗f∗)f

====⇒ G(p⊗ f ∗)⊗ (Gf)∗

(Gf̄)∗ ⊗G(f̄ ∗ ⊗ p′) =====
µf̄(f̄∗⊗p′)

====⇒ G(f̄∗ ⊗ f̄ ∗ ⊗ p′) =====
G(εf̄ ⊗ p′)

==========⇒ G(p′)

under the adjunctions (Gf)∗ a (Gf)∗ and (Gf̄)∗ a (Gf̄)∗ respectively.
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In the statement of this lemma we follow the usual convention that if f : a > a′

is a 1-cell in K then ηf : ia ⇒ f ∗ ⊗ f∗ and εf : f∗ ⊗ f ∗ ⇒ ia′ are used to denote the

unit and counit of the adjunction f∗ a f ∗ in M.

Proof. The equipment maps given correspond to horizontal maps

(M,K, ( )∗)
G̃

> (N ,L, ( )∗)

(M,K, ( )∗)
op G̃′

> (N ,L, ( )∗)
op

and we know that the process of taking mates provides a natural bijection between

the squares of (M,K, ( )∗) and (M,K, ( )∗)
op ((N ,L, ( )∗) and (N ,L, ( )∗)

op). On

examining the proofs of the last couple of lemmas we see that G̈ and G̈′ are dual

iff under the correspondences provided by taking mates the actions of G̃ and G̃′ on

squares coincide.

Suppose first that the condition on ρ′ and µ′ hold, and let λ̂ be a square in

(M,K, ( )∗)
op as in (1.76). Its mate λ is given by

f̄∗ ⊗ p =====
f̄∗ ⊗ p⊗ ηf

=====⇒ f̄∗ ⊗ p⊗ f ∗ ⊗ f∗ =====
f̄∗ ⊗ λ̂⊗ f∗

=====⇒ f̄∗ ⊗ f̄ ∗ ⊗ p′ ⊗ f∗

=====
εf̄ ⊗ p′ ⊗ f∗

=========⇒ p′ ⊗ f∗

to which we apply G̃, the action on squares of which we recall is determined by

ρ and µ via the composite shown in (1.71). A routine diagram chase, involving

the coherence properties of G̈ as an equipment map, demonstrates that we may

re-express GS(λ) as the composite:

(Gf̄)∗ ⊗G(p) ==========
(Gf̄)∗ ⊗G(p⊗ ηf )

============⇒ (Gf̄)∗ ⊗G(p⊗ f ∗ ⊗ f∗)

==========
(Gf̄)∗ ⊗ ρ(p⊗f∗)f

==========⇒ (Gf̄)∗ ⊗G(p⊗ f ∗)⊗ (Gf)∗

==========
(Gf̄)∗ ⊗G(λ̂)⊗ (Gf)∗

==========⇒ (Gf̄)∗ ⊗G(f̄ ∗ ⊗ p′)⊗ (Gf)∗

==========
µf̄(f̄∗⊗p′) ⊗ (Gf)∗

============⇒ G(f̄∗ ⊗ f̄ ∗ ⊗ p′)⊗ (Gf)∗

==========
G(εf̄ ⊗ p′)⊗ (Gf)∗

================⇒ G(p′)⊗ (Gf)∗

Therefore, so long as the condition of the statement holds, it is clear that the mate

of this composite is simply the square G′S(λ̂) defined using ρ′ and µ′ as in the dual

of (1.76).

Conversely suppose the equipment maps G̃ and G̃′ have corresponding actions

on squares. The 2-cell µ′pf may be obtained, as in the proof of lemma 1.5.1, by
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applying G̃′ to the canonical square:

ā
iā

> ā

pop +

∨

Θ′pf∼= +

∨

(p⊗ f ∗)op

a
f

> a′

in Sq((M,K, ( )∗)
op). Since the actions on squares of the two horizontal maps

coincide with respect to mates we may calculate G′S(Θ′pf ) by first taking the mate

of Θ′pf

a
f

> a′

p+

∨

⇑ Θ̌′pf +

∨

p⊗ f ∗

ā
iā

> ā

which is given by

(iā)∗ ⊗ p ===
can
∼======⇒ p ======

p⊗ ηf
==⇒ p⊗ f ∗ ⊗ f∗

then apply GS (as defined using ρ and µ) to get a square which, with a little diagram

chasing, we may show to be equal to the composite

(Giā)∗ ⊗G(p) ==
can
∼====⇒ G(p) =====

G(p⊗ ηf )
======⇒ G(p⊗ f ∗ ⊗ f∗)

=====
ρ(p⊗f∗)f

====⇒ G(p⊗ f ∗)⊗ (Gf)∗

finally it follows that G′S(Θ′pf ) is the mate of this last square. Once we have reminded

ourselves of how µ′pf is derived from G′S(Θ′pf ) this last composite reveals that the

postulated relationship between µ′ and ρ holds; a dual verification establishes the

relationship between ρ′ and µ. �

Proposition 1.5.13 Suppose (M,K, ( )∗) and (N ,L, ( )∗) are equipments which

are not weak then equipment morphisms G̈: (M,K, ( )∗) > (N ,L, ( )∗) admit a

description whereby they consist of:

(i) A homomorphism G:K > L and a morphism G:M > N with the same

actions on 0-cells.

141



DOMINIC VERITY

(ii) Families of 2-cells

(Gf)∗ ====
νf
====⇒ G(f∗)

(Gf)∗ ====
ν ′f
====⇒ G(f ∗)

natural in the 1-cell f ∈ K and both satisfying conditions (d)′ and (e)′ of propo-

sition 1.5.8 with respect to the canonical isomorphisms of the homomorphisms

( )∗ and ( )∗ respectively.

(iii) For each 1-cell f : a > a′ ∈ K the following diagram commutes

iGa ======
ηGf

=⇒ (Gf)∗ ⊗ (Gf)∗ ====
ν ′f ⊗ νf

===⇒ G(f ∗)⊗G(f∗)

‖
‖

‖
‖can ‖⇓ ‖⇓

can

G(ia) ===============
G(ηf )

================⇒ G(f ∗ ⊗ f∗)

as does a dual one concerning the counits of f∗ a f ∗ and (Gf)∗ a (Gf)∗.

Proof. Since this proposition is not of great importance to the remainder of the

narrative we give no more than a few lines of sketch proof.

Given an equipment morphism G̈: (M,K, ( )∗) > (N ,L, ( )∗) it may be de-

scribed in terms of a family of 2-cells νf : (Gf)∗ ⇒ G(f∗) as demonstrated by propo-

sition 1.5.8. It has a dual G̈op: (M,K, ( )∗)
op > (N ,L, ( )∗)

op which we describe

in terms of another family ν ′f : (Gf)∗ ⇒ G(f ∗), and the relationship between a map

and its dual given in the last lemma establishes condition (iii) relating these two

families.

Conversely suppose we were given the data in the statement of this proposi-

tion. First show that (G,G, ν) is an equipment morphism from (M,K, ( )∗) to

(N ,L, ( )∗), to do so all we need do is verify condition (c)′ of proposition 1.5.8, but

this can be shown to follow from condition (iii) relating ν and ν ′. In an identical

fashion we show that (Gop,Gco, ν ′) is an equipment morphism from (M,K, ( )∗)
op

to (N ,L, ( )∗)
op, now use condition (iii) again alongside the last lemma to demon-

strate that these two are in fact duals. �

When equipments are not weak we get a particularly simple method for con-

structing biadjoints in EMap, derived directly from the one-sided universal property

for biadjoints in HorizS as given in proposition 1.4.8:

Theorem 1.5.14 Given an equipment morphism

(M,K, ( )∗)
G̈
> (N ,L, ( )∗)

and a left biadjoint F:L > K to the homomorphism G:K > L (with unit

Ψ: IL > GF and counit Φ: FG > IK) then tfae:
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(i) G̈ has a left biadjoint F̈ in EMap. In that case, since G̈ is an equipment

morphism, there is an induced enrichment of F̈ to an equipment comorphism,

cf. proposition 1.4.11.

(ii) For each pair of 0-cells a, ā ∈ K the functor

M(a, ā)
G
> N (G(a),G(ā))

has a left adjoint.

(iii) For each pair of 0-cells b, b̄ ∈ L the functor

M(F(b),F(b̄))
(Ψb̄)

∗ ⊗G( )⊗ (Ψb)∗
> N (b, b̄)

has a left adjoint.

Proof. This theorem turns on the observation that a square

a
f

> a′

p+

∨
⇑ λ +

∨
p′

ā
ā

> ā′

in Sq(M,K, ( )∗) corresponds, under the adjunction f̄∗ a f̄ ∗, to a 2-cell:

a
f∗
+ > a′

p+

∨

λ̂⇒ +

∨
p′

ā < +

f̄ ∗
ā′

Now examine the action on squares of the horizontal map corresponding to G̈, by

applying lemma 1.5.12 and a simple diagram chase we see that the 2-cell

G(a)
(Gf)∗

+ > G(a′)

G(p) +

∨

ĜS(λ)
⇒ +

∨

G(p′)

G(ā) < +

(Gf̄)∗
G(ā′)
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is given by the composite

G(p) =====
G(λ̂)

==⇒ G(f̄ ∗ ⊗ p⊗ f∗) =====
ρ(f̄∗⊗p)f

=======⇒ G(f̄ ∗ ⊗ p)⊗ (Gf)∗

======
ρ′f̄p ⊗ (Gf)∗

=====⇒ (Gf̄)∗ ⊗G(p)⊗ (Gf)∗

where ρ′f̄p is a structural 2-cell of the dual morphism G̈op. Notice that G̈ and G̈op

are equipment morphisms, therefore lemma 1.5.6 tells us that ρ(f̄∗⊗p)f and ρ′f̄p are

both isomorphisms.

It follows that in this context we may express the one sided universal property

described in proposition 1.4.8 as a bijection

b
(Gf ◦Ψb)∗

+ > G(a) F(b)
f∗
+ > a

q+

∨

λ̂⇒ +

∨

G(p) < > F(q) +

∨

λ̃⇒ +

∨

p

b̄ < +

(Gf̄ ◦Ψb̄)
∗

G(ā) F(b̄) < +

f̄ ∗
ā

(1.77)

satisfying the condition that the following diagram commutes:

q
Ψ̂q

> (Ψā)
∗ ⊗GF(q)⊗ (Ψa)∗

λ̂
∨ ∨

(Ψā)
∗ ⊗G(λ̃)⊗ (Ψa)∗

(Gf̄ ◦Ψā)
∗ ⊗G(p)⊗ (Gf ◦Ψa)∗ ∼−

can
> (Ψā)

∗ ⊗G(f̄ ∗ ⊗ p⊗ f∗)⊗ (Ψa)∗

(1.78)

Here Ψ̂q corresponds to the square Ψq: (Ψā)∗ ⊗ q ⇒ GF(q) ⊗ (Ψa)∗ and the 2-cell

marked “can” is the obvious one to be obtained from ρ(f̄∗⊗p)f , ρ
′
f̄p and the canonical

isomorphisms (Ψā)
∗ ⊗ (Gf̄)∗ ∼= (Gf̄ ◦Ψā)

∗, (Gf)∗ ⊗ (Ψa)∗ ∼= (Gf ◦Ψa)∗.

The theorem now becomes straightforward:

(ii)⇒(iii): The functor mentioned in (iii) is the composite

M(F(b),F(b̄))
G
> N (GF(b),GF(b̄))

(Ψb̄)
∗ ⊗ ⊗ (Ψb)∗

> N (b, b̄)

but ((Ψb̄)
∗⊗ ⊗ (Ψb)∗) has a left adjoint ((Ψb̄)∗⊗ ⊗ (Ψb)

∗), condition (ii) ensures

that G also possesses one therefore it follows that their composite does.

(iii)⇒(i): Let F:N (b, b̄) >M(F(b),F(b̄)) be the left adjoint postulated in (iii)

with counit consisting of components Ψ̂q: q ⇒ (Ψā)
∗ ⊗ GF(q) ⊗ (Ψa)∗. Since the

2-cell “can” in (1.78) is an isomorphism it is quite clear that this data satisfies

our re-expressed version of the one sided universal property for F̈ ab G̈.
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(i)⇒(ii) If we set a = F(b), ā = F(b̄), f = iF(b) and f̄ = iF(b̄) in (1.77) that bijection

clearly reduces to one which simply demonstrates an adjunction

M(F(b),F(b̄))
<

F

⊥

(Ψb̄)
∗ ⊗G( )⊗ (Ψb)∗

> N (b, b̄)

which has unit with components Ψ̂q. Dually the one sided property with respect

to the counit Φ̈: F̈G̈ > I gives an adjunction

N (G(a),G(ā))
<

G

>

(Φā)∗ ⊗ F( )⊗ (Φa)
∗
>M(a, ā)

the counit of which has components given by composites:

(Φā)∗ ⊗ FG(p)⊗ (Φa)
∗ =====

Φp ⊗ (Φa)
∗

=====⇒ p⊗ (Φa)∗ ⊗ (Φa)
∗ ===
p⊗ εΦa

======⇒ p
(1.79)

�

Observation 1.5.15 In some cases it is useful to have an explicit description of

the comorphism structure induced on the left biadjoint F̈ which we constructed in

the last theorem. For each pair of 0-cells a, ā ∈M let

N (G(a),G(ā))
Laā

>M(a, ā)

be the left adjoint to G, as introduced in theorem 1.5.14(ii), and for each pair of

1-cells r: G(a) +> G(ā) and r̄: G(ā) +> G(ã) in N define a 2-cell

Laã(r̄ ⊗ r) ====
δr̄r
===⇒ Lāã(r̄)⊗ Laā(r)

(1.80)

corresponding under the adjunction Laã a G to the composite

r̄ ⊗ r =====
ηr̄ ⊗ ηr

===⇒ GLāã(r̄)⊗GLaā(r) ====
can

====⇒ G(Lāã(r̄)⊗ Laā(r))

where ηr̄ and ηr are unit components. Now consider any 1-cell q: b +> b̄ in N , it

follows from the proof of last theorem that F(q) ∼= L(Fb)(Fb̄)((Ψb̄)∗⊗ q⊗ (Ψb)
∗). With

a little checking, which we leave up to the reader, it is clear that if q̄: b̄ +> b̃ ∈ N
is another 1-cell then the comparison 2-cell F(q̄ ⊗ q) ⇒ F(q̄) ⊗ F(q) induced as in

proposition 1.4.11 is given by the composite:

L((Ψb̃)∗ ⊗ q̄ ⊗ q ⊗ (Ψb)
∗) ======

L(· ⊗ ηΨb̄
⊗ ·)

=======⇒ L((Ψb̃)∗ ⊗ q̄ ⊗ (Ψb̄)
∗ ⊗ (Ψb̄)∗ ⊗ q ⊗ (Ψb)

∗)

======
δ
======⇒ L((Ψb̃)∗ ⊗ q̄ ⊗ (Ψb̄)

∗)⊗ L((Ψb̄)∗ ⊗ q ⊗ (Ψb)
∗)

(1.81)

�
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To finish off this section we present a few biadjunctions between equipments of

matrices and spans. In the next section we show that the equipment of monads

construction given in example 1.2.5 may be given the structure of a bicategory

enriched functor. This we apply to the biadjoints constructed here to obtain those

which encapsulate the notions of change of base for enriched and internal category

theory.

Notice that in many of the examples of equipments (M,K, ( )∗) that we meet the

bicategory K is a mere category. The full sub-category of EMap on these equipments

is simply a 2-category, which we denote by using two underlines EMap (similarly

we have EMor, EHom etc.). Biadjoints become adjoints in the usual 2-categorical

sense and all of the theory presented here restricts to this context, so it might seem

that there were simplifications to be gained by developing the theory only in this

situation. In fact these really make little difference to the conceptual complexity of

the job at hand, furthermore in the next section we will introduce one important

case in which the full strength of biadjoints is crucial.

Example 1.5.16 (Change of Base for Matrices) If B and C are bicategories

satisfying the conditions of example 1.2.2 then we may form equipments of matrices

(B Mat, Set/|B|, ( )◦) and (C Mat, Set/|C|, ( )◦). It is of importance to know how

these equipments may be related once we know that we have a comorphism

C F
> B

such that each of its actions on homsets

C(c, c̄)
Fcc̄

> B(F(c),F(c̄))

has a right adjoint Rcc̄. Of course, since the sets of 0-cells |B| and |B| are small, we

have an adjunction

Set/|B|
<

F#

⊥
F#

> Set/|C| (1.82)

where F# and F# are respectively “composition with” and “pullback along” the map

|F|: |C| > |B|. Using F# we propose first to define an equipment comorphism:

(C Mat, Set/|C|, ( )◦)
(F#,F#, ν)

> (B Mat, Set/|B|, ( )◦)

The comorphism F# acts on matrices and their transformations “pointwise”, in other

words if m = {mxx̄}: (X,α) 	> (X̄, ᾱ) is a matrix then F#({mxx̄}) = {F(mxx̄)},
of course we must provide F# with compositional comparison 2-cells. Notice that F
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preserves local coproducts, since its actions on each homset have right adjoints, so

given a second matrix m̄: (X̄, ᾱ) 	> (X̃, α̃) the 2-cell

can: F#(m̄~m)⇒ F#(m̄)~ F#(m)

may be defined to have components

F(
∐
x̄∈X̄

(m̄x̄x̃ ⊗mxx̄)) ==∼=⇒
∐
x̄∈X̄

F(m̄x̄x̃ ⊗mxx̄) =====

∐
x̄∈X̄(can)

====⇒
∐
x̄∈X̄

F(m̄x̄x̃)⊗ F(mxx̄)

for x ∈ X and x̃ ∈ X̃. As for identity comparisons we define them at the same

time as the family νg: F#(g◦) ⇒ (F#g)◦, since if g = i(X,α) then νg is a 2-cell

F#(i(X,α)) ⇒ iF#(X,α). Each entry of the matrix (F#g)◦ is either an identity iFc ∈
B(Fc,Fc) or a terminal object 0 ∈ B(Fc,Fc̄), the corresponding entry of F#(g◦)

is then F(ic) ∈ B(Fc,Fc) or F(0) ∈ B(Fc,Fc̄) respectively. A moments reflection

reveals that we have canonical 2-cells

F(ic) =====
can

=====⇒ iFc

F(0) =====
�
∼======⇒ 0

where the first one is the canonical identity comparison of the comorphism F and

the second simply expresses the fact that F preserves local terminal objects because

each of its actions on homsets has a right adjoint. These may now be used as the

components of the comparison νg: F#(g◦)⇒ (F#g)◦. Checking that F# satisfies the

coherence conditions for comorphisms and νg (duals of) the first two conditions of

proposition 1.5.8 is now straightforward.

The last condition of that proposition stipulates that each 2-cell

F#(ḡ◦ ~m) ==
can

=⇒ F#(ḡ◦)~ F#(m) =====
νg ~ F#(m)

=====⇒ (F#ḡ)◦ ~ F#(m)

is an isomorphism. Writing out the components of that 2-cell in detail we get

F(
∐
x̄∈X̄

((ḡ◦)x̄x̄′ ⊗mxx̄)) ==∼=⇒
∐
x̄∈X̄

F((ḡ◦)x̄x̄′ ⊗mxx̄) ===

∐
can
===⇒

∐
x̄∈X̄

F((ḡ◦)x̄x̄′)⊗ F(mxx̄)

=======================

∐
x̄∈X̄(νg)x̄x̄′ ⊗ F(mxx̄)

==⇒
∐
x̄∈X̄

((F#ḡ)◦)x̄x̄′ ⊗ F(mxx̄)

which is a coproduct of factors of two types:

F(ic̄ ⊗m) ==
can

=⇒ F(ic̄)⊗ F(m) =====
can⊗ F(m)

=====⇒ iFc̄ ⊗ F(m)

F(0⊗m) ===
can

=⇒ F(0)⊗ F(m) =====
�⊗ F(m)

======⇒ 0⊗ F(m)
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Both are isomorphisms, the first by the coherence conditions on the comorphism F

and the second because both its domain and codomain are isomorphic to the termi-

nal object. It follows that we have constructed our first example of an equipment

comorphism.

Given the existence of the adjunction in (1.82) the dual of theorem 1.5.14 implies

that (F#,F#, ν) has a right adjoint in EMap iff the action of F# on each homset

has a right adjoint. Of course the action of F# on the homset C Mat((X,α), (X̄, ᾱ))

is constructed by applying the comorphism F “pointwise” and by assumption each

functor Fcc̄ has a right adjoint Rcc̄. By applying these pointwise on the matrices in

B Mat((X, |F| ◦ α), (X̄, |F| ◦ ᾱ)) we obtain the required right adjoint.

To recap, under the conditions given we get an adjoint pair of equipment maps

(B Mat, Set/|B|, ( )◦)
<

(F#,F#)

⊥

(F#,F#)
>

(C Mat, Set/|C|, ( )◦)

where (F#,F#) is an equipment comorphism; it follows therefore that we get an

induced equipment morphism structure on (F#,F#). If the comorphism F, from

which this adjunction is derived, is in fact a homomorphism it follows that (F#,F#)

is an equipment homomorphism and (F#,F#) a (F#,F#) becomes an adjunction in

EMor. �

Example 1.5.17 (Change of Base for Spans) Suppose that E and F are cate-

gories with finite limits and F: E > F is any functor (not necessarily left exact).

Given a span (s0, S, s1) ∈ Span(E)(A,B) we may simply apply F to it to get another

span (F(s0),F(S),F(s1)) ∈ Span(F)(F(A),F(B)), of course this is just the action

on objects of a functor:

Span(E)(A,B)
F
> Span(F)(F(A),F(B))

Notice that for each map f :A > B ∈ E this functor preserve the representable

spans f◦ = (f, A, iA) and f ◦ = (iA, A, f) on the nose, in the sense that (Ff)◦ = F(f◦)

and (Ff)◦ = F(f◦), in particular this means that they strictly preserve all identity

spans. Composition of spans is formed by taking pullback, so we are immediately

provided with a compositional comparison 2-cell

F((t1, T, t0)×
•

(s1, S, s0))⇒ F(t1, T, t0)×
•

F(s1, S, s0)

which is the unique map

F(T ×
B
S) > F(T ) ×

F(B)
F(S)
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induced by the universal property of the pullback F(T ) ×
F(B)

F(S) and the commutative

square

F(T ×
B
S)

F(πS)
> F(S)

F(πT )

∨ ∨
F(s0)

F(T )
F(t1)

> F(B)

obtained by applying the functor F to the pullback square defining T ×
B
S. These

2-cells clearly satisfy the coherence conditions making F into a (normal) comorphism

and, since representables are preserved on the nose by F, little effort is required to

verify (duals of) the conditions in proposition 1.5.13 demonstrating that the pair

(F,F) is an equipment comorphism:

(Span(E), E , ( )◦)
(F,F)

> (Span(F),F , ( )◦)

We may also enrich any natural transformation Ψ: F ⇒ F′: E > F to a

transformation (Ψ,Ψ): (F,F) ⇒ (F′,F′) in EcoMor. For each span (s0, S, s1) ∈
Span(E)(A,B) an enriching 2-cell ΨS: (ΨB)◦ ×• F(S) ⇒ F′(S) ×

•
(ΨA)◦ corresponds

under the adjunction (ΨA)◦ a (ΨA)◦ to a 2-cell Ψ̂S: (ΨB)◦ ×• F(S)×
•

(ΨA)◦ ⇒ F′(S),

and the composite in the domain of Ψ̂S is easily seen to be isomorphic to the

span (ΨB ◦ F(s0),F(S),ΨA ◦ F(s1)). We may therefore take Ψ̂S to be the map

ΨS: F(S) > F′(S) which is a suitable map of spans since the naturality of Ψ

ensures that the following diagram commutes:

F(B) <
F(s0)

F(S)
F(s1)

> F(A)

ΨB

∨
ΨS

∨ ∨
ΨA

F′(B) <
F′(s0)

F′(S)
F′(s1)

> F′(A)

Checking that this data does indeed enrich Ψ to a 2-cell in EcoMor is routine and

left up to the reader.

It should be clear, and is easy to verify, that we have constructed a canonical

2-functor

CATf

Span
> EcoMor

where CATf is the 2-category of categories possessing finite limits with all functors

and natural transformations between them. It follows therefore that any adjoint
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pair

E
<

F#

⊥
F#

> F

gives rise to an adjunction

(Span(E), E , ( )◦)
<
(F#,F#)

⊥

(F#,F#)
>

(Span(F),F , ( )◦

in EcoMor. Notice that if a functor F is left exact then the corresponding comor-

phism F is in fact a homomorphism, it follows that the 2-functor “Span” restricts

to

LEX
Span

> EHom
where LEX is the sub-2-category of CATf on the finite limit preserving functors.

Example 1.5.18 (Change of Base for Relations) Carboni, Kelly and Wood’s

work on change of base [12] may be considered to be a special case of the theory

developed here wherein all equipments (M,K, ( )∗) have K a category and M a

poset enriched category. It follows therefore that all the work they present there

carries over to our context, and we refer the reader to that report for further details.

�

Example 1.5.19 (Cartesian Bicategories)4 In their classical form, cartesian bi-

categories arise in the work of Carboni and Walters [13] as a pivotal part of their

characterisation of those order enriched categories which arise as a category of rela-

tions in some regular category. Their original definition is couched in a somewhat

ad-hoc form and its elucidation into a more conceptually elegant form provided Car-

boni, Kelly and Wood with one of their primary motivations for the development of

the framework presented in [12].

As discussed in the last example, we may reframe the presentation of cartesian

bicategories given in [12] within the more general theory of change of base given

herein. To do so we start by considering a strongly bicategory enriched category A
which possesses all finite products in the usual enriched sense. In other words, A
has:

• a terminal object 1 ∈ A for which each A(A, 1) is isomorphic to the terminal

bicategory 1 (which has only a single cell at each dimension 0,1 and 2), and

4this is a new example which was not present in the original 1992 version of this work.
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• for each pair of objects A,B ∈ A a product object A × B ∈ A and a pair

of homomorphisms πA:A × B > A and πB:A × B > B composition

with which induces an isomorphism A(C,A × B) ∼= A(C,A) × A(C,B) of

bicategories.

Now we say that an object A ∈ A is cartesian if the homomorphisms ! :A > 1

(unique) and ∆:A > A× A (diagonal) have right biadjoints in A.

Notice here that one might naturally investigate a more liberal finite prod-

uct notion for (strongly) bicategory enriched categories, under which the isomor-

phisms above are replaced by biequivalences. However, we will not need these

more general notions because our primary examples EMap, EMor, EcoMor and

EHom all possess finite products in the stronger sense above. Indeed, in each of

these we construct such finite products of equipments pointwise in the category

HomS of bicategories and homomorphisms, wherein such products are given in

the obvious (strictly algebraic) way as discussed in observation 1.4.3 and corol-

lary 1.4.4. In other words, the equipment (1, 1, I1) is their terminal object and

(M,K, ( )∗)× (N ,L, ( )∗) = (M×N ,K × L, ( )∗ × ( )∗) is the binary product of

a pair of equipments, as the reader may readily verify.

One might now ask for a more explicit description of the cartesian objects in

the various (strongly) bicategory enriched categories of equipments. To do this, we

start by observing that the canonical homomorphisms !̈ : (M,K, ( )∗) > (1, 1, I1)

and ∆̈: (M,K, ( )∗) > (M,K, ( )∗)× (M,K, ( )∗) in EHom are mapped to the

corresponding canonical homomorphisms in EMor, EcoMor and EMap by the var-

ious forgetful functors that apply between these categories. It follows that we can

creep up to an explicit understanding of the cartesian objects in EHom by starting

with the corresponding characterisation in EMap. This is provided immediately

by theorem 1.5.14, an appropriate dual of which applies routinely to show that if

(M,K, ( )∗) is an equipment then:

• The unique homomorphism !̈ : (M,K, ( )∗) > (1, 1, I1) has a right biadjoint

in EMap if and only if

(i) the bicategory K has a bi-terminal object, in the sense that there is a 0-

cell 1 ∈ K with the property that each hom-category K(a, 1) is equivalent

to the terminal category 1, and

(ii) the hom-category M(1, 1) has a terminal object.

Here the first clause of this characterisation is simply an explicit restatement of

condition that the unique homomorphism of bicategories ! :K > 1 should

have a right biadjoint, and its second clause simply corresponds to equivalent

condition (iii) of the statement of theorem 1.5.14. Notice then that equivalent

condition (ii) of that theorem implies that we may infer from the conditions

above that every hom-category M(a, ā) has a terminal object.
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• The diagonal homomorphism ∆̈: (M,K, ( )∗) > (M,K, ( )∗)×(M,K, ( )∗)

in EHom has a right biadjoint in EMap if and only if

(i) each pair of 0-cells a, b ∈ K has a binary bi-product, in the sense that

there exists a 0-cell a × b and a pair of 1-cells πa: a × b > a and

πb: a × b > b in K composition with which induces an equivalence of

categories K(c, a× b) ' K(c, a)×K(c, b) for each 0-cell c ∈ K, and

(ii) each hom-category M(a, ā) admits all binary products.

At this point it is worth mentioning that if we are given a bicategory M then

we may construct a corresponding equipment (M,map(M)co, inc) simply by tak-

ing map(M) to be the locally full sub-bicategory of M containing those 1-cells

p: a > b which possess a right adjoint p∗: b > a. These 1-cells are often called

the maps of M, hence the nomenclature map(M) for this sub-bicategory. Now if

we apply the above characterisations to this particular equipment we find that it is

a cartesian object in EMap if an only ifM is a precartesian bicategory in the sense

of Carboni, Kelly, Walters and Wood [11] definition 3.1. Consequently, we call the

cartesian objects in EMap precartesian equipments.

Now suppose that the equipment (M,K, ( )∗) is precartesian and adopt the

notation Ï = (1, I) to denote the right biadjoint to the unique equipment map

! : (M,K, ( )∗) > (1, 1, I1) in EMap and ⊗̈ = (×,⊗) to denote the right biad-

joint to the diagonal ∆̈: (M,K, ( )∗) > (M,K, ( )∗) × (M,K, ( )∗) in EMap.

Then we may apply corollary 1.4.12 to show that Ï and ⊗̈ admit enrichments to

equipment morphisms which are unique for the property that they make the biad-

junctions !̈ ab Ï and ∆̈ ab ⊗̈ in EMap into biadjunctions in EMor. In other words,

we have shown that the precartesian equipments are also the cartesian objects of

EMor, a result which subsumes and generalises those presented in propositions 3.15

and 3.18 of [11].

Finally, we might ask for a characterisation of the cartesian objects in EHom.

We know that the enriched forgetful functor EHom > EMor preserves finite

products, the canonical maps !̈ and ∆̈ and any biadjunctions, so it also preserves

cartesian objects. Conversely, returning to the comments at the top of page 124 we

also find that EHom > EMor acts in a full and faithful manner on modifications

and transformations and in a faithful manner on homomorphisms. Consequently,

the biadjunctions !̈ ab Ï and ∆̈ ab ⊗̈ in EMor become biadjoints in EHom if and

only if Ï and ⊗̈ happen to be homomorphisms of equipments.

When interpreted for equipments of the form (M,map(M)co, inc) this last con-

dition is precisely that given in definition 4.1 of of Carboni, Kelly, Walters and

Wood [11]. In other words, we have shown that a bicategoryM is a cartesian bicat-

egory in their sense if and only if the corresponding equipment (M,map(M)co, inc)

is a cartesian object in EHom. For that reason we call the cartesian objects of

EHom cartesian equipments.
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It is now interesting to observe that results of section 2 of [11] may be generalised

to apply in any (strongly) bicategory enriched category A. In essence, all we need do

is use the enriched variant of Yoneda’s lemma to embed A in its enriched category

of presheaves and then apply those results, which follow by elementary means in

HomS, in a pointwise fashion. So we find that any cartesian object in A supports

the structure of a symmetric monoidal object in there, where this latter notion gen-

eralises that of symmetric monoidal bicategory (as studied by Day and Street [16]

and McCrudden [35]) in the most obvious way to our enriched context. As a con-

sequence we find that precartesian and cartesian equipments carry the structure of

symmetric monoidal objects in EMor and EHom respectively. �
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1.6 The Equipment of Monads Construction as

an Enriched Functor.

The principle purpose of this section is to look in greater detail at the equipment

of monads construction introduced in example 1.2.5. Since the construction of

Mon(M,K, ( )◦) = (MonM,Mnd(M,K), ( )∗) relies on the bicategory M having

local stable coequalisers of reflexive pairs we will assume that condition for those

equipments we meet in this section.

In the next few lemmas we establish a practical description of the double bicat-

egory Sq(Mon(M,K, ( )◦)) which we will then apply to establishing the enriched

functoriality of the equipment of monads construction Mon( ):

Lemma 1.6.1 There exists a canonical forgetful equipment morphism:

Mon(M,K, ( )◦)
(U,U)

> (M,K, ( )◦)

Proof. It is quite clear that there exist forgetful maps

Mnd(M,K)
U

> K Mon(M)
U

>M

(a,A) > a (a,A) > a

(f, λ)
∨

>
∨
f (lp, p, rp) +

∨
> �
∨
p

(a′,A′) > a′ (ā,A) > ā

the first of which is a strict homomorphism, since horizontal composition of 1-cells

in Mnd(M,K) is achieved by first composing underlying 1-cells in K. The second

is a morphism with canonical 2-cells

iU(a,A) = ia
ηa

> A = U(i(a,A))

U(lp̄, p̄, rp̄)~ U(lp, p, rp) = p̄~ p
qp̄p

. p̄⊗ p = U((lp̄, p̄, rp̄)⊗ (lp, p, rp))

which are respectively the unit of the monad (a,A) and the canonical map displaying

p̄⊗ p as a quotient of p̄~ p.
According to lemma 1.5.7 we also need to provide 2-cells relating these two

morphisms, if (f, λ) is a 1-cell in Mnd(M,K) define the 2-cell ν(f,λ) in M to be:

(U(f, λ))◦ = f◦
ηa′ ~ f◦

> A′ ~ f◦ = U(f, λ)∗

It is a matter of routine verification to show that this family is natural in (f, λ)

and satisfies conditions (d)′ and (e)′ of lemma 1.5.7. All that remains is to establish

154



CHANGE OF BASE

condition (c)′ but, with ν(f,λ) defined as above, the 2-cell ρ−1
p′(f,λ) is given by the

composite

U(lp′ , p
′, rp′)~ (U(f, λ))◦

= p′ ~ f◦
p′ ~ ηa′ ~ f◦

> p′ ~ A′ ~ f◦
q

. p′ ⊗ (A′ ~ f◦) =

U((lp′ , p
′, rp′)⊗ (f, λ)∗)

(1.83)

which we have to show is an isomorphism. Recall from lemma 1.2.6(i) that there is

an equivariant isomorphism p′ ⊗ (A′ ~ f◦) ∼= p′ ~ f◦ which is defined so as to make

the diagram

p′ ~ A′ ~ f◦
q

. p′ ⊗ (A′ ~ f◦)
∧@

@
@

rp′ ~ f◦ @@
@R

o iso

p′ ~ f◦

commute. Of course we know that (rp′ ~ f◦) • (p′ ~ ηa′ ~ f◦) is simply the identity

on p′ ~ f◦ therefore the 2-cell in (1.83) is the isomorphism “iso” above. �

This lemma allows us to describe the squares of Sq(Mon(M,K, ( )◦)) more

concretely:

Lemma 1.6.2 Fixing 1-cells

(f, λ), (f̄ , λ̄) ∈ Mnd(M,K)

(lp, p, rp), (lp′ , p
′, rp′) ∈ Mon(M)

the action of (U,U) on squares

(a,A)
(f, λ)

> (a′,A′) a
f

> a′

(lp, p, rp) +

∨

⇑ ω +

∨
(lp′ , p

′, rp′) > p�

∨

⇑ US(ω) �

∨

p′

(ā,A)
(f̄ , λ̄)

> (ā′,A′) ā
f̄

> ā′

gives a bijection between squares ω ∈ Mon(M,K, ( )◦) and those squares θ ∈
(M,K, ( )◦), as on the right of the diagram, satisfying the conditions that:

• the pair (lp, lp′) constitute a cylinder λ̄~ θ⇒V λ̄ and

• the pair (rp, rp′) constitute a cylinder θ ~ λ⇒V λ.

(Here we are using ~ for vertical composition of squares in Mon(M,K, ( )◦).)
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Proof. This is a direct corollary of lemma 1.2.6. We know that the square US(ω)

is the unique 2-cell such that

f̄◦ ~ p
ηā′ ~ f̄◦ ~ p

> A′ ~ f̄◦ ~ p
q
. (f̄ , λ̄)⊗ p

US(ω)

∨ ∨
ω

p′ ~ f◦
p′ ~ ηa′ ~ f◦

> p′ ~ A′f◦
q
. p′ ⊗ (f, λ)∗

commutes. Consider the two horizontal composites in this diagram, the lower one

was shown (during the proof of the last lemma) to be equal to the canonical equiv-

ariant isomorphism p′~f◦ ∼= p′⊗(f, λ)∗ of lemma 1.2.6(i), but what about the upper

one? Referring to the proof of lemma 1.2.6(ii) we see that it is exactly composition

with this map which provides us with a bijection:

(f̄ , λ̄)∗ ⊗ p > q (equivariant)

f̄◦ ~ p > q (satisfying conds. in (1.26))

It follows that there is a correspondence

(f̄ , λ̄)∗ ⊗ p
ω

> p′ ⊗ (f, λ) (equivariant)

f̄◦ ~ p
US(ω)

> p′ ~ f (satisfying conds. in (1.26))

and recasting the conditions of (1.26) in terms of the left and right actions on p′~f◦,
as given in lemma 1.2.6(i), we get:

f̄◦ ~ p~ A
US(ω)~ A

> p′ ~ f◦ ~ A
p′ ~ λ

> p′ ~ A′ ~ f◦

f̄◦ ~ rp
∨

(a)′

∨
rp′ ~ f◦

f̄◦ ~ p
US(ω)

> p′ ~ f◦

f̄◦ ~ A~ p
λ̄~ p

> A′ ~ f̄◦ ~ p
A′ ~ US(ω)

> A′ ~ p′ ~ f◦

f̄◦ ~ lp
∨

(b)′

∨
lp′ ~ f◦

f̄◦ ~ p
US(ω)

> p′ ~ f◦

These are simply expanded forms of the cylinder conditions given in the statement

of this lemma. By a slight abuse of terminology we will often refer to US(ω) as the

square underlying ω in Sq(M,K, ( )◦). �
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The last lemma allows us to interpret the squares of Sq(Mon(M,K, ( )◦)) in

one of two ways depending on whether we wish to think of them as 1-cells of

CylH(Sq(Mon(M,K, ( )◦))) or CylV (Sq(Mon(M,K, ( )◦))). First let us think in

terms of CylH(Sq(Mon(M,K, ( )◦))):

We already know that we may identify monads inM with bicategorical morph-

isms

1
(a,A)

>M
where 1 is the discrete one object category, but it is less commonly noted that we

may extend this sort of description to bimodules. Let 2 be the ordinal “2” as a

category (cf. (2.10) later on) with two objects 0, 1 and a single non identity map

m: 0 > 1 and consider a morphism:

2
ppq

>M

Composing this with the canonical functors p0q, p1q: 1 > 2 we get monads (a,A)

and (ā,A), beyond these the remaining structure of ppq consists of a 1-cell p =

ppq(m): a > a′ and compositional comparisons:

p~ A = ppq(m)~ ppq(ia) ====
rp
===⇒ ppq(m ◦ ia) = p

A~ p = ppq(iā)~ ppq(m) ====
lp
===⇒ ppq(iā ◦m) = p

A moments reflection reveals that the conditions that this data satisfies as (part of)

the structure of a morphism are exactly the ones which (lp, p, rp) must satisfy as a

bimodule (a,A) +> (ā,A).

Having described bimodules in this way it should be clear that the last lemma

simply establishes that squares in Sq(Mon(M,K, ( )◦)) correspond to 1-cells in the

bicategory BicatH(2, Sq(M,K, ( )◦)), as defined in observation 1.4.2. To make this

a little more apparent consider the functors p0q and p1q which give rise to strict

homomorphisms

BicatH(2, Sq(M,K, ( )◦))

◦ p0q

◦ p1q

>
> BicatH(1, Sq(M,K, ( )◦)) (1.84)

by pre-composition (cf lemma 1.6.3 later on). Given a 1-cell

pωq: ppq > pp′q ∈ BicatH(2, Sq(M,K, ( )◦))

we already know that ppq and pp′q are bimodules which, along with the images

in BicatH(1, Sq(M,K, ( )◦))
def
= Mnd(M,K) of pγq under the homomorphisms ◦

p0q and p1q, constitute the boundary of a square in Sq(Mon(M,K, ( )◦)). The

remaining data encapsulated in pωq takes the form of a square in Sq(M,K, ( )◦)

satisfying the conditions given in the statement of lemma 1.6.2.
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Horizontal composition of the squares in Sq(Mon(M,K, ( )◦)) is easy to inter-

pret in this context, U: Mnd(M,K) > K is a strict homomorphism therefore the

cylinder conditions on it as part of a horizontal map

Ũ: Sq(Mon(M,K, ( )◦)) > Sq(M,K, ( )◦)

reduce to the simple equations US(ω′ ◦ ω) = US(ω′) ◦ US(ω) and US(ih(lp,p,rp)) = ihp .

In other words we horizontally compose squares in Sq(Mon(M,K, ( )◦)) by hori-

zontally composing their underlying squares in Sq(M,K, ( )◦). In a similar fashion

the fact that Ũ preserves the actions of horizontal and vertical 2-cells on squares

in Sq(Mon(M,K, ( )◦)) implies that those actions are calculated on underlying

squares as in Sq(M,K, ( )◦). Notice that these facts simply demonstrate that the

representation of lemma 1.6.2 sets up a canonical strict isomorphism (of bicate-

gories):

CylH(Sq(Mon(M,K, ( )◦))) ∼= BicatH(2, Sq(M,K, ( )◦)) (1.85)

On the other hand re-interpreting the squares of Sq(Mon(M,K, ( )◦)) as 1-

cells in CylV (Sq(Mon(M,K, ( )◦))) provides us with a description of their vertical

composition. On considering ω as a 1-cell (f, λ) > (f̄ , λ̄) in here it becomes

natural to think of (f, λ) and (f̄ , λ̄) as monads in CylV (Sq(M,K, ( )◦)) and in this

paradigm the description of ω afforded by lemma 1.6.2 reveals that it is simply a

bimodule.

Showing that CylV (Sq(M,K, ( )◦)) has stable local coequalisers of reflexive pairs

if M does demonstrates that we may tensorially compose its bimodules. Suppose

that

ω0

(α0, α
′
0)

(α1, α
′
1)

>
> ω1

is such a pair in CylV (Sq(M,K, ( )◦))(f, f̄) then pairing components we get reflexive

pairs with coequalisers:

p0

α0

α1

>
> p1

β
. p2 p′0

α′0

α′1

>
> p′1

β′
. p′2

The cylinder conditions on (α0, α
′
0) and (α1, α

′
1) imply that we have a serially com-
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mutative diagram

f̄∗ ~ p0

f̄∗ ~ α0

f̄∗ ~ α1

>
> f̄∗ ~ p1

f̄∗ ~ β
. f̄∗ ~ p2

····ω0

∨ ∨
ω1 ·····∨

ω2

p′0 ~ f∗

α′0 ~ f∗

α′1 ~ f∗

>
> p′1 ~ f∗

β′ ~ f∗
. p′2 ~ f∗

both horizontal forks are coequalisers, since f̄∗ ~ and ~ f∗ preserve coequalisers

of reflective pairs, and that ensures the existence of the unique map ω2. It is routine

to check that the cylinder (β, β′):ω1⇒V ω2 presents the square ω2 as the coequaliser

of (α0, α
′
0) and (α1, α

′
1). The stability of these coequalisers is immediate and (by

definition) they are preserved by the (action on homsets of the) homomorphisms

domH , codH : CylV (M,K, ( )◦) >M.

Lets return to vertical composition of squares in Sq(Mon(M,K, ( )◦)), given a

second

(ā,A)
(f̄ , λ̄)

> (ā′,A′)

(lp̄, p̄, rp̄) +

∨
⇑ ω̄ +

∨
(lp̄′ , p̄

′, rp̄′)

(ã, Ã)

(f̃ , λ̃)

> (ã′, Ã′)

one of the cylinder conditions on U, as the vertical action of a homomorphism

Ũ ∈ HorizSM , states that the pair of canonical 2-cells

U(lp̄, p̄, rp̄)~ U(lp, p, rp) ===
can

=⇒V U((lp̄, p̄, rp̄)⊗ (lp, p, rp))

U(lp̄′ , p̄′, rp̄′)~ U(lp′ , p
′, rp′) ==

can
⇒V U((lp̄′ , p̄

′, rp̄′)⊗ (lp′ , p
′, rp′))

constitute a cylinder US(ω̄) ~ US(ω)⇒V US(ω̄ ⊗ ω). In other words, notationally

identifying the squares ω and ω̄ with their underlying squares in Sq(M,K, ( )◦), the

quotient maps

p̄~ p
q

. p̄⊗ p

p̄′ ~ p
q′

. p̄′ ⊗ p′
form a cylinder ω̄~ω⇒V ω̄⊗ω. Returning to the construction we gave for coequalisers

in CylV (M,K, ( )◦), we see that the fork

ω̄ ~ λ̄~ ω

(rp̄, rp̄′)~ ω

ω̄ ~ (lp, lp′)

>
> ω̄ ~ ω

(q, q′)
. ω̄ ⊗ ω
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is a coequaliser in CylV (M,K, ( )◦)((f, λ), (f̃ , λ̃)), which of course simply shows

that vertical composition of squares in Sq(Mon(M,K, ( )◦)) coincides with their

composite as 1-cells in Mon(CylV (Sq(M,K, ( )◦))). Using Ũ we may also show that

the vertical identity in Sq(Mon(M,K, ( )◦)) on the horizontal 1-cell (f, λ) has un-

derlying square λ ∈ Sq(M,K, ( )◦). To summarise these results the correspondence

of lemma 1.6.2 gives rise to a canonical strict isomorphism of bicategories:

CylV (Sq(Mon(M,K, ( )◦))) ∼= Mon(CylV (Sq(M,K, ( )◦))) . (1.86)

This completes a description of the double bicategory Sq(Mon(M,K, ( )◦)) of far

greater use in practice, in future we will assume that its squares are always given in

terms of their underlying ones in Sq(M,K, ( )◦).

Our analysis of Sq(Mon(M,K, ( )◦)) immediately gives us a method for con-

structing an enriched functor:

EMor
Mon( )

> EMap .

Recall that EMap was constructed from HorizS (via the Sq( ) construction) and

that in turn was derived from HomP
S as in definition 1.4.7. By those definitions we

know that

EMap(Mon(M,K, ( )◦),Mon(N ,L, ( )◦))

= HorizS(Sq(Mon(M,K, ( )◦)), Sq(Mon(N ,L, ( )◦)))

= HomP
S(Hor(Sq(Mon(M,K, ( )◦))),Hor(Sq(Mon(N ,L, ( )◦)))

where Hor(Sq(Mon(M,K, ( )◦))) is the diagram

CylH(Sq(Mon(M,K, ( )◦)))

domV

codV

>
> Mnd(M,K) (1.87)

which, under the description of Sq(Mon(M,K, ( )◦)) given above, is equal to the

diagram in (1.84). This formulation opens up the possibility of constructingMon( )

by an application of:

Lemma 1.6.3 Let C be a small category and

Cop D
> Bicat

a functor, where Bicat is the category of (small) bicategories and morphisms, then

there exists an enriched functor

HorizSM
BicatH(D(∗), )

> HomC
S
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such that for each object D̃ ∈ HorizSM the functor

C
BicatH(D(∗), D̃)

> SHom

maps an object c ∈ C to the bicategory BicatH(D(c), D̃) as defined in observa-

tion 1.4.2.

Proof. Here we restrict ourselves to constructing BicatH(D(∗), ) only on the sub-

category HorizNM of HorizSM obtained by restricting ourselves to those homo-

morphisms G̃: D̃ > D̃′ for which GH :H > H′ is normal (preserves identities

“on the nose”). This choice prevents us from getting embroiled in the inessential

technical details which the full version requires, and which obscure the fundamentals

behind this construction. In fact in the cases we apply this lemma to later on the

homomorphisms GH are all functors and so therefore normal, although in any case

we may always replace a homomorphism in HorizSM with one in HorizNM .

First let us look to see what it means to give an enriched functor

A F
> BB

where A and B are arbitrary (strongly) bicategory enriched categories. Evaluating

this functor at an object A ∈ A we get a diagram

C
F(A, )

> B
st

that is for each object c ∈ C we get an object F(A, c) ∈ B and for each map

γ: c > c′ ∈ C a strict homomorphism F(A, γ):F(A, c) > F(A, c′) such that

F(A, ic) = IF(A,c) and F(A, γ′ ◦ γ) = F(A, γ′) ◦ F(A, γ). The action of F on the

homset

A(A,A′)
F

> BC(F(A),F(A′))=
∫
c∈C
B(F(A, c),F(A′, c))

corresponds to a family of bicategory homomorphisms

A(A,A′)
F( , c)

> B(F(A, c),F(A′, c))

with the property that for each map γ ∈ C the following diagram commutes:

A(A,A′)
F( , c)

> B(F(A, c),F(A′, c))

F( , c′)

∨ ∨
F(A′, γ) ◦

B(F(A, c′),F(A′, c′))
◦ F(A, γ)

> B(F(A, c),F(A′, c′))

(1.88)
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It is easily verified that F is an enriched functor iff for each c ∈ C the homomorph-

isms F( , c) are the homset actions of a functor F( , c):A > B. The condition in

(1.88) then simply state that the strict homomorphisms F(A, γ) are the components

of a natural transformation F( , γ):F( , c) > F( , c′).

This process is clearly reversible therefore enriched functors F :A > BC cor-

respond to (honest) functors:

C F̂
>
[
A,B

]
st

Here
[
A,B

]
st

denotes the category of enriched functors G:A > B and (enriched)

strict natural transformations Γ:G ⇒ G ′, that is those such that each homomorphism

ΓA:G(A) > G ′(A) ∈ B is strict.

Returning to the example in question we may identify any bicategory B with

a “horizontally discrete” double bicategory in which B itself is the bicategory of

vertical cells and the only horizontal cells or squares are identities. For a pair of

bicategories B, B′ the bicategory HorizNM(B,B′) is simply the discrete one on the

set Bicat(B,B′), and it follows that we may identify the category Bicat with the full

subcategory of HorizNM on the horizontally discrete double bicategories.

On restricting our attention to HorizNM and making the identification of the

last paragraph we see that

BicatH(B, D̃) = HorizNM(B, D̃)

for each bicategory B and double bicategory D̃. It is this which motivates our adop-

tion of HorizNM since HorizSM(B, D̃) is only biequivalent to BicatH(B, D̃). The

last ingredient is to notice that for any homomorphism G̃: D̃ > D̃′ ∈ HorizNM
we may show that each homomorphism of bicategories

HorizNM(D̃′, Ẽ)
◦ G̃

> HorizNM(D̃, Ẽ)

is strict . A 1-cell Ψ̃: F̃ > F̃′ ∈ HorizNM(D̃′, Ẽ) consists of families

{Ψa ∈ H′}a∈A

Ψa′ ⊗
H

FH(f)
Ψf∼= F′H(f)⊗

H
Ψa ∈ H′


f∈H

{
Ψp ∈ S ′

}
p∈V

satisfying some mutual compatibility conditions, in terms of which the 1-cells of

HorizNM(D̃′, Ẽ) are (horizontally) composed “pointwise” using horizontal compo-

sition in D̃′. Correspondingly the composite Ψ̃ ◦ G̃ ∈ HorizNM(D̃, Ẽ) is formed by

“re-indexing” families along the actions of G̃ on 0-cells and vertical & horizontal 1-

cells, it follows from these descriptions that (Φ̃⊗Ψ̃)◦G̃ = (Φ̃◦G̃)⊗(Ψ̃◦G̃). Of course

identity 1-cells in HorizNM(D̃′, Ẽ) simply consist of families of horizontal identities,
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which are clearly preserved by re-indexing; as a result we have demonstrated that

◦ G̃ is indeed strict.

This is all we need to establish the existence of the required functor since for

each object c ∈ C we have a representable enriched functor

HorizNM
HorizNM(D(c), )

> HomS

which maps each double bicategory D̃ to the bicategory BicatH(D(c), D̃). Further-

more for each map γ: c > c′ ∈ C there is a representable (enriched) natural

transformation

HorizNM(D(c), )
HorizNM(D(γ), )

> HorizNM(D(c′), )

the components of which are the strict homomorphisms:

HorizNM(D(c), A)
◦D(γ)

> HorizNM(D(c′), A)

All of this provides us with a functor

C

(
HorizNM(D(∗), )

)∧
>
[
HorizNM ,HomS

]
st

which corresponds as above to an enriched functor

HorizNM
HorizNM(D(∗), )

> HomC
S

the natural candidate for BicatH(D(∗), ). �

As promised at the top of page 160, lemma 1.6.3 can be applied to the problem

of constructing the enriched functor Mon( ); giving the immediate corollary:

Corollary 1.6.4 The equipment of monads construction of example 1.2.5 extends

to an enriched functor:

EMor
Mon( )

> EMap

For each equipment morphism G̈: (M,K, ( )◦) > (N ,L, ( )◦) in EMor the dia-

gram

Mon(M,K, ( )◦)
Mon(G̈)

>Mon(N ,L, ( )◦)

(U,U)

∨ ∨

(U,U)

(M,K, ( )◦)
G̈

> (N ,L, ( )◦)

(1.89)

commutes in EMap.
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Proof. Take for C the category P (2 parallel arrows) and let D:Pop > Bicat be

the functor which carries the objects of Pop to the categories 1 and 2 and its maps

to the functors p0q, p1q: 1 > 2. Now consider the composite enriched functor

EMor
Sq( )

> HorizSM
BicatH(D(∗), )

> HomP
S .

This maps each equipment (M,K, ( )◦) to the diagram in (1.84), which in turn is

equal to that in (1.87). It follows, by the definition of EMap fromHomP
S of which we

reminded ourselves before the last lemma, that the enriched functor above factors

through

EMap
Sq( )

> HorizS∗
Hor( )

> HomP
S

yielding an enriched functorMon( ) extending the equipment of monads construc-

tion.

We may demonstrate a more general result than the simple commutativity of

(1.89); the forgetful functors (U,U):Mon(M,K, ( )◦) > (M,K, ( )◦) are the

components of a strict natural transformation fromMon: EMor > EMap to the

forgetful functor ( )�: EMor > EMap. Checking this result is simply a matter

of unravelling (a little) the definition we gave of Mon( ) and we leave it up to the

reader. For example all that the property in (1.89) says is that Mon(G̈) acts on

the structures in Sq(Mon(M,K, ( )◦)) as G̈ does on those that underlie them in

Sq(M,K, ( )◦). �

Proposition 1.6.5 The enriched functor of corollary 1.6.4 lifts along the forgetful

functor ( )�: EMor > EMap to

EMor
Mon( )

> EMor

which also has the property that the diagram (1.89) commutes in EMor for each

equipment morphism G̈. If G̈: (M,K, ( )◦) > (N ,L, ( )◦) is in EHom and the

(honest) homomorphism G:M > N preserves local coequalisers of reflexive pairs

then Mon(G̈) is in EHom as well.

Proof. This proposition is essentially no more than the observation that we may

extend the “bicategory of modules” construction to a functor:

Bicat
Mon( )

> Bicat

Suppose that G:M > N is a morphism then a 0-cell of Mon(M) is a morph-

ism A: 1 >M which we may map to the 0-cell in Mon(N ) corresponding to

the composite morphism (G ◦ A). Similarly a 1-cell in Mon(M) is a morphism

ppq: 2 >M which we map to (G◦ppq), it is easily checked that G then preserves
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equivariant maps. Since these actions clearly preserve the identities of Mon(M) “on

the nose” it remains only to provide Mon(G) with compositional comparison 2-cells.

It will help to make a little more explicit the action of Mon(G) on a bimodule

(lp, p, rp): (a,A) > (a′,A′), the bimodule Mon(G)(lp, p, rp) has underlying 1-cell

G(p) equipped with actions:

G(p)~G(A)
can

> G(p~ A)
G(rp)

> G(p)

G(A′)~G(p)
can

> G(A′ ~ p)
G(lp)

> G(p)

Now if we are given a second bimodule (lp′ , p
′, rp′): (a′,A′) > (a′′,A′′) we have a

serially commutative diagram

G(p′)~G(A′)~G(p)

G(p′)~ (G(lp) • can)

(G(rp′) • can)~G(p)

>
> G(p′)~G(p)

q
. G(p′)⊗G(p)

····can

∨
can

∨
·····∨

G(p′ ~ A′ ~ p)
G(p′ ~ lp)

G(rp′ ~ p

>
> )

G(p′ ~ p)
G(q)

> G(p′ ⊗ p)

the upper fork of which is a coequaliser, this induces the dotted comparison arrow

to the right. It is now straightforward to show that this is an equivariant map

can: Mon(G)(lp′ , p
′, rp′) ⊗ Mon(G)(lp, p, rp) ⇒ Mon(G)((lp′ , p

′, rp′) ⊗ (lp, p, rp)) and

that they collectively satisfy the coherence conditions required of the compositional

comparisons of a morphism Mon(G). Notice that if G is a homomorphism then the

maps marked “can” in the diagram are isomorphisms, furthermore if it preserves

local reflexive coequalisers then the bottom fork is a coequaliser. It follows that

under those conditions the dotted arrow is an isomorphism and so Mon(G) is a

homomorphism. Notice that Mon(G) is defined precisely so that the diagram

Mon(M)
Mon(G)

> Mon(N )

U

∨ ∨

U

M G
> N

(1.90)

commutes.

Given an equipment morphism G̈: (M,K, ( )◦) > (N ,L, ( )◦) we show that

we can enrich Mon(G̈) to an equipment morphism by enriching the corresponding

horizontal map

Sq(Mon(M,K, ( )◦))
Sq(Mon(G̈))

> Sq(Mon(N ,L, ( )◦))
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to HorizSM . The morphism Mon(G): Mon(M) > Mon(N ) enriches its action

on vertical cells but it remains to check that this satisfies the usual compatibility

conditions with respect to the action of Sq(Mon(G̈)) on squares. Those hold iff

there exists a morphism M which makes the diagram

CylV (Sq(Mon(M,K, ( )◦)))
M

> CylV (Sq(Mon(N ,L, ( )◦)))

domH

∨ ∨

codH domH

∨ ∨

codH

Mon(M)
Mon(G)

> Mon(N )

commute serially while acting on 1-cells as Sq(Mon(G̈)) does on squares. Under

the representation of Sq(Mon(M,K, ( )◦)) we developed earlier in the section, and

in particular the isomorphism in (1.86), it is clear that the parallel pair of strict

homomorphisms to the left of this diagram is (essentially) equal to:

Mon(CylV (Sq(M,K, ( )◦)))

Mon(domH)

Mon(codH)

>
> Mon(M)

The same result holds for the right of the diagram and it becomes immediately

apparent that we may take for M the morphism obtained by applying Mon( ) to the

morphism CylV (Sq(M,K, ( )◦)) > CylV (Sq(N ,L, ( )◦)) constructed from G̈.

We leave it up to the reader to check that Mon( ) carries transformations to

those compatible with the morphism structures provided above. The remainder

of this proposition is clear given the commutative diagram (1.90) and the result

concerning the action of Mon( ) on homomorphisms.

Notice that if F̈ ab: Ü(M,K, ( )◦) > (N ,L, ( )◦) is a biadjoint in EMor with

F̈ in EHom then by (a dual of) theorem 1.5.14 the action of F on each homset

N (b, b′)
F
>M(Fb,Fb′)

has a right adjoint. It follows that each of these functors preserves coequalisers and

therefore Mon(F̈) is in EHom �

Again in many of the cases of direct interest here we are only interested in

equipments (M,K, ( )◦) with K a mere category, in this case the enriched functor

derived in the last proposition restricts to a 2-functor:

EMor
Mon( )

> EMor

ApplyingMon( ) to our examples of adjunctions between equipments of spans and

matrices we get:
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Example 1.6.6 (change of base for enriched categories) For a pair of bicat-

egories B, C with local stable (small) colimits and small sets of 0-cells along with a

homomorphism

C F
> B

satisfying the local adjointness condition of example 1.5.16, we have already seen

that we may construct an adjunction

(B Mat, Set/|B|, ( )◦)
<

(F#,F#)

⊥

(F#,F#)
>

(C Mat, Set/|C|, ( )◦)

in EMor with (F#,F#) an equipment homomorphism. ApplyingMon( ) to this we

get a further adjunction

(B Prof,B Cat1, ( )∗)
<

(F?,F?)

⊥

(F?,F?)
>

(C Prof, C Cat1, ( )∗)

where example 1.2.8 identifies the equipment Mon(B Mat, Set/|B|, ( )◦) as that

of B-enriched categories (B Prof,B Cat1, ( )∗). By the comment at the end of

proposition 1.6.5 we know that (F?,F?) is an equipment homomorphism.

On the bicategories of profunctors, as we shall see in the next section, the struc-

ture of such an (bi)adjoint pair is that of a local adjoint, in the sense of section 1.1.

In fact the local adjoint associated with the adjunction constructed here is exactly

that described in the first example of section 2 of [6]. They do not stipulate directly

that the homomorphism F we start with should satisfy a local adjointness condition,

requiring instead that it preserve local colimits and that C should be small.

Of course these conditions imply the local adjointness property via the general

adjoint functor theorem, but more than that each homset of C is small and small

cocomplete so by a well know result of Freyd they must all be preorders. This clearly

restricts the applicability of the result in [6] radically, a better size requirement might

be to insist that each homset of C has a small generating set. Now we simply apply

the special adjoint functor theorem to the homset actions of F and infer the local

adjointness property. �

Example 1.6.7 (change of base for internal categories) Suppose E and F are

(locally small) categories with finite limits and coequalisers of reflexive pairs stable

under pullback, and let

E
<

F#

⊥
F#

> F
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be an adjunction in LEX, or in other words a geometric morphism. Applying the

2-functor “Span” considered in example 1.5.17 to this we get an adjunction

(Span(E), E , ( )◦)
<

(F#,F#)

⊥

(F#,F#)
>

(Span(F),F , ( )◦

in EHom to which (in turn) we apply Mon( ) obtaining

(Prof(E),Cat(E)1, ( )∗)
<

(F?,F?)

⊥

(F?,F?)
>

(Prof(F),Cat(F)1, ( )∗)

in EMor. Here we have exploited the identification of Mon(Span(E), E , ( )◦) as

the equipment (Prof(E),Cat(E)1, ( )∗) which was provided by example 1.2.9. The

comment at the end of the proof of proposition 1.6.5 demonstrates that (F?,F?) is

an equipment homomorphism. �

As we pointed out in observation 1.2.10 we are often not so much interested

in equipments like (B Prof,B Cat1, ( )∗) or (Prof(E),Cat(E)1, ( )∗) rather than in

their repletions B Equip and Equip(E), wherein we replace the skeletons B Cat1

and Cat(E)1 with the corresponding 2-categories of categories, functors and nat-

ural transformations. This process is however not quite so well behaved with re-

spect to equipment morphisms, in particular there can be problems if the morphism

(G,G, ν) in question has comparison maps νf : (Gf)∗ ⇒ G(f∗) which are not all iso-

morphisms. Since we have certainly seen examples of such morphisms, for instance

that of lemma 1.6.1, the following definition is far from being vacuous:

Definition 1.6.8 (preservation of representables) An equipment morphism

(M,K, ( )∗)
(G,G, ν)

> (N ,L, ( )∗)

is said to preserves representables iff the 2-cell νf : (Gf)∗ ⇒ G(f∗) is an isomorphism

for each 1-cell f ∈ K.

The author has no reason to believe that it is generally true that the preservation

of representables by (G,G, ν) implies that the same holds for its dual (Gop,Gco, ν ′),

although no natural counter examples have presented themselves. Often we will say

that (G,G, ν) preserves both left and right representables if both it and its dual

preserve representables.
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Lemma 1.6.9 Let EMorpr be the (locally full) enriched subcategory of EMor on

those equipment morphisms which preserve representables. There exists a canonical

enriched functor

EMorpr

( )rep
> EMorpr

extending the operation of repletion described in observation 1.2.10.

Proof. Given a morphism (G,G, ν): (M,K, ( )∗) > (N ,L, ( )∗) in EMorpr we

define a homomorphism

K∗
G∗

> L

which acts as G does on the 0- and 1-cells of K∗. A 2-cell α: f ⇒ g of K∗ corresponds

to ᾱ: g∗ ⇒ f∗ in M so we map it to the cell corresponding to the composite

(Gg)∗ ====

νg
∼====⇒ G(g∗) ====

G(ᾱ)
====⇒ G(f∗) ====

ν−1
f

∼====⇒ (Gf)∗

thus defining a functor G∗:K∗(a, a′) > L∗(Ga,Ga′) for each pair of 0-cells. Now

by applying the axioms satisfied by our νfs and the coherence properties of G and

( )∗ as homomorphisms it is easy to show that the isomorphisms in L∗ corresponding

to

(G(f ′ ◦ f))∗ ==

can∗
∼==⇒ (G(f ′) ◦G(f))∗

(G(ia))∗ ====

can∗
∼======⇒ (iGa)∗

satisfy the conditions required of the 2-cellular structure of a homomorphism G∗.

We have defined the action on 2-cells precisely so as to ensure that the family νf
is a natural transformation (G∗ )∗ ⇒ G( )∗ on each homset K∗(a, a′), which is all

we need to verify in order to show that (G,G, ν)rep
def
= (G,G∗, ν) is an equipment

morphism (M,K, ( )∗)rep > (N ,L, ( )∗)rep.

We leave it up to the reader to provide the actions of ( )rep on modifications and

transformations, which are straightforward, and then to verify that this does indeed

define an enriched functor. �

Now to check that the adjunctions in examples 1.6.6 and 1.6.7 are in fact in

EMorpr:

Lemma 1.6.10 The enriched functor Mon( ) carries any equipment morphism to

one which preserves both left and right representables.

Proof. Let (G,G, ν) be an equipment morphism and for convenience adopt the

notation (Gm,Gm, νm) for Mon(G,G, ν). Now consider the commutative diagram
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(1.89) of corollary 1.6.4 which we know by proposition 1.6.5 holds in EMor as well.

For a 1-cell (f, λ): (a,A) > (a′,A′) in Mnd(M,K) it follows that we have:

U ◦Gm((f, λ)∗) = G ◦ U((f, λ)∗) = G(A′ ~ f◦)
(U ◦Gm(f, λ))◦ = (G ◦ U(f, λ))◦ = (Gf)◦

Furthermore we also have two comparison maps at this representable, one for each

composite in (1.89), which must be equal in order for that diagram to commute,

giving the commutative diagram:

(Gf)◦
ηGa ~ (Gf)◦

> G(A′)~ (Gf)◦

νf

∨ ∨

νm(f,λ)

G(f◦)
G(ηa ~ f◦)

> G(A′ ~ f◦) .

Applying the functor G(A′)~ to this diagram and using the equivariance of νm(f,λ)

on the left we may infer that its underlying map is simply ρ−1
A′f derived from νf as

in (1.74), and this is of course an isomorphism as required.

That the dual of Mon(G,G, ν) also preserves representables follows easily on

observing that the processes of taking duals commutes with the equipment of monads

construction. �

With no further verification the last two lemmas give:

Corollary 1.6.11 We may apply the repletion construction to the adjunctions of

examples 1.6.6 and 1.6.7 to give biadjoints

B Equip
<

(F?,F?)

⊥b

(F?,F?)
>
C Equip

and

Equip(E)
<

(F?,F?)

⊥b

(F?,F?)
>

Equip(F)

in EMor with left biadjoint (F?,F?) an equipment homomorphism in both cases. The

underlying biadjunctions F? a F? of these are in fact 2-adjunctions. �
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The analogy with geometric morphisms in topos theory is striking: change of

base is naturally expressible as a (bi)adjoint pair of maps in a suitably well cho-

sen bicategory enriched category. Even the stipulation that inverse image functors

should preserve finite limits is mirrored by the fact that the map F̈? is an equip-

ment homomorphism. If the reader needs convincing of this he/she should return

to considering example 1.2.3 in which we considered change of base for equipments

of spans.

To round off this section we give a slightly more general result concerning the

construction of a left biadjoint to an equipment morphism Mon(G̈) in the case

when the left biadjoint to G̈ is not an equipment homomorphism. Notice that in the

statement of the lemma after the following definition we only consider equipments

(M,K, ( )◦) in EMap, in other words those in which the bicategory K is merely a

category. This is not an essential requirement but simply prevents us from getting

embroiled in a detailed description of the evident bicategorical versions of Beck’s

precise monadicity theorem and Butler’s adjoint lifting results.

Definition 1.6.12 Given an equipment (M,K, ( )◦) define the bicategory of graphs

Grph(M,K, ( )◦) to be that formed by taking the equaliser of the pair of strict

homomorphisms:

CylH(Sq(M,K, ( )◦))

domV

codV

>
> K

More explicitly this has:

0-cells: are endo-1-cells G: a +> a in M;

1-cells: pairs (f, λ): (a,G) > (a′,G′) consisting of a 1-cell f : a > a′ ∈ K and

a 2-cell λ: f◦ ~G⇒ G′ ~ f◦ in M;

2-cells: α: (f, λ) ⇒ (f ′, λ′) consisting of a 2-cell α: f ⇒ f ′ in K such that the

cylinder condition λ • (α◦ ~G) = (G′ ~ α◦) • λ′ holds.

It is clear that there is a canonical forgetful strict homomorphism

Mnd(M,K, ( )◦)
U(M,K)

> Grph(M,K, ( )◦) .
(1.91)

Notice also that Grph(M,K, ( )◦) is a (2-)category if K is. For instance consider

the equipment (Span(E), E , ( )◦) of example 1.2.3. For this Grph(Span(E), E , ( )◦)

is simply the usual category of (non reflexive) graphs in E and the functor in (1.91)

is the canonical forgetful one from Cat(E). �
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Proposition 1.6.13 Let

(M,K, ( )◦)
G̈ = (G,G, ν)

> (N ,L, ( )◦)

be an equipment morphism in EMor (so K and L are categories and G a functor)

with a left adjoint F̈ in EMap. Assume further that, as in the last section, M
and N have local stable coequalisers of reflexive pairs ensuring that we may form

Mon(M,K, ( )◦) and Mon(N ,L, ( )◦).

If we adopt the further suppositions that

(i) for both equipments (M,K, ( )◦) and (N ,L, ( )◦) the forgetful functor in (1.91)

has a left adjoint,

(ii) the forgetful functor U(N ,L) is of descent type, in other words its Eilenberg-

Moore comparison functor is fully faithful,

(iii) the category Mnd(M,K, ( )◦) has coequalisers of reflexive pairs,

then the equipment morphism

Mon(M,K, ( )◦)
Mon(G̈)

>Mon(N ,L, ( )◦)

has a left adjoint in EMap.

Proof. This is just a simple application of Butler’s left adjoint lifting theorem.

For a precise statement of the version we use here see [2] section 3.7 theorem 3(b).

Notice that we may weaken their conditions slightly by replacing (b)(vi) with one

which only requires coequalisers of reflexive pairs to be present in the codomain of

the functor for which we are constructing a left adjoint.

First we construct a left adjoint to the functor:

Mnd(G̈): Mnd(M,K, ( )◦) > Mnd(N ,L, ( )◦)

Examining the definition of the bicategory enriched category EMap it is clear that

we may extend the bicategory of graphs construction to an enriched functor

EMap
Grph( )

> HomS

which restricts to a 2-functor:

EMap
Grph( )

> Cat

We could not do this for the Mnd( ) construction since equipment maps have no

morphism structure on bicategories of “profunctors”, M and N , so do not neces-

sarily preserve monads. Applying this 2-functor to the adjunction F̈ a G̈ we get an
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adjunction Grph(F̈) a Grph(G̈): Grph(M,K, ( )◦) > Grph(N ,L, ( )◦) in Cat

and the square of functors

Mnd(M,K, ( )◦)
Mnd(G̈)

> Mnd(N ,L, ( )◦)

U

∨ ∨

U

Grph(M,K, ( )◦)
Grph(G̈)

> Grph(N ,L, ( )◦)

commutes. Conditions (i)-(iii) in the statement of this lemma now ensure that we

may apply Butler’s left adjoint lifting theorem, as stated in [2], to get a left adjoint

to Mnd(G̈).

According to theorem 1.5.14 all that remains is to construct a left adjoint to

Mon(M)((a,A), (a′,A′))
Mon(G)( )

> Mon(N )((Ga,GA), (Ga′,GA′))

for each pair of monads (a,A) and (a′,A′). Now the diagram of functors

Mon(M)((a,A), (a′,A′))
Mon(G)( )

> Mon(N )((Ga,GA), (Ga′,GA′))

U

∨ ∨

U

M(a, a′)
G( )

> N (Ga,Ga′)

commutes, wherein the forgetful maps to left and right are monadic and each hom-

set of Mon(M) and Mon(N ) has coequalisers of reflexive pairs (cf. [9] section 4).

Of course the functor G at the bottom of this diagram has a left adjoint by theo-

rem 1.5.14, since G̈ has a left adjoint in EMap, and we apply Butler’s theorem again

to lift this to the left adjoint required. �

Observation 1.6.14 Section 2 of [5] demonstrates that if B is a bicategory as in

example 1.2.2 with local stable coequalisers of reflexive pairs then for the equipment

(B Mat, Set/|B|, ( )◦) constructed therein:

• the forgetful functor of (1.91) is monadic,

• Grph(B Mat, Set/|B|, ( )◦) has all coequalisers.

The same results hold for the equipment (Span(E), E , ( )◦) described in example 1.2.3

so long as E is locally cartesian closed with coequalisers of reflexive pairs and a nat-

ural numbers object. For details of the proof of this result see [28] section 6.4.

It follows therefore that we may always apply proposition 1.6.13 for an equipment

morphism (with left adjoint in EMap) between any of these equipments, since con-

ditions (i)-(iii) are then always satisfied.
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With this in mind it might seem that we have wasted time in establishing the

existence of the enriched functor Mon( ) as a route to the construction of the

adjoints in examples 1.6.6 and 1.6.7, since we could have just proceeded to the last

result and used that instead. In fact the principle problem with this sort of approach

is that in practical situations it is often not enough just to have a left adjoint

in EMap, we also need to know if it preserves representables or is an equipment

homomorphism. This sort of question is hard to answer unless we are provided

with an explicit description of the map under examination, which use of the functor

Mon( ) gives us.

As an example of a case in which lemma 1.6.13 is necessary we have:

Example 1.6.15 (essential geometric morphisms) Suppose that E and F are

locally cartesian closed categories with reflexive coequalisers and an NNO and we are

given an essential geometric morphism

E

f!

f ∗ ⊥
<

⊥
f∗

>

>
F (1.92)

then we may construct another one

Equip(E)1

F̈!

F̈? ⊥
<

⊥

F̈?

>

>
Equip(F)1

in EMap where F̈? is an equipment homomorphism.

Proof. Applying the functor

CATf

Span
> EcoMor

of example 1.5.17 to the adjunctions in (1.92) to get

(Span(E), E , ( )◦)

F̈·

F̈# ⊥
<

⊥

F̈#

>

>
(Span(F),F , ( )◦)

in EcoMor. The functors f∗ and f ∗ are left exact therefore F̈# and F̈# are equipment

homomorphisms to which we apply the 2-functor Mon( ) to get the adjoint pair
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F̈? a F̈?: Equip(E) > Equip(F) in EMor, as in example 1.6.7, where F̈? is an

equipment homomorphism. Now applying lemma 1.6.13 we lift the left adjoint of

F̈# to F̈! a F̈?. Of course the morphism structure of F̈∗ induces a comorphism one

on F̈! giving an adjoint in EcoMor, but it is not clear that we can apply the repletion

construction (lemma 1.6.9) to this since we have not provided ourselves with any

way of checking that F̈! preserves representables. �
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1.7 Colimits and Change of Base

In this final section on change of base we examine the relationship between biadjunc-

tions in EMap and the local adjoints introduced in section 1.1. We may then apply

corollary 1.1.10 to prove results about the preservation of colimit cylinders (cf. ob-

servation 1.2.11) by the “direct image” part of a biadjunction between equipments.

This result will be applied in the next chapter where we represent certain kinds of

enriched category as internal ones allowing us to use a version of the Grothendieck

construction in the analysis of enriched colimits.

Theorem 1.7.1 Let

G̈ = (G,G, ν): (M,K, ( )∗) > (N ,L, ( )∗)

be an equipment morphism with a left biadjoint in EMap, by proposition 1.4.11 we

get an induced comorphism structure on this making it an equipment comorphism

F̈ = (F,F, ξ): (N ,L, ( )∗) > (M,K, ( )∗) .

Adopt Ψ̈ and Φ̈ for the unit and counit of this, with α and β triangle isomorphisms

chosen so that (G̈, F̈, Ψ̈, Φ̈, α, β) is a locally adjoint biadjunction. For this data we

have:

(i) There is a local adjunction F a G:M > N mediated by a unit and counit

as in theorem 1.1.6.

(ii) Suppose that

F(b)
F(p)

+ > F(b′)
@
@
@

f @@
@R

κ⇐
	�
�
� colim(Fp, f)
�
�
�

b

(1.93)

is a colimit cylinder in (M,K, ( )∗) and our biadjunction satisfies

(a) (G,G, ν) preserves representables,

(b) For each 1-cell r: b′ +> G(a) ∈ N the compositional comparison map

F(r ⊗ p) ===
can

=⇒ F(r)⊗ F(p)

is an isomorphism.
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then the pasting

b
p
+ > b′

Ψb

∨

Ψp⇐
∨

Ψb′

GF(b)
GF(p)

+ > GF(b′)
@
@
@

G(f) @@
@R

κ′⇐
	�
�
� G(colim(Fp, f))
�
�
�

G(a)

(1.94)

is a colimit cylinder as well; here κ′ is the composite:

(G(colim(Fp, f)))∗ ⊗GF(p) ==
µ
=⇒ G(colim(Fp, f)∗ ⊗ F(p)) ==

G(κ)
====⇒ G(f∗)

==

ν−1
f

∼====⇒ (Gf)∗

Proof.

(i) Returning to proposition 1.4.11 we see that the comorphism structure on F̈ as

induced by the morphism structure on G̈ is defined precisely to ensure that

the conditions in (1.53) and (1.54) hold. On examining these they clearly

do no more than stipulate that the pairs of families ({(Ψb)∗}, {Ψq}) and

({(Φa)∗}, {Φp}) satisfy the conditions required of generalised optransforma-

tions Ψ: IN > GF and Φ: FG > IM respectively (cf. definition 1.1.2).

Define the families of 2-cells {ᾱa} and {β̄b} required by theorem 1.1.6 to be

the composites:

iGa ======

α∗
∼=⇒ (GΦa)∗ ⊗ (ΦGa)∗ ======

νΦa ⊗ (ΦGa)∗
=====⇒ G((Φa)∗)⊗ (ΦGa)∗

(ΦFb)∗ ⊗ F((Ψb)∗) ======
(ΦFb)∗ ⊗ ξΨb

=====⇒ (ΦFb)∗ ⊗ (FΨb)∗ ==

β∗
∼=====⇒ iFb .

It is easily verified that these families satisfy conditions (1.13) and (1.13)coop

directly from the fact that α and β are modifications in EMap; furthermore

(1.14) and (1.14)coop also hold since they are direct translations of the con-

ditions in (1.37) on (G̈, F̈, Ψ̈, Φ̈, α, β) as a locally adjoint biadjunction. With

this we complete the proof that F a G as mediated by unit Ψ and counit Φ.

(ii) Condition (b) on the comorphism F ensures that we may apply corollary 1.1.10

for the local adjunction F a G to the colimit cylinder in (1.93), which is a

right Kan extension diagram by definition (cf observation 1.2.11). In this way

we demonstrate that G(colim(Fp, f)∗) ⊗ (Ψb)∗ is the right Kan extension of
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G(f∗)⊗ (Ψa)∗ along p. Applying condition (a) we get isomorphisms

G(colim(Fp, f)∗)⊗ (Ψb)∗ ∼= (G(colim(Fp, f)) ◦Ψb)∗

G(f∗)⊗ (Ψa)∗ ∼= (G(f) ◦Ψa)∗

and on composing these with an appropriate instance of (1.23) we get the

cylinder in (1.94). �

Example 1.7.2 Applying theorem 1.7.1(i) to the biadjoint

B Equip
<

F̈?

⊥

F̈?

> C Equip

of corollary 1.6.11 we get the local adjunction for change of base described in [6].�

Notice that for the adjoint pairs in corollary 1.6.11 conditions (a) and (b) hold

for all colimit cylinders as in (1.93), since (F?,F∗) is an equipment homomorphism

in each case, so we may apply the theorem above to any of these. By taking duals

we get an identical result for limit cylinders demonstrating that change of base for

enriched and internal category theory, when formulated in this way, is nicely behaved

with respect to a large class of weighted limits and colimits.

Notation 1.7.3 Suppose Expr1 and Expr2 are expressions conditionally defining

objects of some category C, then the notation Expr1 '⇁ Expr2 means: if Expr1

defines an object of C then so does Expr2 and the two are isomorphic.

We also have Expr1 '↽ Expr2 in which the existential implication goes in the

opposite direction, and Expr1 '↽⇁ Expr2 meaning (Expr1 '⇁ Expr2 ) ∧ (Expr1 '↽
Expr2 ).

As an example of the use of this notation we may re-express the gist of theo-

rem 1.7.1(ii) which simply says that under the conditions given(
colim(F(p), f)

)∨ '⇁ colim(p, f̌)

where the ∨ symbol is used to denote right hand (bi)adjoint transposition under

F ab G. The intended meaning is: if colim(F(p), f) exists in (M,K, ( )∗) then

colim(p, f̌) exists in (N ,L, ( )∗) and the two sides of the relation are isomorphic.

Had we started with a 1-cell g: b > G(a) ∈ L rather than f : F(b) > a ∈ K
we might re-express theorem 1.7.1(ii) as:

colim(F(p), ĝ) '⇁ (colim(p, g))∧

again the symbol ∧ is used to denote left hand (bi)adjoint transposition under

F ab G. �
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As we have already mentioned, in the next chapter we will become interested in

representing one kind of category theory as another, in that case we study enriched

categories as internal ones. In this sort of situation the following definition and its

attendant lemmas become important:

Definition 1.7.4 (equipment inclusions) We say that a biadjoint pair F̈ ab G̈

as in the last theorem is an inclusion if

(i) (G,G, ν) preserves both left and right representables.

(ii) G is locally an equivalence, in other words its action on each homset

K(a, a′)
G
> L(Ga,Ga′)

is an equivalence.

(iii) G is locally fully faithful,

(iv) If the 0-cell b′ ∈ L is in the full image of G, that is to say there exists a ∈ K
and an equivalence G(a) ' b, and p: b > b′ and p′: b′ > b′′ are 1-cells in

M then the compositional comparison map

F(p′ ⊗ p) ====
can

====⇒ F(p′)⊗ F(p)

is an isomorphism.

From this definition it is clear that the class of inclusions is closed under composition

and taking duals. �

Lemma 1.7.5 Conditions (ii) and (iii) of definition 1.7.4 are together equivalent

to:

(ii)′ For each 0-cell a ∈ K the component Φa: FG(a) > a of the counit Φ̈ is an

equivalence in K.

(iii)′ For each 1-cell p ∈M the 2-cell Φp: (Φa′)∗⊗FG(p)⇒ p⊗ (Φa)∗ is an isomor-

phism.

Proof. The equivalence of (ii) and (ii)′ is no more than a bicategorical version of

the well known fact that an adjunction has right adjoint part which is fully faithful

iff its counit is an isomorphism.

In the presence of (ii)′ we may prove that (iii) is equivalent to (iii)′ as follows:

Theorem 1.5.14(ii) tells us that the action of G on each homset

M(a, ā)
G
> N (G(a),G(ā))

has a left adjoint which, in the course of the proof of that theorem, we discover is

simply the functor (Φā)∗⊗F( )⊗(Φa)
∗, furthermore the counit of this adjunction has
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component at p ∈M(a, ā) given in terms of Φp in (1.79). Now Φa is an equivalence in

K, a property which is preserved by application of the homomorphism ( )∗ therefore

(Φa)∗ a (Φa)
∗ is an adjoint equivalence in M and so has counit εΦa which is an

isomorphism. Of course we know that the action of G on M(a, ā) is fully faithful

iff for each p ∈ M(a, ā) the composite in (1.79) is an isomorphism; but bearing in

mind what we know about Φa and εΦa this holds iff each Φp is an isomorphism. �

Example 1.7.6 Let B and C be bicategories and F: C > B a homomorphism, all

satisfying the conditions of example 1.6.6, and suppose further that

• the function |F|: |C| > |B| (action of F on 0-cells) is surjective,

• for each pair of 0-cells c, c′ ∈ C the right adjoint

B(Fc,Fc′)
Rcc′

> C(c, c′)

to the local action of F is fully faithful;

then the (bi)adjunction F̈? ab F̈?:B Equip > C Equip of example 1.6.11 is an

inclusion.

Proof. We already know that F̈? is an equipment homomorphism and F̈? preserves

left and right representables (by lemma 1.6.10) so all that remains is to verify con-

ditions (ii) and (iii) of definition 1.7.4. Examining the construction of F̈? a F̈? it is

clear that if A is a B-enriched category with underlying set of objects (X,α) then

the category F?F?(A) has:

• Set of objects {(x, c) : x ∈ X, c ∈ |C| and α(x) = F(c)} with projection taking

(x, c) to c ∈ |C|,
• F?F?(A)((x, c), (x′, c′)) = Fcc′Rcc′(A(x, x′)).

On examining the 1-cellular component of the counit of F̈? a F̈? at A we see

that it maps an object (x, c) ∈ F?F?(A) to x ∈ A, and this is surjective since

|F| is. Its action on the homset F?F?(A)((x, c), (x′, c′)) is simply the component

εA(x,x′): Fcc′Rcc′(A(x, x′))⇒ A(x, x′) of the counit of Fcc′ a Rcc′ , each of which is an

isomorphism since every Rcc′ is fully faithful. Therefore ΦA: F?F?(A) > A, being

essentially surjective and fully faithful, is an equivalence in the 2-category B Cat.

A similar calculation shows that if p:A +> B is a profunctor in B Prof then

the component of F?F?(p) between (x, c) ∈ F?F?A and (x̄, c̄) ∈ F?F?B is simply

Fcc̄Rcc̄(pxx̄). Since ΦB is an equivalence, implying that (ΦB)∗ a (ΦB)∗ is an adjoint

equivalence, it is clear that the 2-cell Φp: (ΦB)∗⊗F?F?(p)⇒ p⊗ (ΦA)∗ is an isomor-

phism iff the corresponding cell Φ̂p: F?F?(p)⇒ (ΦB)∗⊗p⊗(ΦA)∗ is one. Between the

objects (x, c) and (x̄, c̄) as above the profunctor (ΦB)∗ ⊗ p ⊗ (ΦA)∗ has component
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pxx̄ and the 2-cell Φ̂p consists of counits εpxx̄ : Fcc̄Rcc̄(pxx̄)⇒ pxx̄, these are all isomor-

phisms, since each Rcc̄ is fully faithful, therefore Φ̂p is an equivariant isomorphism

as required.

Notice that if |F|: |C| > |B| an isomorphism then for each B-category A the

component ΦA: F?F?(A) > A is in fact an isomorphism, not just an equivalence.

This implies that the adjunction F̈? a F̈?:B Equip > C Equip in EMor is an

inclusion between the non-replete equipments of B- and C-enriched categories. �

For inclusions we have some stronger results with respect to colimit cylinders.

Lemma 1.7.7 Let F̈ ab G̈: (M,K, ( )∗) > (N ,L, ( )∗) be an inclusion then

(i) Let the 0-cell b′ ∈ L be in the full image of G and assume there exists a right

Kan extension

F(b)
F(p)

+ > F(b′)
@
@
@

f∗
×
@
@
@R

κ⇐
	�
�
�
×
f∗ ⇐ F(p)
�
�
�

a
in M. Then we may apply theorem 1.7.1(ii) to any colimit cylinder as in

(1.93) and strengthen it to the two way conditional:(
colim(F(p), f)

)∨ '↽⇁ colim(p, f̌) .

(ii) If

a
r
+ > a′

@
@
@
q
×
@
@
@R

κ⇐
	�
�
�
×
q ⇐ r
�
�
�

a′′

(1.95)

is a right Kan extension diagram in M then the triangle

G(a)
G(r)

+ > G(a′)
@
@
@

G(q)
×
@
@
@R

G(κ)
⇐
	�
�
�
×

G(q ⇐ r)
�
�
�

G(a′′)

(1.96)

in N is one as well. Here we divine the meaning of G(κ) from its context

as described in the comment following corollary 1.1.10. Taking q = f∗ for

some 1-cell f : a > a′′ in K and still assuming the existence of the right

Kan extension (1.95) we get the two way conditional:

G(colim(r, f)) '↽⇁ colim(G(r),G(f)) .
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Proof.

(i) Since b′ ∈ L is in the full image of G conditions (i) and (iv) on F̈ a G̈ as an

inclusion imply that we may apply theorem 1.7.1(ii) to give:(
colim(F(p), f)

)∨ '⇁ colim(p, f̌)

Conversely suppose colim(p, f̌) exists in (N ,L, ( )∗), then by applying corol-

lary 1.1.10 to the local adjunction F a G we see that

G(f∗ ⇐ F(p))⊗ (Ψb′)∗ ∼= (G(f∗)⊗ (Ψb)∗)⇐ p

but G̈ preserves representables therefore G(f∗)⊗(Ψb)∗ ∼= (G(f)◦Ψb)∗ ∼= f̌∗ and

by definition colim(p, f̌)∗ ∼= f̌∗ ⇐ p. Now consider the left (bi)adjoint trans-

pose of colim(p, f̌), we have colim(p, f̌) ∼= G
(
colim(p, f̌)

)∧
◦ Ψb′ and putting

this all together we get

G(f∗ ⇐ F(p))⊗ (Ψb′)∗ ∼= colim(p, f̌)∗
∼= (G(colim(p, f̌)∧) ◦Ψb′)∗
∼= G(colim(p, f̌)∧)∗ ⊗ (Ψb′)∗

where the last isomorphism follows from the assumption that G̈ preserves

representables. We may infer that Ψb′ is an equivalence from the fact that b′

is in the full image of G and we already know that G is locally fully faithful.

Therefore the functor G( ) ⊗ (Ψb′)∗ on M(F(b′), a) is fully faithful and so

(colim(p, f̌)∧)∗ ∼= f∗ ⇐ p identifying colim(p, f̌)∧ as colim(Fp, f) or on taking

right adjoint transposes we get the reverse conditional:(
colim(F(p), f)

)∨ '↽ colim(p, f̌) .

(ii) If the triangle in (1.93) is a right Kan extension then so is the pasting of

FG(a)
FG(r)

+ > FG(a′)

Φa

∨

Φr∼=
∨

Φa′

a
r
+ > a′

@
@
@
q
×
@
@
@R

κ⇐
	�
�
�
×
q ⇐ r
�
�
�

a′′

since each Φa is an equivalence and Φp is an isomorphism (cf. lemma 1.7.5).

The 0-cell G(a′) is (of course) in the full image of G and so, since F̈ ab G̈
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satisfies condition (iv) of definition 1.7.4, we may apply corollary 1.1.10 to

the Kan extension above. In this case it is straightforward to show that the

bottom triangle of (1.23) composed with the isomorphisms G(q) ⊗ (GΦa)∗ ∼=
G(q ⊗ (Φa)∗) and G(q ⇐ r) ⊗ (GΦa′)∗ ∼= G((q ⇐ r) ⊗ (Φa′)∗) is equal to the

pasting:

GFG(a)
GFG(r)

+ > GFG(a′)

G(Φa)

∨

GS(Φr)⇐
∨

G(Φa′)

G(a)
G(r)

+ > G(a′)
@
@
@

G(q)
×
@
@
@R

G(κ)
⇐
	�
�
�
×

G(q ⇐ r)
�
�
�

G(a′′)

Now compose this with the square ΨG(r) to obtain the Kan extension in (1.23),

but notice that the components iG(a)
∼= G(Φa) ◦ ΨG(a) and iG(a′)

∼= G(Φa′) ◦
ΨG(a′) of the triangle isomorphism α: iG̈

∼= G̈Φ̈ ◦ Ψ̈G̈ constitute a cylinder

ih
G(r)
∼= GS(Φr) ◦ ΨG(r) reducing the resulting diagram to that in (1.96). The

remainder of the result follows as in part (i). �

While we have developed the theory of change of base in terms of bicategory

enriched categories and biadjunctions, the actual examples we have encountered

really only need to be interpreted in terms of some 2-category of equipments and

(traditional) adjunctions therein. We should really give some justification for the

more involved bicategorical theory described here, apart from the mere fact that in

truth it is not really any harder to set up and study. The next example describes

a case in which biadjunctions of equipment maps have underlying biadjunctions

which cannot in general be reduced to adjunctions. We recall notions in enriched

category theory closely related to the usual ones of “site” and “sheaf” and prove

a “comparison lemma” by which we can construct biadjunctions in EMor between

equipments of “sheaves”.

Due to space restrictions much of this is in the form of a sketch, the references

give more insight to the background and we leave it up to the reader to fill in any

detail. First fix a bicategory B with a small set of 0-cells and all (small) stable local

colimits and we review the following definitions:

Definition 1.7.8 (Cauchy bimodules) Cauchy bimodules in B Prof are those 1-

cells p:A +> A′ with a left adjoint p•. The gist of [49] is that these are precisely

the bimodules which are weights for absolute colimits, in other words those colimits

which (when they exist) are preserved by all functors. �
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Definition 1.7.9 (family of Cauchy coverings) Let J( ) be a function which

assigns to each 0-cell u ∈ B a set J(u) of Cauchy bimodules p:A +> u in B Prof

(here we identify the 0-cell u ∈ B with the trivial one object B-category over u).

Under this identification the bicategory B becomes the full sub-bicategory of B Prof

on the trivial one object categories.

We say that a general bimodule q:A +> B in B Prof is J-covering if for each

object y ∈ B, which we assume lies over the 0-cell β(y) ∈ B, the bimodule

A
q( , y)

+ > β(y)

is in J(β(y)). Notice that any J-covering module has a left adjoint in B Prof, in

other words it is Cauchy.

The family J( ) is a family of (Cauchy) covers iff

• For each object x in a (small) B-enriched category A the representable

A
x∗ = A( , x)

+ > α(x)

is in J(α(x)),

• If q:A +> B is J-covering and p:B +> u is in J(u) then p ⊗ q is in J(u) as

well. �

Definition 1.7.10 For each (small) B-category A we may define a B-category PJ(A)

with

objects: over the 1-cell u ∈ B are the bimodules p:A +> u in J(u),

homsets: for objects p:A +> u and p̄:A +> ū the homset PJ(A)(p, p̄) is defined

to be the 1-cell p̄ ⊗ p•:u +> ū in B. We use the units and counits of the

adjunctions p• a p to furnish us with identities and compositions making this

data into a B-enriched category.

In general this B-category may not be small without further assumptions on B.

In particular if we adopt the stipulation that each homset of B is locally presentable,

which we shall do from now on, then [27] demonstrates that PJ(A) is always small,

and is therefore an object of our equipment B Equip.

For more detail on the B-categories PJ(A) we refer the reader to [4], principle

amongst these for our purposes are:

(i) The conditions on J( ) as a family of covers imply that the set of J-covering

modules in B Prof is closed under both identities and composition, making

them the 1-cells of a locally full sub-bicategory J Cov. The first of those

conditions also ensures that for each functor f :A > B in B Cat the right
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representable f ∗:B +> A is in J Cov. It follows therefore that the homo-

morphism ( )∗:B Cat > B Profop restricts to

B Cat
( )∗

> J Covop

for which the natural equivalence

B > PJ(A) in B Cat

A + > B in J Cov

demonstrates that PJ( ) extends to a homomorphism

J Covop
PJ( )

> B Cat

which is right biadjoint to ( )∗.

(ii) The unit of this biadjunction is the Yoneda embedding Y :A > PJ(A) ∈
B Cat which maps an object x ∈ A to the representable x∗ = A( , x) ∈ PJ(A).

The counit is simply the left representable Y∗:A +> PJ(A), which is in J Cov

since Y∗( , p) = p( ) for each p ∈ PJ(A), furthermore Y∗ a Y∗ is an adjoint

equivalence in J Cov therefore the homomorphism PJ( ) is a local equivalence.

(iii) A (small) B-category is in the full image of PJ( ) iff it admits all colim-

its weighted by bimodules in the family of Cauchy covers J( ), we say that

such a category is J-cocomplete. In fact the B-category PJ(A) is the free J-

cocompletion of A. We now have two ways of describing the bicategory J Cov,

either as it was introduced, in which case we think of its 1-cells as being J-

functional relations, or as the full sub-bicategory of B Cat on the J-cocomplete

categories which we may view as J-sheaves. The analogy with sheaves is taken

a step further in [55] where traditional sheaves are cast into our context.

Definition 1.7.11 (sites) In this context a site (B, J) consists of

• A bicategory B satisfying all the conditions we introduced above, that is it has a

small set of 0-cells, homsets which are locally presentable and local colimits which

are stable.

• A family of Cauchy covers J( ) on B.

For a site (B, J) we may define an equipment of sheaves , denoted (B, J) Shf,

to be the triple (J Covop,B Prof, ( )•) where ( )•: J Covcoop > B Prof is the

canonical homomorphism which takes each J-covering bimodule p:A +> B to its

left adjoint p•:B +> A in B Prof. �
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Definition 1.7.12 (cocontinuous homomorphism of sites) For sites (B, J) and

(C,K) a homomorphism F: C > B which preserves local colimits automatically

satisfies the local adjointness condition of lemma 1.6.6, since each homset of C has

a small generator and all small colimits. We may therefore apply that lemma (and

the repletion construction) to get a (2-)adjunction

B Equip
<

(F?,F?)

⊥b

(F?,F?)
>
C Equip (1.97)

in EMor, where F̈? is an equipment homomorphism. For each 0-cell u ∈ C the

homomorphism F?: C Prof > B Prof carries a bimodule p:A +> u to one with

codomain F(u), accordingly it makes sense to say that F is a cocontinuous homo-

morphism from (C,K) to (B, J) iff

(i) F preserves local colimits,

(ii) The homomorphism F? carries any bimodule in K(u) to one in J(F(u)). �

With all these definitions under our belt the following theorem is surprisingly

easy to establish:

Theorem 1.7.13 (the comparison lemma) Any cocontinuous homomorphism of

sites F: (C,K) > (C, J) gives rise to a biadjoint pair

(B, J) Shf
<

F̈?

⊥b

F̈?

>
(C,K) Shf

in EMor, where F̈? is an equipment homomorphism.

Proof. Return to the biadjoint pair in (1.97), the homomorphism

F?: C Prof > B Prof

acts as F pointwise on bimodules, in other words if p:A +> B is a bimodule in

C Prof with components p(x, y) ∈ C then F?(p) has components F(p(x, y)) ∈ C.
Simply checking left actions it follows that F?(p( , y)) = F?(p)( , y):A +> β(y)

for each object y ∈ B so, since F is cocontinuous, any 1-cell p ∈ K Cov maps to

F?(p) ∈ J Cov and we may restrict F? to a homomorphism:

K Cov
F̃

> J Cov
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Together these two give an equipment homomorphism

(C,K) Shf
(F?, F̃op)

> (B, J) Shf

which preserves representables strictly. Of course theorem 1.5.14 tells us that the

action of F? on each homset has a right adjoint, since F̈? has a right biadjoint in

EMor, and so by that theorem all that remains in showing that (F?, F̃op) also has a

right biadjoint in EMor is to check that the homomorphism of bicategories F̃op has

one itself.

Here is where we apply theorem 1.7.1 for the biadjunction in (1.97), suppose

that the B-category B is J-complete and p:A +> u is a bimodule in K(u). For any

C-functor g:A > F?(B theorem 1.7.1(ii) gives the conditional congruence

colim(F?(p), ĝ) '⇁ (colim(p, g))∧

F is cocontinuous so F?(p) is in J(F(u)) and the colimit on the left exists (B is

J-cocomplete) implying that the one on the right does as well. It follows that

F?(B) is K-cocomplete and so is in the full image of PK( ) therefore the unit

Y : F?(B) > PK(F?(B)) is an equivalence in C Cat.

Any B-category PJ(B) is J-cocomplete and so we may always apply the last

result to them, which we do in the following sequence of natural equivalences:

F̃op(A) = F?(A) + > B in J Covop

( )∗ ab PJ

F?(A) > PJ(B) in B Cat
F? ab F?

A > F?PJ(B)' PKF?PJ(B) in C Cat
( )∗ ab PK

A + > F?PJ(B) in K Covop

These demonstrate that F̃op: K Cov > J Cov has a right biadjoint F?PJ( ), and

as we indicated above all that remains is to apply theorem 1.5.14 to obtain the

required right biadjoint in EMor. �

With a little bit of further elucidation we may apply this result to the classical

theory of stacks as presented in [50], wherein it is shown that the stack condition

is simply a cocompleteness requirement with respect to a family of Cauchy covers.

This allows us to obtain a deeper insight into the interactions between stacks and

geometric morphisms of the toposes over which they sit, but this example will have

to be left for later work.
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Double Limits.

2.1 The context.

The purpose of this chapter is to use a little of the material in the last chapter

to examining Paré’s work on “Double” limits in 2-category theory, which he pre-

sented to the Bangor International Category Theory Meeting in the summer of 1989

(see [38]). We will analyse a class of 2-limits which he defined in this context and

dubbed the “Persistent” ones, in particular demonstrating that it is in fact iden-

tical to the more widely known class of “Flexible” ones. In doing this we modify

and recast the constructions in Power and Robinson’s characterisation of PIE limits

(see [43]).

In essence Paré’s contention is that we should think of 2-categories as a particular

kind of double category. These are simply categories internal to CAT, first studied

by Charles Ehresmann and in fact used by Kelly and Street as a preliminary to the

definition of a 2-category that they give in their well known expository article [32].

For him the principle advantage of this representation is that we pass from enriched

category theory, in which there is in general no Grothendieck construction, to the

internal theory for which there is. As we shall see later in this chapter we may define

a natural conical limit notion, parameterised by double categories, in such a way

that every weighted 2-limit may be reduced to one of these double limits.

One of the principle problems that Paré encountered in carrying out this program

was in demonstrating a way of “reversing” the Grothendieck construction. Not only

do we wish to know how to calculate a weighted 2-limit as a double limit but also how

to derive a weight from a given double category which parameterises the same limits.

Weaker results are recounted in [38], for instance the fact that a 2-category possesses

all (small) weighted limits iff it admits all (small) double limits, but we really need

more. In 2-category theory we are rarely interested in considering all limits, but

rather a sub-class which behave well with respect to the weakened structures that

2-categories permit, equivalences being a good example. If we are to take double
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categories seriously it seems necessary to translate classes of limits defined in terms

of them into traditional classes of weights and back again. With this achieved we

might hope to go further and use double categories in constructing and analysing

well behaved closed classes of 2-limits.

In making all these ideas more precise we might start by following the lead

of earlier chapters and adopt an equipment of internal categories Equip(CAT) =

(Cat(CAT),Prof(CAT), ( )∗), in which we might solve our problem as a simple ex-

ercise in the calculus of profunctors. Sadly, its not quite that easy: in order to define

the tensorial composition of Prof(CAT) we require reflexive coequalisers to be stable

under pullback, a condition which CAT fails to satisfy.

In fact all is not lost: by taking nerves we represent CAT as a full reflective sub-

category of [∆op, SET], the category of simplicial sets, which as a presheaf topos

supports the definition of an equipment of internal categories Equip([∆op, SET]). So,

as long as we establish the existence of a well behaved change of base between this

and 2 EQUIP, we may make all of our calculations in terms of (internal) simplicial

categories reflecting the results back into the more familiar 2-context at will. This

chapter is devoted carrying this prescription through, initially describing the solution

for enrichments over a wide variety of categories, and then as we near the end of

the chapter, specialising to double categories and examining the class of persistent

limits.

As usual we will fix three set theoretic universes Set ⊂ SET ⊂ SET , the sets

of which we refer to as small, large and huge respectively. It will also be useful to

reserve the notations Cat and CAT for the categories of small and large categories

respectively (with two underlinings if we mean the corresponding 2-categories). For

most of this chapter we will be considering the internalisation of categories enriched

over a cartesian closed locally presentable category, so recall the definition of a

locally presentable category (for more detail and proofs of the following theorems

on such categories see [18] and [47]):

Definition 2.1.1 A (large and locally small) category A is locally presentable iff

(a) It is small complete and cocomplete.

(b) There exists a small regular cardinal α and a small strongly generating set of

α-presentable objects.

Also recall that a Gabriel theory J = (C, J) consists of a small category C and

a function J which assigns to each object u ∈ C a set J(u) of cocones in C with

vertex U . Given such a theory its category of models Mod(J,S) in a category S is

the full sub-category of [Cop,S] on those presheaves which map each cocone in J to

a limiting cone in S. The fundamental theorem of locally presentable categories is:
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Theorem 2.1.2 If A is a (large and locally small) category then it is locally pre-

sentable iff there exists a gabriel theory J with A ' Mod(J, Set). Furthermore J may

be picked such that each representable is a model (or equivalently each cocone in J

is colimiting). �

So for the remainder of this chapter we will fix a gabriel theory J, with each of

its cocones colimiting, and adopt the notations:

A def
= Mod(J, Set) C̃ def

= [Cop, Set]

Al
def
= Mod(J, SET) C̃l

def
= [Cop, SET]

Our interest in the categories Al and C̃l, of large models and presheaves, is of course

due to the fact that we will be interested in “large” enriched categories. For example

if the theory J is that of “categories and functors” then A and Al are the categories

Cat and CAT, of small and large categories respectively, with C̃ and C̃l the categories

of small and large simplicial sets. In this case A-enriched categories are just locally

small 2-categories, it is necessary to consider Al-categories in order to capture the

theory of large 2-categories. Two theorems which will hold some importance for us

are:

Theorem 2.1.3 If A is (large and locally small and) locally presentable then so is

Mod(J,A). �

Theorem 2.1.4 If each representable is a J-model then tfae

(i) Mod(J, Set) is cartesian closed,

(ii) for all presheaves F, P ∈ [Cop, Set] if F is a model of J so is F P ,

(iii) the left adjoint of Mod(J, Set) ⊂ > [Cop, Set] preserves finite products,

(iv) for all small complete, cartesian closed. large and locally small categories A,

Mod(J,A) is cartesian closed.

(v) for all A as in (iv) and F, P ∈ [Cop,A], F is a J-model implies that F P is,

(vi) for all cartesian closed, locally presentable A, the left adjoint to the functor

Mod(J,A) ⊂ > [Cop,A] preserves finite products. �

We will assume from here on that A satisfies the equivalent conditions of the

last theorem, in particular (iii) will be important for the construction of a change

of base between A-enriched and [Cop, Set]-enriched categories. From section 2.5 on

we will also require an extra condition:

Condition 2.1.5 The base of each cone of J is a diagram on a non-empty connected

category.
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In framing this condition we are motivated by the well known fact that in Set

coproducts commute with the limits of diagrams on non-empty connected categories

(or connected limits for short), and so it follows that if J satisfies condition 2.1.5

then the embedding A ⊂ > C̃ preserves all (small) coproducts.

We say that an object A ∈ A is indecomposable when the representable A(A, )

preserves all (small) coproducts. The proof of the following theorem is a slight

modification of any one of the traditional proofs of theorem 2.1.2:

Theorem 2.1.6 A (large and locally small) category A is equivalent to Mod(J, Set)

for some Gabriel theory J satisfying condition 2.1.5 iff

• A is small cocomplete

• There exists some regular cardinal α such that A has a strong generator con-

sisting of indecomposable, α-presentable objects. �

Of course we will primarily interested in the theory of categories. Its gabriel

theory is (∆, Jcat) where ∆ is the category of nonzero finite ordinals and order

preserving functions, in which [n] denotes the ordinal n+ 1, and:

Jcat([0]) = Jcat([1]) = ∅

Jcat([n]) (n > 1) consists of the
single cocone

[n− 2]
δn−1

> [n− 1]
··

δ0

∨
····∨
δ0

[n− 1] · · ·
δn
·····> [n]

Here δr : [n−1] > [n] denotes the unique monic without r in its image, and each

of these cocones are pushouts as indicated so, since we know that Cat is cartesian

closed, this theory satisfies the conditions of theorem 2.1.4. Furthermore because

pushouts are cones on connected diagrams it also satisfies the supplementary con-

dition 2.1.5.

In this chapter we will assume that all the equipments we use are in the 2-category

EMap, in other words their bicategories of functors are simply plain categories. In

sections 2.2 to 2.5 we study colimits in A-enriched categories using the internal

category theory of C̃ via a change of base adjoint in EMap. Before going further

we’ll recall and fix the precise definitions of the equipments of interest to us here:

A Equip: the equipment of “small A-categories”. To elaborate,

A Equip = (A Cat,A Prof, ( )∗)

where A Cat is the category of A-enriched categories with a small set of

objects and functors between them while A Prof is the bicategory with the
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same 0-cells and 1-cells which are A-enriched profunctors. We also have a

related equipment of C̃-enriched categories C̃ Equip, both of these are large

equipments.

Clearly these are special cases of the equipments of B-enriched categories for

a bicategory B as introduced in the last chapter. Simply think of A (or C̃) as

the homset of a bicategory with a single 0-cell and tensorial composition given

by product in A.

Al EQUIP: the equipment of “large A-categories”. Again

Al EQUIP = (Al CAT,Al PROF, ( )∗)

where Al CAT is the category of Al-enriched categories with possibly large

sets of objects and functors between them while Al PROF is the bicategory

of Al-profunctors. This and the related equipment C̃l PROF are both huge

equipments.

A CAT: the category of “locally small A-categories”. This is simply the category

of A-categories with a possibly large set of objects and functors between these.

This is a huge category. There is no corresponding bicategory A PROF since

A does not necessarily admit the large colimits needed to define the tenso-

rial composition of two A-profunctors between A-categories with large sets of

objects.

Equip(C̃): the equipment of categories internal to C̃:

Equip(C̃) = (Cat(C̃),Prof(C̃), ( )∗)

One of our primary interests will be the theory of closed classes of weights for

colimits and so we recall a few important definitions and facts in the study of

A-colimits. For more detail see Albert and Kelly [1] and Kelly [30]:

A Small Weight on a small A-category A is an A-profunctor X: A +> 1 in

A Equip, where 1 is the category with a single object and “homset” 1 ∈ A.

These are sometimes referred to as presheaves and are the parameterising

objects for small A-colimits.

P(A) is the locally small A-category of small weights on A and is constructed as

follows:

objects: the small weights on A.
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“homsets”: P(A)(X, Y ) is the object of A underlying the right Kan exten-

sion

A
X

> 1
@@

Y @@R

α(X,Y )⇐
	�� P(A)(X, Y )
��

1

in A Prof, or more explicitly the end:

P(A)(X, Y ) ∼=
∫
a
Y (a)X(a)

composition & identities correspond under the universal property of right

Kan extensions in A Prof to the maps

1⊗X ∼− > X

and

P(A)(Y, Z)⊗ P(A)(X, Y )⊗X
P(A)(Y, Z)⊗ α(X,Y )

> P(A)(Y, Z)⊗ Y
α(Y,Z)

> Z

respectively.

As in the traditional setting there is a fully faithful A-functor

Y : A ⊂ > P(A),

the Yoneda embedding, which takes an object a ∈ A to the corresponding rep-

resentable a∗. Often we will identify A with its image under Y . P(A) admits

all small A-colimits and the Yoneda embedding displays it as the universal

small colimit completion of A.

A Class of Weights is a function X ( ) which assigns to each small A-category

a (possibly large) set of small weights on it. We order classes of weights by

inclusion.

A colimit colim (W,Γ) of a diagram Γ: A > C weighted by W ∈ X (A) is

called an X colimit. Correspondingly an A-category is X cocomplete iff it ad-

mits all X colimits, and a functor between such categories is X cocontinuous

iff it preserves each X colimit.

The Closure X ∗( ) of a class of weights X ( ) is the largest class such that

• C is X ∗ cocomplete iff it is X cocomplete

• f : C > D is X ∗ cocontinuous iff it is X cocontinuous.
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Closure is clearly inflationary, idempotent and intersection preserving.

A Closed Class of weights X ( ) is one which satisfies X ( ) = X ∗( ).

Given a class of weights X ( ) let X [A] denote the full sub-A-category of P(A) on

those weights in X (A). The principal result of [1] states that X ∗[A] is the X colimit

closure of A in P(A). It follows that we may construct X ∗( ) by transfinite induction

(in SET) as follows:

X ∗0 (A) = A ⊂ P(A)

X ∗α+(A) = X ∗α(A) ∪
{
W ∈ P(A)

∣∣∣∣∣ ∃ a functor Γ: D > X ∗α [A] and

V ∈ X (D) with W ∼= colim (V,Γ)

}
X ∗λ (A) =

⋃
α<λX ∗α(A) for each limit ordinal λ.
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2.2 Internalising A-enriched categories.

In this section we are interested in representing A-enriched categories as internal

ones. Our first intuition might be to consider categories internal to A, but as we

observed at the start of the chapter we may be unable to define any tensor product

of profunctors in here. This would certainly impede the abstract development of

category theory that we have presented in earlier chapters.

We choose to take a slightly different course and represent A-categories as cat-

egories internal to C̃. Our first step in this objective is to construct an inclusion of

equipments

A Equip
<

F̈?

⊥

F̈?

> C̃ Equip (2.1)

(in EMor) as described in definition 1.7.4, to achieve this we return to the adjoint

pair:

A <
F

⊥⊂ >
C̃

We know (by theorem 2.1.4) that F preserves finite products, so on thinking of

A and C̃ as bicategories (each with a solitary 0-cell) F becomes a homomorphism

satisfying the local adjointness property of example 1.6.6 and thus providing us with

the adjunction of (2.1). Recalling example 1.7.6 it becomes clear that this adjunction

is an equipment inclusion, since F cannot fail to be an isomorphism on 0-cells and

its (local) right adjoint is simply the fully faithful embedding of A into C̃.
Now we examine the process of internalising C̃-categories. Let ∆: Set > C̃ be

the fully faithful “constant presheaf” functor, which we also think of as copower with

the terminal object of C̃, with left and right adjoints lim−→C
and lim←−C

respectively.

We refer to the objects in the replete image of ∆ as “discrete C-sets”. The next

lemma and its corollary demonstrates an inclusion of the equipment of C̃-enriched

categories into that of categories internal to C̃:

Lemma 2.2.1 There is an adjunction

(C̃ Mat, Set, ( )◦)
<

lim−→C

⊥⊂

∆̈ = (∆,∆)

>
(Span(C̃), C̃, ( )◦)

in EMap with ∆̈ an equipment homomorphism, ∆ fully faithful and ∆ a local equiv-

alence.

Proof. We already have an adjunction lim−→C
a ∆: Set > C̃ with ∆ fully faithful

so all that remains is to provide a homomorphism

C̃ Mat
∆

> Span(C̃)
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which is a local equivalence and comparison 2-cells νf : (∆f)◦ ∼= ∆(f◦), theorem 1.5.14

would then provide us with the remaining structure for a left adjoint in EMap sim-

ply because each ∆: C̃ Mat(X,X ′) > Span(C̃)(∆(X),∆(X ′)) is an equivalence

and so has a left adjoint.

Given a matrix m:X 	> X ′ ∈ C̃ Mat we get a span∐
x∈X,x′∈A′

m(x, x′)

	��

p0 �� @@ p1

@@R
∆(X ′) ∆(X)

where p0 is the unique map induced by the cone with components

∐
x∈X

m(x, x′) > 1
px′q

> ∆(X ′)

for each x′ ∈ X ′, here px′q is the canonical inclusion of 1 into the copower ∆(X ′)

corresponding to x′. The function p1 is defined analogously giving a span as shown,

and this makes an ideal candidate for ∆(m). This construction is clearly functorial

on the homset C̃ Mat(X,X ′) and if m′:X ′ 	> X ′′ is another matrix we define a

comparison isomorphism ∆(m′) ×
∆X′

∆(m) ∼= ∆(m′ ~m) by:

∐
x∈X
x′′∈X′′

(m′ ~m)(x, x′′) ∼=
∐
x∈X
x′′∈X′′

 ∐
x′∈X′

m′(x′, x′′)×m(x, x′)



∼=

 ∐
x′∈X′
x′′∈X′′

m′(x′, x′′)

 ×
∆(X′)

 ∐
x∈X
x′∈X′

m(x, x′)

 .
Now suppose f :X > X ′ is a function in Set then

∐
x,x′ f◦(x, x

′) ∼= ∆(X), under

which isomorphism the span ∆(f◦) becomes (∆f)◦ as required, providing us with

an isomorphism νf . The identity comparison isomorphism i∆(X)
∼= ∆(iX) is defined

identically to the maps νiX . Checking that this information satisfies the coherence

properties of an equipment homomorphism (∆,∆, νf ) is straightforward.

Given a span S: ∆(X) 	> ∆(X ′) we define a matrix ∆
−1

(S):X 	> X ′ by:

∆
−1

(S)(x, x′) = (px′q)◦ ×
∆(X′)

S ×
∆(X)

(pxq)◦ for x ∈ X, x′ ∈ X ′

Of course coproducts in C̃ are disjoint and universal allowing us to demonstrate the

existence of isomorphisms S ∼= ∆∆
−1

(S) for each such span S and ∆
−1

∆(m) ∼= m

for each matrix m:X 	> X ′, with this we establish the local equivalence property

for ∆ as required. �
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Corollary 2.2.2 There is an inclusion of equipments

(C̃ Prof, C̃ Cat, ( )∗)
<

G̈? = (G?,G?)

⊥⊂

G̈? = (G?,G?)

>
(Prof(C̃),Cat(C̃), ( )∗) (2.2)

where G̈ is an equipment homomorphism and G is a local equivalence.

Proof. We know that

(C̃ Prof, C̃ Cat, ( )∗) = Mon(C̃ Mat, Set, ( )◦)

(Prof(C̃),Cat(C̃), ( )∗) = Mon(Span(C̃), C̃, ( )◦)

and noted in observation 1.6.14 that the equipments of matrices and spans on the

right of these equalities satisfy conditions which allow us to apply theorem 1.6.13 to

the adjunction of the last lemma. Doing this we obtain another adjoint pair as in

(2.2).

We know that ∆̈ is an equipment homomorphism with ∆: Set > C̃ fully faith-

ful and ∆: C̃ Mat > Span(C̃) a local equivalence, so by examining the construc-

tion of G̈? = Mon(∆̈) it is plain that it shares these properties, and of course

preserves representables.

All that remains is to examine the comorphism structure induced on G̈?, and

show that for 1-cells q:B +> B′ and q′:B′ +> B′′ in Prof(C̃) the comparison

G̈?(q′ ⊗ q) ⇒ G̈?(q′) ⊗ G̈?(q) is an isomorphism when A′ is in the replete image

of G̈?. This 2-cell is identified in observation 1.5.15, but notice that in this case

the maps of (1.80) are all isomorphisms simply because each homset action of G?

is an equivalence. Finally the component ΨB′ of the unit (of G? a G?) is an equiv-

alence exactly when B′ is in the replete image of G̈?, implying that the unit of

(ΦB′)∗ a (ΦB′)
∗ is isomorphic and therefore so is the comparison 2-cell as expressed

in (1.81). �

Composing the representation of the last lemma with that in (2.1) we get the

desired inclusion

A Equip
<

Ï?

⊥

Ï?

> Equip(C̃) (2.3)

of A-enriched categories into those internal to C̃. For the remainder of this chapter

we will reserve the symbols Ψ̈ = (Ψ,Ψ) and Φ̈ = (Φ,Φ) to denote the unit and

counit of this adjunction in EMap.

It is a matter of a straightforward argument in the theory of locally presentable

categories to show that if the category of small J-models is cartesian closed then so

is the category of large such models. That result ensures that we may again derive
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the large variant of the inclusion of equipments shown in (2.1). This may then be

used to construct an inclusion of huge equipments

Al EQUIP
<

Ï?

⊥

Ï?

> Equip(C̃l)

extending the one displayed as equation (2.3) above.

198



CHANGE OF BASE

2.3 Colimits and the Grothendieck construction.

Our primary interest in representing enriched categories as internal ones is that in

doing so we regain the traditional Grothendieck construction. This section describes

the construction; we also show that it has the expected properties, then use it to

reduce weighted limits to conical ones.

In this section take E to be an arbitrary locally cartesian closed category. Let A
and B be categories internal to E and X:A +> B be a 1-cell in Prof(E). Define a

category G (X) in Cat(E) as follows

• G (X)0 = X, where by a slight abuse of notation we confuse the profunctor X

with its underlying object in E .

• G (X)1 is shown in the following pullback diagram

G (X)1 > X ×
A0

A1

∨ ∨

rX

B1 ×
B0

X
lX

> X

in other words it is given symbolically by

G (X)1 =

{
〈x̄, α, β, x〉

∣∣∣∣∣ x, x̄ ∈ X,α ∈ A1, β ∈ B1 such that

d0α = x1(x̄) ∧ d1β = x0(x) ∧ x̄ · α = β · x

}

• We define maps
d0

>

G (X)1 <
i

G (X)0

d1
>

in informal notation by

G (X)1

d0
> G (X)0

〈x̄, α, β, x〉 > x̄
, G (X)1

d1
> G (X)0

〈x̄, α, β, x〉 > x

G (X)0

i
> G (X)1

x > 〈x, ix1(x), ix0(x), x〉

• Lastly we have a composition

G (X)1 ×
G(X)0

G (X)1

◦
> G (X)1

〈〈x̃, α′, β′, x̄〉, 〈x̄, α, β, x〉〉 > 〈x̃, α′ ◦ α, β′ ◦ β, x〉

199



DOMINIC VERITY

again given informally, which is well defined because

x̃ · (α′ ◦ α) = (x̃ · α′) · α = (β′ · x̄) · α = β′ · (x̄ · α) = β′ · (β · x) = (β′ ◦ β) · x

It is easily checked that these make G (X) into a category in Cat(E) furthermore

we have canonical projection functors x̄0:G (X) > B and x̄1:G (X) > A.

Of course this construction gives us the object action of a functor

G: Prof(E)(A,B) > Span(Cat(E))(A,B).

which takes an equivariant map Θ:X > Y to an internal functor G (Θ) given by

• G (Θ)0 = Θ, the underlying map of Θ in E .

• G (Θ)’s action on morphisms is

G (Θ)1:G (X)1 > G (Y )1 given by

〈x̄, α, β, x〉 > 〈Θx̄, α, β,Θx〉

The equivariance of Θ ensures that this is a well defined internal functor. Indeed

it is clear that this constitutes a map of spans (x̄0,G (X), x̄1) to (ȳ0,G (Y ), ȳ1) in

Span(Cat(E)), and that everything is nicely functorial.

Observation 2.3.1 The functor G ( ) is full and faithful

Proof. It is faithful since G (Θ)0 = Θ. For fullness let F :G (X) > G (Y ) be a

functor of spans in Span(Cat(E)), then the action of F on objects gives a map of

spans

X

	��

x0 �� @@ x1

@@R
B0 F0

∨

A0

I@@
y0 @@ ��

y1

���

Y

.

Now the diagrams

G (X)1

F1
> G (Y )1

d0∨ ∨
d0

G (X)0
F0

> G (Y )0

,

G (X)1

F1
> G (Y )1

d1∨ ∨
d1

G (X)0
F0

> G (Y )0

and

G (X)1

	��
�� @@

@@R
B1 F1

∨

A1

I@@
@@ ��

���

G (Y )1
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all commute, so it follows that

(∀〈x̄, α, β, x〉 ∈ G (X)1)F1〈x̄, α, β, x〉 = 〈F0(x̄), α, β, F0(x)〉

and therefore if x̄ · α = β · x then F0(x̄) · α = β · F0(x), which entails that

setting x = x̄ · α, β = ix0(x) ⇒ F0(x̄) · α = F0(x̄ · α)

and x̄ = β · x, α = ix1(x̄) ⇒ F0(β · x) = β · F0(x).

Putting this all together we have that F0 is equivariant with F = G (F0). �

A further property of the Grothendieck construction is:

Observation 2.3.2 G ( ) has a left adjoint

L: Span(Cat(E))(A,B) > Prof(E)(A,B)

given in terms of the calculus of profunctors by

L

 E

	�

e0 � @ e1

@R
B A

 = (e0)∗ ⊗ (e1)∗:A + > B

Proof. More explicitly we may form the underlying span of (e0)∗ ⊗ (e1)∗ by taking

the coequaliser of a pair

B1 ×
B0

E1 ×
A0

A1

f
>

g
> B1 ×

B0

E0 ×
A0

A1

where
f〈β, ε, α〉 = 〈β, d0(ε), e1(ε) ◦ α〉
g〈β, ε, α〉 = 〈β ◦ e0(ε), d1(ε), α〉

which we equip with actions induced by the canonical ones on B1 ×
B0

E0 ×
A0

A1.

So an equivariant map m: (e0)∗ ⊗ (e1)∗ > X corresponds to a map of spans

B1 ×
B0

E0 ×
A0

A1
m̄
> X

such that for all 〈β, e, α〉 ∈ B1 ×
B0

E0 ×
A0

A1 and suitable α′ ∈ A1, β′ ∈ B1 we have

(i) m̄〈β, e, α ◦ α′〉 = m̄〈β, e, α〉 · α′
(ii) m̄〈β′ ◦ β, e, α〉 = β′ · m̄〈β, e, α〉
(iii) m̄〈β, d0(ε), e1(ε) ◦ α〉 = m̄〈β ◦ e0(ε), d1(ε), α〉

Now (i) and (ii) ensure that m̄ corresponds to a map of spans m̃:E0 > X,

where m̃(e) = m̄〈ie0(e), e, ie1(e)〉, and we regain m̄ by letting m̄〈β, e, α〉 = β ·m̃(e)·α.

Condition (iii) holds for m̄ iff m̃ satisfies

(iii)′ (∀ε ∈ E1){m̃(d0(ε)) · e1(ε) = e0(ε) · m̃(d1(ε))} .
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Given such a map m̃ we can define a functor of spans

m̌:E > G (X)

with
m̌0(e) = m̃(e) (∀e ∈ E0)

m̌1(ε) = 〈m̃(d0(ε)), e1(ε), e0(ε), m̃(d1(ε))〉 (∀ε ∈ E1)

which is well defined, since condition (iii)′ holds for m̃, and easily shown to be an

internal functor. Conversely given such an m̌ then m̃ = m̌0 satisfies condition (iii)′

by the functoriality of m̌.

Therefore we obtain a bijection

L(E)
m

> X

E m̌
> G (x)

between maps of spans, which is natural in X, and we have demonstrated that G
has a left adjoint, which is indeed calculated as stated. �

Observation 2.3.3 Of course we may characterise spans in the full image of G as

two-sided discrete fibrations. A well known case of this is the traditional description

of the full image of:

Prof(E)(B, 1)
G
> Span(Cat(E))(B, 1)

Here the category on the left is simply (equivalent to) the usual one of right A-sets

r(A) and that on the right is the slice Cat(E)/A. An object p:E > B ∈ Cat(E)/B
is in the full image of this functor iff the square

E1

d0
> E0

p1

∨ ∨
p0

B1

d0

> B0

is a pullback in E . Functors sharing this property are called discrete fibrations , the

full subcategory of which is denoted by Dfib(E)/B. �
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Armed with the Grothendieck construction we are now able to describe the

process by which general weighted colimits may be reduced to conical ones in the

internal category theory of E .

Let X:A +> B be a weight in Equip(E) and Γ a diagram of A in C. Then

we know that colim (X,Γ) : B > C (if it exists) is the essentially unique functor

such that

colim (X,Γ)∗
∼= (Γ∗ ⇐

B
X) .

G ( ) is fully faithful so the counit εX : LGX > X is an isomorphism. In other

words if
G (X)

	�

x̄0 � @ x̄1

@R
B A

is the Grothendieck category of X then X ∼= (x̄0)∗ ⊗ (x̄1)∗ and we have natural

bijections:

Z > (Γ∗ ⇐
B
X)

Z ⊗ (x̄0)∗ ⊗ (x̄1)∗ ∼= Z ⊗X > Γ∗
(x̄1)∗ a (x̄1)∗

Z ⊗ (x̄0)∗ > Γ∗ ⊗ (x̄1)∗ ∼= (Γ ◦ x̄1)∗

Z > (Γ ◦ x̄1)∗ ⇐
G(X)

(x̄0)∗

It follows that

colim (X,Γ) '↽⇁ colim ((x̄0)∗,Γ ◦ x̄1)

where the meaning of A '↽⇁ B is described in notation comment 1.7.3.

This isomorphism simply says that in the presence of the Grothendieck construc-

tion we may reduce any colimit weighted by X to the pointwise or enriched left Kan

extension of Γ ◦ x̄1 along x̄0.

Given an arbitrary diagram Γ:A > C in Cat(E), the pointwise left Kan ex-

tension of Γ along the unique functor 2:A > 1 is known as the (global) internal

conical colimit of the diagram Γ, which we denote by lim−→A
Γ. In other words

lim−→A
Γ: 1 > C

which corresponds to a global point of C0, is the essentially unique functor such that

there exists a right (not left since ( )∗ is contra variant on 2-cells) Kan extension

diagram

A
2∗
+ > 1

@@

Γ∗
×
@@R

Γ⇐
	��
×

( lim−→A
Γ)∗

��

C

(2.4)
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in Prof(E). So if X:A +> 1 is a weight then we see that

colim (X,Γ) '↽⇁ lim−→G(X)
(Γ ◦ x̄1)

and in this sense we have succeeded in reducing all weighted colimits to conical ones.

Of course when considering internal category theory we are not only interested in

colimits weighted by profunctors with codomain 1, but these will be enough when

we get round to considering enriched colimit internally.

Let us now turn to consider this material in the context of the previous two

sections. To avoid confusion we will write categories in Cat(C̃) (or Cat(C̃l)) as open

face characters (A, B, C etc.) and A-enriched categories as underlined bold face

capitals (A, B, C etc.).

Observation 2.3.4 Using the inclusion of equipments

Al EQUIP
Ï? a Ï?

> Equip(C̃l)

as derived in section 2.2 and our work on the Grothendieck construction we may rep-

resent all weighted colimits in A-category theory as internal conical ones. Suppose

X: A +> 1 is a weight in A Equip, and Θ: A > C a diagram in an arbitrary

(possibly large) A-category C. By lemma 1.7.7(ii) we get

colim
(
I?X, I?Θ

) '↽⇁ I? (colim (X,Θ))

then applying the Grothendieck construction to I?X and noting that I?(1) ∼= 1 we

obtain a span
G(I?)

	��

2 �� @@ p
@@R

1 I?(A)

with X ∼= 2∗ ⊗ p∗ therefore:

lim−→G(I?X)
((I?Θ) ◦ p) '↽⇁ colim

(
I?X, I?Θ

)
.

Composing these bidirectional congruences we capture the A-colimit of Θ weighted

by X as the internal conical colimit lim−→G(I?X)
((I?Θ) ◦ p)

In the special case of 2-category theory this much was certainly known to Paré

when he gave his talk [38], the difficulty then was reversing the process and con-

structing a 2-weight from a double category. Again we may resolve this problem

using our inclusion, given a diagram Γ:A > I?C in Cat(C̃l), with A ∈ Cat(C̃),
proposition 1.7.7(i) tells us that:

colim
(
I?(2∗), Γ̂

) '↽⇁ (
lim−→A

Γ
)∧

(2.5)

In other words if A is a category in Cat(C̃) then I?(2∗): I?A +> I?1 ∼= 1 is the

A-weight for the internal conical colimit lim−→A
. �
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2.4 Colimits in categories internal to A.
Before going any further we should check that Paré’s notion of Double (co-)Limit,

as adumbrated in [38], tallies with the conical colimit notion introduced in the last

section.

In the last section (and observation 1.2.11) we encountered the close relationship

between colimits and right Kan extensions of profunctors, so in order to get a better

idea of what an internal conical colimit looks like we should think a little more about

these extensions in Prof(C̃l). Let

A
X
+ > B

@@

Y
×
@@R

C

be profunctors in Prof(C̃l) then observation 1.2.9 describes symbolically the right

Kan extension Y ⇐
B
X of Y along X. It follows from (1.30) that a morphism

δ:T > |Y ⇐
B
X| in C̃, into the underlying C-set of Y ⇐

B
X, corresponds to:

a span

T

	��

t0 �� @@ t1
@@R

B0 C0

and a map T ×
B0

X
δ̂
> Y in Span(C̃l)(A0,C0)

such that the diagram

T ×
B0

X ×
A0

A1

δ̂ ×
A0

A1

> Y ×
A0

A1

T ×
B0

rX
∨ ∨

rY

T ×
B0

X

δ̂

> Y

commutes.

In the particular case of (2.4) this reduces to a natural bijection between morph-

isms δ:T > |Γ∗ ⇐
1

2∗| and pairs of maps

c:T > C0 and δ̂:T × A0 > C1

such that

T × A0

πA0

> A0

δ̂
∨

(a)
∨

Γ0

C1

d1

> C0

,

T × A0

πT
> T

δ̂
∨

(b)
∨
c

C1

d0

> C0

and

T × A1
$
> C1 ×

C0

C1

T × d1
∨

(c)
∨
◦

T × A0

δ̂

> C1

(2.6)
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commute. The map $ in square (c) is given symbolically by

T × A1
$

> C1 ×
C0

C1

〈t, α〉 > 〈δ̂(t, d0α),Γ1α〉

which, assuming that square (a) commutes, is a well defined map into C1 ×
C0

C1. We

refer to such pairs (c, δ̂) as “cones below Γ defined at stage T”.

From this description the following are apparent:

(i) Let l: 1 > C0 be a morphism in C̃l, then a natural transformation

A 2
> 1

@@

Γ @@R

γ⇒
	�� l
��

C

(2.7)

in Cat(C̃l) clearly corresponds to a morphism γ̂:A0 > C1 such that

(a) A0

	��

γ̂ ��

∨
Γ0

C1

d1

> C0

,

A0
2
> 1

γ̂
∨

(b)
∨
l

C1

d0

> C0

and

A1

〈γ̂d0,Γ1〉
> C1 ×

C0

C1

d1
∨

(c)
∨
◦

A0

γ̂
> C1

(2.8)

commute.

Of course these say no more than that γ̂ is a cone with domain Γ and codomain

l defined at 1.

(ii) The representable l∗ has underlying span C1×
C0

1, so a morphism φ:T > |l∗|

corresponds to some φ̂:T > C1 such that

T
φ̂
> C1

2
∨ ∨

d1

1
l
> C0

commutes. In other words this is simply a “map in C defined at T” with

domain l.

(iii) The 2-cell in 2.7, induces a unique equivariant map γ̄: l∗ > (Γ∗⇐
1
2∗), and

it is a matter of a routine calculation that the composite

T
φ

> |l∗|
|γ̄|
> |Γ∗ ⇐

1
2∗|
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corresponds to a pair

T
φ̂
> C1

d0
> C0 , T × A0 > C1 ×

C0

C1
◦

> C1

〈t, a〉 > 〈φ̂t, γ̂a〉 > φ̂t ◦ γ̂a

satisfying the equations of (2.6). In effect we are composing the “cone” of (i)

with the “map” of (ii), and we denote this “cone” by φ ◦ (l, γ̂).

We now get a more concrete interpretation of lim−→A
Γ. Suppose G ⊂ C̃l is a

strongly generating class of objects in C̃ then, by the definition of that notion,

we know that |γ̄| is an isomorphism if and only if for each T ∈ G the function

C̃l(T, |l∗|)
C̃l(T, |γ̄|)

> C̃l(T, |Γ∗ ⇐
1

2∗|) (2.9)

is a bijection. Of course an equivariant map γ̄ is isomorphic in Prof(C̃l)(1,C)

exactly when its underlying map |γ̄| ∈ C̃l is, therefore we may check l ∼= lim−→A
Γ

by demonstrating that each instance of (2.9) is a bijection. In more evocative

language saying that (l, γ̂) is the colimiting cone simply means that each cone

(c, δ̂) defined at some T ∈ G factors as φ◦ (l, γ̂) for a unique map φ of C which

is also defined at stage T .

(iv) Re-interpreting (2.6) we see that we may construct |Γ∗ ⇐
1

2∗| as follows:

Start with C0 × CA0
1 and impose conditions 2.6(a),(b) via an equaliser

E > > C0 × CA0
1

>
>

CA0
0 × CA0

0

and obtain |Γ∗ ⇐
1

2∗| as the equaliser of a pair

E >
>

CA1
1

which imposes condition 2.6(c).

So if C ∈ Cat(Al) then by theorem 2.1.4 we know that CA0
0 ,CA1

1 are both

objects of Al. As this is closed in C̃l under finite limits, it follows that E and

|Γ∗ ⇐
1

2∗| are also objects of Al.

This enables us to strengthen slightly the comment at the end of (iii). Under

the condition that C ∈ Cat(Al), both |Γ∗ ⇐
1

2∗| and the underlying C-set of

any representable l∗: 1 +> C is in Al. It is therefore enough, in this case, to

insist that G is a strong generator in Al.

Finally we are in a position to give a simple description of our limit notion in

the case of double categories.
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When working with a double category C (an object in Cat(CAT)) we refer to

the objects and morphisms of C0 as its objects and vertical morphisms, and those

of C1 as horizontal and double morphisms. We draw double cells as

a
h

> a′

····
····

v ·····∨
⇓ α ····∨

v′

ā
h̄

> ā′

where v, v′ are its horizontal domain and codomain with h, h̄ its vertical ones,

for which we introduce the notations domH(α), codH(α) and domV (α), codV (α)

respectively. It will also be useful to adopt Paré’s convention of displaying vertical

morphisms as dotted arrows to distinguish them from horizontal ones.

The various category structures of C find their expression in this diagrammatic

form as vertical and horizontal composite of (compatible) squares, each of these be-

ing associating and possessing identities. We use ◦ and • to denote horizontal and

vertical composition respectively, reserving i and j for their corresponding identi-

ties. These must satisfy a “middle four interchange rule”, in other words composing

horizontally first and then vertically is the same as doing so vertically then hori-

zontally, and a compatibility condition for identities expressed by jic = ijc for all

objects c ∈ C.

Take for our strong generator in CAT the set G = {1, 2}, where

1 = •

2 = • > •
(2.10)

and let Γ : A > C be a diagram of double categories.

A cone under Γ defined at 1 is exactly what Paré (in [38]) refers to as a “horizontal

(co-)cone” and is given by the following data in C

Γ(a)
δa

> c
One for each object a of A. These are natural

with respect to the horizontal maps of A.
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Γ(a)
··············

@
@
@ δa
@
@
@R

Γ(v) ···············∨

⇓ δv c

�
�
� δā
�
�
��

Γ(ā)

One for each vertical morphism v of A. Again

these must be natural with respect to the dou-

ble maps of A, but they must also be compat-

ible under vertical composition.

A moments reflection also reveals that what Paré calls a “double (co-)cone” is simply

a cone under Γ defined at 2.

In [38] we find two conditions that must satisfied for a given horizontal cone to

be limiting. These simply state that all other horizontal and double cones factor

uniquely through the chosen cone, which is exactly what the concrete condition of

(iii) requires. So our limiting concept coincides with Paré’s, and we may apply our

work on change of base to his notion, which he refers to as a double (co-)limit.
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2.5 Closed Classes of A-Colimits

Having considered relationships between individual A-weights and categories inter-

nal to C̃ (or A) it now makes sense to extend this to working with entire closed

classes of weights. In this section we will provide a convenient method for defining

such classes in terms of (large) sets of categories in Cat(A), but before doing that

we must first impose a new condition on A. For the remainder of this chapter we

choose to apply condition 2.1.5 to J, the Gabriel theory underlying A, viz:

The base of each cone of J is a diagram on a non-empty connected category.

The following observations motivate our adoption of this blanket assumption:

Observation 2.5.1 (i) In any category B, if pBq:D > B is a constant dia-

gram on a non-empty connected category, then its limit is the object B itself.

It follows that in the presence of condition 2.1.5 any discrete C-set is in A,

furthermore in Set connected limits commute with coproducts therefore A is

closed in C̃ under small coproducts.

(ii) Returning to the construction of the equipment morphism

(A Prof,A Cat, ( )∗)
Ï?

> (Prof(C̃),Cat(C̃), ( )∗)

we see that it may be obtained directly by applying the 2-functor Mon( ) of

proposition 1.6.5 to an equipment homomorphism:

(A Mat, Set, ( )◦)
Ï#

> (Span(C̃), C̃, ( )◦)

This carries X ∈ Set to the discrete C-set ∆(X) and a matrix m:X 	> X ′

to the span

∆(X ′) <
∐
x∈X
x′∈X′

m(x, x′) > ∆(X)

where the coproduct in question is that calculated in C̃. In the presence of con-

dition 2.1.5 the last observation implies that ∆(X), ∆(X ′) and
∐

x∈X
x′∈X′

m(x, x′)

are all in A, and so Ï# restricts to an equipment homomorphism

(A Mat, Set, ( )◦)
Ï#

> (Span(A),A, ( )◦)

and for each pair of sets X,X ′ ∈ Set the functor

A Mat(X,X ′)
I#

> Span(A)(∆(X),∆(X ′))
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is an equivalence. Of course we could not simply apply Mon( ) to this since

the local coequalisers in Span(A) are not stable under pullback, although it

is clear that all small colimits are stable under pullback along maps with

codomain a discrete C-set.

The next two observations are a direct result of this one:

(iii) The action of Ï? on the category A Cat restricts to

I?:A Cat > Cat(A)

the full image of which consists of those categories A ∈ Cat(A) such that A0

is a discrete C-set.

(iv) The action of Ï? on profunctors restricts to an equivalence

I?:A Prof(A,B) ∼ > Prof(A)(I?A, I?B)

wherein if A,B ∈ Cat(A) then Prof(A)(A,B) is the usual category of pro-

functors and equivariant maps as defined in A. This is identical to the full

subcategory of Prof(C̃)(A,B) determined by those profunctors with underlying

C-set in A.

(v) A is closed in C̃ under the finite limits used in the Grothendieck construction

therefore the functor

G: Prof(C̃)(A,B) > Span(Cat(C̃))(A,B)

restricts to:

G: Prof(A)(A,B) > Span(Cat(A))(A,B)

The full image of Prof(A)(A,B) under G ( ) consists of those two-sided discrete

fibrations in Span(Cat(C̃))(A,B) with total category in Cat(A).

Furthermore these all hold when interpreted in SET, in other words they are true

for the inclusion Ï? a Ï?:Al EQUIP > Equip(C̃l). �

As an example of the importance of condition 2.1.5 let us, for a moment, return

to the situation at the end of section 2.3. We were given a weight X: A +> 1 in

A Equip and a diagram Θ: A > C, for which we saw that:

I?(colim (X,Θ)) '↽⇁ lim−→G(I?X)
((I?Θ) ◦ x̄1)

Having applied our new blanket assumption, observation 2.5.1(iii) tells us that I?A ∈
Cat(A) and I?C ∈ Cat(Al) furthermore 2.5.1(iv), (v) together imply that G

(
I?X

)
∈

Cat(A). So the internal conical colimit in the display above is of exactly the kind
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analysed in section 2.4. In particular when A = Cat this is just the double co-limit

of (I?Θ) ◦ x̄1.

In recasting the theory of closed classes of A-colimits, our principal method will

be to represent each A-category P(A), the enriched category of presheaves on A

defined in section 2.1, as a full subcategory of some A-enriched version of the slice

category Cat(A)/I?A. As an indication of how to do this notice that the “honest”

category underlying P(A) is in fact just A Prof(A,1), but observation 2.5.1 points

out that we may restrict the composite

A Prof(A,1)
I?
> Prof(C̃)(I?A, I?1)

G
> Span(Cat(C̃))(I?A, I?1)

(2.11)

to a functor

A Prof(A,1)
I?
∼> Prof(A)(I?A, I?1)

G
> Span(Cat(A))(I?A, I?1)

(2.12)

which we call GA. Of course I?1 ∼= 1 therefore Span(Cat(A))(I?A, I?1) is simply the

category Cat(A)/I?A . Furthermore, by observation 2.5.1, GA is fully faithful with

full image consisting of the discrete fibrations over I?A. It seems natural therefore

to take GA as the action of our “A-enriched Grothendieck construction” on the

underlying category of P(A).

A point worth comment is that both of the functors in (2.11) admit left adjoints,

as demonstrated in observation 2.3.2 for G and proposition 1.5.14(ii) for I?. So GA
has a left adjoint LA, constructed by restricting the composite of these two left

adjoints.

Observation 2.5.2 It will be important later on to know more about A-colimits

weighted by the profunctor obtained by applying LA to a given object p:E > I?A

of Cat(A)/I?A. Examining proposition 1.5.14 and observation 2.3.2 we see that this

weight is calculated as follows

LA

( E
p↓
I?A

)
∼= Φ1 ⊗ I?(2∗ ⊗ p∗)⊗ Φ∗A where Φ is the counit of Ï? a Ï?

∼= Φ1 ⊗ I?(2∗)⊗ (I?p)∗ ⊗ Φ∗A
since Ï? is a comorphism of
equipments

∼= Φ1 ⊗ I?(2∗)⊗ (ΦA ◦ I?p)∗

∼= Φ1 ⊗ I?(2∗)⊗ p̂∗
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but Φ1 is an isomorphism so for any A-enriched functor Θ: A > C we get:

colim

(
LA

( E
p↓
I?A

)
,Θ

)
'↽⇁ colim

(
I?(2∗)⊗ p̂∗,Θ

)
'↽⇁ colim

(
I?(2∗),Θ ◦ p̂

)
since p̂∗ a p̂∗

'↽⇁
(

lim−→E
((I?Θ) ◦ p)

)∧
as shown in (2.5) at
the end of section 2.3.

The next few propositions establish some important properties of LA a GA, leading

to corollary 2.5.9 which says that it enriches to an A-adjunction.

Proposition 2.5.3 The functor GA:P(A)0 > Cat(A)/I?A preserves (small)

colimits.

Proof. Let A def
= I?A and r(A)

def
= Prof(A)(A, 1) then we know from observa-

tion 2.5.1(iv) that r(A) ' P(A)0. Now r(A) is the category of algebras for a monad

on A/A0
with functor part ( ×

A0

A1), and this preserves small colimits by observa-

tion 2.5.1(ii) and the fact that A0 is a discrete C-set. It follows that (small) colimits

in r(A) are calculated as in the underlying category A/A0
(as usual), or in other

words the forgetful functor UA: r(A) > A/A0
creates them.

Referring back to (2.12) we need to show that the restriction of G to

r(A)
def
= Prof(A)(A, 1)

G
> Span(Cat(A))(A, 1) ∼= Cat(A)/A

preserves small colimits, but in fact it is enough to check this for the functor obtained

by composing G with

Cat(A)/A
ΣA

> Cat(A) ⊂
N

> [∆op, Set]

simply because ΣA creates colimits and N (the “nerve” functor) is fully faithful. It

is a matter of direct calculation to check that this composite functor maps a right

A-set X ∈ r(A) to a simplicial set of the form

·······X ×
A0

A[n]
1

····

>

>

·······
←
←
←

→
→
→
→

X ×
A0

A[2]
1
←
←
→
→
→ X ×

A0

A1 ← →
→ X

and an equivariant map θ:X > Y ∈ r(A) to the natural transformation depicted

by:

·······X ×
A0

A[n]
1

····

>

>

·······
←
←
←

→
→
→
→

X ×
A0

A[2]
1
←
←
→
→
→ X ×

A0

A1 ← →
→ X

θ ×
A0

A[n]
1

∨
θ ×

A0

A[2]
1

∨
θ ×

A0

A1

∨

θ

∨
·······Y ×

A0

A[n]
1

····

>

>

·······
←
←
←

→
→
→
→

Y ×
A0

A[2]
1
←
←
→
→
→ Y ×

A0

A1 ← →
→ Y

(2.13)
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We should explain that in both of these:

A[n]
1

def
= A1 ×

A0

A1 ×
A0

· · · · · · · · ×
A0

A1︸ ︷︷ ︸
n factors

So consider a diagram Γ:B > r(A) with B small, and q: Γ · > lim−→BΓ a

colimiting cone. The C-set A0 is discrete, therefore for each n ∈ ∆ we know that

( ×
A0

A[n]
1 ):A/A0

> A/A0
preserves colimits, by observation 2.5.1(ii). In particular

(
UA(q) ×

A0

A[n]
1

)
: (UA ◦ Γ) ×

A0

A[n]
1

· > UA( lim−→BΓ) ×
A0

A[n]
1 (2.14)

is colimiting since the forgetful functor UA creates small colimits. Consulting our

calculation of the action of N ◦ ΣA ◦ G on right actions and equivariant maps, as

displayed in (2.13), it is clear that the cone in (2.14) is simply that obtained by

applying evn ◦ N ◦ ΣA ◦G to the cone q, where

[∆op, Set]
evn

> Set

is the functor “evaluation at n ∈∆”. Of course colimits in [∆op, Set] are calculated

pointwise and it follows that N◦ΣA◦G(q) is colimiting thus so is G(q) (in Cat(A)/A)

as required. �

We now proceed with the process of enriching LA a GA to an A-adjunction, by

first providing an enrichment of the category Cat(A). Of course, by theorem 2.1.4,

Cat(A) is a cartesian closed category, and so it has a natural enrichment to an

Cat(A)-enriched category (cf. [30] ). In future, in order to prevent confusion, we

will reserve Cat(A) for this Cat(A)-enriched category and use Cat0(A) for its un-

enriched (honest) underlying category. The next proposition describes explicitly

an A-enriched version of Cat0(A), with the observation which follows showing how

we may derive this A-enrichment, in a more abstract fashion, directly from the

canonical Cat(A)-enrichment.

Proposition 2.5.4 The category Cat0(A) has a natural A-enrichment CatA(A),

under which it admits all A- tensors and cotensors.

Proof. Let the “homset” CatA(A)(A,B) ∈ A be the subobject of BA1
1 × BA0

0 , given

symbolically by:〈f1, f0〉 ∈
BA1

1 × BA0
0

∣∣∣∣∣∣∣
(∀a ∈ A0)(if0(a) = f1i(a))∧
(∀α ∈ A1)(d0f1(α) = f0d0(α) ∧ d1f1(α) = f0d1(α))∧
(∀α, α′ ∈ A1)((d1α

′ = d0α)⇒ (f1(α′ ◦ α) = f1(α′) ◦ f1(α))


Of course this is simply the “set” of functors from A to B, as interpreted inside the

category A.
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Given these “homsets”, it is clear that natural compositions and identities sug-

gest themselves, and we adopt these in order to complete the construction of the

A-category CatA(A). A morphism in the (honest) category underlying CatA(A) is

simply a global point of CatA(A)(A,B), and these clearly correspond to elements of

Cat0(A)(A,B) (i.e. functors from A to B). Of course compositions and identities

tally under this correspondence, and we see that CatA(A) is indeed an A-enrichment

of Cat0(A).

It remains to show that CatA(A) admits all A- tensors and cotensors. If A ∈ A
then both of the endo-functors ∗A and − × A preserve limits, therefore if A is in

CatA(A) we have categories A × C and CA given, in terms of truncated simplicial

objects, by:

A× C2

A×π1

A×◦

A×π2

>

>

>

A× C1

A×d0

<
A×i

A×d1

>

>

A× C0

and

CA
2

πA
1

◦A

πA
2

>

>

>

CA
1

dA0

<
iA

dA1

>

>

CA
0

respectively. Now using the canonical isomorphisms

(BAn
n )A ∼= BAn×A

n
∼= (BAn )An

and preservation of the limits used to carve out each “homset” CatA(A)(A,B) as a

subobject of BA1
1 × BA0

0 , we may show that:

(CatA(A)(A,B))A ∼= CatA(A)(A× A,B)
∼= CatA(A)(A,BA) A-naturally in A, B.

In other words A × C is the A-tensor and CA the A-cotensor of C ∈ CatA(A) by

A ∈ A. But, by theorem 2.1.3, we know that Cat(A)0 is locally presentable, and in

particular it is both (small) complete and cocomplete. Therefore, by theorem 3.73

of [30] we see that CatA(A) is (small) A-complete and A-cocomplete. �

Observation 2.5.5 Of course we could have presented the proof of the last propo-

sition using our work on change of base from the last chapter. There is an adjoint

pair

Cat0(A)
<

dis

⊥
( )0

> A

where “( )0” denotes the functor taking an internal category A ∈ Cat0(A) to its

“set” of objects A0 and “dis” that mapping an object A ∈ A to the corresponding

215



DOMINIC VERITY

discrete category. We consider Cat0(A) and A to be the homsets of bicategories,

each having a single 0-cell with tensorial composition given by product, furthermore

the functor “dis” preserves products and therefore constitutes a homomorphism of

these. The existence of a right adjoint ( )0 ensures that this homomorphism satisfies

the local adjointness condition of example 1.6.6 giving an adjoint pair

Cat0(A) Equip
<

F̈?

⊥

F̈?

> A Equip

in EMor, with F̈? an equipment homomorphism and F̈? preserving representables.

As we have already pointed out any monoidal closed category may be enriched

over itself, and assuming that it was complete and cocomplete in the first place

it becomes so as an enriched category (cf. [30]). In our case Cat(A) denotes this

Cat0(A)-enriched category, to which we apply F̈? to get an A-category CatA(A)

clearly identical to that constructed in the last proposition. Now applying the-

orem 1.7.1 to F̈? a F̈? we show that CatA(A) is A-cocomplete, since Cat(A) is

Cat0(A)-cocomplete, furthermore we may use the same theorem and the dual ad-

junction

Cat0(A) Equipop <
(F̈?)op

⊥

(F̈?)
op

>
A Equipop

and thereby demonstrate that CatA(A) is A-complete as well.

Of course the only deficiency with this sort of approach is that we will need the

explicit descriptions of CatA(A), along with that of its A-tensors and A-cotensors,

furnished by the proof we gave.

Now to enrich the slices of Cat(A):

Proposition 2.5.6 If C is an A-category and C ∈ C an arbitrary object, then

the slice category C0/C has a natural enrichment to an A-category C/C such that(
C/C

)
0
∼= C0/C. Furthermore we have the following completeness properties:

(i) if C admits all A-tensors then so does C/C and they are created by the functor

ΣC : C/C > C (which enriches to an A-functor).

(ii) if C admits all A-cotensors and pullbacks (in the A-enriched sense) then C/C
also admits all A-cotensors.

(iii) • C is (small) A-complete ⇒ C/C is.

• C is (small) A-cocomplete ⇒ C/C is and ΣC creates these colimits.

Proof. Construct C/C as follows:
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objects: are pairs (X, p) with X an object of C and p:X > C a morphism in

C0 (in other words p is a global section of C(X,C)).

“homsets”: given in the pullback:

C/C

(
X
p↓
C
,
Y
q↓
C

)
> > C(X, Y )

∨ ∨

C(X, q)

1 >
p

> C(X,C)

(2.15)

composition &

identities: are obtained by restricting those of C, to the subobjects

C/C

(
X
p↓
C
,
Y
q↓
C

)
> > C(X, Y ).

Notice that the fact that A is cartesian closed, and not just monoidal closed, is of

importance here. Crucially it means that the tensorial identity is the terminal object

of A, from which it follows that the “homset” defined in (2.15) is indeed a subobject

of C(X, Y ) and furthermore that the underlying category of C/C is C0/C. For the

same reasons the existence of a canonical A-functor ΣC : C/C > C, enriching the

traditional “sum” functor, is clear from the description of C/C given above.

Before proceeding we remind ourselves of some notation. Given an object A ∈ A
and a map r:X > Y in C0(X, Y ), or in other words a point r: 1 > A(X, Y ),

adopt the notations A⊗X for the A-tensor of X by A, and AtY for the A-cotensor

of Y by A and define canonical maps in A0:

r̂:A⊗X > Y given by 1 ∼−> 1A
rA

> C(X, Y )A ∼= C(A⊗X, Y )

ř:X > A t Y given by 1 ∼−> 1A
rA

> C(X, Y )A ∼= C(X,A t Y )

We should also recall what it means for an A-functor to create tensors:

Given A ∈ A andX ∈ C then a pair (A⊗X,α), consisting of an object A⊗X ∈ C

and an A-natural isomorphism

α: C(X, )A ∼−> C(A⊗X, ),

is said to display A ⊗X as the tensor of X by A in C. We say that an A-functor

Θ: C > D creates this tensor if for each pair (A⊗ (ΘX), α′) displaying a tensor

of ΘX by A in D there exists a unique pair (A⊗X,α), displaying our tensor in C,

such that:

• Θ(A⊗X) = A⊗ (ΘX) and
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• For each Y ∈ C the diagram

C(X, Y )A
αY

> C(A⊗X, Y )

ΘA

∨ ∨

Θ

D(ΘX,ΘY )A

α′ΘY
> D(A⊗ (ΘX),ΘY )

(2.16)

commutes.

We may now turn to establishing completeness properties (i)-(iii).

(i) Suppose p : X > C, q : Y > C are objects of C/C, then the “homset”

C/C

(
X
p↓
C
,
Y
q↓
C

)
is given by the pullback in (2.15), to which we may apply the

limit preserving functor ( )A to obtain a diagram:

C/C

(
X
p↓
C
,
Y
q↓
C

)A
> > C(X, Y )A

C(X, q)A

@
@
@

α′Y

∼=
@
@
@R

?

C/C

(
A⊗X
p̂↓
C

,
Y
q↓
C

)
> > C(A⊗X, Y )

?

?

1A >
pA
> C(X,C)A

?

C(A⊗X, q)
@
@
@
∼=
@
@
@R

@
@
@

α′C

∼=
@
@
@R

1 >
p̂

> C(A⊗X,C)

This induces a unique iso αq: C/C

(
X
p↓
C
,
Y
q↓
C

)A
∼−> C/C

(
A⊗X
p̂↓
C

,
Y
q↓
C

)
, com-

pleting the diagram to a commutative cube. It follows that these are the

unique maps satisfying the condition in (2.16) for the functor ΣC , and their

A-naturality is entailed by that of α′. By substituting the terminal object

id:C > C of C/C for q:Y > C we see that p̂ is indeed the only map

making A⊗X into the required tensor, completing the proof that ΣC creates

all such.
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(ii) Form the cotensor of q:Y > C by A as the A-enriched pullback of A t q
along ǐd:C > A t C in C, e.g:

Y > A t Y

q̄

∨ ∨

A t q

C

ǐd

> A t C

(2.17)

We may check that this truly is the cotensor we are interested in by considering

the following diagram (for any given p:X > C in C/C):

C/C

(
X
p↓
C
,
Y
q̄↓
C

)
> C(X, Y ) > C(X,A t Y )

∨

(b) C(X, q̄)

∨

(a) C(X,A t q)

∨

@
@
@
∼=
@
@
@R

1
p
> C(X,C)

C(X, ǐd)

> C(X,A t C)

(c)

C(X, Y )A

@
@
@
∼=
@
@
@R

(d)

@
@
@
∼=
@
@
@R ∨

C(X, q)A

1A

pA
> C(X,C)A

(2.18)

We look at each of the squares in here in turn:

(a) Is obtained by applying the functor C(X, ) to the square in (2.17), and

so by the definition of A-pullback it is a pullback in A.

(b) Is the pullback square which defines the “homset” C/C

(
X
p↓
C
,
Y
q̄↓
C

)
, cf.

(2.15).

(c) Commutes since it is the square which defines the map A t q.

(d) Showing that this commutes requires an easy diagram chase, involving

the A-naturality of the canonical isomorphism displaying the cotensor

A t C, and the definition of ǐd.
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All that remains is to apply the limit preserving functor ( )A to the pullback

defining the “homset” C/C

(
X
p↓
C
,
Y
q↓
C

)
, and so obtain a pullback

C/C

(
X
p↓
C
,
Y
q↓
C

)A
> C(X, Y )A

∨ ∨
C(X, q)A

1A

pA
> C(X,C)A

which when considered alongside (2.18) induces a unique isomorphism

βp: C/C

(
X
p↓
C
,
Y
q↓
C

)A
∼−> C/C

(
X
p↓
C
,
Y
q̄↓
C

)
making the evident diagram commute. These isomorphisms are A-natural in

the variable p and so display q̄:Y > C as the cotensor A t

(
Y
q↓
C

)
.

(iii) In [30] the concept of the conical A-limit in C of a diagram Γ0:D > C0 was

introduced, where D is a small and unenriched parameterising category. An A-

limiting cone for this notion may be described concretely as a traditional cone

lim←−DΓ0
· > Γ0( ) in C0, with the property that each representable functor

C(A, ): C0 > A0

carries it to a limit cone in A0. The conical A-colimit of Γ0 is defined dually.

Given this description it is a relatively easy matter to generalise the usual

proofs, establishing the conical completeness and cocompleteness of slice cat-

egories, to the A-enriched context. In any case we will not explicitly do this

here, since it is well known (for instance see [30]) that if C admits all tensors

then a cone over Γ0 is A-limiting iff it is a traditional limiting cone in the

unenriched category C0. Of course a dual result holds for conical A-colimits

and so, since all of the categories we will be considering admit all tensors and

cotensors, we are quite happy in stating

• If C admits all conical A-colimits then so does C/C and they are

created by ΣC .

• If C admits all conical A-limits then so does C/C.

with no further justification than an appeal to the corresponding unenriched

versions.

All that remains is to apply theorem 3.73 of [30], which demonstrates the con-

struction of an arbitrary weighted A-limit(colimit) from A-cotensors(tensors)

and conical A-limits(colimits). �
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Now consider a pair of right A-actions B and C then a straightforward cal-

culation, using the definition of the enriched slice CatA(A)/A given above, shows

that:

CatA(A)/A

(
G (B)
b̄↓
A

,
G (C)
c̄↓
A

)
∼=

f ∈ CB

∣∣∣∣∣∣∣
(∀b ∈ B)(c̄f(b) = b̄(b))

(∀b ∈ B,α ∈ A1)((b̄(b) = d0(α))⇒
((fb) · α = f(b · α)))


(2.19)

This is in essence the internalisation to A of the material of section 2.3, up to and

including observation 2.3.1. As such it is a simple exercise in the internal language

of A, and we omit it here, referring the reader instead to that section. From it flows

the following theorem:

Theorem 2.5.7 Under the enrichment of each slice category CatA(A)/A provided

by propositions 2.5.4 and 2.5.6 the functors GA enrich to fully faithful A-functors:

GA:P(A) > CatA(A)/I?A

Proof. Let X, Y : A +> 1 be presheaves in P(A) then the “homset” P(A)(X, Y )

is given by the right Kan extension:

A
X
+ > 1

@@

Y
×
@@R
⇐
	��
×
P(A)(X, Y )
��

1

Now apply the bicategory morphism I? to this, and by proposition 1.7.7(ii) we get

a Kan extension

I?A
I?X
+ > 1

@@

I?Y
×
@@R
⇐
	��
×

I?(P(A)(X, Y ))
��

1

wherein I?(P(A)(X, Y )) ∈ C̃ is simply P(A)(X, Y ) ∈ A considered as an object

of C̃. Therefore returning to the description of I?Y ⇐
I?A

I?X furnished by (1.30)

we see that, on setting B = I?X and C = I?Y , P(A)(X, Y ) is isomorphic to the

object depicted symbolically on the right hand side of (2.19). It is an easy matter to

check that these isomorphisms are the “homset” actions of a fully faithful A-functor

enriching the functor GA. �

221



DOMINIC VERITY

As a result of the last proposition we will, from now on, reserve the symbol GA
for the A-enriched functor P(A) > CatA(A)/I?A, and follow our conventions by

using (GA)0 for its action on underlying categories. Observation 2.3.3 identified the

objects in the full image of this functor as the discrete fibrations over I?A, and from

now on for each B ∈ CatA(A) we will use Dfib(A)/B to denote the A-enriched full

sub-category of CatA(A)/B determined by these. It follows that GA identifies P(A)

with Dfib(A)/I?A and we exploit this in the corollary to the next proposition in

demonstrating the A-enrichment of the left adjoint LA:

Proposition 2.5.8 The full sub-A-category Dfib(A)/B is closed in CatA(A)/B un-

der all A-tensors and A-cotensors.

Proof. First recall from observation 2.3.3 that an internal functor p:E > B is a

discrete fibration iff the diagram

E1

d0
> E0

p1
∨ ∨

p0

B1

d0

> B0

(2.20)

is a pullback. Using this description we may verify that Dfib(A)/B is closed in

CatA(A)/B under A- tensors and cotensors directly from the description of their

construction furnished by propositions 2.5.4 and 2.5.6:

Tensors

The tensor A⊗
(
E
p↓
B

)
is simply the internal functor p̂:A× E > B, for which

the diagram in (2.20) is the composite square:

A× E1

A× d0
> A× E0

πE1

∨
(a)

∨
πE0

E1

d0
> E0

p1
∨

(b)
∨
p0

B1

d0

> B0

The square marked (a) is (always) a pullback, as is (b) so long as p:E > B is

a discrete fibration, in which case applying the composition lemma for pullbacks

establishes that p̂ is also in Dfib(A)/B.

Cotensors:

We prove this in two steps:
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(a) if p:E > B is a discrete fibration then so is pA:EA > BA.

In order for pA to be discrete fibration we need

EA1
dA0
> EA0

pA1∨ ∨
pA0

BA1
dA0

> BA0

to be a pullback, but this is just the square obtained by applying the limit

preserving functor ( )A to the pullback in (2.20),

(b) if p:E > B is a discrete fibration and

E′
g

> E

p′

∨ ∨

p

B′
f

> B

(2.21)

is a pullback in CatA(A) then p′:E′ > B′ is also a discrete fibration.

Consider the commutative cube

E′1
g1

- E1

p′1

?

@@ d0

@@R
p1

@@ d0

@@R
E′0

g0
- E0

p′0

?

?

p0

?

B′1
f1
- B1

@@ d0

@@R

@@ d0

@@R
B′0

f0
- B0

of which the front and back faces are pullbacks, because 2.21 is a pullback in

CatA(A), as is the right hand face when p is a discrete fibration. Therefore,

by the composition and cancellation lemma for pullbacks, the left hand face

of this cube must also be a pullback, implying that p′ is a discrete fibration.

We combine these two lemmas by observing that A t

(
E
p↓
B

)
is constructed by

pulling back pA along a map into BA from which it follows that Dfib(A)/B is closed

under cotensors in CatA(A)/B. �
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Corollary 2.5.9 The A-functor GA:P(A) > CatA(A)/I?A preserves all

A-colimits and has a left A-adjoint.

Proof. The (honest) functor underlying GA preserves all (small) colimits, cf. propo-

sition 2.5.3, and so it itself preserves all (small) conical A-colimits, furthermore the

closure property of Dfib(A)/I?A under A-tensors, given in the last proposition, im-

plies that GA also preserves all A-tensors. Of course any (small) weighted A-colimit

may be constructed from A-colimits of these two types, and so GA preserves all

A-colimits.

In a similar vein, the fact that Dfib(A)/I?A is closed in CatA(A)/I?A under A-

cotensors implies that GA preserves A-cotensors. So by theorem 4.85 of [30] the left

adjoint to (GA)0 enriches to a left A-adjoint of GA. Again, following our convention,

we will now reserve the symbol LA for this A-adjoint and use (LA)0 for its action

on underlying categories. �

We are now in a position to establish the result we promised at the beginning

of the section, which was to provide a way of defining closed classes of colimits in

terms of (large) sets of categories in CatA(A). First we make precise what it means

for a category in CatA(A) to have a terminal object:

Definition 2.5.10 A category C ∈ CatA(A) is said to have a (global) terminal

object iff there exists a global section t: 1 > C0 and a section c:C0 > C1 of

d1:C1 > C0 such that (d0)∗t ∼= c. In other words we have a pullback

C0
2

> 1

c

∨ ∨
t

C1

d0

> C0

(2.22)

with the property that

C0
c
> C1

@
@
@

idC0
@
@
@R ∨

d1

C0

(2.23)

commutes. Notice that in accordance with the conventions we have followed through-

out d0 denotes the codomain map and d1 the domain one.

In abstract terms all this says is that the extension of the predicate “x ∈ C0 is

a terminal object of C”, as expressed in the internal language of A, has a global

section. Another way of expressing this concept, which is often quite useful, is to
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weaken the condition of (2.22), by only insisting that the square commute, and add

two extra conditions:

C1

〈cd0, id〉
> C1 ×

C0

C1

d1

∨ ∨
◦

C0
c

> C1

(2.24)

commutes, which is the naturality condition making c into an internal cone (defined

at 1) under the identity diagram idC:C > C (cf. (2.8)), and

1
t

> C0

c

i

>
> C1 (2.25)

is a commutative fork, more concretely this says that the component of cone c at t

is the identity.

Given these two it is an easy matter to show that the square in (2.22) is a

pullback, and conversely they follow from that assumption. If the condition of 2.25

is dropped we say that C possesses a (global) natural weak terminal object . We

may interpret this as saying that every object x ∈ C has associated with it a map

2x:x > t, which may possibly be chosen from amongst many such, and that the

totality of these form a natural cone under the identity diagram idC.

Let T (A) denote the set of categories in CatA(A) with terminal objects and

W(A) the larger set of those with natural weak terminal objects, which we will often

confuse with the corresponding full sub-A-categories of CatA(A). The important

proposition concerning these is:

Proposition 2.5.11 For any given (small) A-category A, the A-adjunction

P(A)
<

LA

⊥⊂

GA
>

CatA(A)/I?A

restricts to

A
<

LA

⊥⊂

GA
>
T (A)/I?A

where A is identified with the full subcategory of P(A) on the right representables

a∗: A +> 1.

Proof. First consider the adjunction

Prof(C̃)(A, 1)

L
>

⊥
<

G
Cat(C̃)/A
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We have the following two lemmas, the proofs of which are practically direct

internalisations of the classical results:

(a) If X ∈ r(A) is a right representable A-action then the category G (X) has an

initial object.

First recall that the right representable associated with an internal functor

a: 1 > A has underlying object given by the pullback

1 ×
a d0

A1
2

> 1

πA1

∨ ∨
a

A1

d0

> A0

equipped with projection

1 ×
a d0

A1

πA1

> A1

d1
> A0

on which we have a right action induced by the composition of A. From this

description it follows that the category G (a∗) looks like

1 ×
a d0

A1 ×
A0

A1 ×
A0

A1
>
>
>

1 ×
a d0

A1 ×
A0

A1 <
>
>

1 ×
a d0

A1

and so is just the comma “object” A ↓ a in the 2-category Cat(A). It is now

a routine verification to check that the maps

1
〈1, i ◦ a〉

> 1 ×
a d0

A1

1 ×
a d0

A1

〈1, i ◦ a〉 ×
A0

A1

> 1 ×
a d0

A1 ×
A0

A1

satisfy the conditions in (2.22)–(2.25), and so provide a terminal object for

A ↓ a = G (a∗).

(b) If p:E > A is an object in Cat(C̃)/A, and E has an initial object, then

L

(
E
p↓
A

)
is a right representable.

Referring to the proof of observation 2.3.2 we see that the underlying object

of L

(
E
p↓
A

)
, in C̃/A0

, is the coequaliser of a pair

E1 ×
A0

A1

f
>

g
> E0 ×

A0

A1 (2.26)
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where
f〈ε, α〉 = 〈d0(ε), p1(ε) ◦ α〉
g〈ε, α〉 = 〈d1(ε), α〉

which we give the right action induced by the canonical one on E0 ×
A0

A1. Given

that E has a terminal object t: 1 > E0 displayed by a cone c:E0 > E1,

we may define maps t′ = p0 ◦ t: 1 > A0 and

E0 ×
A0

A1
h

> 1 ×
t′ d0

A1

〈e, α〉 > 〈∗, p1(c(e)) ◦ α〉

We will see that the latter of these, when appended to the pair in (2.26), gives

a split coequaliser fork. To do this we must introduce the splitting maps

1 ×
t′ d0

A1

t ×
A0

A1

> E0 ×
A0

A1

E0 ×
A0

A1

c ×
A1

A1

> E1 ×
A0

A1

and fit all of this information together into a diagram

E0 ×
A0

A1

c ×
A0

A1

> E1 ×
A0

A1

d1 ×
A0

A1

> E0 ×
A0

A1

h

∨ ∨

f

∨

h

1 ×
t′ d0

A1

t′ ×
A0

A1

> E0 ×
A0

A1

h
> 1 ×

t′ d0
A1

the important properties of which flow directly from the fact that c presents t

as a terminal object in E. We summarise these as follows; the condition in:

(2.22) ⇒ the left hand square commutes.

(2.23) ⇒ the composite of the maps in the upper line

is the identity on E0 ×
A0

A1.

(2.24) ⇒ the right hand square commutes.

(2.25) ⇒ the composite of the maps in the lower line

is the identity on 1 ×
t′ d0

A1.

In fact these results are exactly what we need in order to verify that

E1 ×
A0

A1

<

c ×
A0

A1

f

g

>
>

E0 ×
A0

A1 <

t ×
A0

A1

h
>

1 ×
t′ d0

A1
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is a split coequaliser diagram. Furthermore the action induced on 1 ×
t′ d0

A1 is

exactly that of the representable t′∗, and so L

(
E
p↓
A

)
∼= t′∗ = (p0 ◦ t)∗.

Now establish the truth of the original proposition by first recalling that the

action of the A-adjunction LA a GA on underlying categories is obtained from the

composite

A Prof(A,1)
<

F

⊥

I?

> Prof(A)(I?A, 1)
<

L

⊥
G

>
Cat(C̃)/I?A

by restriction. The equipment adjunction Ï? a Ï? is an inclusion, and so (by defini-

tion) Ï? preserves right representables, its action on profunctors (I?) is locally fully

faithful and the functor I? is fully faithful. It follows that for any object a ∈ A,

which we confuse notationally with the functor a: 1 > A, we have

GI?(a
∗) ∼= G((I?a)∗)

where, by lemma (a), the internal category on the right has a terminal object. This

is enough to establish the restriction of GA to:

GA: A > T (A)/I?A

Conversely lemma (b) implies that if E has a terminal object then L

( E
p↓
I?A

)
is

right representable and therefore, since I? is fully faithful, there exists an object

e: 1 > A such that:

I?(e
∗) ∼= (I?(e))

∗ ∼= L

( E
p↓
I?A

)

Finally, because I? is locally fully faithful, we get

FL

( E
p↓
I?A

)
∼= FI?(e

∗) ∼= e∗

which establishes the restriction of LA to:

LA: T (A)/I?A > A

�
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It is worth pointing out that T (A) may not be the largest subset of CatA(A)

satisfying the result established in the last proposition for each A ∈ A Cat. If we

were doing straight internal category theory this would in fact hold true, but in

order to prove that we need to take a condition which universally quantifies over

all categories in CatA(A), and not just the ones with a discrete C-set of objects (i.e.

those of the form I?A). This deficiency may allow categories not in T (A) to have

this property, which might seem to be undesirable, but is no problem to us since

(as we will see) we are only really interested in having some such subset to act as a

starting point, T (A) has the advantage of being easy to define and work with.

Now suppose that we were given a set of categories X ⊂ CatA(A) parameterising

some A-colimits, the calculations in observation 2.5.2 and the work of the last two

sections clearly identify the corresponding class of A-weights, which is given by:

X (A) =

{
X ∈ P(A)

∣∣∣∣∣
(
∃
( E
p↓
I?A

)
∈ CatA(A)

)
s.t. E ∈ X and X ∼= L

( E
p↓
I?A

)}

Often it is less important to know about X ( ) than X ∗( ), its closure as a class of

weights, the definition of which we reminded ourselves in section 2.1. It is therefore

natural to ask whether we may describe this latter class in terms of some set of

categories in CatA(A)?

The principal result of [1] gives us a strong clue about how to do this. Identifying

sets of objects in an A-category with the corresponding full sub-A-categories (as we

always do), the authors prove that X ∗(A) is the X colimit closure of A in P(A)

as defined below. Combining this with the work of this section and in particular

propositions 2.5.6, 2.5.9 and 2.5.11 indicate that we should consider the subset

X# ⊂ CatA(A) which is the X colimit closure of T (A) in CatA(A). Indeed the next

proposition establishes that X ∗( ) admits the simple description

X ∗(A) =
{
X ∈ P(A)

∣∣∣GA (X) ∈ X#
}

(2.27)

with respect to X#.

First recall the transfinite construction (in the universe SET) of the X colimit

closure A◦ of a full sub-A-category A in B, which is a X cocomplete A-category:

A◦0 = A

A◦α+ = A◦α ∪

B ∈ B

∣∣∣∣∣∣ ∃ a diagram Γ:C > A◦α ⊂ B with

C ∈ X s.t. B ∼= lim−→C
Γ


A◦λ =

⋃
α<λ A◦α for each limit ordinal λ.

This sequence must eventually converge, since B has only a large set of objects, to

a full sub-A-category A◦, which is clearly the closure we are looking for. We may

now prove the ultimate theorem of this section:
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Theorem 2.5.12 For any given (small) A-category A, the A-adjunction

P(A)
<

LA

⊥⊂

GA
>

CatA(A)/I?A

restricts to

X ∗(A)
<

LA

⊥⊂

GA
>
X#/I?A

and this verifies the description of X ∗( ) in (2.27).

Proof. We know that X ∗(A) = A◦ (in P(A)) and X# = T (A)◦ (in CatA(A)) so

we establish the theorem by transfinite induction on the construction of these. To

get started notice that proposition 2.5.11 gives the restriction of LA a GA to:

A◦0
<

LA

⊥⊂

GA
>
T (A)◦0/I?A

The argument at limit ordinals is clear, so all that remains is to check what

happens at successors. As our induction hypothesis suppose that LA a GA restricts

to

A◦α
<

LA

⊥⊂

GA
>
T (A)◦α/I?A

then we have

(a) given a diagram Γ:D > A◦α ⊂ P(A) with D ∈ X , we know that GA pre-

serves all A-colimits (by proposition 2.5.9) so

GA
(

lim−→D
Γ
)
∼= lim−→D

(GA ◦ Γ)

but CatA(A)/I?A
Σ
> CatA(A) creates all A-colimits (by proposition 2.5.6)

and (GA◦Γ) is a diagram in T (A)◦α/I?A (by the induction hypothesis). There-

fore (by the induction clause defining T (A)◦α+) we know that lim−→A
(GA ◦ Γ)

is in T (A)◦α+/I?A. But examining the clause defining A◦α+ we see that this is

enough to show that GA restricts to:

A◦α+
⊂

GA
> T (A)◦α+/I?A
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(b) given a diagram Θ:A > T (a)◦α/I?A ⊂ CatA(A)/I?A with D ∈ X , we know

that LA preserves A-colimits (since it is a left A-adjoint) so:

LA

(
lim−→D

Θ
)
∼= lim−→D

(LA ◦Θ)

By the induction hypothesis (LA ◦Θ) is a diagram in A◦α, and so lim−→D
(LA ◦Θ)

is in A◦α+ (by the induction clause which defines it). Finally examining the

clause which defines T (a)◦α+/I?A we see that this is enough to show that LA
restricts to:

T (A)◦α+/I?A

LA
> A◦α+

It is now established that the adjunction LA a GA restricts at each stage of the

construction of these closures, so it must also do so for the categories to which the

sequences converge. The principle restriction result of the theorem follows, with the

remainder a simple corollary. �
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2.6 Persistent 2-limits.

In this section we describe and characterise a class of limits, in the theory of 2-

categories, defined by a stability property with respect to equivalences. This was

first introduced by Paré in [38] and dubbed by him the class of persistent limits,

although his definition was not quite correct as stated; we fix it here. He also gave

there a characterisation of this class which we study here in more detail. In the next

section we will use the work of the last section to show that not only is this class

a closed one, but furthermore it is identical to the class of flexible limits, a detailed

account of which may be found in [7].

For the remainder of this chapter we will identify any 2-category C with the

double category I?C, but continue to refer to its horizontal and double cells as 1-

and 2-cells, its vertical cells are all identities, and we say it is vertically discrete.

Before proceeding we should first clarify the structure of Cat(Cat) as an Cat(Cat)-

enriched category. If A, B are categories in Cat(Cat) we may describe the double

category Cat(Cat)(A,B) concretely as follows

Objects: Known as double functors, map the double cells of A to those of B while

preserving horizontal and vertical identities, so we may picture the action of

some such Γ:A > B by:

a
h

> a′

····
····

v ·····∨
⇓ α ····∨

v′

ā
h̄

> ā′

>

Γ(a)
Γ(h)

> Γ(a′)
···

···
Γ(v) ····∨

⇓ Γ(α) ····∨
Γ(v′)

Γ(ā)
Γ(h̄)

> Γ(ā′)

Furthermore this must be functorial with respect to both the horizontal and

vertical composition of double cells.

Horizontal cells: Known as horizontal (natural) transformations. An example of

such a transformation τ : Γ > Γ′ is given by the following data:

For each object a ∈ A a horizontal cell

Γ(a)
τa

> Γ′(a)

in B, collectively obeying the naturality rule with respect horizontal cells in
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A, and for each vertical cell v: a ·· · ··> ā a double cell

Γ(a)
τa

> Γ′(a)
·····

·····Γ(v) ······∨

⇓ τv ······∨

Γ′(v)

Γ(ā)
τā

> Γ′(ā)

in B. These collectively satisfy the obvious horizontal naturality condition

w.r.t. the double cells of A and are compatible with vertical composition and

identities. We may clarify these rules diagrammatically as follows:

Γ(a)
τa

> Γ′(a)
Γ′(h)

> Γ′(a′) Γ(a)
Γ(h)

> Γ(a′)
τa′

> Γ′(a′)
·····

·····
·····

·····
·····

·····
Γ(v)······∨

⇓τv Γ′(v)······∨

⇓Γ′(α) ······∨

Γ′(v′) = Γ(v)······∨

⇓Γ(α) ······∨

Γ(v′) ⇓τv′ ······∨

Γ′(v′)

Γ(ā)
τā

> Γ′(ā)
Γ′(h̄)

> Γ′(ā′) Γ(ā)
Γ(h̄)

> Γ(ā′)
τā′

> Γ′(ā′)

for each double cell α in A and

Γ(a)
τa

> Γ′(a) Γ(a)
τa

> Γ′(a)
·····

·····
··············

··············

Γ(v)······∨

⇓τv ······∨

Γ′(v)

Γ(ā)
τā

> Γ′(ā) = Γ(w•v)···············∨

⇓τw•τv ···············∨

Γ′(w•v)

·····
·····

Γ(w)······∨

⇓τw ······∨

Γ′(w)

Γ(ã)
τã

> Γ′(ã) Γ(ã)
τã

> Γ′(ã)

for each pair of vertical cells v, w ∈ A. Compatibility with identities simply

means that τja = jτa for each object a ∈ A, where jh denotes the vertical

identity on the horizontal cell h.

Vertical cells: Known as vertical (natural) transformations. These are dual to

horizontal transformations, we swap the rôles of the horizontal and vertical

cells of A and B in the last definition.
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Double cells: Known as double (natural) transformations. Such a transformation

Γ
τ

> Γ′

·····
·····

µ ······∨

Φ ⇓ ······∨

µ′

Γ
τ̄

> Γ′

consists of double cells

Γ(a)
τa

> Γ′(a)
·····

·····µa ······∨

Φa ⇓ ······∨

µ′a

Γ(a)
τ̄a

> Γ′(a)

in B, one for each object a ∈ A, collectively obeying

Γ(a)
τa

> Γ′(a)
Γ′(h)

> Γ′(a′) Γ(a)
Γ(h)

> Γ(a′)
τa′

> Γ′(a′)
·····

·····
·····

·····
·····

·····µa ······∨

Φa ⇓ µ′a ······∨

µ′h ⇓ ······∨

µ′a′ = µa ······∨

⇓ µh ······∨

µa′ ⇓ Φa′ ······∨

µ′a′

Γ(a)
τ̄a

> Γ′(a)
Γ′(h)

> Γ′(a′) Γ(a)
Γ(h)

> Γ(a′)
τ̄a′

> Γ′(a′)

for each horizontal cell h: a > a′ in A, and the dual rule, involving the

structure of τ and τ̄ , for each vertical cell v: a ·· · ··> ā.

The various compositions and identities making the totality of these structures

into a Cat(Cat)-enriched category are largely apparent and we leave the details

to the reader. Observe that the 2-category we get by forgetting the horizontal

and double transformations is the one described in proposition 2.5.4. A horizon-

tal transformation τ : Γ > Γ′ corresponds to an equivariant map Γ′∗ > Γ∗ in

Prof([∆op, Set]), and so if Γ, Γ′ are diagrams in a 2-category C, then τ induces

a unique 1-cell ( lim−→D
τ): lim−→D

Γ > lim−→D
Γ′ (when these double colimits exist in

C). It also means that the 2-category obtained by dropping the vertical and double

transformations is the obvious full sub-2-category of the canonical one obtained by

applying proposition 1.2.10 to the equipment Equip([∆op, Set]).

Examples of horizontal and double transformations are the cones under a double

diagram, defined at 1 and 2 respectively, as described in section 2.4. When we

consider a 2-category C as a vertically discrete double category, a double functor

Γ:D > C takes all vertical cells to identities, so these merely serve to force their

domain and codomain to map to the same object in C. Of course the vertical cells

are far from being redundant since it is they that allow us to insert 2-cells into the

horizontal and double cones over a double diagram.

Now for the principle definition of this section:

Definition 2.6.1 (Paré) A (small) double category D parameterises a persistent

limit iff for any (possibly large) 2-category C and pair of diagrams Γ,Γ′:D > C

related by a horizontal transformation τ : Γ > Γ′ satisfying
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(i) for each object d ∈ D, the 1-cell τd is an equivalence and

(ii) for each vertical cell (v: d · · · ··> d̄) ∈ D, the 2-cell τv is an isomorphism,

the unique induced 1-cell ( lim←−D
τ): lim←−D

Γ > lim←−D
Γ′ (when these double limits

exist in C) is an equivalence as well.

In fact, in his notes [38], Paré leaves out condition (ii) on those horizontal

transformations that we require to be equivalence inducing. The following exam-

ple demonstrates that the class defined strictly in this way does not even include

cotensors, and is therefore not the one he was interested in:

Consider the 2-category Cat, which has all weighted (and therefore double) lim-

its, and define a category B in here with two objects ⊥, > and homsets

B(>,>) = B(⊥,⊥) = N
B(>,⊥) = B(⊥,>) = N \ {0}

with composition

B(y, z)×B(x, y)
◦

> B(x, z)

〈n,m〉 > n+m

which is associative with identities 0 ∈ B(>,>),B(⊥,⊥). Notice that the objects

of this category are non-isomorphic, since 0 /∈ B(>,⊥),B(⊥,>). On this we have

an involutive endo-functor

B
¬

> B

>,⊥ > ⊥,>
x
n↓
y

>
¬x
n↓
¬y

and a natural transformation

B

id

⇓ τ
¬

>

>
B with components

τ> = 1:> > ⊥,
τ⊥ = 1:⊥ > >,

all of which, when taken together, forms an endomorphic horizontal transformation,

τ , on the constant diagram at B (in Cat) of the double category:

T =

•
··········∨
•

Of course any diagram of T in a 2-category must simply pick out a single 0-cell and,

by examining (and dualising) the definition of double colimit given in section 2.4,
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we conclude that the double limit of such a diagram is simply the cotensor of the

0-cell it picks out by 2. The functor induced by our horizontal transformation takes

an object (n:x > y) ∈ 2 tC to one represented by the horizontal composite

1

x

⇓ n
y

>

>
B

id

⇓ τ
¬

>

>
B

which, more explicitly, is the object (n + 1: x > ¬y) ∈ 2 t B. But >,⊥ are

non-isomorphic in B, so if
x
n↓
y
∼=

x′
n′↓
y′

in 2 t B then x = x′,y = y′ and n = n′ which

implies that
>

0↓
>

is not in the full image of ( lim←−T
τ), since 0 is not a successor. Hence

this induced functor is not an equivalence, whereas both the identity and ¬ are

isomorphisms.

Before the next theorem we introduce a little bit of notation. If D is a double

category let DH denote the category obtained by “dropping” the vertical and double

cells of D with DO being the set of its objects. We start to get a grip on the nature

of persistent limits with:

Proposition 2.6.2 If the double category D parameterises a persistent limit then

each connected component of DH has a natural weak initial object.

Proof.Given a (small) double category D we will prove the proposition by con-

structing a suitable diagram Γ:D > Cat with the property that each category

Γ(d) is the chaotic groupoid on some (non empty) set. This implies that the unique

horizontal transformation from Γ to the constant diagram at 1 (call this ∆1) satisfies

the conditions of definition 2.6.1. Condition (ii) is satisfied vacuously since every

natural transformation between functors into 1 is an identity, and condition (i) is

a result of the fact that the chaotic groupoid on any (non empty) set is equivalent

to 1. Now, assuming that D parameterises a persistent limit, these would imply

that lim←−D
Γ ' lim←−D

∆1
∼= 1, in particular lim←−D

Γ is non-empty and so there exists a

horizontal cone τ : 1 · > Γ. With this in mind we would want to construct Γ with

the hope that this cone would pick a weak initial object in each component of DH ,

along with the canonical natural maps from these to any other object.

As an example of how we might do this consider the simple case when D is

vertically and doubly discrete (in other words the only vertical or double cells are

the vertical identities), which implies that we may identify it with the category DH .

Define a functor

DH
Ψ

> Set

d > {h ∈ DH |cod(h) = d}

f∨ > ∨Ψ(f) g.b. h > f ◦ h

d′ > {h′ ∈ DH |cod(h′) = d′}
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and let

Set
chaotic

> Cat
denote the functor taking a set to the corresponding chaotic groupoid, then the

composite (chaotic) ◦ Ψ is, in truth, a diagram in Cat on D, since this is vertically

and doubly discrete. A horizontal cone from 1 to this diagram gives rise to a classical

cone from the one point set {∗} to Ψ in Set, picking out a horizontal cell hd: ed > d

for each object d ∈ D which collectively satisfy the naturality condition f ◦ hd = hd′

for each horizontal cell f : d > d′. It follows directly that if d, d′ are in the same

connected component C of DH then dom(hd) = dom(hd′) and this object along with

attendant maps {hd|d ∈ C} form a natural weak initial object for C

In the general case we have the vertical and double cells of D to contend with,

and so (chaotic) ◦ Ψ may not enrich to a double diagram, but we may modify this

special case while preserving it’s essence. Consider
∏
e∈DO

(Ψ(e)×Ψ(e)) and for each

f : d > d′ ∈ DH define as function

∏
e∈DO

(Ψ(e)×Ψ(e))
Γ(f)

>
∏
e∈DO

(Ψ(e)×Ψ(e))

h∼ = {(he,0, he,1)}e∈DO
> k∼ = {(ke,0, ke,1)}e∈DO

g.b. ke,0 = he,0

ke,1 =

{
he,0 if e 6= d′

f ◦ hd,1 if e = d′

It is clear that Γ(g ◦ f) = Γ(g) ◦ Γ(f) and that Γ(id) is the identity so we have

defined a functor:

DH
Γ

> Set

d >
∏
e∈DO

(Ψ(e)×Ψ(e))

f
∨

>
∨

Γ(f)

d′ >
∏
e∈DO

(Ψ(e)×Ψ(e))

Observe that from any cone over Γ, with vertex {∗}, we may derive a cone with the

same vertex over Ψ, and that we may extend (chaotic) ◦ Γ to a double diagram:

D Γ
> Cat

Each object of D maps to the same thing under Γ so the action of Γ on vertical cells

takes care of itself, as does the action on double cells, simply because between any

pair of functors

C

f

g

>
>

chaotic(X)
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there exists a unique natural transformation α: f > g. Now apply the same

reasoning as before using Γ to obtain cones over Γ and therefore Ψ, with vertex {∗},
thus establishing the proposition. �

In order to establish the converse we simplify matters with:

Lemma 2.6.3 D parameterises a persistent limit iff it satisfies the property of def-

inition 2.6.1 for all diagrams in CAT

Proof. For clarification of bicategorical terminology and the Yoneda lemma for

bicategories see [48] and [3].

Let B, C be bicategories and consider a strong transformation

B
F

⇓ θ

G

>

>
C

with the property that, for each 0-cell b ∈ B, the 1-cell θb:F (b) > G(b) is

an equivalence. Of course we may choose equivalence inverses θ−1
b and 2-cells

ηb: iG(b)
∼−> θb ◦ θ−1

b , εb: θ
−1
b ◦ θb ∼−> iF (b) making each quadruple (θb, θ

−1
b , ηb, εb)

into an adjoint equivalence. By taking mates of the structure 2-cells of θ under

these adjunctions, we provide the 1-cells θ−1
b with the 2-cellular structure of a strong

transformation:

B
F

⇑ θ−1

G

>

>
C

Furthermore the construction of θ−1 is motivated by the fact that the 2-cells ηb, εb
then satisfy the rules making them into modifications:

IG

η
∼− > θ ◦ θ−1 and θ−1 ◦ θ

ε
∼− > IF

In other words θ is an equivalence inHomS(B, C), the bicategory of homomorphisms,

strong transformations and modifications from B to C.
Assume now that a double category D has the persistency property with respect

to diagrams in CAT and consider a pair of diagrams Γ,Γ′:D > C, both of which

we will assume to have double limits in C. Connect them by a horizontal transfor-

mation τ : Γ > Γ′ satisfying the conditions of definition 2.6.1, and examine what

happens when we apply the 2-functor C(c, ): C > CAT (for an arbitrary 0-cell

c ∈ C) to this data.

This functor carries the double limiting cones over Γ and Γ′ to double limiting

cones over the composite diagrams C(c,Γ( )) and C(c,Γ′( )) in CAT, therefore the

functor C(c, lim←−D
τ): C(c, lim←−D

Γ) > C(c, lim←−D
Γ′) is the unique one induced by

the horizontal transformation C(c, τ): C(c,Γ( )) > C(c,Γ′( )). This satisfies the
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two conditions of definition 2.6.1, and so since D is persistent for diagrams in CAT

each C(c, lim←−D
τ) is an equivalence.

These functors constitute the 1-cellular components of the strong transformation

obtained by applying the Yoneda homomorphism Y : C > HomS(Cop,CAT) to

the 1-cell ( lim←−D
τ). Hence, by the “coherence” result at the beginning of this proof,

Y( lim←−D
τ) is an equivalence inHomS(Cop,CAT) but the bicategorical Yoneda lemma

informs us that Y reflects equivalences, and so ( lim←−D
τ) is an equivalence. This

establishes that D parameterises a persistent limit. �

In CAT it is quite easy to give a description of ( lim←−D
Γ), using the usual trick of

identifying objects of a category C with functors

1
c

> C

and its morphisms with natural transformations:

1

c

⇓ f

c′

>

> C

Under this identification ( lim←−D
Γ) has objects (morphisms) corresponding to hori-

zontal (double) cones over Γ with vertex 1, furthermore some notation and calcula-

tions become simplified, for instance we may now talk of the horizontal composition

of a morphism in a category with a natural transformation. To explain what we

mean consider the simple example of a morphism f : b > b′ ∈ B and a natural

transformation

B

g

⇓ α

g′

>

> C

then the horizontal composite α◦f is simply that of α with the natural transforma-

tion identified with f , in other words it is the leading diagonal of the commutative

square:

g(b)
αb

> g′(b)

g(f)
∨

@
@
@
@R ∨

g′(f)

g(b′)
αb′

> g′(b′)

This convention also implies that we should write the composite of f with another

morphism g: b′ > b̄ ∈ B as g •f , in other words it is the vertical composite of the

corresponding 2-cells. Often we will follow tradition by dropping explicit use of ◦ to

denote horizontal composition, but we will always retain instances of • for vertical

composition in order to avoid confusion. Let DV denote the category of vertical cells

in D under vertical composition, and we have the following description of ( lim←−D
Γ):
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Objects:

x∼ =
〈
{xd ∈ Γ(d)O}d∈DO

,
{
xv:xd > xd̄ ∈ Γ(d) = Γ(d̄)

}
(v:d→d̄)∈DV

〉
satisfying

(a) xw•v = xw • xv for all compatible cells v, w ∈ DV ,

xjd = ixd for all objects d ∈ DO.

(b) Γ(h)xd = xd′ for each h: d > d′ ∈ DH .

(c) Γ(α)xv = xv′ for each double cell

d
h
> d′

···
···

v ···∨
⇓ α ···∨

v′

d̄
h̄
> d̄′

in D.

Morphisms: An example f∼: x∼ > y∼ consists of a family of morphisms

{fd:xd > yd ∈ Γ(d)}d∈DO
such that:

(a) Γ(h)fd = fd′ for each h: d > d′ ∈ DH .

(b) The square

xd
xv
> xd̄

fd
∨ ∨

fd̄

yd
yv
> yd̄

commutes for each vertical cell v: d ·· · ··> d̄ ∈ D.

The action of the functor ( lim←−D
τ), induced by a horizontal transformation τ : Γ > Γ′,

is also of interest and is given by:

( lim←−D
τ)x∼ =

〈
{τdxd}d∈DO

, {τvxv: τdxd > τd̄xd̄}(v:d→d̄)∈DV

〉
( lim←−D

τ)f∼ = {τdfd: τdxd > τdyd}d∈DO

We have an easy lemma:

Lemma 2.6.4 For any (small) double category D and horizontal transformation

τ : Γ > Γ′ between two diagrams of D in CAT satisfying

(i) for each object d ∈ D the functor τd is fully faithful.

(ii) for each vertical cell v: d · · · ··> d̄ ∈ D the 2-cell τv is an isomorphism.
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the induced functor ( lim←−D
τ) is fully faithful.

Proof. Suppose that τ satisfies the conditions given, then from the description

of ( lim←−D
τ) its faithfulness is clearly evident, and fullness remains to be proved. So

suppose that we have g∼: ( lim←−D
τ)x∼ > ( lim←−D

τ)y∼ then each τd is fully faithful and

it follows that there exists a unique fd:xd > yd such that τdfd = gd. Observe

that we can establish the two conditions that the family {fd}d∈DO
must satisfy to

be a morphism in lim←−D
Γ as follows:

(i) For an arbitrary horizontal cell (h: d > d′) ∈ D the naturality of τ dictates

that τd′ ◦ Γ(h) = Γ′(h) ◦ τd therefore

τd′Γ(h)fd = Γ′(h)τdfd
= Γ′(h)gd by the definition of fd
= gd′ rule (a) for g∼
= τd′fd′ by the definition of fd′

and hence Γ(h)fd = fd′ because τd′ is faithful.

(ii) For an arbitrary vertical cell v: d ·· · ··> d′ ∈ D the morphism g∼ satisfies rule (b)

which we combine with the definition of each fd to get:

τv(yv • fd) = (τvyv) • (τdfd) middle four interchange

= (τd′fd′) • (τvxv) rule (ii) for g∼
= τv(fd′ • xv) middle four interchange

But suppose we had (k:x > y) ∈ Γ(d) then τvk = (τvx) • (τd̄k) holds, τd̄
is an isomorphism and τv is faithful so if τvk = τvk

′ then k = k′. Applying

this to the calculation above we find that yv • fd = fd′ • xv, thus concluding

the verification of rule (ii) for f∼ and demonstrating that this is the unique

morphism in ( lim←−D
Γ) with ( lim←−D

τ)f∼ = g∼.

�

We might näıvely expect the proof that ( lim←−D
τ) is essentially surjective on ob-

jects (when τ satisfies the conditions of definition 2.6.1) to go along similar lines,

but are immediately presented with a complicating factor. Starting with an object

x∼
′ ∈ ( lim←−D

Γ′), it is certainly true that for each d ∈ DO we may pick an object

xd ∈ Γ(d) with τdxd ∼= x′d, but for these to form an object in ( lim←−D
Γ) they must

(at least) satisfy the horizontal naturality rule Γ(h)xd = xd′ , for each horizontal cell

h. The problem is that we are allowed a degree of choice in selecting each xd and

therefore cannot rely on this rule holding merely because it does so for x∼
′. In fact

if the horizontal structure of D imposes any essentially non-trivial relations on the

xds we may be unable to choose them in any coherent way at all and it is here that

our condition on DH comes into play.
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Let {Cl}l∈I denote the indexed set of connected components of DH , and {wl}l∈I
a set of objects such that wl is a natural weak initial object for Cl. We will adopt the

convention that if x is an object of Cl then 2x:wl > x is the leg (at x) of the cone

which displays the natural weak initiality of wl. The idea of the next proposition is

that we only need make one arbitrary choice in each component Cl, at the object

wl:

Proposition 2.6.5 If the (small) double category D is such that each connected

component of DH has a natural weak initial object, and τ : Γ > Γ′ is a horizon-

tal transformation between two diagrams of D in CAT satisfying the conditions of

definition 2.6.1 then ( lim←−C
τ) is essentially surjective.

Proof. Suppose x∼
′ is an arbitrary object of ( lim←−D

Γ′) and construct an object x∼
of ( lim←−D

Γ) by first picking an x̄l ∈ Γ(wl) and an isomorphism ḡl: τwl
x̄l ∼−> x′wl

for

each wl, which we are at liberty to do this since each τwl
is essentially surjective.

Now define xd = Γ(2d)x̄l and gd = Γ′(2d)gwl
:xd ∼−> Γ′(2d)x

′
l = x′d when d is

an object in component Cl, and notice that these represent a coherent choice of

xds satisfying the horizontal naturality rule, simply because h ◦ 2d = 2d′ for any

horizontal cell h (the naturality property of the 2ds) and therefore:

Γ(h)xd = Γ(h)Γ(2d)x̄l = Γ(2d′)x̄l = xd′ and

Γ′(h)gd = Γ′(h)Γ′(2d)ḡl = Γ′(2d′)ḡl = gd′ .

Notice that it is not necessarily true that xwl
= x̄l, but this is of no consequence

since the “x̄l” and “ḡl” have done their job in allowing us to define the “xd” and

“gd” so are no longer needed.

For any vertical cell v: d > d̄ ∈ D define xv:xd > xd̄ to be the unique map

making the diagram

τdxd

gd
∼− > x′d

τvxv
∨ ∨

x′v

τd̄xd̄ ∼−
gd̄

> x′d̄

commute. This exists and is unique since τvk = (τvx)• (τd̄k) for any (k:x > y) ∈
Γ(d), gd̄ and τvx are isomorphisms and τd̄ is fully faithful. If we can demonstrate

that the collection x∼ is an object of ( lim←−D
Γ) then the xvs are defined in order to

ensure that g∼ would then become an isomorphism in ( lim←−D
Γ′) between ( lim←−D

τ)x∼
and x∼

′.

First off we check the compatibility of the collection x∼ with vertical composition
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in D, consider the calculation

τw•v(xw • xv) = (τw • τv)(xw • xv) compatibility of τ with •
= (τwxw) • (τvxv) middle four interchange

= g−1
d̃
• x′w • x′v • gd by the definition of xv,xw

= g−1
d̃
• x′w•v • gd compatibility of x∼

′ with •
= τw•v(xw•v) definition of xw•v

from which it follows that xw•v = xw • xv by the uniqueness clause in the definition

of the xvs. A similar calculation establishes compatibility with vertical identities.

All that remains is to demonstrate the horizontal naturality rule with respect to

any double cell α of D, via the calculation

gd̄′ • (τv′Γ(α)xv) = (Γ′(h̄)gd̄) • (Γ′(α)τvxv)

= Γ′(α)(gd̄ • (τvxv)) middle four interchange

= Γ′(α)(x′v ◦ gd) definition of xv
= (Γ′(α)x′v) • (Γ′(h)gd) middle four interchange

= x′v′ • gd′ by horizontal naturality for x∼
′

entailing that Γ(α)xv = xv′ by the uniqueness clause of the definition of xv′ . �

The ultimate result of this section is:

Theorem 2.6.6 A (small) double category D parameterises a persistent limit iff

each connected component of DH has a natural weak initial object.

Proof.

“⇒” This is just proposition 2.6.2.

“⇐” If τ : Γ > Γ′ is a horizontal transformation between diagrams on D in CAT

satisfying the conditions of definition 2.6.1 then lemma 2.6.4 and proposition 2.6.5

establish that ( lim←−D
τ) is an equivalence. Lemma 2.6.3 extends this result to dia-

grams in all 2-categories and hence D parameterises a persistent limit. �

Of course the we have a dual result for colimits, characterising persistent colimits

as those parameterised by double categories with a natural weak terminal object for

each horizontal component.
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2.7 Flexible Limits.

Naturally we might ask whether the class of persistent limits has been studied in

other contexts. Early in the development of 2-category theory it was noticed that

certain 2-limits, like for instance 2-pullbacks or 2-equalisers, were quite badly be-

haved and as a result did not even exist in many of the natural 2-categories of

interest. It was soon realised that this behaviour was due to a lack of “flexibility” in

the 2-limit concerned. For instance Persistent limits are defined by a natural “flexi-

bility” property, and the work we did demonstrates quite clearly that “rigidity” of a

2-limit seems to stem from the presence of essentially non-trivial relations imposed

on objects in its construction.

Indeed one particularly well studied class of 2-limits has been dubbed the class of

flexible limits, the rather technical definition of which we will spare the reader from

here, referring him or her to [7] instead. In that paper the authors introduce this

class and demonstrate that every flexible limit may be constructed from products,

inserters, equifiers and splitting of (strict) idempotents, each of these being kinds of

flexible limit themselves. For us their most important result establishes that flexible

limits form a closed class and so, for our purposes, it is sufficient to think of it as the

closure of the class consisting of those 2-limit types mentioned in the last sentence,

and they use the acronym (PIES)∗

From the last section two important questions remain to be answered:

• Is the class of persistent limits closed?

• How does it relate to the class of flexible ones?

It will become clear that these questions may be answered in one go but first, as

a warm up to doing that, it is worth thinking a little more about the limits from

which we construct flexible ones. In fact, in view of what we discussed in section 2.5,

we are more interested in colimits and in particular how to calculate them in the

2-category CatCat(Cat):

coproducts These are those colimits parameterised by double categories consisting

of a discrete set of objects, so they are persistent (by the characterisation of

the previous section) and are calculated in CatCat(Cat) as coproducts in the

underlying category Cat0(Cat).

(co)splitting of idempotents Parameterised by the category with one object and

one non-identity arrow

J =

j
�
�
�
•

s.t. j ◦ j = j
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which we consider to be a vertically and doubly discrete double category. A

double diagram on J in some 2-category A corresponds to a (strict) idempotent

j:A > A in A0 the double colimit of which, when it exists, is simply a

splitting

Aj
/

ej

>
mj

> A

Idempotent splitting is a persistent colimit since j: • > • is a natural cone

displaying • as a natural weak terminal object of J.

coinserter Parameterised by the double category:

I = s
s s
��

��
�1

PPPPPq
·······?

The category IH has a terminal object so coinserters are persistent 2-colimits.

A diagram of this in a 2-category A consists of a parallel pair of 1-cells

A

f

g

>
>
B (2.28)

and a horizontal cone with that codomain is a pair (l, θ) where l:B > C is

a 1-cell and θ is a 2-cell:

B

��
f ��* HH l

HHj
A ⇓ θ C

HH
g HHj �� l

��*

B

Leaving the determination of the double cones up to the reader we go on to

talk about the computation of these in CatCat(Cat). Given a pair of double

functors f, g:A > B we construct their coinserter coins(f, g) by starting

with B and freely adjoining:

vertical cells dae: fa ·· · ··> ga one for each object a ∈ A and

double cells

fa
fh

> fa′

·· ··dae ····∨
⇓ dhe ···∨

da′e

ga
gh

> ga′

one for each horizontal (h: a > a′) ∈ A
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subject to the extra relations:

dāe • (fv) = (gv) • dae for each vertical cell (v: a ·· · ··> ā) ∈ A

dh̄e • (fα) = (gα) • dhe for each double cell

a
h
> a′

·· ··
v ···∨
⇓ α ··∨v

′

ā
h̄
> ā′

∈ A

diae = idae for each object a ∈ A

dh′e ◦ dhe = dh′ ◦ he for each pair of hori-

zontal cells

(h: a > a′),
(h′: a′ > a′′) ∈ A

The cone displaying this as a colimit is a pair (i, φ) where i:B > coins(f, g)

is the canonical inclusion and φ: i◦f ·· · ··> i◦g has components φa = dae(∀a ∈
AO) and φh = dhe(∀h ∈ AH). The relations imposed above are precisely

chosen to ensure that these cells satisfy the conditions necessary for φ to be a

vertical transformation.

coequifier Parameterised by the double category:

E = s
s s
��

��
�1

PPPPPq
·······?
⇓ ⇓

The category EH has a terminal object so coequifiers are persistent 2-colimits.

A diagram of this in a 2-category consists of a parallel pair of 1-cells with a

pair of 2-cells between them

A

f

α ⇓ ⇓ β
g

>

>
B (2.29)

and a horizontal cone with that codomain consists of a 1-cell l:B > C

satisfying the equation l ◦ α = l ◦ β, as before we leave an explicit description

double cones up to the reader. Calculating the coequifier coeqf(α, β) of vertical

transformations α, β: f ⇒ g:A > B in CatCat(Cat) is easy, we simply start

with B, to which we add new relations:

αa = βa for each object a ∈ A
αh = βh for each horizontal cell (h: a > a′) ∈ A

All these extra relations do is to force corresponding components of α and

β to become equal under the canonical quotient map q:B > coeqf(α, β)

therefore q ◦ α = q ◦ β and so q constitutes a cone under our diagram. It is

clear that this must be the universal such cone.
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Our description of coinserters and coequifiers indicates strongly their importance.

We may use them to build up the vertical and double structure of any double cate-

gory D starting from its underlying category of horizontal cells DH . This is achieved

by freely adjoining the double and vertical cells to DH using coinserters while im-

posing the required relations between them using coequifiers. This observation leads

directly to the important theorem of this section:

Theorem 2.7.1 The class Pco ⊂ Cat(Cat), of those double categories parameteris-

ing persistent 2-colimits, is the closure of T (Cat) in CatCat(Cat) under coproducts,

coinserters, coequifiers and splitting of idempotents (PIES-colimits).

Proof. Recall first, from the last section, that D ∈ Pco iff its underlying category of

horizontal cells DH has a natural weak terminal object for each of its connected com-

ponents. Examining the calculations of coins(f, g) and coeqf(α, β) in CatCat(Cat)

given above we see that they do not affect the horizontal cell structure of B. In

other words coins(f, g)H ∼= coeqf(α, β)H ∼= BH and so if B ∈ Pco then both of

these colimits are also in there. Similarly (
∐
i∈I Di)H

∼=
∐
i∈I(Di)H from which it

follows that Pco is closed under coproducts. It remains to check the splitting of

an idempotent j:D > D, its action j:DH > DH on horizontal cells is also an

idempotent and (Dj)H ∼= (DH)j. The idempotent on DH restricts to one on each

of its connected components C, and we obtain (DH)j by splitting each of these and

taking the disjoint union of the results. But if D ∈ Pco then each C has a natural

weak terminal object w presented by some cone

C

id

⇓ γ

∆w

>

>
C

which we post-compose with ej: C > Cj and pre-compose with mj: Cj > C

to obtain a cone displaying e(w) as a natural weak initial object of Cj, it follows

that Dj ∈ Pco.

If a double category has a terminal object then this is certainly terminal in the

underlying category of horizontal cells therefore T (Cat) ⊂ Pco. So having already

demonstrated that Pco is closed under PIES-colimits, it remains to show that we

may construct all double categories in Pco by starting with those in T (Cat) and

successively applying PIES-colimits.

Given a double category D ∈ Pco we proceed by first constructing its horizontal

part DH (considered as a vertically and doubly discrete double category). If C
is a connected component of DH consider C⊥, the category constructed by freely

adjoining a terminal object to that component. Of course we always have a canonical

inclusion m:C > C⊥ but, since C has a natural weak terminal object w, we may

also define a functor e:C⊥ > C, such that e ◦m = idC, by mapping the adjoined
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terminal object ⊥ to w. So C can be constructed by splitting the idempotent m ◦ e
on C⊥ ∈ T (Cat) therefore, having constructed each of its components in this way,

we may form DH as their coproduct.

The remainder of our construction concerns the use of coinserters and coequifiers

in appending the vertical and double structure of D to DH . This is essentially a two

step process. First we freely adjoin generating cells

d ··
dve
· ··> d̄ one for each vertical cell (d ··

v
· ··> d̄) ∈ D

d
h

> d′

·· ··dve ···∨
⇓ dαe ···∨

dv′e

d̄
h̄

> d̄′

one for each double cell

d
h
> d′

·· ··
v ···∨
⇓ α ···∨

v′

d̄
h̄
> d̄′

∈ D

to obtain a double category which we will call DF . The construction of this must

be performed in two sub-steps since coinserters only allow us to add generating

cells with specified vertical domain and codomain; we must also make sure that

the horizontal domain and codomain of our double generators are correct, which

we will do with a coequifier. In giving an explicit description of this regard 1 and

2 as vertically and doubly discrete double categories, they then become elements

of T (Cat). Also adopt the notations O(D), H(D), V(D) and D(D) for the sets of

objects, horizontal, vertical and double cells of D respectively. Now define a double

category

Dcell =

( ∐
v∈V(D)

1
)
q
( ∐
α∈D(D)

2
)

and two double functors

Dcell

dom

cod

>
> DH

defined so that the copy of 1 [2] corresponding to the vertical [double] cell v [α] maps

to domV (v) and codV (v) [domV (α) and codV (α)] under dom and cod respectively. If

we refer back to the construction of coinserters in CatCat(Cat) given at the beginning

of this section it is clear that taking the coinserter of this pair is tantamount to

adjoining vertical and double cells with the correct vertical domains and codomains,

but the horizontal domains and codomains of our new double cells are surplus and

freely adjoined. To rectify this we need to add relations

domH(dαe) = ddomH(α)e
codH(dαe) = dcodH(α)e (2.30)
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for each α ∈ D(D), which we achieve with the aid of a double category

Ddc rel =
∐

α∈D(D)

(1q 1)

and two vertical transformations:

Ddc rel µ ⇓ ⇓ µ′
>

>
coins(dom, cod)

In the definition of Ddc rel there is one copy of 1 for each relation of (2.30), and the

component of µ [µ′] at a given object is the vertical cell on the left [right] of the

corresponding relation. So taking the coequifier of this pair imposes our relations

and we have succeeded in constructing DF .

The second step is to construct D from DF by imposing the relations:

djhe = jh for each h ∈ H(D)

dive = idve for each v ∈ V(D)

dβ ◦ αe = dβe ◦ dαe for each pair α, β ∈ D(D) with domH(β) = codH(α)

dγ • αe = dγe • dαe for each pair α, γ ∈ D(D) with domV (γ) = codV (α)

(2.31)

Again define Drel to be a coproduct of copies of 2, one for each relation in (2.31),

and vertical transformations

Drel ν ⇓ ⇓ ν ′
>

>
DF

with the component of ν [ν ′] at a given copy of 2 being the double cell on the left

[right] of the corresponding relation. Then the coequifier of this pair is D itself.

To recap: Pco is closed under PIES-colimits, contains T (Cat) and any of its

objects may be constructed from those in that subset using PIES-colimits. Therefore

Pco must be the closure of T (Cat) under PIES-colimits in CatCat(Cat). �

Corollary 2.7.2 The corresponding class of colimits Pco( ) is in fact just the class

of flexible colimits, and a weight X ∈ P(A) parameterises a flexible colimit iff the

double category GCat(X) is in Pco.

Proof. Follows directly from the last theorem and theorem 2.5.12 �

We might simply phrase the dual result about classes of limits by:

The classes of Flexible and Persistent limits are identical.

Notice that our construction in theorem 2.7.1 is motivated by exactly the same

considerations as that of the principle result in [43]. In other words get the 1-

dimensional structure right first and then use coinserters and coequifiers to get the

2-dimensional structure back. Our hope is that calculating directly with double

categories rather than weights has succeeded in clarifying this sort of argument.

Dropping splitting of idempotents from the proof of theorem 2.7.1 gives us exactly

their result:

Corollary 2.7.3 A weight X ∈ P(A) is in the class (co PIE)∗ iff each of the

horizontal components of GCat(X) has a terminal object. �
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We round off this section with a short discussion of the notion of finite flexible

limit. Consider Cat(Cat) in the context of [31], not only is it an LFP category but

we may modify the argument in example (5.9) of loc. cit. to demonstrate that it

is LFP as a cartesian closed category. Furthermore comment (8.12) of that paper

provides a prototype for the proof that the finitely presentable objects of Cat(Cat)

are exactly those which we may describe in terms of a finite number of generators

and relations (leaving the precise definition of that concept up to the reader).

Let Cat(Cat)f be the set of finitely presented double categories and define Pco
f =

Pco ∩ Cat(Cat)f , we say that these parameterise finite flexible colimits since:

Proposition 2.7.4 The set Pco
f is the closure of T (Cat)f = T (Cat) ∩ Cat(Cat)f

in CatCat(Cat) under (Pf IES)-colimits (i.e. finite coproducts, coinserters, coequifiers

and splitting of idempotents).

Proof. This proposition is an easy re-working of the of theorem 2.7.1. The fact that

Cat(Cat) is LFP as a cartesian closed category implies that Cat(Cat)f is closed in

there under Cat(Cat)-colimits with finite weights (for a definition of which see [31]

(4.1)). This in turn implies that the f.p. double categories are closed in CatCat(Cat)

under finite 2-colimits, which include the (Pf IES)-colimits. already know that Pco

is closed under (Pf IES)-colimits and so it follows that Pco
f is as well.

It remains to re-work the principle construction of theorem 2.7.1. If D ∈ Pco
f the

DH is finitely presentable and so therefore so is each of its components C. We may

append a terminal object to C by taking a 2-colimit in Cat(Cat)f so C⊥ ∈ T (Cat)f
and it follows by the same proof as before that we may build DH from T (Cat)f
using finite coproducts and splitting of idempotents.

The part of our construction which re-builds the double and vertical structure

of D only uses infinite colimits when putting together Dcell, Ddc rel and Drel from

1, 2 ∈ T (Cat)f . We can rectify this situation by replacing them by similar categories

(Dcell)f , (Ddc rel)f and (Drel)f where the first two only add the (finite number of)

vertical and double generators of D, and the last only imposes the (finite number

of) specified relations. �

There seems to be no simple finiteness property characterising the double cat-

egories in (Pf IES)#, the closure of T (Cat) in CatCat(Cat) under (Pf IES)-colimits.

In essence this is because at any stage in the construction of some D ∈ (PfIES)# we

are able to add an infinite number of generators or relations. The set Pco
f is simply

the fraction of (Pf IES)# which is the easiest to get to grips with.

How does Pco
f relate to the class of weights for flexible limits which are also finite

in the sense of [31]? It is certainly not true that if D is in Pco
f then the associated
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weight I?(2∗:D > 1) is finite. A counter example is the double category:

Dc =

•
·····

∨

·······∨
•

When we apply I? to this its two objects become identified and as a consequence

the “homset” of the resulting 2-category is discrete & infinite and therefore not a

finitely presentable category. What is in fact true is that if A is a 2-category with a

finite number objects and finitely presentable “homsets” then a weight X ∈ P(A)

parameterises a flexible limit and is finite iff G (X) is in Pco
f .
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Pasting in Bicategories.

The notion of pasting has become fundamental to the development of 2-category

theory, since it mirrors and formalises our natural inclination to express more com-

plex composites of 2-cells in terms of diagrams. For some time this concept had no

more than an intuitive foundation but has now been given firm footing, and applied

to the far more complex case of pasting in n-categories, most notably by Johnson

(in [26]), Power (in [40] and [42]) and Street (in [52]). Since we have used pasting

throughout our work on bicategories it seems appropriate that we should give some

idea of how the theory of 2-categorical pasting extends to the bicategorical case. For

our purposes the approach of [40] seems most appropriate and we assume that the

reader is familiar with that paper. Most important for us in re-phrasing that work is

the following consequence of MacLane’s famous coherence theorem for bicategories:

Theorem A.0.5 Every bicategory B is biequivalent to some 2-category B.

Proof. Recall that a biequivalence of bicategories B, C is a homomorphism

B H
> C

with the properties:

• local equivalence, i.e. each Hbb′ :B(b, b′) > C(Hb,Hb′) is an equivalence of

categories.

• essential surjectivity, i.e. for each 0-cell c ∈ C there exists a 0-cell b ∈ B and

an equivalence Hb ' c in C.

Following a similar argument to that for categorical equivalences we may show (in the

presence of the axiom of choice) that every biequivalence has a pseudo inverse, that is

a homomorphism H′: C > B admitting equivalences H′ ◦ H ' IB in HomS(B,B)

and IC ' H ◦ H′ in HomS(C, C), where ◦ denotes the usual (strictly associative)

composition of homomorphisms (see [3]).

252



CHANGE OF BASE

In constructing a 2-category biequivalent to B we use the obvious “syntactic”

method rather than, for instance, exploiting the bicategorical Yoneda lemma as

Power does in [41]. This decision is motivated by a purely technical considera-

tion which dictates that for our specific purpose it would be useful to construct a

biequivalence H:B > B which is a retract biequivalence, in the sense that it has

a biequivalence inverse H′: B > B with H′ ◦ H = IB.

Now notice that we may factor any homomorphism F:A > B as

A
Fe

> AF

Fm
> B

where Fe is essentially surjective on both the 0- and 1-cells of A and Fm is locally

fully faithful. This is an analogue of traditional epi-mono factorisation, and AF is

constructed to have:

0- and 1-cells those of A.

2-cells α̃: p⇒ q correspond to 2-cells α: F(p)⇒ F(q), which form “hom” categories

AF(a, a′) under vertical composition in B.

composition of 1-cells is that of A. The horizontal composite of 2-cells α̃: p ⇒ q

and α̃′: p′ ⇒ q′ corresponds to the composite

F(p′ ~ p)
can
∼−> F(p′)⊗ F(p)

α′ ⊗ α
> F(q′)⊗ F(q)

can
∼− > F(q′ ~ q)

which is clearly functorial. Notice the use of~ and⊗ to distinguish the compo-

sitions in the two bicategories. We verify easily that the maps (corresponding

to)

F(p′′ ~ (p′ ~ p))
F(can)
∼− > F((p′′ ~ p′)~ p)

satisfy the naturality and coherence conditions required of the associativity

isomorphisms of a bicategory.

identities those of A with canonical isomorphisms (corresponding to):

F(ia′ ~ p)
F(can)
∼− > F(p)

F(p~ ia)

F(can)
∼− > F(p)

The importance of this bicategory lies in:

(a) If A is a 2-category then so is AF.
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(b) There is a canonical strict homomorphism Fe:A > AF which acts as the

identity on 0- and 1-cells and takes a 2-cell β: p⇒ q to a 2-cell (corresponding

to) F(β): F(p)⇒ F(q).

(c) There is a naturally defined homomorphism Fm:AF > B which acts as

F on 0- and 1-cells and takes a 2-cell α̃: p ⇒ q to the corresponding 2-cell

α: F(p)⇒ F(q). Clearly this is locally fully faithful with the extra properties:

• If F is essentially surjective and locally essentially surjective then so is

Fm, which is therefore a biequivalence.

• If F is surjective on 0-cells and locally surjective on 1-cells then Fm is

a biequivalence (as in the last comment) with the property that the

naturally constructed biequivalence inverse F′m:B > AF is a retract

biequivalence. Its actions on 0- and 1-cells are given by splitting the

postulated surjections and therefore Fm ◦ F′m = IB.

(d) F factors as Fm ◦ Fe.

To apply this result to the question in hand let B be the free category generated

by the graph of 0- and 1-cells of B. The 0-cells of this coincide with those of B
and its 1-cells are (possibly empty) compatible sequences [pn, · · · , p1] of 1-cells, with

composition given by sequence concatenation. Now define a homomorphism

B E
> B

which is the identity on 0-cells, takes the empty (identity) sequence on a 0-cell

b ∈ B to the identity ib ∈ B and a non-empty sequence [pn, · · · , p1] to the composite

(pn⊗(pn−1⊗· · ·⊗(p2⊗p1) · · ·)). It really doesn’t matter which particular bracketing

of these composites we choose, the main thing is that MacLane’s coherence theorem

provides us with canonical “re-bracketing” isomorphisms:

E([pn, · · · , p1])⊗ E([qm, · · · , p1]) ∼= E([pn, · · · , p1, qm, · · · , q1])

The uniqueness clause of that theorem also ensures that these isomorphisms satisfy

the coherence conditions required of a homomorphism E, which is clearly both sur-

jective on 0-cells and locally surjective on 1-cells. So applying the factorisation above

to E we get a homomorphism Em:BE > B, which we know to have a biequiva-

lence inverse E′m with Em ◦ E′m = IB. All that remains is to remark that BE is a

2-category since B is a category. �

Armed with this coherence theorem we proceed to give an account of pasting

in bicategories. Firstly the definition of pasting scheme which in essence remains

the same as in [40], that is to say they are planar directed graphs with source and

sink satisfying an acyclicity condition, the edges of which are to represent 1-cells

of a pasting diagram and the internal faces its 2-cells. Since we are working in
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bicategories it is formally quite important not only to specify a sequence of 1-cells

for composition but also the order in which they are to be composed, we will also

see that it is convenient to distinguish edges which are to be treated as identities

from the rest. So the definition in our context is:

Definition A.0.6 A bicategorical pasting scheme consists of:

(i) A pasting scheme G in the sense of [40],

(ii) A distinguished set of edges, known as the identities of the pasting scheme.

(iii) For each interior face F of G, a bracketing of the directed paths of edges which

comprise its domain and codomain.

(iv) A bracketing of the directed paths of edges which comprise the domain and

codomain of the whole pasting scheme. �

We should make precise the notion of bracketing a directed path in a bicategorical

pasting scheme. Given a directed path of edges ~e = 〈en, · · · , e1〉 in G let the sequence

σ(1) < σ(2) < · · · < σ(m) enumerate precisely the non-identity edges of ~e. A

bracketing of ~e is then simply any expression obtained by meaningfully inserting

(m−1) pairs of brackets into the word eσ(m) · · · eσ(2)eσ(1), in fact it instructs us about

the order in which to form the composite of a realisation of this path in a bicategory

using the dyadic operator⊗. It will become apparent that ignoring the identity edges

of a path in this way mirrors how we manipulate identities in bicategories themselves,

they are generally forgotten about unless we need to explicitly introduce one to act

as domain or codomain of a 2-cell. Of course the sequence σ may be empty, if all

edges of the path are identities, in which case there is only one bracketing, the empty

one ∅. Given a face F (or the pasting scheme G itself) let s(F ) denote its domain,

which consists of both the sequence of edges and its given bracketing, and we use

t(F ) similarly for its codomain.

A realisation of one of these pasting schemes in a bicategory is called a labelling

which we define:

Definition A.0.7 A labelling l:G > B of a (bicategorical) pasting scheme G in

the bicategory B consists of:

(i) An assignment of a 0-cell l(v) ∈ B to each vertex v ∈ G.

(ii) For each edge e = uv ∈ G a 1-cell l(e): l(u) > l(v) subject to the condition

that any identity edge must map to one of the designated identity 2-cells ib of

B. This condition clearly also imposes a restriction on our choice of labels for

vertices, ie. if e is an identity then l(u) = l(v).

Once we have labelled the edges of G we may derive, for each path ~e =

〈e1, · · · , en〉 (where ei = vivi+1) and bracketing b̃, a unique 1-cell

l(~e, b̃): l(v1) > l(vn+1)
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given by the following three cases:

• The sequence σ is empty, this means the ~e consists simply of identities

implying that each of its edges must be labelled with the same identity

1-cell il(v1) ∈ B, so define l(~e, b̃) = il(v1).

• The sequence σ has length 1, so ~e contains only one non-identity edge

eσ(1) which we use to define l(~e, b̃) = l(eσ(1)).

• Otherwise l(~e, b̃) is formed by composing the (necessarily compatible)

1-cells l(eσ(m)), · · · , l(eσ(1)) using the dyadic operator ⊗ in the order spec-

ified in the bracketing b̃.

(iii) For each interior face F a 2-cell l(F ): l(s(F ))⇒ l(t(F )).

We should point out that our treatment of bracketings and identities is redundant

when B is a mere 2-category, in that case this notion of labelling reduces to that

of [40]. �

We will actually define the pasting of such a labelling in terms of the biequiva-

lence derived in Theorem A.0.5, so to that end we define what it means to apply a

homomorphism to a labelling:

Definition A.0.8 Let l:G > B be a labelling of the pasting scheme G in a

bicategory B, and suppose that H:B > C is a homomorphism then we may define

a labelling [H·l]:G > C as follows:

• For each vertex v ∈ G, [H·l](v) = H(l(v)),

• For each non-identity edge e ∈ G, [H·l](e) = H(l(e)),

• For each identity edge e ∈ G, if l(e) = ib then let [H·l](e) = iHb. Notice that from

the canonical isomorphisms H(p′) ⊗ H(p) ∼= H(p′ ⊗ p) and iH(b)
∼= H(ib) we may

construct a unique isomorphism [H·l](~e, b̃) ∼= H(l(~e, b̃)) for each bracketed path

(~e, b̃). When we say these isomorphisms are “unique” we of course mean so in the

formal sense of MacLane’s theorem, and this is a consequence of the coherence

conditions on the structure of a homomorphism.

• For each face F of G define [H·l](F ) to be the 2-cell given by the composite:

[H·l](s(F ))
can
∼− > H(l(s(F )))

H(l(F ))
> H(l(t(F )))

can
∼− > [H·l](t(F ))

(A.1)
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When given a labelled face

•
p2
> • · · · •

ib
> • · · · •

pn−1
> •

�

p1 �� @ pn
@R

• α ⇓ •
@
q1 @R � qm

��

•
q2

> • · · · • > • · · · •
qm−1

> •

in B we will display the result of applying H as:

•
H(p2)

> • · · · •
iH(b)

> • · · · •
H(pn−1)

> •

�

H(p1) �� @ H(pn)
@R

• H(α) ⇓ •
@

H(q1) @R � H(qm)
��

•
H(q2)

> • · · · • > • · · · •
H(qm−1)

> •

Strictly speaking the use of H(α) to label this 2-cell is misleading, but we rely on

the context in the diagram to show that it is not simply the result of applying

H to α but rather the composite of diagram (A.1). The convention concerning

the application of a homomorphism to identities follows common practice, for

instance applying H to the unit of an adjunction ib ⇒ u ⊗ f should give a unit

iHb ⇒ H(u)⊗ H(f) not simply a 2-cell H(ib)⇒ H(u)⊗ H(f).

Definition A.0.9 (pasting composition) For each bicategory B pick a biequiv-

alence HB:B > B where B is a 2-category, in which theorem 3.3 of [40] provides

us with a unique (2-categorical) pasting composite k(G): k(s(G)) ⇒ k(t(G)) for

any labelling k:G > B. We extend this to labellings l:G > B by defining

l(G): l(s(G))⇒ l(t(G)) to be the unique 2-cell making the diagram

HB(l(s(G)))
HB(l(G))

> HB(l(t(G)))

can o

∨

o

∨

can

[HB·l](s(G))
[HB·l](G)

> [HB·l](t(G))

(A.2)

commute. Existence and uniqueness follows from the fact that as a biequivalence

HB is locally fully faithful. If B is a 2-category already then we elect to take the

identity homomorphism IB for HB, this simply ensures that the notion presented in

this definition and that of 2-categorical pasting given in [40] coincide on 2-categories.

�

257



DOMINIC VERITY

The next lemma provides us with a proof that this definition is independent

of the choice of homomorphism HB:B > B as well as a result concerning the

preservation of pasting composites under homomorphisms of bicategories:

Lemma A.0.10 Let H: B > C be a homomorphism (pseudo functor) of 2-cat-

egories then if l:G > B is any labelling we have a commutative diagram:

H(l(s(G)))
H(l(G))

> H(l(t(G)))

can o

∨

o

∨

can

[H·l](s(G))
[H·l](G)

> [H·l](t(G))

(A.3)

We might re-phrase this by saying that homomorphisms between 2-categories pre-

serve pastings.Of course in this lemma when we talk about schemes and pasting we

are working in 2-categories and we mean the notion presented in [40].

Proof. Recall from proposition 2.10 and theorem 3.3 of [40] that we obtain a pasting

composite by induction on the number of faces of G and we establish our result in

the same way:

(i) G has one face, so has no internal faces and consists of a single path of edges.

In this case the pasting of any labelling is simply the identity on the composite

of the 1-cells labelling this path and the result is clear.

(ii) G has two faces, in other words it has a single internal face and we can visualise

it as:

•
e2

> • · · · · · · · •

�

e1 �� @ em
@R

•
f1
> • · · · · • F ⇓ • · · · · •

gl
> •

@

e′1
@R � e′m′

��

• · · · · · · •
e′m′−1

> •

(A.4)

Now consider a labelling l:G > B, the pasting of this is simply the hori-

zontal composite l(~g) ◦ l(F ) ◦ l(~f) and observing the rules on application of a

homomorphism to a labelling we see that the pasting of [H·l] is given by the

composite:

[H·l](~g) ◦ [H·l](~e) ◦ [H·l](~f)
◦ can ◦
∼− > [H·l](~g) ◦ H(l(~e)) ◦ [H·l](~f)

◦ H(l(F )) ◦
> [H·l](~g) ◦ H(l(~e ′)) ◦ [H·l](~f)

◦ can ◦
∼− > [H·l](~g) ◦ [H·l](~e ′) ◦ [H·l](~f)
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It remains to point out that we have commutative diagrams

[H·l](~g) ◦ [H·l](~e) ◦ [H·l](~f)
can ◦ can ◦ can

∼− > H(l(~g)) ◦ H(l(~e)) ◦ H(l(~f))

||
||
||

o
∨

can

[H·l](~g~e~f) ∼−
can

> H(l(~g~e~f)) ======= H(l(~g) ◦ l(~e) ◦ l(~f))

as a result of the “uniqueness” of the canonical isomorphisms [H·l](~e) ∼=
H(l(~e)). On substituting these equalities and expressions for the pastings of l

and [H·l] into (A.3) we get a clearly commutative diagram.

(iii) G has n > 2 faces and the result holds for fewer than n faces. The acyclicity

requirement on G ensures that we may pick an internal face F with domain

entirely immersed that of G itself. This face, the edges that border it and

the remaining edges in the domain of G form a sub-pasting scheme G0 which

looks like a whisker as in diagram (A.4). We get a second sub-pasting scheme

by removing F along with the attendant edges and vertices of its boundary

which are not in its codomain, call this G1, together these satisfy G0∪G1 = G,

t(G0) = s(G1) = G0 ∩G1. Given a labelling l:G > B we have restrictions

to li:Gi > B (i = 0, 1) and the pasting composite of l is given by l(G)
def
=

l1(G1) • l0(G0), where • denotes vertical composition of 2-cells.

Certainly applying H to a restricted labelling li is the same as restricting

[H·l] to Gi therefore [H·l](G) = [H·l1](G1) • [H·l0](G0) and by the inductive

hypothesis we know that both (non trivial) squares in

H(l0(s(G0)))
H(l0(G0))

> H(l0(t(G0)))=H(l1(s(G1)))
H(l1(G1))

> H(l1(t(G1)))

can o
∨

o
∨

can can o
∨

o
∨

can

[H·l0](s(G0))
[H·l0](G0)

> [H·l0](t(G0))=[H·l1](s(G1))
[H·l1](G1)

> [H·l1](t(G1))

commute. Of course this diagram only decomposes the square in (A.3), and

so establishes the lemma. �

Now for the promised corollaries:

Corollary A.0.11 The pasting composite of a labelling l:G > B in a bicategory

B (as defined in A.0.9) is preserved by all homomorphisms K:B > C where C

is a 2-category.

Proof. We know by the proof of theorem A.0.5 that it may be assumed that we

have chosen each HB:B > B so that they are retract biequivalences with inverse
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H′B. The pasting l(G): l(s(G))⇒ l(t(G)) is defined to be the unique map related to

the 2-categorical pasting of [HB·l] by the commutativity of diagram (A.2), to which

we apply the homomorphism K ◦ H′B to obtain the commutative square marked (a)

in:

K ◦ H′B ◦ HB(l(s(G)))
K ◦ H′B ◦ HB(l(G))

> K ◦ H′B ◦ HB(l(t(G)))

K ◦ H′B(can) o

∨

(a) o

∨

K ◦ H′B(can)

K ◦ H′B([HB·l](s(G)))
K ◦ H′B([HB·l](G))

> K ◦ H′B([HB·l](t(G)))

can o

∨

(b) o

∨

can

[(K ◦ H′B ◦ HB)·l](s(G))
[(K ◦ H′B ◦ HB)·l](G)

> [(K ◦ H′B ◦ HB)·l](t(G))

The square marked (b) commutes by lemma A.0.10, K ◦ H′B ◦ HB = K since HB is

a retract biequivalence, and the vertical sides of the two squares compose to the

canonical isomorphisms associated with K giving a commutative diagram

K(l(s(G)))
K(l(G))

> K(l(t(G)))

can o

∨

o

∨

can

[K·l](s(G))
[K·l](G)

> [K·l](t(G))

(A.5)

which is, of course, exactly what we mean when we say that the pasting of l is

preserved. �

Corollary A.0.12 The definition of pasting composition in a bicategory is indepen-

dent of the choice of biequivalence HB:B > B, furthermore pastings are preserved

by homomorphisms between bicategories.

Proof. Given another biequivalence K:B > C simply apply the last corollary to

it. The resulting commutative square (A.5) exactly demonstrates that the pasting

of labelling l:G > B, as defined with respect to HB, also satisfies the property

required by definition (A.0.9 for a pasting defined with respect to K. Therefore the

choice of homomorphisms HB is irrelevant to the definition of bicategorical pasting.
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In order to prove that all homomorphisms H:B > C preserve pasting compo-

sition consider the diagram

HC ◦ H(l(s(G)))
HC ◦ H(l(G))

> HC ◦ H(l(t(G)))

HC(can) o

∨

o

∨

HC(can)

HC([H·l](s(G)))
HC([H·l](G))

> HC([H·l](t(G)))

can o

∨

o

∨

can

[(HC ◦ H)·l](s(G))
[(HC ◦ H)·l](G)

> [(HC ◦ H)·l](t(G))

in which the lower square commutes, since it is exactly the defining property of the

pasting of [H·l] in C. That the outer square commutes may be checked by applying

the previous corollary to the homomorphism HC ◦H thus implying, in turn, that the

upper square must also commute. This square is obtained by applying the locally

fully faithful homomorphism HC to

H(l(s(G)))
H(l(G))

> H(l(t(G)))

can o

∨

o

∨

can

[H·l](s(G))
[H·l](G)

> [H·l](t(G))

which must therefore commute, establishing that H preserves the pasting of l. �

How should we interpret this notion of bicategorical pasting? The inductive proof

of lemma A.0.10 has already demonstrated that we may decompose any pasting

scheme into a succession of whiskers, and that the pasting composite of a labelling

in a 2-category is formed by first taking the horizontal composite of each whisker and

then composing these vertically. It is easy to show that this description of pasting

extends to the bicategorical context for which we elaborate on the modifications

necessary, leaving detailed verification up to the reader. First pick any succession

of whiskers W1, · · · ,Wn with s(W1) = s(G), s(Wi+1) = t(Wi), t(G) = t(Wn) and⋃n
i=1 Wi = G, furthermore select arbitrary bracketings b̃i of t(Wi) = s(Wi+1) for

i = 1, · · · , n − 1 and let b̃0, b̃n denote the bracketings of the domain and codomain

of G given as part of its structure. Equipped with the bracketings b̃i−1 and b̃i the

subgraph Wi forms a pasting scheme.

Given a labelling l:G > B restrict it to each whisker to get li:Wi > B and

form the composite of each of these by horizontal composition (as we did in the 2
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-categorical case) without worrying about the precise order in which we apply the

bifunctor⊗ in doing this. Sadly this is not the true pasting of li as it takes no account

of the bracketings of domain and codomain of Wi, but this fault is easily fixed by

“re-bracketing” these using the canonical associativity isomorphisms of B. We are

now left with a sequence of n abutting 2-cells which we may compose vertically to

form the pasting of l.

This is of course exactly the way we might intuitively think of pasting in a

bicategory, simply go about things as we might in a 2-category whilst liberally

sprinkling our calculations with associativity isomorphisms, so why didn’t we couch

our definition in these terms? It is exactly this sprinkling of canonical isomorphisms

that would make that sort of definition hard to prove anything about directly, in

particular how do we establish unicity of pasting composition. Things would get

even more messy if we were to start thinking about the preservation of pasting by

homomorphisms, forcing us to talk explicitly about the interaction of associativity

isomorphisms and the structural 2-cells of the homomorphism.

In essence the coherence lemma A.0.5 gives us a neat way of coding up all of

the coherence information involved in process of pasting into a neat parcel. Notice

also that it implies that, for most purposes, we may forget about the bracketing

of horizontal composites and allow the associativity and identity isomorphisms to

take care of themselves. We have only introduced pasting schemes equipped with

bracketing in order to make precise the work presented above, in practical situations

we will never need to make this information explicit. In fact to all intents and

purposes this section may be summed up by saying that pasting diagrams and their

composites may be formally manipulated in bicategories in exactly the ways we are

used to in 2-category theory.
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[22] M. Grandis and R. Paré. Limits in double categories. Cahiers de Topologie et
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186, 1985.

266


