ПСЕВДОРАЦИОНАЛЬНЫЙ РАНГ АБЕЛЕВОЙ ГРУППЫ А. В. Царев

Аннотация: Изучаются абелевы группы без кручения конечного ранга и факторно делимые смешанные группы. Для групп без кручения конечного ранга рассматривается введенный А. А. Фоминым новый инвариант — псевдорациональный ранг — и находится его связь с обычным рангом. Для факторно делимых смешанных групп найдено условие существования гомоморфизма из одной группы в другую.

Ключевые слова: абелевы группы, псевдорациональный тип, псевдорациональный ранг, факторно делимые группы.

Введение

Под группой в работе подразумевается абелева группа, записанная аддитивно; Z, Q и \widehat{Z}_p — обозначения колец целых, рациональных и целых p-адических чисел соответственно, P — множество всех простых чисел. Если S — подмножество группы G, то $\langle S \rangle$ — подгруппа, порожденная множеством S, а $\langle S \rangle_*$ — сервантная оболочка S в G, состоящая из всех таких элементов $x \in G$, что $nx \in \langle S \rangle$ для некоторого натурального n. Через r(G) и $r_p(G)$ будем обозначать соответственно ранг без кручения и p-ранг группы G, через $r^*(G)$ и $r^*(M)$ — псевдорациональный ранг группы G и G-модуля G0 соответственно. Подгруппа G1 называется G2 в группе без кручения G3, если G4 — периодическая группа. Определения других используемых понятий и обозначений можно найти в G3.

§1. Модули над кольцом псевдорациональных чисел

Рассмотрим сервантное подкольцо R в $\prod_{p\in P}\widehat{Z}_p$, порожденное идеалом $\bigoplus_{p\in P}\widehat{Z}_p$ и единицей кольца.

Определение 1 [2]. Кольцо $R=\langle 1, \bigoplus_{p\in P} \widehat{Z}_p \rangle_*$ называется кольцом псев-дорациональных чисел.

Рассмотрим также конструкции ряда других колец, приведенные в работе [2]. Пусть $\chi=(m_p)$ — произвольная характеристика, $K_p=Z/p^{m_p}Z$ или $K_p=\widehat{Z}_p$ при $m_p<\infty$ и $m_p=\infty$ соответственно. Если χ содержит бесконечно много ненулевых элементов, то рассмотрим подкольцо $R_\chi=\langle 1,\bigoplus_{p\in P}K_p\rangle_*$ кольца $\prod_{p\in P}K_p$. Если все p-компоненты χ , за исключением p_1,\ldots,p_n , равны нулю, то рассмотрим кольца $K_\chi=K_{p_1}\oplus\cdots\oplus K_{p_n}$ и $R_\chi=Q\oplus K_\chi$. Заметим, что если $\chi=(\infty)$, то кольцо R_χ есть в точности кольцо псевдорациональных чисел.

<u>© 2005 Царе</u>в А. В.

Отметим, что независимо от А. А. Фомина данный класс колец был рассмотрен П. А. Крыловым в [3].

Следующие свойства колец R_{χ} более или менее очевидны. Их доказательства можно найти в [2].

Свойства. 1. Элемент $r=(\alpha_p)\in\prod_{p\in P}K_p$ принадлежит кольцу R_χ тогда и только тогда, когда для него найдется рациональное число |r|=m/n такое, что $n\alpha_p=m$ почти при всех простых p.

- 2. Элементы вида $\varepsilon_p = (0, \dots, 0, 1_p, 0, \dots)$ являются идемпотентами кольца R_χ . Более того, любой идемпотент кольца R_χ имеет вид $\varepsilon = \varepsilon_{p_1} + \dots + \varepsilon_{p_n}$ или 1ε .
- 3. $T=\bigoplus_{p\in P}\widehat{Z}_p$ является идеалом кольца R и состоит из всех таких $r\in R,$ что |r|=0.

Всюду далее для произвольного псевдорационального числа r через |r| будем обозначать рациональное число, определенное в свойстве 1, а через T — идеал кольца R, определенный в свойстве 3.

Рассмотрим некоторые инварианты и свойства модулей над кольцом псев-дорациональных чисел.

Определение 2 [2]. R-модуль M называется dелимым, если его аддитивная группа делимая без кручения. Если R-модуль не содержит делимых подмодулей, то он называется pеdуuрованным.

Теорема 1 [2]. Для произвольного R-модуля M справедливы утверждения:

- 1) модуль M либо редуцированный, либо содержит наибольший делимый подмодуль ${\rm div}\,M$;
 - 2) $\text{div } M = \{ m \in M \mid tm = 0 \text{ для любого } t \in T \};$
 - 3) div M выделяется прямым слагаемым в M.

Пусть M — произвольный конечно-порожденный R-модуль с системой образующих $\{x_1,\ldots,x_n\}$. Тогда очевидно, что \widehat{Z}_p -модуль $M_p=\varepsilon_p M$ порождается элементами $\{\varepsilon_p x_1,\ldots,\varepsilon_p x_n\}$. Конечно-порожденный p-адический модуль M_p представим в виде прямой суммы циклических \widehat{Z}_p -модулей:

$$M_p = \langle a_1 \rangle_{\widehat{Z}_p} \oplus \cdots \oplus \langle a_n \rangle_{\widehat{Z}_p},$$

где некоторые слагаемые могут быть нулевыми.

Циклический \widehat{Z}_p -модуль изоморфен или $Z/p^{k_{ip}}Z$, где k_{ip} — целое неотрицательное число, или \widehat{Z}_p . Следовательно, изоморфизм

$$M_p\cong Z(p^{k_{p1}})\oplus \cdots \oplus Z(p^{k_{pt}})\oplus igoplus_s \widehat{Z}_p, \quad t+s=n,$$

определяет следующую упорядоченную последовательность целых неотрицательных чисел и символов ∞ :

$$0 \le k_{p1} \le \dots \le k_{pn} \le \infty, \tag{1}$$

где последние s членов есть символы ∞ ($0 \le s \le n$). Последовательность (1) по всем простым p определяет последовательность типов $\delta_1 \le \cdots \le \delta_n$. Несколько первых типов могут быть нулевыми. Отбросив их, получим последовательность ненулевых типов

$$\tau_1 \le \dots \le \tau_k. \tag{2}$$

Определение 3 [2]. Последовательность (2) называется типом Ричмана конечно-порожденного R-модуля M, число k называется универсальным рангом M. Псевдорациональным рангом конечно-порожденного R-модуля M называется $\dim_Q(M/TM)$ — размерность фактор-модуля M/TM (будем использовать обозначение $r^*(M)$), рассматриваемого в качестве векторного пространства над $Q \cong R/T$.

Заметим, что определение А. А. Фомина для псевдорационального ранга обобщается и для не конечно-порожденных R-модулей.

Свойства. 4. Если M — произвольный R-модуль, то множество

$$TM = \{tm \mid t \in T, m \in M\}$$

является подмодулем модуля M, причем $TM=\bigoplus_{p\in P}M_p$, где $M_p=arepsilon_pM$.

5.
$$r^*(M/N) = r^*(M) - r^*(N)$$
.

Так как T(M/N) = TM/TN и $^{M/N}/_{TM/TN} \cong ^{M/TM}/_{N/TN}$, то

$$r^*(M/N) = \dim_Q M/TM - \dim_Q N/TN = r^*(M) - r^*(N).$$

В работах [2,4] описаны некоторые классы конечно-порожденных R-модулей, например R-модули псевдорационального ранга 0 и 1.

$\S 2$. Матрицы p-отношений

Матрицы p-отношений группы были построены А. А. Фоминым, и практически все нижеследующее в этом параграфе, в той или иной степени, — цитирование из работы [5].

Пусть G — группа без кручения конечного ранга n со свободной подгруппой $F=\bigoplus_{i=1}^n Zx_i;\ r_p-p$ -ранг группы G для каждого простого p. Тогда периодическая группа G/F имеет вид

$$G/F = \bigoplus_{p \in P} [G/F]_p \cong \bigoplus_{p \in P} \left[\bigoplus_{i=1}^{r_p} Z(p^{k_{ip}}) \oplus \bigoplus_{i=r_p+1}^n Z(p^{\infty}) \right]. \tag{3}$$

Определение 4. Последовательность типов ($[(k_{1p})], \ldots, [(k_{np})]$), где k_{ip} взяты из (3), считая $k_{ip} = \infty$ при $i > r_p$, называется типом Ричмана групны G.

Зафиксируем p, тогда для каждого из первых r_p циклических слагаемых в (3) существует набор целых чисел a_{ij}^p , где $j\in\{1,\ldots,n\}$, таких, что элемент

$$y_i^p+F=rac{a_{i1}^px_1+\cdots+a_{in}^px_n}{p^{k_{ip}}}+F$$

является порождающим этого слагаемого. Если $\alpha_{ij}^p=a_{ij}^p+p^{k_{ip}}Z\in Z/p^{k_{ip}}Z$, то для каждого $i\in\{1,\dots,r_p\}$ получили отношение в $Z/p^{k_{ip}}Z$ -модуле $G/p^{k_{ip}}G$:

$$\alpha_{i1}^p x_1 + \dots + \alpha_{in}^p x_n = 0.$$

Для каждого из $n-r_p$ квазициклических слагаемых в (3) найдем множество таких образующих $\{y_i^p(k)+F\mid 1\leq k<\infty\}$, что

$$py_i^p(1) + F = 0 \& py_i^p(k) + F = y_i^p(k-1) + F.$$

Как и выше, каждое $y_i^p(k)$ определяет отношение $\sum\limits_{j=1}^n \alpha_{ij}^p x_j = 0$ в G/p^kG . Для каждого фиксированного j последовательность $\left(\alpha_{ij}^p(k)\right)_k$ определяет целое p-адическое число α_{ij}^p . Таким образом, для каждого $i \in \{r_p+1,\ldots,n\}$ получили p-адическое отношение $\sum\limits_{j=1}^n \alpha_{ij}^p x_j = 0$ в \widehat{Z}_p -модуле \widehat{G}_p , где $\widehat{G}_p - p$ -адическое пополнение группы G.

Для каждого простого p запишем множество p-отношений в матричной форме: $M_G^p X = 0$. Здесь $X - (n \times 1)$ -столбец с координатами x_1, \ldots, x_n , а M_G^p есть $(n \times n)$ -матрица с i-й строкой, состоящей из элементов кольца $Z/p^{k_{ip}}Z$ при $i \leq r_p$ или из элементов кольца \widehat{Z}_p при $i > r_p$.

Таким образом, каждой группе G с фиксированным базисом $\{x_1,\ldots,x_n\}$ соответствует множество матриц p-отношений $\{M_G^p\}$. Обратно, имея множество $(n\times n)$ -матриц $\{M^p\}$ таких, что каждая строка каждой матрицы M^p состоит из элементов одного и того же кольца $(Z/p^{k_{ip}}Z$ или $\widehat{Z}_p)$, мы можем обратить наши рассуждения и получить группу без кручения ранга n. При этом группа, построенная с помощью множества матриц $\{M_G^p\}$, будет в точности G.

Теорема 2 [5]. Пусть G — произвольная группа без кручения конечного ранга, $\{x_1,\ldots,x_n\}$ — ее максимальная линейно независимая система, H — группа без кручения, $\{y_1,\ldots,y_n\}$ — ее произвольные элементы. Тогда гомоморфизм $f:G\to H$ такой, что $f(x_i)=y_i$ $(1\leq i\leq n)$, существует тогда и только тогда, когда

$$M_G^p \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

для всех простых р.

\S 3. Категория \mathscr{F}

В работе [6] А. А. Фомин построил категорию \mathscr{F} , двойственную категории \mathscr{QTF} (абелевых групп без кручения конечного ранга с квазигомоморфизмами в качестве морфизмов). Рассмотрим эту категорию и алгоритм построения двойственных объектов.

Определение 5 [6]. Квазигомоморфизмами модулей $M_1 \to M_2$ над кольцом псевдорациональных чисел называются элементы из $Q \otimes \operatorname{Hom}_R(M_1, M_2)$. Обратимые квазигомоморфизмы называются квазиизоморфизмами.

Определение 6 [6]. Объектами категории $\mathscr F$ являются свободные группы конечного ранга, порождающие R-модули, т. е. если $F\subset M$ — свободная подгруппа конечного ранга аддитивной группы R-модуля M, то вложение $F\to \langle F\rangle_R$ является объектом категории $\mathscr F$. Морфизмом из одного объекта данной категории $F\to M$ в другой $F_1\to M_1$ является пара (f,φ) , состоящая из квазигомоморфизма $f:F\to F_1$ и R-квазигомоморфизма $\varphi:K\to K_1$, где $K=M/\operatorname{div} M$ и $K_1=M_1/\operatorname{div} M_1$, таких, что следующая диаграмма коммутативна:

 $M \longrightarrow K$ и $M_1 \longrightarrow K_1$ — естественные R-гомоморфизмы.

Пусть G — произвольная группа без кручения конечного ранга с полной свободной подгруппой $\bigoplus_{i=1}^n Zx_i$. Рассмотрим множество матриц p-отношений группы G:

$$M_G^p = \begin{pmatrix} \alpha_{11}^p \dots \alpha_{1n}^p \\ \dots & \dots \\ \alpha_{n1}^p \dots \alpha_{nn}^p \end{pmatrix}. \tag{4}$$

Пусть

$$y_1 = \left(\left(\alpha_{11}^p \right)_{p \in P}, \dots, \left(\alpha_{n1}^p \right)_{p \in P} \right), \dots, y_n = \left(\left(\alpha_{1n}^p \right)_{p \in P}, \dots, \left(\alpha_{nn}^p \right)_{p \in P} \right). \tag{5}$$

Если группа G коредуцированная (не содержит свободных прямых слагаемых), то объектом в категории \mathscr{F} , двойственным к G, будет

$$\langle y_1, \ldots, y_n \rangle \to \langle y_1, \ldots, y_n \rangle_R.$$

В противном случае $G = F \oplus H$, где F — свободная группа ранга $k \leq n$, а H — коредуцированная группа. Объектом, двойственным группе F, будет $\langle y_1, \ldots, y_k \rangle \to \langle y_1, \ldots, y_k \rangle_R$, где $\langle y_1, \ldots, y_k \rangle_R \doteq \bigoplus_{i=1}^k Qy_i$. Тогда если $\langle y_{k+1}, \ldots, y_n \rangle$ $\to \langle y_{k+1}, \ldots, y_n \rangle_R$ — объект категории \mathscr{F} , двойственный группе H, то объектом, двойственным группе G, будет

$$\langle y_1, \dots, y_k \rangle \oplus \langle y_{k+1}, \dots, y_n \rangle \rightarrow \langle y_1, \dots, y_k \rangle_R \oplus \langle y_{k+1}, \dots, y_n \rangle_R$$

Если M — конечно-порожденный R-модуль, то $\varepsilon_p M$ — конечно порожденный \widehat{Z}_p -модуль. Следовательно, $\varepsilon_p M \cong K_{1p} \oplus \cdots \oplus K_{np}$, где $K_{ip} \cong Z/p^{k_i}Z$ или $K_{ip} \cong \widehat{Z}_p$. Тогда каждый порождающий R-модуля M представим в виде $y_i = ((\alpha_{1i}^p), \ldots, (\alpha_{ni}^p))$. Значит, если мы обратим вышеприведенную конструкцию, то для каждого объекта категории $\mathscr F$ получим множество матриц p-отношений вида (4), т. е. двойственную группу.

Заметим, что в общем случае если $\langle x_1^*,\dots,x_n^* \rangle \to \langle x_1^*,\dots,x_n^* \rangle_R$ — объект, двойственный группе G, то можно считать, что

$$y_1 = x_1^* + \operatorname{div} M, \dots, y_n = x_n^* + \operatorname{div} M,$$

где $M = \langle x_1^*, \dots, x_n^* \rangle_R$, а y_1, \dots, y_n — система элементов вида (5).

По двойственности каждой группе без кручения G конечного ранга соответствует объект $F \to M$ категории \mathscr{F} , где $M = \langle F \rangle_R$. R-модуль $K = M/\operatorname{div} M$ будем называть nceedopauuonaльным munom группы G и обозначать через $\mathscr{R}(G)$. Тогда под псевдорациональным рангом группы G будем понимать псевдорациональный ранг ее псевдорационального типа. Данные определения несколько отличаются от аналогичных в [6]. Заметим также, что ранг группы F (его имеет смысл называть рангом объекта $F \to M$) совпадает с рангом группы G.

Теорема 3 [6]. Тип Ричмана группы без кручения G конечного ранга совпадает c типом Ричмана R-модуля $\mathcal{R}(G)$.

§ 4. Модуль псевдорациональных отношений

Определение 7. Пусть $F \to M$ — произвольный объект из категории $\mathscr{F},$ $X = \{x_1, \dots, x_n\}$ — некоторый базис группы F, тогда множество

$$\Delta M_X = \{(r_1, \dots, r_n) \mid r_1, \dots, r_n \in R \& r_1 x_1 + \dots + r_n x_n \in \text{div } M\},\$$

очевидно, являющееся R-модулем, называется модулем псевдорациональных отношений объекта $F \to M$.

Из определения следует, что строение модуля псевдорациональных отношений зависит от выбора базиса группы F. Если $Y=\{y_1,\ldots,y_n\}$ — другой базис группы F, то $(y_1,\ldots,y_n)=(x_1,\ldots,x_n)A$, где $A\in SL(n,Z)$. Нетрудно показать, что в этом случае $\Delta M_X=(\Delta M_Y)\,A^t$. В частности, отсюда следует, что любые два модуля псевдорациональных отношений одного и того же объекта изоморфны. Далее, если не будет особой необходимости, то модуль псевдорациональных отношений будем обозначать просто через ΔM , подразумевая, что он построен на произвольном базисе. Данная конструкция вводится в [7], там же приводится основная теорема этого раздела.

Теорема 4. Если G — группа, двойственная объекту $F \to M$, то

$$\operatorname{Hom}(G, R) \cong \Delta M$$
,

где R — аддитивная группа кольца псевдорациональных чисел.

Доказательство. Пусть $\bigoplus_{i=1}^n Zx_i$ — некоторая полная свободная подгруппа группы G. Рассмотрим множество матриц p-отношений $\{M_G^p\}$, построенных на этой подгруппе. Пусть φ — произвольный элемент группы $\operatorname{Hom}(G,R)$, и пусть $\varphi(x_1)=r_1,\ldots,\varphi(x_n)=r_n$. По теореме 2

$$M_G^p \begin{pmatrix} r_1 \\ \dots \\ r_n \end{pmatrix} = 0 \tag{6}$$

для любого простого р. Если

$$M_G^p = \left(egin{array}{c} lpha_{11}^p \ldots lpha_{1n}^p \ \ldots \ldots \ lpha_{n1}^p \ldots lpha_{nn}^p \end{array}
ight),$$

то (6) равносильно системе

$$\begin{cases} r_1 \alpha_{11}^p + \dots + r_n \alpha_{1n}^p = 0 \\ \dots \\ r_1 \alpha_{n1}^p + \dots + r_n \alpha_{nn}^p = 0, \end{cases}$$

а последняя система равносильна равенству

$$r_1ig(ig(lpha_{11}^pig),\ldots,ig(lpha_{n1}^pig)ig)+\cdots+r_nig(ig(lpha_{1n}^pig),\ldots,ig(lpha_{nn}^pig)ig)=0.$$

Тогда если $X = \{x_1^*, \dots, x_n^*\}$ — базис группы F, двойственный $\{x_1, \dots, x_n\}$, то, учитывая (5), получим

$$r_1(x_1^*+\operatorname{div} M)+\cdots+r_n(x_n^*+\operatorname{div} M)=0,$$

т. е. $r_1x_1^* + \cdots + r_nx_n^* \in \operatorname{div} M$ и $(r_1, \ldots, r_n) \in \Delta M_X$.

Рассмотрим отображение $\Phi: \mathrm{Hom}(G,R) \to \Delta M_X$, действующее по закону

$$\Phi(\varphi) = (\varphi(x_1), \dots, \varphi(x_n)).$$

Очевидно, что Φ задано корректно. Покажем, что Φ — инъекция. Предположим, что $\Phi(\varphi_1)=\Phi(\varphi_2)$, т. е. $\varphi_1(x_1)=\varphi_2(x_1),\dots,\varphi_1(x_n)=\varphi_2(x_n)$. Если g —

произвольный элемент группы G, то $mg = m_1x_1 + \cdots + m_nx_n$ при некотором натуральном m, значит,

$$arphi_1(mg)=arphi_1(m_1x_1)+\cdots+arphi_1(m_nx_n)=arphi_2(m_1x_1)+\cdots+arphi_2(m_nx_n)=arphi_2(mg).$$

Тогда $m(\varphi_1(g) - \varphi_2(g)) = 0$. Но в R нет элементов конечного порядка, следовательно, $\varphi_1(g) - \varphi_2(g) = 0$, т. е. $\varphi_1 = \varphi_2$.

Покажем, что Φ — сюръекция. Пусть (r_1,\ldots,r_n) — произвольный элемент из ΔM_X . Как показано выше, условие $(r_1,\ldots,r_n)\in \Delta M_X$ равносильно тому, что

$$M_G^p \left(egin{array}{c} r_1 \ dots \ r_n \end{array}
ight) = 0,$$

а следовательно, по теореме 2 существует такой гомоморфизм $\varphi \in \text{Hom}(G, R)$, что $\varphi(x_1) = r_1, \ldots, \varphi(x_n) = r_n$. Значит, $\Phi(\varphi) = (r_1, \ldots, r_n)$.

Таким образом, получили, что Φ — биекция.

Пусть $\varphi_1, \varphi_2 \in \text{Hom}(G, R)$ и $r \in R$, тогда

$$egin{aligned} \Phi(arphi_1+arphi_2) &= ((arphi_1+arphi_2)(x_1),\ldots,(arphi_1+arphi_2)(x_n)) \ &= (arphi_1(x_1),\ldots,arphi_1(x_n)) + (arphi_2(x_1),\ldots,arphi_2(x_n)) = \Phi(arphi_1) + \Phi(arphi_2) \end{aligned}$$

И

$$\Phi(r\varphi_1) = (r\varphi_1(x_1), \dots, r\varphi_1(x_n)) = r(\varphi_1(x_1), \dots, \varphi_1(x_n)) = r\Phi(\varphi_1).$$

Таким образом, получили, что Φ — гомоморфизм, следовательно, Φ — изоморфизм.

Данная теорема дает нам право говорить о модуле псевдорациональных отношений группы G. Под последним будем понимать R-модуль $\operatorname{Hom}(G,R)$.

§ 5. Псевдорациональный ранг группы без кручения

Всюду в данном параграфе мы будем иметь дело только с группами без кручения конечного ранга, поэтому для простоты последние будем называть просто группами.

Непосредственно из определения псевдорационального ранга группы G следует, что $r(G) \geq r^*(G)$. Возникает вопрос: при каких условиях $r(G) = r^*(G)$? На него дает ответ следующая

Теорема 5.
$$r(G) = r^*(G) \Leftrightarrow \operatorname{Hom}(G, R) = \operatorname{Hom}(G, T)$$
.

Доказательство. Рассмотрим объект $F \to M$ категории \mathscr{F} , двойственный группе G. Пусть $F = \langle x_1, \dots, x_n \rangle$. Предположим, что $r(G) = r^*(G)$. Тогда элементы $x_1 + TM, \dots, x_n + TM$ независимы над Q и R-модуль M редуцированный.

Пусть
$$(r_1, \ldots, r_n) \in \Delta M$$
, т. е. $r_1 x_1 + \cdots + r_n x_n = 0$, тогда

$$|r_1|x_1 + \cdots + |r_n|x_n + TM = 0.$$

Из последнего равенства следует, что $|r_1| = \cdots = |r_n| = 0$, т. е. $r_1, \ldots, r_n \in T$. Отсюда вытекает, что $\operatorname{Hom}(G, R) = \operatorname{Hom}(G, T)$.

Пусть $\mathrm{Hom}(G,R)=\mathrm{Hom}(G,T)$. Равенство $r_1x_1+\cdots+r_nx_n=0$ верно тогда и только тогда, когда все r_i при всех $i\in\{1,\ldots,n\}$ лежат в T. Предположим,

что $r(G) \neq r^*(G)$, тогда элементы x_1, \ldots, x_n зависимы по модулю TM. Значит, найдутся такие $s_i \in R$, что

$$x_{i_1} = \sum_{j=2}^n s_j x_{i_j} + t, \quad t \in TM.$$

Возьмем идемпотент $(1-\varepsilon) \in R$ такой, что $(1-\varepsilon)t = 0$, тогда

$$(1-\varepsilon)x_{i_1} - \sum_{j=2}^n (1-\varepsilon)s_j x_{i_j} = 0.$$

Но $(1-\varepsilon) \notin T$; получили противоречие. Значит, $r(G) = r^*(G)$.

Очевидно, что Hom(G,R) = 0 тогда и только тогда, когда G — делимая группа, и $\operatorname{Hom}(G,R) \cong R^{r(G)}$ тогда и только тогда, когда G — свободная группа. Далее опишем все такие группы G, у которых $\mathrm{Hom}(G,R)\cong\bigoplus_{p\in P}\bigoplus_{r(G)}\widehat{Z}_p$, но сначала докажем вспомогательную лемму.

Пемма 1. Если G — коредуцированная локально свободная группа, то $r^*(G) = r(G).$

Доказательство. Пусть G — коредуцированная локально свободная группа, $F \to M$ — объект категории \mathscr{F} , двойственный ей, и $\{x_1, \dots, x_n\}$ — базис группы F. Рассмотрим комбинацию $r_1x_1 + \cdots + r_nx_n = 0$, где $r_1, \ldots, r_n \in R$.

$$|r_1|=rac{m_1}{k_1},\ldots,|r_n|=rac{m_n}{k_n},$$

то $m_1x_1+\cdots+m_nx_n=t\in TM$. Но M — модуль локально свободного типа Ричмана, следовательно, $TM = \bigoplus_{p \in P} M_p$ — его периодическая часть. Тогда найдется

$$(mm_1)x_1+\cdots+(mm_n)x_n=0.$$

Так как система x_1, \ldots, x_n независимая, из последнего равенства следует, что

$$mm_1=\cdots=mm_n=0$$
 if $m_1=\cdots=m_n=0,$

а значит, $|r_1| = \cdots = |r_n| = 0$. Таким образом, элементы x_1, \ldots, x_n независимы по модулю TM, и $r^*(G) = r^*(M) = n = r(G)$.

Теорема 6. Для группы без кручения G следующие условия равносильны:

- (1) G коредуцированная локально свободная группа;
- (2) $\operatorname{Hom}(G,R)\cong\bigoplus_{p\in P}\bigoplus_{r(G)}\widehat{Z}_p;$ (3) $r(G)=r^*(G)=r_p(G)$ при любом $p\in P.$

такое $m \in \mathbb{N}$, что

Доказательство. Для доказательства нам понадобится известный из [1] изоморфизм

$$\operatorname{Hom}(G, \widehat{Z}_p) \cong \bigoplus_{r_p(G)} \widehat{Z}_p, \tag{7}$$

где G — группа без кручения конечного ранга.

 $(1) \Rightarrow (2)$ Пусть G — коредуцированная локально свободная группа, тогда из теоремы 5, леммы 1 и изоморфизма (7) следует, что

$$\operatorname{Hom}(G,R)=\operatorname{Hom}(G,T)\cong\bigoplus_{p\in P}\operatorname{Hom}(G,\widehat{Z}_p)\cong\bigoplus_{p\in P}\bigoplus_{r_p(G)}\widehat{Z}_p.$$

- Тогда с учетом (3) имеем $\operatorname{Hom}(G,R)\cong\bigoplus_{p\in P}\bigoplus_{r(G)}\widehat{Z}_p.$ (2) \Rightarrow (3) Если $\operatorname{Hom}(G,R)\cong\bigoplus_{p\in P}\bigoplus_{r(G)}\widehat{Z}_p,$ то $\operatorname{Hom}(G,R)=\operatorname{Hom}(G,T)$ и,
- значит, $r_p(G)=r(G)$ при любом простом p, т. е. $r(G)=r^*(G)=r_p(G)$ при любом $p \in P$.
- $(3)\Rightarrow (1)$ Если $r(G)=r^*(G)$, то $\operatorname{Hom}(G,R)=\operatorname{Hom}(G,T)$ и, следовательно, G не может иметь свободных прямых слагаемых, т. е. G коредуцированная. А если $r(G) = r_p(G)$ при любом $p \in P$, то согласно (3) G — локально свободная группа.

Использование определения для вычисления псевдорационального ранга группы довольно сложно и трудоемко, поэтому хотелось бы иметь более простой способ его нахождения. Именно этому и посвящена следующая

Теорема 7. Если G — группа без кручения конечного ранга, то $r^*(G) =$ $r(G) - r^* \operatorname{Hom}(G, R)$, где $r^* \operatorname{Hom}(G, R)$ — псевдорациональный ранг R-модуля $\operatorname{Hom}(G,R)$.

Доказательство. Рассмотрим произвольную группу без кручения G конечного ранга n. Пусть F o M — объект категории \mathscr{F} , двойственный группе G. Если $F = \langle x_1, \dots, x_n \rangle$, то рассмотрим R-модуль $K = M/\operatorname{div} M$. Он порождается элементами $\{z_1,\ldots,z_n\}$, где $z_1=x_1+{
m div}\, M,\ldots,z_n=x_n+{
m div}\, M.$

Отображение $\varphi: \mathbb{R}^n \to K$, действующее по закону

$$\varphi(r_1,\ldots,r_n)=r_1z_1+\cdots+r_nz_n,$$

очевидно, является эпиморфизмом, причем

$$\ker \varphi = \{ (r_1, \dots, r_n) \in R^n \mid r_1 z_1 + \dots + r_n z_n = 0 \}$$
$$= \{ (r_1, \dots, r_n) \in R^n \mid r_1 x_1 + \dots + r_n x_n \in \operatorname{div} M \} = \Delta M_X.$$

Таким образом, $K \cong R^n/\Delta M_X$, а значит, $r^*(K) = r^*(R^n) - r^*(\Delta M_X)$. Тогда, учитывая результат теоремы 4 и то, что $r^*(K) = r^*(G), r^*(R^n) = n = r(G),$ получаем $r^*(G) = r(G) - r^*(\text{Hom}(G, R)).$

§ 6. Факторно делимые смешанные группы

Определение 8. Группа G называется факторно делимой, если она не содержит периодических делимых подгрупп, но содержит такую свободную подгруппу конечного ранга F, что G/F — периодическая делимая группа.

Свободную подгруппу F из определения 8 будем называть ϕ ундаментальной подгруппой группы G, а любой ее базис — ϕ ундаментальной системой группы.

В [6] доказана эквивалентность категории 22 факторно делимых смешанных групп с квазигомоморфизмами и категории \mathscr{F} . При этом если $F \to \langle F \rangle_R$ — объект категории \mathscr{F} , то эквивалентная ему группа G находится как сервантная оболочка $\langle F \rangle_*$ в аддитивной группе R-модуля $\langle F \rangle_R$. Как и для групп без кручения конечного ранга, для факторно делимых смешанных групп Фоминым определен псевдорациональный тип: $\mathscr{R}(G) = \langle F \rangle_R$. Под псевдорациональным рангом смешанной факторно делимой группы G будем понимать псевдорациональный ранг группы без кручения конечного ранга G/T(G).

Пусть G — произвольная смешанная факторно делимая группа, T(G) — ее периодическая часть. Рассмотрим короткую точную последовательность

$$0 \to T(G) \to G \to G/T(G) \to 0$$
,

которая индуцирует точную последовательность

$$0 \to \operatorname{Hom}(G/T(G), R) \to \operatorname{Hom}(G, R) \to \operatorname{Hom}(T(G), R).$$

Так как $\operatorname{Hom}(T(G),R)=0$, то $\operatorname{Hom}(G,R)\cong \operatorname{Hom}(G/T(G),R)$, тогда, учитывая теорему 7, получаем следующий результат.

Теорема 8. Если G — смешанная факторно делимая группа, то $r^*(G) = r(G) - r^* \operatorname{Hom}(G, R)$, где $r^*(\operatorname{Hom}(G, R))$ — псевдорациональный ранг R-модуля $\operatorname{Hom}(G, R)$.

Теорема 9 [6]. Если H — редуцированный R-модуль или G — делимый R-модуль, то

$$\operatorname{Hom}_Z(G,H) = \operatorname{Hom}_R(G,H).$$

Лемма 2. Пусть G и H — некоторые факторно делимые смешанные группы, причем H — редуцированная группа или G — делимая группа, $\bigoplus_{i=1}^n Zx_i$ — фундаментальная подгруппа группы G, $\varphi:G\to H$ — произвольный гомоморфизм. Тогда если

$$g = r_1 x_1 + \dots + r_n x_n \in G, \quad r_1, \dots, r_n \in R,$$

TO
$$\varphi(g) = r_1 \varphi(x_1) + \cdots + r_n \varphi(x_n)$$
.

Доказательство. Рассмотрим несколько случаев.

Случай 1. G и H — редуцированные группы. Пусть \widehat{G} и \widehat{H} — Z-адические пополнения групп G и H, тогда существует единственный гомоморфизм φ^* такой, что следующая диаграмма коммутативна:

$$G \xrightarrow{\varphi} H$$

$$\downarrow^{\mu} \qquad \downarrow^{\nu}$$

$$\hat{G} \xrightarrow{\varphi^*} \hat{H}.$$

Здесь отображения μ и ν являются мономорфизмами, поэтому можно считать, что $G\subset \widehat{G}$ и $H\subset \widehat{H}$. Так как \widehat{G} и \widehat{H} — редуцированные R-модули, то, применив теорему 9, получим

$$\varphi(g) = \varphi(r_1x_1 + \dots + r_nx_n) = \varphi^*(r_1x_1 + \dots + r_nx_n)$$

= $r_1\varphi^*(x_1) + \dots + r_n\varphi^*(x_n) = r_1\varphi(x_1) + \dots + r_n\varphi(x_n).$

Случай 2. G и H — делимые группы без кручения, тогда они являются делимыми R-модулями, и, следовательно, по теореме 9

$$\varphi(g) = \varphi(r_1x_1 + \dots + r_nx_n) = r_1\varphi(x_1) + \dots + r_n\varphi(x_n).$$

Случай 3. G — делимая группа, и $H = D \oplus H_1$, где D — делимая группа без кручения, а H_1 — редуцированная группа. Так как $\operatorname{Hom}(G, H) = \operatorname{Hom}(G, D)$, данный случай сводится к случаю 2.

Случай 4. H — редуцированная группа, и $G=D\oplus G_1$, где D — делимая группа без кручения, а G_1 — редуцированная группа. Поскольку $\mathrm{Hom}(G,H)=\mathrm{Hom}(G_1,H)$, данный случай сводится к случаю 1.

Пусть G — произвольная факторно делимая смешанная группа, $M=\mathscr{R}(G)$ — псевдорациональный тип группы G и $X=\{x_1,\ldots,x_n\}$ — произвольная конечная система элементов из G. Будем считать, что $G\subseteq M$. Тогда рассмотрим два множества:

$$\nabla G_X = \{ (r_1, \dots, r_n) \in R^n \mid r_1 x_1 + \dots + r_n x_n \in G \},$$

$$\Delta G_X = \{ (r_1, \dots, r_n) \in R^n \mid r_1 x_1 + \dots + r_n x_n \in \text{div } G \}.$$

Очевидно, что ∇G_X — группа по сложению, а ΔG_X является R-модулем. В случае, когда X — фундаментальная система в G, модуль ΔG_X будем называть модулем псевдорациональных отношений группы G.

Лемма 3. Пусть G и H — произвольные факторно делимые смешанные группы. Если $X = \{x_1, \dots, x_n\}$ — фундаментальная система элементов группы $G, Y = \{y_1, \dots, y_n\}$ — произвольная система элементов группы H и $\Delta G_X \subseteq \Delta H_Y$, то $\nabla G_X \subseteq \nabla H_Y$.

ДОКАЗАТЕЛЬСТВО. Пусть $(r_1,\ldots,r_n)\in\nabla G_X$, т. е.

$$g = r_1 x_1 + \dots + r_n x_n \in G. \tag{8}$$

Подгруппа $F = \bigoplus_{i=1}^{n} Zx_i$ фундаментальная в группе G, следовательно, G/F — делимая группа. Тогда найдется такое $m \in \mathbb{N}$, что

$$mg = m_1 x_1 + \dots + m_n x_n \in F. \tag{9}$$

Из (8) и (9) следует, что

$$(mr_1 - m_1)x_1 + \cdots + (mr_n - m_n)x_n = 0,$$

т. е.
$$((mr_1-m_1),\ldots,(mr_n-m_n))\in \Delta G_X$$
. Так как $\Delta G_X\subseteq \Delta H_Y$, то

$$(mr_1 - m_1)y_1 + \cdots + (mr_n - m_n)y_n = d \in \text{div } H,$$

следовательно,

$$m(r_1y_1 + \cdots + r_ny_n) = m_1y_1 + \cdots + m_ny_n + d = h \in H.$$

Рассмотрим $\mathscr{R}(H)$ — псевдорациональный тип группы H. Как показано в [6],

$$\mathscr{R}(H) = \langle H \rangle_R = \langle F_1 \rangle_R,\tag{10}$$

где F_1 — фундаментальная подгруппа группы H, а

$$H = \langle F_1 \rangle_* \subseteq \mathcal{R}(H). \tag{11}$$

Так как F_1 — фундаментальная подгруппа группы H, то $lh \in F_1$ при некотором $l \in \mathbb{N},$ а тогда

$$lm(r_1y_1 + \dots + r_ny_n) = lh \in F_1. \tag{12}$$

Из (10) вытекает, что $r_1y_1 + \cdots + r_ny_n \in \mathcal{R}(H)$, а учитывая (11) и (12), получаем, что $r_1y_1 + \cdots + r_ny_n \in H$. Таким образом, $(r_1, \ldots, r_n) \in \nabla H_Y$ и $\nabla G_X \subseteq \nabla H_Y$.

Теорема 10. Пусть G — произвольная факторно делимая смешанная группа, $F = \bigoplus_{i=1}^n Zx_i$ — ее фундаментальная подгруппа, H — факторно делимая смешанная группа, $Y = \{y_1, \ldots, y_n\}$ — ее произвольные элементы. Тогда гомоморфизм $f: G \to H$ такой, что $f(x_i) = y_i$ $(1 \le i \le n)$, существует тогда и только тогда, когда $\Delta G_X \subseteq \Delta H_Y$.

Доказательство. Покажем необходимость условий. Рассмотрим гомоморфизм $f: G \to H$ такой, что $f(x_i) = y_i \ (1 \le i \le n)$. Если $(r_1, \dots, r_n) \in \Delta G_X$, то $r_1x_1 + \dots + r_nx_n \in \text{div } G$, следовательно, по лемме 2

 $f(r_1x_1+\cdots+r_nx_n)=f|_{{
m div}\,G}(r_1x_1+\cdots+r_nx_n)=r_1y_1+\cdots+r_ny_n\in{
m div}\,H.$ Таким образом, $\Delta G_X\subseteq\Delta H_Y.$

Покажем достаточность условий теоремы. Пусть $\Delta G_X \subseteq \Delta H_Y$, построим гомоморфизм $f: G \to H$ такой, что $f(x_i) = y_i \ (1 \le i \le n)$.

Так как $H=H_1\oplus {
m div}\, H,$ где H_1 — редуцированная группа, элементы из системы Y можно представить в виде

$$y_1 = h_1 + d_1, \dots, y_n = h_n + d_n,$$
 где $h_i \in H_1, d_i \in \text{div } H.$

Рассмотрим соответствие $f_1: G \to H_1$, действующее по закону

$$f_1(r_1x_1 + \cdots + r_nx_n) = r_1h_1 + \cdots + r_nh_n.$$

Пусть $g=r_1x_1+\cdots+r_nx_n=s_1x_1+\cdots+s_nx_n$ — два произвольных разложения элемента $g\in G$. Тогда

$$(r_1 - s_1)x_1 + \cdots + (r_n - s_n)x_n = 0,$$

т. е. $((r_1-s_1),\ldots,(r_n-s_n))\in\Delta G_X$. Нетрудно заметить, что $\Delta H_Y=\Delta H_{1T},$ где $T=\{h_1,\ldots,h_n\}$. Тогда из условия теоремы следует, что

$$(r_1 - s_1)h_1 + \cdots + (r_n - s_n)h_n \in \text{div } H_1,$$

но div $H_1 = 0$, следовательно,

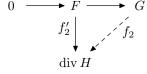
$$f_1(r_1x_1+\cdots+r_nx_n) = r_1h_1+\cdots+r_nh_n = s_1h_1+\cdots+s_nh_n = f_1(s_1x_1+\cdots+s_nx_n).$$

Таким образом, f_1 — отображение. Очевидно, что f_1 сохраняет операцию, т. е. f_1 — гомоморфизм.

Рассмотрим свободную группу $F = \bigoplus_{i=1}^{n} Zx_i$. Отображение

$$x_1 \mapsto d_1, \dots, x_n \mapsto d_n$$
 (13)

в силу проективности группы F продолжается до гомоморфизма $f_2': F \to \operatorname{div} H$. Группа $\operatorname{div} H$ инъективная, следовательно, для диаграммы с точной строкой



существует гомоморфизм $f_2: G \to \operatorname{div} H$, превращающий ее в коммутативную. Причем в силу условий (13)

$$f_2(x_1) = d_1, \dots, f_2(x_n) = d_n.$$

Рассмотрим гомоморфизм $f = f_1 \oplus f_2$ из группы G в группу H. Так как

$$f(x_i) = f_1(x_i) + f_2(x_i) = h_i + d_i = y_i \quad (1 \le i \le n),$$

то f — искомый гомоморфизм.

Следствие 1. Пусть G и H — произвольные факторно делимые смешанные группы, X и Y — максимальные независимые системы в G и H соответственно. Тогда если $\Delta G_X = \Delta H_Y$, то $G \cong H$.

ЛИТЕРАТУРА

- **1.** Φ укс Л. Бесконечные абелевы группы. М.: Мир, 1974 (Т. 1); 1977 (Т. 2).
- 2. Fomin A. A. Some mixed abelian groups as modules over the ring of pseudo-rational numbers // Proc. Dublin's Conf. on abelian groups. Dublin, 1999. P. 87–100.
- Крылов П. А. Смешанные абелевы группы как модули над своими кольцами эндоморфизмов // Фунд. и прикл. математика. 2000. Т. 6, № 3. С. 793–812.
- Fomin A. A., Wickless W. Quotient divisible abelian groups // Proc. Amer. Math. Soc. 1998.
 V. 26. P. 45–52.
- 5. Царев А. В. Конечно-порожденные R-модули // Науч. тр. мат. ф-та МПГУ. М., 2000. С. 285–289.
- 6. Fomin A. A. Quotient divisible mixed groups // Contempt. Math. 2001. V. 273. P. 117-128.
- 7. Царев А. В. Модуль псевдорациональных отношений группы // Чебышевский сб. 2002. Т. 3, № 1. С. 120–134.

Статья поступила 17 декабря 2003 г.

Царев Андрей Валерьевич Рязанский гос. педагогический университет им. С. А. Есенина, ул. Свободы, 46, Рязань 390000 an-tsarev@yandex.ru, algebra@rspu.ryazan.ru