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ASPECTS REGARDING THE EXISTENCE OF
FIXED POINTS OF THE ITERATES OF STANCU

OPERATORS

Amelia Bucur

Abstract. In the papers Iterates of Stancu Operators, via Contraction Principle (2002),

respectively Iterates of Bernstein Operators, via Contraction Principle (2004), author I. A. Rus

studied the existence of fixed points for Stancu operators Pn,α,β and Bernstein operators Bn. The

aim of this paper is to find conditions for which the Stancu operators Pn,α,β are contractions on

the graph, in order to demonstrate that the contraction principle can be applied for the study of

the existence of fixed points for iterates of Stancu operators. The method used for this paper is

the spectral method, which was also used in the paper Over-iterates of Bernstein-Stancu operators

(2007), authors Gonska, Piţul and Raşa. The study began with finding constant C ∈ [0, 1[ that

would satisfy the inequality ∥P 2
n,α,β(f)− Pn,α,β(f)∥ ≤ C∥Pn,α,β(f)− f∥, for any f ∈ C[0, 1]. The

conclusion is that there are conditions for which the Stancu operators are contractions on the graph,

and the methods used for the study of the existence of fixed points of their iterates can also be

extended to the study of the existence of fixed points of other linear operators.

1 Introduction

Many authors used the contraction principle to study the existence of fixed points of
the iterates of the Bernstein and Stancu operators. Using the same approach, many
researchers (for example: [1, 2, 22–24]) obtained results for some other linear and
positive operators. Also, many researchers, in recent works, studied the behavior
of iterates of some classes of positive linear operators, such as in (for example:
[3, 6, 7, 10–14,19]).

In their papers published in the year 2003, Agratini and Rus [1, 2] studied the
convergence of the iterates of discrete linear operators, by applying the contraction
principle.
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In the year 2002, Rus [22] used the contraction principle to demonstrate that
some Stancu operators are, in fact, weakly Picard operators.

In the year 2004, Rus [23] gave another proof to the result obtained by Kelisky
and Rivlin, by using the contraction principle.

Rus [24] established some relations between the mixed-extremal point set of
D ⊂ Rp, the fixed point set and the interpolation point set of A : C(D̄) → C(D̄).

The Bernstein operators have been introduced by Bernstein 1912. [6]

Kelisky and Rivlin, in 1967, presented the Bernstein operator Bn with n ∈ N∗,
by the following formula:

Bn(f)(x) =

n∑
k=0

f

(
k

n

)
Ck
nx

k(1− x)n−k, (1.1)

where f ∈ C[0, 1], x ∈ [0, 1]. [19]

We notice that equation (1.1) is very similar to the binomial distribution. Is it
known that, by definition, the Bernstein basis polynomials have a similar function to
the probability mass function of a binomial distribution from mathematical statistics
[7].

In their paper [19] they proved that the Bernstein operators Bn are weakly Picard
operators and:

lim
m→∞

Bm
n (f)(x) = f(0) + [f(1)− f(0)]x, (1.2)

where Bm
n is the iterate of order m of Bn.

Aleomraninejad, Rezapour, and Shahzad [3] used Reich’s concept to extend the
results of Kelisky-Rivlin.

Gavrea and Ivan [10, 11] studied the convergence of the iterates of a set of
positive linear operators that maintain the affine functions, respectively positive
linear operators that maintain constant functions.

In another work published in 2011 by Gavrea and Ivan [12], they studied the
convergence of the iterates of a set of positive linear operators that preserve linear
functions.

In the years 2006, 2007, the authors [13, 14] introduced a method that allows
to determine the degree of approximation towards the first Bernstein operator for
the iterates of certain positive linear operators, as well as some continuous type
operators.

In the year 1970, Karlin and Ziegler [17] studied the limit behavior of the iterates
of positive linear approximation operators.

Gonska and Raşa [15], in the year 2006, extended the results obtained by Karlin
and Ziegler and studied the degree of approximation of the iterated Bernstein
operators.
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Iterates of Stancu operators 357

Stancu operators Pn,α,β : C[0, 1] → C[0, 1], α, β ∈ R, 0 ≤ α ≤ β, n ∈ N∗, are
defined by formulas [26]:

Pn,α,β(f)(x) =

n∑
k=0

f

(
k + α

n+ β

)
Ck
nx

k (1.3)

Examples of theorems that give conditions of existence for fixed points are the
contraction principle and one of its generalizations, the contraction principle for
graphs.

The contraction principle (S. Banach (1922) and R. Cacciopoli (1930), [25]).
Let (X,d) be a complete metric space and f : X → X an α-contraction. Thus:

(i) Ff = Ffn = {x∗}, for all n ∈ N∗;

(ii) fn(x) → x∗(n → ∞) for all x ∈ X;

(iii) d(x, x∗) ≤ 1
1−αd(x, f(x)) for all x ∈ X.

The contraction principle for graphs (I. A. Rus (1972) [25], S. Kasahara
(1968) [18], T. L. Hicks and B. E. Rhoades (1979) [16]).

Let (X, d) be a complete metric space, f : X → X and α ∈ [0, 1[, so that:

(a) d(f2(x), f(x)) ≤ d(x, f(x)) for all x ∈ X;

(b) operator f has a closed graph.

Then:

(i) Ff = Ffn ̸= O, for all n ∈ N∗;

(ii) fn(x) → f∞(x)(n → ∞) and for all f∞(x) ∈ Ff for all x ∈ X;

(iii) d(x, f∞(x)) ≤ 1
1−αd(x, f(x)) for all x ∈ X.

The iterates of the α-contractions have applications in many theoretical and
practical fields, such as the fractal theory. Fractal representations can be created
in many softwares, such as the graphical programming environment LabVIEW
(Laboratory Virtual Instrumentation Engineering Workbench - introduced on the
market by the company National Instruments in the year 1986) ( [30,31]) (figure 1).

In figure 1, the contractions defined on a square field X endowed with a euclidian
norm, from R2, and are of the following form:

f(x, y) = (αx cosθ − αy sinθ, αx cosθ + αy sinθ), (1.4)

with α ∈ [0, 1[, θ ∈ [0, 2π].
Obviously, the diagrams depend on the rate of convergence.
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Figure 1: Iterations of an α-contraction on a square (fractal creation) in the
programming environment LabVIEW [27]

Problem 1. Find constant C ∈ [0, 1[ that satisfies the inequality:

∥P 2
n,α,β(f)− Pn,α,β(f)∥ ≤ C∥Pn,α,β(f)− f∥, f ∈ C[0, 1]. (1.5)

For α = 0, the author found in [22] that:

∥P 2
n,0,β(f)− Pn,0,β(g)∥ ≤

[
1−

(
1− n

n+ β

)n]
∥f − g∥c = A∥f − g∥c, (1.6)

for all f, g ∈ Xγ =

{
f ∈ C

[
0, n

n+β

]
: f(0) = γ

}
, γ ∈ R, where ∥ · ∥c is the

Chebyshev′s norm.

Observation 2. (a) If we replace f with Pn,0,β(f) and g with f , formula (1.6)
becomes formula (1.5).

(b) By successively applying formula (1.6), we obtain, for m ∈ N∗:

∥Pm
n,0,β(f)− Pm−1

n,0,β (f)∥ ≤ ... ≤ A′∥Pn,0,β(f)− f∥, cu A′ ∈ [0, 1[.

For α = β, the author found in the same paper that:

∥Pn,α,α(f)− Pn,α,α(g)∥ ≤ [1− (1− n

n+ β
)n]∥f − g∥c = A∥f − g∥c, (1.7)

Observation 3. If we replace f with Pn,α,α(f) and g with f , formula (1.7) becomes
formula (1.5).

In paper [10], the authors use the Bernstein-Stancu operators S
⟨n,α,β⟩
n (f)(x),

α > 0, 0 ≤ β ≤ γ, f ∈ C[0, 1], ei(x) = xi and formula:

S⟨n,α,β⟩
n (f)(x) = Bn

(
fo

(
n

n+ β
e1 +

α

n+ β
e0

))
(x) (1.8)

and study the iterates of these operators (Bn is the Bernstein operator). In the
following sections, we will use relation (1.8) in approaching inequality (1.5).
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2 Main Results

Theorem 4 from this section solves Problem 1.

Theorem 4. Inequality (1.5) is satisfied with constant C =

(
1− 1

2n−1

)
n+ α

n+ β
∈

[0, 1[:

∥P 2
n,α,β(f)− Pn,α,β(f)∥ ≤

(
1− 1

2n−1

)
n+ α

n+ β
∥Pn,α,β(f)− f∥, f ∈ C[0, 1]. (2.1)

Proof. We will use the inequality from [23]:

∥Bn(f)−Bn(g)∥c ≤
(
1− 1

2n−1

)
∥f − g∥. (2.2)

Then, based on relations (1.8) and (2.2), we have:

∥P 2
n,α,β(f)− Pn,α,β(f)∥ ≤

≤
(
1− 1

2n−1

)
·
Bn

(
f ◦

(
n

n+ β
e1 +

α

n+ β
e0

)
  

h

◦
(

n

n+ β
e1 +

α

n+ β
e0

)
−

−
(
f ◦

(
n

n+ β
e1 +

α

n+ β
e0

))) =

=

(
1− 1

2n−1

)
· ∥Bn((f ◦ h) ◦ h− f ◦ h)∥ ≤

≤
(
1− 1

2n−1

)
· ∥h∥ · ∥Bn((f ◦ h)− f)∥ =

= sup
x∈[0,1]

|h(x)| · ∥Bn((f ◦ h)− f)∥ =

=

(
1− 1

2n−1

)
· n+ α

n+ β
· ∥Pn,α,β(f)− f∥.

Problem 5. What is P∞
n,α,β(f) equal to and who is lim

m→∞
Pm
n,α,β(f)?

In order to solve Problem 5, we will use the following theorem:

Theorem 6. ( [12], p.121) If n ∈ N is fixed and α > 0, 0 ≤ β ≤ γ, then for any
f ∈ C[0, 1],

lim
m→∞

(
S⟨n,α,β⟩
n (f)

)m

= bα0 e0 =

(
S⟨n,α,β⟩
n

)∞
, (2.3)

where bα0 =
n∑

j=0
dαj f

(
j+β
n+γ

)
, with dαj , 0 ≤ j ≤ n independent of f .
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Considering Theorem 6, Problem 5 is reduced to having to determine coefficients
dαj , 0 ≤ j ≤ n. P∞

n,α,β(f) will be clearly established by relation (2.3), because

Pn,α,β(f) is in fact S
⟨0,α,β⟩
n (f).

As a particular case of Theorem 1, p.119 from paper [12], the eigenvalues for

Pn,α,β(f) = S
⟨0,α,β⟩
n (f) are:

λn,0 = 1, λn,1 =
n

n+ β
, λn,j =

n(n− 1)(n− j + 1)

(n+ β)j
, j = 2, ..., n, (2.4)

and the corresponding eigenvectors are

qn,0 = e0, qn,j(x) = ej(x) + a
(j)
n,j−1ej−1(x) + ...+ a

(j)
n,0e0(x), j = 1, ..., n,

with uniquely determined coefficients.
Thus, as previously determined, we can write the following theorem:

Theorem 7. For all f ∈ C[0, 1],

lim
m→∞

(S⟨0,α,β⟩
n (f)) = P∞

n,α,β(f) = b0e0, (2.5)

where b0 =
∑n

j=0 djf(
j+β
n+γ ), is a linear combination of values of f .

Proof. Let f ∈ C[0, 1]. Then, Pn,α,β(f) = S
⟨0,α,β⟩
n (f) can be decomposed into a base

from
∏

n.
Regarding the base composed of eigenvectors, {qn,0, qn,1, ..., qn,n} from

∏
n, we

will write

Pn,α,β(f) = S⟨0,α,β⟩
n (f) = b0qn,0(x) + b1qn,1(x) + ...+ bnqn,n(x) (2.6)

obviously, with unique coordinates.
For f replaced by an eigenvector, relation (2.6) becomes:

S⟨0,α,β⟩
n (qn,j)(x) = λn,jqn,j(x), (2.7)

where λn,j are the eigenvalues of Pn,α,β from relations (2.4).
From (2.6) and (2.7) we obtain that for any f ∈ C[0, 1] and for all x ∈ [0, 1], we

obtain:

Pm
n,α,β(f)(x) = Pm−1

n,α,β(Pn,α,β(f)(x)) =

= Pm−1
n,α,β((b0qn,0 + b1qn,1 + ...+ bnqn,n)(x)) =

= b0(λn,0)
m−1qn,0(x) + b1(λn,1)

m−1qn,1(x) + ...+ bn(λn,n)
m−1qn,n(x).

Because λn,j ∈]0, 1[ for j = 1, ..., n, whenm → ∞ in (2.6), limm→∞ Pm
n,α,β(f)(x) =

b0e0(x).
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We say that P∞f = b0e0 and demonstrate that

b0 =

n∑
j=0

djf

(
j + β

n+ γ  
aj

)
=

n∑
j=0

djf(aj),

dj ∈ R are independent of f .
We consider two bases of

∏
n, one consisting of eigenvectors {qn,0, qn,1, ..., qn,n}

and the other one consisting of the Stancu fundamental polynomials {wn,0, wn,1, ..., wn,n}.
As defined in [17], the Stancu fundamental polynomials are of the form:

wn,k(x;α) = Ck
n

∏k−1
ϑ=0(x+ ϑα)

∏n−k−1
µ=0 (1− x+ µα)

(1 + α)(1 + 2α)...(1 + n− 1α)
(2.8)

and (θi,j)i,j=0,n is the transition matrix from the first to the second base:⎧⎨⎩
wn,0 = θ0,0qn,0 + θ1,0qn,1...+ θn,0qn,n

· · ·
wn,n = θ0,nqn,0 + θ1,nqn,1...+ θn,nqn,n

The coordinates of Pn,α,β(f) in relation to the two bases are:⎛⎜⎝ b0
...
bn

⎞⎟⎠ =

⎛⎜⎝ θ0,0 θ1,0 θn,0
...

θ0,n θ1,n θn,n

⎞⎟⎠
⎛⎜⎝ f(a0)

...
f(an).

⎞⎟⎠
Because d0 = θ0,0, ..., dn = θn,n they are independent of f . In conclusion,
dj , j = 0, ..., n can be determined by decomposing wn,j in relation to the base
{qn,0, qn,1, ..., qn,n}.

The symmetry of the applied method consists of the possibility to apply it
starting from a certain iteration in order to obtain results for higher order iterations,
respectively for lower order iterations. In the case of iterations of linear operators
associated to symmetrical matrices, the eigenvalues are determined with specific
methods.

3 Conclusions

There are conditions for which the Stancu operators are contractions on the graphs,
and for the existence of their fixed points to be applied the contraction principle for
graphs.

The methods used for the study of the existence of fixed points of their iterates
can be extended to the study of the existence of fixed points for other linear operators,
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such as the Cesàro operators, the generalized Cesàro operators and their iterates,
the Kantorovich form of the Stancu operators, Schurer-Stancu operators, Stancu-
Durrmeyer operators, Lupaş-Stancu operators, Stancu-King operators, q-Bernstein
polynomials, and others.

The discrete Cesàro operator turns any set into an set of averages. Similarly,
the integral Cesàro operator is also an averaging operator. In recent years, many
researchers studied the iterates of the Cesàro operator (see [9, 28, 29]) on the space
of convergent sets, on the space of sets convergent to zero, on the space of summable
sets, on the space of functions continuous on the range [0, 1], and on other Banach
spaces. The authors obtained results regarding the convergence of the iterates and
proved that the Cesàro operator is a contraction on a dense subset of (C[0, 1], B),
endowed with a certain norm, where B is a Banach space.

Let α, β be two given real parameters that satisfy the conditions 0 ≤ α ≤ β.
Then, the Kantorovich form of the Stancu operators [4], for f ∈ C[0, 1] and x ∈ [0, 1]
is:

K(α,β)
m (f)(x) = (m+ β + 1)

m∑
k=0

Ck
mxk(1− x)m−k

k+α+1
m+β+1∑
k+α

m+β+1

f(s)ds.

Let p ∈ N be a integer and α, β two given real parameters that satisfy the
conditions 0 ≤ α ≤ β. Then, the Schurer-Stancu form of the Stancu operators [5],
for f ∈ C[0, 1 + p] and x ∈ [0, 1 + p] is:

S̃(α,β)
m (f)(x) =

m+p∑
k=0

Ck
m+px

k(1− x)m+p−kf

(
k + p

m+ p

)
.

In the year 2009, Nowak [20] created the q-analogue for the Stancu operators
(1.1) for any function f ∈ C[0, 1], x ∈ [0, 1], q > 0, α ≥ 0 and each n ∈ N as,

B(q,α)
n (f)(x) =

n∑
k=0

[
n

k

]
q

Πk−1
ϑ=0(x+ α[ϑ]q)Π

n−k−1
µ=0 (1− qµx+ α[µ]q)

Πn−1
τ=0(1 + α[ϑ]q)

f

(
[k]q
[n]q

)
.

Where the q-integer is, for a non-negative integer n,

[n]q =

{
1−qn

1−q , q ̸= 1

n, q = 1,

q-factorial [n]q! are defined as in the following formula:

[n]q! =

{
[1]q[2]q[3]q...[n]q, n ≥ 1

1, n = 0

and the q - binomial coefficient is defined as in the following equality:[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.
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The Stancu-Durrmeyer operators, Lupaş-Stancu operators, Stancu-King operators,
and the q-Bernstein polynomials are other examples of linear operators.

A new topic and a future direction of study could be the study of fixed points for
compositions between such operators with Cesàro-type operators, or for compositions
with iterations of Cesàro operators.
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