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NONLOCAL FRACTIONAL DIFFERENTIAL
INCLUSIONS WITH IMPULSES AT VARIABLE

TIMES

Abdelghani Ouahab and Sarah Seghiri

Abstract. In this paper, we study the existence of mild solutions for a fractional semi-

linear differential inclusions posed in a Banach space with nonlocal conditions and impulses at

variable times. The main existence result is obtained by using fractional calculus, measure of

noncompactness, and multivalued fixed point theory. We study also the topological properties of

the solution set.

1 Introduction

Differential equations and inclusions of fractional order appear in many physical
phenomena of engineering science, such as problems in electro-chemistry, electro-
magnetic, . . . (see, e.g., [24], [31], [35]). Many evolution processes in physics, chemical
technology, population dynamics, and natural sciences may change state abruptly
or be subject to short-term perturbations. These perturbations may be seen as
impulses. Differential equations with impulses were first considered by Milman
and Myshkis [34]. Since then, several research works have been published. The
monograph by Halanay and Wexler [22] presents the first impulsive problems.
Particular attention has been given to differential equations and inclusions with
impulses at variable moments (see the papers of Bajo and Liz [8], Belarbi and
Benchohra [10], Benchohra et al. [12], Agarwal et al [3] and Benchohra and Slimani
[13] have considered impulsive fractional differential equations at variable moments.
The results was extended to the multivalued case by Ait dads et al. [4]. More
recently Cardinaly and Rubbioni [17] studied a nonlocal Cauchy problem in the
present of impulses governed by a nonautonomous semi-linear differential inclusion.
The study of semi-linear nonlocal initial value problem was initiated by Byszewski
[15], and then followed by many works (see, e.g., [16], [21], [32], [18]).
In this paper, we are concerned with the following fractional semi-linear differential
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inclusion:

cDαy(t) ∈ Ay(t) + F (t, y(t)), t ∈ J, t ̸= τk(y(t)), k = 1,m (1.1)

y(t+) = Ik(y(t)), t = τk(y(t)), k = 1,m (1.2)

y(0) = g(y), (1.3)

where J = (0, T ) and 1,m = {1, 2, . . . ,m}. 0 < α < 1, cDα is the Caputo fractional
derivative, A : D(A) ⊂ X −→ X is the infinitesimal generator of a strongly
continuous semigroup (C0−semigroup) {T (t)}t>0 on X with D(A) representing the
domain of the linear operator A. F : J×X −→ X is a Carathéodory multi-function,
X is an ordered reflexive Banach space with norm ∥ · ∥, and the nonlocal term g is
a given function.

Finally τk : X −→ R and Ik : X −→ X for k = 1,m. Since {T (t)}t>0 is strongly
continuous, there exists a constant M such that M = sup

t∈J
∥T (t)∥ < ∞. 1,m stands

for the set {1, 2, . . . , } and y(t+) = lim
s→t+

y(s).

Differential inclusions of the form (1.1) were first considered by Aizicovici and
Gao [6] when g and T (t) are compact. In [7] and [33], the authors discussed (1.1)
when A generates a compact semigroup. Finally, we mention Lian et al. [32] who
studied the existence of solutions to problem (1.1)-(1.3) without impulses.

In the study of the topological structure of the solution sets of differential
equations and inclusions, an important aspect is the Rδ− property, which includes
acyclicity (in particular, compactness and connectedness). An Rδ-set may not be
a singleton but, from the point of view of algebraic topology, it is equivalent to a
point, in the sense that it has the same cohomology groups as one point space. The
topological structure of solution sets of differential inclusions on compact intervals
has been recently investigated by many authors, see Aronszajn [2], Deimling [18],
Hu and Papageorgiou [25], and Peng and Zhou [40].

The aim of this paper is to extend the results of Lian et al.[32] when impulses
at variable times are involved. In section 2 we start with some backgrounds on
multivalued analysis, fractional derivatives, and measure of noncompactness. In
section 3, we define a generalized Cauchy operator and give some related properties.
Section 4 is devoted to the existence of solutions for problem (1.1)-(1.3). The
topological structure of the solution set is investigated in section 5, where some
elements from algebraic topology are used.

2 Preliminaries

In this section we introduce some background material used throughout this paper.
For more definitions and details about the multivalued mappings, we refer, e.g., to
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[5], and [26]. In order to define the solution of problem (1.1)-(1.3) we shall consider
the space of functions

Σ = {y : J̄ −→ X : there exist 0 = t0 < t1 < . . . < tm < tm+1 = T
such that tk = τk(y(tk)), y(t

+
k ) exists k = 1,m and yk ∈ C((tk−1, tk], X),

k = 1,m+ 1},

where X is an ordered reflexive Banach space, yk is the restriction of y over (tk−1, tk],
for k = 1,m+ 1, and y(t+k ) = lim

t→t+k

y(t).

L1(J,X) will denote the Banach space of measurable functions from J into X
which are Bochner integrable and L(X) denote the space of bounded linear operator
from X into X. Consider the following subsets of X:

Pcl(X) = {Y ∈ P (X) : Y is closed }
Pcp(X) = {Y ∈ P (X) : Y is compact }
Pcv(X) = {Y ∈ P (X) : Y is convex }

Pcp,cv(X) = Pcp(X) ∩ Pcv(X).

Definition 1. Let X and Y be two topological spaces and F : X −→ P(Y ) a
multivalued function.
(1) F is said to be compact (convex) valued if F (x) is compact (convex) in Y for all
x ∈ X.
(2) F is said to be upper semi-continuous (u.s.c.) on X if F−1(V ) = {x ∈ X/F (x) ⊂
V } is an open subset of X for every open subset V of Y .
(3) F is said to be closed if its graph GF = {(x, y) ∈ X × Y : y ∈ F (x)} is a closed
subset of the topological space X×Y , that is xn → x, yn → y and yn ∈ F (xn) imply
y ∈ F (x).
(4)If Y = X, a point x of X is said to be fixed point of F if x ∈ F (x).
(5) A function f : X −→ Y is said to be selection of F if f(x) ∈ F (x) for every
x ∈ X.

Definition 2. A sequence {fn}∞n=1 ⊂ L1(J,X) is said to be semi-compact if:
(i) it is integrably bounded, that is, there exists ω ∈ L1(J,X) such that ∥fn(t)∥ ≤
ω(t), for a.e. t ∈ J and every n ≥ 1,
(ii) the set {fn(t)}∞n=1 is relatively compact in X for a.e. t ∈ J.

Lemma 3. [28] Every semi-compact sequence in L1(J,X) is weakly compact in
L1(J,X).

Definition 4. A multivalued map F : J ×X −→ P(X) is said to be Carathéodory
if:
(i) t ↦−→ F (t, y) is measurable for each y ∈ X,
(ii) y ↦−→ F (t, y) is u.s.c. for almost all t ∈ J .
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310 A. Ouahab and S. Seghiri

It is further an L1-Carathéodory if it is locally integrably bounded, i.e. for each
positive r, there exists some hr ∈ L1(J,R+) such that

∥F (t, z)∥ ≤ hr(t) for a.e. t ∈ J and all ∥z∥ ≤ r.

For each y ∈ Σ, define the set of selections of F by

SF (y) = {f ∈ L1(J,X) : f(t) ∈ F (t, y(t)), for a.e. t ∈ J}.

When F is an L1-Carathéodory multi-valued mapping, we know from a result
due to Lasota and Opial [30] that for each y ∈ C((tk−1, tk), the set SF (y) contains
functions fk ∈ L1((tk−1, tk), k = 1,m.

Lemma 5. [30] Let F : J×X −→ Pcp,cv(X) be a Carathéodory multivalued map and
let G be a linear continuous mapping from L1(J,X) to C(J,X), then the operator

G ◦ SF : C(J,X) −→ Pcp,cv(X),

where (G ◦ SF )(y) = G(SF (y)), is a closed graph operator in C(J,X)× C(J,X).

Next some properties related to measure of non-compactness are recalled [28].

Definition 6. Let X be a Banach space and (A,≽) a partially ordered set. A
function γ : P(X) −→ A is called a measure of non-compactness (for short M.N.C)
in X if:

γ(coΩ) = γ(Ω), for every Ω ∈ P (X),

where coΩ is the convex hull of Ω. A measure of non-compactness γ is called:
(a) monotone if for Ω0,Ω1 ∈ P(X), Ω0 ⊂ Ω1 =⇒ γ(Ω0) 6 γ(Ω1),
(b) nonsingular if γ({a}

⋃
Ω) = γ(Ω), for every a ∈ X and Ω ∈ P(X),

(c) real if A = [0,∞] with natural ordering and Ω ∈ P(X),
(d) regular if γ(Ω) = 0 is equivalent to the relative compactness of Ω.

We recall that for a bounded subset Ω of X, the Hausdorff M.N.C β is defined
by

β(Ω) = {ε > 0 : Ω has a finite ε− net in X}.

We note that the Hausdorff MNC satisfies the above properties. Moreover, we have

Lemma 7. [9] If w ⊂ C(J,X) is bounded and equicontinuous, then β(w(t)) is
continuous on J and

β(w) = sup
t∈J

β(w(t)).

Lemma 8. [23] If {un}∞n=1 ⊂ L1(J,X) is integrably bounded, then β({Un(t)}∞n=1)
is measurable and

β

({∫ t

0
un(s)

}∞

n=1

)
6 2

∫ t

0
β({un(s)}∞n=1)ds.

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 307 – 325

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


Nonlocal fractional differential inclusions with impulses at variable times 311

Lemma 9. [36] If B ⊂ X is bounded, then for each ε > 0, there is a sequence
{un}∞n=1 in B such that

β(B) 6 2β({un}∞n=1) + ε.

Definition 10. Let W be a closed subset of a Banach space X and γ a measure
of non-compactness on X. A multi-mapping F : W −→ Pcp(X) is said to be γ-
condensing if for every Ω ⊂ W , the relation γ(F (Ω)) > γ(Ω), implies the relative
compactness of Ω.

We will make use of the following fixed point theorem.

Theorem 11. [38] If M is a closed bounded and convex subset of a Banach space
X and F : M −→ Pcp(M) is a closed γ−condensing multi-mapping, where γ is a
monotone MNC defined on subsets of M . Then the fixed point set FixF = {x ∈
M : x ∈ F (x)} is nonempty and compact.

Definition 12. Let α > 0 and f ∈ L1(J,X), then the fractional order integral of f
of order α is defined by

Iαt f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, t > 0,

where Γ(.) is the Euler gamma function.

The basic definitions of fractional derivative and fractional integral are presented
below. For more details on the fractional calculus, we refer the reader to [29] and
[37].

Definition 13. The Caputo derivative of order α > 0 of a function f : J −→ X is
defined as

cDα
t f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds, t > 0,

where n = [α] + 1. If 0 < α < 1, then

cDα
t f(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αf ′(s)ds.

Before considering problem (1.1)-(1.3), let us start with the following problem
wheach is already discussed in [32]

cDαy(t) ∈ Ay(t) + F (t, y(t)), t ∈ J = [0, T ], (2.1)

y(0) = g(y). (2.2)
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Definition 14. A function y ∈ C(J,X) is said to be a mild solution of problem
(2.1)-(2.2) if y(0) = g(y) and there exists f ∈ L1(J,X) such that f ∈ SF (y) and

y(t) = Sα(t)g(y) +

∫ t

0
(t− s)α−1Pα(t− s)f(s)ds, for t ∈ J,

where

Sα(t) =

∫ ∞

0
hα(θ)T (t

αθ)dθ, (2.3)

Pα(t) = α

∫ ∞

0
θhα(θ)T (t

αθ)dθ. (2.4)

Here hα is the the probability density function on (0,∞) given by

hα(θ) =
1

α
θ−1− 1

αωα(θ
− 1

α ), (2.5)

where

ωα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nα−1Γ(nα+ 1)

n!
sin(πnα), θ ∈ (0,∞). (2.6)

Note that hα(θ) > 0 for θ ∈ (0,∞) and∫ ∞

0
hα(θ)dθ = 1, (2.7)

∫ ∞

0
θδhα(θ)dθ =

Γ(1 + δ)

Γ(1 + αδ)
, δ ∈ [0, 1]. (2.8)

Lemma 15. [27] The linear operators Sα(t) and Pα(t) have the following properties:

(1) For any fixed t > 0, Sα(t) and Pα(t) are bounded operators. More precisely
for any x ∈ X, we have

∥Sα(t)x∥ 6M∥x∥, (2.9)

∥Pα(t)x∥ 6
Mα

Γ(1 + α)
∥x∥, (2.10)

where M = sup
t∈J

∥T (t)∥.

(2) Operators Sα(t) and Pα(t) are equicontinuous for t ∈ J if {T (t)}t>0 is equicontinuous.

The following result is easily checked.

Lemma 16. For θ ∈ (0, 1) and 0 < a 6 b, we have

|aθ − bθ| 6 (b− a)θ.

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 307 – 325

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


Nonlocal fractional differential inclusions with impulses at variable times 313

3 Main existence result

Definition 17. A function y of Σ is said to be a solution of problem (1.1)-(1.3) if
there exists a function h ∈ L1(J,X) such that

h(t) ∈ Ay(t) + F (t, y(t)), for a.e. t ∈ J

and satisfies the equation

cDα
tk
(y(t)) = h(t), for a.e. t ∈ (tk, tk+1], t ̸= τk(y(t)), k = 1,m

and the conditions y(t+) = Ik(y(t)), t = τk(y(t)), k = 1,m and y(0) = g(y) are
satisfied.

To prove the existence of mild solution for the problem (1.1)-(1.3), we list some
assumptions:

(H1) The C0-semigroup {T (t)}t>0 generated by the linear infinitesimal operator A
is equicontinuous.

(H2) The operator g : Σ −→ X is continuous and compact.

(H3) The multivalued mapping F : J ×X −→ P (X) is Carathéodory, has compact
and convex values, and satisfies:

(1) there exist a nondecreasing continuous function ψ : [0,∞) −→ [0,∞) and
q ∈ L1(J,R+) such that

∥F (t, y)∥ 6 q(t)ψ(∥y∥), a.e. t ∈ J and all y ∈ X,

(2) there exists a function l ∈ L1(J,X) such that for every bounded D ⊂ X :
β(F (t,D)) 6 l(t)β(D), t ∈ J.

(H4) The functions τk ∈ C(X,R) (k = 1,m) satisfy

0 < τ1(z) < τ2(z) < . . . < τm(z) < T, for all z ∈ X.

(H5) The functions Ik : X −→ X, k = 1,m are continuous nondecreasing and verify:

τk(Ik(z)) < τk(z) < τk+1(Ik(z)), for all z ∈ X.

(H6) For all y ∈ C(J,X) and k ∈ 1,m, the set Ek = Ek(y) = {t ∈ [0, T ] : τk(y(t)) =
t} is finite, for all k = 1,m.
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Theorem 18. [32] Assume that hypotheses (H1)-(H3) are satisfied and suppose that

lim
k→∞

sup
k

{
M

k

(
µ(k) +

Ψ(k)

Γ(α+ 1)
q0Tα

)}
) < 1, (3.1)

where µ(k) = sup{∥g(y)∥ /∥y∥ 6 k}, q0 = sup{q(t) : t ∈ J}. Then the fractional
differential inclusion (2.1)-(2.2) has at least one mild solution on J and a compact
solution set.

Theorem 19. Assume that hypotheses of theorem 3.1 are satisfies. if the conditions
(H4)-(H6) hold, then the problem (1.1)-(1.3) has a nonempty compact mild solution
set.

Proof. The proof will be given in several steps.

Step 1 . Using Theorem 3.1, the problem (2.1)-(2.2) has at least one mild solution.

Step 2 . Let y1 be a solution of problem (2.1)-(2.2). For k = 1,m, define the function

rk,1(t) = τk(y1(t))− t, for t > 0.

The condition (H4) implies that rk,1(0) ̸= 0 for all k = 1,m. If rk,1(t) ̸= 0 on
J for all k = 1,m, then y1 is a solution of problem (1.1)-(1.3).
Consider the case when r1,1(t) = 0 for some t ∈ (0, T ]. Since r1,1(0) ̸= 0 and
r1,1 is continuous, then the set E1 = {ti1, i ∈ I} is nonempty and from (H6),
E1 is finite. We distinguish between two cases:

Case 1. If E1 = {t1} then r1,1(t1)) = 0 and r1,1(t) ̸= 0, ∀ t ∈ (0, t1). By (H3),
rk,1(t) ̸= 0,∀ t ∈ (0, t1] and k = 1,m. Hence y1 is a solution of the
problem

cDαy(t) ∈ Ay(t) + F (t, y(t)), t ∈ [0, t1]
y(0) = g(y).

Case 2. If E1 = {ti1, i ∈ I} is finite, take t1 = maxE1 and consider the problem

cDα
t1y(t) ∈ Ay(t) + F (t, y(t)), for a.e. t ∈ [0, t1], t ̸= ti1, i ∈ I,

with the impulsive conditions y(ti+1 ) = I1(y(t
i
1)), i ∈ I and the initial

condition y(0) = g(y). The solution for the above problem reads

y1(t) =

⎧⎪⎨⎪⎩
y1(t), if t ∈ [0, t11]

Sα(t− ti1)I1(y(t
i
1)) +

∫ t
ti1
(t− s)α−1Pα(t− s)f(s)ds,

if t ∈ (ti1, t
i+1
1 ], i ∈ I.
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We have
r1,1(t1) = 0 and r1,1(t) ̸= 0 for t ∈ (0, t1).

By (H4),
rk,1(t) ̸= 0 for all t ∈ [0, t1) and k = 1,m

and this y1 is a solution on [0, t1].

Step 3. Consider the problem

cDα
t1y(t) ∈ Ay(t) + F (t, y(t)), for a.e. t ∈ [t1, T ], (3.2)

y(t+1 ) = I1(y1(t1)) (3.3)

and the operator R1 : C([t1, T ], X) −→ P (C([t1, T ], X)) defined by

R1(y) = {h ∈ C([t1, T ], X) :

h(t) = Sα(t− t1)I1(y1(t1)) +
∫ t
t1
(t− s)α−1Pα(t− s)f(s)ds,

f ∈ SF (y)}.
Operator R1 is well defined. Indeed for t = t1, h(t1) = I1(y(t1)). As in Step 1,
we can show that R1 satisfies the assumptions of Theorem 11 and deduce that
problem (3.2)-(3.3) has a nonempty compact solution set. Denote a solution
of (3.2)-(3.3) by y2. and consider the map rk,2(t) = τk(y2(t))− t for t > t1. If
rk,2(t) ̸= 0 for t ∈ (t1, T ] and k = 1, k, then

y(t) =

{
y1(t), for t ∈ [0, t1]
y2(t), for t ∈ (t1, T ].

is a solution of problem (1.1)-(1.3). Moreover, when r2,2(t) = 0 for some
t ∈ (t1, T ], by (H5) we have

r2,2(t
+
1 ) = τ2(y2(t

+
1 ))− t1

= τ2(I1(y1(t1)))− t1

> τ1(y1(t1))− t1

= r1,1(t1)

= 0.

Since r2,2 is continuous and r2,2(t1) > 0, the set E2 is nonempty and from
(H6) E2 is finite. Let E2 = {ti2, i ∈ I ′}. Then we consider two cases:

Case 1. If E2 = {t2} then r2,2(t2) = 0 and r2,2(t) ̸= 0 for t ∈ (t1, t2). We have
rk,2(t) ≠= 0 for all t ∈ (t1, t2) and k = 2,m. For k = 1, we have

r1,2(t1) = τ1(y2(t1))− t1

= τ1(I1(y1(t1)))− t1

6 τ1(y1(t1))− t1

= r1,1(t1)

= 0,

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 307 – 325

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


316 A. Ouahab and S. Seghiri

i.e., r1,2(t1) < 0. Furthermore, from (H4) we have

r1,2(t2) = τ1(y2(t2))− t2

< τ2(y2(t2))− t2

= r2,2(t2) = 0,

i.e., r1,2(t2) < 0 and we know that ∀ t > t1, τ1(y(t)) ̸= t. Then for
t ∈ (t1, t2) τ1(y2(t)) ̸= t i.e., r1,2(t) ̸= 0. Moreover

r1,2(t) < 0, for t ∈ (t1, t2).

We conclude that rk,2(t) ̸= 0, for t ∈ (t1, t2) and k = 1,m.

Case 2 If E2 = {ti2, i ∈ I ′} is finite, let t2 = maxE2. Then the solution of problem
(3.2)-(3.3) over (t1, t2] is

y2(t) =

⎧⎪⎨⎪⎩
y2(t), if t ∈ [t1, t

1
2]

Sα(t− ti2)I2(y(t
i
2)) +

∫ t
ti2
(t− s)α−1Pα(t− s)f(s)ds,

if t ∈ (ti2, t
i+1
2 ], i ∈ I ′.

Step 4. We continue this process taking into account that ym+1 = y/[tm,T ] is a solution
to the problem

cDα
tmy(t) ∈ Ay(t) + F (t, y(t)), for a.e. t ∈ (tm, T ], (3.4)

y(t+m) = Im(ym−1(t
−
m)). (3.5)

Finally the solution y of problem (1.1)-(1.3) is then defined by

y(t) =

⎧⎪⎪⎨⎪⎪⎩
y1(t), if t ∈ [0, t1]
y2(t), if t ∈ (t1, t2].
. . .
ym+1(t), if t ∈ (tm, T ].

In addition the solution set of problem (1.1)-(1.3) is compact.

Example 20. We consider the following fractional partial differential inclusion:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂αt y(t, x) ∈ ∂2xy(t, x) +G(t, y(t, x)), if t ∈ [0, 1]and t ̸= τk(y(t, x))for k = 1,m,

y(t+, x) = Ik(y(t, x)), if t ̸= τk(y(t, x)) for k = 1,m,

y(t, 0) = y(t, π) = 0,

y(0, x) =
∫ 1
0 h(s) sin(1+ | y(s, x) |))ds.

(3.6)
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Where X = L2([0, π];R), ∂α is the Caputo fractional partial derivative of order
α with 0 < α < 1, h ∈ L1([0, 1];R), and G : [0, 1]×X −→ P(X).

We define the operator A by the Laplace operator, i.e. A = ∂2

∂x2 on the domain

D(A) = {w ∈ X, w,w
′
are absolutly continuous and w

′′ ∈ X, w(0) = w(π) = 0}.

Clearly, A generates a strongly continuous semigroup {T (t), t ∈ [0, 1]}.
Then the system above can be reformed as⎧⎪⎨⎪⎩

cDαy(t) ∈ Ay(t) + F (t, y(t)), t ∈ J = [0, 1], t ̸= τk(y(t)), k = 1,m,

y(t+) = Ik(y(t)), t = τk(y(t)), k = 1,m,

y(0) = g(y),

(3.7)

where y(t)(x) = y(t, x), t ∈ [0, 1], x ∈ [0, π], τk(y(t, x)) = τk(y(t))(x), Ik(y(t, x)) =
Ik(y(t))(x) and F (t, y(t))(x) = G(t, y(t, x)) Now we assume that F (t, y(t)) = {f(t, y(t))}
such that f : [0, 1] ×X −→ X is a defined continuous function. Assume that there
are q ∈ L1([0, 1];R+) and ψ : [0,∞) −→ [0,∞) continuous and nondecreasing such
that

∥ f(t, y) ∥6 q(t)ψ(∥ y ∥),
and assume that there exist l ∈ L1([0, 1];X) such that, for every bounded D ⊂ X :
β(f(t,D)) 6 l(t)β(D),
the function g : [0, 1]×X −→ X is given by g(y)(x) =

∫ 1
0 h(s) sin(1+ | y(s, x) |))ds

is continuous and compact.
Consider the functions

τk(y(t)) = t2 − 1
ek(1+∥y∥L2 )

and Ik(y) = bky where bk ∈ [1e , 1], for k = 1,m.

Both τk and Ik are continuous for k = 1,m and we have

τk+1(y(t))− τk(y(t)) =
e− 1

ek+1(1+ ∥ y ∥L2)
> 0, for each k = 1,m,

τk(y(t))− τk(Ik(y)(t)) =
(1− bk) ∥ y ∥L2

ek(1 + bk ∥ y ∥L2)(1+ ∥ y ∥L2)
> 0, for each k = 1,m

and

τk+1(Ik(y)(t))− τk(y(t)) =
e− 1 + (ebk − 1) ∥ y ∥L2

ek+1(1+ ∥ y ∥L2)(1 + bk ∥ y ∥L2)
> 0 for each k = 1,m.

Suppose that there exists k0 > 0 such that

M

(
µ(k0) +

Ψ(k0)

Γ(α+ 1)
q0
)
< 1,

where µ(k0) = sup{∥g(y)∥ /∥y∥ 6 k0}, and q0 = sup{q(t), t ∈ J} We can verify
easly that F satisfies the hypothesis (H3). The equation τk(y(t)) = t is equivalent to
t2 − t − 1

ek(1+∥y∥L2 )
= 0 wich admis two solution at maximum (finite solution set),

then by theorem 4.1, the problem (3.6) admis at least one solution on [0, 1].
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4 Topological structure of solution set

In this section, we prove that the solution set is in fact Rδ, hence acyclicity. First,
we recall the general theory (see, e.g., for more details [19]). Let (X, d) and (Y, d′)
be two metric spaces

Definition 21. A set A of X is called a contractible space if there exists a continuous
homotopy h : A× [0, 1] −→ Y and x0 ∈ A such that
(a) h(x, 0) = x, for every x ∈ A,
(b) h(x, 1) = x0, for every x ∈ A,
i.e., if the identity map idA : A −→ Ais homotopic to a constant map.
In particular any closed convex subset of X is contractible.

Definition 22. We say that a compact nonempty metric space X is an Rδ-set if
there exists a decreasing sequence of compact nonempty contractible metric spaces
(Xn)n∈N∗ such that X =

⋂∞
n=1Xn.

Let Hn(X) denote the Čech cohomology in the space X with coefficients in a
group G.

Definition 23. A space A is called G-acyclic if H̄n(A) = 0, for every n > 0.

Intuitively, acyclic set has no holes.

Proposition 24. If A is Rδ-set then it is acyclic.

An u.s.c map F : X −→ P (Y ) is called acyclic if for each x ∈ X, F (x) is a
compact acyclic set.

Theorem 25. [19] Let ϕ : X −→ Pcp,cv(X) be an u.s.c multivalued map from metric

space X to a Banach space E. If ϕ(X) is a compact set, then there exists a sequence
of u.s.c mappings ϕn from X to co(ϕ(X)) which approximates ϕ in the sense that,
for all x ∈ X, we have:

ϕ(x) ⊂ . . . ⊂ ϕn+1(x) ⊂ ϕn(x) ⊂ . . . ⊂ ϕ0(x), for all n > 0, (4.1)

for all ϵ > 0 there exists n0 = n0(ϵ, x) such that

ϕn(x) ⊂ Oϵ(ϕ(x)), for all n > n0. (4.2)

Theorem 26. Under conditions (H1)−(H6), the solution set of problem (1.1)-(1.3)
is an Rδ-set.

Proof. First let us denote the set of mild solutions of problem (1.1)-(1.3) by S(g).
By Theorem 5.1, there exists a sequence (Fn)n>0 that verifies (4.1) and (4.2). For
every n > 0, consider the following semi-linear evolution inclusion:

cDαy(t) ∈ Ay(t) + Fn(t, y(t)), t ∈ J = [0, T ], t ̸= τk(y(t)), k = 1,m (4.3)
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y(t+) = Ik(y(t)), t = τk(y(t)), k = 1,m (4.4)

y(0) = g(y). (4.5)

Denote by Sn(g), the set of mild solutions of this problem. By Theorem 4.1, problem
(4.3)-(4.5) has a nonempty compact solution set. Let y∗ = y∗[f∗], (f∗ ∈ SFn,y) be
an element of Sn(g) and for λ ∈ [0, 1], let the problem

cDαy(t) ∈ Ay(t) + Fn(t, y(t)), t ∈ [λT, T ], t ̸= τk(y(t)), k = 1,m (4.6)

y(t+) = Ik(y(t)), t = τk(y(t)), k = 1,m (4.7)

y(0) = y∗(t) t ∈ [0, λT ]. (4.8)

We know that problem (4.6)-(4.8) has a nonempty compact solution set for
every y∗ ∈ Sn(g). Moreover the solution depends continuously on (λ, y∗). Denote
this solution by y[y∗, λ](t). Consider h : Sn(g) × [0, 1] −→ Sn(g) be the mapping
given by

h(y, λ)(t) =

{
y∗(t) if t ∈ [0, λT ]
y[y∗, λ](t) if t ∈ [λT, T ].

Clearly h(y, λ)(.) is a solution of the problem (4.3)-(4.5). In fact, note that for any
y ∈ Sn(g), there exists f̃ ∈ SF,y such that y = y[f̃ ]. Let

f̂(t) = f̃χ[λT,T ](t) + f∗(t)χ[0,λT ](t),

for each t ∈ [0, T ] such that χ is the characteristic function. It is clear that f̂ ∈ SFn,h

and it is checked that y[f̃ ] = y[f̂ ] is a solution to (4.3)-(4.5)for t ∈ [λT, T ] and
y[f̃ ] = y∗[f∗] is the solution for t ∈ [0, λT ]. Hence h(λ, y∗) ∈ Sn(g).

To show that h is continuous, let (yk, λk) ∈ Sn(g) × [0, 1] a sequence such that
(yk, λk) → (y, λ), as k → ∞. Then

h(yk, λk)(t) =

{
yk(t), if t ∈ [0, λkT ],
y[yk, λk](t), if t ∈ [λkT, T ].

We check that h(yk, λk) → h(y, λ), as k → ∞. Without loss of generality, assume
that λk 6 λ and distinguish between three cases.

• If t ∈ [λT, T ], then

∥h(yk, λk)− h(y∗, λ)∥[λT,T ] = |y[yk, λ](t)− y[y∗, λ](t)|
= sup

t∈[λT,T ]
|y[yk, λ](t)− y[y∗, λ](t)|,

which tends to 0, as k → ∞ for y[y∗, λ](t) depends continuously on (y∗, λ).
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• If t ∈ [0, λkT ], then

∥h(ym, λm)− h(y∗, λ)∥ = |yk(t)− y∗(t)|,

which tends to 0, as k → ∞.

• If t ∈ [λkT, λT ], then

|h(yk, λk)(t)− h(y∗, λ)(t)| = |y[yk, λk](t)− y∗(t)|,
6 |y[yk, λk](t)− y(t)|+ |yk(t)− y∗(t)|,
−→ 0 as k → ∞.

Moreover, for all y ∈ Sn(g), we have that{
h(y, 0) = y∗,
h(y, 1) = y[y∗, 1](t).

Hence the set Sn(g) is contractible for every n > 0. By Theorem 5.1, we have

F (t, y) ⊆ Fn+1(t, y) ⊆ Fn(t, y) ⊆ . . . ⊆ F1(t, y).

Hence
S(g) ⊆ Sn+1(g) ⊆ Sn(g) ⊆ . . . ⊆ S1(g),

which implies that

S(g) ⊆
⋂

n∈N∗

Sn(g).

To prove the converse, let y ∈
⋂

n∈N∗
Sn(g). Then there exists a sequence of selections

{fn}n∈N∗ ⊂ L1([0, T ], X) such that fn ∈ SFn,y and y = y[fn] for all n ∈ N∗. Let
ε > 0. From (4.2), there exists n0 = n0[ε, y] such that

Fn(x) ⊂ Oϵ(F (x)), for all n > n0.

Then
∥Fn(t, y)∥ 6 ∥F (t, y)∥+ 2ε,

and without loss of generality

|fn(t)| 6 q(t)ψ(∥y∥) + 2ε, for a. e. t ∈ [0, T ] and n > n0.

Hence the sequence {fn}n∈N∗ is integrably bounded. From the reflexivity of X, there
exists a subsequence of {fn} still denoted by {fn} such that fn ⇀ f weakly , f ∈
L1([0, T ], X). By Mazur’s convexity theorem (see [14]), we obtain a sequence

{f̃n} ⊂ co{fn : n > 1}
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such that f̃n → f. Moreover f̃n(t) → f(t), for a. e. t ∈ [0, T ] and fn(t) ∈ Fn(t, y).
Dfine by N the subset of [0, T ]:

N = {t ∈ [0, T ] : f̃n(t) → f(t)}.

For t ∈ N , we have

∥f̃n(t)∥ 6 ∥Fn(t, y(t))∥,
6 ∥F (t, y(t))∥+ 2ε.

Since F has convex closed values, we conclude that f(t) ∈ F (t, y(t)) for t ∈ N .
Moreover y(t) = yk(t) (for some k = 1,m) and y = yk[fn], then from Theorem 3.1
we get Gfn → Gf, which implies that yk[fn] → yk[f ]. We deduce that y ∈ S(g) and
that S(g) =

⋂
n∈N∗

Sn(g). Finally S(g) is Rδ-set.

Corollary 27. The solution set for problem (1.1)-(1.3) is acyclic.
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