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ON FINSLER SPACES WITH UNIFIED MAIN
SCALAR L2C = 3

Brijesh Kumar Tripathi and Pradeep Kumar

Abstract. The purpose of present paper is to study the T-tensor of such a Finsler space
with the condition L?(a, 8)C = B, where a = y/a;;(2)yiy? and B = biy" and get some important
theorems. We shall also obtain the condition for such a Finsler space to be a Landsberg space or

Berwald space. The notations and terminologies are referred to the monograph [7].

1 Introduction

M. Matsumoto, Shibata, Asanov and Kiransov [1, 9] have treated non-Riemannian
Finsler spces with vanishing T-tensor are said to satisfy T-condition. If a Finsler
space M™ satisfies the T-condition, then the function L?C? of M™ is reduced to a
function of the position only (i.e. L?C? = f(x)) where L is the metric function and
C? is the square of the length of the torsion vector C;. For example, if the metric
tensor g;; has such a special form as g;; = Qﬁjllss as in [1] then the function L?C?
becomes zero i.e. L2C? = f(x) = 0, because in this case the T-condition is satisfied
automatically and C; = 0. Ikeda [4] investigated the interplay between the condition
L?C? = f(z) and the vanishing of the Tensor 7' and has been considering on the
properties of those Finsler space. Pandey, Chaubey and Mishra [10] studied Finsler
spaces with unified main scalar LC of the form L2C? = f(y) + g(z) i.e. some known
function of x and y .

In the present paper we shall study the T-tensor of such a Finsler space with the
condition L?C' = j, where o? = a;;y'y’ and 8 = b;(x)y’ and get some important
theorems.We shall also obtain the condition for such a Finsler space to be a Lands-
berg space or Berwald space and then show that a Landsberg space (respectively,
Berwald space) satisfying the condition L2C' = 3 reduces to a Berwald space.
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2 The condition L:C = 16

Let F" = (M"™; L) be an n-dimensional Finsler space, where M" is a connected
differentiable manifold of dimension n and L?(z,y) = ¢;;(z,y)y'y’ is the fundamental
function defined on the manifold T'(M)\ 0 of nonzero tangent vectors. The notations
l;, hij and Cyj;, denote the unit vector (i.e.li = %)7 the angular metric tensor and the
(h) hv - torsion tensor (the Cartan torsion tensor), respectively. The T-tensor Tj;
is defined by Tk = LCjjk|i+ Cijili + Cijili + Cuklj + Cyjil; and the torsion vector C;
is given by C; = gjkCijk, where one symbol |; denote the v-covariant differentiation
and ¢7* is one reciprocal tensor of 9ik-

Assume that the function L2C' is a non-zero function of position and direction s.t.
L?C = B. The differentiation of this equation by ° yields

where the symbol |; denote the differentiation by 3* and ¢; = gﬁ =b;

Since C? = ¢¥C;C; then Tj(= ¢MTy) = LCy|; + Cil; + Cjl;
Since C? = g C'CY, then C?|;, = 2¢"C'C;C; = 2CiC’i‘h
= QCC’}L = QCiCZ“h
Ci
Clp=—=0C; 2.2
from (2.1) and (2.2) we get
2CLI; + Lz%hchh = ¢;
2C%LI; + L*C"Cy|; = C¢; (2.3)

Tz’j = L0i|j + liCj + lei
CiTih = LCiCi|h + CiliCh + C’ithi

C'Ty, = LC'Ci|p, + C?l, (- C'Cy = C?) (2.4)
from (2.3) and (2.4), we get
2LC' Ty, — L*C'Cy), = Oy, (2.5)

Conversely, let 2LC"Ty, — chicﬂh = Co¢p
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= 2LC LG, + LiCh + hCy] — L2CCy), = Copy,
= 2L2CCy|p, + 2LC21, — L2CCy, = Oy

= L2CC;y|y, + 2LC%, = Coy,

= LCiCy|, + 2LCl, = ¢y,

= (L*C)|n = on

Integrating, we get
L’C =5 (2.6)

Thus, we have

Theorem 1. For a n-dimensional Finsler space the unified scalar L*C = 3, if and
only if the T - tensor satisfies the condition

Ti;CY =
Again for a two dimensional Finsler space the T - tensor [7] can be written as,
Thijk = Igmhmimjmk and LCfuk = Imimjmk

this implies that Lc=1I
Since (L2C)|; = ¢; this implies that

2L1;C + L*C |;= ¢;
Thus Thijk = %mhmim]’mk

Corollary 2. In two dimensional Finsler space with the unified scalar L*C(L?*C =
B) satisfies T-condition iff ¢; is parallel to l; i.e.

o; = Al;, for some scalar function A.

Differentiating this equation w.r.t.y/, we get

O¢i __ O -1
o = S50+ AL hyj

Now contracting this equation w.r.t. y*, we get

0¢i,i _ 1 OA
agqjj Y=Ly
this implies that L% = —0;
i 0 i ; ddi i .
o' =Gy =0 = (o) = Gy + 0]
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144
this implies that LA — ¢ = -\
. 6y] J J
Integrating, we get
¥(8)

A=t

where ¥ () is any arbitrary function of /3

Again,
8 _ (B) OL(1(B))
oyt — Y(B)L oy
On integration above equation, we get
(2.7)

¢(8) = L*C = § = ¢(B)log(Lv(B)) + p(6)

where p(3) is also any arbitrary function of

therefore from (2.7), we get
I 1 ¢(512<*ﬂz;(5)
BRIC

thus, we have
Theorem 3. If a two dimensional Finsler space with L>C = f3 satisfies T-condition

then the metric function L is given by
I 1 ¢(Bd)}(7613(5)
G

where 1 and p both are arbitrary function of B.
In C-reducible Finsler space the T-tensor [7] can be written as

LC~

Thijk = mﬂhijk(hhihjk); (2.8)

where C* = ¢} j and my;;, represents cyclic permutation of the indices h,i,jk.

Contracting (2.8) by ¢’%, we get

LC*
Thi = 727 hni
2L2C*C

= (Z)h = n—1 -

2L2C*C?

thus
PonC" =

Corollary 4. For an n-dimensional C-reducible Finsler space with unified scalar
L2C = j3 satisfies T-condition if ¢; is perpendicular to C".
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3 Landsberg and Berwald spaces satisfying the condi-
tion L?C = f3

We assume that a Finsler space M" satisfies the condition L?C = . Now from
equation (2.1) the important tensor which will be used later are given by

L*Cly; L
95 =""5¢ 5(leIi +1:Cl;) (3.1)
Ciip = L2Cliljl L i Ol b b 3.2
ijk——T—E[jk li + hirCl; (3.2)
L
+1lCli + Ll Clj] — g[licblk
IClil;

L
+1,;Clilx + 5 |+ @[licbqk
+JjC”iC”k-—.LC”kC”ﬂjy

Now taking h-covariant derivative w.r.t h both side, we get
L? Ci 1 . .
Cighin = =35 Clililimn — (o + S CliCli + 1/ CLiCly (3.3)

C
1, : y"Clilin
~L*O1CLilj) = Gl Clilen + 97 Clilun + =5

+hikClin + hiCljn + LlkClin + Ll Clj )
1 Z. |

+@[?/ CljnCle + ¥ CliClin + ¥ ClinCle

+3/ CliClujn — L*CluClily — L*CleCliCly)[ Ll = o]

contracting above equation by 3", we get

L? Cho 1, i
P = _Ec‘i‘jmo - ?[Cijk + a(y Cl;Clk + 9’ CliClk (3.4)
—L*CiClil;)] - ¥ Clilko + 4 Clilko + Tﬂ

+hjkClijo + hikCljo + LilkClijo + LilkC 0]

1. . , A
+ W' ClinCle +y'CliClyo + 3 ClioCli + 4 CliClio
—L*C|3oClil; — L*ClxCiCljp0]

where Pj;j, is the (v)hv— torsion tensor, the symbol |; denotes h-covariant differen-
tiation and the index 0’ means the contraction by y’. The above equation (3.3)(re-
spectively, (3.4)) gives the result that the condition

Cijrii = 0 (ves. Py, = 0) is equivalent to Cl;|j|xn = 0 (ves. Clilj[gjo = 0). Then, we
have
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Theorem 5. If an n-dimensional Finsler space M™ satisfies the condition L>C = 3,
then the necessary and sufficient condition for M™ to be a Berwald space is that
Cliljl = 0 holds good. In this case the function L2C is constant.

Theorem 6. If an n-dimensional Finsler space M"™ satisfies the condition L*C = 3,
then the necessary and sufficient condition for M™ to be a Landsberg space is that
Cliljlkjo = 0 holds good.
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