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A GENERAL UNIQUE COMMON FIXED POINT
THEOREM FOR HYBRID PAIRS OF MAPPINGS IN
METRIC SPACES

Valeriu Popa and Alina-Mihaela Patriciu

Abstract. The purpose of this paper is to prove a general unique common fixed point theorem
for two pairs of mappings using Hausdorff - Pompeiu metric, which generalizes, in a correct form, the

results from [8] and extends Theorem 2.4 [9], for occasionally (f, F') - weakly commuting mappings.

1 Introduction

Let f, g be self mappings of a metric space (X, d). Jungck [12] defined f and g to
be compatible if

lim d(fgzn,gfzn) =0
n—oo
whenever {z,} is a sequence in X such that
lim fz, = lim gz, =t
n—o0 n—oo
for some t € X.

Definition 1. A point x € X is said to be a point of coincidence of f and g if
fr=gz.

We denote by C(f, g) the set of all coincidence points of f and g.

In [16], Pant defined the notions of pairwise R - weakly commuting mappings in
metric spaces which is equivalent with commutativity in coincidence points.

In [13], Jungck defined the notion of weakly compatible mappings.

Definition 2. Let X be a nonempty set and f,g be self mappings of X. f and g
are weakly compatible if fgx = gfx for allz € C(f,g).

If (X,d) is a metric space, then f and g are weakly compatible if and only if f
and g are pointwise R - weakly commuting.
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Definition 3 ([7]). Let f,g be self mappings of a nonempty set X. f and g are
occasionally weakly compatible (owc) if fgu = gfu for some u € X.

Remark 4. If C(f,g) # 0 and f and g are weakly compatible, then f and g are
owce, but the converse if not true (Example [6]).

Let (X, d) be a metric space and C'L (X) (respectively, CB (X)) be the set of all
nonempty closed (respectively, closed and bounded) subsets of X. For

d(w,4) = inf {d(z.1)}.

we denote
D(A, B) =inf{d(a,b) :a € A,b € B}

and by

H(A, B) = max {sup d(z, B),sup d(y, A)} ,
€A yeEB

where A, B € CL(X) (respectively, CB (X)), the Hausdorff - Pompeiu metric on X.

Definition 5. Let f: X — X and F : X — 2% be.
1) A point x € X is said to be a coincidence point of f and F if fx € Fx.
The set of all coincidence points of f and F' is denoted by C(f, F).
2) A point x € X is a fixed point of F if x € Fx.

Definition 6 ([14]). Let X be a nonempty set, f: X — X and F : X — 2% . The
pair (f, F) is weakly compatible if fFx C F fx, for x € C(f, F).

Definition 7. The hybrid pair (f, F), where f : X — X, F : X — 2% and X is
a nonempty set, is occasionally weakly compatible (owc) if there exists u € X such
that fFu C F fu.

Remark 8. IfC(f,F) # 0, every weakly compatible hybrid mappings are owc. The
converse in not true (Example 1.7 [2], Ezample 1.3 [4]).

In general, in literature, in the fixed point theorems for hybrid pairs of mappings
involving Hausdorff - Pompeiu metric, the fixed point is not unique (Example 1.12
6]).

The following theorem is ”"proved” in [8].

Theorem 9. Let (X,d) be a metric space. Let f,g : X — X and F,.G : X —
CB (X) be such that (f,F) and (g,G) are owc satisfying the inequality

HP (an Gy) < max{ad (fxmgy) : Dpil (fx7Fx> 7ad (fxagy) : Dpil (gyv Gy) )
aD (fz, Az) - D"~ (gy, Gy) ,cDP~ (fz,Gy) - D (gy, Fx)},

for all x,y € X, where p > 2 is an integer, a > 0, ac < 1.
Then f,g,F and G have a unique common fized point.
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Remark 10. The proof of this theorem is not correct because by a € A and b € B,
the inequality
d(a,B) < H (A, B)

1 not correct.

In 2000, Shrivastava et al. [27] defined the notion of compatible of type N for a
single valued mapping and a multivalued mapping.
Under another names, this notion was introduced in [2], [15], [26], [28].

Definition 11. Let (X,d) be a metric space, f : X — X and F : X — 2%, f is
said to be (f,F) commuting at x € X if ffx € Ffux.

The notion of occasionally (f, F') commuting is introduces in [24] under the name
”occasionally weakly semi - compatible” and in [25] under the name of ”occasionally
F weakly commuting”.

Definition 12. Let (f, F') be a hybrid pair. The mapping f is said to be occasionally
F - weakly commuting if there exists x € X such that x € C(f,F) and ffx € Ffx.

Remark 13. If (f, F) is occasionally F' - weakly compatible, then f is occasionally F
- weakly commuting but the converse is not true (see Example 1.6 [24] and Example

8 [25]).

2 Preliminaries

The study of common fixed points for noncompatible mappings is also interesting,
the work along this lines being initiated by Park [17], [18].
Aamri and El Moutawakil [1] introduced a generalization of noncompatible mappings.

Definition 14 ([1]). Let S,T be self mappings of a metric space (X,d). We say
that S and T satisfy (E.A) - property if there exists a sequence {x,} in X such that

lim Sz, = lim Tx, =t
n—oo n—oo

for some t € X.

Remark 15. [t is clear that two self mappings of a metric space (X,d) will be
noncompatible if there exists a sequence {x,} in X such that

lim Sz, = lim Tx, =t,
n—oo n—oo

for some t € X, but limy,_yo0 (ST, T'Sxy) is nonzero of non existent. Therefore,
two noncompatible mappings satisfy (E.A) - property.

In 2011, Sintunavarat and Kumam [29] introduced the idea of limit range property.

skesk sk ok sk ok ok s ok sk sk ok ok sk sk ok sk sk sk s ok sk sk sk s ok sk sk ok sk sk sk sk ok sk sk sk s ok sk sk ok sk ok sk sk ok sk sk sk s sk sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk sk ok ok sk ok

Surveys in Mathematics and its Applications 11 (2016), 157 — 167
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v11/v11.html
http://www.utgjiu.ro/math/sma

160 V. Popa and A-M. Patriciu

Definition 16 ([29]). A pair (A, S) of self mappings of a metric space (X,d) is said
to satisfy the limit range property with respect to S, denoted CLRg) - property, if
there exists a sequence {x,} in X such that

lim Az, = lim Sz, =t,
n—o0 n—oo

for somet e S.

Thus we can infer that a pair (A, S) satisfying (E.A) - property along with the
closedness of the subspace S (X) always have the CLR gy - property.

In [10], Imdad et al. introduced the notion of common limit range property of
hybrid mappings.

Definition 17 ([10]). Let (X,d) be a metric space and f : X — X, F : X —
CL(X). (f,F) has a common limit range property if there exists a sequence {x,}
in X such that

lim fx, = fue A= lim Fz,,

n—oo n—oo

forue A(X) and A € CL(X).

Quite recently, Imdad et al. [11] introduced the notions of joint common limit
range property in metric spaces.

Definition 18 ([11]). Let (X,d) be a metric space, f,g: X — X and F,G : X —
CL(X). The pairs (f,F) and (9,G) are said to have joint common limit range
property, denoted (JCLR) - property, if there exist two sequences {xy}, {yn} in X
and A, B € CL(X) such that

lim Fz, = A, lim Gy, =B, lim fz, = lim gy, =1
n—oo n—oo n—oo n—o0

such thatt € ANB C f(X)Ng(X), i.e., there exist u,v € X such that t = fu =
gv € AN B.

Now we introduce a new type of common limit range property for pairs of
mappings.

Definition 19. Let (X,d) be a metric space, A: X — CL(X) and S,T : X — C.
The pair (A,S) satisfy a common limit range property in respect to T, denoted
CLR a5y - property, if there exists a convergent sequence {zn} in X such that

lim Sx, =t€ D = lim Ax,,

n—oo n—oo

DeCL(X)andte S(X)NT(X).
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1

Example 20. Let X = [0,00) be a metric space with the usual metric. Az = " 1],
241 1 1 1
Sp = ;_ , Te = x + 7 Then S(X) = [2,oo> T (X) = [4,00) ,S(X)N
1

Let {z,} be a sequence in X such that lim, oo , = 0. Then,

Nn—00 4’ N—00

lim an:tzée [1 1} = lim Ax,.

Hence, t € S(X)NT (X).

Remark 21. 1) Let (X,d) be a metric space, A,B : X — CL(X) and S,T :
X = X. If (A,S) and (B,T) satisfy (JCLR) - property, then (A, S) and T satisfy
CLR 5T - property.

1 1
2) If BX = [0, 4}, then AN B = {4}, ANB ¢ S(X)NT(X) and (A,S)
and T' satisfy CLR (4 syr - property and not satisfy (JCLR) - property.

3 Implicit relations

Several classical fixed point theorems and common fixed point theorems have been
recently unified considering a general condition by an implicit relation [19], [21].
The study of fixed points for hybrid pairs of mappings satisfying implicit relations
is initiated in [20], [22], [23] and in other papers.

Definition 22. Let ®,, be the set of all continuous functions ¢(t1,...,tg) : RS — R
such that:

(¢1) : ¢ is nondecreasing in variable ¢; and non increasing in variables t5 and tg,
(¢2) : ¢(t,0,0,t,¢,0) >0, Vi > 0,

(¢3) : ¢(t,0,t,0,0,t) > 0, Vt > 0,

(¢4) : For every t' > 0, ¢ (t',¢,0,0,t,t) > 0, Vt > 0.

Example 23. ¢(t1,....t5) =t} + 1 — max{atgtg_l, atgti_l, at;;ti_l, ctg_ltG}, where

p>2,a>0,0<c<l.

Example 24. ¢(t1,...,tg) = t1 — aty — bty — cty — dts5 — etg, where a,b,c,d,e > 0,
ct+d<l,b+e<landa>d+e.

Example 25. ¢(t1,...,ts) = t1 + 13 — amax{t3, 12} — bmax{tsts, tate} — ctsts, where
a,b,e>0 ... ... ... ... ...

Example 26. ¢(t1,...,t6) = t1 + to — amax{te,t3,t4} — (1 — «)(ats + btg), where
a€(0,1),a,b>0anda+b<1.
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Example 27. ¢(t1,...,t5) = t1 +t2 — a\/tg + ti — by\/tstg, where a,b >0, a < 1 and
b<1.

Example 28. ¢(t1,...,tg) = t1 + to — amax{ts, t4} — bmax{ts,ts}, where a,b >0
and a+b < 1.

t t
Example 29. ¢(t1,...,ts) = t1 + to — hmax{ts, t4, %}, where h € (0,1).
t tg t t
Example 30. ¢(t1,...,t6) = t1 + to — k max{ 3 —; 4, > —; 6}, where k € (0,1).

Remark 31. The implicit relations satisfying conditions (¢2) and (¢3) - types are
used in [15] and of (¢4) - type is used in [9].

The purpose of this paper is to prove a general unique common fixed point
theorem for two pairs of mappings using Hausdorff - Pompeiu metric, which generalizes,
in a correct form, the results from [8] and extends Theorem 2.4 [9], for occasionally
(f, F) - weakly commuting mappings.

4 Main results

Theorem 32. Let (X,d) be a metric space, f,g: X — X and F,G : X — CL(X)

such that H(Fa.Gy).d(f ) d(fz. Fe)
':U7 y Y x? gy Y x? €T J
o( "l Gy alio. oy ) ) <0 .

all z,y € X and some ¢ € ®,.

If (f, F) and g satisfy CLR g ), - property, then

1) C(Ff)£0,

2) C(G,g) # 0.

Moreover, if f is occasionally F - weakly commuting and g is occasionally G -
weakly commuting, then f, g, F and G have a unique common fixed point.

Proof. Since (f, F') and g satisfy C LR, ), - property, there exists a sequence {z, }
in X such that
lim fx, =te€ D = lim Az,
n—oo n—oo
and t € f(X)Ng(X).
Since t € g (X), there exists u € X such that ¢t = gu.
By (4.1) we have

H (Fzy,Gu),d(frn,gu),d(fr,, Fr,), >
¢ < d(gu,Gu) ,d (fxn, Gu) ,d(gu, Fx,) <0 (4.2)

Letting n tends to infinity we obtain

¢ (H (D, Gu) ,0,0,d (t, Gu) ,d (t, Gu) ,0) < 0. (4.3)
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Since t € D, d (t,Gu) < H (D, Gu).
By (¢1) and (4.2) we obtain

¢ (d(t,Gu),0,0,d(t,Gu),d (t,Gu),0) < 0,

a contradiction of (¢9) if d (t, Gu) > 0. Hence, d (t, Gu) = 0 which implies t = gu €
Gu and C (G, g) # 0.

On the other hand, ¢t € f(X). Hence, there exists v € X such that ¢t = fv. By
(4.1) we obtain

H (Fv,Gu),d(fv,gu),d(fv, Fv),
d)( d(gu, Gu) ,d (fv,Gu),d (gu, Fv) ) < 0. (4.4)

Since t € Gu, d(t, Fv) < H (Fv, Gu).
By (¢1) and (4.4) we obtain

¢ (d(t,Fv),0,d(t,Fv),0,0,d(t, Fv)) <0,

a contradiction of (¢3) if d (¢, Fv) > 0. Hence, d (¢, Fv) = 0 which implies ¢t = fv €
Fvand C (f, F) # 0.

Moreover, if f is occasionally F' - weakly commuting and C (f, F) # 0 and
C(g,G) # 0, then there exists a € C(f,F) and b € C(g,G) such that fa € Fa,
gb € Gb and f?a € F fa, g%a € Gya.

By (4.1) we obtain

H (Fa,Gb),d(fa,gb),d(fa,Fa),
¢< d (gb, Gb),d(fa,ng),d(gb,Fa) ) < 0. (4.5)

By (4.5) and (¢1) we obtain
¢ (H (Fa,Gb),d(fa,gb),0,0,d(fa,qgb),d(fa,gb)) <0,
a contradiction of (¢4) if d(fa,gb) > 0. Hence, d(fa,gb) = 0 which implies
fa = gb.

Next we prove that fa = f?a. Suppose that fa # f2a.
By (4.1) we have

" H(Ffa,Gb),d(an,gb),d(fQQ,Ffa), <0
d(gb,Gb),d(an, Gb),d(gb,Ffa) -

Since f?a € Ffa, by (¢1) we obtain
¢ (H (Ffa,Gb),d (f%a,gb),0,0,d (f*a,gb) ,d (f*a,gb)) <0,
¢ (H (Ffa,Gb),d (fa, fa),0,0,d (fa, fa) ,d(f*a, fa)) <0,

S ok Kook ok ok >k kR Sk ok kok ok sk ok kook sk sk okokook sk ok skok sk sk skokok skook kokook sk ok skokook sk kokok sk sk kokook sk ok skok sk sk skokosk sk sk skokosk sk skokok skok kokok skokokok

Surveys in Mathematics and its Applications 11 (2016), 157 — 167
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v11/v11.html
http://www.utgjiu.ro/math/sma

164 V. Popa and A-M. Patriciu

a contradiction of (¢4) if d (f2a, fa) > 0. Hence, d (fza, fa) = 0 which implies
fa = f%a and fa is a fixed point of f. Similarly, gb = ¢?b and gb = gfa. Therefore,
fa = f?a=gb=g¢*h=gfa and fa is a fixed point of g.

On the other hand, fa = f?a € Ffa and fa is a fixed point of F. Similarly,
fa = f?a = gb=g¢*b € Ggb = Gfa. Hence, fa € Gfa and fa is a fixed point of g.

So, fa is a common fixed point of f, F, g and G.

Put w = fu and let w’ be another common fixed point of f, F, g and G. Then
by (4.1) we have

H (Fw,Guw"),d(fw,gw'),d(fw, Fw), <0
¢ d(gw',Guw'),d(fw,Guw'),d(gw', Fw) | =

By (¢1) we have
¢ (H (Fw,Gu') ,d (w,w') ,0,0,d (w,w') ,d (w,w')) <0,

a contradiction of (¢4) if d (w,w") > 0. Hence, d (w,w’) = 0 which impliesw = w'’
and w = fu is the unique common fixed point of f, F, g and G. O

By Example 23 and Theorem 32 we obtain

Theorem 33. Let (X,d) be a metric space, f,g: X — X and F,G : X — CL(X)
such that (f, F) and g satisfy CLRf y), - property. If for all x,y € X for which

fz # gy,

HP (Fz,Gy) + d” (fz,gy) < max{ad (fz,gy) - D"~' (fz, Fz),

ad (fx,gy) - D*~' (gy, Gy) ,ad (fx, Fx) - DP~ (gy, Gy),
CDp_l (fx’ Gy) : d(gya Fl’)},

where p > 2, a >0, c€ (0,1), then

0 CE)AD,

2) C(G,g) # 0.

Moreover, if f is occasionally F' - weakly commuting and g is occasionally G -
weakly commuting, then f, g, F and G have a unique common fixed point.

Remark 34. 1. Theorem 33 is a correct generalization of Theorem 9.
2. By Examples 24 - 30 we obtain new particular results.
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