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HEREDITY IN FUNDAMENTAL LEFT
COMPLEMENTED ALGEBRAS

Marina Haralampidou and Konstantinos Tzironis

Abstract. In the present paper, we introduce the notion of a fundamental complemented linear

space, through continuous projections. This notion is hereditary. Relative to this, we prove that if

a certain topological algebra is fundamental, then a concrete subspace is fundamental too. For a

fundamental complemented linear space, we define the notion of continuity of the complementor. In

some cases, we employ a generalized notion of complementation, that of (left) precomplementation.

In our main result, the continuity of the complementor for a certain fundamental complemented

(topological) algebra is inherited to the induced vector complementor of the underlying linear space

of a certain right ideal. Weakly fundamental algebras are also considered in the context of locally

convex ones.

1 Introduction and Preliminaries

In 1970, F.A. Alexander dealt with representation theorems in the context of Banach
complemented algebras [1]. For this, and among others, continuity of the complemen-
tor is assumed. A respective representation theory, in the non-normed case, is faced
in [11]. An appropriate context to work in this theory, is that of fundamental
(pre)complemented algebras, studied in [6] and [18]. Here, the genetic property has
to do with the existence of certain continuous linear maps (Definition 1). Fundamen-
tality is also considered in the context of topological linear spaces (Definition 17). For
certain topological algebras being also fundamental, the latter property is inherited
to appropriate subspaces (Theorem 19); this information is used to obtain our
main result (Theorem 20). Besides, an issue relative to the representation theory
of non-normed complemented topological algebras is again the continuity of the
complementor, which is faced via the “fundamental property”. The latter continuity
is inherited to the induced vector complementor of the underlying linear space of a
certain right ideal, say, R [ibid.]. In fact, the continuity of a complementor turns
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out to be a key property of the aforementioned representation theory, and this was
the motivation for the present work. Under conditions, a complemented algebra
E admits a faithful continuous representation T in an inner product space. The
question that arises then is, when every complete subalgebra F of the topological
algebra of all continuous linear operators on R as in Theorem 20, that contains
the image T (E), and certain projections, relative to closed subspaces of R, gains
“complementation” and “fundamentality”. Indeed, this is true in the context of
certain fundamental complemented algebras [10]. A further application of our main
Theorem 20 assures a kind of the continuity of the complementor on F [ibid.]. A
quick reference to weakly fundamental algebras is given in Section 2.

All algebras, employed below, are taken over the field C of complexes. A
topological algebra E is an algebra which is a topological vector space and the ring
multiplication is separately continuous (see e.g., [13]). If, in particular, the topology
is defined by a family (pα)α∈A of seminorms (resp. submultiplicative seminorms),
then E is named a locally convex (in particular, locally m-convex) algebra. We use
the notation (E, (pα)α∈A). We also employ the notation S for the (topological)
closure of a subset S of a topological algebra E.

We denote by Al(S) (resp. Ar(S)) the left (right) annihilator of a (non empty)
subset S of an algebra E, being a left (resp. right) ideal of E. If S is a left (resp.
right) ideal of E, then the ideals Al(S) and Ar(S) are two-sided. If Al(E) = {0}
(resp. Ar(E) = {0}) we say that E is a left (resp. right ) preannihilator algebra. For
a right preannihilator algebra, it is also used the term proper algebra. E is named
preannihilator if it is both left and right preannihilator.

For a topological algebra E, Ll(E) ≡ Ll (resp. Lr(E) ≡ Lr,L(E) ≡ L) stands
for the set of all closed left (right, two-sided) ideals of E. If for I ∈ L the relation
I2 = {0} implies I = {0}, then E is called topologically semiprime, while E is
topologically simple, if it has no proper closed two-sided ideals.

The next notion was introduced in [6, p. 3723, Definition 2.1].

A topological algebra E is called left complemented, if there exists a mapping
⊥ : Ll −→ Ll : I ↦→ I⊥, such that

if I ∈ Ll, then E = I ⊕ I⊥. (1.1)

I⊥ is called a complement of I.

If I, J ∈ Ll, I ⊆ J, then J⊥ ⊆ I⊥. (1.2)

If I ∈ Ll, then (I⊥)⊥ = I. (1.3)

⊥, as before, is called a left complementor on E. In what follows, we denote by
(E,⊥) a left complemented algebra with a left complementor ⊥.
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Heredity in fundamental left complemented algebras 95

A right complemented algebra is defined analogously and we talk about a right
complementor. A left and right complemented algebra is simply called a complement-
ed algebra.

A topological algebra E is named left precomplemented, if for every I ∈ Ll, there
exists I ′ ∈ Ll such that E = I ⊕ I ′. Similarly, a right precomplemented algebra
is defined. A left and right precomplemented algebra is called a precomplemented
algebra (see [6, p. 3725, Definition 2.7]).

An idempotent element 0 ̸= e = e2 is called minimal, if the algebra eEe is a
division one. On the other hand, if e is a minimal (idempotent) element, then Ee
is a minimal left ideal and eE is a minimal right ideal of E (see [15, p. 45, Lemma
2.1.8]).

If E is a left precomplemented algebra and I, I ′ ∈ Ll with E = I⊕ I ′, then there
exists a linear map T : E → E with T 2 = T (projection) such that ImT = I and
kerT = I ′. Indeed, for x ∈ E, there are unique y ∈ I and z ∈ I ′ with x = y+z. Then
the mapping T (x) = y is well defined, linear and unique with the aforementioned
properties.

For the sake of completeness, we refer some notions, which were introduced in
[18, Definitions 2.5, 2.8, 2.9 and 2.10].

Definition 1. A left precomplemented algebra E is called fundamental if, for any
I ∈ Ll, and a (pre)complement of I, say I ′ ∈ Ll (viz. E = I ⊕ I ′) there is a
continuous linear mapping T = T (I, I ′) : E → E such that T 2 = T , Im T = I and
kerT = I ′.

A fundamental right precomplemented algebra is defined analogously. A fundamen-
tal left and right precomplemented algebra is simply called a fundamental precomple-
mented algebra.

A left complemented algebra is named fundamental, if it is fundamental as left
precomplemented. Similarly, for a right complemented algebra, and for a complement-
ed one.

In the locally convex case, if E is the topological direct sum of I and I ′ (in the
sense of [16, p. 90]), then E is named a weakly fundamental algebra.

EXAMPLE. Every left precomplemented Banach algebra is fundamental (see [18,
Proposition 2.6]).

Definition 2. Let (E,⊥) be a fundamental left complemented algebra. A net
(Iδ)δ∈∆ of minimal closed left ideals (of E) is ⊥-convergent to I0 ∈ Ll, if

Tδ ≡ Tδ(Iδ, I
⊥
δ ) −→

uniformly
T0(I0, I

⊥
0 )

on any minimal right ideal of E.

Definition 3. An element x in a topological algebra E is said to be axially closed
if the left ideal Ex is minimal closed.
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In particular, a subset of E is named axially closed if each of its elements is
axially closed.

Examples 4. (1) Any primitive idempotent element x in a precomplemented algebra
E is axially closed (see [4, p. 964, Theorem 2.1]).

Recall that x is primitive if it can not be expressed as the sum of two orthogonal
idempotents; namely, of some non-zero idempotents y, z ∈ E with yz = zy = 0.

(2) Any primitive idempotent element in a topologically semiprime algebra, in
which, moreover, every left ideal contains a minimal left ideal, (in short (Dl)-algebra)
is axially closed (see [5, p. 154, Theorem 3.9]).

(3) Any non-unital commutative semisimple topological algebra E with discrete
space of maximal regular ideals is a (Dl)-algebra (see [9, p. 148, Examples 3.8, (1)]).
So, since E is also topologically semiprime, all its primitive idempotents are axially
closed.

(4) Any semisimple finite-dimensional topological algebra is a (Dl)-algebra [ibid.
Examples 3.8, (2)], and thus its primitive idempotents are axially closed (see also
(3)).

For more examples of (Dl)-algebras see [ibid.].

Definition 5. Let (E,⊥) be a fundamental left complemented algebra. The mapping
⊥ is called continuous whenever for each convergent, axially closed net (aδ)δ∈∆ with
aδ −→

δ
a0 ∈ E, a0 ̸= 0, and such that Ea0 ∈ Ll, the net (Eaδ)δ∈∆ is ⊥-convergent

in Ea0. Namely,

Tδ ≡ Tδ(Eaδ, Ea⊥δ ) −→
uniformly

T0(Ea0, Ea⊥0 )

on any minimal right ideal of E.

In the sequel, all results also hold by interchanging “left” by “right”.

Lemma 6. Let E be a topologically simple algebra, and {0} ≠ I (resp. {0} ≠ R) a
closed left (right) ideal of E. Then Al(I) = {0} (resp. Ar(R) = {0}).

Proof. Since Al(I) is a closed two-sided ideal, either Al(I) = E or Al(I) = {0}. If
the first case holds, EI = {0}. In particular, I2 = {0} and by [5, p. 149, Theorem
2.1], I = {0}, a contradiction.

2 Weakly fundamental (pre)complemented algebras

In this section, we get realizations of the notion “weakly fundamental” for locally
convex algebras (see Definition 1). The same results are obviously applied in locally
convex spaces when the notion of (pre)complemented linear spaces is considered in
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Heredity in fundamental left complemented algebras 97

the fashion of Definition 15. In what follows, “topological direct sum” is taken in
the sense of [16, p. 90].

We start with the following useful result.

Theorem 7. Let E be a locally convex algebra. Consider the assertions:
(1) For every I ∈ Ll, there exists a continuous linear mapping T : E → E with

T 2 = T , Im T = I and E = I ⊕ kerT .
(2) E is a left precomplemented algebra.
Then (1) ⇒ (2). Besides, (2) ⇒ (1), if in particular,

E is the topological direct sum of I and I ′ (: the complement of I in E). (2.1)

Proof. It is enough to show that (2) ⇒ (1). Consider I ∈ Ll and its complement
I ′ ∈ Ll. Since both of them are locally convex spaces, the assumption that E =
I ⊕ I ′ is the topological direct sum of I and I ′ is meaningful. Thus, the projections
PI : E → I and PI′ : E → I ′ are continuous (see [ibid. p. 90, Proposition 21 and p.
95, Proposition 29]). The comments preceding Definition 1 complete the proof.

Concerning the previous result, we note that E need not be the topological direct
sum of I and I ′ when they carry the induced topologies (see the comments before
Proposition 29 in [16, p. 95]). This reveals the necessity of the assumption (2.1).

Corollary 8. Every left complemented locally convex algebra, satisfying (2.1), is
weakly fundamental.

In the next, by a locally C∗-algebra we mean an involutive complete locally (m)-
convex algebra (E, (pα)α∈A), such that pα(x

∗x) = pα(x)
2 for all x ∈ E and α ∈ A.

We also remind that a topological algebra E is said to be an annihilator algebra, if
it is preannihilator with Ar(I) ̸= {0} for every I ∈ Ll , I ̸= E and Al(J) ̸= {0} for
every J ∈ Lr , J ̸= E (see [5]).

Theorem 9. Every annihilator locally C∗-algebra, satisfying (2.1), is weakly funda-
mental.

Proof. Let E be a topological algebra as in the statement. Then, by [8, p. 226,
Theorem 3.1], E is left complemented. The assertion now follows from Corollary
8.

The next example is, under (2.1), a realization of the previous theorem.

Example 10. [6, p. 3724, Example 2.4]. Let X be a discrete (completely regular,
k-space). Consider the locally m-convex algebra Cc(X) of all C-valued continuous
functions on X in the topology of compact convergence, defined by the family of
seminorms (pK)K , where K runs over all compact subsets of X, where

pK(f) = sup
x∈K

|f(x)|, f ∈ Cc(X)
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(cf., for instance [13, p. 19, Example 3.1]). Cc(X) is complete, since X is a k-space
(see [12, p. 230 and p. 231, Theorem 12]), and it is a locally C∗-algebra under the
involution given by f∗(x) = f(x), f ∈ Cc(X), x ∈ X. Since a locally C∗-algebra
is semisimple, Cc(X) is topologically semiprime and hence preannihilator (cf. [5, p.
150, Lemma 2.3]). Besides, by [9, p. 144, Examples 2.2, (4)], if I is a proper closed
ideal in Cc(X), there exists some closed maximal ideal M with I ⊂ M . Hence,
A(M) ⊆ A(I), where A ≡ Al = Ar. Since X is a completely regular space,

M = Mx = {f ∈ Cc(X) : f(x) = 0} for every x ∈ X

(cf. [13, p. 223, Corollary 1.3; see also its proof]). On the other hand, the closed
subset {x}c corresponds to the proper closed ideal of Cc(X) given by

I{x}c = {g ∈ Cc(X) : g(y) = 0 for every y ∈ {x}c}.

(Of course, {x}c is a non empty proper subset of X and hence I{x}c is a non trivial
proper ideal of Cc(X); see [ibid., p. 221, Lemma 1.5, and p. 222, Remark 1.2]).
Obviously, I{x}c ⊆ A(Mx) and hence A(I) ̸= {0}. Thus, Cc(X) is an annihilator
algebra.

3 Complemented subspaces in (left) complemented alge-
bras

In this section, we pave the way to succeed vector complementors topically, in the
sense that minimal closed one-sided ideals in certain left complemented algebras
to be complemented as topological vector spaces (Theorem 14). Continuity of the
vector complementor in question, is faced in the context of Theorem 20. So, we start
with the next result, that generalizes Lemma 10 in [17, p. 658].

Proposition 11. Let E be a topologically simple left precomplemented algebra and
I ∈ Ll(E), {0} ̸= R ∈ Lr(E). Put S = I ∩R. If, for some x ∈ E, rx ∈ S for every
r ∈ R, then x ∈ I. Namely {x ∈ E : Rx ⊆ S} ⊆ I.

Proof. By hypothesis, there exists I ′ ∈ Ll(E) such that E = I⊕I ′. Thus, x = x1+x2
with x1 ∈ I and x2 ∈ I ′. For every r ∈ R, rx = rx1 + rx2. Since rx ∈ S ⊆ I and
rx1 ∈ I, we get rx2 ∈ I. Therefore, rx2 ∈ I ∩ I ′ and hence x2 ∈ Ar(R). But,
Ar(R) = {0} (see Lemma 6). Thus, x2 = 0 and x ∈ I.

Corollary 12. Let E be a topologically simple left precomplemented algebra, I1, I2 ∈
Ll(E), {0} ≠ R ∈ Lr(E). Put S1 = I1 ∩R and S2 = I2 ∩R. Then

(a) S1 ⊆ S2 if and only if I1 ⊆ I2.

(b) S1 = S2 if and only if I1 = I2.
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Heredity in fundamental left complemented algebras 99

Proof. (a) If S1 ⊆ S2 and x ∈ I1, then rx ∈ R and rx ∈ I1 for all r ∈ R. Therefore,
rx ∈ S1 and thus rx ∈ S2. Thus, by Proposition 11, x ∈ I2, and hence, I1 ⊆ I2.

(b) Apply (a).

Proposition 13. Let E be a Hausdorff topological algebra and e an idempotent
element of E. Consider the closed right ideal R = eE. Then, for every closed left
ideal I of E, I ∩R = RI = RI.

If, in particular, E is a topologically simple left precomplemented locally m-convex
algebra and e is minimal, then for any closed subspace S of R,

ES = {a ∈ E : Ra ⊆ S}.

(Here, ES stands for the left ideal of E, generated by S).

Proof. Obviously RI ⊆ I ∩ R, and thus RI ⊆ I ∩ R. Now, for x ∈ I ∩ R, x = ex
and since e ∈ R, we get x ∈ RI. Namely, I ∩ R ⊆ RI, which in connection with
RI ⊆ RI ⊆ I ∩R yields the first part of the assertion.

Now, since S ⊆ R = eE = {ex : x ∈ E}, there exists F with F ⊆ E so that
S = {ex : x ∈ F}. Moreover, eS = {ex : x ∈ F} = S. Besides, S = eS ⊆ ES and
S ⊆ R, that yield

S ⊆ ES ∩R. (3.1)

If z ∈ ES ∩R, then there exists a net (zδ)δ∈∆ ⊆ ES so that z = lim
δ
zδ. Since z ∈ R,

we get z = ez = elim
δ
(ezδ). But ezδ ∈ ES ∩ R. Therefore, z ∈ ES ∩R and thus

ES ∩R ⊆ ES ∩R. Since R is closed, we also get ES ∩R ⊆ ES ∩R, and hence

ES ∩R = ES ∩R. (3.2)

Since R is a right ideal and ES is a left ideal of E, we get RES ⊆ ES ∩R. Now,
for x ∈ ES∩R, x ∈ ES and x = ex, since x ∈ R. Therefore, x = ex ∈ RES and thus
ES∩R ⊆ RES. The previous argumentation yields RES = ES∩R. Thus, since ES
is a left ideal of E, and as we saw above, eS = S, we have ES∩R = RES = eEES ⊆
eES = eEeS ∼= CS ∼= S (see also [13, p. 62, Corollary 5.1]). Namely, ES ∩ R ⊆ S
and ES ∩R ⊆ S. The latter, in connection with (3.1) and (3.2), yields ES∩R = S.
Applying I ∩R = RI for I = ES, we get ES ∩R = RES and thus S = RES, from
which ES = {x ∈ E : Rx ⊆ S}. Indeed, put A = {x ∈ E : Rx ⊆ S}. If x ∈ ES,
then Rx ⊆ RES = S. Therefore x ∈ A and hence ES ⊆ A. Besides, for x ∈ A,
Rx ⊆ S = RES = ES ∩ R. So, by Proposition 11, x ∈ ES and thus A ⊆ ES, as
asserted, and this completes the proof.

Now, we state one of the main results concerning the existence of complementors
in closed linear subspaces.
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Theorem 14. Let (E,⊥) be a Hausdorff topologically simple left complemented
locally m-convex algebra and e a minimal element in E. Consider the (minimal
closed right) ideal R = eE of E. If VR stands for the set of all closed linear subspaces
of R, then there exists a map p : VR → VR, S ↦→ Sp, such that

If S ∈ VR, then R = S ⊕ Sp. (3.3)

If S1, S2 ∈ VR with S1 ⊆ S2, then Sp
2 ⊆ Sp

1 . (3.4)

If S ∈ VR, then (Sp)p = S. (3.5)

Proof. Let I be a closed left ideal in E. Then E = I ⊕ I⊥. For x ∈ R, there are
unique x1 ∈ I, x2 ∈ I⊥ with x = x1 + x2. Since x = ex, x = ex1 + ex2, while
ex1 ∈ I, ex2 ∈ I⊥. The uniqueness implies x1 = ex1, x2 = ex2. Namely, x1, x2 ∈ R
that yields x1 ∈ R∩ I and x2 ∈ R∩ I⊥. Put S = R∩ I and Sp = R∩ I⊥. Obviously,
S satisfies (3.3). Besides, V = {SI = R ∩ I : I ∈ Ll(E)} ⊆ VR and thus the map
p : V → V : SI ↦→ Sp

I = R∩I⊥ is well defined. Claim that V = VR. To this end, let S
be a proper closed subspace of R. Denote by ES the left ideal of E generated by S
(see also Proposition 13). Consider K = ES ∈ Ll(E). Since S = eS (e, idempotent;
see the proof of Proposition 13), we have S = eS ⊆ ES ⊆ K, and thus S ⊆ R ∩K.
If z ∈ R ∩ K, there exists a net (zδ)δ∈∆ in ES with z = lim

δ
zδ and z ∈ R. Hence

z = ez = elim
δ
zδ = lim

δ
(ezδ) and e(ES) ⊆ eEeS ∼= CS ∼= S. Here, we also used

the fact that E is a locally convex algebra with continuous quasi-inversion, and the
ideal eE is minimal (see [13, p. 52, Lemma 3.1] and [5, p. 155, Theorem 3.11]).
Thus z ∈ S. Therefore S = R ∩ K with K a closed left ideal of E. The previous
argumentation completes the assertion. Thus, for any S ∈ VR, S = R ∩ ES and
Sp = R ∩ (ES)⊥. Moreover, Sp = R ∩ ESp. Applying Corollary 12, (b), we get
ESp = (ES)⊥. Now, (Sp)p = R∩(K⊥)⊥ = R∩K = S. Moreover, if K1,K2 ∈ Ll(E)
and if S1 = R ∩ K1, S2 = R ∩ K2, S

p
1 = R ∩ K⊥

1 , Sp
2 = R ∩ K⊥

2 , then S1 ⊆ S2

if and only if K1 ⊆ K2 (see Corollary 12, (a)). Thus K⊥
2 ⊆ K⊥

1 if and only if
R ∩K⊥

2 ⊆ R ∩K⊥
1 if and only if Sp

2 ⊆ Sp
1 and the proof is complete.

Based on Theorem 14, we set the next.

Definition 15. Let X be a topological linear space and VX the family of its closed
linear subspaces. X is named a complemented linear space, if there exists a mapping
p : VX → VX : S ↦→ Sp such that

If S ∈ VX , then X = S ⊕ Sp (Sp is called the complement of S). (3.6)

If S1, S2 ∈ VX with S1 ⊆ S2, then Sp
2 ⊆ Sp

1 . (3.7)

If S ∈ VX , then (Sp)p = S. (3.8)
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Heredity in fundamental left complemented algebras 101

p is called a vector complementor on X.

Besides, the topological linear space X is named precomplemented if, for S ∈ VX ,
there exists S′ ∈ VX , so that X = S ⊕ S′.

In the sequel, (X, p) will stand for a complemented linear space X with respect
to a vector complementor p.

EXAMPLE. Any Hilbert space is complemented, in the sense of Definition 15
(see, e.g., [2, p. 201, Theorem 15.1.1 and p. 202, Corollary 15.1.1]). In that case,
the vector complementor is defined via orthogonality.

In the context of Theorem 14, the mapping

s : Ll(E) → VR : I ↦→ s(I) := I ∩R

is well defined, and in view of Corollary 12, (b), it is 1− 1. Besides, by the proof of
Theorem 14, s(Ll(E)) = VR. Moreover,

j : VR → Ll(E) : S ↦→ j(S) := ES

is a well defined map, and since ES ∩R = S (see also the proof of Theorem 14), is
the inverse of s. Finally, we consider the map

p : VR → VR : S ↦→ Sp := s((j(S))⊥) = (s ◦ ⊥ ◦ j)(S). (3.9)

In that case, according to Theorem 14, R, as a linear space, is complemented with
an (induced) vector complementor p as in (3.9).

Definition 15 is realized in the next result.

Theorem 16. Let (E,⊥) be a Hausdorff topologically simple left complemented
locally m-convex algebra and e ∈ E minimal. Consider the (minimal closed right)
ideal R = eE of E. Then R, as linear space, is complemented with a vector
complementor p as in (3.9).

Proof. Immediate from Theorem 14, Definition 15 and the comments that follow.

4 Continuity of complementors in linear spaces. Funda-
mental linear subspaces

Heredity of the “fundamentality” from a certain fundamental left complemented
algebra to concrete complemented subspaces is a key result in this section (Theorem
19). Based on this, we state the main result, which concerns conditions under which
the continuity of the complementor of a certain fundamental left complemented
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algebra induces continuity of the vector complementor for appropriate closed ideals
in the topological algebra concerned (Theorem 20).

Let A be a subset of a linear space X. Consider the smallest subspace of X that
derived from A. Namely, take the intersection of all linear subspaces of X containing
A; we denote it by [A]. If A = {x}, x ∈ X, we simply write [x].

If (X, p) is a complemented linear space and S ∈ VX , then there exists a unique
linear map T : X → X with T 2 = T (projection) such that Im T = S and kerT = Sp

(see [18, Remark 2.4]). We use the symbol T = T (S, Sp). If, in particular, T is
continuous, we set the next.

Definition 17. A complemented (topological) linear space (X, p) is called fundamen-
tal if, for any closed linear subspace S of X, there is a continuous linear mapping
T : X → X such that T 2 = T , Im T = S and kerT = Sp.

EXAMPLES.

(1) According to example after Definition 15, any Hilbert space is fundamental.
See also [3, p. 198, Theorem 14.9, p. 199, Corollary 14.10 and Remark 14.12].

Hence

(2) Every complemented Banach space X is fundamental, since as it is known,
for any closed linear subspace of X, there is defined a projection as in Definition 17.
See also the Example after Definition 1, and [14], as well.

(3) Every precomplemented locally convex space is, under the respective property
(2.1), weakly fundamental. This is based on the fact that any locally convex space
X is precomplemented if and only if for any S ∈ VX there exists a continuous linear
mapping T : X → X with T 2 = T , Im T = S and X = S⊕kerT . See also the proof
of Theorem 7 and the comments at the beginning of Section 2.

Provided that a finite dimensional linear subspace of a Hausdorff topological
vector space is closed, we give the next.

Definition 18. Let (X, p) be a Hausdorff fundamental complemented linear space.
The mapping p is said to be continuous if for every net (xδ)δ∈∆ of elements of X
with lim

δ
xδ = x0 ∈ X and x0 ̸= 0, the net (Tδ([xδ], [xδ]

p))δ∈∆ converges uniformly to

T0([x0], [x0]
p).

The fundamental property is inherited to certain linear subspaces of a concrete
topological algebra as the following result shows.

Theorem 19. Let (E,⊥) be a Hausdorff topologically simple left complemented
locally m-convex algebra and e ∈ E a minimal element. Consider the (minimal
closed right) ideal R = eE of E. If E is fundamental, then the complemented linear
subspace (R, p) is fundamental too, where p is the vector complementor as in (3.9).
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Proof. Let S be a closed subspace of R. Consider IS = ES and I = ES. Since
E is fundamental, there exists a continuous linear map T : E → E with T 2 = T ,
Im T = I and kerT = I⊥. In view of the proof of Theorem 14, S = R ∩ I and
Sp = R ∩ I⊥. Consider the mapping TR = T |R : R → R. For x ∈ R, there are
unique x1 ∈ I, x2 ∈ I⊥ with x = x1+x2, whence x = ex = ex1+ ex2. Since ex1 ∈ I
and ex2 ∈ I⊥, the uniqueness, in the analysis of x, yields x1 = ex1 and x2 = ex2.
Thus, TR(x) = T (x1 + x2) = x1 = ex1 ∈ R and hence TR is well defined. Since
T is continuous and R closed, TR is continuous, as well. Obviously, TR is linear
and T 2

R = TR. The preceding argumentation also shows that TR(R) ⊆ S. Now, for
x ∈ S, TR(x) = x and thus TR(R) = S, namely Im TR = S. Similarly, kerTR = Sp,
completing thus, the fundamentality of R.

Theorem 20. Let (E,⊥) be a Hausdorff topologically simple fundamental left comple-
mented locally m-convex algebra with continuous complementor. Let e be a minimal
element in E, such that the respective (minimal closed right) ideal R = eE has no
nilpotent elements of order 2. Then the induced vector complementor p on VR (the
set of all closed subspaces of R) is continuous.

Proof. Let (xδ)δ∈∆ be a net of nonzero elements in R with lim
δ
xδ = x0 ∈ R, x0 ̸= 0

and Sδ = [xδ], δ ∈ ∆, S0 = [x0], closed subspaces of R (see also [16, p. 38, Theorem
5]). Consider the ideals Iδ = ESδ and I0 = ES0 of E (cf. Proposition 13). Then,
for any δ ∈ ∆, we have ESδ = E{λxδ : λ ∈ C} = {λxδ + axδ : λ ∈ C, a ∈ E}.
Since exδ = xδ, ESδ = {xxδ : x ∈ E}. Thus, ESδ = Exδ = Eexδ. Similarly,
ES0 = Ex0 = Eex0. Take now x ∈ R with x ̸= 0. Since x ∈ R, x = ex. Claim
that xe ̸= 0. Otherwise, xex = 0 or x2 = 0 and by hypothesis for R, x = 0, a
contradiction. The ideals Eexδ, δ ∈ ∆ and Eex0 are minimal and closed. Since,
xδ, x0 ∈ R, δ ∈ ∆, we have xδ = exδ, δ ∈ ∆ and x0 = ex0. So, we prove more
generally, that the ideals Eex = Ex, x ∈ R, x ̸= 0, are minimal and closed. We first
prove the closedness of Ex. Indeed take a ∈ Ex, then there is a net (aδx)δ∈∆, in Ex
with aδx →

δ
a or yet aδxe →

δ
ae. So, since x = ex, we also have aδexe →

δ
ae. Since

exe = xe ̸= 0 and the algebra eEe is a division one (by hypothesis, e is a minimal
element), we get aδ(exe)(exe)

−1 →
δ

ae(exe)−1. Thus, aδe →
δ

ae(exe)−1. Therefore

aδex →
δ

ae(exe)−1x and aδx →
δ

ae(exe)−1x ∈ Ex. So, Ex is closed. We prove now

that the closed ideal Ex is a minimal one. So, let L be a nonzero closed left ideal
of E with L ⊆ Eex. Now, E, as topologically simple, is obviously, topologically
semiprime, so we get L2 ̸= {0} (see also, [5, p. 149, Theorem 2.1]). Therefore, there
are yex, zex ∈ L such that yexzex ̸= 0, and so exze ̸= 0. So, there is c ∈ eEe with
cexze = e. Since Ezex ⊆ L, we get Eex = Ecexzex ⊆ Ezex ⊆ L ⊆ Eex. Thus,
L = Eex that yields the minimality of Ex(= Eex).

According to the preceding argumentation, the net (xδ)δ∈∆ is axially closed in
E (see Definition 3), and the ideal Ex0 is closed, as well. Since the complementor
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⊥ is continuous, we have (Definition 5)

Tδ ≡ Tδ(Exδ, Ex⊥δ ) −→
uniformly,δ

T0(Ex0, Ex⊥0 )

on any minimal right ideal of E, thus and in R. For any δ ∈ ∆, we consider
the restrictions T ′

δ = Tδ|R and T ′
0 = T0|R. For S = [x], 0 ̸= x ∈ R, we have

Ex = E[x] (see also at the beginning of the proof). Since Ex is closed, we also
have Ex = E[x] = E[x] = ES and ES ∩ R = S (see the proof of Theorem
14). The linear space (R, p) is fundamental since E is fundamental (see Theorem
19). Moreover, Tδ(Exδ, Ex⊥δ )|R = T ′

δ(Exδ ∩ R,Ex⊥δ ∩ R) = T ′
δ([xδ], [xδ]

p) for all
δ ∈ ∆ and T0(Ex0, Ex⊥0 )|R = T ′

0(Ex0 ∩ R,Ex⊥0 ∩ R) = T ′
0([x0], [x0]

p). Hence,
T ′
δ([xδ], [xδ]

p) −→
uniformly,δ

T ′
0([x0], [x0]

p). Therefore p is continuous (see also Definition

18).

Remark.- The hypothesis “the ideal R = eE has no nilpotent elements of order
2”, of the previous theorem, is fulfilled e.g. when E is preannihilator and satisfies
Le Page condition, namely Ex = Ex2 for all x ∈ E (see [7]). Indeed, if x ∈ R with
x2 = 0, then Ex = {0} and thus x = 0 (see [5, p. 150, Lemma 2.3]).

Corollary 21. Let E be a topological algebra as in Theorem 20. Let e be a minimal
element in E which is not a right divisor of zero. Then the induced vector complemen-
tor p on VR is continuous.

Proof. Claim that the ideal R = eE has no nilpotent elements of order 2. Otherwise,
take x ∈ E with ex ̸= 0 and (ex)2 = 0, namely exex = 0. Since ex ̸= 0 and e is
not a right divisor of zero, we get exe ̸= 0. As eEe is a division algebra, we get
ex = (exe)−1(exe)x = (exe)−1(exex) = 0, a contradiction. Theorem 20 completes
the proof.
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