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GENERALIZED COMPATIBILITY IN PARTIALLY
ORDERED METRIC SPACES

Hassen Aydi and Manel Jellali

Abstract. In this paper, we introduce the notion of generalized compatibility of a pair of
mappings F,G : X x X — X, where (X, d) is a partially ordered metric space. We use this concept
to prove a coupled coincidence point theorem for nonlinear contractions in partially ordered metric
spaces. Our work extends the paper of Choudhury and Kundu [B.S. Choudhury and A. Kundu,
A coupled coincidence point result in partially ordered metric spaces for compatible mappings,
Nonlinear Anal. 73 (2010) 2524-2531]. Some examples are also given to illustrate the new concepts

and the obtained result.

1 Introduction

Fixed point problems of contractive mappings in metric spaces endowed with a
partial order have been studied by many authors (see [12, 1, 2, 3, 4, 5, 6, 7, 8, 9,
11, 10, 13, 14]). In [12], some applications to matrix equations are presented and in
[8, 11] some applications to ordinary differential equations are given. Bhaskar and
Lakshmikantham [4] introduced the concept of a coupled fixed point of a mapping
F: X xX — X and studied the problems of the uniqueness of a coupled fixed point
in partially ordered metric spaces and applied their theorems to problems of the
existence and uniqueness of solution for a periodic boundary value problem. In [9],
Lakshmikantham and Ciri¢ introduced the concept of a coupled coincidence point for
mappings F': X xX — X and g : X — X, and proved some nice coupled coincidence
point theorems for nonlinear contractions in partially ordered metric spaces under
the hypotheses that g is continuous and commutes with F. In 2011, Choudhury
and Kundu [5] introduced the notion of compatibile mappings F': X x X — X and
g : X — X, and obtained coupled coincidence point results under the hypotheses g
is continuous and the pair {F, g} is compatible.

In this paper, we consider mappings F, G : X xX — X, where (X, d) is a partially
ordered metric space. We introduce a new concept of generalized compatibility of
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the pair {F,G} and we prove a coupled coincidence point theorem for nonlinear
contractions in partially ordered metric spaces. The presented theorem extends the
recent result of Choudhury and Kundu [5] and some examples are also considered.

2 Mathematical preliminaries

Let (X, =) be a partially ordered set. The concept of a mixed monotone property of
the mapping F': X x X — X has been introduced by Bhaskar and Lakshmikantham
in [4].

Definition 1. (see Bhaskar and Lakshmikantham [4]). Let (X, <) be a partially
ordered set and F : X x X — X. Then the map F is said to have mized monotone
property if F(x,y) is monotone non-decreasing in x and is monotone non-increasing
in y; that s, for any x,y € X,

1 j T2 1mphes F(xhy) j F(Z’Q,Z/)
and
y1 = y2 implies F(z,y2) = F(z, ).
Lakshmikantham and Cirié¢ in [9] introduced the concept of a g-mixed monotone
mapping.

Definition 2. (see Lakshmikantham and Cirié [9]). Let (X, <) be a partially ordered
set, F: X x X —- X and g : X — X. Then the map F is said to have mixed g-
monotone property if F(x,y) is monotone g-non-decreasing in x and is monotone
g-non-increasing in y; that is, for any x,y € X,

gr1 = gro implies F(z1,y) X F(22,y)
and
g9y1 = gy2 implies F(z,y2) = F(z, ).
Definition 3. (see Bhaskar and Lakshmikantham [4]). An element (z,y) € X x X
s called a coupled fized point of a mapping F : X x X — X if
F(z,y) =z and F(y,z) =y.

Definition 4. (see Lakshmikantham and Cirié¢ [9]). An element (z,y) € X x X is
called a coupled coincidence point of the mappings F: X x X - X andg: X — X

if
F(z,y) = gz and F(y,z) = gy.

Definition 5. (sce Lakshmikantham and Ciri¢ [9]). Let X be a non-empty set.
Then we say that the mappings F : X x X — X and g : X — X are commutative if

9(F(z,y)) = F(gz, gy).
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Lakshmikantham and Ciri¢ in [9] proved the following nice result.

Theorem 6. (see Lakshmikantham and Cirié [9]). Let (X, <) be a partially ordered
set and suppose there is a metric d on X such that (X, d) is a complete metric space.
Assume there is a function ¢ : [0, +00) — [0, +00) with ¢(t) < t and lim,_y+ ¢(r) < t
for each t > 0 and also suppose F': X x X — X and g : X — X are such that F
has the mized g-monotone property and

d(F(z,y), Flu,v)) < ¢ (d(g«T,QU)—Ql-d(gy,gv))

for all x,y,u,v € X with gr < gu and gv < gy. Assume that F(X x X) C g(X), g
s continuous and commutes with F' and also suppose either F is continuous or X
has the following properties:

1. if a non-decreasing sequence x, — x, then x, <X x for all n,
2. if a non-increasing sequence T, — x, then x =< x, for all n.

If there exist xo,yo € X such that gzo < F(z0,y0) and F(yo,z0) = gyo then there
exist x,y € X such that gr = F(x,y) and gy = F(y,x), that is, F' and g have a
coupled coincidence point.

Choudhury and Kundu in [5] introduced the notion of compatibility.

Definition 7. (see Choudhury and Kundu [5]). The mappings F : X x X — X and
g: X — X are said to be compatible if

lim d(g(F(fL‘n,yn))vF(gxnagyn))) =0

n—-+oo

and
lim  d(g9(F(Yn, zn)), F(gYn, 971))) = 0,

whenever (x,,) and (yn) are sequences in X, such that

WA Flon ) = Ln gon = @
and
lim F(yn,-xn) = lim gy, =y,

n—-+o0o n—-+o0o

for all x,y € X are satisfied.

Using the concept of compatibility, Choudhury and Kundu proved the following
interesting result.
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Theorem 8. (see Choudhury and Kundu [5]). Let (X, =) be a partially ordered set
and suppose there is a metric d on X such that (X,d) is a complete metric space.
Let ¢ : [0,400) — [0,4+00) be such that ¢(t) < t and lim,_,;+ ¢(r) < t for all t > 0.
Suppose F': X x X — X and g : X — X be two mappings such that F has the
mized g-monotone property and satisfy

d(F(z,y), Flu,v)) < ¢ (d(ga:,gu) —2k d(gy’gv))

for all x,y,u,v € X with gr < gu and gv < gy. Let F(X x X) C g(X), g be
continuous and monotone increasing and F' and g be compatible mappings. Also
suppose either F is continuous or X has the following properties:

1. if a non-decreasing sequence x, — x, then x, =< x for all n,
2. if a non-increasing sequence T, — x, then x < x, for all n.

If there exist xo,yo € X such that gxo < F(z0,y0) and F(yo,zo) = gyo then there
exist x,y € X such that gr = F(x,y) and gy = F(y,x), that is, F' and g have a
coupled coincidence point.

Now, we introduce the following new concepts.
Let (X, <) be a partially ordered set endowed with a metric d. We consider two
mappings F,G: X x X — X.

Definition 9. F' is said to be G-increasing with respect to =< if for all x,y,u,v € X,
we have
G(z,y) =< G(u,v) implies F(z,y) < F(u,v).

We present three examples illustrating Definition 9.

Example 10. Let X = (0,+00) endowed with the natural ordering of real numbers
<. Define the mappings F,G : X x X — X by

F(z,y)=In(zx+y) and G(z,y)=z+y
for all (z,y) € X x X. Then F is G-increasing with respect to <.
Example 11. Let X = N endowed with the partial order =< defined by
z,ye X, x =y if and only if y divides x.
Define the mappings F,G : X x X = X by
F(z,y) = 2%y*> and G(z,y) =y

for all (x,y) € X x X. Then F is G-increasing with respect to <.

sk sk ok s ok sk s ok sk sk ok s ok sk sk ok sk sk sk s ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk ok sk sk sk sk ok s ok sk sk ok sk sk sk ok sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 11 (2016), 77 — 92
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v11/v11.html
http://www.utgjiu.ro/math/sma

Generalized compatibility in partially ordered metric spaces 81

Example 12. Let X be the set of all subsets of N. We endow X with the partial
order = defined by

A BeX, A=XB ifandonlyif ACB.
Define the mappings F,G : X x X — X by
F(A,B)=AUBU{0} and G(A,B)=AUB
for all A, B € X. Then F is G-increasing with respect to <.

Definition 13. An element (z,y) € X X X is called a coupled coincidence point of
F and G if
F(z,y) =G(z,y) and F(y,z) =Gy, z).

Example 14. Let X =R and F,G : X x X — X defined by
2
Fla,y) =2y and Go,y) == (v +1)

for all x,y € X. Then (0,0), (1,2) and (2,1) are coupled coincidence points of F
and G.

Definition 15. We say that the pair {F, G} satisfies the generalized compatibility if
d(F<G(xn7yn)7 G(ynvxn)>7 G(F(l‘n, yn)v F(yna xn))) —0 as n— +oo;
d(F(G(Yns Tn), G(TnsYn)), G(F (Yns Tn), F(Tn,yn))) = 0 as n — +oo,

whenever (x,,) and (y,) are sequences in X such that

F(xna yn) — 1 G(wmyn) —t1 as n— +o0;
F(yn,xn) >t G(yn,xn) > t2 as n — +oo.
The following examples illustrate the concept of generalized compatibility.

Example 16. Let X = R endowed with the standard metric d(x,y) = |z —y| for all
z,y € X. Define F,G: X x X = X by

F(z,y) =2 —y* and G(z,y) = 2> +19°
for all x,y € X. Let (x,,) and (yn) two sequences in X such that

F(xn,yn) = t1 G(xn,yn) = t1  as n — +o0;
F(yn,xn) > t2 G(yn,xn) > t2 as n — +o0.
We can prove easily that t1 = to = 0 and
d(F(G(ZL‘n,yn), G(ynafll'n))a G(F(l’n, yn), F(yn,xn))) —0 as n— 4o0;
d(F(G(yna 1:71)) G(xnyyn))a G(F(yn,xn)g F(fL'r“yn))) —0 as n— —+00.
Then the pair {F,G} satisfies the generalized compatibility.
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Example 17. Let (X, d) be a metric space, F': X x X — X and g : X — X. Define
the mapping G : X x X — X by

G(z,y) = gz, ¥(z,y) € X x X.

It is easy to show that if {F, g} is compatible, then {F,G} satisfies the generalized
compatibility.

3 Main result

First, denote by ® be the set of functions ¢ : [0, +00) — [0, +00) satisfying
(i) ¢ is non-decreasing,
(il) o(t) <t for all t > 0,

(iii) lim ¢(r) <t for all t > 0.

r—tt

Lemma 18. Let ¢ € ® and (uy,) be a given sequence such that u, — 0% asn — +oo.
Then, @(u,) — 07 as n — +o0.

Proof. Let ¢ > 0. Since u,, — 0" as n — +o00, there exists N € N such that
0<u, <ceforalln>N.
Using (i) and (ii), we get
o(up) < @(e) < e forall n > N.

Thus we proved that ¢(u,) — 0T as n — +oo. [

Theorem 19. Let (X, <) be a partially ordered set and suppose there is a metric d
on X such that (X,d) is a complete metric space. Let F,G : X x X — X be two
mappings such that F' is G-increasing with respect to <, and satisfy

AF (), Flu,v)) < S0(d<G<ac,y>, Gluv)) +d(6:2) G(v,u»)’ 51)

for all z,y,u,v € X, with G(x,y) =X G(u,v) and G(v,u) <X G(y,z), where ¢ € P.
Suppose that for any x,y € X, there exist u,v € X such that

{F(x, y) = G(u,v)

F(y,z) = G(v,u). (3:2)

Suppose that G is continuous and has the mized monotone property, and the pair
{F,G} satisfies the generalized compatibility. Also suppose either F is continuous
or X has the following properties:
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(a) if a non-decreasing sequence x,, — x, then x, < x for all n,
(b) if a non-increasing sequence x,, — x, then x =< x,, for all n.

If there exist xg,yo € X such that G(xo,yo) = F(xo,y0) and F(yo,zo) = G(yo, o),
then F and G have a coupled coincidence point.

Proof. Let xzg,yo € X such that G(zo,y0) = F(xo,y0) and F(yo,z0) = G(yo,x0)
(such points exist by hypothesis). Thanks to (3.2), there exists (z1,y1) € X x X
such that

F(zo,y0) = G(z1,y1) and  F(yo,x0) = G(y1,z1).

Continuing this process, we can construct two sequences (z,) and (y,) in X such
that

F(xmyn) = G(JUn-l-lvyn—i—l)’ F(ym $n) = G(yn+1,xn+1), for all n € N. (3.3)

We will show that for all n € N, we have

G(:Z:nayn) = G($n+1a yn+1) and G(ynJrla xn+1) = G(ymxn) (3'4)

We shall use the mathematical induction. Since G(zo,yo) = F (20, yo) and F(yo, xo) <
G(yo, o), and as G(z1,y1) = F(zo,y0) and G(y1, 1) = F(yo, o), we have

G(zo,y0) 2 G(z1,y1) and G(y1,21) = G(yo, o).

Thus (3.4) holds for n = 0. Suppose now that (3.4) holds for some fixed n € N.
Since F' is G-increasing with respect to <X, we have

G(Tnt1,Ynt1) = F(@n, yn) 2 F(Tnt1,Yns1) = G(Tny2, Ynt2)

and
F(yn—&-laxn—i-l) = G(yn+2a xn+2) = F(yn, xn) = G(yn—l-lymn—i-l)'

Thus we proved that (3.4) holds for all n € N.
For all n € N, denote

On = d(G (2, Yn)s G(Tnt1,Ynt1)) + AG(Yns Tn), G(Ynt1, Tng1))- (3.5)

We can suppose that d,, > 0 for all n € N, if not, (x,, y,) will be a coincidence point
and the proof is finished. We claim that for any n € N, we have

On
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Since G(xnayn) = G(l‘n+1,yn+1) and G(ynvxn) = G(yn+1,$n+1), lettlng T = Tn,
Y = Yn, U= Tpt1 and v = yp4+1 in (3.1), and using (3.3), we get

AG(Tn41,Yn+1)s G(@nt2, Ynt2)) = A(F(Tn, Yn), F (11, Ynt1))
<d(G($n7 yn)a G(anrlv ?/nJrl)) + d(G(ynv xn)’ G(yn+17 -TnJrl)))

IN

8)

Similarly, since G(Yn+1, Tn+1) = G(Yn, Tn) and G(xp41,Yn+1) = G(Tn, yn), we have

2

(3.7)

d(G(yn+2a $n+2)’ G(yn-Ha SUn-i-l)) = d(F(yn+1a xn-i-l)’ F(ynv xn))
(d(G(yn+1a xn+1)> G(yna $n)) + d(G(anrla yn+1)> G(-rm yn)) )

2

(3.8)

Summing (3.7) to (3.8) yields (3.6).
From (3.6), since ¢(t) < t for all ¢ > 0, it follows that the sequence (9,) is
monotone decreasing. Therefore, there is some § > 0 such that

lim 6, =6".
n—-+00

If possible, let § > 0. Taking the limit as n — +o0 in (3.6) and using lim (r) <t

r—tt
for all £ > 0, we obtain
. : Opn—1 : Opn—1 J
frmd < g —_ =
0 ngrfoo On < 2n£Ifoo v < 2 > Bn,hlrgcﬁ 4 < 2 < 22 %

which is a contradiction. Thus § = 0, that is,

nEI-iI-loo d<G(l'n7 yn)a G(:Cn-i-la yn-i—l)) + d(G(yna J,‘n), G(yn—&-h 55n+1)) = ngr-il—loo op = 0.
(3.9)

We shall prove that ((G(zn,yn), G(Yn,zyn))) is a Cauchy sequence in X x X
endowed with the metric n defined by

n((z,y), (u,v)) = d(z, u) + d(y,v)

for all (x,y), (u,v) € X xX. We argue by contradiction. Suppose that ((G(zn, yn), G(Yn,Zn)))
is not a Cauchy sequence in (X x X, 7). Then, there exists € > 0 for which we can
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find two sequences of positive integers (m(k)) and (n(k)) such that for all positive
integer k£ with n(k) > m(k) > k, we have

{n(((me(k)7 GYmk))s (GYmry, GTmr)))s (GZrikys GYnir))s (GYn(k), GTn(ry))) > €,

n(((me(k)a Ggm(k))? (Gym(k)7 Gwm(k)))? ((G‘rn(k)—la Gyn(k)—1)7 (Gyn(k)—la Gmn(k)—l))) <e.
(3.10)
By definition of the metric 1, we have

di, = d((GZp(k)s GYm(r))s (GTn(k)s GYnt))) TA(GYimr), GTmk))s (GYn(ry, GTn(r))) > €
(3.11)
and

A(GZrm(ky, GYUm))s (GTrk)—15 GUn(k)—1)) A (GYmi)s GTmk))s (GYn(k)—1, GTnr)—1)) < €.
(3.12)
Further from (3.11) and (3.12), for all £ > 0, we have

e < dy, <d((GZm(k), GYmk))s (GTr(k)—1, GYn(r)—1)) + A(CZpy—1, GYn(k)-1)s (GTr(k), GYn(k)))
+A(GYmk)s GZmr))s (GUn(k) -1 Gy 1)) + A(GYnk)—1, GZr(k)-1), (GYn(k)s GTn@r)))
<€+ dn(k)-1-

Taking the limit as £ — +o0o in the above inequality, we have by (3.9),

lim dj =¢". (3.13)

k—+o00

Again, for all £ > 0, we have

di, =d((GTm(k)s GYm(k))s (GTnirys GYnr))) + A(GYm(kys GTmr))s (GYn(rys GTn(r)))
<d((GTm(ky, GYmk))s (GTmr)+1: GYmk)+1)) T A(GTmk)+15 GYmk)+1)s (GTrgk) 11, GYn(k)+1))
(G k)1 GYn(ky+1)s (GTurys GYnx))) + A(GYmr): GZm))s (GYmk) 11> GTmr)+1))
A(GYm)+1: GZmr)+1)s (GUnr) 11, GTnry+1)) + A(GYn)+1: GTnky11) s (GUn(r)s GTnr)))
d(
(
(

+

+
Q

GZm(k)s GYmr))s (GZmr)+1: GYmy+1)) + AU(GYmr)s GZm(r))s (GYmk) 115 GTm(r)+1))
Ad(GZrk)+1, GUnk)+1)s (GTrk)s GUn(r))) + A(GYnk)+1, GTrk)+1)s (GUn(r)s GTn(r)))
Ad(GZmm) 11> GYmr)+1)s (GT)y+1, GYny+1)) + A(GYmm)+1: GZm) +1) (GYn(ry 11 Gy 41))-

+

(
(
(
(
(
(
(

_|_

Hence, for all k& > 0,

di < (k) + On(r)
+ d((GZrm(k) 15 GYmk)+1)s (GTnr) 115 GYn(k)+1)) + A(GYm) 11> GTm) 11)s (GYnk)+1: GTn(k)+1))-
(3.14)
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From (3.1), (3.4) and (3.11), for all k£ > 0, we have

d(Gzm) 11 GYmr)+1)s (GZnkyr1: GYnry 1)) = A E Ty FYm@y)s (FTnys FYnk)))

2

<@
d
Also, from (3.1), (3.4) and (3.11), for all £ > 0, we have

A(GYmk)+1: GTmk)+1)s (GUn(ky+1, GTny+1)) = A E Ymr)ys FTmr))s (FYnr)s Fn(x)))
- S0<03(G(ym(k),%n(ic)),G(yn(k),ﬂcn( k) +d(G( m(k) Ym(k))s G(xn(k)uyn(k)))>

(%) |

Putting (3.15) and (3.16) in (3.14), we get

(3.15)

(3.16)

d
di < Oy + Oy + 20 <2k) ~

Letting & — +o0 in the above inequality and using (3.9) and (3.13), we obtain

dy, dy,
< = = .
© QkEToogp<2> QdeEg S0<2><22 (3:.17)

which is a contradiction. Thus we proved that ((G(xy,yn), G(yn, Tr))) is a Cauchy
sequence in (X x X, n), which implies that ((G(zn,yn)) and (G(yn,xy)) are Cauchy
sequences in (X, d).

Now, since (X, d) is complete, there exist x,y € X such that

lim G(zp,yn) = lim F(z,,y,) =z and lim G(yn,x,) = hm F(yn,zn) = v.

n—+00 n—+00 n——+o0o —+oo
(3.18)
Since the pair {F, G} satisfies the generalized compatibility, from (3.18), we get
i d(F(G(wn, ya), Gluns 20)), G(F (2, 9a), Flym,2a)) =0 (3.19)
and
i d(F(G (Y 0)s Glwns ya)): G (s wa), Flan ya))) = 0. (3.20)
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Suppose that F' is continuous.
For all n > 0, we have
d(G(z,y), F(G(Tn,yn), G(Yn, 7)) < d(G(2,y), G(F (20, Yn), F (Yn, Tn)))
+d(G(F(Tn, Yn), F(Yn, Tn)), F(G(Tn, Yn ), G(Yn, Tn)))-

Taking the limit as n — +oo, using (3.18), (3.19) and the fact that F' and G are
continuous, we have

G(a,y) = F(a,y). (3.21)
Similarly, using (3.18), (3.20) and the fact that /' and G are continuous, we have
Gy, z) = F(y, x). (3.22)

Thus, we proved that (z,y) is a coupled coincidence point of F' and G.

Now, suppose that (a) and (b) hold.
By (3.4) and (3.18), we have (G(zy,yn)) is non-decreasing sequence, G(Zy,yn) — &
and (G(yn,Ty)) is non-increasing sequence, G(yn,x,) — y as n — +oo. Then by
(a) and (b), for all n € N, we have

G(zn,yn) =z and G(yn,zn) = y. (3.23)

Since the pair {F, G} satisfies the generalized compatibility and G is continuous, by
(3.19) and (3.20), we have

nEIEOOG(G(xmyn)aG(yml‘n)) = G(z,y)
=  lim G(F(zn,yn), F(yn,xn)) (3.24)

n—-+00

n—-+00

and
nll}IilooG(G(ynaxn)yG(xnayn)) = G(Z/?x)
= lim G(F(yn,2n), F(zn,yn))  (3.25)

Now, we have

d(G(m,y),F(:&y)) < d(G(xay)’G(G(xn-i-lvyn-i-l)?G(yn+1axn+l)))
+d(G(F($n,yn)aF(ynaxn))vF(x7y))'

Letting n — 400 in the above inequality and using (3.24), we get

d(G(z,y), F(z,y)) < lim d(G(E(n, yn), F(yn, 20)), Fl2,y))
= lim d(F(G(xn,yn)aG(yn,xn))vF(xay))

n—-+o0o
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Since G has the mixed monotone property, it follows from (3.23) that
G(G(Tn,Yn), G(Yn, Tn)) 2 G(z,y) and  G(G(Yn, Tn), G(Tn,yn)) = G(y, 7).
Then, using (3.1), (3.24), (3.25) and Lemma 18, we get

d(G(z,y), F(z,y))

< iy o (HEOen). Oln20). Gle) 4 GGl 22). Glan 1) C2)Y _
n—+oo 2
Then we get

G(z,y) = F(z,y).
Similarly, we can show that

G(y,x) = F(y,x).

Thus we proved that (x,y) is a coupled coincidence point of F' and G.
This completes the proof of the Theorem 19. O

Now, we deduce an analogous result to Theorem 8 of Choudhury and Kundu [5].
At first, we introduce the following definition.

Definition 20. Let (X, <) be a partially ordered set, F': X x X - X and g: X —
X. We say that F is g-increasing with respect to < if for any z,y € X,

gr1 =X gwa implies F(z1,y) = F(x2,y)

and
gy1 = gy2 implies F(z,y1) <X F(z,y2).

Corollary 21. Let (X, =) be a partially ordered set and suppose there is a metric
d on X such that (X,d) is a complete metric space. Let F : X x X — X and
g : X — X be two mappings such that F is g-increasing with respect to =<, and
satisfy

e Py 020 20,

for all z,y,u,v € X, with gr X gu and gv =< gy, where p € ®. Suppose that
F(X x X) Cg(X), g is continuous and monotone increasing with respect to <, and
the pair {F,g} is compatible. Also suppose either F is continuous or X has the
following properties:

(a) if a non-decreasing sequence x,, — x, then x, < x for all n,

(b) if a non-increasing sequence x,, — x, then x =< x,, for all n.
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If there exist xo,yg € X such that grg < F(x9,y0) and F(yo, o) =< gyo, then F and
g have a coupled coincidence point, that is, there exists (x,y) € X x X such that
gz = F(z,y) and gy = F(y, z).

Proof. Taking G : X x X — X, (z,y) — G(z,y) = gz in Theorem 19, we obtain
Corollary 21. O

Now, we present an example to illustrate our obtained result given by Theorem
19.

Example 22. Let X = [0, 1] endowed with the natural ordering of real numbers. We
endow X with the standard metric d(x,y) = |x —y| for all z,y € X. Then (X,d) is
a complete metric space. Define the mappings G, F : X x X — X by

_Jr—y if xzy _ H if v>y

Let us prove that F' is G-increasing.

Let (x,y), (u,v) € X x X with G(z,y) < G(u,v). We consider the following cases.
Case-1: © < y.

In this case, we have F(x,y) =0 < F(u,v).

Case-2: x > y.

If u > v, we get

G(m,y)SG(u,v)ixfygufviL;ygugv

= F(z,y) < F(u,v).
If u <wv, we get
G(z,y) <Gu,v) = 0<z—y<0=>zx=y= F(z,y) =0 < F(u,v).

Thus we proved that F' is G-increasing.
Let us prove that for any x,y € X, there exist u,v € X such that

Let (z,y) € X x X be fired. We consider the following cases:
Case-1: © =y.

In this case, F(z,y) =0= G(x,y) and F(y,z) = 0= G(y,x).
Case-2: © > y.

In this case, we have

Flz,y) =2 3 Y= G(x/3,y/3) and F(y,z)=0=G(y/3,z/3).
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Case-3: © < y.
In this case, we have
Fle,y) =0=Gle/3,y/3) and Fly.2)="5= = Gly/3.2/3)

G s continuous and has the mixed monotone property.

Clearly G is continuous. Let (x,y) € X x X be fized. Suppose that x1,x9 € X are
such that x1 < xo. We distinguish the following cases.

Case-1: 1 < y.

In this case, we have G(x1,y) =0 < G(z2,v).

Case-2: x9 > 11 > y.

In this case, we have

G(z1,y) =11 —y <29 —y = G(2,Y).

Similarly, we can show that if y1,y2 € X are such that y1 < ya2, then G(z,y1) >
G(l‘, y2) :

Now, we prove that the pair {F, G} satisfies the generalized compatibility hypothesis.
Let (z,) and (yp) be two sequences in X such that

t1 = lim G(zn,yn) = lim F(zp,yn)

n—-+o0o n—-+00

and
to = lim G(yn,zn) = lm F(yn,xn).

n—-+oo n——+oo

Then obuviously, t1 = to = 0. It follows easily that

hm d(F(G(l‘n,yn),G(ynaxn))aG(F(xnayn)vF(ynvl‘n))) = 0

n—-+o0o
and
ngrfood(F(G(ymwn)aG(xnayn))’G(F(ynaxn)yF($n>yn))) = 0.
There exists (xg,yp) € X x X such that G(xo,y0) < F(zo,y0) and G(yo,xo) >
F(yo,l‘o).
We have

G(0,1/2) =0=F(0,1/2) and G(1/2,0)=1/2>1/6 = F(1/2,0).
Now, let ¢ : [0,400) — [0,400) be defined as

2t
o(t) = 3 for allt > 0.
Clearly ¢ € ®. Let us prove that inequality (3.1) is satisfied for all x,y,u,v € X,

with G(z,y) = G(u,v) and G(v,u) < G(y,x).
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Let z,y,u,v € X, with G(x,y) <X G(u,v) and G(v,u) <X G(y,z). We have
d(F(z,y), F(u,v)) = [F(z,y) — F(u,v)|
= 31G(@y) ~ Gluv)
2 (G(fﬂay) — G(u, U)|)

3 2
< 2(G(w,y)—G(uav)HlG(yw)—G(U,U)\>
-~ 3 2
d(G(z,y), G(u,v)) + d(G(y, z), G(v, u))
- : )

Then, inequality (3.1) is satisfied.

the

Now, all the required hypotheses of Theorem 19 are satisfied. Thus we deduce
existence of a coupled coincidence point of F' and G. Here, (0,0) is a coupled

coincidence point of F' and G.
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