ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 11 (2016), 77 - 92

GENERALIZED COMPATIBILITY IN PARTIALLY ORDERED METRIC SPACES

Hassen Aydi and Manel Jellali

Abstract. In this paper, we introduce the notion of generalized compatibility of a pair of mappings $F, G: X \times X \to X$, where (X, d) is a partially ordered metric space. We use this concept to prove a coupled coincidence point theorem for nonlinear contractions in partially ordered metric spaces. Our work extends the paper of Choudhury and Kundu [B.S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010) 2524-2531]. Some examples are also given to illustrate the new concepts and the obtained result.

1 Introduction

Fixed point problems of contractive mappings in metric spaces endowed with a partial order have been studied by many authors (see [12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 13, 14]). In [12], some applications to matrix equations are presented and in [8, 11] some applications to ordinary differential equations are given. Bhaskar and Lakshmikantham [4] introduced the concept of a coupled fixed point of a mapping $F: X \times X \to X$ and studied the problems of the uniqueness of a coupled fixed point in partially ordered metric spaces and applied their theorems to problems of the existence and uniqueness of solution for a periodic boundary value problem. In [9], Lakshmikantham and Ćirić introduced the concept of a coupled coincidence point for mappings $F: X \times X \to X$ and $g: X \to X$, and proved some nice coupled coincidence point theorems for nonlinear contractions in partially ordered metric spaces under the hypotheses that g is continuous and commutes with F. In 2011, Choudhury and Kundu [5] introduced the notion of compatibile mappings $F: X \times X \to X$ and $g: X \to X$, and obtained coupled coincidence point results under the hypotheses g is continuous and the pair $\{F, g\}$ is compatible.

In this paper, we consider mappings $F, G: X \times X \to X$, where (X, d) is a partially ordered metric space. We introduce a new concept of generalized compatibility of

2010 Mathematics Subject Classification: 54H25; 47H10

 $\label{lem:Keywords: Coupled coincidence point; generalized compatibility; mixed monotone property; ordered set; complete metric space$

the pair $\{F,G\}$ and we prove a coupled coincidence point theorem for nonlinear contractions in partially ordered metric spaces. The presented theorem extends the recent result of Choudhury and Kundu [5] and some examples are also considered.

2 Mathematical preliminaries

Let (X, \preceq) be a partially ordered set. The concept of a mixed monotone property of the mapping $F: X \times X \to X$ has been introduced by Bhaskar and Lakshmikantham in [4].

Definition 1. (see Bhaskar and Lakshmikantham [4]). Let (X, \preceq) be a partially ordered set and $F: X \times X \to X$. Then the map F is said to have mixed monotone property if F(x,y) is monotone non-decreasing in x and is monotone non-increasing in y; that is, for any $x, y \in X$,

$$x_1 \leq x_2$$
 implies $F(x_1, y) \leq F(x_2, y)$

and

$$y_1 \leq y_2$$
 implies $F(x, y_2) \leq F(x, y_1)$.

Lakshmikantham and Ćirić in [9] introduced the concept of a g-mixed monotone mapping.

Definition 2. (see Lakshmikantham and Ćirić [9]). Let (X, \preceq) be a partially ordered set, $F: X \times X \to X$ and $g: X \to X$. Then the map F is said to have mixed g-monotone property if F(x,y) is monotone g-non-decreasing in x and is monotone g-non-increasing in y; that is, for any $x, y \in X$,

$$gx_1 \leq gx_2$$
 implies $F(x_1, y) \leq F(x_2, y)$

and

$$gy_1 \leq gy_2$$
 implies $F(x, y_2) \leq F(x, y_1)$.

Definition 3. (see Bhaskar and Lakshmikantham [4]). An element $(x, y) \in X \times X$ is called a coupled fixed point of a mapping $F: X \times X \to X$ if

$$F(x,y) = x$$
 and $F(y,x) = y$.

Definition 4. (see Lakshmikantham and Ćirić [9]). An element $(x, y) \in X \times X$ is called a coupled coincidence point of the mappings $F: X \times X \to X$ and $g: X \to X$ if

$$F(x,y) = gx$$
 and $F(y,x) = gy$.

Definition 5. (see Lakshmikantham and Ćirić [9]). Let X be a non-empty set. Then we say that the mappings $F: X \times X \to X$ and $g: X \to X$ are commutative if

$$g(F(x,y)) = F(gx, gy).$$

Lakshmikantham and Ćirić in [9] proved the following nice result.

Theorem 6. (see Lakshmikantham and Ćirić [9]). Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Assume there is a function $\phi: [0, +\infty) \to [0, +\infty)$ with $\phi(t) < t$ and $\lim_{r \to t^+} \phi(r) < t$ for each t > 0 and also suppose $F: X \times X \to X$ and $g: X \to X$ are such that F has the mixed g-monotone property and

$$d(F(x,y), F(u,v)) \le \phi\left(\frac{d(gx,gu) + d(gy,gv)}{2}\right)$$

for all $x, y, u, v \in X$ with $gx \leq gu$ and $gv \leq gy$. Assume that $F(X \times X) \subseteq g(X)$, g is continuous and commutes with F and also suppose either F is continuous or X has the following properties:

- 1. if a non-decreasing sequence $x_n \to x$, then $x_n \leq x$ for all n,
- 2. if a non-increasing sequence $x_n \to x$, then $x \leq x_n$ for all n.

If there exist $x_0, y_0 \in X$ such that $gx_0 \leq F(x_0, y_0)$ and $F(y_0, x_0) \leq gy_0$ then there exist $x, y \in X$ such that gx = F(x, y) and gy = F(y, x), that is, F and g have a coupled coincidence point.

Choudhury and Kundu in [5] introduced the notion of compatibility.

Definition 7. (see Choudhury and Kundu [5]). The mappings $F: X \times X \to X$ and $g: X \to X$ are said to be compatible if

$$\lim_{n \to +\infty} d(g(F(x_n, y_n)), F(gx_n, gy_n))) = 0$$

and

$$\lim_{n \to +\infty} d(g(F(y_n, x_n)), F(gy_n, gx_n))) = 0,$$

whenever (x_n) and (y_n) are sequences in X, such that

$$\lim_{n \to +\infty} F(x_n, y_n) = \lim_{n \to +\infty} gx_n = x$$

and

$$\lim_{n \to +\infty} F(y_n, x_n) = \lim_{n \to +\infty} gy_n = y,$$

for all $x, y \in X$ are satisfied.

Using the concept of compatibility, Choudhury and Kundu proved the following interesting result.

Theorem 8. (see Choudhury and Kundu [5]). Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $\phi: [0, +\infty) \to [0, +\infty)$ be such that $\phi(t) < t$ and $\lim_{r \to t^+} \phi(r) < t$ for all t > 0. Suppose $F: X \times X \to X$ and $g: X \to X$ be two mappings such that F has the mixed g-monotone property and satisfy

$$d(F(x,y), F(u,v)) \le \phi\left(\frac{d(gx, gu) + d(gy, gv)}{2}\right)$$

for all $x, y, u, v \in X$ with $gx \leq gu$ and $gv \leq gy$. Let $F(X \times X) \subseteq g(X)$, g be continuous and monotone increasing and F and g be compatible mappings. Also suppose either F is continuous or X has the following properties:

- 1. if a non-decreasing sequence $x_n \to x$, then $x_n \leq x$ for all n,
- 2. if a non-increasing sequence $x_n \to x$, then $x \leq x_n$ for all n.

If there exist $x_0, y_0 \in X$ such that $gx_0 \leq F(x_0, y_0)$ and $F(y_0, x_0) \leq gy_0$ then there exist $x, y \in X$ such that gx = F(x, y) and gy = F(y, x), that is, F and g have a coupled coincidence point.

Now, we introduce the following new concepts.

Let (X, \preceq) be a partially ordered set endowed with a metric d. We consider two mappings $F, G: X \times X \to X$.

Definition 9. F is said to be G-increasing with respect to \leq if for all $x, y, u, v \in X$, we have

$$G(x,y) \leq G(u,v)$$
 implies $F(x,y) \leq F(u,v)$.

We present three examples illustrating Definition 9.

Example 10. Let $X = (0, +\infty)$ endowed with the natural ordering of real numbers \leq . Define the mappings $F, G: X \times X \to X$ by

$$F(x,y) = \ln(x+y)$$
 and $G(x,y) = x+y$

for all $(x,y) \in X \times X$. Then F is G-increasing with respect to \leq .

Example 11. Let $X = \mathbb{N}$ endowed with the partial order \leq defined by

$$x, y \in X$$
, $x \leq y$ if and only if y divides x .

Define the mappings $F, G: X \times X \to X$ by

$$F(x,y) = x^2y^2$$
 and $G(x,y) = xy$

for all $(x,y) \in X \times X$. Then F is G-increasing with respect to \leq .

Example 12. Let X be the set of all subsets of \mathbb{N} . We endow X with the partial order \leq defined by

$$A, B \in X$$
, $A \leq B$ if and only if $A \subseteq B$.

Define the mappings $F, G: X \times X \to X$ by

$$F(A,B) = A \cup B \cup \{0\}$$
 and $G(A,B) = A \cup B$

for all $A, B \in X$. Then F is G-increasing with respect to \preceq .

Definition 13. An element $(x,y) \in X \times X$ is called a coupled coincidence point of F and G if

$$F(x,y) = G(x,y)$$
 and $F(y,x) = G(y,x)$.

Example 14. Let $X = \mathbb{R}$ and $F, G: X \times X \to X$ defined by

$$F(x,y) = xy$$
 and $G(x,y) = \frac{2}{3}(x+y)$

for all $x, y \in X$. Then (0,0), (1,2) and (2,1) are coupled coincidence points of F and G.

Definition 15. We say that the pair $\{F,G\}$ satisfies the generalized compatibility if

$$\begin{cases} d(F(G(x_n, y_n), G(y_n, x_n)), G(F(x_n, y_n), F(y_n, x_n))) \to 0 & as \ n \to +\infty; \\ d(F(G(y_n, x_n), G(x_n, y_n)), G(F(y_n, x_n), F(x_n, y_n))) \to 0 & as \ n \to +\infty, \end{cases}$$

whenever (x_n) and (y_n) are sequences in X such that

$$\begin{cases} F(x_n, y_n) \to t_1 & G(x_n, y_n) \to t_1 & as \ n \to +\infty; \\ F(y_n, x_n) \to t_2 & G(y_n, x_n) \to t_2 & as \ n \to +\infty. \end{cases}$$

The following examples illustrate the concept of generalized compatibility.

Example 16. Let $X = \mathbb{R}$ endowed with the standard metric d(x, y) = |x - y| for all $x, y \in X$. Define $F, G: X \times X \to X$ by

$$F(x,y) = x^2 - y^2$$
 and $G(x,y) = x^2 + y^2$

for all $x, y \in X$. Let (x_n) and (y_n) two sequences in X such that

$$\begin{cases} F(x_n, y_n) \to t_1 & G(x_n, y_n) \to t_1 & as \ n \to +\infty; \\ F(y_n, x_n) \to t_2 & G(y_n, x_n) \to t_2 & as \ n \to +\infty. \end{cases}$$

We can prove easily that $t_1 = t_2 = 0$ and

$$\begin{cases} d(F(G(x_n, y_n), G(y_n, x_n)), G(F(x_n, y_n), F(y_n, x_n))) \to 0 & \text{as } n \to +\infty; \\ d(F(G(y_n, x_n), G(x_n, y_n)), G(F(y_n, x_n), F(x_n, y_n))) \to 0 & \text{as } n \to +\infty. \end{cases}$$

Then the pair $\{F,G\}$ satisfies the generalized compatibility.

Example 17. Let (X,d) be a metric space, $F: X \times X \to X$ and $g: X \to X$. Define the mapping $G: X \times X \to X$ by

$$G(x,y) = gx, \ \forall (x,y) \in X \times X.$$

It is easy to show that if $\{F,g\}$ is compatible, then $\{F,G\}$ satisfies the generalized compatibility.

3 Main result

First, denote by Φ be the set of functions $\varphi:[0,+\infty)\to[0,+\infty)$ satisfying

- (i) φ is non-decreasing,
- (ii) $\varphi(t) < t$ for all t > 0,
- (iii) $\lim_{r \to t^+} \varphi(r) < t$ for all t > 0.

Lemma 18. Let $\varphi \in \Phi$ and (u_n) be a given sequence such that $u_n \to 0^+$ as $n \to +\infty$. Then, $\varphi(u_n) \to 0^+$ as $n \to +\infty$.

Proof. Let $\varepsilon > 0$. Since $u_n \to 0^+$ as $n \to +\infty$, there exists $N \in \mathbb{N}$ such that

$$0 \le u_n < \varepsilon \text{ for all } n \ge N.$$

Using (i) and (ii), we get

$$\varphi(u_n) \leq \varphi(\varepsilon) < \varepsilon \text{ for all } n \geq N.$$

Thus we proved that $\varphi(u_n) \to 0^+$ as $n \to +\infty$.

Theorem 19. Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F, G: X \times X \to X$ be two mappings such that F is G-increasing with respect to \preceq , and satisfy

$$d(F(x,y), F(u,v)) \le \varphi\left(\frac{d(G(x,y), G(u,v)) + d(G(y,x), G(v,u))}{2}\right), \tag{3.1}$$

for all $x, y, u, v \in X$, with $G(x, y) \leq G(u, v)$ and $G(v, u) \leq G(y, x)$, where $\varphi \in \Phi$. Suppose that for any $x, y \in X$, there exist $u, v \in X$ such that

$$\begin{cases}
F(x,y) = G(u,v) \\
F(y,x) = G(v,u).
\end{cases}$$
(3.2)

Suppose that G is continuous and has the mixed monotone property, and the pair $\{F,G\}$ satisfies the generalized compatibility. Also suppose either F is continuous or X has the following properties:

- (a) if a non-decreasing sequence $x_n \to x$, then $x_n \leq x$ for all n,
- (b) if a non-increasing sequence $x_n \to x$, then $x \leq x_n$ for all n.

If there exist $x_0, y_0 \in X$ such that $G(x_0, y_0) \leq F(x_0, y_0)$ and $F(y_0, x_0) \leq G(y_0, x_0)$, then F and G have a coupled coincidence point.

Proof. Let $x_0, y_0 \in X$ such that $G(x_0, y_0) \leq F(x_0, y_0)$ and $F(y_0, x_0) \leq G(y_0, x_0)$ (such points exist by hypothesis). Thanks to (3.2), there exists $(x_1, y_1) \in X \times X$ such that

$$F(x_0, y_0) = G(x_1, y_1)$$
 and $F(y_0, x_0) = G(y_1, x_1)$.

Continuing this process, we can construct two sequences (x_n) and (y_n) in X such that

$$F(x_n, y_n) = G(x_{n+1}, y_{n+1}), \quad F(y_n, x_n) = G(y_{n+1}, x_{n+1}), \text{ for all } n \in \mathbb{N}.$$
 (3.3)

We will show that for all $n \in \mathbb{N}$, we have

$$G(x_n, y_n) \leq G(x_{n+1}, y_{n+1})$$
 and $G(y_{n+1}, x_{n+1}) \leq G(y_n, x_n)$. (3.4)

We shall use the mathematical induction. Since $G(x_0, y_0) \leq F(x_0, y_0)$ and $F(y_0, x_0) \leq G(y_0, x_0)$, and as $G(x_1, y_1) = F(x_0, y_0)$ and $G(y_1, x_1) = F(y_0, x_0)$, we have

$$G(x_0, y_0) \leq G(x_1, y_1)$$
 and $G(y_1, x_1) \leq G(y_0, x_0)$.

Thus (3.4) holds for n = 0. Suppose now that (3.4) holds for some fixed $n \in \mathbb{N}$. Since F is G-increasing with respect to \leq , we have

$$G(x_{n+1}, y_{n+1}) = F(x_n, y_n) \le F(x_{n+1}, y_{n+1}) = G(x_{n+2}, y_{n+2})$$

and

$$F(y_{n+1}, x_{n+1}) = G(y_{n+2}, x_{n+2}) \leq F(y_n, x_n) = G(y_{n+1}, x_{n+1}).$$

Thus we proved that (3.4) holds for all $n \in \mathbb{N}$.

For all $n \in \mathbb{N}$, denote

$$\delta_n = d(G(x_n, y_n), G(x_{n+1}, y_{n+1})) + d(G(y_n, x_n), G(y_{n+1}, x_{n+1})). \tag{3.5}$$

We can suppose that $\delta_n > 0$ for all $n \in \mathbb{N}$, if not, (x_n, y_n) will be a coincidence point and the proof is finished. We claim that for any $n \in \mathbb{N}$, we have

$$\delta_{n+1} \le 2\varphi\left(\frac{\delta_n}{2}\right). \tag{3.6}$$

Since $G(x_n, y_n) \leq G(x_{n+1}, y_{n+1})$ and $G(y_n, x_n) \geq G(y_{n+1}, x_{n+1})$, letting $x = x_n$, $y = y_n$, $u = x_{n+1}$ and $v = y_{n+1}$ in (3.1), and using (3.3), we get

$$d(G(x_{n+1}, y_{n+1}), G(x_{n+2}, y_{n+2})) = d(F(x_n, y_n), F(x_{n+1}, y_{n+1}))$$

$$\leq \varphi \left(\frac{d(G(x_n, y_n), G(x_{n+1}, y_{n+1})) + d(G(y_n, x_n), G(y_{n+1}, x_{n+1}))}{2} \right)$$

$$= \varphi \left(\frac{\delta_n}{2} \right).$$
(3.7)

Similarly, since $G(y_{n+1}, x_{n+1}) \leq G(y_n, x_n)$ and $G(x_{n+1}, y_{n+1}) \geq G(x_n, y_n)$, we have

$$d(G(y_{n+2}, x_{n+2}), G(y_{n+1}, x_{n+1})) = d(F(y_{n+1}, x_{n+1}), F(y_n, x_n))$$

$$\leq \varphi \left(\frac{d(G(y_{n+1}, x_{n+1}), G(y_n, x_n)) + d(G(x_{n+1}, y_{n+1}), G(x_n, y_n))}{2} \right)$$

$$= \varphi \left(\frac{\delta_n}{2} \right).$$
(3.8)

Summing (3.7) to (3.8) yields (3.6).

From (3.6), since $\varphi(t) < t$ for all t > 0, it follows that the sequence (δ_n) is monotone decreasing. Therefore, there is some $\delta \geq 0$ such that

$$\lim_{n \to +\infty} \delta_n = \delta^+.$$

If possible, let $\delta > 0$. Taking the limit as $n \to +\infty$ in (3.6) and using $\lim_{r \to t^+} \varphi(r) < t$ for all t > 0, we obtain

$$\delta = \lim_{n \to +\infty} \delta_n \le 2 \lim_{n \to +\infty} \varphi\left(\frac{\delta_{n-1}}{2}\right) = 2 \lim_{\delta_{n-1} \to \delta^+} \varphi\left(\frac{\delta_{n-1}}{2}\right) < 2\frac{\delta}{2} = \delta,$$

which is a contradiction. Thus $\delta = 0$, that is,

$$\lim_{n \to +\infty} d(G(x_n, y_n), G(x_{n+1}, y_{n+1})) + d(G(y_n, x_n), G(y_{n+1}, x_{n+1})) = \lim_{n \to +\infty} \delta_n = 0.$$
(3.9)

We shall prove that $((G(x_n, y_n), G(y_n, x_n)))$ is a Cauchy sequence in $X \times X$ endowed with the metric η defined by

$$\eta((x,y),(u,v)) = d(x,u) + d(y,v)$$

for all $(x, y), (u, v) \in X \times X$. We argue by contradiction. Suppose that $((G(x_n, y_n), G(y_n, x_n)))$ is not a Cauchy sequence in $(X \times X, \eta)$. Then, there exists $\varepsilon > 0$ for which we can

Surveys in Mathematics and its Applications 11 (2016), 77 – 92 http://www.utgjiu.ro/math/sma find two sequences of positive integers (m(k)) and (n(k)) such that for all positive integer k with n(k) > m(k) > k, we have

$$\begin{cases} \eta(((Gx_{m(k)}, Gy_{m(k)}), (Gy_{m(k)}, Gx_{m(k)})), ((Gx_{n(k)}, Gy_{n(k)}), (Gy_{n(k)}, Gx_{n(k)}))) > \varepsilon, \\ \eta(((Gx_{m(k)}, Gy_{m(k)}), (Gy_{m(k)}, Gx_{m(k)})), ((Gx_{n(k)-1}, Gy_{n(k)-1}), (Gy_{n(k)-1}, Gx_{n(k)-1}))) \le \varepsilon. \end{cases}$$

$$(3.10)$$

By definition of the metric η , we have

$$d_k = d((Gx_{m(k)}, Gy_{m(k)}), (Gx_{n(k)}, Gy_{n(k)})) + d((Gy_{m(k)}, Gx_{m(k)}), (Gy_{n(k)}, Gx_{n(k)})) > \varepsilon$$
(3.11)

and

$$d((Gx_{m(k)},Gy_{m(k)}),(Gx_{n(k)-1},Gy_{n(k)-1}))+d((Gy_{m(k)},Gx_{m(k)}),(Gy_{n(k)-1},Gx_{n(k)-1}))\leq\varepsilon. \tag{3.12}$$

Further from (3.11) and (3.12), for all $k \geq 0$, we have

$$\begin{split} \varepsilon &< d_k \leq d((Gx_{m(k)}, Gy_{m(k)}), (Gx_{n(k)-1}, Gy_{n(k)-1})) + d((Gx_{n(k)-1}, Gy_{n(k)-1}), (Gx_{n(k)}, Gy_{n(k)})) \\ &+ d((Gy_{m(k)}, Gx_{m(k)}), (Gy_{n(k)-1}, Gx_{n(k)-1})) + d((Gy_{n(k)-1}, Gx_{n(k)-1}), (Gy_{n(k)}, Gx_{n(k)})) \\ &\leq \varepsilon + \delta_{n(k)-1}. \end{split}$$

Taking the limit as $k \to +\infty$ in the above inequality, we have by (3.9),

$$\lim_{k \to +\infty} d_k = \varepsilon^+. \tag{3.13}$$

Again, for all $k \geq 0$, we have

$$\begin{split} d_k = &d((Gx_{m(k)}, Gy_{m(k)}), (Gx_{n(k)}, Gy_{n(k)})) + d((Gy_{m(k)}, Gx_{m(k)}), (Gy_{n(k)}, Gx_{n(k)})) \\ \leq &d((Gx_{m(k)}, Gy_{m(k)}), (Gx_{m(k)+1}, Gy_{m(k)+1})) + d((Gx_{m(k)+1}, Gy_{m(k)+1}), (Gx_{n(k)+1}, Gy_{n(k)+1})) \\ + &d((Gx_{n(k)+1}, Gy_{n(k)+1}), (Gx_{n(k)}, Gy_{n(k)})) + d((Gy_{m(k)}, Gx_{m(k)}), (Gy_{m(k)+1}, Gx_{m(k)+1})) \\ + &d((Gy_{m(k)+1}, Gx_{m(k)+1}), (Gy_{n(k)+1}, Gx_{n(k)+1})) + d((Gy_{n(k)+1}, Gx_{n(k)+1}), (Gy_{n(k)}, Gx_{n(k)})) \\ = &d((Gx_{m(k)}, Gy_{m(k)}), (Gx_{m(k)+1}, Gy_{m(k)+1})) + d((Gy_{m(k)}, Gx_{m(k)}), (Gy_{m(k)+1}, Gx_{m(k)+1})) \\ + &d((Gx_{n(k)+1}, Gy_{n(k)+1}), (Gx_{n(k)}, Gy_{n(k)})) + d((Gy_{n(k)+1}, Gx_{n(k)+1}), (Gy_{n(k)}, Gx_{n(k)})) \\ + &d((Gx_{m(k)+1}, Gy_{m(k)+1}), (Gx_{n(k)+1}, Gy_{n(k)+1})) + d((Gy_{m(k)+1}, Gx_{m(k)+1}), (Gy_{n(k)+1}, Gx_{n(k)+1})). \end{split}$$

Hence, for all $k \geq 0$,

$$d_{k} \leq \delta_{m(k)} + \delta_{n(k)} + d((Gx_{m(k)+1}, Gy_{m(k)+1}), (Gx_{n(k)+1}, Gy_{n(k)+1})) + d((Gy_{m(k)+1}, Gx_{m(k)+1}), (Gy_{n(k)+1}, Gx_{n(k)+1})).$$

$$(3.14)$$

From (3.1), (3.4) and (3.11), for all $k \ge 0$, we have

$$d((Gx_{m(k)+1}, Gy_{m(k)+1}), (Gx_{n(k)+1}, Gy_{n(k)+1})) = d((Fx_{m(k)}, Fy_{m(k)}), (Fx_{n(k)}, Fy_{n(k)}))$$

$$\leq \varphi \left(\frac{d(G(x_{m(k)}, y_{m(k)}), G(x_{n(k)}, y_{n(k)})) + d(G(y_{m(k)}, x_{m(k)}), G(y_{n(k)}, x_{n(k)}))}{2}\right)$$

$$= \varphi \left(\frac{d_k}{2}\right).$$
(3.15)

Also, from (3.1), (3.4) and (3.11), for all $k \geq 0$, we have

$$d((Gy_{m(k)+1}, Gx_{m(k)+1}), (Gy_{n(k)+1}, Gx_{n(k)+1})) = d((Fy_{m(k)}, Fx_{m(k)}), (Fy_{n(k)}, Fx_{n(k)}))$$

$$\leq \varphi \left(\frac{d(G(y_{m(k)}, x_{m(k)}), G(y_{n(k)}, x_{n(k)})) + d(G(x_{m(k)}, y_{m(k)}), G(x_{n(k)}, y_{n(k)}))}{2}\right)$$

$$= \varphi \left(\frac{d_k}{2}\right). \tag{3.16}$$

Putting (3.15) and (3.16) in (3.14), we get

$$d_k \le \delta_{m(k)} + \delta_{n(k)} + 2\varphi\left(\frac{d_k}{2}\right).$$

Letting $k \to +\infty$ in the above inequality and using (3.9) and (3.13), we obtain

$$\varepsilon \le 2 \lim_{k \to +\infty} \varphi\left(\frac{d_k}{2}\right) = 2 \lim_{d_k \to \varepsilon^+} \varphi\left(\frac{d_k}{2}\right) < 2\frac{\varepsilon}{2} = \varepsilon,$$
 (3.17)

which is a contradiction. Thus we proved that $((G(x_n, y_n), G(y_n, x_n)))$ is a Cauchy sequence in $(X \times X, \eta)$, which implies that $((G(x_n, y_n)))$ and $(G(y_n, x_n))$ are Cauchy sequences in (X, d).

Now, since (X, d) is complete, there exist $x, y \in X$ such that

$$\lim_{n \to +\infty} G(x_n, y_n) = \lim_{n \to +\infty} F(x_n, y_n) = x \text{ and } \lim_{n \to +\infty} G(y_n, x_n) = \lim_{n \to +\infty} F(y_n, x_n) = y.$$
(3.18)

Since the pair $\{F,G\}$ satisfies the generalized compatibility, from (3.18), we get

$$\lim_{n \to +\infty} d(F(G(x_n, y_n), G(y_n, x_n)), G(F(x_n, y_n), F(y_n, x_n))) = 0$$
(3.19)

and

$$\lim_{n \to +\infty} d(F(G(y_n, x_n), G(x_n, y_n)), G(F(y_n, x_n), F(x_n, y_n))) = 0.$$
 (3.20)

Suppose that F is continuous.

For all $n \geq 0$, we have

$$d(G(x,y), F(G(x_n,y_n), G(y_n,x_n))) \leq d(G(x,y), G(F(x_n,y_n), F(y_n,x_n))) + d(G(F(x_n,y_n), F(y_n,x_n)), F(G(x_n,y_n), G(y_n,x_n))).$$

Taking the limit as $n \to +\infty$, using (3.18), (3.19) and the fact that F and G are continuous, we have

$$G(x,y) = F(x,y). \tag{3.21}$$

Similarly, using (3.18), (3.20) and the fact that F and G are continuous, we have

$$G(y,x) = F(y,x). (3.22)$$

Thus, we proved that (x, y) is a coupled coincidence point of F and G.

Now, suppose that (a) and (b) hold.

By (3.4) and (3.18), we have $(G(x_n, y_n))$ is non-decreasing sequence, $G(x_n, y_n) \to x$ and $(G(y_n, x_n))$ is non-increasing sequence, $G(y_n, x_n) \to y$ as $n \to +\infty$. Then by (a) and (b), for all $n \in \mathbb{N}$, we have

$$G(x_n, y_n) \leq x$$
 and $G(y_n, x_n) \geq y$. (3.23)

Since the pair $\{F, G\}$ satisfies the generalized compatibility and G is continuous, by (3.19) and (3.20), we have

$$\lim_{n \to +\infty} G(G(x_n, y_n), G(y_n, x_n)) = G(x, y)$$

$$= \lim_{n \to +\infty} G(F(x_n, y_n), F(y_n, x_n))$$

$$= \lim_{n \to +\infty} F(G(x_n, y_n), G(y_n, x_n))$$

$$(3.24)$$

and

$$\lim_{n \to +\infty} G(G(y_n, x_n), G(x_n, y_n)) = G(y, x)$$

$$= \lim_{n \to +\infty} G(F(y_n, x_n), F(x_n, y_n)) \quad (3.25)$$

$$= \lim_{n \to +\infty} F(G(y_n, x_n), G(x_n, y_n)).$$

Now, we have

$$d(G(x,y),F(x,y)) \leq d(G(x,y),G(G(x_{n+1},y_{n+1}),G(y_{n+1},x_{n+1}))) + d(G(F(x_n,y_n),F(y_n,x_n)),F(x,y)).$$

Letting $n \to +\infty$ in the above inequality and using (3.24), we get

$$d(G(x,y),F(x,y)) \leq \lim_{n \to +\infty} d(G(F(x_n,y_n),F(y_n,x_n)),F(x,y))$$

=
$$\lim_{n \to +\infty} d(F(G(x_n,y_n),G(y_n,x_n)),F(x,y)).$$

Since G has the mixed monotone property, it follows from (3.23) that

$$G(G(x_n, y_n), G(y_n, x_n)) \leq G(x, y)$$
 and $G(G(y_n, x_n), G(x_n, y_n)) \geq G(y, x)$.

Then, using (3.1), (3.24), (3.25) and Lemma 18, we get

$$\leq \lim_{n \to +\infty} \varphi\left(\frac{d(G(G(x_n, y_n), G(y_n, x_n)), G(x, y)) + d(G(G(y_n, x_n), G(x_n, y_n)), G(y, x))}{2}\right) = 0.$$

Then we get

$$G(x,y) = F(x,y).$$

Similarly, we can show that

$$G(y,x) = F(y,x).$$

Thus we proved that (x, y) is a coupled coincidence point of F and G.

This completes the proof of the Theorem 19.

Now, we deduce an analogous result to Theorem 8 of Choudhury and Kundu [5]. At first, we introduce the following definition.

Definition 20. Let (X, \preceq) be a partially ordered set, $F: X \times X \to X$ and $g: X \to X$. We say that F is g-increasing with respect to \preceq if for any $x, y \in X$,

$$gx_1 \leq gx_2$$
 implies $F(x_1, y) \leq F(x_2, y)$

and

$$gy_1 \leq gy_2$$
 implies $F(x, y_1) \leq F(x, y_2)$.

Corollary 21. Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \to X$ and $g: X \to X$ be two mappings such that F is g-increasing with respect to \preceq , and satisfy

$$d(F(x,y),F(u,v)) \leq \varphi\Bigg(\frac{d(gx,gu) + d(gy,gv)}{2}\Bigg),$$

for all $x, y, u, v \in X$, with $gx \leq gu$ and $gv \leq gy$, where $\varphi \in \Phi$. Suppose that $F(X \times X) \subseteq g(X)$, g is continuous and monotone increasing with respect to \preceq , and the pair $\{F, g\}$ is compatible. Also suppose either F is continuous or X has the following properties:

- (a) if a non-decreasing sequence $x_n \to x$, then $x_n \leq x$ for all n,
- (b) if a non-increasing sequence $x_n \to x$, then $x \leq x_n$ for all n.

If there exist $x_0, y_0 \in X$ such that $gx_0 \leq F(x_0, y_0)$ and $F(y_0, x_0) \leq gy_0$, then F and g have a coupled coincidence point, that is, there exists $(x, y) \in X \times X$ such that gx = F(x, y) and gy = F(y, x).

Proof. Taking $G: X \times X \to X$, $(x,y) \mapsto G(x,y) = gx$ in Theorem 19, we obtain Corollary 21.

Now, we present an example to illustrate our obtained result given by Theorem 19.

Example 22. Let X = [0,1] endowed with the natural ordering of real numbers. We endow X with the standard metric d(x,y) = |x-y| for all $x,y \in X$. Then (X,d) is a complete metric space. Define the mappings $G, F: X \times X \to X$ by

$$G(x,y) = \left\{ \begin{array}{ll} x-y & \text{if} \quad x \geq y \\ 0 & \text{if} \quad x < y \end{array} \right. \quad \text{and} \quad F(x,y) = \left\{ \begin{array}{ll} \frac{x-y}{3} & \text{if} \quad x \geq y \\ 0 & \text{if} \quad x < y \end{array} \right. .$$

Let us prove that F is G-increasing.

Let $(x, y), (u, v) \in X \times X$ with $G(x, y) \leq G(u, v)$. We consider the following cases. Case-1: x < y.

In this case, we have $F(x,y) = 0 \le F(u,v)$.

Case-2: $x \geq y$.

If $u \geq v$, we get

$$G(x,y) \le G(u,v) \Rightarrow x-y \le u-v \Rightarrow \frac{x-y}{3} \le \frac{u-v}{3} \Rightarrow F(x,y) \le F(u,v).$$

If u < v, we get

$$G(x,y) \le G(u,v) \Rightarrow 0 \le x - y \le 0 \Rightarrow x = y \Rightarrow F(x,y) = 0 \le F(u,v).$$

Thus we proved that F is G-increasing.

Let us prove that for any $x, y \in X$, there exist $u, v \in X$ such that

$$\begin{cases} F(x,y) = G(u,v) \\ F(y,x) = G(v,u) \end{cases}.$$

Let $(x,y) \in X \times X$ be fixed. We consider the following cases:

Case-1: x = y.

In this case, F(x, y) = 0 = G(x, y) and F(y, x) = 0 = G(y, x).

Case-2: x > y.

In this case, we have

$$F(x,y) = \frac{x-y}{3} = G(x/3, y/3)$$
 and $F(y,x) = 0 = G(y/3, x/3)$.

Case-3: x < y.

In this case, we have

$$F(x,y) = 0 = G(x/3, y/3)$$
 and $F(y,x) = \frac{y-x}{3} = G(y/3, x/3)$.

G is continuous and has the mixed monotone property.

Clearly G is continuous. Let $(x,y) \in X \times X$ be fixed. Suppose that $x_1, x_2 \in X$ are such that $x_1 < x_2$. We distinguish the following cases.

Case-1: $x_1 < y$.

In this case, we have $G(x_1, y) = 0 \le G(x_2, y)$.

Case-2: $x_2 > x_1 \ge y$.

In this case, we have

$$G(x_1, y) = x_1 - y \le x_2 - y = G(x_2, y).$$

Similarly, we can show that if $y_1, y_2 \in X$ are such that $y_1 < y_2$, then $G(x, y_1) \ge G(x, y_2)$.

Now, we prove that the pair $\{F,G\}$ satisfies the generalized compatibility hypothesis. Let (x_n) and (y_n) be two sequences in X such that

$$t_1 = \lim_{n \to +\infty} G(x_n, y_n) = \lim_{n \to +\infty} F(x_n, y_n)$$

and

$$t_2 = \lim_{n \to +\infty} G(y_n, x_n) = \lim_{n \to +\infty} F(y_n, x_n).$$

Then obviously, $t_1 = t_2 = 0$. It follows easily that

$$\lim_{n \to +\infty} d(F(G(x_n, y_n), G(y_n, x_n)), G(F(x_n, y_n), F(y_n, x_n))) = 0$$

and

$$\lim_{n \to +\infty} d(F(G(y_n, x_n), G(x_n, y_n)), G(F(y_n, x_n), F(x_n, y_n))) = 0.$$

There exists $(x_0, y_0) \in X \times X$ such that $G(x_0, y_0) \leq F(x_0, y_0)$ and $G(y_0, x_0) \geq F(y_0, x_0)$.

We have

$$G(0, 1/2) = 0 = F(0, 1/2)$$
 and $G(1/2, 0) = 1/2 \ge 1/6 = F(1/2, 0)$.

Now, let $\varphi:[0,+\infty)\to[0,+\infty)$ be defined as

$$\varphi(t) = \frac{2t}{3} \text{ for all } t \geq 0.$$

Clearly $\varphi \in \Phi$. Let us prove that inequality (3.1) is satisfied for all $x, y, u, v \in X$, with $G(x,y) \leq G(u,v)$ and $G(v,u) \leq G(y,x)$.

Let $x, y, u, v \in X$, with $G(x, y) \leq G(u, v)$ and $G(v, u) \leq G(y, x)$. We have

$$\begin{aligned} d(F(x,y),F(u,v)) &= |F(x,y) - F(u,v)| \\ &= \frac{1}{3}|G(x,y) - G(u,v)| \\ &= \frac{2}{3}\left(\frac{|G(x,y) - G(u,v)|}{2}\right) \\ &\leq \frac{2}{3}\left(\frac{|G(x,y) - G(u,v)| + |G(y,x) - G(v,u)|}{2}\right) \\ &= \varphi\left(\frac{d(G(x,y),G(u,v)) + d(G(y,x),G(v,u))}{2}\right). \end{aligned}$$

Then, inequality (3.1) is satisfied.

Now, all the required hypotheses of Theorem 19 are satisfied. Thus we deduce the existence of a coupled coincidence point of F and G. Here, (0,0) is a coupled coincidence point of F and G.

References

- R.P. Agarwal, M.A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Applicable Anal. 87(1)(2008), 109-116. MR2381749. Zbl 1140.47042.
- [2] I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. Volume 2010, Article ID 621469, 17 pages, 2010. MR2591832. Zbl 1197.54053.
- [3] I. Beg and A.R. Butt, Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71 (9) (2009), 3699-3704. MR2536280. Zbl 1176.54028.
- [4] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393. 2245511. Zbl 1106.47047.
- [5] B.S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73(8) (2010), 2524-2531. MR2674088. Zbl 1229.54051.
- [6] Lj. Ćirić, M. Abbas, R. Saadati and N. Hussain Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput. 217 (2011), 5784-5789. MR2770196. Zbl 1206.54040.

- [7] Lj. Ćirić, N. Cakić, M. Rajović and J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. Volume 2008, Article ID 131294, 11 pages, 2008. MR2481377. Zbl 1158.54019.
- [8] J. Harjani and K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (2010), 1188-1197. MR2577519. Zbl 1220.54025.
- [9] V. Lakshmikantham and Lj. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) ,4341-4349. MR2514765. Zbl 1176.54032.
- [10] H.K. Nashine and B. Samet, Fixed point results for mappings satisfying (ψ, φ) weakly contractive condition in partially ordered metric spaces, Nonlinear Anal.
 74 (2011), 2201-2209. MR2781749. Zbl 1208.41014.
- [11] J.J. Nieto and R.R. López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order. 22 (3) (2005), 223-239. MR2212687. Zbl 1095.47013.
- [12] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proceedings of the American Mathematical Society. 132 (5) (2004), 1435-1443. MR2053350. Zbl 1060.47056.
- [13] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010), 4508-4517. MR2639199. Zbl 1264.54068.
- [14] B. Samet and C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct. Anal. 1 (2) (2010), 46-56. MR2772037. Zbl 1214.54041.

Hassen Aydi

University of Dammam, Department of Mathematics.

College of Education of Jubail, P.O: 12020, Industrial Jubail 31961, Saudi Arabia.

e-mail: hmaydi@uod.edu.sa

Manel Jellali

University of Dammam, Department of Mathematics.

College of Education of Jubail, P.O: 12020, Industrial Jubail 31961, Saudi Arabia.

e-mail: majellali@uod.edu.sa

License

This work is licensed under a Creative Commons Attribution 4.0 International License.