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QUANTAM LIÉNARD II EQUATION AND
JACOBI’S LAST MULTIPLIER

A. Ghose Choudhury and Partha Guha

Abstract. In this survey the role of Jacobi’s last multiplier in mechanical systems with a

position dependent mass is unveiled. In particular, we map the Liénard II equation ẍ + f(x)ẋ2 +

g(x) = 0 to a position dependent mass system. The quantization of the Liénard II equation is then

carried out using the point canonical transformation method together with the von Roos ordering

technique. Finally we show how their eigenfunctions and eigenspectrum can be obtained in terms

of associated Laguerre and exceptional Laguerre functions. By employing the exceptional Jacobi

polynomials we construct three exactly solvable potentials giving rise to bound-state solutions of

the Schrödinger equation.

1 Introduction

In recent times there has been a lot of interest in PT-symmetric Hamiltonians owing
to the fact that they provide examples of non-hermitian Hamiltonians with a real
spectrum. There has also been a surfeit of interest in quantization of dissipative
dynamical systems. In this context we consider the equation ẍ+ f(x)ẋ2 + g(x) = 0,
in which the overdot denotes differentiation with respect to time t, and will refer
to it as the Liénard II equation [40] since it involves a quadratic damping term in
contrast to the usual Liénard equation, ẍ+ f(x)ẋ+ g(x) = 0.

The Liénard II equation arises naturally whenever the mass is position dependent
[2]. Indeed assuming the linear momentum, p = m(x)ẋ, it follows that

dp

dt
= m(x)ẍ+m′(x)ẋ2.

Consequently if we set the force to be proportional to m(x), i.e., take F(x) =
−m(x)g(x) one obtains from Newton’s second law the equation of motion, ẍ +
m′(x)/m(x)ẋ2 + g(x) = 0. This is obviously a special case of the Liénard II
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2 A. Ghose Choudhury and Partha Guha

equation being considered with f(x) = m′(x)/m(x). Besides the above from a more
mechanical perspective such equations with a quadratic damping term often result
from the movement of an object through a fluid medium as with an automobile
pushing through air or a boat through water. For a practical application one may
note that such quadratic damping assumes significance in the design of a cam, which
is an eccentric-shaped device usually used to convert the rotational motion of a shaft
into a translation especially at high speeds or in case of very dense fluids [31].

In our previous work [15] on the Liénard II equation we have shown that employing
the notion of Jacobi’s last multiplier (JLM) [22, 23, 32, 46] one can recast the
Liénard II equation into the Euler-Lagrange form so that using the usual Legendre
transformation we can easily construct the Hamiltonian of the system. An interesting
feature displayed by such a Hamiltonian was the presence of a kinetic energy term of
the form, p2/2M(x), whereM(x) represents the JLM of the equation. In view of this
dependence of the kinetic term on the JLM it is reasonable to interpret physically the
JLM as a kind of effective mass of the corresponding dynamical system and regard
the Hamiltonian as one involving a position-dependent mass (PDM). The presence of
such PDM terms have in fact appeared in several nonlinear oscillators [8, 28] and in
the PT -symmetric cubic anharmonic oscillator [30]. In recent years the study of the
exact solutions of the position-dependent mass Schrödinger equation (PDMSE) (see
for example [3, 4, 10, 20, 25, 29]) using the method of point canonical transformations
[6, 26, 11, 24] or supersymmetric quantum mechanics [45] has gained a certain degree
of importance owing to their relevance in diverse areas of physics ranging from
quantum dots [42], quantum liquids [1], metal clusters [35], compositionally graded
crystals [16] etc. and thus provides sufficient motivation for the study of the Liénard
II equation from a quantum mechanical perspective.

The quantization of such PDM Hamiltonians is, however, beset with a number
of problems foremost among which is the issue of ordering. In the coordinate
representation the situation was resolved by Von Roos [43] who developed a novel
scheme which we have put to use here. As for the issue of requiring PT-symmetry
it is easy to show that the Liénard II equation respects this symmetry provided the
functions f(x) and g(x) are odd.

Bhattacharjie and Sudarshan in [6] introduced a method for determining classes
of potentials appearing in the Schrödinger equation whose solutions corresponded
to the classical orthogonal polynomials. These polynomials are characterized as the
polynomial solutions of a Sturm-Liouville problem in connection with the celebrated
theorem of Bochner [7]. In recent years, one of the most enchanting developments
in quantum mechanics has been the construction of new class of exactly solvable
potentials associated with the appearance of a new family of exceptional orthogonal
polynomials [17, 18, 19]. Gomez-Ullate et al [18] extended Bochner’s result by
dropping the assumption that the first element of the orthogonal polynomial sequence
be a constant. In other words, contrary to families of classical orthogonal polynomials
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Quantum Liénard II and JLM 3

which start with a constant, the families of the exceptional orthogonal polynomials
begin with some polynomial of degree greater than or equal to one, but still form
complete, orthogonal sets with respect to some positive-definite measure.

In our case this provides a useful technique for determining suitable forms of the
functions f(x) and g(x) appearing in the Liénard II equation for which one can solve
the Schrödinger equation using point canonical transformation method [6, 26] and
determine the eigenspectrum. The recent discovery of the exceptional classes of X1-
polynomials [17] for the Laguerre and Jacobi polynomial class further enlarges the
class of potentials and in turn the classes of functions f(x) and g(x) which may be
tackled. For instance the exceptional X1 Laguerre or Jacobi type polynomials were
shown to be the eigenfunctions of the rationally extended radial oscillator or Scarf
I potentials by using the point canonical transformation method in [36] and by the
methods of supersymmetric quantum mechanics in [38]. Construction of two distinct
families of Laguerre and Jacobi type Xm exceptional orthogonal polynomials as
eigenfunctions of infinitely many shape invariant potentials by deforming the radial
oscillator, the hyperbolic (or trigonometric) Poschl Teller potentials and hyperbolic
(or trigonometric) Scarf potentials has been done in [33, 34, 29]. Recently Quesne
[36] has constructed certain exactly solvable potentials giving rise to bound-state
solutions to the Schrödinger equation, which are new and can be written in terms
of the Jacobi-type X1 exceptional orthogonal polynomials.

Furthermore, exactly solvable potentials and their corresponding solutions in
terms of the exceptional classes of X1-polynomials [17] for the Laguerre and Jacobi
polynomial class provide us with a useful technique for determining suitable forms
of the functions f(x) and g(x) appearing in the Liénard II equation for which one
can solve the Schrödinger equation and determine the eigenspectrum using the point
canonical transformation method [6, 26].

Recently an exact quantization of a PT symmetric (reversible) Liénard type one
dimensional nonlinear oscillator both semiclassically and quantum mechanically has
been carried out in [39].

The paper is organized as follows. In Section 2 we introduce the notion of Jacobi’s
last multiplier and use it to deduce the Hamiltonian of the Liénard II equation. In
Section 3 we consider the Schrödinger equation in the coordinate representation and
by combining the approaches of Von Roos and Bhattacharjie and Sudarshan identify
certain potentials which give rise to solutions belonging to well known classical
second-order linear ODEs including the recently discovered exceptional Laguerre
equation. In Section 4 we derive new potentials using the X1- Jacobi equation and
compute their associated eigenfunctions and eigenvalues.
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4 A. Ghose Choudhury and Partha Guha

2 JLM and the Hamiltonian of the Liénard II equation

Given a second-order ordinary differential equation (ODE)

ẍ = F (x, ẋ) (2.1)

we define the Jacobi last multiplier M as a solution of the following ODE

d logM

dt
+
∂F (x, ẋ)

∂ẋ
= 0. (2.2)

Assuming (2.1) to be derivable from the Euler-Lagrange equation one can show that
the JLM is related to the Lagrangian by the following equation

M =
∂2L

∂ẋ2
. (2.3)

In case of the Liénard II equation

ẍ+ f(x)ẋ2 + g(x) = 0, (2.4)

one can show that the solution of the JLM is given by

M(x) = e2F (x), F (x) :=

∫ x

f(s)ds. (2.5)

Furthermore it follows from (2.3) that its Lagrangian is

L(x, ẋ) =
1

2
e2F (x)ẋ2 − V (x), (2.6)

where the potential term

V (x) =

∫ x

e2F (s)g(s)ds. (2.7)

Clearly the conjugate momentum

p :=
∂L

∂ẋ
= ẋe2F (x) implies ẋ = pe−2F (x), (2.8)

so that the final expression for the Hamiltonian is

H =
p2

2M(x)
+

∫ x

M(s)g(s)ds, (2.9)

where we have purposely written it in terms of the last multiplier M(x) to highlight
its role as a position dependent mass term.
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Quantum Liénard II and JLM 5

Remark on PT-symmetry Liénard II Consider the following transformation

(x, t) −→ (x̃, t̃), x̃ = −x, t̃ = −t, (2.10)

under which the equation (2.4) may be seen to be invariant provided

f(−x̃) = −f(x̃) and g(−x̃) = −g(x̃). (2.11)

This shows that the functions f(x) and g(x) must be odd in order to ensure that
(2.4) is PT-symmetric. In view of (2.5) we conclude that the last multiplier M(x)
is necessarily an even function so that the potential term in (2.9) is even since
the integrand is an odd function. The kinetic energy term is also clearly invariant
under the transformation (2.10) thereby ensuring that Hamiltonian in (2.9) is PT-
symmetric.

3 Quantization of Liénard II equation

Using the von Roos decomposition for position dependent mass (PDM) we write the
Hamiltonian (2.9) as follows:

H(x̂, p̂) =
1

4
[Mα(x̂)p̂Mβ(x̂)p̂Mγ(x̂) +Mγ(x̂)p̂Mβ(x̂)p̂Mα(x̂)] + V (x̂). (3.1)

Here the parameters α, β and γ are required to satisfy the condition

α+ β + γ = −1 (3.2)

in order to ensure dimensional correctness of the PDM term while the potential
term is given by (2.7). Then in the coordinate representation with p̂ = −i}d/dx the
Schrödinger equation

Hψ = Eψ (3.3)

implies

(E−V (x))ψ(x) = − }2

2M(x)

[
ψ′′ − M ′

M
ψ′ +

β + 1

2

(
2
M ′2

M2
− M ′′

M

)
ψ + α(α+ β + 1)

M ′2

M2
ψ

]
,

(3.4)
where the ′ denotes differentiation with respect to the argument x. Using (2.3) the
last equation has the appearance

− 2

}2
(E−V (x))ψ(x)e2F (x) = ψ′′(x)−2f(x)ψ′(x)+[(β+1)(2f2(x)−f ′(x))+4α(α+β+1)f2(x)]ψ(x).

(3.5)

Next using point canonical transformation we assume that the wave function
ψ(x) is of the form

ψ(x) = w(x)G(u(x)), (3.6)
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6 A. Ghose Choudhury and Partha Guha

such that G satisfies the second-order ODE

d2G

du2
+Q(u)

dG

du
+R(u)G(u) = 0. (3.7)

Substituting (3.6) in (3.5) and comparing with (3.7) leads to the identifications

Q(u) =
u′′

u′2
+

2w′ − 2fw

wu′
, (3.8)

and

u′2R(u) =
2

}2
(E−V )e2F (x)+

w′′ − 2fw′

w
+(β+1)(2f2−f ′)+4α(α+β+1)f2. (3.9)

From (3.8) it follows that

w(x) = (u′)−1/2eF (x)e
1
2

∫
Q(u)du. (3.10)

A simple way of finding the unknown function u(x) has been first proposed by
Bhattacharjie and Sudarshan [6]. A particular choice of the special function G(u)
provides the complete functional forms of the first two unknowns Q(u) and R(u).
A specific choice of the special function G(u) and a clever choice of u(x) make the
Schrödinger equation an exactly solvable potential V (x). Using the expression for
w(x) from (3.10) to simplify (3.9) we finally arrive at

2

}2
(E−V )e2F (x) =

u′′′

2u′
−3

4

(
u′′

u′

)2

+u′2
[
R(u)− 1

2
Q′(u)− Q2

4

]
+βf ′−(2β+1+4α(α+β+1))f2.

(3.11)
This equation is central to our present analysis. It is clear that the choice of the
second-order ODE in (3.7) must be such that its coefficients R(u) and G(u), which
appear in (3.11), together with their argument u = u(x) cause the right hand side
to be have a term proportional to e2F (x); whose coefficient can then to identified
with the energy eigenvalue occurring on the left. The remaining terms, depending
on the variable x, can then be said to represent the potential function V (x). In
general this expression involves both the functions f(x) and g(x) since the latter
occurs explicitly in the definition of the potential function (2.7). For an appropriate
choice of u(x) additional terms proportional to f2 and f ′ may be generated from
its derivatives so that the expression for the potential resulting from (3.11) can be
simplified by making suitable choices of the parameters α, β and γ so as to ensure
that the coefficients of f2 and f ′ vanish. Note that the choice of the parameters α,
β and γ, which are often called the ambiguity parameters, is not unique. Several
possibilities have been explored in the literature such as those of Gora and Williams
(β = γ = 0, α = −1), BenDaniel and Duke (α = γ = 0, β = −1), Zhu and Kroemer
(α = γ = −1/2, β = 0), Li and Kuhn (β = γ = −1/2, α = 0) and Bastard (α =
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Quantum Liénard II and JLM 7

−1, β = γ = 0) [21, 5, 47, 27]. In our case however the choice of these parameters
is dictated more by our endeavour to map the Liénard II equation to an exactly
solvable quantum mechanical problem, in particular to an exactly solvable potential.
Moreover as our motivation is based on exploiting an appropriate linear ordinary
differential equation for this purpose the values of the ambiguity parameters follow
as a consequence of this requirement instead of being assigned ab intio.

3.1 The linear harmonic oscillator and the Jacobi last multiplier

In order to illustrate these possibilities we consider first of all the case when (3.7) is
taken to be the Hermite differential equation

d2y

dx2
+ 2x

dy

dx
− 2ny = 0, n = 0, 1, 2, ... (3.12)

so that we may identify

Q(u) = −2u, R(u) = 2n, n ∈ N0. (3.13)

Furthermore demanding that

u′ =
1√
}
eF (x) which implies u(x) =

1√
}

∫ x

eF (s)ds, (3.14)

we find that

2

}2
(E−V )e2F (x) =

e2F (x)

}
[2n+1−u2]+(β+

1

2
)f ′−(2β+

5

4
+4α(α+β+1))f2. (3.15)

Choosing the coefficients of f ′ and f2 to be zero yields the following values of the
ambiguity parameters:

α = −1

4
, β = −1

2
, γ = −1

4
. (3.16)

Next equating the constant terms in (3.16) implies that the energy eigenvalues are
given by

En =

(
n+

1

2

)
}, n = 0, 1, 2, ... (3.17)

It remains to obtain the expression for the potential which is given by

V (x) =
}
2
u2 =

1

2

(∫ x√
M(s)ds

)2

. (3.18)

Each integrable functionM(x) ≥ 0 defines a point canonical transformation from
the variable x onto a new variable u by the formula

u = q(x) :=

∫ √
M(x)dx. (3.19)
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8 A. Ghose Choudhury and Partha Guha

The inverse transformation is also well defined. Thus one essentially has a quadratic
potential in terms of the new coordinate as was expected for a harmonic oscillator
potential. The choice of M(x) = λu′2 has been used in various places (for example,
[4, 20]) where λ is a constant parameter.

The new coordinate there naturally fixes the nature of the function g(x) because
from (2.7) we have

V (x) =

∫
M(x)g(x)dx =

1

2
(

∫ √
M(x)dx)2

which determine

g(x) =
1√
M(x)

∫ √
M(x)dx, (3.20)

entirely in terms of the JLM or PDM term M(x).

We conclude this section by noting that if the parameters are such that the
coefficients of f ′ and f2 do not vanish independently then there exists an alternative
possibility in which the hitherto arbitrary function f(x) is assumed to be such that

(β +
1

2
)f ′ − (2β +

5

4
+ 4α(α+ β + 1))f2 = 0

This is a first-order Riccati equation and its solution is given by

f(x) =
λ

(x+ δ)
, where λ = −

β + 1
2

2β + 5
4 + 4α(α+ β + 1)

, (3.21)

δ being the constant of integration. Since the JLM, M(x) = e2F (x), we have from
(2.5) and (3.21) M(x) = (x + δ)2λ. We list below in Table I the explicit values
of M(x) for some of the rational values of the ambiguity parameter existing in the
literature:

Table I: List of values of the ambiguity parameters
and the associated form of the JLM.

Model Ambiguity parameters. λ JLM M(x) .

Gora and Williams α = −1, β = γ = 0 -2/5 (x+ δ)−4/5

Daniel and Duke α = γ = 0, β = −1 −2/3 (x+ δ)−4/3

Li and Kuhn β = γ = −1/2, α = 0 0 1

Zhu and Kromer α = γ = −1/2, β = 0 −2 (x+ δ)−4
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Quantum Liénard II and JLM 9

3.2 Associated Laguerre Equation

The associated Laguerre equation is given by

x
d2Lµ

n

dx2
+ (µ+ 1− x)

dLµ
n

dx
+ nLµ

n = 0, µ > −1, n = 0, 1, 2, .... (3.22)

The associated Laguerre polynomials are orthogonal over [0,∞) with respect to the
measure with weighting function xµe−x∫ ∞

0
xαe−xL(µ)

n (x)L(µ)
m (x)dx =

Γ(n+ µ+ 1)

n!
δn,m,

A comparison of (3.22) with (3.7) reveals that in this case

Q(u) =
µ+ 1− u

u
, Q′(u) = −µ+ 1

u2
and R(u) =

n

u
. (3.23)

Furthermore from (3.11) it is found that

2

}2
(E−V )e2F (x) =

u′′′

2u′
−3

4

(
u′′

u′

)2

+u′2
[
2n+ 1 + µ

2u
− 1

4
+

(1 + µ)(1− µ)

4u2

]
+K(α, β, f, f ′),

(3.24)
where K(α, β, f, f ′) = βf ′(x)− (2β + 1 + 4α(α+ β + 1))f2(x). Suppose we choose
now u(x) and E such that

2

}2
Ee2F (x) = (2n+ 1 + µ)

u′2

2u

with

En,µ =

(
n+

1 + µ

2

)
}, n = 0, 1, 2, .... (3.25)

This requires that

u′2

2u
=
e2F (x)

}
⇒ u(x) =

1

2}

(∫ x

eF (s)ds

)2

, 0 < u(x) <∞, (3.26)

and therefore serves to define the function (diffeomorphism) u(x). The corresponding
wave function is

ψµ
n(x) = const.eF (x)/2

(∫
eF (x)dx

)µ+ 1
2

e−
1
4} (

∫
eF (x)dx)2Lµ

n(u(x)). (3.27)

Now from (3.24)-(3.26) it follows that

2

}2
V (x) =

1

4}2

(∫ x

eF (s)ds

)2

+

[
3

4
− (1 + µ)(1− µ)

]
1(∫ x

eF (s)ds
)2 , (3.28)
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10 A. Ghose Choudhury and Partha Guha

upon demanding

βf ′ − (2β + 1 + 4α(α+ β + 1))f2 +
1

2
f ′ − 1

4
f2 = 0. (3.29)

As before the last equation may be dealt with in two ways: one can demand the
coefficients of f2 and f ′ to vanish, which leads to [12]

β = −1

2
, α = −1

4
= γ, (3.30)

in view of the constraint α+ β + γ = 1 or else we could keep α and β arbitrary and
fix the function f(x) as a solution of (3.29) as already explained in subsection 3.1.
The former procedure however has the advantage of allowing us to choose the form
of the function f(x) while at the same time fixing the structure of the Van Roos
Hamiltonian (3.1).

3.2.1 Reduction to the isotonic oscillator

The spectrum of the isotonic oscillator was shown by Goldman and Krivchenkov
[16, 44] to be isomorphous to the linear harmonic oscillator, in the sense that it
consists of an infinite set of equispaced energy levels. The reduction to the isotonic
oscillator follows upon setting f(x) = 0 which naturally implies F (x) = 0. Using
this in (3.28) we see that

2

}2
V (x) =

x2

4}2
+

(µ+ 1
2)(µ− 1

2)

x2
.

Setting µ = l + 1/2 then leads to the isotonic potential [9]

V (x) =
x2

8
+
l(l + 1)}2

2x2
, (3.31)

with the energy eigenvalue being given by

2En,l = (2n+ l +
3

2
)}, n = 0, 1, 2, ... (3.32)

The corresponding wave function is

ψ(l)
n (x) = C(l)

n xl+1e−
x2

4}Ll
n(u), u(x) =

x2

2}
(3.33)

where C
(l)
n is the normalization factor. The results contained in (3.31)-(3.33) are

essentially the same as those derived in [37] upon scaling V (x) and En,l by a factor
of 1/2 and setting the oscillator frequency to be unity.
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3.3 Exceptional Laguerre Equation

The exceptional X1-Laguerre differential equation is given by [37, 36, 34]

− xy′′ +
(x− a

x+ a

)[
(a+ x+ 1)y′ − y

]
− (n− 1)y = 0, n = 1, 2, 3..., (3.34)

with a > 0 being real. Its polynomial solutions, L̂
(a)
n (x), are called the exceptional

X1-Laguerre polynomials and are orthogonal with respect to the rational weight
ŵ(x, a) = e−xxa/(x+ a)2 with normalization given by∫ ∞

0

e−xxa

(x+ a)2
L̂(a)
n (x)L̂(a)

m (x)dx =
(a+ n)Γ(a+ n− 1)

(n− 1)!
δnm. (3.35)

Comparison with (3.7) shows that, in case of the exceptional Laguerre polynomials,
the functions Q(u) and R(u) are

Q(u) = −(u− a)(u+ a+ 1)

u(u+ a)
, R(u) =

1

u

(
u− a

u+ a
+ n− 1

)
. (3.36)

With these forms one obtains the following simplified expression for the quantity Z
defined below

Z := R(u)−1

2
Q′(u)−Q

2

4
=

[
2an+ a2 − a+ 2

2au
− 1

a(u+ a)
− a2 − 1

4u2
− 2

(u+ a)2
− 1

4

]
,

so that (3.11) now becomes

2

}2
(E−V )e2F (x) =

u′′′

2u′
− 3

4

(
u′′

u′

)2

+ u′2Z +(β+1)f ′ − (2β+1+4α(α+ β+1))f2.

(3.37)
Setting

u′2

u
=

2

}
e2F (x), we obtain u(x) =

1

2}

(∫ x

eF (s)ds

)2

. (3.38)

With this form of u(x) we find upon equating the constant term on either side of
(3.37) that the eigenvalues are

En,a =
2na+ 2 + a2 − a

2a
}, n = 1, 2, 3, ... (3.39)

Consequently the expression for the potential becomes

V (x) = −}2

2
e−2F (x)

[
u′′′

2u′
− 3

4

(
u′′

u′

)2

− u′2

a(u+ a)
− a2 − 1

4

(
u′

u

)2

− 2u′2

(u+ a)2
− u′2

4

]

− }2

2
e−2F (x)[βf ′ − (2β + 1 + 4α(α+ β + 1))f2]. (3.40)
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12 A. Ghose Choudhury and Partha Guha

Using (3.39) the simplified expression for the potential is then given by

V (x) =

⎡⎢⎣(a− 1
2)(a+

1
2)}

2

2
(∫ x

eF (s)ds
)2 +

1

8

(∫ x

eF (s)ds

)2

+
}2

a}

(∫ x
eF (s)ds

)2
+ 6a}((∫ x

eF (s)ds
)2

+ 2a}
)2 − }2

2
e−2F (x)S

⎤⎥⎦
(3.41)

with

S(α, β, f ′, f) = (β +
1

2
)f ′ − (2β +

5

4
+ 4α(α+ β + 1))f2,

so that setting the coefficients of f ′ and f2 to be zero we find once again the following
values of the ambiguity parameters: β = −1/2 and α = γ = −1/4.
Consequently the Von Roos Hamiltonian has the following structure

H(x̂, p̂) =
1

2

[
Mα(x̂)p̂Mβ(x̂)p̂Mα(x̂)

]
+ V (x̂) (3.42)

with the potential given by

V (x) =

⎡⎢⎣(a− 1
2)(a+

1
2)}

2

2
(∫ x

eF (s)ds
)2 +

1

8

(∫ x

eF (s)ds

)2

+
}2

a}

(∫ x
eF (s)ds

)2
+ 6a}((∫ x

eF (s)ds
)2

+ 2a}
)2
⎤⎥⎦ .
(3.43)

It is interesting to note that this potential inherits the isotonic character as evidenced
from the first two terms, which arose previously as a result of our use of the associated
Laguerre differential equation (see eqn. (3.28)); the remaining rational term seems
to be the extra contribution of the X1-Laguerre differential equation.

The general form of the wave function now reads

ψn(x) = const.(u′)−1/2eF (x)eu/2(u+ a)u−(a+1)/2L̂(a)
n (u), (3.44)

where we have made use of (3.6), (3.10) and (3.36) for the X1-Laguerre differential
equation with u(x) being defined by (3.38).
Finally let us consider an example in which we assume that the function [41]

eF (x) =
√
M(x) =

ν + x2

1 + x2
,

with ν being a constant. It follows that∫ x

eF (s)ds = (ν − 1) arctanx+ x

and as a consequence the potential has the form

V (x) =

⎡⎢⎣ (a− 1
2)(a+

1
2)}

2

2 ((ν − 1) arctanx+ x)2
+

1

8
((ν − 1) arctanx+ x)2 +

}2

a}
((ν − 1) arctanx+ x)2 + 6a}(
((ν − 1) arctanx+ x)2 + 2a}

)2
⎤⎥⎦
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4 The exceptional Jacobi equation

The X1-Jacobi polynomials P̂
(a,b)
n (x), with n = 1, 2, ... and a, b > −1 (a ̸= b) are the

solutions of the second-order ODE

d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0

with

Q(x) = −(b+ a+ 2)x− (b− a)

1− x2
− 2(b− a)

(b− a)x− (b+ a)
, (4.1)

R(x) = −(b− a)x− (n− 1)(n+ b+ a)

1− x2
− (b− a)2

(b− a)x− (b+ a)
. (4.2)

In order to make use of (3.11) we note that

X := R(u)−1

2
Q′−1

4
Q2(u) =

Cu+D

1− u2
+
Gu+ J

(1− u2)2
+

K

(b− a)u− (b+ a)
+

L

[(b− a)u− (b+ a)]2

(4.3)
with [36]

C =
(b− a)(b+ a)

2ab
, (4.4)

D = n2 + (b+ a− 1)n+
1

4
[(b+ a)2 − 2(b+ a)− 4] +

b2 + a2

2ab
, (4.5)

G =
(b− a)(b+ a)

2
, J = −1

2
(b2 + a2 − 2), (4.6)

K =
(b− a)2(b+ a)

2ab
, L = −2(b− a)2. (4.7)

Below we explore certain possibilities stemming from specific choices of the function
u(x).

4.1 The Scarf-I potential

In the first case we derive the previous result of the Scarf-I potential given in [36].
For this purpose we set

u′e−F (x) = λ
√
1− u2, λ = const. (4.8)

then it immediately follows that

u(x) = sin θ, θ := (λ

∫ x

eF (s)ds). (4.9)
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14 A. Ghose Choudhury and Partha Guha

As a result (3.11) becomes

2(E−V (x)) =
λ2

4
− 3λ2

4
sec2 θ+ e−2F (x)

[
(β +

1

2
)f ′ − (2β +

5

4
+ 4α(α+ β + 1))f2

]

+λ2
[
Cu+D +

Gu+ J

1− u2

]
+λ2(1−u2)

[
K

(b− a)u− (b+ a)
+

L

[(b− a)u− (b+ a)]2

]
.

(4.10)
In order to simplify this expression we may set the coefficients of f ′ and f2 to be zero
which once again yield the values given in (3.16) for the ambiguity parameters. Next
equating the coefficients of the constant terms on both sides we find after defining
the change of parameters:

a = A−B − 1

2
, b = A+B − 1

2
⇒ A =

1

2
(b+ a+ 1), B =

1

2
(b− a),

that the eigenvalue may be expressed as

2E = λ2(n− 1 +A)2, n = 1, 2, 3, ... (4.11)

which upon scaling, (λ2 = 2), can be simply written as

Eν = (ν +A)2, ν = 0, 1, 2, ...

On the other hand the potential V (x) can be expressed as

V (x) = V1(x) + V2(x)

where

V1(x) = [A(A− 1) +B2] sec2 θ −B(2A− 1) sec θ tan θ, (4.12)

V2(x) =
2(2A− 1)

[2B sin θ − (2A− 1)]
+

2[(2A− 1)2 − 4B(2A− 1) sin θ + 4B2]

[2B sin θ − (2A− 1)]2
. (4.13)

The potential V1(x) represents the Scarf-I potential with the value of θ usually
restricted to the interval (−π

2 ,
π
2 ). However, as θ = 2

∫ x
eF (s)ds we have

0 <

∫ x

eF (s)ds <
π

4
.

Notice that as, θ → ±π
2 , the second potential i.e., V2(x) approaches a constant value

so that overall the potential V (x) behaves as a Scarf-I potential. The explicit form
of the wave function follows from (3.6) and (3.10) and is given by

ψν(x) = Nν
eF (x)/2

√
2

(1− sin θ)
A−B

2 (1 + sin θ)
A+B

2

[2B sin θ − (2A− 1)]
P

(A−B− 1
2
,A+B− 1

2
)

ν+1 (sin θ). (4.14)
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Up to this point we have basically reproduced the essential results of [36] regarding
the exceptional Jacobi polyomials and it follows that the normalization factor is
given, in this case, by

Nν

2
=

B

2A−2

(
ν!(2ν + 2A)Γ(ν + 2A)

(ν +A−B + 1
2)((ν +A+B + 1

2)Γ((ν +A−B + 1
2)Γ((ν +A+B + 1

2)

)1/2

.

(4.15)

4.2 Case II: A new potential

From (4.10) it will be observed that a second possibility exists which arises from the
choice

u′e−F (x) = λ(1− u2), (4.16)

and gives

u(x) = tanh θ(x), (4.17)

where, as before, θ(x) = λ
∫ x

eF (s)ds. It now follows from (3.11) that

2(E − V (x)) = e−2F (x)

[
−λ2e2F (x) + (β +

1

2
)f ′ − (2β +

5

4
+ 4α(α+ β + 1))f2

]

+ λ2
[
(Cu+D)(1− u2) + (Gu+ J) +

K(1− u2)2

(b− a)u− (b+ a)
+

L(1− u2)2

[(b− a)u− (b+ a)]2

]
.

(4.18)
The choice β = −1/2, α = γ = −1/4 causes the coefficients of f ′ and f2 to vanish
and upon equating the coefficient of the constant term (after setting λ2 = 2) we
obtain the energy eigenvalue as

Eν(A, δ) =

[
(ν +A)2 − 1

4

]
−
(
1 +

1

δ2

)(
A− 1

2

)2

+2(1−2δ2), ν = 0, 1, 2... (4.19)

In arriving at this expression we have made use of the definitions (4.4)-(4.7) and
have redefined the parameters a and b by the following

A =
1

2
(b+ a+ 1), δ =

b+ a

b− a
, ν = n− 1.

As a ̸= b therefore the presence of the factor (b − a) in the denominators is not a
cause of undue concern. Unlike the previous case we note here the presence of both
the parameters a and b (or alternatively A and δ) in the expression for the energy
eigenvalue. The explicit form of the corresponding potential is

V (x) = U1(x) + U2(x)
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16 A. Ghose Choudhury and Partha Guha

where

U1(x) =

[
(ν +A)2 − 1

4

]
tanh2 θ +

[
1

2δ
(2A− 1)2 − 2δ

]
tanh θ (4.20)

U2(x) =
6δ(1− δ2)

(tanh θ − δ)
− 2(1− δ2)2

(tanh θ − δ)2
. (4.21)

The corresponding wave function is

ψν(x) = Nν
eF (x)/2

21/4
(1 + tanh θ)

1
2
(A+B− 1

2
)(1− tanh θ)

1
2
(A−B− 1

2
)

[2B tanh θ − (2A− 1)]
P

(A−B− 1
2
,A+B− 1

2
)

ν+1 (tanh θ),

(4.22)
whence the normalization factor follows from the requirement

|Nν |2

2

∫
dy

(1− sin y)A−B−1(1 + sin y)A+B−1

[2B sin y − (2A− 1)]2

[
P

(A−B− 1
2
,A+B− 1

2
)

ν+1 (sin y)

]2
= 1,

(4.23)
where we have made the change of variables, tanh θ = sin y, keeping in mind that
θ(x) =

√
2
∫ x

eF (s)ds.

4.3 Case III: Another new potential

A third possibility consists in setting

u′(x) = λeF (x)[(b− a)u− (b+ a)], (4.24)

which implies u(x) = δ + eθ where δ = (b+ a)/(b− a) and θ = λ(b− a)
∫ x

eF (s)ds.
Upon substitution in (3.11) and using (4.3) the energy eigenvalue after simplification
has the following form

2E

λ2
= −(D +

1

4
)(b− a)2 + 2C(b2 − a2) + L−K(b+ a).

Using the values of the constants C,D,L and K as stated in (4.4)-(4.7) to simplify
this expression we obtain finally

Eν = −λ
2

2
(b− a)2(ν +A)2, ν = 0, 1, 2, ... (4.25)

where as before A = (b+ a+ 1)/2. On the other hand from the non constant terms
it follows that the potential is a rational function of u(x) and is given by

V (x) = −λ
2(b− a)2

2(1− u2)2
[
B0 +B1u+B − 2u2 +B3u

3
]
, (4.26)
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with

B0 = Jδ2 + w2, B1 = Gδ2 − 2δJ + w1, (4.27)

B2 = J − w2 − 2δG, B3 = G− w1, (4.28)

w1 = C(δ2 + 1)− 2δD, w2 = D(δ2 + 1)− 2δC. (4.29)

Once again the values of the constants appearing in the above equations are explicitly
given in terms of the parameters a and b by eqns.(4.4)-(4.7).

5 Conclusion

The purpose of this survey is twofold; firstly, to unveil the contribution of the Jacobi
last multiplier to the study of exactly solvable position-dependent mass models, and
secondly, to describe a procedure for quantization of the Liénard type II equation.
With regard to the first we have shown here how the JLM can be used to express
the Hamiltonian of the Liénard II as an exactly solvable position-dependent mass
systems. This leads us naturally to our second goal in which we have proposed
an adaption of the techniques for exactly solvable systems to quantize the Liénard
type II equation. The eigenfunctions are obtained in terms of associated Laguerre,
exceptional Laguerre functions and the exceptional Jacobi polynomials.
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Panigrahi for enlightening discussions and constant encouragement. We are grateful
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