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IMPULSIVE EVOLUTION INCLUSIONS WITH
INFINITE DELAY AND MULTIVALUED JUMPS

Mouffak Benchohra and Mohamed Ziane

Abstract. In this paper we prove the existence of a mild solution for a class of impulsive

semilinear evolution differential inclusions with infinite delay and multivalued jumps in a Banach

space.

1 Introduction

In this paper, we are concerned by the existence of mild solution of impulsive
semilinear functional differential inclusions with infinite delay and multivalued jumps
in a Banach space E. More precisely, we consider the following class of semilinear
impulsive differential inclusions:

x′(t) ∈ A(t)x(t) + F (t, xt), t ∈ J = [0, b], t 6= tk, (1.1)

∆x
∣∣
t=tk
∈ Ik(x(t−k )), k = 1, . . . ,m (1.2)

x(t) = φ(t), t ∈ (−∞, 0], (1.3)

where {A(t) : t ∈ J} is a family of linear operators in Banach space E generating
an evolution operator, F be a Carathéodory type multifunction from J × B to
the collection of all nonempty compact convex subset of E, B is the phase space
defined axiomatically (see section 2) which contains the mapping from (−∞, 0] into
E, φ ∈ D, 0 = t0 < t1 < . . . < tm < tm+1 = b, Ik : E → P(E), k = 1, . . . ,m are
multivalued maps with closed, bounded and convex values, x(t+k ) = limh→0+ x(tk+h)
and x(t−k ) = limh→0+ x(tk − h) represent the right and left limits of x(t) at t = tk.
Finally P(E) denotes the family of nonempty subsets of E.

The theory of impulsive differential equations has become an important area of
investigation in recent years, stimulated by the numerous applications to problems
arising in mechanics, electrical engineering, medicine, biology, ecology, population
dynamics, etc. During the last few decades there have been significant developments

2010 Mathematics Subject Classification: 34A60; 34G25.
Keywords: Evolution system; Generalized Cauchy operator; Measure of noncompactness;

Impulsive functional differential inclusions; Mild solutions.

******************************************************************************
http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v07/v07.html
http://www.utgjiu.ro/math/sma
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in impulse theory, especially in the area of impulsive differential equations and
inclusions with fixed moments; see the monographs of Bainov and Simeonov [7],
Benchohra et al. [8], Lakshmikantham et al. [22], Samoilenko and Perestyuk [25],
and the references therein. For the case where the impulses are absent (i.e. Ik = 0,
k = 1, . . . ,m) and F is a single-valued or multivalued map and A is a densely
defined linear operator generating a C0-semigroup of bounded linear operators and
the state space is C([−r, 0], E) or E, the problem (1.1)–(1.3) has been investigated
in, for instance, the monographs by Ahmed [4, 5], Hale and Verduyn Lunel [17],
Hu and Papageorgiou [19], Kamenskii et al. [20] and Wu [26] and the papers by
Benchohra and Ntouyas [9], Cardinali and Rubbioni [12], Gory et al. [15]. Benedetti
[10] considered the existence result in the autonomous case (A(t) ≡ A) and finite
delay. Cardinali and Rubbioni [11] considered the non autonomous case. In [24]
Obukhovskii and Yao considered local and global existence results for semilinear
functional differential inclusions with infinite delay and impulse characteristics in a
Banach space. Recently some existence results were obtained for certain classes of
functional differential equations and inclusions in Banach spaces under assumption
that the linear part generates an compact semigroup (see, e.g., [1, 2, 3]).

Our goal here is to give existence results for the problem (1.1)–(1.3) without any
compactness assumption. In Section 2, we will recall briefly some basic definitions
and preliminary facts which will be used throughout the following sections. In
Section 3, we prove existence and compactness of solutions set for problem (1.1)–
(1.3).

We mention that the model with multivalued jump sizes may arise in a control
problem where we want to control the jump sizes in order to achieve given objectives.
To our knowledge, there are very few results for impulsive evolution inclusions with
multivalued jump operators; see [3, 6, 10, 23]. The results of the present paper
extend and complement those obtained in the absence of the impulse functions Ik,
and for those with single-valued impulse functions Ik.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. For φ ∈ B the norm of φ is defined by

‖φ‖B = sup{‖φ(θ)‖ : θ ∈ (−∞, 0]}.

Let J := [0, b], b > 0 and (E, ‖.‖) be a real separable Banach space. C(J,E) the
space of E-valued continuous functions on J with the uniform norm

‖x‖∞ = sup{‖x(t)‖, t ∈ J}.

L1(J,E) the space of E−valued Bochner integrable functions on J with the norm

‖f‖L1 =

∫ b

0
‖f(t)‖dt.
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Impulsive evolution inclusions 3

To define the solution of problem (1.1)–(1.3), it is convenient to introduce some
additional concepts and notations. Consider the following spaces

PC(J,E) = {y : J → E, yk ∈ C(Jk;E) there exist y(t−k ), y(t+k ) with y(tk) = y(t−k )},

where yk is the restriction of y to Jk = (tk, tk+1], k = 0, . . . ,m. Let the space

Ω =
{
y ∈ (−∞, b]→ E : y |(−∞,0]∈ B and y |J∈ PC(J,E)

}
with the semi-norm defined by

‖y‖Ω = ‖y0‖B + sup{‖y(s)‖ : 0 ≤ s ≤ b}, y ∈ PC.

In this work, we will employ an axiomatic definition for the phase space B which is
similar to those introduced in [18]. Specifically, B will be a linear space of functions
mapping (−∞, 0] into E endowed with a semi norm ‖.‖B, and satisfies the following
axioms introduced at first by Hale and Kato in [16]:

(A1) There exist a positive constant H and functions K(.),M(.) : R+ → R+ with K
continuous and M locally bounded, such that for any b > 0 if y : (−∞, b]→ E,
such that y |J∈ PC(J,E) and y0 ∈ B; the following conditions hold:

(i) yt is in B;

(ii) ‖y(t)‖ ≤ H‖yt‖B;

(iii) ‖yt‖B ≤ K(t) sup{‖y(s)‖ : 0 ≤ s ≤ t}+M(t)‖y0‖B and H, K and M are
independent of y(.).

(A2) The space B is complete.

In what follows we use the following notations Kb = sup{K(t), t ∈ J} and
Mb = sup{M(t), t ∈ J}

Definition 1. Let X and Y be two topological vector spaces. We denote by P(Y )
the family of all non-empty subsets of Y and by

Pk(Y ) = {C ∈ P(Y ) : compact}, Pb(Y ) = {C ∈ P(Y ) : bounded},

Pc(Y ) = {C ∈ P(Y ) : closed}, Pcv(Y ) = {C ∈ P(Y ) : convex}.

A multifunction G : X → P(Y ) is said to be upper semicontinuous (u.s.c.) if
G−1(V ) = {x ∈ X : G(x) ⊆ V } is an open subset of X for every open V ⊆ Y .
The multifunction G is called closed if its graph ΓG = {(x, y) ∈ X × Y : y ∈ G(x)}
is closed subset of the topological space X × Y . The multifunction G is called
quasicompact restriction to any compact subset M ⊂ X is compact. A multifunction

******************************************************************************
Surveys in Mathematics and its Applications 7 (2012), 1 – 14

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v07/v07.html
http://www.utgjiu.ro/math/sma
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F : [c, d] ⊂ R → Pk(Y ) is said to be strongly measurable if there exists a sequence
Fn : [c, d]→ Pk(Y ), n = 1, 2, ... of steps multifunctions such that

lim
n→+∞

h(Fn(t),F(t)) = 0, for µ-a.e t ∈ [c, d],

where µ denotes the Lebesgue measure on [c, d] and h is the Hausdorff metric on
Pk(Y ). For details and equivalent definitions see [14, 20, 21].

Definition 2. Let (A,≥) be a partially ordered set. A function β : Pb(E) → A is
called a measure of noncompactness (MNC) in E if

β(coΩ) = β(Ω),

for every Ω ∈ Pb(E).

Definition 3. A measure of noncompactness β is called:

(i) monotone if Ω0,Ω1 ∈ Pb(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1)

(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ E, Ω ∈ Pb(E);

(iii) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

As an example of the measure of noncompactness possessing all these properties is
the Hausdorff of MNC which is defined by

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net}.

For more information about the measure of noncompactness we refer the reader to
[20].

Definition 4. A multifunction G : E → Pk(E) is said to be χ-condensing if for
every bounded subset Ω ⊆ E the relation

χ(G(Ω)) ≥ χ(Ω)

implies the relative compactness of Ω.

Definition 5. A countable set {fn : n ≥ 1} ⊆ L1(J,E) is said to be semicompact if

(i) it is integrably bounded: ‖fn(t)‖ ≤ ω(t) for a.e. t ∈ J and every n ≥ 1 where
ω ∈ L1(J,R+)

(ii) the set {fn(t) : n ≥ 1} is relatively compact in E for a.e. t ∈ J .

Now, let for every t ∈ J , A(t) : E → E be a linear operator such that

(i) For all t ∈ J , D(A(t)) = D(A) ⊆ E is dense and independent of t.
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(ii) For each s ∈ I and each x ∈ E there is a unique solution v : [s, b]→ E for the
evolution equation

v′(t) = A(t)v(t), t ∈ [s, b]

v(s) = x.
(2.1)

In this case an operator T can be defined as

T : ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b} → L(E), T (t, s)(x) = v(t),

where v is the unique solution of (2.1) and L(E) is the family of linear bounded
operators on E.

Definition 6. The operator T is called the evolution operator generated by the
family {A(t) : t ∈ J}.

1. T (s, s) = IE ,

2. T (t, r)T (r, s) = T (t, s), for all 0 ≤ s ≤ r ≤ t ≤ b.

3. (t, s)→ T (t, s) is strongly continuous on ∆ and

∂T (t, s)

∂t
= A(t)T (t, s),

∂T (t, s)

∂s
= −T (t, s)A(s).

Definition 7. The operator G : L1(J,E)→ C(J,E) defined by

Gf(t) =

∫ t

0
T (t, s)f(s)ds (2.2)

is called the generalized Cauchy operator, where T (., .) is the evolution operator
generated by the family of operators {A(t) : t ∈ J}.

In the sequel we will need the following results.

Lemma 8. [20] Every semicompact set in L1(J,E) is weakly compact in the space
L1(J,E).

Lemma 9 ([20, Theorem 2]). The generalized Cauchy operator G satisfies the
properties

(G1) there exists ζ ≥ 0 such that

‖Gf(t)−Gg(t)‖ ≤ ζ
∫ t

0
‖f(s)− g(s)‖ds, for every f, g ∈ L1(J,E), t ∈ J.

(G2) for any compact K ⊆ E and sequence (fn)n≥1, fn ∈ L1(J,E) such that for all
n ≥ 1, fn(t) ∈ K, a. e. t ∈ J , the weak convergence fn ⇀ f0 in L1(J,E)
implies the convergence Gfn → Gf0 in C(J,E).
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Lemma 10. [20] Let S : L1(J,E) → C(J,E) be an operator satisfying condition
(G2) and the following Lipschitz condition (weaker than (G1)).

(G1’)

‖Sf − Sg‖C(I,E) ≤ ζ‖f − g‖L1(J,E).

Then for every semicompact set {fn}+∞n=1 ⊂ L1(J,E) the set {Sfn}+∞n=1 is relatively
compact in C(J,E). Moreover, if (fn)n≥1 converges weakly to f0 in L1(J,E) then
Sfn → Sf0 in C(J,E).

Lemma 11. [20] Let S : L1(J,E) → C(J,E) be an operator satisfying conditions
(G1), (G2) and let the set {fn}∞n=1 be integrably bounded with the property χ({fn(t) :
n ≥ 1}) ≤ η(t), for a.e. t ∈ J , where η(.) ∈ L1(J,R+) and χ is the Hausdorff MNC.
Then

χ({Sfn(t) : n ≥ 1}) ≤ 2ζ

∫ t

0
η(s)ds, for all t ∈ J,

where ζ ≥ 0 is the constant in condition (G1).

Lemma 12. [20] If U is a closed convex subset of a Banach space E and R : U →
Pcv,k(E) is a closed β-condensing multifunction, where β is a nonsingular MNC
defined on the subsets of U . Then R has a fixed point.

Lemma 13. [20] Let W be a closed subset of a Banach space E and R : W →
Pcv,k(E) be a closed multifunction which is β-condensing on every bounded subset of
W , where β is a monotone measure of noncompactness. If the fixed points set FixR
is bounded, then it is compact.

3 Existence Theorem

In this section we prove the existence of mild solutions for the impulsive semilinear
functional differential inclusions (1.1)–(1.3). We will assume the following hypotheses.

(A) {A(t) : t ∈ J} be a family of linear (not necessarily bounded) operators,
A(t) : D(A) ⊂ E → E, D(A) not depending on t and dense subset of E and
T : ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b} → L(E) be the evolution operator generated
by the family {A(t) : t ∈ J}.

(H1) The multifunction F (., x) has a strongly measurable selection for every x ∈ B.

(H2) The multifunction F : (t, .)→ Pcv,k(E) is upper semicontinuous for a.e. t ∈ J .

(H3) there exists a function α ∈ L1(J,R+) such that

‖F (t, ψ)‖ ≤ α(t)(1 + ‖ψ‖B) for a.e. t ∈ J ;

******************************************************************************
Surveys in Mathematics and its Applications 7 (2012), 1 – 14

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v07/v07.html
http://www.utgjiu.ro/math/sma


Impulsive evolution inclusions 7

(H4) There exists a function β ∈ L1(J,R+) such that for all Ω ⊂ Ω, we have

χ(F (t,D)) ≤ β(t) sup
−∞≤s≤0

χ(Ω(s)) for a.e. t ∈ J,

where, Ω(s) = {x(s);x ∈ Ω} and χ is the Hausdorff measure of noncompactness.

(H5) There exist constants ak > 0, k = 1, . . . ,m such that

‖Ik‖ ≤ ak, where Ik ∈ Ik(x(t+k )).

Definition 14. A function x ∈ Ω is said to be a mild solution of system (1.1)–(1.3)
if there exist a function f ∈ L1(J ;E) such that f ∈ F (t, xt) for a.e. t ∈ J

(i) x(t) = T (t, 0)φ(0) +
∫ t

0 T (t, s)f(s)ds +
∑

0<tk<t
T (t, tk)Ik(x(tk)) , a.e. t ∈

J, k = 1, ...,m

(ii) x(t) = φ(t), t ∈ (−∞, 0],

with Ik ∈ Ik(x(t+k )).

Remark 15. Under conditions (H1)-(H3) for every piecewise continuous function
v : J → B the multifunction F (t, v(t)) admits a Bochner integrable selection (see
[20]).

We note that from assumptions (H1) and (H3) it follows that the superposition
multioperator S1

F : Ω→ P(L1(J,E)) defined by

S1
F (.,x) = S1

F = {f ∈ L1(J,E) : f(t) ∈ F (t, xt), a.e. t ∈ J}

is nonempty set (see [20]) and is weakly closed in the following sense.

Lemma 16. If we consider the sequence (xn), (xn) ∈ Bb and {fn}+∞n=1 ⊂ L1(J,E),
where fn ∈ S1

F (.,xn) such that xn → x0 and fn → f0 then f0 ∈ S1
F .

Now we state and prove our main result.

Theorem 17. Under assumptions (A) and (H1)–(H5), the problem (1.1)–(1.3) has
at least one mild solution.

Proof. To prove the existence of a mild solution for (1.1)–(1.3) we introduce the
integral multioperator N : Ω −→ P(Ω), defined as

Nx =


y(t) ∈ Ω : y(t) = T (t, 0)φ(0) +

∫ t
0 T (t, s)f(s)ds∑

0<tk<t
T (t, tk)Ik(x(tk)), t ∈ J

y(t) = φ(t), t ∈ (−∞, 0],

(3.1)
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where S1
F and Ik ∈ Ik(x).

It is clear that the integral multioperator N is well defined and the set of all mild
solution for the problem (1.1)–(1.3) on J is the set FixN = {x : x ∈ N(x)}.

We shall prove that the integral multioperator N satisfies all the hypotheses of
Lemma 12. The proof will be given in several steps.

Step 1. Using in fact that the maps F and I has a convex values it easy to
check that N has convex values.

Step 2. N has closed graph.

Let {xn}+∞n=1, {zn}+∞n=1, xn → x∗, zn ∈ N1((xn), n ≥ 1) and zn → z∗. Moreover,
let {fn}+∞n=1 ⊂ L1(J ;E) an arbitrary sequence such that fn ∈ S1

F for n ≥ 1.
Hypothesis (H3) implies that the set {fn}+∞n=1 integrably bounded and for a,e.

t ∈ J the set {fn(t)}+∞n=1 relatively compact, we can say that {fn}+∞n=1 is semicompact
sequence. Consequently {fn}+∞n=1 is weakly compact in L1(J ;E), so we can assume
w.l.g that fn ⇀ f∗.

From lemma 9 we know that the generalized Cauchy operator on the interval J ,
G : L1(J ;E)→ C(J ;E), defined by

Gf(t) =

∫ t

0
T (t, s)f(s)ds, t ∈ J (3.2)

satisfies properties (G1) and (G2) on J .
Note that set {fn}+∞n=1 is also semicompact and sequence (fn)+∞

n=1 weakly converges
to f∗ in L1(J ;E). Therefore, by applying Lemma 10 for the generalized Cauchy
operator G of (3.2) we have in C(J ;E) the convergence Gfn → Gf . By means of
(3.2) and (3.1), for all t ∈ J we can write

zn(t) = T (t, 0)φ(0) +

∫ t

0
T (t, s)fn(s)ds+

∑
0<tk<t

T (t, tk)Ik(x
n(tk))

= T (t, 0)φ(0) +

∫ t

0
T (t, s)fnds+

∑
0<tk<t

T (t, tk)Ik(x
n(tk))

= T (t, 0)φ(0) +Gfn(t) +
∑

0<tk<t

T (t, tk)Ik(x
n(tk)))

where S1
F , and Ik ∈ Ik(x).

By applying Lemma 9, we deduce

zn → T (., 0)φ(0) +Gf + T (., t)Ik(x
∗(tk))

in C(J ;E) and by using in fact that the operator S1
F is closed, we get f∗ ∈ S1

F .
Consequently

z∗(t)→ T (t, 0)φ(0) +Gf + T (t, t)Ik(x
∗(tk)),
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therefore z∗ ∈ N(x∗). Hence N is closed.
With the same technique, we obtain that N has compact values.

Step 3. We consider the measure of noncompactness defined in the following way.
For every bounded subset Ω ⊂ Ω

ν1(Ω) = max
D∈∆(Ω)

(γ1(D), mod C(D)) ∈ R2, (3.3)

where ∆(Ω) is the collection of all the denumerable subsets of Ω;

γ1(D) = sup
t∈J

e−Ltχ({x(t) : x ∈ D}); (3.4)

where mod C(D) is the modulus of equicontinuity of the set of functions D given by
the formula

mod C(D) = lim
δ→0

sup
x∈D

max
|t1−t2|≤δ

‖x(t1)− x(t2)‖; (3.5)

and L > 0 is a positive real number chosen so that

q := 2M sup
t∈J

∫ t

0
e−L(t−s)β(s)ds < 1 (3.6)

where M = sup(t,s)∈∆ ‖T (t, s)‖.
From the Arzela-Ascoli theorem, the measure ν1 give a nonsingular and regular

measure of noncompactness, (see [20]).
Let {yn}+∞n=1 be the denumerable set which achieves that maximum ν1(N(Ω)),

i,e;
ν1(N(Ω)) = (γ1({yn}+∞n=1), mod C({yn}+∞n=1)).

Then there exists a set {xn}+∞n=1 ⊂ Ω such that yn ∈ γ1(xn), n ≥ 1. Then

yn(t) = T (t, 0)φ(0) +

∫ t

0
T (t, s)f(s)ds+

∑
0<tk<t

T (t, tk)Ik(x(tk)), (3.7)

where f ∈ S1
F and Ik ∈ Ik(x), so that

γ1({yn}+∞n=1) = γ1({Gfn}+∞n=1).

We give an upper estimate for γ1({yn}+∞n=1).
Fixed t ∈ J by using condition (H4), for all s ∈ [0, t] we have

χ({fn(s)}+∞n=1) ≤ χ(F (s, {xn(s)}+∞n=1))

≤ χ({F (s, xn(s))}+∞n=1)

≤ β(s)χ({xn(s)}+∞n=1)

≤ β(s)eLs sup
t∈J

e−Ltχ({xn(t)}+∞n=1)

= β(s)eLsγ1({xn}+∞n=1).
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By using condition (H3), the set {fn}+∞n=1 is integrably bounded. In fact, for every
t ∈ J , we have

‖fn(t)‖ ≤ ‖F (t, xn(t))‖
≤ α(t)(1 + ‖xn(t‖).

The integrably boundedness of {fn}+∞n=1 follows from the continuity of x in Jk and
the boundedness of set {xn}+∞n=1 ⊂ Ω. By applying Lemma 11, it follows that

χ({gfn(s)}+∞n=1) ≤ 2M

∫ s

0
β(t)eLt(γ1({xn}+∞n=1))dt

= 2Mγ1({xn}+∞n=1)

∫ s

0
β(t)eLt.

Thus, we get

γ1({xn}+∞n=1) ≤ γ1({yn}+∞n=1) = γ1({Gfn(s)}+∞n=1)

= sup
t∈J

e−Lt2Mγ1({xn}+∞n=1)

∫ s

0
β(t)eLt

≤ qγ1({xn}+∞n=1),

(3.8)

and hence γ1({xn}+∞n=1) = 0, then γ1({xn(t)}+∞n=1) = 0, for every t ∈ J . Consequently

γ1({yn}+∞n=1) = 0.

By using the last equality and hypotheses (H3) and (H4) we can prove that set
{fn}+∞n=1 is semicompact. Now, by applying Lemma 9 and Lemma 10, we can
conclude that set {Gfn}+∞n=1 is relatively compact in C(J ;E). The representation
of yn given by (3.7) yields that set {yn}+∞n=1 is also relatively compact in C(J ;E),
therefore ν1(Ω) = (0, 0). Then Ω is a relatively compact set.

Step 4. A priori bounds.

We will demonstrate that the solutions set is a priori bounded. Indeed, let x ∈ N .
Then there exists f ∈ S1

F (.,xt(.))
and Ik ∈ Ik(x) such that for every t ∈ J we have

‖x(t)‖ =
∥∥T (t, 0)φ(0) +

∫ t

0
T (t, s)f(s)ds+

∑
0<tk<t

T (t, tk)Ik(x(tk))
∥∥

≤M(‖φ(0)‖+
∑

0<tk<t

‖ak‖) +M

∫ t

0
f(s)ds

≤M(‖φ(0)‖+
∑

0<tk<t

‖ak‖) +M

∫ b

0
α(s)(1 + ‖x[φ]s‖)ds.
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Using condition (A1) we have

‖x(t)‖ ≤M(‖φ(0)‖+
∑

0<tk<t

‖ak‖) +M

∫ t

0
α(s)(1 +Nb‖φ‖B +Kb sup

0≤θ≤s
‖x(θ)‖)ds

≤M(‖φ(0)‖+
m∑
k=1

‖ak‖) +M(1 +Nb‖φ‖B)‖α‖L1(J)

+MKb

∫ t

0
α(s) sup

0≤θ≤s
‖x(θ)‖ds.

Since the last expression is a nondecreasing function of t, we have that

sup
0≤θ≤t

‖x(θ)‖ ≤ ‖M(‖φ(0)‖+

m∑
k=1

‖ak‖) +M(1 +Nb‖φ‖B)‖α‖L1(J)

+MKb

∫ t

0
α(s) sup

0≤θ≤s
‖x(θ)‖ds.

Invoking Gronwall’s inequality, we get

sup
0≤θ≤t

‖x(θ)‖ ≤ ζeMKb‖α‖L1[0,t] ,

where

ζ = M(‖φ(0)‖+

m∑
k=1

‖ak‖) +M(1 +Nb‖φ‖B)‖α‖L1(J),

which completes the proof.

4 An example

As an application of our results we consider the following impulsive partial functional
differential equation of the form

∂

∂t
z(t, x) ∈ a(t, x)

∂2

∂x2
z(t, x) +

∫ 0

−∞
P (θ)r(t, z(t+ θ, x))dθ, x ∈ [0, π], t ∈ [0, b], t 6= tk,

(4.1)

z(t+k , x)− z(t−k , x) ∈ [−bk|z(t−k , x), bk|z(t−k , x)], x ∈ [0, π], k = 1, . . . ,m, (4.2)

z(t, 0) = z(t, π), t ∈ J := [0, b], (4.3)

z(t, x) = φ(t, x), −∞ < t ≤ 0, x ∈ [0, π], (4.4)

where a(t, x) is continuous function and uniformly Hölder continuous in t, bk > 0,
k = 1, . . . ,m, φ ∈ D,
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D = {ψ : (−∞, 0]× [0, π]→ R; ψ is continuous everywhere except for a countable
number of points at which ψ(s−), ψ(s+) exist with ψ(s−) = ψ(s)},
0 = t0 < t1 < t2 < ... < tm < tm+1 = b, z(t+k ) = lim(h,x)→(0+,x) z(tk + h, x),

z(t−k ) = lim(h,x)→(0−,x) z(tk + h, x), P : (−∞, 0] → R a continuous function, r :
R× R→ Pcv,k(R) a Caratheodory multivalued map.

Let
y(t)(x) = z(t, x), x ∈ [0, π], t ∈ J = [0, b],

Ik(y(t−k ))(x) = [−bk|z(t−k , x), bk|z(t−k , x)], x ∈ [0, π], k = 1, . . . ,m,

F (t, φ)(x) =

∫ 0

−∞
P (θ)r(t, z(t+ θ, x))dθ

φ(θ)(x) = φ(θ, x), −∞ < t ≤ 0, x ∈ [0, π].

Consider E = L2[0, π] and define A(t) by A(t)w = a(t, x)w′′ with domain

D(A) = {w ∈ E : w,w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0}.

Then A(t) generates an evolution system U(t, s) satisfying assumption (H1) and
(H3) (see [13]). We can show that problem (4.1)–(4.4) is an abstract formulation of
problem (1.1)–(1.3). Under suitable conditions, the problem (1.1)–(1.3) has at least
one mild solution.
Acknowledgement. The authors are grateful to Professor V. Obukhovskii for
helpful discussions. They also thank the associate editor for his remarks.
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