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A NOTE OF ZUK’S CRITERION

Traian Preda

Abstract. Zuk’s criterion give us a condition for a finitely generated group to have Property

T): the smallest non - zero eigenvalue of Laplace operator A,, corresponding to the simple random
"

walk on G(S) satisfies A1(G) > 3. We present here two examples that prove that this condition

cannot be improved.

Definition 1. (see [1] and [2] )
i) A random walk or Markov kernel on a non-empty set X is a kernel with non-
negative values p: X x X — Ry such that:

Z w(z,y) =1,Vr € X.
yeX

i) A stationary measure for a random walk p is a function v : X — R% such
that :

v(z)u(z,y) = v(y)uly,©),vr,y € X.
Example 2. Let G =(X,E) be a locally finite graph. For z,y € X, set
1

p(z,y) = { deg(x) if(z,y) €E

0 otherwise

and deg(x) =card {y € X|(z,y) € E} is the degree of a vertex v € X.
w18 called simple random walk on X and v is a stationary measure for p.

Consider the Hilbert space:

QRX) ={f: X = C| Y |f(2)]Pv(z) < oo}

rzeX

The Laplace operator A, on Q2 (X) is definited by (A, f)(z) = f(x)—z Fy)u(z,y).

Ty
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Let I be a group generated by a finite set S. We assume that e ¢ S and S = S~1
(S is simetric).

The graph G(5) associated to S has vertex set S and the set of edges is the set
of pairs (s,t) € S x S such that s~'t € S.

Theorem 3. (Zuk’s criterion)( see [3])

Let T' be a group generated by a finite set S with e ¢ S. Let G(S) be the graph
associated to S. Assume that G(S) is connected and that the smallest non-zero
eigenvalue of the Laplace operator A, corresponding to the simple random walk on

G(S) satisfies \1(G(S)) > %

Then T has Property (T).

1
We prove that the condition A\ (G(S)) > B cannot be improved, using two

examples.

Example 4. Consider S = { 1,—1,2, -2} a generating set of the group Z and
let G(S) be the finite graph associated to S. Then the graph G(S) is the graph:

1‘ ‘2

Since the Laplace operator A, is defined by:

(Auf)(@) = f2) = FWulx,y),

r~y

and
1
if(x,y) € Sx8
p(z,y) = 4 deg(x) (@.9) (0.2)
0 otherwise

Then the matrix of the Laplace operator A, with respect to the basis { ds|s € S }
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is the following matrix:

11
1 —= —= 0
2 2
-1 1 0 0
A= (0.3)
1 0 1 1
2 2

Then det(A — aly) = (1 — a)?[(1 — a)? — Z] - %(1 —a)® + i =0
= a € {0, %, ;,2} = A\(G(9)) = %

But Z does not have Property (T).( see [1])

11
Example 5. The group SLy(Z) is generated by the matrices A = ( ) and

0 1
0 -1
B= .
1 0
We consider the following generating set of the group SLo(Z):

S={-I1,A,B,—A,—-B,A"' B~ —A-l —p~1} .
The graph G(S) is:

Then the matrix of Laplace operatorA, with respect to the basis {0|s € S} is
the following matrix:
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Computing det(A — aly) = [(1 —a)? — Z]3(5 —a)(a

135 1

But SL2(Z) does not have Property (T). (see [1])
These two examples shows that 5 is the best constant in Zuk’s criterion

and cannot be improved.
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