ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 6 (2011), 161 – 164

A NOTE OF ZUK'S CRITERION

Traian Preda

Abstract. Zuk's criterion give us a condition for a finitely generated group to have Property (T): the smallest non - zero eigenvalue of Laplace operator Δ_{μ} corresponding to the simple random walk on $\mathcal{G}(S)$ satisfies $\lambda_1(\mathcal{G}) > \frac{1}{2}$. We present here two examples that prove that this condition cannot be improved.

Definition 1. (see [1] and [2])

i) A random walk or Markov kernel on a non-empty set X is a kernel with non-negative values $\mu: X \times X \to \mathbb{R}_+$ such that:

$$\sum_{y \in X} \mu(x, y) = 1, \forall x \in X.$$

ii) A stationary measure for a random walk μ is a function $\nu: X \to \mathbb{R}_+^*$ such that:

$$\nu(x)\mu(x,y) = \nu(y)\mu(y,x), \forall x,y \in X.$$

Example 2. Let $\mathcal{G} = (X,E)$ be a locally finite graph. For $x,y \in X$, set

$$\mu(x,y) = \begin{cases} \frac{1}{deg(x)} & if(x,y) \in E \\ 0 & otherwise \end{cases}$$
 (0.1)

and $deg(x) = card \{ y \in X | (x,y) \in E \}$ is the degree of a vertex $x \in X$. μ is called simple random walk on X and ν is a stationary measure for μ .

Consider the Hilbert space:

$$\Omega^0_{\mathbb{C}}(X) = \{ f: X \to \mathbb{C} | \sum_{x \in X} |f(x)|^2 \nu(x) < \infty \}$$

The Laplace operator Δ_{μ} on $\Omega^0_{\mathbb{C}}(X)$ is definited by $(\Delta_{\mu}f)(x) = f(x) - \sum_{x \sim y} f(y)\mu(x,y)$.

2010 Mathematics Subject Classification: 22D10.

Keywords: Property (T); Zuk's criterion; Spectrum of the Laplace operator.

T. Preda

Let Γ be a group generated by a finite set S. We assume that $e \notin S$ and $S = S^{-1}$ (S is simetric).

The graph $\mathcal{G}(S)$ associated to S has vertex set S and the set of edges is the set of pairs $(s,t) \in S \times S$ such that $s^{-1}t \in S$.

Theorem 3. (Zuk's criterion)(see [3])

Let Γ be a group generated by a finite set S with $e \notin S$. Let $\mathcal{G}(S)$ be the graph associated to S. Assume that $\mathcal{G}(S)$ is connected and that the smallest non-zero eigenvalue of the Laplace operator Δ_{μ} corresponding to the simple random walk on $\mathcal{G}(S)$ satisfies $\lambda_1(\mathcal{G}(S)) > \frac{1}{2}$.

Then Γ has Property (T).

We prove that the condition $\lambda_1(\mathcal{G}(S)) > \frac{1}{2}$ cannot be improved, using two examples.

Example 4. Consider $S = \{1, -1, 2, -2\}$ a generating set of the group \mathbb{Z} and let $\mathcal{G}(S)$ be the finite graph associated to S. Then the graph $\mathcal{G}(S)$ is the graph:

Since the Laplace operator Δ_{μ} is defined by:

$$(\Delta_{\mu} f)(x) = f(x) - \sum_{x \sim y} f(y) \mu(x, y),$$

and

$$\mu(x,y) = \begin{cases} \frac{1}{deg(x)} & if(x,y) \in S \times S \\ 0 & otherwise \end{cases}$$
 (0.2)

Then the matrix of the Laplace operator Δ_{μ} with respect to the basis $\{\delta_s | s \in S\}$

is the following matrix:

$$A = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ -1 & 1 & 0 & 0 \\ -\frac{1}{2} & 0 & 1 & -\frac{1}{2} \\ 0 & 0 & -1 & 1 \end{pmatrix}$$
 (0.3)

Then
$$det(A - \alpha I_4) = (1 - \alpha)^2 [(1 - \alpha)^2 - \frac{3}{4}] - \frac{1}{2} (1 - \alpha)^2 + \frac{1}{4} = 0$$

 $\Rightarrow \alpha \in \{0, \frac{1}{2}, \frac{3}{2}, 2\} \Rightarrow \lambda_1(\mathcal{G}(S)) = \frac{1}{2}.$

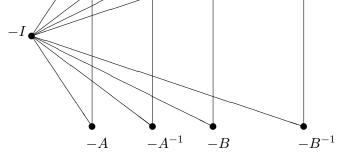
But \mathbb{Z} does not have Property (T).(see [1])

Example 5. The group $SL_2(\mathbb{Z})$ is generated by the matrices $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and

$$B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

We consider the following generating set of the group $SL_2(\mathbb{Z})$: $S = \{-I, A, B, -A, -B, A^{-1}, B^{-1}, -A^{-1}, -B^{-1}\}$. The graph $\mathcal{G}(S)$ is:

 $A \qquad A^{-1} \qquad B \qquad B^{-1}$



Then the matrix of Laplace operator Δ_{μ} with respect to the basis $\{\delta_s|s\in S\}$ is the following matrix:

T. Preda

$$A = \begin{pmatrix} 1 & \frac{1}{8} \\ \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 1 \end{pmatrix}$$

$$(0.4)$$

Computing
$$\det(A - \alpha I_9) = [(1 - \alpha)^2 - \frac{1}{4}]^3 (\frac{3}{2} - \alpha)(\alpha^2 - \frac{5}{2}\alpha) = 0 \Rightarrow$$

$$\Rightarrow \alpha \in \{0, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}\} \Rightarrow \lambda_1(\mathcal{G}(S)) = \frac{1}{2}.$$
But $SL_2(\mathbb{Z})$ does not have Property (T). (see [1])

These two examples shows that $\frac{1}{2}$ is the best constant in Zuk's criterion and cannot be improved.

References

- [1] B. Bekka, P. de la Harpe and A. Valette, *Kazhdan's Property (T)*, *Monography*, Cambridge University Press, 2008. MR2415834.
- [2] M. Gromov, Random walks in random groups, Geom. Funct. Anal. (GAFA), 13 (2003), 73-146. MR1978492. Zbl 1122.20021.
- [3] A. Zuk, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal. (GAFA), 13 (2003), 643-670. MR1995802(2004m:20079). Zbl 1036.22004.

Traian Preda

University of Bucharest,

Str. Academiei nr.14, București,

Romania.

e-mail: traianpr@yahoo.com
