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AN INTRODUCTION TO THE CHEEGER
PROBLEM

Enea Parini

Abstract. Given a bounded domain Ω ⊂ Rn with Lipschitz boundary, the Cheeger problem

consists of finding a subset E of Ω such that its ratio perimeter/volume is minimal among all subsets

of Ω. This article is a collection of some known results about the Cheeger problem which are spread

in many classical and new papers.

1 Introduction

In 1970, Jeff Cheeger established in his work [9] the following inequality:

λ1(Ω) ≥
(
h1(Ω)

2

)2

,

where Ω ⊂ Rn is a bounded domain, λ1(Ω) is the first eigenvalue of the Laplacian
under Dirichlet boundary conditions, and h1(Ω) is defined as

h1(Ω) := inf
E⊂Ω

P (E;Rn)

V (E)
.

Here P (E;Rn) is the perimeter of E in distributional sense (see [14]) measured with
respect to Rn, while |E| is the n-dimensional Lebesgue measure of E. h1(Ω) is called
Cheeger constant of Ω, and a set C ⊂ Ω such that

P (C;Rn)

|C|
= h1(Ω)

is a Cheeger set. The task of determining the Cheeger constant of a given domain
and of finding a Cheeger set has been considered by many authors. Since the related
results are spread in many classical and new papers, it makes sense to collect them
in this introductory survey.
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10 E. Parini

The paper is structured as follows: after introducing the functions of bounded
variation in Section 1, we study existence and regularity properties of Cheeger sets
(Sections 3 and 4). In Section 5 uniqueness and nonuniqueness issues are discussed,
while in Section 6 we treat a quantitative isoperimetric estimate. Finally, we discuss
some applications of the Cheeger problem.

2 Functions of bounded variation

Let Ω ⊂ Rn be an open set. The total variation in Ω of a function u ∈ L1(Ω) is
defined as

|Du|(Ω) := sup

{∫
Ω
u divϕ

∣∣∣∣ϕ ∈ C1
c (Ω;Rn), ‖ϕ‖∞ ≤ 1

}
.

A function u such that |Du|(Ω) < +∞ is said to be of bounded variation. The space
of the functions of bounded variation will be denoted by BV (Ω). It turns out that
BV (Ω) endowed with the norm

‖u‖BV := ‖u‖1 + |Du|(Ω)

is a Banach space. A set E ⊂ Rn has finite perimeter in Ω if its characteristic
function χE belongs to BV (Ω), so that

P (E; Ω) := |DχE |(Ω) < +∞.

If Ω has Lipschitz boundary, then a set E of finite perimeter in Ω has also finite
perimeter in Rn, and

P (E;Rn) = P (E; Ω) +Hn−1(∂Ω ∩ ∂E),

whereHn−1 stands for the (n−1)-dimensional Hausdorff measure in Rn. In particular,

P (Ω;Rn) = Hn−1(∂Ω).

Similarly, if u ∈ BV (Ω), then u ∈ BV (Rn) (extending it to zero outside Ω), and

|Du|(Rn) = |Du|(Ω) +

∫
∂Ω
|u| dHn−1.

We will make use of the following results.

Proposition 2.1. [14, Theorem 1.9] Let {uk} be a sequence of functions in BV (Ω)
converging in L1

loc(Ω) to a function u. Then

|Du|(Ω) ≤ lim inf
k→∞

|Duk|(Ω).

******************************************************************************
Surveys in Mathematics and its Applications 6 (2011), 9 – 22

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma


An introduction to the Cheeger problem 11

Proposition 2.2. [14, Theorem 1.19] Let Ω ⊂ Rn be a domain with Lipschitz
boundary, and let {uk} be a sequence of functions in BV (Ω) such that

‖uk‖BV ≤M

for some M > 0. Then there exists a subsequence {ukj} and a function u ∈ BV (Ω)
such that ukj → u in L1(Ω).

Proposition 2.3. [14, Theorem 1.23] Let u ∈ BV (Ω), and define

Et := {x ∈ Ω |u(x) > t}.

Then,

|Du|(Ω) =

∫ +∞

−∞
P (Et; Ω) dt.

3 Existence of a Cheeger set

In the following, Ω ⊂ Rn will be a bounded domain with Lipschitz boundary. The
perimeter of a set will be always measured with respect to Rn, so that we will write

P (E) := P (E;Rn).

We recall that the Cheeger constant is defined as

h1(Ω) := inf
E⊂Ω

P (E)

|E|
,

with the convention that
P (E)

|E|
= +∞

whenever |E| = 0.

Proposition 3.1. For every bounded domain Ω ⊂ Rn with Lipschitz boundary, there
exists at least one Cheeger set.

Proof. Let us define

h̃1(Ω) := inf
v∈BV (Ω)\{0}

|Dv|(Rn)

‖v‖1
. (3.1)

By definition, h̃1(Ω) ≤ h1(Ω). Moreover, applying the direct method of the Calculus
of Variations, the existence of a function u ∈ BV (Ω), u 6≡ 0, such that

|Du|(Rn)

‖u‖1
= h̃1(Ω)
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12 E. Parini

follows readily from Propositions 2.1 and 2.2. Since |D|u||(Rn) ≤ |Du|(Rn) (see [2,
Exercise 3.12]), we can consider without loss of generality u ≥ 0. Define

Et := {x ∈ Ω |u(x) > t}.

From Proposition 2.3 and Cavalieri’s principle, we have

0 = |Du|(Rn)− h̃1(Ω)‖u‖1 =

∫ +∞

0
[P (Et)− h̃1(Ω)|Et|] dt

≥
∫ +∞

0
[P (Et)− h1(Ω)|Et|] dt ≥ 0.

It follows that for almost every t ∈ R (in the sense of the Lebesgue measure on R),

P (Et)− h̃1(Ω)|Et| = 0. (3.2)

Since u 6≡ 0, there must exist s ∈ R such that |Es| > 0 and for which (3.2) holds.
This yields at once

h̃1(Ω) = h1(Ω)

as well as the existence of a Cheeger set for Ω.

Remark 3.2. From the proof of Proposition 3.1, it follows that if u is a minimizer for
h̃1(Ω), then almost every level set of u with positive Lebesgue measure is a Cheeger
set for Ω. In fact, by [6, Theorem 2] this is actually true for all its level sets of
positive Lebesgue measure.

Proposition 3.3. Let Ω ⊂ Rn have a boundary of class Lipschitz. Then

h1(Ω) = inf
E⊂⊂Ω

∂E smooth

P (E)

|E|
.

This is a straightforward consequence of the following proposition.

Proposition 3.4 ([23], Theorem 2). Let Ω ⊂ Rn have a boundary of class Lipschitz,
and let E ⊂ Ω be a set of finite perimeter. Then there exists a sequence of sets of
finite perimeter {Ek} such that:

(i) Ek ⊂⊂ Ω for every k;

(ii) χEk
→ χE in L1

loc(Rn) as k →∞;

(iii) P (Ek)→ P (E) as k →∞.

Proof (of Proposition 3.3). Let C be a Cheeger set for Ω. Then there exists a
sequence {Ek} of sets of finite perimeter satisfying (i), (ii) and (iii) in Proposition
3.4. By classical results, each Ek can be in its turn be approximated in a similar
way by a sequence of sets compactly contained in Ω, but not necessarily in Ek, and
with smooth boundary (see [14, Theorem 1.24]). Hence the claim follows.

******************************************************************************
Surveys in Mathematics and its Applications 6 (2011), 9 – 22

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma


An introduction to the Cheeger problem 13

However, a Cheeger set can not be compactly contained in Ω, as the following
proposition states.

Proposition 3.5. Let C be a Cheeger set for Ω. Then, ∂C ∩ ∂Ω 6= ∅.

Proof. Suppose, by contradiction, that C ⊂⊂ Ω. Then it would be possible to find
a t > 1 such that the set

tC := {x ∈ Rn | t−1x ∈ C}

is still contained in Ω. But then

P (tC)

|tC|
=
tn−1P (C)

tn|C|
=

1

t

P (C)

|C|
<
P (C)

|C|
,

a contradiction to the definition of Cheeger set. Hence, the boundary of C must
intersect the boundary of Ω.

4 Regularity of Cheeger sets

Let C be a Cheeger set for Ω, and set V0 := |C|. Then, C will be in particular a set
which minimizes the perimeter among all the subsets of Ω with volume V0. Hence,
some classical regularity results find application.

Proposition 4.1. Let C be a Cheeger set for Ω. Then ∂C ∩Ω is analytic, possibly
except for a closed singular set whose Hausdorff dimension does not exceed n− 8.

Proof. If V0 = |Ω|, then C = Ω and ∂C ∩ Ω = ∅, so that there is nothing to prove.
If V0 < |Ω|, the result is stated in [15, Theorem 1] (one has to set Γ = ∅ in the
notation used there). The idea of the proof is the following: let E be a set of finite
perimeter in Ω, x ∈ ∂E, r > 0 such that Br(x) ⊂ Ω. We define

ψ(x, r) := |DχE |(Br(x))− inf{|DχF |(Br(x)) |F∆E ⊂⊂ Br(x)}

The quantity ψ gives a measure of how far the set E is from being a perimeter-
minimizing set (without volume constraints). A result of Tamanini ([27, Lemma
3]) states that, if E is a set of finite perimeter with ψ(x, r) ≤ Crn−1+2α for some
x ∈ ∂E and all 0 < r < R with given constants C,R and 0 < α < 1, then the
tangent cone to ∂E in x, as defined in [14, Theorem 9.3], is area-minimizing. This
is what actually happens in this case, since it can be proved (see [16]) that for a set
minimizing perimeter under a volume constraint we have

ψ(x, r) ≤ Crn

for a constant C > 0, for each x ∈ ∂E and for all sufficiently small r > 0. The
properties of area minimizing tangent cones, which can be found in [14, Chapter
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14 E. Parini

9], allow us to reason in a way similar to [22] and finally state the claim. The
dimension n− 8 appearing in the theorem is linked to the following fact: x ∈ ∂E is
a regular point if and only if the tangent cone in x is a half-space. In Rn, n ≤ 7, the
only possible area minimizing tangent cones are half-spaces, while in R8 there exist
nontrivial area minimizing cones such as the so-called Simon’s cone (see [4]).

Another important property of Cheeger sets is the constancy of the mean curvature
of ∂C ∩ Ω; the result is stated for instance in [13, Theorem 1.22].

Proposition 4.2. The mean curvature of ∂C ∩Ω is constant at every regular point,
and equal to 1

n−1 · h1(Ω).

Proof. The fact that the mean curvature is constant at every regular point of ∂C∩Ω
follows from [15, Theorem 2]. To show that it is exactly equal to h1(Ω), take a regular
point x0 ∈ ∂C ∩ Ω. Then there exist a ball B, an open interval I and a function
f ∈ C∞(B; I) such that, if we set F = B×I, then x0 ∈ B and E∩F is the epigraph
of −f . Take now g ∈ C2

c (B; I), and set

Et = (E \ F ) ∪ epi (−(f + tg))

where t ∈ (−ε, ε), with ε so small that Et is still contained in Ω. As E is a Cheeger
set, it follows that the functional

I(t) = P (Et)− h1(Ω)|Et|

satisfies I(0) = 0, and I(t) ≥ 0 for t ∈ (−ε, ε). So we have

0 ≤ I(t)− I(0) =

∫
B

√
1 + |D(f + tg)|2 − h1(Ω)

∫
B

(f + tg)

−
∫
B

√
1 + |Df |2 + h1(Ω)

∫
B
f = J(t)− J(0)

for every t ∈ (−ε, ε), where

J(t) :=

∫
B

√
1 + |D(f + tg)|2 − h1(Ω)

∫
B

(f + tg)

It follows J ′(0) = 0, which means, after integrating by parts,

−
∫
B

div

(
Df√

1 + |Df |2

)
g = h1(Ω)

∫
B
g

and since this relation is valid for every g ∈ C2
c (B; I), the theorem is finally proved.
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An introduction to the Cheeger problem 15

A Cheeger set enjoys also boundary regularity. More precisely, the following
result holds.

Proposition 4.3. [15, Theorem 3] Let C be a Cheeger set for Ω, and let x ∈ ∂Ω be
such that ∂Ω ∩ Br(x) is of class C1 for some r > 0. Then there exists a ρ ∈ (0, r)
such that ∂C ∩Bρ(x) is also of class C1.

In particular, this implies that ∂C and ∂Ω must meet tangentially at regular
points of ∂Ω.

5 Uniqueness and nonuniqueness

A relevant question is whether there can exist more than one Cheeger set for a given
domain Ω. This is not the case if Ω is convex. A first result in this direction concerns
planar convex domains. Given two sets A,B ⊂ Rn, we define

A⊕B := {x ∈ Rn |x = a+ b, a ∈ A, b ∈ B}.

Proposition 5.1. Let Ω ⊂ R2 be a convex domain. Then there exists a unique
Cheeger set C for Ω. Moreover, C is convex, has boundary of class C1,1, and

C = CR ⊕BR,

where
CR = {x ∈ Ω | dist(x; ∂Ω)} ≤ R,

BR is the disc of radius R, and R is such that |CR| = πR2.

Proof. Let HΩ be the union of all discs with largest radius contained in Ω. If C is
a Cheeger set for Ω, it follows from [12, Theorem 33] that |C| ≥ |HΩ|. It is then
possible to apply [26, Theorem 3.32] to state the uniqueness and the regularity result.
The characterization of C as union of balls of suitable radius has been established
in [19, Theorem 1].

The result was generalized to higher dimensional domains some years later.

Proposition 5.2. [1, Theorem 1] Let Ω ⊂ Rn be a convex domain. Then there
exists a unique Cheeger set C for Ω. Moreover, C is convex and has boundary of
class C1,1.

In general, if n ≥ 3 it does not hold true that the Cheeger set of a convex domain
is the union of balls of suitable radius (see [18, Remark 13]).

If Ω is not convex, one can not expect in general uniqueness of the Cheeger set, as
shown by simple examples such as the ”barbell domain” (see [19]). We observe that
the star-shapedness of Ω is not a sufficient condition for uniqueness of the Cheeger
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Figure 1: The Cheeger set for a square.

set; indeed, there exist L-shaped domains which admit infinitely many Cheeger sets
(see [24]). However, an interesting result states that if Ω is a domain admitting more
than one Cheeger set, then it is possible to find a set Ω̃ arbitrarily close to Ω and
admitting only one Cheeger set. Here is the precise statement.

Proposition 5.3. [7, Theorem 1] Let Ω ⊂ Rn be an open set with finite volume.
Then, for any compact set K ⊂ Ω there exists a bounded open set Ω̃ such that
K ⊂ Ω̃ ⊂ Ω and Ω̃ has a unique Cheeger set.

Another property of the class of Cheeger sets is the fact that it is stable under
countable union: if {Cn} is a sequence of Cheeger sets for Ω, then also C :=

⋃
nCn is

a Cheeger set ([6, Theorem 3]). This allows to define the notion of maximal Cheeger
set ([5, Proposition 1.1]), which is a Cheeger set C such that, if C̃ is another Cheeger
set, then C̃ ⊂ C. The maximal Cheeger set is always unique. Similarly one can define
the notion of minimal Cheeger set ([7, Lemma 2.5]); in this case, there may be more
than one minimal Cheeger set, but they are always finitely many.

6 Quantitative isoperimetric estimates

A celebrated result of De Giorgi ([10]) states that, if E is a set of finite perimeter
in Rn, and E∗ is a ball such that |E∗| = |E|, then P (E∗) ≤ P (E), with equality
holding if and only if E is itself a ball. This implies that

h1(Ω) ≥ h1(Ω∗).
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An introduction to the Cheeger problem 17

In fact, if C is a Cheeger set for Ω, then Ω∗ contains a ball C∗ with the same volume
as C. Hence,

h1(Ω) =
P (C)

|C|
≥ P (C∗)

|C∗|
≥ h1(Ω∗).

The equality sign holds if and only if Ω is a ball. However, by means of a so-
called quantitative isoperimetric inequality, it is possible to say that if the difference
h1(Ω)−h1(Ω∗) is small, then Ω must be somehow ”near” to be a ball. More precisely,
one defines the Fraenkel asymmetry of a set Ω as

A(Ω) := inf

{
|Ω ∆B|
|Ω|

∣∣∣∣B is a ball with |B| = |Ω|
}
.

Observe that A(Ω) = 0 if and only if Ω is a ball. Then the following result holds.

Proposition 6.1. [11] Let A(Ω) be defined as above. Then,

h1(Ω) ≥ h1(Ω∗)

[
1 +

A(Ω)2

C

]
,

where C = C(n) > 0 depends only on the dimension n.

7 Applications of the Cheeger problem

Besides the well-known Cheeger’s inequality mentioned in the introduction, the
Cheeger problem appears in several mathematical contexts. One example is the
study of plate failure under stress (see [20]). If Ω represents the shape of a planar
plate subject to a constant uniform pressure p, we want to determine the minimal
value of p for which the plate breaks down; here we do not consider bending or
buckling effects. Let E ⊂ Ω; the vertical force acting on E will be equal to p|E|,
while the opposing force exerted on E by the portion of the plate surrounding it can
be supposed to have the form σP (E), where σ > 0 is a constant. Hence, failure will
not occur if for every subdomain E ⊂ Ω one has

p|E| ≤ σP (E).

This is equivalent to ask that

p

σ
≤ inf

E⊂Ω

P (E)

|E|
= h1(Ω)⇔ p ≤ σh1(Ω).

Thus, failure will occur for p = σh1(Ω) along a Cheeger set for Ω.
Another application concerns the asymptotic behaviour of the first eigenvalue of

the p-Laplacian for p→ 1, as shown in [18]. Define for p > 1

λ1(p; Ω) := inf
v∈W 1,p

0 (Ω)\{0}

∫
Ω |∇v|

p∫
Ω |v|p

.
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18 E. Parini

One can easily show that the infimum is actually attained, and that a minimizer is
a weak solution of the equation{

−∆pu = λ|u|p−2u in Ω,
u = 0 on ∂Ω,

where λ = λ1(p; Ω) and ∆pu = div(|∇u|p−2∇u) is the p-Laplacian. On one hand, it
is possible to generalize Cheeger’s inequality to the p-Laplacian as follows (see [21,
Appendix]):

λ1(p; Ω) ≥
(
h1(Ω)

p

)p
.

On the other hand, one can show ([18, Corollary 6]) that

lim sup
p→1

λ1(p; Ω) ≤ h1(Ω),

which finally yields
lim
p→1

λ1(p; Ω) = h1(Ω).

Moreover, the first eigenfunctions converge in L1(Ω) to a minimizer of (3.1), and
hence to a function whose level sets are Cheeger sets for Ω. Consequently, if Ω
admits only one Cheeger set C, then the first eigenfunctions converge to a suitably
scaled characteristic function of C.

We also mention the interpretation given by Gilbert Strang in [25] in the context
of maximal flow-minimal cut problems. Given a bounded, planar domain Ω, and
given two functions F, c : Ω→ R, we want to find the maximal value of λ ∈ R such
that there exists a vector field v : Ω→ R2 satisfying{

div v = λF
|v| ≤ c.

The problem can be interpreted as follows: given a source or sink term F , we want
to find the maximal flow in Ω under the capacity constraint given by c. It turns out
that if F ≡ 1 and c ≡ 1, then the maximal value of λ is equal to the Cheeger constant
of Ω, while the boundary of a Cheeger set is the associated minimal cut. This kind
of results have found an interesting application in medical image processing (see [3]).

The Cheeger problem can be extended by considering its weighted version. More
precisely, given a function g ∈ C1(Ω) with g ≥ g0 for a constant g0 > 0, one defines
the weighted total variation of a function u ∈ L1(Ω):

|Du|g(Ω) := sup

{∫
Ω
udiv(gϕ)

∣∣∣∣ϕ ∈ C1
c (Ω;Rn), ‖ϕ‖∞ ≤ 1

}
.

Then one tries to find

hf,g1 (Ω) := inf
u∈BVg(Ω)

|Du|g(Rn)∫
Ω fu

,

******************************************************************************
Surveys in Mathematics and its Applications 6 (2011), 9 – 22

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v06/v06.html
http://www.utgjiu.ro/math/sma


An introduction to the Cheeger problem 19

where f ∈ L∞(Ω) with f ≥ f0 for a constant f0 > 0, and BVg(Ω) is the space of
functions with finite weighted total variation. This problem was introduced in [17]
in connection to landslide modelling. Extentions of the Cheeger problem involving
anisotropic norms and anisotropic total variation turned out to be useful in image
processing (see [8]).
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