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HIGHER *-DERIVATIONS BETWEEN UNITAL
C*-ALGEBRAS

M. Eshaghi Gordji, R. Farokhzad Rostami and S. A. R. Hosseinioun

Abstract. Let A, B be two unital C*—algebras. We prove that every sequence of mappings
from A into B, H = {ho, h1, ..., hm, ...}, which satisfy hm (3" uy) = 32, ,_,, hi(3"u)h;(y) for each
m € Ny, for all u € U(A), all y € A, and all n = 0,1,2,..., is a higher derivation. Also, for
a unital C*—algebra A of real rank zero, every sequence of continuous mappings from A into B,
H = {ho,h1,..., hin, ...}, is a higher derivation when hm(3"uy) = 32, ;_,, hi(3"u)h;(y) holds for
all u € I1(Asq), ally € A, alln =0,1,2,... and for each m € Ny. Furthermore, by using the fixed
points methods, we investigate the Hyers—Ulam—Rassias stability of higher x—derivations between

unital C*—algebras.

1 Introduction

The stability of functional equations was first introduced by S. M. Ulam [27] in 1940.
More precisely, he proposed the following problem: Given a group G, a metric group
(G2,d) and a positive number €, does there exist a 6 > 0 such that if a function
[+ G1 — G satisfies the inequality d(f(zy), f(z)f(y)) < 6 for all z,y € G1,
then there exists a homomorphism 7' : G; — Gy such that d(f(z),T(z)) < e for
all x € G717 As mentioned above, when this problem has a solution, we say that
the homomorphisms from G; to Gy are stable. In 1941, D. H. Hyers [10] gave a
partial solution of Ulam’s problem for the case of approximate additive mappings
under the assumption that G; and G9 are Banach spaces. In 1978, Th. M. Rassias
[24] generalized the theorem of Hyers by considering the stability problem with
unbounded Cauchy differences. This phenomenon of stability that was introduced
by Th. M. Rassias [24] is called the Hyers—Ulam—Rassias stability. According to
Th. M. Rassias theorem:

Theorem 1. Let f : E — E’ be a mapping from a norm vector space E into a
Banach space E' subject to the inequality

1z +y) = F(z) = Fy)ll < ezl + [[y]*)
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for all x,y € E, where € and p are constants with € > 0 and p < 1. Then there exists
a unique additive mapping T : E — E’ such that

2¢

1) - T@I < 5=

e

for all x € E. If p < 0 then inequality (1.3) holds for all x,y # 0, and (1.4) for
x # 0. Also, if the function t — f(tz) from R into E' is continuous for each fized
x € FE, then T is linear.

During the last decades several stability problems of functional equations have
been investigated by many mathematicians. A large list of references concerning the
stability of functional equations can be found in [9, 12, 15].

D.G. Bourgin is the first mathematician dealing with the stability of ring homomor-
phisms. The topic of approximate ring homomorphisms was studied by a number
of mathematicians, see [1, 2, 3, 11, 17, 18, 20, 22, 25] and references therein.

Jun and Lee [14] proved the following: Let X and Y be Banach spaces. Denote by
¢ : X—{0}xY —{0} — [0,00) a function such that ¢(z,y) = S°° ;3 "¢ (3", 3"y) <
oo for all z,y € X — {0}. Suppose that f : X — Y is a mapping satisfying

r+y
2

12/( )= f@) = Wl < o(z,y)

for all z,y € X — {0}. Then there exists a unique additive mapping 7' : X — Y
such that

1f(x) = f(0) = T(x)]| < é(¢(f€, —z) + ¢(—x,31))

for all x € X — {0}.

Recently, C. Park and W. Park [21] applied the Jun and Lee’s result to the
Jensen’s equation in Banach modules over a C*—algebra(See also [13]). Throughout
this paper, let A be a unital C*—algebra with unit e, and B a unital C*—algebra.
Let U(A) be the set of unitary elements in A, Ay, := {z € Alz = 2z*}, and
I (Asa) = {v € Aglllv]| = 1,v € Inv(A)}.

A linear mapping d : A — A is said to be a derivation if d(xy) = d(x)y + zd(y)
holds for all z,y € A.

Let N be the set of natural numbers. For m € N U {0} = Ny, a sequence
H = {hg,h1,....hn} (resp. H = {hg, h1,..., hy,...}) of linear mappings from A into
B is called a higher derivation of rank m (resp. infinite rank) from A into B if

ho(zy) = > hi(z)h;(y)
i+j=n
holds for each n € {0,1,...,m} (resp. n € Ny) and all z,y € A. The higher deriva-
tion H from A into B is said to be onto if hg : A — B is onto. The higher derivation
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H on A is called be strong if hg is an identity mapping on A. Of course, a higher
derivation of rank 0 from A into B (resp. a strong higher derivation of rank 1 on A)
is a homomorphism (resp. a derivation). So a higher derivation is a generalization
of both a homomorphism and a derivation.

In this paper, we prove that every sequence of mappings from A into B, H =
{ho,h1,...; hp,...} is a higher derivation when for each m € Ny, h,,(3"uy) =
Divjem Pi(3"u)h;(y) for all u € U(A), all y € A, and all n = 0,1,2,..., and that
for a unital C*—algebra A of real rank zero (see [4]), every sequence of continuous
mappings from A into B, H = {hg, h1,..., km, ...} is a higher derivation when for
each m € No, hpn(3"uy) = >, i, hi(3"u) h;(y) for all for all u € I;(As), all
y € A, and all n = 0,1,2,.... Furthermore, we investigate the Hyers—Ulam—Rassias
stability of higher x—derivations between unital C*—algebras by using the fixed pint
methods.

Note that a unital C*—algebra is of real rank zero, if the set of invertible self-
adjoint elements is dense in the set of self-adjoint elements (see [4]). We denote the
algebric center of algebra A by Z(A).

2 Higher *-derivations on unital C*-algebras
By a following similar way as in [19], we obtain the next theorem.

Theorem 2. Suppose that F' = {fo, f1,..., fm,.--} is a sequence of mappings from
A into B such that f,,(0) =0 for each m € Ny := NU {0},

fu(3"uy) = Y fi3"u)f(y) (2.1)
i+j=m

for allu e U(A), ally € A, alln=0,1,2,... and for each m € N. If there ezists a
function ¢ : (A—{0})?x A — [0,00) such that ¢p(x,y, 2) = Y oo s 3 "H(3"x, 3"y, 3"2) <
oo for all x,y € A— {0} and all z € A and for each m € Ny,

12/ () — pfn(2) = ) + Fon ) = Fon )] < Bl w), (2:2)

for all p € T and all z,y € A,u € (U(A) U{0}). Iflim, 23D ¢ y(B) n z(B),
then the sequence F = {fo, f1,.-., fm,---} 18 a higher x—derivation.

Proof. Put u =0, =1 1in (2.2), it follows from Theorem 1 of [14] that there exists
a unique additive mapping h,, : A — B such that

[fm(2) = han ()] < é(é(ﬂf, —,0) + ¢(—,32,0)) (2.3)
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for all z € A — {0} and for each m € Ny. These mappings are given by

B (z) = lim

fm(372)
n 3n
for all z € A and for each m € Ny. By the same reasoning as the proof of Theorem
1 of [19], Ay, is C—linear and sx—preserving for each m € Ny. It follows from (2.1)
and (2.2) that

e fm(@BMuy) fi(3"u) f5(y)
hm(uy) = 1171111 T hTanH;m EEra—
= Y b)) (2.4)

i+j=m

for all u € U(A), all y € A and for each m € Ny. Since hy, is additive, then by (2.4),
we have

3" hm (uy) = han (u(3™y)) = D hi(u) f;(3"y)

i+j=m

for all u € U(A), all y € A and for each m € Ny. Hence,

o) = tim 3" ) Sy ) (25)

i+j=m i+j=m
for all u € U(A), all y € A and for each m € Ny. By the assumption, we have

Jm(3") c

3'I'L

hm(e) = lim

n

UB)NZ(B)
and for each m € Ny, hence, it follows by (2.4) and (2.5) that

Z hi(e)h;(y) = hm(ey) = Z hi(e) f(y)

i+j=m i+j=m

for all y € A and for each m € Ny. Since hp,(e) is invertible, then by induction
hm(y) = fm(y) for all y € A and for each m € Ny. We have to show that F' =
{fo, f1, s fm, ...} is higher derivation. To this end, let x € A. By Theorem 4.1.7 of
[16], 2 is a finite linear combination of unitary elements, i.e., z = 377, cju; (c; €
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C,uj € U(A)), it follows from (2.5) that

n n

k=1 k=1

= cx( Z hi(ur)hj(y))

k=1 i+j=m

3

for all y € A. And this completes the proof of theorem. O

Corollary 3. Let p € (0,1),60 € [0,00) be real numbers. Suppose that

F = {an f17 (EX3} fma }

is a sequence of mappings from A into B such that f,,(0) =0 for each m € Ny,
Fn(B"uy) = > fi(3™u) f(y)
i+j=m
forallu e U(A), ally € A, alln =0,1,2,... and for each m € Ny. Suppose that

pr + iy

12fm () = pfm(@) = pfm(y) + fn(27) = fin ()" < OCll” + Nlyll + [1217)

forallp € T and all x,y, z € A and for each m € Ny. Iflim, fméine) ceUB)NZ(B),

then the sequence F = {fo, fi, ..., fm, ...} is a higher x—derivation.

Proof. Setting ¢(x,y, z) :== 0(||z||” + ||ly||” + ||2]|?) all z,y, 2z € A. Then by Theorem
1 we get the desired result. O

Theorem 4. Let A be a C*—algebra of real rank zero. Suppose that

F = {anfl)"')fM’ }

is a sequence of mappings from A into B such that f,,(0) =0 for each m € Ny,
fn(3Muy) = > fi(3™u) f(y) (2.6)
i+j=m
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for allu € I1(Asa), ally € A, alln =0,1,2,... and for each m € Ny. Suppose that
there exists a function ¢ : (A—{0})2x.A — [0, 00) satisfying (2.2) and ¢(z,y, ) < 00
forallz,y € A—{0} and all z € A. Iflim,, fm(3 2 ¢ U(B)NZ(B), then the sequence
F ={fo, f1,--s fm,---} is a higher *—derz'vatzon

Proof. By the same reasoning as the proof of Theorem 1, there exist a unique invo-
lutive C—linear mappings h,, : A — B satisfying (2.3) for each m € Ny. It follows
from (2.6) that

B (1) :hmM m Y fi(3"u f] = Y h (2.7)
" i+j=m i+j=m

for all u € I1(Asy), and all y € A and for each m € Ny. By additivity of h,, and
(2.7), we obtain that

3" B (1) = B ( = > hi(u)f;(3"y)

i+j=m

for all u € I1(As,) and all y € A and for each m € Ny. Hence,

o) =t 3" )2 Sy ) (2.5)

i+j=m i+j=m

for all u € I1(Asq) and all y € A and for each m € Ny. By the assumption, we have

hm(e) = lim 7fm(3n6)

T 3 ceU(B)NZ(B)
and for each m € Ny. Similar to the proof of Theorem 1, it follows from (2.7) and
(2.8) that h,, = f,, on A for each m € Ny. So hy, is continuous for each m € Njy.
On the other hand A is real rank zero. On can easily show that I;(As,) is dense in
{z € Asq : ||z|| = 1}. Let v € {z € Asq : ||z]| = 1}. Then there exists a sequence
{zn} in I;(Asq) such that lim, z, = v. Since hy, is continuous for each m € Ny, it
follows from (2.8) that

hm(vy) = hm(li}gﬂ(zny)) = hTIthm(Zny) :li}tn Z hi(zn)h;(y)
i+j=m

= Z hi hmzn Z hi( (2.9)

i+j=m i+j=m

for all y € A and for each m € Ny. Now, let x € A. Then we have © = x1 + izo,

where x1 := % and z9 = %57~ are self-adjoint.
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First consider xy = 0,9 # 0. Since h,,, is C—linear for each m € Ny, it follows
from (2.9) that

= izl (H = ||| Z (y)

i+j=m

= Y hi( ||:c2H Z hi(iza)h

i+j=m i+j=m
Z hi(z)h;(y) = Z fi(z)

i+j=m i+j=m

for all y € A and for each m € Ny.
If 29 = 0,21 # 0, then by (2.9), we have
F (@) = hon () = o (219) = hon (21| )

H H
= [[z1]/hm (H = [l ]| Z ()

i+j=m i+j=m
= > hi@)hly) = Z fi(z) f
1+j=m i+j=m

for all y € A and for each m € Nj.
Finally, consider the case that z1 # 0,22 # 0. Then it follows from (2.9) that

flay) = hin(zy) = hm(21y + (iz2)y)
(| y>+hm<z’\|x2||,§§”y>

leH

o)+ illealln ()

= Jlzall D y) +illzz] D b (¥)

= [l [ (o

i+j=m e
B (]l )y il|za|| -2 )R
- [mn | HmH)hJ(y) + hillea] |’$2H)h](y)}
— Z [hi(x1) + hi(iz2)]h Z hi(2)h;(y) = Z L)
i+j=m i+j=m o

for all y € A and for each m € No. Hence, fn(2y) = >\, fi(z)f;i(y) for all
x,y € A, for each m € Ny, and F = {fo, f1, ..., fm, ...} is higher x—derivation. O
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Corollary 5. Let A be a C*—algebra of rank zero. Let p € (0,1),6 € [0,00) be real
numbers. Suppose that F = {fo, f1, .., fm,...} S a sequence of mappings from A
into B such that fn,(0) =0 for each m € Ny,

fn(3ug) = 3 £ ()
i+j=m
for allu € I1(As,), ally € A, alln =0,1,2,... and for each m € Ny. Suppose that

pr + iy
[12fm(

)~ #fn(@) = pfm(y) + fn(27) = fin ()7 < O[] + [y 17+ [12]7)

forallp € T and all x,y,z € A and for each m € Ny. If lim,, w ceUB)NZ(B)

for each m € Ny, then the sequence F' = { fo, f1, ..., fm, ...} i a higher x—derivation.

Proof. Setting ¢(x,y, z) := 0(||x||? + ||y[|” + ||2]|") all z,y, z € A. Then by Theorem
4 we get the desired result. O

3 Stability of higher *-derivations: a fixed point ap-
proach

We investigate the generalized Hyers—Ulam—Rassias stability of higher x-derivations
on unital C*-algebras by using the alternative fixed point.

Recently, Cadariu and Radu applied the fixed point method to the investigation
of the functional equations. (see also [6, 7, 8, 22, 23, 26]). Before proceeding to the
main result of this section, we will state the following theorem.

Theorem 6. (The alternative of fixed point [5]). Suppose that we are given a
complete generalized metric space (Q,d) and a strictly contractive mapping T :  —
Q with Lipschitz constant L. Then for each given x € €,

either
d(T™z, T ) = oo for all m > 0,

or there exists a natural number mqg such that

d(T™z, T™ ) < oo for all m > my;

the sequence {T™z} is convergent to a fized point y* of T;
y* is the unique fized point of T in the set A ={y € Q:d(T™z,y) < co};
d(y.y*) < t2pd(y, Ty) for all y € A.
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Theorem 7. Suppose that F' = {fo, f1,...,; fm, ...} is a sequence of mappings from
A into B such that for each m € Ny, f,(0) = 0 for which there exists a function
¢ : A® — [0,00) satisfying

Hfm<W) + fMW) - M%ﬂ*w) .

i+j=m
S ¢(x7y7zvuuvvw)7 (31)

for all p € T, and all z,y,z,u,v € A;w € U(A) U {0} and for each m € Np.

If there exists an L < 1 such that ¢(x,y,z,u,v,w) < 3Lo(5,%,5,%,5,%5) for all

x,y, z,u,v,w € A, then there exists a unique higher x—derivation
H = {ho,h1,..c;hm, ...}

such that

@) ~ hon(a) | < 12 6(2,0,0,0,0,0) (32

for all x € A and for each m € Ny.
Proof. Tt follows from ¢(x,y, z,u,v,w) < 3L¢(5,%,%, 5,5, %) that
lim;377 (37 2,37y, 37 2, 37u, 370, 37 w) = 0 (3.3)

for all z,y, z,u,v,w € A.
Put y=2z=w=wu=01in (3.1) to obtain

[3fn(5) = Fn(@)]| < 6(2,0.0,0.0,0) (3.4)

for all z € A and for each m € Ny. Hence,
1 1
||§fm(3x) — fm(z)]| < §¢(3:c,0,0,0,0,0) < L¢(z,0,0,0,0,0) (3.5)

for all z € A and for each m € Ny.
Consider the set X := {gm | gm : A — B,m € Ny} and introduce the generalized
metric on X:

d(h,g) == inf{C € R" : [|g(x) — h(z)|| < C¢(z,0,0,0,0,0)Vx € A}.
It is easy to show that (X,d) is complete. Now we define the linear mapping J :
X —> X by
1
J(h)(z) = gh(?)x)
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for all z € A. By Theorem 3.1 of [5],
d(J(g), J(h)) < Ld(g, h)

for all g,h € X.
It follows from (2.5) that

d(fm, J(fm)) < L.

By Theorem 6, J has a unique fixed point in the set X; :={h € X : d(fm,h) < co}.
Let h,, be the fixed point of J. h,, is the unique mapping with

him (3x) = 3hpm ()
for all z € A and for each m € Ny satisfying there exists C' € (0, 00) such that

for all z € A and for each m € Ny. On the other hand we have lim,d(J"(fmn), hm) =
0. It follows that ]
limn3—nfm(3"x) = hp () (3.6)
for all € A and for each m € Ny. It follows from d(fm,bm) < 27 d(fms J (fm)),
that I
d m» hm S - -
(o) < 2
This implies the inequality (3.2). It follows from (3.1), (3.3) and (3.6) that

T+y+z T—2y+z T+y—2z
3 3 3

= limnginﬂfm(i%"*l(a: +y42))+ fn(3" Nz — 2y + 2))+
+fm(3" @ 4y — 22)) = fm(3"2)]|

1
< limng—n¢(3”x, 3"y,,3"2,0,0,0) =0

for all x,y,z € A and for each m € Ny. So

r+y+z T—2y+=z T+y—2z
3 3 ) 3

for all z,y, 2z € A and for each m € Ny. Put w = %,t = % and s = %722

in above equation, we get hy, (w4t + 8) = hy(w) + hpy () + by (s) for all w,t, s € A

and for each m € Ny. Hence, h,, for each m € Ny is Cauchy additive. By putting

y=z=x,v=w=0in (2.1), we have

hon ( )+ B ( + A ) = hm(x)

3ux
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for all z € A and for each m € Ny. It follows that

[ (p) = phom ()] =
= limmB—mem(u?)mx) — ufm(3M2)| < lzmm3 »(3™x,3mx,3M2,0,0,0) =0

for all 4 € T, and all x € A. One can show that the mapping h : A — B is C—linear.
By putting z =y =2z =u=v =0 1n (2.1) it follows that

Hhm(w*)—( m(w))"]|

= limm|| 35 fm((3m )*) = %(fm(Bmw))*ll
< z¢mm3im¢(o, 0,0,0,0,3™w)

)

for all w € U(A) and for each m € Ny. By the same reasoning as the proof of
Theorem 1, we can show that h,, : A — B is x—preserving for each m € Nj.
Since h,, is C—linear, by putting x =y = z = w = 0 in (2.1) it follows that

o (wv) = D~ ha = limm| g fm(9m(uv ~om Z fi(3™u) f3(3™ )|

i+j=m l+j m

1
< limin26(0,0,0,3™u,3"0,0)
1
< limms—m¢(0,0,0,3mu,3mv,0)
= 0

for all u,v € A and for each m € Ny. Thus H = {hg, h1,...,;hm,...} is higher
«—derivation satisfying (3.2), as desired. O

We prove the following Hyers—Ulam—Rassias stability problem for higher *-derivations
on unital C*—algebras:

Corollary 8. Let p € (0,1),0 € [0,00) be real numbers. Suppose that

F= {anfl?""fMa }

is a sequence of mappings from A into B such that for each m € Ny, f,(0) =0 and

B+ py + pz pr —2uy + pz px + py — 20
||fm<f>+fm<f>+fm<f>

= Y F @)+ fn(wh) = Fa(w)* ] < OClP+ g P+ 1217+ [l + [P+ [|w]?),

1+j=m
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for all w € T and all x,y,z,u,v € A;w € U(A)U{0}. Then there exists a unique
higher x—derivation H = {hg,h1, ..., hyn, ...} such that

3P0
3—3P

[ fm () = hm(2)[| <

(i

for all x € A and for each m € Ny.

Proof. Setting(z,y, z,u, v,w) := O([|lz||” + [[y[|” + [|z||P + [[ul|” + [[o]|P + [[w]]P) all
z,y, z,u,v,w € A. Then by L = 3P~! in Theorem 7, one can prove the result. ]
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