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DYNAMIC SHORTFALL CONSTRAINTS FOR
OPTIMAL PORTFOLIOS

Daniel Akume, Bernd Luderer and Ralf Wunderlich

Abstract. We consider a portfolio problem when a Tail Conditional Expectation constraint is

imposed. The financial market is composed of n risky assets driven by geometric Brownian motion

and one risk-free asset. The Tail Conditional Expectation is calculated for short intervals of time

and imposed as risk constraint dynamically. The method of Lagrange multipliers is combined with

the Hamilton-Jacobi-Bellman equation to insert the constraint into the resolution framework. A

numerical method is applied to obtain an approximate solution to the problem. We find that the

imposition of the Tail Conditional Expectation constraint when risky assets evolve following a log-

normal distribution, curbs investment in the risky assets and diverts the wealth to consumption.

1 Introduction

In recent years, particular stress has been laid on the substitution of variance
as a risk measure in the standard Markowitz [12] mean-variance problem. Since
it makes no distinction between positive and negative deviations from the mean,
variance is a good measure of risk only for distributions that are (approximately)
symmetric around the mean such as the normal distribution or more generally,
elliptical distributions (McNeil, Frey and Embrechts [13]). However, in most cases
such as in portfolios containing options, as well as credit portfolios, we are dealing
with wealth distributions that are highly skewed. It is thus more reasonable to
consider asymmetric risk measures since individuals are typically loss averse. In this
regard, Value-at-Risk (VaR), a downside risk measure (Jorion [10]), has emerged as
the industry standard with regulatory authorities enforcing its use.

Despite its widespread acceptance, VaR is known to possess unappealing features.
Artzner et al. [2] proposed an axiomatic foundation for risk measures, by identifying
four properties that a reasonable risk measure should satisfy and providing a charact-
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136 D. Akume, B. Luderer and R. Wunderlich

erization of the risk measures satisfying these properties, which they called coherent
risk measures. Going by these axioms, VaR is not coherent. Tail Conditional
Expectation (TCE), on the other hand, for an underlying continuous distribution,
is one of such so-called coherent risk measures (Rockafellar and Uryasev [17]).

In a defined contribution pension plan, a pensioner with income drawdown option
(Gerrard et al. [7]) retires and compulsorily has to purchase an annuity within a
certain period of time after retirement. In the interim, the accumulated capital is
dynamically allocated while the pensioner withdraws periodic amounts of money to
provide for daily life in accordance with restrictions imposed by the scheme’s rules
or by legislation. In particular we assume that an individual who retires at time t0
acquires control of a fund of size v0 which is invested in a market that consists of
risky and riskless assets. At age T the entire fund must be invested in an annuity.
The retiree has to find optimal investment and consumption choices between time
t0 and time T , the future date at which he is obliged to annuitize.

Our focus in this paper is the dynamic portfolio (by dynamic portfolio strategy
we mean portfolio re-balancing as well as re-calculation of TCE at short intervals
of time within the investment horizon. This is in contrast to the static (one-period)
model of Markowitz [12] whereby the portfolio once chosen, is never revised) and
consumption choice of a trader subject to a risk limit specified in terms of TCE. In
the existing literature, investment and consumption strategies are often studied in
separate problems. Here, we consider both in the same problem formulation. We
apply the TCE constraint while maximizing the agent’s utility over consumption
throughout the investment horizon, and over terminal wealth. This problem has not
yet received adequate attention in the existing literature. One exception is Pirvu
[15] who considers a similar problem with a constraint to VaR instead of TCE. We
show through numerical simulations by applying an algorithm similar to that in Yiu
[18] that the introduction of a TCE constraint reduces investment in risky assets
and increases consumption (Cuoco et al. [3]). Putschögl and Sass [16] use Expected
Shortfall instead of TCE and find explicit solutions for logarithmic utility. Gabih et
al. [5, 6] study the problem for a static risk constraint which is imposed at terminal
trading time only.

The rest of this paper is structured as follows. In Section 2, we model the financial
market and describe the portfolio dynamics. Section 3 derives the Value-at-Risk and
Tail Conditional Expectation constraints, while Section 4 makes precise the optimal
control problem to be solved. Section 5 develops the solution of the problem by using
the Lagrange technique to combine the Hamilton-Jacobi-Bellman (HJB) equation
and the TCE constraint. In Section 6, a numerical algorithm is presented to obtain
an approximate solution to the TCE-constrained problem. Section 7 presents some
simulations and Section 8 concludes the paper.
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Optimal Dynamic Portfolios 137

2 The Model

We consider a standard Black-Scholes type market (see, e.g., Korn [11]) for relevant
definitions) consisting of one risk-free bond and n risky stocks. The financial market
is continuous-time with a finite time horizon [0,T].

Uncertainty in the financial market is modeled by a probability space (Ω,F ,P),
equipped with a filtration that is a non-decreasing family F = (Ft)t∈[0,T ] of sub-σ-
fields of F

Fs ⊆ Ft ⊆ F , 0 ≤ s < t < T.

It is assumed throughout this paper that all inequalities as well as equalities hold
P- almost surely. Moreover, it is assumed that all stated processes are well defined
without giving any regularity conditions ensuring this. The price of the risk-free
asset (bond) S0 is supposed to evolve according to

dS0
t = rS0

t dt, S0
0 = s0, (2.1)

where r denotes the risk-free interest rate. For the risky assets (stocks), for which
the prices will be denoted by St = (S1

t , . . . , Sn
t ) for some n ∈ N, the basic evolution

model is that of a log-normal diffusion process:

dSi
t

Si
t

= µidt +
k∑

j=1

σijdW j
t , t ∈ [0, T ], Si

0 = si, i = 1, . . . , n, (2.2)

where, for some k ∈ N, Wt = [W 1
t , . . . ,W k

t ]′, with the symbol (′) standing for
transpose, is a k-dimensional standard Wiener process, i.e., a vector of k independent
one-dimensional Wiener processes. The n-vector µ = (µ1, . . . , µn)′, contains the
expected instantaneous rates of return and the n×k-matrix σ = σij , (i = 1, . . . , n, j =
1, . . . , k) measures the instantaneous sensitivities of the risky asset prices with respect
to exogenous shocks so that the (n × n)-matrix σσ′ contains the variance and
covariance rates of instantaneous rates of return. An agent invests according to an
investment strategy that can be described by the (n+1)-dimensional, Ft-predictable
process

xt = (x0
t , x

1
t , . . . , x

n
t ), (2.3)

where xi
t (i = 1, . . . , n) denotes the number of shares of asset i held in the portfolio

at time t (i = 0 refers to the bond). The process x describes an investor’s portfolio
as carried forward through time. The value of the investor’s wealth at time t is then

V x
t = x0

t S
0
t +

n∑
i=1

xi
tS

i
t , (2.4)

where xi
tS

i
t represents the amount invested in asset i at time t.

Equivalently, one may consider the vector

θt = (θ1
t , . . . , θ

n
t ), θi

t =
xi

tS
i
t

V x
t

, (i = 1, . . . , n),
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138 D. Akume, B. Luderer and R. Wunderlich

with θi
t denoting the fraction of wealth invested in the risky asset i at time t, whereby

the remaining fraction 1 −
∑n

j=1 θi
t of the agent’s wealth is invested in the risk-

free asset. Let also ct be the instantaneous consumption rate. It is assumed that
θ1
t , . . . , θ

n
t and ct are Ft- adapted control processes. That is, θi

t and ct are non-
anticipative functions. The corresponding portfolio value process reads

dV θ,c
t = V θ,c

t

[(
1−

n∑
i=1

θi
t

)
dS0

t

S0
t

+
n∑

i=1

θi
t

dSi
t

Si
t

]
− ctdt, V θ,c

0 = v0. (2.5)

Since µ, σ and r are constant it is enough for (2.5) to be well defined that we
require

∫ T
0 |ct| +

∑n
1=1(θ

i
t)

2dt < ∞. Control processes satisfying these conditions
and V θ,c

t ≥ 0 for all t ∈ [0, T ] will be called admissible. By A(vt, t) we denote the
corresponding class of admissible controls (θt, ct) for portfolios starting at time t

with capital vt = V θ,c
t .

To have a better exposition, we adopt a matrix expression: denote σ = [σi,j ],
θt = [θ1

t , . . . , θ
n
t ]′, µ = [µ1, . . . , µn]′, 1n = [1, . . . , 1]′ and Wt = [W 1

t , . . . ,W k
t ]′, so that

σ is an n× k matrix, µ− r1n and θt are n-dimensional column vectors and Wt is a
k-dimensional column vector. Hence equation (2.5) can be rewritten as

dV θ,c
t = V θ,c

t

[(
r + θ′t(µ− r1n)

)
dt + θ′tσtdWt

]
− ctdt, V θ,c

0 = v0. (2.6)

We have adopted an incomplete market asset pricing setting of He and Pearson
[8]. To eliminate redundant assets, we assume that σ is of full row rank, that is, σσ′

is an invertible matrix.

3 Tail Conditional Expectation

Here we start by defining Value-at-risk since the subsequent definition of Tail Condit-
ional Expectation (TCE) will depend on it.

Definition 1. (Value-at-Risk)
Given some probability level α ∈ (0, 1), a time t wealth benchmark Υt and horizon ∆t
, the Value-at-Risk (V aRα

t ) of time t wealth Vt at the confidence level 1−α is given
by the smallest number L such that the probability that the loss Gt+∆t := Υt−V θ,c

t+∆t

exceeds L is no larger than α.

V aRα
t = inf {L : P(Gt+∆t ≥ L|Ft) ≤ α} := −Qα

t , (3.1)

where
Qα

t = sup
{

L ∈ R : P((V θ,c
t+∆t −Υt) ≤ L|Ft) ≤ α

}
(3.2)

is the quantile of the projected wealth surplus at the horizon t + ∆t.
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V aRα
t is therefore the loss of wealth with respect to a benchmark Υt at the

horizon ∆t which could be exceeded only with a small conditional probability α if
the current portfolio θt were kept unchanged. Typical values for the probability level
α are α = 0.05 or α = 0.01. In market risk management the time horizon ∆t is
usually one or ten days.

Proposition 2. (Computation of Value-at-Risk)
We have

V aRα
t = −Qα

t = V θ,c
t exp

[
Φ−1(α)‖θ′tσ‖

√
∆t

+
(
θ′t(µ− r1n) + r − ct

V θ,c
t

− 1
2
‖θ′tσ‖2

)
∆t
]
−Υt+∆t, (3.3)

where Φ(·) and Φ−1(·) denote the normal distribution and the inverse distribution
functions respectively, and ‖ · ‖ stands for the Euclidean norm.

We refer to [1] for the proof.

Tail Conditional Expectation is closely related to the Value-at-Risk concept, but
overcomes some of the conceptual deficiencies of Value-at-Risk (Rockafellar and
Uryasev [17]). In particular, it is a coherent risk measure for continuous distributions
(Artzner et al. [2]).

Definition 3. (Tail Conditional Expectation)

Consider the loss distribution Gt+∆t := Υt − V θ,c
t+∆t represented by a continuous

distribution function FGt+∆t
with

∫
R |Gt+∆t|dF (Gt+∆t) < ∞. Then the TCEα

t at
confidence level 1− α is defined as

TCEα
t = Et {Gt+∆t|Gt+∆t ≥ V aRα

t } ,

=
1
α

Et

{
(Υt − V θ,c

t+∆t)I(Υt − V θ,c
t+∆t ≥ −Qα

t )|Ft

}
,

where I(A) is the indicator function of the set A.

In other words, the Tail Conditional Expectation of wealth Vt at time t is the
conditional expected value of the loss exceeding −Qα

t . Again, given the log-normal
distribution of asset returns, the TCEα

t can be explicitly computed as can be seen
in the following proposition.

Proposition 4. (Computation of Tail Conditional Expectation)
We have

TCEα
t =

1
α

(
αΥt−V θ,c

t exp
(
(θ′t(µ−r1n)+r− ct

V θ,c
t

)∆t
)
Φ
(
Φ−1(α)− ‖θ′tσ‖

√
∆t
))

,

Under the Black-Scholes model (µ, σ constant) and for fixed θt, ct the conditional distribution
of Gt+∆t given Ft is continuous (since it is lognormal).
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where Φ(·) and Φ−1(·) denote the normal distribution and the inverse distribution
functions.

We refer to [1] for the proof.

4 Statement of the Problem

We seek the optimal asset and consumption allocation that maximizes (over all
admissible {θt, ct}) the expected discounted utility of terminal wealth at time T and
consumption over the entire horizon [0, T ], for a risk averse investor who limits his
risk by imposing an upper bound on the TCE.

The choice of this problem is motivated by the income drawdown option in
defined contribution pension schemes. As mentioned in the introduction, such an
option allows the member who retires not to convert the accumulated capital into
annuity immediately at retirement, but to defer the purchase of the annuity until
a certain point in time after retirement. The period of time can be limited to time
T . Usually, freedom is given for a fixed number of years after retirement and at a
certain age the annuity is bought.

Here, we consider the income drawdown option (Gerrard et al. [7]) and investigate,
by means of stochastic optimal control techniques, what should be the optimal
investment and consumption allocation of the fund after retirement until the purchase
of the annuity. The reason the pensioner chooses the drawdown option is the hope
of being able to invest the accumulated capital at retirement and increase its value
in order to buy a better annuity in the future than the one he otherwise could have
bought at retirement.

In mathematical terms the final stochastic optimal control problem with TCE
constraint is

max
{θ, c}∈A(v0,0)

E0,v0

{∫ T

0
e−ρsU1(cs)ds + e−ρT U2(V θ,c

T )
}

, (4.1)

subject to the wealth dynamics

dV θ,c
t =

[
V θ,c

t (θ′t(µ− r1n) + r)
]
dt− ctdt + V θ,c

t θ′tσdWt, V θ,c
0 = v0

and the TCE constraint

TCEα
t ≤ ε(v, t), ∀ t ∈ [0, T −∆t), (4.2)

where for fixed ∆t > 0

TCEα
t = TCEα

t (V θ,c
t , θt, ct) (4.3)

=
1
α

(
αΥt − V θ,c

t exp
(
(θ′t(µ− r1n) + r − ct

V θ,c
t

)∆t
)

·Φ
(
Φ−1(α)− ‖θ′tσ‖

√
∆t
))

.
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Here Et,v denotes the expectation operator at time t, given V θ,c
t = v (and given the

chosen consumption and investment strategies), U1 and U2 are twice differentiable,
increasing, concave utility functions, ε(v, t) is an upper bound on TCE and ρ > 0 is
the rate at which utility of consumption and utility of terminal wealth are discounted.
We let

U(x) = U1(x) = U2(x) =
x1−γ

1− γ
,

where γ ∈ (0,∞)\{1}. This falls in the category of power utility functions, also
known as Constant Relative Risk Aversion (CRRA) utility functions. For logarithmic
utility U(x) = log x, which corresponds to the limit for γ → 1, the optimization
problem can be tackled directly, see e.g. Pirvu [15, Section 4].

5 Optimality Conditions

In applying the dynamic programming approach we solve the HJB equation associat-
ed with the utility maximization problem (4.1). Defining the value function

J(v, t) = sup
{θ, c}∈A(v,t)

Et,v

{∫ T

t
e−ρsU(cs)ds + e−ρT U(V θ,c

T )
}

, (5.1)

following Fleming and Rishel [4]) we deduce the corresponding HJB equation

ρJ(v, t) = max
c≥0, θ∈Rn

{
U(c) + Jt(v, t) + Jv(v, t)

(
v[θ′(µ− r1n) + r]− c

)
+

1
2
Jvv(v, t)v2θ′σσ′θ

}
, (5.2)

subject to the terminal condition

J(v, T ) = e−ρT U(v),

where subscripts on J denote partial derivatives and v = V θ,c
t the wealth realization

at time t.
One of the main tools of stochastic control theory consists of verification theorems,

i.e., theorems stating that a sufficiently regular solution of the HJB equation coincides
with the value function and that an optimal portfolio process (θopt, copt), in the
context of stochastic control theory denoted as an optimal control, can be constructed
by looking at the values that yield the supremum in equation (5.2). For these
technical theorems and proofs we refer again to the book by Fleming and Rishel
[4]. We therefore solve equation (5.2), upon the assumption that these verification
theorems are valid.

See Korn [11] for a definition and properties of a power or CRRA utility function.
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In solving the HJB equation (5.2), the static optimization problem

max
c≥0, θ∈Rn

{
U(c) + Jv(v, t)

(
v[θ′(µ− r1n) + r]− c

)
+

1
2
Jvv(v, t)v2θ′σσ′θ

}
, (5.3)

subject to the TCE constraint (4.3) can be tackled separately to reduce the HJB
equation (5.2) to a nonlinear partial differential equation of J only.

We introduce the Lagrange function L (θ, c, λ) = L (θ(v, t), c(v, t), λ(v, t)) as

L (θ, c, λ) = Jv(v, t)
(
v
[
θ′(µ− r1n) + r

]
− c
)

+
1
2
v2θ′σσ′θJvv(v, t)

+ U(c)− λ(v, t) (αTCEα
t (v, θ, c)− ε1) , (5.4)

where λ is the Lagrange multiplier, ε1 = ε · α and TCEα
t is given in (4.3). The

first-order necessary conditions with respect to θ, c and λ respectively of the static
optimization of (5.4) are given by

0 = ∇θL = vJv(µ− r1n) +
1
2
Jvvv

2σσ′θ

+ λv
[
(µ− r1n)∆t exp

(
(θ′(µ− r1n) + r − c

v
)∆t
)
· Φ
(
Φ−1(α)− ‖θ′σ‖

√
∆t
)

− exp
(
(θ′(µ− r1n) + r − c

v
)∆t
)
·
√

∆t

2
σσ′θ

‖θ′σ‖

· 1√
2π

exp
(
− 1

2
(Φ−1(α)− ‖θ′σ‖

√
∆t)2

)]
, (5.5)

0 =
∂L
∂c

= −Jv + Uc − λ∆t · exp
(
(θ′(µ− r1n) + r − c

v
)∆t
)

· Φ
(
Φ−1(α)− ‖θ′σ‖

√
∆t
)

, (5.6)

where Uc is the first-order derivative of U with respect to c and

0 =
∂L
∂λ

= H(v, t) := −αΥt + v exp
(
(θ′(µ− r1n) + r − c

v
)∆t
)

· Φ
(
Φ−1(α)− ‖θ′σ‖

√
∆t
)

+ ε1, (5.7)

while the complimentary slackness condition is given as

λ(v, t)H(v, t) = 0 and λ(v, t) ≥ 0. (5.8)
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Simultaneous resolution of these first-order conditions yields the optimal solutions
θopt, copt and λopt. Substituting these into (5.2) gives the partial differential equation

− ρJ(v, t) +
(copt(v, t))1−γ

1− γ
+ Jt(v, t) + Jv(v, t)

(
v[(θopt(v, t))′(µ− r1n) + r]

−copt(v, t)
)

+
1
2
Jvv(v, t)v2(θopt(v, t))′σσ′θopt(v, t) = 0, (5.9)

with terminal condition

J(v, T ) = e−ρT v1−γ

1− γ
,

which can then be solved for the optimal value function Jopt(v, t). Because of
the non-linearity in θopt and copt, the first-order conditions together with the HJB
equation are a non-linear system. So the partial differential equation (5.9) has no
analytic solution and numerical methods such as Newton’s method or Sequential
Quadratic Programming (SQP) (see, e.g., Nocedal and Wright [14]) are required to
solve for θopt(v, t), copt(v, t), λopt(v, t) and Jopt(v, t) iteratively.

6 Numerical Solution

We use an iterative algorithm similar to that of Yiu [18] which yields a C2,1 approxim-
ation Ĵ of the exact solution J . The pair (θ̂t, ĉt) is the investment strategy related
to Ĵ .

When the optimal solution strictly satisfies the TCE constraint (4.3), the Lagrange
multiplier λ(v, t) is zero. If the constraint is active, the multiplier is positive.

First, we divide the domain of resolution into a grid of nv × nt mesh points.
Iterations are indexed by k.

1. For each point (t, v), with t ∈ {0,∆t, . . . , nt∆t}, v ∈ {0,∆v, . . . , nv∆v}, we
compute the value function Ĵk=0 = J(v, t) and the optimal strategy (θopt

t , copt
t )

of the unconstrained problem. All Lagrange multipliers are set to zero, λk=0
t,v =

0. This solution is the starting point of the algorithm.

2. For all points of the grid, the constraint is checked. If the constraint is not
active (TCEα

t < ε), the multiplier is zero λk+1
t,v = 0 and (θk+1

t , ck+1
t ) is the

solution of a similar equation to that of the unconstrained case,

λk+1
t,v = 0, θk+1

t = − Ĵv

vĴvv

(µ− r1n)(σT σ)−1, Ûc(ck+1
t ) = Ĵv.

If the TCEα
t constraint is active, (TCEα

t ≥ ε), we solve a nonlinear system
in λk+1

t,v , θ̂j+1
t and ĉj+1

t . This nonlinear system is composed of the first-order
necessary conditions of the static optimization problem (5.4). That system is
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numerically solved by the sequential quadratic programming method (Nocedal
and Wright [14]).

3. The last stage consists in the calculation of the value function Ĵk+1 according
to the investment/consumption strategy (θ̂k+1

t , ĉk+1
t ) as described below this

algorithm.

4. Return to step 2 with k = k + 1 until the error at time t from wealth level v,
εt,v, satisfies |εt,v| < δ with some small δ > 0, where

εt,v = Ĵt − ρĴ(v, t) + Ĵv

(
v[(θ̂opt

t )′(µ− r1n) + r]− copt
t

)
+

1
2
v2‖(θ̂t

opt
)′σ‖2Ĵvv

+ U(copt
t ).

For the numerical solution of the partial differential equation (5.9), to obtain the
value function, we use the trial function

J(v, t) = f(t)
v1−γ

1− γ
, f(T ) = e−ρT ,

such that

Jt = f ′(t)
1

1− γ
v1−γ , Jv = f(t)v−γ and Jvv = −γf(t)v−(γ+1).

Substituting these derivatives into (5.9) and dividing by v1−γ , we derive the ordinary
differential equation

f ′(t) = −κ(θopt(v, t), copt(v, t), v)f(t)−B(copt(v, t), v), (6.1)

whereby

κ(θopt(v, t), copt(v, t), v) = (1− γ)
(

−ρ

1− γ
+
[
(θopt(v, t))′(µ− r1n) + γ

]
−copt(v, t)v−1 − γ

2
(θopt(v, t))′σσ′θopt(v, t)

)
and

B(copt(v, t), v) = (copt(v, t))1−γvγ−1,

with terminal condition f(T ) = e−ρT . The function f in equation (6.1) is computed
numerically by the Euler-Cauchy method (see Isaacson and Keller [9]).
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Parameter Value
Stock (S1) µ1 = 4%, σ11 = 5%, σ12 = 5%
Stock (S2) µ2 = 6%, σ21 = 5%, σ22 = 20%
Bond (S0) r = 3%
Investment horizon t ∈ [0, 1]
State of wealth v ∈ [0, 20]
Shortfall probability α = 1%
Value-at-Risk horizon ∆t = 1

48 ≈ 7 days
No. of wealth mesh points Nv = 81
Mesh size for wealth ∆v = 20

80 = 0.25
Utility function U(x) = x1−γ

1−γ , γ = 0.9
discount rate ρ = 0.03

Table 1: Parameters for the consumption and investment portfolio optimization
problem.

Wealth benchmark, Υt Bound, ε

Conditional expectation 0.3
Money market 1.0

Table 2: Bounds and benchmarks for the TCE-constrained problem.

7 Simulations

We have implemented the above algorithm to illustrate the optimal portfolio of
the preceding section with examples. To this end, we have written a program in
MATLAB to carry out the procedure. We assume that n = 2. That is, the market
is composed of two risky stocks and a risk-free bond. Table 1 shows the parameters
for the portfolio optimization problem and the underlying Black-Scholes model of
the financial market. We consider the Tail Conditional Expectation of the wealth
surplus Vt −Υt with respect to the benchmark Υt such that it satisfies

TCEα
t (V θ,c

t+∆t −Υt) ≤ ε,

where ε comes from Table 2. That is, the TCE is re-evaluated at each discrete
time step (TCE horizon) ∆t and kept below the upper bound ε, by making use
of conditioning information. Here, in the first scenario, the shortfall benchmark is
taken to be the conditional expected wealth Υt = Et{Vt+∆t}, given as

Υt = Et{Vt+∆t} = Vt exp
[(

θ′t(µ− r1n) + r − ct

Vt

)
∆t

]
, (7.1)

while, in the second scenario, it is the investment in the risk-free bond Υt = Vte
r∆t.

******************************************************************************
Surveys in Mathematics and its Applications 5 (2010), 135 – 149

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v05/v05.html
http://www.utgjiu.ro/math/sma


146 D. Akume, B. Luderer and R. Wunderlich

Figures 1 and 2 show in the right panel the amount of wealth invested in the
risky assets with and without the TCE constraint, plotted against the possible
wealth realization at different times. The left panel shows the value function. In
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Figure 1: Optimal portfolio value and risky wealth when benchmark is the conditional expected wealth

plotted against wealth at various times of the investment horizon. In green, TCE ≤ ε = 0.3.

Figure 1, the shortfall benchmark is taken to be the conditional expected wealth
while in Figure 2 it is the investment in the risk-free bond. As can be observed

0

10

20

0

0.5

1
10

15

20

25

Wealth

Optimal portfolio value

Time 0

10

20

0

0.5

1
0

5

10

15

20

25

30

Wealth

risky wealth

Time

without TCE
with TCE

Figure 2: Effect of the TCE constraint when benchmark is investment in the bond.

from the images, as the wealth level increases, so does the investment in risky
assets. This results from the property of constant relative risk aversion of the
utility function. A good control over the investment in the risky assets has been
achieved and the proportions invested in the risky assets are reduced in order to fulfill
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the TCE constraint. In particular, when the constraint is not active, the optimal
portfolio follows the unconstrained solution; as the portfolio value increases, the TCE
constraint becomes active and allocates less to the risky assets. Figure 3 reveals to
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Figure 3: Effect of the TCE constraint on consumption when benchmark is investment in the bond.

us that the local minimum (around wealth level 10) observed in the left panel of
Figure 2 comes as a result of a sudden increase in the consumption rate once the
constraint becomes active. The left panel of Figure 1 suggests that this increase
in consumption is more subtle when we take as wealth benchmark, the conditional
expected wealth.

The value function of the constrained problem is identical to that of the unconstrained
one when the Lagrange multipliers are null, whereas it is inferior when the constraint
is active.

8 Concluding Remarks

Using a CRRA utility function, we have investigated how a bound imposed on
TCE affects the optimal portfolio choice and consumption. In so doing, we have
used dynamic wealth benchmarks - conditional expected wealth and investment in
risk-free bonds, whereby the TCE was re-evaluated at short intervals along the
investment horizon. We deduce from our observations that the constraint reduces
risky investment. Moreover, part of the wealth hitherto invested in risky assets is
diverted to consumption when the constraint is tight.

Akume [1], Chapter six obtains similar results with constrained VaR and concludes
for the log-normal diffusion model that TCE and VaR effect similar risk controls
when bounded.
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