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ENTROPY DUE TO FRAGMENTATION OF
DENDRIMERS

Lorentz Jäntschi and Sorana D. Bolboacă

Abstract. Subgraphs can results through application of criteria based on matrix which

characterize the entire graph. The most important categories of criteria are the ones able to produce

connected subgraphs (fragments). Based on theoretical frame on graph theory, the fragmentation

algorithm on pair of vertices containing the largest fragments (called MaxF) are exemplified. The

counting polynomials are used to enumerate number of all connected substructures and their sizes.

For a general class of graphs called dendrimers general formulas giving counting polynomials are

obtained and characterized using informational measures.

1 Introduction

Molecular Topology creates one of the most important junction between Graph
Theory and Organic Chemistry. Some books were published in this interdisciplinary
field, just one of them being [3]. Two main operational tools on this field are square
matrices (the cell of matrix contains a graph theoretical property associated to
the pairs of vertices) and graph polynomials. Counting polynomials were recently
introduced as a tool for substructures count and sizes for a given fragmentation
criteria [5] applied on a graph-type structure. The paper presents the counting
polynomial formulas obtained on a regular type structure - dendrimers by applying
of a maximum fragment size algorithm. The counting polynomials were further
investigated from the informational perspective when another series of entropy and
energy formulas of polynomials were obtained. Finally, a structure - activity
relationships study was conducted using the entropy and the energy of a polynomial
formula as structure descriptors.
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2 Graph Theory Fundamentals

Let V be a set and E ⊆ V × V a subset of the Cartesian product V × V . Then
G = (V,E) is an un-oriented graph. A graph is connected if there is a path from one
to any other vertex. Let G = (V, E) be an un-oriented connected graph. We will note
with V (G) the set of vertices from G, with E(G) the set of edges from G, and with
d(G) the distance matrix of G. The element d(G)i,j of the distance matrix d(G) is the
length of a shortest path joining veritices i and j, if any: min(l(pi,j)) otherwise∞. In
terms of distance matrix d(G) the connectivity of G is translated in: d(G)i,j < ∞ for
any i, j ∈ V (G). The largest subgraph obtained from G containing the i vertex and
not containing the j vertex is considered [7] to be a maximal connected subgraph
(relative to i and j vertices). Let us call this subgraph MaxF (G)i,j . Maximal
connected subgraphs can be defined through construction (2.1).

MaxF (G)i,j = (V (MaxF (G)i,j), E(MaxF (G)i,j)) (2.1)
V Tmp(G)i,j = {s ∈ V (G) | s 6= j}

ETmp(G)i,j = {(u, v) ∈ E(G) | u, v 6= j}
V (MaxF (G)i,j) = {s ∈ V Tp(G)i,j | d(V Tmp(G)i,j)s,i < ∞}

E(MaxF (G)i,j) = {(s, t) ∈ E(G) | s, t ∈ V (MaxF (G)i,j)}

The counting matrices containing the number of subgraphs vertices are formally
known as pair-based matrices in graphs. Note that, in general these are unsymmetrical
matrices. We will note the associated matrix using brackets [·]. The definition for
[MaxF ] is given by (2.2):

[MaxF]i,j = |MaxF (G)i,j | (2.2)

3 Counting Polynomials

A counting polynomial for a graph structure is a polynomial formula depending
on the structure, and on the applied criteria; it is frequently expressed using an
undetermined variable X. Counting polynomials can be defined and investigated
based on square matrices as well as the fragmentation criteria defined above. For
matrices (as above defined, (2.2), we have:

CP (G, [C], X) =
∑
i>0

coef(G, i, [C])Xi (3.1)

In (3.1) coef(G, i, [C]) counts the number of matching of value i in [C] matrix,
[C] is the unsymmetrical matrix constructed from the criterion C. We used as
C the abode-defined MaxF criterion (2.1). For a connected graph G, always
coef(G, 0, [C]) = |V (G)| for any discussed criterion C. If someone counts the number
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Figure 1: Dendrimers, Dk,Y

of zero’s in the matrix defined by (2.2) for the dendrimer (see Figure 1), it will found
the formula giving the X0 term in counting polynomials (left over for the further
analysis), this is equal to the number of vertices (due to the 0’s from the diagonal
of the matrix), and are given by (3.2).

kY +1 − 1
k − 1

(3.2)

Taking here a probabilistic approach, the polynomial formula characterizes the entire
graph though its monomes and every monome describes the results of an independent
event on which counting operation is applied. Thus, a rank of a monome express the
magnitude of the event - the size of the subgraphs obtained from the graph structure
by applying the criteria, while a coefficient of a monome express the frequency of
an event - number of subgraphs obtained from the graph structure having same
size by applying the criteria. Obtaining of polynomial formulas have important
applications in chemical graph theory and structure-activity relationships [1, 6].
Thus, information theory approaches on counting polynomials may have important
application in these fields. The most complex task is obtaining of polynomials
formulas. The definition formula of counting polynomials found some applications in
investigation of structure-activity relationships [6], characterization of nanostructures
[4], investigation of indeterminate over a finite field and with bounded degree
polynomials [8], and others in [12]. The formula 3.1 for counting polynomial
CPMaxF (k, Y,X) due to MaxF fragmentation is as follows (3.3):

CPMaxF (k, Y,X) =
Y∑

i=1

(
kY +1−i − 1

(k − 1)/kY +1
X

kY +1−i−1

(k−1)/ki +
kY +1−i − 1
(k − 1)/ki

X
kY +1−i−1

k−1

)
(3.3)

4 Proof of the Counting Polynomial Formula

In order to proof the polynomial formula given above, is enough to see that is true
for a large enough particular cases. The Dk,Y dendrimer (see figure 1) has two
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important particular cases: k = 1 - when become a path and Y = 1 - when become
a star. Table 1 contains the polynomial formulas for stars and paths, as is are
obtained from (3.3).

Table 1: Degeneration of dendrimers into stars (Sk) and paths (PY )
Graph Polynomial

0

…1

k

Sk CPMaxF (k, 1, X) = k2Xk + kX
S1 CPMaxF (1, 1, X) = 2X
S2 CPMaxF (2, 1, X) = 4X2 + 2X
S3 CPMaxF (3, 1, X) = 9X3 + 3X

0

1

Y-1

Y

PY CPMaxF (1, Y,X) = Y XY +2−(Y +1)XY +1+X
(X−1)2/2

P1 CPMaxF (1, 1, X) = 2X
P2 CPMaxF (1, 2, X) = 4X2 + 2X
P3 CPMaxF (1, 3, X) = 6X3 + 4X2 + 2X

There are just four distinct structures between (Sk, PY ) for k, Y = 1..3 as
formulas from Table 1 shows too (S1 = P1; S2 = P2 after reindexing of vertices).
Starting to check the formulas given in Table 1 no proof is necessary to see that
{{0, 1}, {(0, 1)}} graph (S1 and P1 in Table 1) has only MaxF0 vs. 1 = {0} and
MaxF1 vs. 0 = {1} as fragments and their count gives the 2X polynomial formula.
For S2 star (S2 = {{0, 1, 2}, {(0, 1), (0, 2)}}), MaxF0 vs. 1 = {0, 2}, MaxF0 vs. 2 =
{0, 1}, MaxF1 vs. 0 = {1}, MaxF2 vs. 0 = {2}, MaxF1 vs. 2 = {0, 1}, and MaxF2 vs. 1 =
{0, 2}. Counting gives four occurences of size 2 and two occurences of size 1, thus
the polynomial is consistent with the formula given in Table 1, 4X2 + 2X.
Taking now the general case Sk, fragments of size 1 are MaxFi vs. 0 = {i}, i =
1..k and all others (in number of k+1P2 − k = k2) gives fragments of size k and
CPMax(k, 1, X) from (3.3) is thus verified.
The formula for CPMaxF (1, Y,X) (3.3) is the compacted expression for the progression
observed in the series CPMaxF (1, 1, X), CPMaxF (1, 2, X), CPMaxF (1, 3, X), ... and
it correspond to the 2X

∑Y
i=1 iX i−1 series sum, and

CPMaxF (1, Y + 1, X) = CPMaxF (1, Y,X) + 2(Y + 1)XY +1

occures. Listing of MaxF fragments for SY +1 of size Y + 1 has the following result:
MaxFY +1 vs. Z , Z = 0..Y and MaxFZ vs. Y +1, Z = 0..Y - all others being of size less
or equal to Y , and the proof of CPMaxF (1, Y,X) (3.3) is thus given by recurrence.
Let’s take now a more complex graph (Figure 2) to count it’s fragments by size after
applying of MaxF criterion. The MaxF fragments of D2,2 may be ennumerated as
follows (using notations from Figure 2):

• All from and to v1,· and v0: k|MaxFv1,· vs. v0| = k
∑Y−1

i=0 ki = 2X3;
k|MaxFv0 vs. v1,· | = k

∑Y
i=0 ki − k

∑Y−1
i=0 ki = kY = 2X4;
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Figure 2: D2,2 Dendrimer

• All from and to v1,·,· and v0: k2|MaxFv1,·,· vs. v0| = k2
∑Y−1

i=0 ki = 4X3;
k2|MaxFv0 vs. v1,·,· | = 4X6;

• All from v1,i to v1,j (i 6= j): 2Pk|MaxFv1,i vs. v1,j | = 2X4;

• All from and to v1,i to v1,j,· (i 6= j): 2 · 2X6; 2 · 2X4;

• All from and to v1,i to v1,i,·: 2 · 2X6; 2 · 2X1;

• All from v1,·,i to v1,·,j (i 6= j): 4 · 3X4;

Cumulating all above enumerated, 24X6 +8X4 +6X3 +4X which is consistent with
CPMaxF (2, 2, X) - (3.3).

5 Informational Analysis

Let a counting polynomial be given by the general formula:

P =
∑

1≤i≤n

aiX
bi , A = (ai)1≤i≤n, B = (bi)1≤i≤n (5.1)

The meaning of a monome from (5.1) is as follows: the coefficient ai is the frequency
of a fragment (connected subgraph) of size bi. The polynomial formula defines
the frequency space A and events space B. This formula allows obtaining entropies
(from A) and energies (from both A and B) of the polynomial formula. The Rényi
[9] entropy Hα is defined by the formula (5.2):

Hα =
1

1− α
log2

n∑
i=1

pα
i , pi =

ai∑n
j=1 aj

, α > 0 (5.2)

H1 = lim
α→1

Hα = −
n∑

i=1

(pilog2(pi)) (5.3)

H2 = −log2(
n∑

i=1

(p2
i )) (5.4)
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where the entropies were expressed in bits. Note that Shannon’s [10] entropy H1(P )
(α = 1, (5.3) is the one related with Boltzmann entropy [2], thus giving a physical
meaning of the results, and the term inside of the logarithm in H2 (5.4) is the
Simpson Diversity Index [11], giving thus a biological meaning of the results.
The entropy of a polynomial formula is defined by the frequency of apparition of
molecular fragments of specified size and it is comprises in the coefficients of the
polynomial formula.
By applying of the (5.3) and (5.4) formulas to the coefficients (see 5.1 and 5.2) of the
polynomial formula of the dendrimers (3.3) two variable (k and Y) Shannon ( 5.3)
and -log(Simpson) (5.4) entropies are obtained. Figure 3 plots the Shannon entropy
(in bits) where Y parameter is on horizontal axis and k parameter is on frontal axis
and the Shannon entropy is on the surface. Both entropies rapidly decreases with
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Figure 3: Shannon (5.3) entropy (left) and -log(Simpson) (5.4) entropy (right) of
Dk,Y due to MaxF (2.1 then (3.3) fragmentation

ramification degree. The coordinates of highest entropies by the number of levels
are given by following coordinates (k, Y ):

1. For Shannon entropy (5.3): (1,∞) - infinite path, (2, 5) - 5 levels binary tree,
(3, 3) - three levels tertiary tree, (4, 3) - tree lavels ternary tree, (k ≥ 5, 2) -
two levels any other tree;

2. For -log(Simpson) entropy (5.4): (1,∞) - infinite path, (2, 4) - 4 levels binary
tree, (3, 3) - three levels tertiary tree, (k ≥ 4, 2) - two levels any other tree;

Between stars, the path-star S2 = P2 has the highest entropy on both measures of
(5.3) and (5.4).
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6 Appendix

In order to test the validity of the formula (3.3) a program implementing equations
(2.1) and (2.2) were made. Table 2 contains obtained results. The supplementary
file (DkY.chm file) contains plots, distance matrix, maximal fragments and their
polynomials for following dendrimers: D2,1, D3,1, D4,1, D5,1, D2,2, D3,2, D4,2, D5,2,
D2,3, D3,3, and D2,4. All obtained results were consistent with the (3.3) formula.
Note that in the supplementary file and in Table 2 are counted the number of the
verices from initial graph too (3.2) through X0 terms of the polynolials.

Table 2:
∑

i aiX
bi counting polynomials of maximal fragments (MaxF ) for firsts

Dk,Y dendrimers
k,Y i 12 11 10 9 8 7 6 5 4 3 2 1 0

2,1 B 2 1 0

2,1 A 4 2 3

2,2 B 6 4 3 1 0

2,2 A 24 8 6 4 7

2,3 B 14 12 8 7 3 1 0

2,3 A 112 48 16 14 12 8 15

2,4 B 30 28 24 16 15 7 3 1 0

2,4 A 480 224 96 32 30 28 24 16 31

2,5 B 62 60 56 48 32 31 15 7 3 1 0

2,5 A 1984 960 448 192 64 62 60 56 48 32 63

2,6 B 126 124 120 112 96 64 63 31 15 7 3 1 0

2,6 A 8064 3968 1920 896 384 128 126 124 120 112 96 64 127

3,1 B 3 1 0

3,1 A 9 3 4

3,2 B 12 9 4 1 0

3,2 A 108 27 12 9 13

3,3 B 39 36 27 13 4 1 0

3,3 A 1053 324 81 39 36 27 40

3,4 B 120 117 108 81 40 13 4 1 0

3,4 A 9720 3159 972 243 120 117 108 81 121

4,1 B 4 1 0

4,1 A 16 4 5

4,2 B 20 16 5 1 0

4,2 A 320 64 20 16 21

4,3 B 84 80 64 21 5 1 0

4,3 A 5376 1280 256 84 80 64 85
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