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SHOCK WAVES IN GAS DYNAMICS

Abdolrahman Razani

Abstract. Shock wave theory was studied in literature by many authors. This article presents
a survey with references about various topics related to shock waves: Hyperbolic conservation laws,

Well-posedness theory, Compactness theory, Shock and reaction-di¤usion wave, The CJ and ZND

theory, Existence of detonation in Majda�s model, Premixed laminar �ame, Multidimensional gas

�ows, Multidimensional Riemann problem.

1 Introduction

Examine a gas initially at rest, with constant density and pressure �0; p0 bounded
on the left by a plane piston, and assume that the gas is compressed at an initial
time by the piston moving into the gas with a constant velocity, which is denoted
by u. It is known that an attempt to �nd a continuous solution to this problem
leads to a physically meaningless result. Since the problem is self-similar, the only
solutions satisfying the gas dynamics equations are the trivial solutions, in which
the quantities u; � and p are constant, and the centered simple wave solution. Thus,
there remains only one possibility for constructing a solutions that would satisfy
the boundary conditions of the problem in the undisturbed gas, u = 0; p = p0 and
� = �0, while having in the region next to the piston the gas velocity equal to the
piston velocity.
Generally speaking, the laws of conservation of mass, momentum, and energy that
form the basis for the equations of inviscid �ow of a nonconducting gas do not neces-
sarily assume continuity of the �ow variables. These laws were originally formulated
in the form of di¤erential equations simply because it was assumed at the begin-
ning that the �ow is continuous. These laws, however, can also be applied to these
�ow regions where the variables undergo a discontinuous change. From a mathe-
matical point of view, a discontinuity can be regarded as the limiting case of very
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60 Abdolrahman Razani

large but �nite gradients in the �ow variable across a layer whose thickness tends to
zero. Since in the dynamics of an inviscid and nonconducting gas (with molecular
structure disregarded) there are no characteristic lengths, the possibility of the ex-
istence of arbitrarily thin transition layers is not excluded. In the limit of vanishing
thickness these layers reduce to discontinuities. Such discontinuities represent shock
waves.

The rest of the paper is organized as follows: Section 1 is devoted to study hy-
perbolic conservation laws. The well-posedness theory will be discussed in Section
2. Compactness theory is studied in Section 3. Moreover, in Section 4, one kind of
nonlinear waves which are called high-speed detonation waves and low-speed de�a-
gration waves are investigated. The CJ and ZND theories and the di¤erence between
them are investigated in Section 5. Also, the existence of weak, strong and CJ deto-
nation waves in Majda�s model (which is a simpli�ed model for the qualitative study
of one dimensional combustion waves, i.e. for the interaction between chemical re-
actions and compressible �uid dynamics) is shown in section 6. In addition, Section
7 is devoted to the existence of premixed laminar �ames. Finally, in Sections 8 and
9 the existence of explicit solution of the compressible Euler equations in more than
one space dimensional are considered.

Before ending this section, it is important to mention that, the beauty of the
�led presented here lies in the variety of problems to be considered and the broad
set of relevant mathematical techniques: functional analysis, dynamical systems,
numerical analysis, pseudo-di¤erential operators, di¤erential geometry, etc. Physical
intuition is also a great help in this kind of research.

2 Hyperbolic Conservation Laws

Conservation laws are partial di¤erential equations of the abstract form divx;tF = 0,
where (x; t) are space-time coordinates. Relevant examples of conservation laws in-
clude �uiddynamics, electro-magnetism, magneto-hydrodynamics (MHD) with ei-
ther a classical or a relativistic context, elasticity, thermoelasticity, combustion,
electrophoresis and chromatography. They also occur in social science, for example,
in the study of car tra¢ c or of crowd �ows in large buildings or in a stadium. They
even appear in biology, for example, when bacteria or rabbits migrate. Note that
hyperbolic conservation laws which are as

ut + f(u)x = 0; (2.1)

are the simplest equations to describe the shock wave. The theory started with the
investigation of the Euler equations in the gas dynamics8<:

@t�+ @x(�v) = 0;
@t(�u) + @x(�v

2 + p) = 0;
@t(�E) + @x(�vE + vp) = 0:

(2.2)
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Shock Waves in Gas Dynamics 61

Courant-Friedrichs�s book [19] gives the account of the e¤orts on the equations by
many of the leading mathematicians before 1948.

A basic feature of hyperbolic systems of conservation laws is that there are rich
phenomena of wave interactions involving shock waves and contact discontinuities.
For example, in gas dynamics, pressure waves are shocks, whereas entropy waves and
shear waves are contact discontinuities. The classical works of Glimm [41], Glimm
and Lax [42] study the nonlinear wave interactions and qualitative behavior of the
solutions. There are several subsequent works: Diperma [27], [28], and Liu [70], [71],
[73] on regularity and large-time behavior. There is the wave tracing technique (Liu
[72]), which yields the more de�nite form of the principal of nonlinear superposition
and is useful for the study of solution behavior. Note that the nonlinearity of
these systems generally forbids the existence of classical solutions. In addition, the
strong coupling between �elds considerably restricts the tools coined for the study
of simpler hyperbolic equations. In particular, it does not permit a comparison
principal. Amazingly, we do not even know of a functional space in which the
Cauchy problem might be well-posed.

Linear theories have been designed for this class, involving appropriate functional
spaces. By Duhamel�s principal, these theories have been extended to most semi-
linear problems, where the principal part is still linear. However, fully nonlinear
problems, or even quasi-linear ones, are more di¢ cult to deal with and require other
ideas. Solutions of reasonable problems might have poor regularity, in which case
they are called weak. Then, an criterion such as, Lax shock inequality [56] (also
see Riemann [103] for gas dynamics), the E-criterion of Liu [76], the E-criterion of
Chang and Hiso [13] in the case of gas dynamic, the E-criterion is due to Wendro¤
[21], entropy inequality (which was �rst considered by Jouguet [48] for gas dynamics,
then by Kruzhkov [52] for scalar equation (n=1), and it is due to Lax [57] in general
form), viscosity criterion of a admissibility, Olinik condition [95], shock pro�le and
�nally entropy condition for shock waves, may be needed to select a unique, relevant
solution among the weak one. In fact, a system of hyperbolic conservation laws (2.1)
need to be supplemented by the admissibility criterion.
Viscous shock pro�les are travelling waves (x; t) ! U((x � st)=�) satisfying @tu +
@xf(u) = �@x(B(u)@xu), with U(�1) = u�, where s is the speed of combustion
wave [115]. A pro�le is thus a heteroclinic orbit of the vector �eld,

g(u) := B(u)�1(f(u)� f(u�)� s(u� u�)):

For shocks of moderates strength, the E-criterion is equivalent to the existence of a
shock pro�le (Majda and Pego [89]). The proof is a nice application of the center
manifold theory (see [107]).
More recently, it has been understood that the admissibility of a shock requires
not only the existence of a pro�le, but also its dynamical stability. Weak Lax shock
waves have been proved to be stable by Liu et al. [77], [43], [118], [51], [34] by means
of energy estimates. The stability of large shock pro�les has been investigated by
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Gardner, Howard and Zumburn [36], [139], [140], using an Evans function technique.
All these aspects have a counterpart at the level of numerical approximations [109].
Multidimensional aspects have been considered in [141].
Also in the entropy condition for shock waves, the role of viscosity is important and
has been recognized since the time of Stokes. Consider the viscous conservation laws

ut + f(u)x = (B(u; �)ux)x; (2.3)

where B(u; �) is the viscosity matrix. An important example is the Navier-Stokes
equations in gas dynamics8<:

�t + (�v)x = 0;
(�v)t + (�v

2 + p)x = (�vx)x;
(�E)t + (�vE + vp)x = (�Tx)x + (�vvx)x:

(2.4)

The dissipation parameters �, here are the viscosity �, and the heat conductivity �.
When the dissipation parameters � are turned o¤, the inviscid system becomes the
hyperbolic conservation laws

B(u; 0) = 0:

When the hyperbolic conservation law is strictly hyperbolic (for non-strictly hyper-
bolic conservation laws, the situation is more complicated and interesting, Liu [68]),
such as the Euler equations, a shock (u�; u+) satis�es the entropy condition if and
only if it is viewed as the limit of the travelling wave

u�(x; t) = �(x� st)

of the viscous conservation laws

�s�0 + f(�)0 = (B(�; �)�0)0;
�(�1) = u�;

as the viscosity parameters �, tend to zero. Note that, in most scalar cases, a compar-
ison principle holds, and monotonicity encodes the entropy condition; this happen
when we apply the nonlinear semigroup theories. Conley and Smoller systemically
studied the connecting orbits for such system of ordinary di¤erential equations in
series of papers. Particular structures of physical systems, e.g. Navier-Stokes and
magneto-hydrodynamics equations, are used and ideas involving Conley index are
employed [115]. These works are generalized to other physical systems such as com-
bustions with re�ned techniques from dynamical systems with small parameters, see
[37].

The stability of viscous waves for systems with arti�cial viscosity

ut + f(u)x = �uxx; (2.5)
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Shock Waves in Gas Dynamics 63

have been studied in literature by many authors such as Liu [68], [75], Yu [134], Zum-
burn and Howard [139] and references therein. The pointwise estimate is the main
technique, which yields the solution behavior on and o¤ characteristic directions. It
originates from the study of the perturbation of a constant state, see Liu [74]. Also
Liu [68] claim that, the study of viscous contact continuities remains largely open,
through there is the preliminary work of Liu and Xin [78]. In addition, Liu and Yu
[84] have succeeded in solving the Riemann problem.

Before ending this section we have to recall, although the Navier-Stokes and
Euler equations describe the same medium (say, a gas) more or less accurately,
are of distinct mathematical nature. The Euler system is �rst order in both space
and time derivatives. It appears to be hyperbolic under rather nature assumptions.
The hyperbolic property means that high-frequency waves propagate at a bounded
velocity. For instance, an open domain where the solution is constant will survive
for a �nite time, although it will be deformed. On the other hand, Navier-Stokes
systems display parabolic features, due to second order derivatives. Waves propagate
with unbounded speed, as in the heat equation @tu = �u. The key reference for
Navier-Stokes and Euler systems is two-volume book by Lions [65], [66]. See also
Temam [120] in the incompressible case.

3 Well-posedness theory

We recall that a problem is well-posed, if it admits a unique solution which depends
continuously on the data, in suitable functional spaces. The mathematical theory of
well-posedness for scalar equation, u 2 R, even for several space dimension x 2 Rn,
is now well-understood, cf. Krushkov [22]. In fact, Kruzhkov [52] built a unique
semigroup in L1, which is both monotone and an L1�contraction (also see Conway
and Smoller [20] and Volpert [124]), for study the existence and uniqueness in the
scalar case. Lions et al. [67] gave regularity results by means of an averaging lemma,
applied to their kinetic formulation. This is the only case where the existence is
known in space dimensions greater than one. In one dimension, much of the kruzhkov
and lax analysis has been extended to the so-called Temple systems, which include
chromatography models, see Leveque and Temple [59], Dafermos and Geng [24],
Heibig [45] and Serre [110]. The theory for scalar law has been generalized to
Hamilton-Jaccobi equation.

The well-posedness theory is based on Glimm�s construction of solutions and
the study of nonlinear wave interactions (Glimm [41]). Through the wave tracing
mechanism (Liu [73]), the construction of the nonlinear functional (Liu and Yang
[80]) is reduced to the study of the e¤ects of wave coupling between the solutions
on their L1�distance. Central to this study is the introduction of a generalized
entropy functional (Liu and Yang [79]). The generalized entropy functional makes
e¤ective usage of the nonlinearity of the �ux and is new even for the basic inviscid
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64 Abdolrahman Razani

Burgers equation. The idea in Liu and Yang [80] complements and is orthogonal to
the classical work of Glimm [41] on nonlinear wave interactions in a given solution.

As Liu [68] claimed, there are recent important developments in the well-posedness
theory. One theory is based on Bressan [9] on the L1�stability for in�nitesimal varia-
tion of the initial data, cf. Bressan, Crasts and Picolli [10]. The other is to construct
a time-decreasing nonlinear functional which is equivalent to the L1�distance of two
solutions (Liu and Yang [79, 80]). One can formulate as an easy consequence of the
well-posedness theory the function class for which the uniqueness theory holds, cf.
[11]. Also, Kong and Yang [50] generalized the recent result on L1 well-posedness
theory for strictly hyperbolic conservation laws to the nonstrictly hyperbolic system
of conservation laws whose characteristic are with constant multiplicity.

4 Compactness theory

There are two theories for hyperbolic conservation laws. There is the aforementioned
qualitative theory originated with Glimm�s seminal works and followed up with the
recent well-posedness theory. The other theory is the existence theory base on the
theory of compensated compactness, starting with the work of Tartar [119]. The
programme was achieved for genuinely nonlinear 2� 2 systems by Diperna [29], see
[30] for the singular context of isotropic gas dynamics. The method is versatile,
working also for numerical (see Chen [14]) or relaxation approximation [108] and
[123]. The proof uses a maximum principal (K. Chuey et al. [16]), and thus pro-
vides a solution in L1. Uniqueness in this class is uncertain. The more natural
context studied by Shearer [111], with only energy estimates, is more di¢ cult to
deal with and even less hopeful. Another weakness is that the method cannot be
extend beyond the class of rich systems (see, however, the attempt by Benzoni-Gage
et al. [4]). It has therefore been more or less abandoned, in spite of its impressive
success. Also there have been intensive activities on the existence theory for two
conservation laws and some works on large-time behaviors, cf. [15] and references
therein. The solutions obtained by this approach of compensated compactness have
not been shown to posses the nonlinear wave behavior. As a consequence, the afore-
mentioned well-posedness theory is not applicable to these solutions.
As Serre claimed is his paper [107], one must recognize that the Cauchy problem is
still mainly open. The appropriate functional spaces are not yet known. This places
the hyperbolic conservation laws in a strange position among the partial di¤erential
equations. This also provides extensive opportunities for future researcher.
Also Liu claimed in his paper [68] that, a fundamental open problem is to study the
qualitative behavior of a general weak solution, not necessarily the one constructed
by a particular method. So far, it is not known, for instance, if a weak solution satis-
�es such a basic property of hyperbolic equations as the �nite speed of propagation.
In fact, the veri�cation of this would lead to the understanding of the nonlinear
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wave interaction property. Ultimately, one hopes to study the wave behaviors, such
as local regularity (cf. [28] and [73]), and large-time behaviors ([70] and [71]) of the
solutions. Su¢ cient regularity of the solutions would allow the application of the
aforementioned well-posedness theory.

The compactness theory of Glimm and Lax [42] applies to 2� 2 systems. It says
that solutions with small sup norm in�nite variation norm initial data become of
local bound variation for any positive time. This is easily seen for scalar equations; cf.
Lax [55]. For 2�2 systems, wave interactions are of third order due to the existence
of the coordinates of Riemann invariants. This makes it possible to generalize the
scalar compactness result to 2 � 2 systems. It is not known whether such a strong
compactness result holds for more general systems, such as the full 3�3 gas dynamics
equations.

5 Shock and reaction-di¤usion wave

In this section, we will investigate the compressive and expansive shock waves
which are one kind of nonlinear waves and call detonation and de�agration waves.
Two other important classes of nonlinear waves are dispersion waves and reaction-
di¤usion waves. It is, of course, important to relate these distinct classes because
a general physical situation often exhibits waves of mixed types. For the study of
the limit of the dispersive equations to hyperbolic conservation laws, see Lax, Lev-
ermore and Venakids [58]. Liu [68] illustrate with an important physical situation
of combustions, which relate the shock waves with reaction-di¤usion waves.
accurately, there are two classes of combustion waves in gas: the high-speed detona-
tion waves and low-speed de�agration waves. Detonation waves are physico-chemical
propagating structures that are composed of a lead shock wave which initiates chem-
ical reaction in the reactive material. In turn, the release of chemical energy sustains
the lead shock wave. In other words, detonation waves are compressive, exothermi-
cally reacting shock waves. The steady one-dimensional structure of a detonation
wave was �rst determined by Zeldovich, Von-Neumann and D�oring (see [33]) and is
known as the ZND structure. The minimum sustainable steady detonation speed is
the Chapman-Jouguet (CJ) detonation velocity and is the speed at which the equi-
librium or burnt zone �ow is sonic relative to the lead shock wave. The presence of
the sonic point causes a decoupling of the gas dynamic evolution of the equilibrium
�ow from the main detonation wave structure. Detonation waves travelling at speeds
greater than CJ are called overdriven and have the property that the �ow in the
burnt region is subsonic relative to the detonation shock. Typical detonation speeds
are of the order of 1000-2000 ms�1 in gases and 6000-8000 ms�1 in condensed solid
explosives (see [113]). Also for velocities above CJ, two distinct steady detonation
solutions are predicted by a standard, one-dimensional Rankine-Hugoniot analysis.
Strong detonations terminate on the subsonic branch of the equilibrium Hugoniot
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curve, while weak detonations terminate on the supersonic branch. For a single-step
mole-preserving reaction, steady strong detonation waves are possible; however, it is
known that no steady travelling weak detonation wave can exist (see [33] and [112]).
The strong detonation wave is led by a gas dynamics shocks, which raises the tem-
perature beyond the ignition point, and is then followed by a reaction zone. Thus
the strong detonation wave is dominated by the shock wave. The weak detonation
wave is supersonic and precedes gas dynamics waves. Thus it is a reaction-di¤usion
wave and the existence and stability of a weak detonation wave are mainly the result
of chemical nonlinearity (this is shown in [83] for a 2� 2 model).
De�agration waves are expansive shock waves. The slow-speed weak de�agration
wave usually is given by the reaction-di¤usion equations. This is done by assuming
that the underlying gas �ow is given and not a¤ected by the reaction. Also, the
weak de�agration waves are the common occurrence and therefore important in ap-
plications. As Liu and Yu [82] have demanded, There has been no stability analysis
for de�agration waves.

The classical Chapman-Jouguet inviscid theory has been used to study the com-
bustion waves in gas (Courant-Friedrichs [19]). The theory is adequate for the strong
detonations. To study the weak detonations and weak de�agrations, the role of di¤u-
sion becomes important. In fact, the structure and existence of these waves depends
sensitively on the dissipation parameters, a common feature of undercompression
waves [69]. This is so because the pro�le is a saddle-saddle connection. In this case,
the wave is stable uniformly with respect to the strength of dissipation parameters,
but its admissibility depends sensitively on the relative strength of these parame-
ters. For the analysis of the stability of viscous waves see [69] and references therein.
Also Liu and Yu [83] studied the weak detonations for a simple model of Rosales
and Majda [106] which we will talk about it more in section 6. As indicated above,
the analysis necessarily contains thinking of reaction-di¤usion waves. The chemical
nonlinearity is more important than the gas dynamics nonlinearity for the stability
analysis [68].

The simplest realistic physical model for the gas combustions is the reactive
Navier-Stokes equations. It would be interesting to study the stability of weak deto-
nations and weak de�agrations for the reactive Navier-Stocks equations. Besides the
reaction-di¤usion nature of these waves, one needs also to consider the interactions
with the gas dynamics waves. The combustion waves for the reactive Navier-Stocks
equations have been constructed in Gardner [35], Wagner [125], Gasser-Szmolyan
[37], Hesaaraki and Razani [46] and [47].

6 The CJ and ZND theories

Fickett [32] and Majda [86] proposed independently a model as a simple mathemat-
ical analogous for the equations describing one-dimensional compressible �ow in a
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chemically reacting �uid and is as follows:

@t(u+ v) + @xf(u) = 0; (6.1)

@tv = ���(u)v; (� > 0); (6.2)

for (x; t) 2 R� (0;1), with the initial conditions

u(x; 0) = u0(x); v(x; o) = v0(x) (x 2 R); (6.3)

when the reaction rate � goes to in�nity.
Also the function f will be some given smooth function and

� is smooth and monotone increasing, with �(u) = 0 for u � 0: (6.4)

Let us recall that at least two di¤erent mathematical theories are used to describe the
propagation of combustion waves in reacting �ows: the Chapman-Jouguet (CJ) the-
ory and the Zeldovich-Von Neumann-D�oring (ZND) theory (see [19], [131] and [87]).
Both are formulated starting from the classical Euler equations for gas-dynamics.
The CJ theory assumes that the reaction region is in�nitely thin or, equivalently,
that the reaction rate is in�nitely large; moreover if we neglect all di¤usion e¤ects
such as viscosity, heat conduction, and di¤usion of species, and any external forces
such as gravity, then we obtain the following system of di¤erential equations:8<:

@t�+ @x(�u) = 0;
@t(�u) + @x(�u

2 + p) = 0;
@t(�E) + @x(�uE + up) = 0;

(6.5)

Here, � is the density, u the �uid velocity, p the pressure and E the total speci�c
energy, namely

E = e+ qZ +
1

2
u2;

the quantity e, being the speci�c internal energy, while q, denotes the amount of
heat released by the chemical reaction and Z, is the mass fraction of the reactant.
The internal energy e and temperature T , are given through equations of state

e = e(�; p); T = T (�; p);

which depend on the gas mixture under consideration. To specify the variable Z,
the CJ theory introduce a further relation, namely

Z(x; t) =

�
0; if sup0�s�t T (x; s) > Ti;
Z(x; 0); if sup0�s�t T (x; s) � Ti;

(6.6)
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where Ti is a given ignition temperature. If we consider the steady plane waves,
then (6.5) becomes: 8<:

(a) (�u)x = 0;
(b) (�u2 + p)x = 0;
(c) (�uE + up)x = 0;

(6.7)

As is standard practice, we have represented the extremely complicated chemical
reaction by a simpli�ed, one-step chemistry: reactant! product. From (6.7 a) we see
that the mass �ux, �u, has a constant value; we denote this value by m. The �uxes
of momentum (6.7 b) and energy (6.7 c) are also constant; from this fact we obtain
the Rankine-Hugoniot conditions for a shock wave, which in the inviscid theory is
represented by a jump discontinuity in the unknowns. The di¤erence between inert
gas dynamics, and the exothermic reactive theory discussed here, lies in the fact that
Z varies from a positive value on the unburned side of the wave, which we take to
lie on the left side, to a zero value on the burned, or right side. Because the internal
energy e depends on Z, the change in Z causes the classical Hugoniot curve (the
solution locus of (6.7 c)) of gas dynamics to move. As a consequence, we �nd that, for
a given value of m, a given shock state on the left may now be connected by a shock
wave to two possible state, the Chapman-Jouguet point. In addition, the curve of
possible burned states, parameterized by m, has two components. One component,
corresponding to compressive waves, is called the detonation branch, and the other
component, corresponding to expansive waves, is called the de�agration branch. By
way of contrast, in an inert gas, for a given value of m, a state is usually connected
to only one state on the right, and the curve of possible terminal shock states is
usually connected.
The combustive shock wave of the CJ theory are classi�ed as follows. A wave con-
necting the unburned state to the closer detonation point is called a weak detonation
wave, and a connection to the farther detonation point is called a strong detona-
tion. A detonation wave terminating at the Chapman-Jouguet point is called a
Chapman-Jouguet detonation. De�agration waves are similarly classi�ed. In other
words, Strong detonations are supersonic upstream and subsonic downstream. Weak
detonations are supersonic upstream and downstream. Weak de�agrations are sub-
sonic upstream and downstream. Strong de�agrations are subsonic upstream and
supersonic downstream. For the exothermic, irreversible reactions considered here,
strong de�agration violate the second law of thermodynamics and are unphysical,
and weak detonations are rare. if we permit an endothermic region then strong
de�agration and weak detonation are possible and perhaps even probable [33].

The CJ theory for detonation wave is useful for deriving the Rankine-Hugoniot
conditions, and for classifying the types of wave. However, this theory is physically
�awed, because in reality the reaction zone is much thicker than the shock layer.
This is due to the fact that the chemical reaction depends on molecular collisions
and requires a distance much longer than the mean free path to achieve signi�cation
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completion. The shock layer, however, has been experimentally observed mean free
path thick. Consequently the appropriate inviscid model in the one space developed
independently by Zeldovich, Von Neumann, and Doring [135], [136], [92], [93] and
[31] and which is known as the ZND model.

In order to describe more precisely the internal structure of combustion waves,
the ZND theory assumes that the reaction rate is �nite, although the e¤ect of viscos-
ity and heat conduction are disregarded. This corresponds to replace the equation
(6.6) by the following supplementary equation for the mass fraction of unburnt gas:

@t(�Z) + @x(�uZ) = ����(T )Z: (6.8)

The rate function �(T ) has typically the following form:

�(T ) =

�
0; if T < Ti;
T� expf� A

T�Ti g; if T � Ti;

where Ti is the ignition temperature, A is the activation energy and k the reaction
rate (Ti; A; k > 0); as for �, this is a dimensionless parameter in the range (�1; 2].

Systems (6.5) and (6.8) are the hyperbolic systems of balance laws, whose local
existence of solutions is established by the results in [25], at least for initial data of
small bounded variation (see also [133]). Global existence of solutions (even for the
Riemann problem) seems to be still an open problem.
Wagner [125] proved that (6.5) and (6.8) can be solved explicitly, the only detona-
tion wave solutions are strong or CJ detonations. These waves, which are known
as ZND waves, begin with a jump discontinuity which is an inert shock wave. This
shock wave heats the gas above the ignition temperature; the reaction proceeds,
with the velocity and temperature following a curve of equilibrium states for (6.7
b,c), parameterized by Z. One of the interesting feature of these waves is the peak
in the pressure and density which is known as the von Neumann spike. By way of
contrast, in inert shock waves the pressure and density are usually monotone [39].
The equations of inert, inviscid, non-heat-conducting gas dynamics are an example
of a nonlinear hyperbolic system of conservation laws. In the theory for such sys-
tems it is standard practice to set admissibility criteria to distinguish physical from
unphysical shock waves. One of the criteria in which much faith is put is to accept a
shock wave as physical if it is structurally stable. A shock wave is structurally stable
if it is the limit of solutions to models which include more physical e¤ects, such as
viscosity and heat conduction, as these models tend to the original inviscid model
in which these e¤ects are neglected. For steady plane detonation waves the e¤ects
of viscosity, heat conduction, and species di¤usion may be considered to obtain the
(steady) reacting compressible Navier-Stokes equations:8>><>>:

(�u)x = 0;
(�u2 + p)x = (�ux)x;
(�uE + up)x = (�Tx)x + (�uux)x + (q�DZx)x;
(�uZ)x = ����(T )Z + (�DZx)x:

(6.9)
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Here � is the coe¢ cient of viscosity, � is the heat conductivity, D is the di¤usion
rate for the reactant, and q is the di¤erence in the heats of formation of the reactant
and the product [131].
Gardner [35] proved the existence of travelling plane detonation wave solutions to
the Lagrangian reacting compressible Navier-Stokes equations. He made no assump-
tion on the Lewis (L = �

�Dcp
) and Prandtl (when Prandtl number is 34 , then � =

�
cp
)

numbers, where cp is the speci�c heat at constant pressure. However, he assumed
that the gas is ideal and he omitted the species di¤usion term from the energy bal-
ance equation, and this term is not usually neglected. It may be that the e¤ect of
this term on the solution is very small. Moreover, he assumed that �(T ) is nonde-
creasing smooth function. Wagner [125] and [128] proved a necessary condition and
a su¢ cient condition for the existence of steady plane wave solutions to the Navier-
Stockes equations for a reacting gas. These solutions represent plane detonation
waves, and converge to ZND detonation waves as the viscosity, heat conductivity,
and species di¤usion rates tend to zero. He assumed that the Prandtl number is
3
4 , but arbitrary Lewis numbers are permitted. he hasn�t made any assumptions
concerning the activation energy. he showed that the stagnation enthalpy and the
entropy �ux are always monotone for such solutions, and that the mass density
and pressure are nearly always not monotone, as predicted by the ZND theory.
Gasser and Szmolyan [37] analyzed the existence of steady plane wave solution of
the Navier-Stokes equations for a reacting gas. Under the assumption of an igni-
tion temperature the existence of detonation and de�agration waves close to the
corresponding waves of the ZND model has proved in the limit of small viscosity,
heat conductivity, and di¤usion. Their method was constructive, since the classical
solutions of the ZND model serve as singular solutions in the context of geometric
singular perturbation theory. The singular solutions consist of orbits on which the
dynamics are slow-driven by chemical reaction and of orbits on which the dynamics
are fast-driven by gasdynamic shocks. The approach was geometric and leads to
a clear, complete picture of the existence, structure, and asymptotic behavior of
detonation and de�agration waves. They considered a three-component gas with
chain branching mechanism in [38], as a speci�c example, and proved the existence
of travelling wave solutions for the resultant system. They discussed the qualitative
di¤erence between the already known case and a simple one-step reaction. Finally,
a general method to prove the existence of combustion waves for a multi-component
gas was presented in [38]. Hesaaraki and Razani [46] and [47] proved that for the
general discontinues reaction rate function �(T ) the travelling wave solutions for
weak, Strong and Chapman-Jouguet detonation waves exist.
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7 Detonation in Majda�s model

The study of the existence of detonation waves is one of the fundamental problems
in combustion. Majda [86] proposed a simpli�ed model for the qualitative study
of one dimensional combustion waves, i.e., for the interaction between chemical
reactions and compressible �uid dynamics. The model was derived from the one-
dimensional combustion equations written in Lagrangian coordinates for a simple
Reactant!Product mechanism (see [86]). Majda neglected the di¤usion coe¢ cient
in his model. Larrouturou [53] extended Majda�s model by adding a positive di¤usion
coe¢ cient. The model is as follows:�

(U + q0Z)t + (f(U))x = �Uxx;
Zt = ���(U)Z +DZxx;

(7.1)

where U is a lumped variable having some features of density, temperature and
velocity, Z mass fraction of unburned gas (note that the completely unburned gas
corresponds to Z = 1 and a totally burned gas corresponds to Z = 0), q0 > 0 is the
e¤ective heat release from the chemical reaction, � > 0 a lumped viscosity-thermal-
conductivity coe¢ cient and D > 0 is di¤usion coe¢ cient. The independent variables
t and x are the time and space variables, respectively.
From now on, we assume U = T (the temperature). Also we encounter the well
known cold boundary di¢ culty, that is, the unburned state is not a stationary point
of (7.1) since the �reaction rate function��(T ) 6= 0, for T > 0. One resolution
of the cold boundary di¢ culty can be based on activation energy asymptotic (see
[131]). However, in our analysis we use the common mathematical idealization of
an ignition temperature, � is modi�ed such that (see [98])

�(T ) =

�
0 for T < Ti;
�1(T ) for T � Ti;

(7.2)

where �1(T ) is a smooth positive function and Ti is the �ignition temperature�of
the reaction. A typical example for �1(T ) is the Arrhenius law, i.e. �1(T ) = T 
e�

A
T

for some positive constants 
 and A. Note that �(T ) is discontinues at the point
Ti. A careful discussion of this assumption and its consequences for detonation and
de�agration wave (with one-step chemistry) can be found in [49] and [98]. Finally,
f(T ) is a convex strongly nonlinear function satisfying (see [86])

@f
@T = a(T ) > 0;

@2f
@T 2

> � > 0;
lim

T!+1
f(T ) = +1; (7.3)

and for example you can choose f(T ) = 1
2aT

2 (a > 0) (see [106] page 1100).
System (7.1) was proposed by Majda [86] as a model for dynamic combustion, i.e.
for the interaction between chemical reactions and compressible �uid dynamics.
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He proved the existence of weak and strong detonations, for q0 independent of T ,
together with a very simple form of �(T ). His results are described in terms of
liberated energy, q0, that is, for �xed � > 0, he proved that there is a critical
liberated energy, qCR0 , such that when q0 > qCR0 , (7.1) admits a strong detonation
combustion pro�le and when q0 = qCR0 , (7.1) admits a weak detonation combustion
pro�le. Also Rosales and Majda [106] investigated the qualitative model (7.1) in
a physical context. Colella et al [18] have used fractional step methods based on
the use of a second order Godunov method. They demonstrated that (7.1) has
dynamically stable weak detonations which occur in bifurcating wave patterns from
strong detonation initial data. They used (7.1) to emphasize both to predict and
analyze the theoretical and numerical phenomena. Also Li [60] studied (7.1) when
� = 0. He established global existence of the solution to the problem and studied
the asymptotic behavior of the solution. He also proved that the solution converges
to a self-sustaining detonation wave and if the data are small, the solution decays
to zero like an N -wave. Liu and Ying [81] studied strong detonation waves for (7.1)
and proved these waves are nonlinearly stable by using energy method for the �uid
variable and a pointwise estimate for the reactant. Ying et al [132] continued the
nonlinear stability of strong detonation waves for (7.1). In fact they showed that
if q is su¢ ciently small, then a perturbation of a travelling strong detonation wave
leads to a solution which tends to a shifted travelling strong detonation wave as
t! +1, and the rate is determined by the rate of initial perturbation as jxj ! 1.
System (7.1) was also investigated by Hanouzet et al [44] when � = 0. They studied
the limiting behavior of solutions of (7.1) when the reaction rate tends to in�nity.
Roquejo¤re and Vila [105] studied the stability of detonation waves of (7.1) when
� = 1. Also Liu and Yu [83] considered (7.1) when � = 0. They proved that the
weak detonation waves of the model are nonlinear stable. Szepessy [117] studied the
nonlinear stability of travelling weak detonation waves of (7.1) when f(T ) = 1

2T
2.

Finally, Razani [98], [99], [100] and [101] proved the existence of weak, strong and
CJ detonation waves for model (7.1). Recently, using Evans function technique,
Lyng and Zumbrun [85] developed a stability index for weak and strong detonation
waves (for (7.1) when D = 0) yielding useful necessary conditions for stability. In
fact, they showed, in the simple context of the Majda model, that the methods
introduced in [5] and [36] for the study of stability of viscous shock wave, may, with
slight modi�cations, be applied also in the study of stability of detonations to :(i)
construct an analytic Evans function on the set Re � � 0, (where � is an eigenvalue)
for the linearized operator about the detonation wave, and (ii) in both the strong
and weak detonation cases, compute and expression for �(:= sgnD0(0)D(1)), where
D is the Evans function) in terms of quantities associated with the travelling wave
ordinary di¤erential equations. In this simple setting, the connection problem is
planar, and they can in fact do more, obtaining a complete evaluation of �; the
result, for both weak and strong detonations, is � > 0, consistent with stability.
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8 Premixed Laminar Flame

One of the most important problems of combustion is the planar premixed �ames,
that is, the one-dimensional de�agration wave. In a case of a single-step reaction
involving one reactant, it reduces to a system of two reaction di¤usion equations
[53] and [90]. The existence of travelling wave solutions for this system has been
established for both positive and zero ignition temperature ([6], [7], [17], [90], [104],
[114], [122], [126] and [127]). In [102] we discussed the existence of travelling wave
solutions in a model for slow, �constant density" combustion. Alternatively, the
travelling wave solutions for this model may be derived from a more complicated
system, assuming only a slow speed of propagation, and weak temperature and pres-
sure variation ([6], [7] and [127]). The model is a simple model of an exothermic
chemical reaction in a gas and is as follows (for a background on the physical mo-
tivation and derivation of the following model, see Buckmaster and Ludford [12],
Larrouturou [53], Wagner [126], [127] and Williams [131]):�

Yt = (�(Y; T )Yx)x �DY �(T );
Tt = (�(Y; T )Tx)x + qDY �(T );

(8.1)

where T is the temperature and Y the mass fraction of the unburned gas. Note that
the completely unburned state corresponds to Y = Yf and a totally burned state
corresponds to Y = 0. Also the physically desirable values of the unknowns Y and T
are non-negative. In fact, we consider 0 � Y � Yf and 0 � T � Tb (see [127]). The
parameters �; �;D and q are positive. The independent variables t and x are the
time and space variables, respectively. Finally, the �reaction rate function��(T ) is
as (7.2).

System (8.1), with �(T ) in a very simple form, has received extensive mathemat-
ical treatment in recent years. Berestycki et al [6] proved the existence of a solution
of (8.1). Also in [7] they considered the de�agration wave problem for a compress-
ible reacting gas, with one reactant involved in a single-step chemical reaction. They
showed how the one-dimensional travelling wave problem reduces to a system of two
reaction-di¤usion equations. Wagner [127] obtained a su¢ cient condition for the
existence of travelling waves representing premixed laminar �ames. In order to do
this, he used a topological method in his article. The necessary condition has been
given by Marion [90]. The existence of travelling wave solutions of (8.1) was estab-
lished by Terman [122] in the case Ti = 0. Also stability and instability results for
the travelling waves, where

�(T ) =

(
0 for T < 0;

Be�
E
T for T � 0;

have been obtained by Clavin [17], Sivashinsky [114], and Roquejo¤re and Terman
[104]. Avrin [1] studied the equations with initial data that are bounded, uniformly
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continuous, and nonnegative but otherwise arbitrary. He established the existence
of unique global strong solutions satisfying appropriate a priori estimates. With
a positivity condition imposed on the initial data for the temperature, he showed
that the concentration decays exponentially. Also in [2] he studied the qualitative
behavior of solutions to the initial-boundary value problem for the reaction-di¤usion
equations (8.1). In both cases where T and Y satisfy zero Neumann boundary condi-
tions or �xed Dirichlet boundary conditions, extensive qualitative results have been
given concerning complete asymptotic burning and eventual quenching. Weber et al
[130] considered (8.1) and assumed that the chemical reaction can be represented by
the Arrhenius rate law. They applied a di¤erent non-dimensionalization, and used
the ratio of the activation energy to the heat of the reaction as a large parameter
around which an asymptotic analysis was based. Mercer et al [91] then used this
non-dimensionalization to study the e¤ects of heat loss on the routes to extinction of
the combustion wave, given that the activation energy is large or that the heat of the
reaction is small. In addition, Avrin [3] considered models of laminar �ames with
Arrhenius kinetics in long thin tubes, and under certain conditions imposed on the
initial temperature, a rough sense of �ame propagation resulting in complete asymp-
totic burning of the fuel for one step reaction (A! B) is guaranteed. He studied a
model of a two-step reaction (A! B ! C) and some models of one-step reactions
with multiple species, and identi�ed su¢ cient conditions on the initial temperature
that guarantee a rough sense of �ame propagation and complete asymptotic burn-
ing. Moreover, Billingham and Mercer [8] investigated (8.1). They used the method
of matched asymptotic expansions to obtain asymptotic approximations for the per-
manent form travelling wave solutions and their results were con�rmed numerically.
Finally, Razani [102] studied the existence of premixed laminar �ames for (8.1).

9 Multidimensional Gas Flows

Systems of hyperbolic conservation laws for one space dimension have been investi-
gated by many authors. The compressible Euler equations in more than one space
dimensions are as follows (see Liu [68] and Courant-Friedrichs [19]):

�t +
Pm
j=1(�vj)xj (�vi) +

Pm
j=1(�vivj)xj + pxj = 0; i = 1; � � � ;m;

(�E)t +
Pm
j=1(�Evj + pvj)xj = 0:

(9.1)

Particular solutions such as self-similar solution have been constructed, see Zhang-
Zheng [138]. This kind of solution explain that the gas �ows around a solid boundary.
As Liu [68] claimed, one interesting problem is studying the nonlinear stability of
these self-similar �ows.
(i) In the case of one dimensional supersonic stationary �ows, one may study the
stability by many methods such as the random choice method (see Liu [68] and
Courant-Friedrichs [19] for more details).
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(ii) The stability of two-dimensional supersonic stationary �ows will be studied as a
one space dimension (because it is possible to view one space dimension as time).
(iii) Courant-Friedrichs [19] prove that For straight cone, the �ow is self-similar on
three dimensional. In this case, Chen [14] obtained the linearized approach for the
study of the �ow when the tip of the cone is perturbed. On the other hand, Lien and
Liu [64] studied the global stability when the cone, away from the tip, is perturbed
by using the locally self-similar �ows as building blocks in the approximation.

10 Multidimensional Riemann problem

The Riemann problem is a fundamental problem for quasilinear hyperbolic systems
of conservation laws, which is a Cauchy problem with piecewise constant initial data
with a jump at the origin in the one-dimensional case. Now, consider a m � m
system of linear partial di¤erential equations

@u

@t
+

nX
i=1

Ai
@u

@xi
= 0; (10.1)

where (t; x) = (t; x1; x2; � � � ; xn) 2 R+�Rn; u = (u1; � � � ; um) 2 Rm; Ai (1 � i � n)
are real constant m�m matrices and m;n are positive integers.

De�nition 1. [61] System (10.1) is called to be hyperbolic, if for all

� = (�1; � � � ; �n) 2 xn�1

(the unit sphere in Rn), the matrix
Pn
i=1 �iAi is diagonalizable with real eigenvalues.

Moreover, (10.1) is strictly hyperbolic, if for all � = (�1; � � � ; �n) 2 xn�1, the matrixPn
i=1 �iAi has n distinct real eigenvalues.

In general, classifying m�m hyperbolic systems with real constant coe¢ cients
and giving all possible canonical forms ofm�m hyperbolic systems are very di¢ cult.
In 1967, Strong [116] proved that for every 2�2 hyperbolic system with real constant
coe¢ cients, all coe¢ cient matrices can be simultaneously symmetrizable and the
system can be reduced to a canonical form (n � 2). In [54], Lax shows that (10.1)
for m = 2(mod 4) may not be a strictly hyperbolic system (n � 3). In 1991, Oshime
([96] and [97]) classi�ed 3 � 3 hyperbolic systems with real constant coe¢ cients
and listed all canonical forms. In [40], the authors gave the explicit solution to
the Riemann problem in the case m=2, in which Riemann data are given by a
piecewise smooth vector function. Li and Sheng [61] were interested in solving the
general Riemann problem for (10.1) in the case m = 2, in which Riemann data are
given by a piecewise smooth vector function. They �rst gave the canonical forms of
2� 2 hyperbolic systems and then the explicit solution to the corresponding general
Riemann problem.
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Note that the Riemann problem is a problem for quasilinear systems of conserva-
tion laws. In the two dimensional case, the corresponding Riemann problem may be
considered as the Cauchy problem with constant initial data in each quadrant. How-
ever, Li and Sheng [62] further considered the Riemann problem in a more general
way in the two-dimensional case: the initial data are piecewise smooth functions of
the polar angle �. This kind of Riemann problem is then called the general Riemann
problem. Li and Sheng [62] solved the general Riemann problem for the linearized
system of two-dimensional isentropic �ow in gas dynamics8><>:

@�
@t + �0(

@u
@x +

@v
@y ) = 0;

@u
@t +

@P 0(�0)
@�0

@�
@x = 0;

@v
@t +

@P 0(�0)
@�0

@�
@y = 0;

t = 0 : (�; u; v) = (�0(�); u0(�); v0(�));

where � is the density, (u; v) is the velocity, �0 is a positive constant, p = p(�) is the
equation of state satisfying P 0(�0) > 0; � is the polar angle such that�

x = r cos �;
y = r sin �;

0 � r < +1; 0 � � � 2�;

and �0(�); u0(�); v0(�) are bounded piecewise smooth functions. They gave the ex-
plicit solution to this general Riemann problem.

Appendix A.

The �ow equations which consider the gas dynamic variables as functions of the
space coordinates and time are called the Euler equations, or the �ow equations in
Eulerian coordinates.

Lagrangian coordinates are frequently used to describe one-dimensional �ow,
that is, plan and cylindrically and spherically symmetric �ow. In contrast to Eulerian
coordinates, Lagrangian coordinates do not determine a given point is space, but
a given �uid particle. Gasdynamic �ow variables expressed in terms of Lagrangian
coordinates express the changes in density, pressure, and velocity of each �uid parti-
cle with time. Lagrangian coordinates are particularly convenient when considering
internal processes involving individual �uid particle, such as a chemical reaction
whose progress with time depends on the changes of both the temperature and the
density of each particle. The use of Lagrangian coordinates also occasionally yields
a shorter and easier way of obtaining exact solutions to the gas dynamic equations,
or provides a more convenient numerical integration of them. The derivative with
respect to time in Lagrangian coordinates is simply equivalent to the total derivative
D=Dt. The particle can be described either in terms of the mass of �uid separating
it from a given reference particle (in one dimension), or in terms of its position at the
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initial instant of time. On addition, the use of Lagrangian coordinates is especially
simple in the case of plane motion, when the �ow is a function of only one cartesian
coordinate x.

A tedious calculation using the chain rule and product rule shows that the Euler
and Lagrangian equations of gas dynamics on one space dimension are equivalent for
classical solutions [19]. In addition, Wagner [129] demonstrated the equivalence of
the Euler and Lagrangian equations of gas dynamics on one space dimension for weak
solutions which are bounded and measurable in Eulerian coordinates. He assumed
all known global solutions on R � R+. In particular, solutions containing vacuum
states (zero mass density) were included. Furthermore, he proved that there is a
one-to-one correspondence between the convex extensions of the two systems, and
the corresponding admissibility criteria are equivalent. In the presences of a vacuum,
the de�nition of weak solution for the Lagrangian equations must be strengthened
to admit test functions which are discontinuous at the vacuum. As an application,
he translated a large-data existence result of Diperna for the Euler equations for
isentropic gas dynamics into a similar theorem for the Lagrangian equation.

Acknowledgement 2. This paper owes much to the references [23], [44], [68], [61],
[62], [82], [107], [125] and [137]. The author acknowledges a great debt to them.
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