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NORMAL ANTI-INVARIANT SUBMANIFOLDS OF
PARAQUATERNIONIC KAHLER MANIFOLDS

Novac-Claudiu Chiriac

Abstract. We introduce normal anti-invariant submanifolds of paraquaternionic Kdhler man-
ifolds and study the geometric structures induced on them. We obtain necessary and sufficient
conditions for the integrability of the distributions defined on a normal anti-invariant submanifold.

Also, we present characterizations of local (global) anti-invariant products.

1 Introduction

The paraquaternionic Kéhler manifolds have been introduced and studied by Garcia-
Rio, Matsushita and Vazquez-Lorenzo [4]. We think of a paraquaternionic Kéhler
manifold as a semi-Riemannian manifold endowed with two local almost product
structures and a local almost complex structure satisfying some compatibility con-
ditions. Several classes of submanifolds of a Kihler manifolds have been investigated
according to the behavior of the geometric structures of the ambient manifold on
a submanifold (see Bejancu [1]). The same idea we follow for the case when the
ambient manifold is a paraquaternionic Kdhler manifold.

In the present paper we define the normal anti-invariant submanifolds of a
paraquaternionic Kéhler manifold and obtain some basic results on their differential
geometry. First we show that the tangent bundle of a normal antiinvariant subman-
ifold N of a paraquaternionic Kéhler manifold (M, V,g) admits the decomposition
(8) whereD and D+ are complementary orthogonal distributions on N. Then we
obtain necessary and sufficient conditions for the integrability of D and D+ (see
Theorems 4 and 7). We also prove that the foliations determined by D and D+ are
totally geodesic (see Theorem 8). Finally, we study the existence of local (global)
normal anti-invariant products (Corollaries 9 and 12, Theorem 11). As examples,
we show that totally geodesic normal anti-invariant submanifolds are local normal
anti-invariant products (Corollary 10).
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2 Preliminaries

Throughout the paper all manifolds are smooth and paracompact. If M is a smooth
manifold then we denote by F(M) the algebra of smooth functions on M and by
(T M) the F(M)-module of smooth sections of the tangent bundleT’ M of M. Sim-
ilar notations will be used for any other manifold or vector bundle. If not stated
otherwise, we use indices: a,b,c, ... € {1,2,3} and 4, j, k, ... € {1,...,n}.

Let M be a manifold endowed with a paraquaternionic structure V, that is, V is
a rank-3 subbundle of End(T M) which has a local basis {Ji, Ja2, J3} on a coordinate
neighborhood U C M satisfying (see Garcia-Rio-Matsushita-Vazquez-Lorenzo [4])

(a) J2= X1, a€{l, 2 3}, (1)
(b) JiJy = —JaJy = Js,
(C) )\1 = )\2 = —)\3 =1.

A semi-Riemannian metric g on M is said to be adapted to the paraquaternionic
structure V if it satisfies

9(X,Y) 4+ Aag(JuX, J,Y) = 0,Va € {1,2,3}, (2)

for any X,Y € I'(TM) , and any local basis Ji, Jo, J3 of V. From relationl and
relation2 it follows that

g(JoX,Y) + g(X,JY) =0,¥X,Y € T(TM),a € {1,2,3}. (3)

Now, suppose {J1, Ja, J3} is a local basis of V on € M and U N U # (). Then

we have

3
Ja = ZAabea (4)
b=1

where the 3 x 3 matrix [Ayp] is an element of the pseudo-orthogonal group SO(2,1).
From 1 and 2 it follows that M is of dimension 4m and g is of neutral signature
(2m,2m).

Next, we denote by V the Levi-Civita connection on (M,g). Then the triple
(M, V,g)is called a paraquaternionic Kdhler manifold if V is a parallel bundle with
respect to V. This means that for any local basis {J1, J2, J3} of VonU C M there
exist the 1-forms p, q, r on U such that (cf. Garcia-Rio-Matsushita-Vazquez-Lorenzo

[4])

(a) (Vx)Y = q(X)JY —r(X)JsY, (5)
(b) (Vx&)Y = —q(X)\Y —p(X)JsY,
() (VxJ3)Y = —r(X)1Y —p(X)LY , VXY e€T(TU).
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Now, we consider a non-degenerate submanifold N of (M, V,g) of codimension
n. Then we say that N is a normal anti-invariant submanifold of (M,V,g) if the
normal bundle TN+ of N is anti-invariant with respect to any local basis {Jy, J2, J3}
of V on U, that is, we have

J(T,N+*) Cc T,N, Yac{1,2,3},z €U*=UNN. (6)

A large class of normal anti-invariant submanifolds is given in the next proposi-
tion.

Proposition 1. Any non-degenerate real hypersurface N of (M, g) is a normal
anti-invariant submanifold of (M, V, g).

Proof. From 3 we deduce that g(J,U,U) =0, forany U € T(TN+) and a € {1,2,3}.
Hence J,U € T'(T'N) , which proves 6. O]

Next, we examine the structures that are induced on the tangent bundle of a
normal anti-invariant submanifold N of (M, V, g) . First, we put Dy, = J, (TxN L)
and note that D1,,Ds, and D3, are mutually orthogonal nondegenerate n-dimensional
vector subspaces of T, N, for any = € N. Indeed, by using 3, (1b) and 6 we obtain

g (N X, YY) = —g (X, 1Y) = —g (X, J3Y) =0,YX,Y € T(TN?),

which shows that D, and Ds, are orthogonal. By a similar reason we conclude that
Dgyx and Dy, are orthogonal for any a # b. Then we can state the following.

Proposition 2. Let N be a normal anti-invariant submanifold of (M, V, g) of
codimension n. Then we have the assertions:

(1) The subspaces Dy of T, N satisfy the following
Ja(Dax) = TmNL and Ja(Dbx) = Dca};
for any x e U*, a €{1,2,3}, and any permutation (a,b, c) of (1, 2, 3).

(1) The mapping
Dt ZCCEN—>D$_ = D1z ® Doy ® D3y,

defines a non-degenerate distribution of rank 3n on N.

(iii) The complementary orthogonal distribution D to D+ in TN is invariant with
respect to the paraquaternionic structureV, that is, we have

Jo(Dy) = Dy, Vo € U a € {1,2,3}.
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Proof. First, by using 1 we obtain the assertion (i). Next, by 4 and taking into
account that J,, a € {1,2,3}, are automorphisms of I' (T'M) and Dy, a € {1,2,3}
are mutually orthogonal subspaces we get the assertion (ii). Now, we note that the
tangent bundle of M along N has the following orthogonal decompositions:

TM =TN&®TN+-=DaD-® TN . (7)
Then we take Y € I' (D) and by the assertion (i) we deduce that
JY €T (DL ® TNL) Va e {1,2,3).
On the other hand, if Y € I' (TTN*), by 6 and the assertion (ii) we infer that
JY €T (Dl) Va € {1,2,3)
Thus by using 3 and the second equality in 7 we obtain
g(JX,)Y)=—g(X,J.,Y)=0,Va € {1,2,3},

forany X € ' (D) and Y € I' (D* & TN*). Hence J,X € I' (D) for any a € {1,2,3}
and X € I' (D), that is, D is invariant with respect to the paraquaternionic structure
V. This completes the proof of the proposition. O

By assertion (iii) of the above proposition we are entitled to call D the paraquater-
nionic distribution on N. Also, we note that the paraquaternionic distribution in
non-trivial, that is D #{0}, if and only if dimN > 3n.

3 Integrability of the Distributions on a Normal Anti-
Invariant Submanifold

Let N be a normal anti-invariant submanifold of codimension n of a 4m-dimensional
paraquaternionic Kéhler manifold (M, V, g). Then according to the definitions of
D and Dt we have the orthogonal decomposition

TN =D& D+ (8)

Then we consider a local field of orthonormal frames {Uj,...,U,} of the normal
bundle TN+ | and define

Eai = JuUi, a € {1,2,3},i € {1,..,n}. (9)

Taking into account 6 and the assertion (ii) of Proposition 2 we deduce that {E,;},a €
{1,2,3},i € {1,...,n}, is a local field of orthonormal frames of D+. Thus we can
put

3 n
X =PX+Y Y wi(X)Ey, VX €T (TNL> , (10)
b=11=1
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where P is the projection morphism of TN on D with respect to the decomposition
8, and wy; are 1-forms given by

wpi(X) = epig (X, Evi),  €bi = g (Ebi, Ei) - (11)
Now, we apply J,, a € {1,2,3} to 10 and by using 9 and 1 we obtain
(a) AX = JPX+) {wn(X)Esi +wsi(X)Ey + wis(X)Ui},
i=1

(b) X = J1PX—i{wli(X)E?)i‘i‘w?)i(X)Eli—W2i(X)Ui}> (12)
i=1

() AX = JPX =) {wi(X)Ey — wi(X)Eyi + wsi(X)Us} .
=1

Next, we consider the Gauss equation (cf. Chen [3])
VxY =V,Y +h(X,Y), VX,Y eI (I'N), (13)

where V and V are the Levi-Civita connections on (M, g) and (N, g) respectively,
and h is the second fundamental form of N. Also, we have the Weingarten equation

ViU =—AyX + VLU, VX €T (TN),U el (TNL) , (14)

where Ay is the shape operator of N with respect to the normal section U, and V=+
is the normal connection on TN+. Moreover, h and Ay are related by

g(R(X,Y),U) = g(ApX,Y), VYX,Y €T (T'N),Uel (TNL) . (15)

Proposition 3. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kdhler manifold (M, V, g). Then we have

h(X,J,Y) = Aazn: {wai(VxY)U;}, (16)
=1

for any X, Y € T'(D) and a € {1,2,3} .
Proof. By direct calculations using (13) and (12a) in (5a) we deduce that
Vo iY +h(X, 1Y) = J,P (V,Y)

n
+Y {w2(VxY)Es; + wsi(VxY) By + wi(VxY)Us}
i=1
+J1h (X,Y) +q(X) oY —r(X)J5Y.
Then taking the normal parts in the above equality we obtain (16) for a = 1. In a
similar way follows (16) for a = 2 and a = 3. O
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Now, we say that N is D-geodesic if its second fundamental form h satisfies (see
Bejancu [1])
X, Y)=0, VX,YeI(D), (17)

Then by using (13) and (17) we deduce that N is D-geodesic if and only if any
geodesic of (N, g) passing through each z € N and tangent to D, is a geodesic of

(M, g).

Theorem 4. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kdhler manifold(M, V, g). Then the following assertions are equivalent:

(1) The second fundamental form h of N satisfies
h(X,J.Y)=h(Y,J.X), V¥X,Y eIl (D), ac{l,23} (18)

(1i) N is D-geodesic.

(791) The paraquaternionic distribution D is integrable.

Proof. (i) =) (ii). By using (18) and (1b) we deduce that
h(J3X,Y)=h(X,J3Y)=h(X,J;1 (J2Y)) =h(/1X,J2Y)

=h(J (1 X),Y)=—h(J3X,Y), VX,Y €T (D)

which implies h (J3X,Y) = 0. Taking into account that J3 is an automorphism of
I' (D) we obtain (17). Hence N is D-geodesic.
(ii) =) (iii). By using (17) and (11) in (16) we infer that

9(VoY, Ea) =0, YX,Y €T(D), ae{1,2,3},ic{l,..n}. (19)
Hence V,Y € I' (D), which implies
(X, Y]=V,Y —-VyX eT'(D)

Thus D is integrable.
(iii) =) (i). By using (16) and (11), and taking into account that V is a torsion-
free connection, we obtain

h(X7 JaY) - h(}/a JaX) = i{g([Xa Y]ani) U’L} = 07
i=1

forany X,Y € I'(D) and a € {1,2,3} . This completes the proof of the theorem. [

Proposition 5. The shape operators A; with respect to the normal sections U;,
i € {1,...,n}, satisfy the identities:

AiEaj = AjEm', Ya € {1,2,3}, 1,] € {1, ,n} (20)
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Proof. We take X € T'(T'N) and Y = Ej; in (5a) and by using (13), (14), (9) and
(1) we obtain

~A; X +VxU; = J1(VxEy) + Jih(X, Byi) — q(X)Es; 4+ r(X) Es.
Then by using (15), (2), (9) and the above equality we deduce that
9(AjE, X) = g((h(X,Eu),Uj)
= —g(Jih(X,Ev), Evy)
= g (AiX + Jl(VXEli), Elj)
= g(4iX, Eyj) —g9(VxEy,Uj)
= g(X,AiElj), VXEF(TN),

which proves (20) for @ = 1. In a similar way we obtain (20) fora =2anda =3. O

Next, we define on I' (D) the 1-forms

Qaij (X) = 9 (Vi Eajy X) (21)
for any X € I'(D) , a € {1,2,3} and 7,5 € {1,...,n} . Then we state the following.

Proposition 6. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kahler manifold (M, V, g). Then we have:

Qaij = Qaji, Yae{l,2,3}, 4,5€{l,...,n}, (22)
and
(a) g(Ve,E2,X) = Quj (X)), g(Vey,Eu,X) = Qg (J3X),
() g(Vey,Es3j,X) = —Q9ij (N1X), ¢g(Vey,Ex X) = —Qsi5 (J1X),

(¢) 9(Vey B, X) = Q3ij (X)),  g(Ve,;Esi, X) = Quij (2X),  (23)
forany X €' (D) .
Proof. By using (21), (9), (13), (5), (3) and (14) we obtain
Qi (X) = 9(VEuJals, X) = g (Ja(VE,Up), X) =
= 9 (Ve U5 JuX) = g (A;Euis JuX) (24)

for any a € {1,2,3} and 4,5 € {1,...,n}. Then (22) follows by using (24) and (20).
Next, by using (13), (2), (5), (1), (9) and (21) we deduce that

9(Ve, By, X) = g (€E11E2j,X> =g (J3 (@EuEzj) ,J3X)
= 9(VmBrj, sX) = Qs (5X), VX €T(D)

which proves the first equality in (23a). In a similar way are obtained all the other
equalities in (23). O
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Theorem 7. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kdhler manifold (M, V, g). Then the following assertions are equivalent:

(i) The distribution D+ is integrable.
(i) Quij =0, Va € {1,2,3}, 0,5 € {1,...,n}.
(iii) For any X € I'(D) and Y € T (D) we have
h(X,Y) = 0. (25)

Proof. Taking into account that V is torsion-free, and by using (21) and (22) we
deduce that

g([Ea’ianj]7X) =0, VXEF(D)a a < {1a2a3}7 i, ] € {17“"n}' (26)
On the other hand, by using (23) we obtain
(a)  g([Bri, Egjl, X) = g5 (J3X) + Qi (J3X)
(

b)  g([Eai, B3], X) = Qa4 (J1.X) — Q45 (1.X)

(c) g([EBsi, Erj], X) = Q345 (JoX) — Q45 (J2X), (27)
for any X € I'(D). Then from (26) and (27) we infer that (ii) implies (i), since
{Eai}, a € {1,2,3}, 1,5 € {1,...,n} is an orthonormal basis of T' (DJ-) . Now, we

suppose that DT is integrable. Then taking into account that J,, a € {1,2,3}, are
automorphisms of I' (D) from (27) we deduce that 4;; satisfy the system

Quij + Qoij =0, Q3ij — Q2ij =0, Q3i5 — Qi = 0.

Hence Qgq;; = 0, for all @ € {1,2,3} , and 4,j € {1,...,n}. Thus we proved that (i)
implies (ii). Finally, by using (24) and (15) we obtain

Qaij (X) =g (h(JoX, Ew),Uj),

for any a € {1,2,3} , and 4,j € {1,...,n}, which implies the equivalence of (ii) and
(iii). This completes the proof of the theorem. O

4 Foliations on a Normal Anti-Invariant Submanifold

Let F be a foliation on (N, g). Then we say that F is totally geodesic if each leaf of
F is totally geodesic immersed in (N, g). Denote by F(D) and F(D™) the foliations
determined by D and D™ respectively, provided these distributions are integrable.

Theorem 8. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kdhler manifold (M, V, g). Then we have the assertions:
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(1) If D is integrable, then the foliation F(D) is totally geodesic.

(i) If D is integrable, then the foliation ]:(DJ‘) 1s totally geodesic.

Proof. Suppose D is integrable. Then from (19) we deduce that for any . Thus F(D)
is a totally geodesic foliation. Next, we suppose that is integrable. Then by using
the assertion (ii) of Theorem 7 in (21) and (23) we obtain

g(VuV,X) =0, YU,V eT (D), X €T (D),

since {F4}, a € {1,2,3}, ¢ € {1,...,n}, is an orthonormal basis in T’ (DJ-). Thus
VyV el (Dl) forany U,V € T’ (Dl), which means that }'(DL) is a totally geodesic
foliation. O

Next, we say that N is a local (global) normal anti-invariant product if both
distributions D and D+ are integrable and N is locally (globally) a semi-Riemannian
product (S,h) x (S+, k), where S and S+ are leaves of D and D~ respectively.

Corollary 9. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kihler manifold (M, V, g) such that D and D+ are integrable. Then N is a local
normal anti-invariant product. If in particular, N is complete and simply connected,
then it is a global normal anti-invariant product.

Proof. From Theorem 8 we see that both foliations F(D) and F(D") are totally
geodesic. Hence N is a local normal anti-invariant product. If moreover, N is
complete and simply connected then we apply the decomposition theorem for semi-
Riemannian manifolds (cf. Wu [8]) and obtain the last assertion of the corollary. [

Corollary 10. A totally geodesic normal anti-invariant submanifold N of a paraquater-
nionic Kdhler manifold (M, V, g) is a local normal semi-invariant product. If
moreover, N is complete and simply connected, then it is a global anti-invariant
product.

Proof. Taking into account that the second fundamental form h of N vanishes iden-
tically on N, from Theorems 4 and 7 we deduce that both distributions D and
DL are integrable. Then we apply Corollary 9 and obtain the assertions in this
corollary. O

Foliations with bundle-like metric on Riemannian manifolds have been intro-
duced by Reinhart[5]. The main properties of these foliations can be found in Rein-
hart [6], Tondeur [7] and Bejancu-Farran [2]. Here we need the following characteri-
zation of such foliations. Let F be a non-degenerate foliation on a semi-Riemannian
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manifold (N, g). Denote by D and D+ the tangent distribution and normal distri-
bution to F respectively. Then ¢ is a bundle-like metric for F if and only if (cf.
Bejancu-Farran[2], p. 112)

g(VuV +VyU,X)=0, YU,V €T (DL) , X eI (D). (28)

In general, the distribution D+ is not necessarily integrable when (28) is satisfied.
However, for normal anti-invariant submanifolds we prove the following.

Theorem 11. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kdhler manifold (M, V, g) such that the paraquaternionic distribution D is in-
tegrable. Then N is a local normal anti-invariant product if and only if g is a
bundle-like metric for the foliation F(D).

Proof. First, suppose that N is a local normal anti-invariant product. Then D+
is integrable and its leaves are totally geodesic immersed in (N, g). Thus ViV €
' (D*) for any U,V € I' (D1) and therefore (28) is satisfied. Thus g is bundle-like
for F(D). Conversely, suppose that g is bundle-like for F (D). Then, by using (28),
(21) and (22) we deduce that Q4;; = 0, for any a € {1,2,3}, 4,5 € {1,...,n}. Thus
by Theorem 7, D+ is integrable. Moreover, by assertion (ii) of Theorem 8 we infer
that the foliation F(D") is totally geodesic. As F(D) is also totally geodesic (by (i)
of Theorem 8), we conclude that N is a local normal anti-invariant product. O

Finally, taking into account Theorem 11 and Corollary 9 we obtain the following.

Corollary 12. Let N be a complete and simply connected normal antitnvariant sub-
manifold of a paraquaternionic Kdahler manifold (M, V, g) such that the paraquater-
nionic distribution D is integrable. Then N is a global normal anti-invariant product
if and only if g is a bundle-like metric for the foliation F (D).
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