ISSN 1842-6298 Volume **1** (2006), 99 – 109

NORMAL ANTI-INVARIANT SUBMANIFOLDS OF PARAQUATERNIONIC KÄHLER MANIFOLDS

Novac-Claudiu Chiriac

Abstract. We introduce normal anti-invariant submanifolds of paraquaternionic Kähler manifolds and study the geometric structures induced on them. We obtain necessary and sufficient conditions for the integrability of the distributions defined on a normal anti-invariant submanifold. Also, we present characterizations of local (global) anti-invariant products.

1 Introduction

The paraquaternionic Kähler manifolds have been introduced and studied by Garcia-Rio, Matsushita and Vazquez-Lorenzo [4]. We think of a paraquaternionic Kähler manifold as a semi-Riemannian manifold endowed with two local almost product structures and a local almost complex structure satisfying some compatibility conditions. Several classes of submanifolds of a Kähler manifolds have been investigated according to the behavior of the geometric structures of the ambient manifold on a submanifold (see Bejancu [1]). The same idea we follow for the case when the ambient manifold is a paraquaternionic Kähler manifold.

In the present paper we define the normal anti-invariant submanifolds of a paraquaternionic Kähler manifold and obtain some basic results on their differential geometry. First we show that the tangent bundle of a normal antiinvariant submanifold N of a paraquaternionic Kähler manifold (M, \mathbf{V}, g) admits the decomposition (8) where \mathcal{D} and \mathcal{D}^{\perp} are complementary orthogonal distributions on N. Then we obtain necessary and sufficient conditions for the integrability of \mathcal{D} and \mathcal{D}^{\perp} (see Theorems 4 and 7). We also prove that the foliations determined by \mathcal{D} and \mathcal{D}^{\perp} are totally geodesic (see Theorem 8). Finally, we study the existence of local (global) normal anti-invariant products (Corollaries 9 and 12, Theorem 11). As examples, we show that totally geodesic normal anti-invariant submanifolds are local normal anti-invariant products (Corollary 10).

2000 Mathematics Subject Classification: 53C26, 53C12, 51H25.

Keywords: paraquaternionic Kähler manifolds, foliations, totally geodesic.

This work was supported by the CEEX grant ET65/2005, contract no 2987/11.10.2005, from the Romanian Ministry of Education and Research

2 Preliminaries

Throughout the paper all manifolds are smooth and paracompact. If M is a smooth manifold then we denote by F(M) the algebra of smooth functions on M and by $\Gamma(TM)$ the F(M)-module of smooth sections of the tangent bundle TM of M. Similar notations will be used for any other manifold or vector bundle. If not stated otherwise, we use indices: $a, b, c, ... \in \{1, 2, 3\}$ and $i, j, k, ... \in \{1, ..., n\}$.

Let M be a manifold endowed with a paraquaternionic structure \mathbf{V} , that is, \mathbf{V} is a rank-3 subbundle of End(TM) which has a local basis $\{J_1, J_2, J_3\}$ on a coordinate neighborhood $\mathcal{U} \subset M$ satisfying (see Garcia-Rio-Matsushita-Vazquez-Lorenzo [4])

(a)
$$J_a^2 = \lambda_a I, \ a \in \{1, 2, 3\},$$
 (1)

(b)
$$J_1J_2 = -J_2J_1 = J_3$$
,

$$(c) \lambda_1 = \lambda_2 = -\lambda_3 = 1.$$

A semi-Riemannian metric g on M is said to be adapted to the paraquaternionic structure \mathbf{V} if it satisfies

$$g(X,Y) + \lambda_a g(J_a X, J_a Y) = 0, \forall a \in \{1, 2, 3\},$$
(2)

for any $X, Y \in \Gamma(TM)$, and any local basis J_1, J_2, J_3 of **V**. From relation1 and relation2 it follows that

$$q(J_aX, Y) + q(X, J_aY) = 0, \forall X, Y \in \Gamma(TM), a \in \{1, 2, 3\}.$$
(3)

Now, suppose $\{\tilde{J}_1, \tilde{J}_2, \tilde{J}_3\}$ is a local basis of \mathbf{V} on $\tilde{\mathcal{U}} \subset M$ and $\mathcal{U} \cap \tilde{\mathcal{U}} \neq \emptyset$. Then we have

$$\tilde{J}_a = \sum_{b=1}^3 A_{ab} J_b,\tag{4}$$

where the 3×3 matrix $[A_{ab}]$ is an element of the pseudo-orthogonal group SO(2,1). From 1 and 2 it follows that M is of dimension 4m and g is of neutral signature (2m, 2m).

Next, we denote by $\tilde{\nabla}$ the Levi-Civita connection on (M,g). Then the triple (M, \mathbf{V}, g) is called a paraquaternionic Kähler manifold if \mathbf{V} is a parallel bundle with respect to $\tilde{\nabla}$. This means that for any local basis $\{J_1, J_2, J_3\}$ of \mathbf{V} on $\mathcal{U} \subset M$ there exist the 1-forms \mathbf{p} , \mathbf{q} , \mathbf{r} on \mathcal{U} such that (cf. Garcia-Rio-Matsushita-Vazquez-Lorenzo [4])

(a)
$$(\tilde{\nabla}_X J_1)Y = \mathbf{q}(X)J_2Y - \mathbf{r}(X)J_3Y,$$
 (5)

(b) $(\tilde{\nabla}_X J_2)Y = -\mathbf{q}(X)J_1Y - \mathbf{p}(X)J_3Y$,

(c)
$$(\tilde{\nabla}_X J_3)Y = -\mathbf{r}(X)J_1Y - \mathbf{p}(X)J_2Y, \quad \forall X, Y \in \Gamma(T\mathcal{U}).$$

Now, we consider a non-degenerate submanifold N of (M, \mathbf{V}, g) of codimension n. Then we say that N is a normal anti-invariant submanifold of (M, \mathbf{V}, g) if the normal bundle TN^{\perp} of N is anti-invariant with respect to any local basis $\{J_1, J_2, J_3\}$ of \mathbf{V} on \mathcal{U} , that is, we have

$$J_a(T_x N^{\perp}) \subset T_x N, \quad \forall a \in \{1, 2, 3\}, x \in \mathcal{U}^* = \mathcal{U} \cap N.$$
 (6)

A large class of normal anti-invariant submanifolds is given in the next proposition.

Proposition 1. Any non-degenerate real hypersurface N of (M, g) is a normal anti-invariant submanifold of (M, \mathbf{V}, g) .

Proof. From 3 we deduce that $g(J_aU, U) = 0$, for any $U \in \Gamma(TN^{\perp})$ and $a \in \{1, 2, 3\}$. Hence $J_aU \in \Gamma(TN)$, which proves 6.

Next, we examine the structures that are induced on the tangent bundle of a normal anti-invariant submanifold N of (M, \mathbf{V}, g) . First, we put $\mathcal{D}_{ax} = J_a \left(T_x N^{\perp} \right)$ and note that $\mathcal{D}_{1x}, \mathcal{D}_{2x}$ and \mathcal{D}_{3x} are mutually orthogonal nondegenerate n-dimensional vector subspaces of $T_x N$, for any $x \in N$. Indeed, by using 3, (1b) and 6 we obtain

$$g(J_1X, J_2Y) = -g(X, J_1J_2Y) = -g(X, J_3Y) = 0, \forall X, Y \in \Gamma(TN^{\perp}),$$

which shows that \mathcal{D}_{1x} and \mathcal{D}_{2x} are orthogonal. By a similar reason we conclude that \mathcal{D}_{ax} and \mathcal{D}_{bx} are orthogonal for any $a \neq b$. Then we can state the following.

Proposition 2. Let N be a normal anti-invariant submanifold of (M, \mathbf{V}, g) of codimension n. Then we have the assertions:

(i) The subspaces \mathcal{D}_{ax} of T_xN satisfy the following

$$J_a(\mathcal{D}_{ax}) = T_x N^{\perp} \text{ and } J_a(\mathcal{D}_{bx}) = \mathcal{D}_{cx}.$$

for any $x \in \mathcal{U}^*$, $a \in \{1, 2, 3\}$, and any permutation (a, b, c) of (1, 2, 3).

(ii) The mapping

$$\mathcal{D}^{\perp}: x \in N \to \mathcal{D}_{x}^{\perp} = \mathcal{D}_{1x} \oplus \mathcal{D}_{2x} \oplus \mathcal{D}_{3x},$$

defines a non-degenerate distribution of rank 3n on N.

(iii) The complementary orthogonal distribution \mathcal{D} to \mathcal{D}^{\perp} in TN is invariant with respect to the paraquaternionic structure \mathbf{V} , that is, we have

$$J_a(\mathcal{D}_x) = \mathcal{D}_x, \forall x \in \mathcal{U}^*, a \in \{1, 2, 3\}.$$

Proof. First, by using 1 we obtain the assertion (i). Next, by 4 and taking into account that J_a , $a \in \{1, 2, 3\}$, are automorphisms of $\Gamma(TM)$ and \mathcal{D}_{ax} , $a \in \{1, 2, 3\}$ are mutually orthogonal subspaces we get the assertion (ii). Now, we note that the tangent bundle of M along N has the following orthogonal decompositions:

$$TM = TN \oplus TN^{\perp} = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus TN^{\perp}. \tag{7}$$

Then we take $Y \in \Gamma(\mathcal{D}^{\perp})$ and by the assertion (i) we deduce that

$$J_a Y \in \Gamma\left(\mathcal{D}^{\perp} \oplus TN^{\perp}\right), \forall a \in \{1, 2, 3\}.$$

On the other hand, if $Y \in \Gamma(TN^{\perp})$, by 6 and the assertion (ii) we infer that

$$J_a Y \in \Gamma\left(\mathcal{D}^\perp\right), \forall a \in \{1, 2, 3\}$$

Thus by using 3 and the second equality in 7 we obtain

$$g(J_aX, Y) = -g(X, J_aY) = 0, \forall a \in \{1, 2, 3\},$$

for any $X \in \Gamma(\mathcal{D})$ and $Y \in \Gamma(\mathcal{D}^{\perp} \oplus TN^{\perp})$. Hence $J_aX \in \Gamma(\mathcal{D})$ for any $a \in \{1, 2, 3\}$ and $X \in \Gamma(\mathcal{D})$, that is, \mathcal{D} is invariant with respect to the paraquaternionic structure \mathbf{V} . This completes the proof of the proposition.

By assertion (iii) of the above proposition we are entitled to call \mathcal{D} the paraquaternionic distribution on N. Also, we note that the paraquaternionic distribution in non-trivial, that is $\mathcal{D} \neq \{0\}$, if and only if dim N > 3n.

3 Integrability of the Distributions on a Normal Anti-Invariant Submanifold

Let N be a normal anti-invariant submanifold of codimension n of a 4m-dimensional paraquaternionic Kähler manifold (M, \mathbf{V}, g) . Then according to the definitions of \mathcal{D} and \mathcal{D}^{\perp} we have the orthogonal decomposition

$$TN = \mathcal{D} \oplus \mathcal{D}^{\perp} \tag{8}$$

Then we consider a local field of orthonormal frames $\{U_1,...,U_n\}$ of the normal bundle TN^{\perp} , and define

$$E_{ai} = J_a U_i, \ a \in \{1, 2, 3\}, i \in \{1, ..., n\}.$$
 (9)

Taking into account 6 and the assertion (ii) of Proposition 2 we deduce that $\{E_{ai}\}$, $a \in \{1, 2, 3\}$, $i \in \{1, ..., n\}$, is a local field of orthonormal frames of \mathcal{D}^{\perp} . Thus we can put

$$X = PX + \sum_{b=1}^{3} \sum_{i=1}^{n} \omega_{bi}(X) E_{bi}, \quad \forall X \in \Gamma \left(TN^{\perp} \right), \tag{10}$$

where P is the projection morphism of TN on \mathcal{D} with respect to the decomposition 8, and ω_{bi} are 1-forms given by

$$\omega_{bi}(X) = \varepsilon_{bi}g(X, E_{bi}), \quad \varepsilon_{bi} = g(E_{bi}, E_{bi}). \tag{11}$$

Now, we apply J_a , $a \in \{1, 2, 3\}$ to 10 and by using 9 and 1 we obtain

(a)
$$J_1X = J_1PX + \sum_{i=1}^n \{\omega_{2i}(X)E_{3i} + \omega_{3i}(X)E_{2i} + \omega_{1i}(X)U_i\},$$

(b)
$$J_1X = J_1PX - \sum_{i=1}^n \{\omega_{1i}(X)E_{3i} + \omega_{3i}(X)E_{1i} - \omega_{2i}(X)U_i\},$$
 (12)

(c)
$$J_1X = J_1PX - \sum_{i=1}^n \{\omega_{1i}(X)E_{2i} - \omega_{2i}(X)E_{1i} + \omega_{3i}(X)U_i\}.$$

Next, we consider the Gauss equation (cf. Chen [3])

$$\tilde{\nabla}_X Y = \nabla_x Y + h(X, Y), \quad \forall X, Y \in \Gamma(TN),$$
 (13)

where $\tilde{\nabla}$ and ∇ are the Levi-Civita connections on (M,g) and (N,g) respectively, and h is the second fundamental form of N. Also, we have the Weingarten equation

$$\tilde{\nabla}_X U = -A_U X + \nabla_X^{\perp} U, \quad \forall X \in \Gamma (TN), U \in \Gamma (TN^{\perp}), \tag{14}$$

where A_U is the shape operator of N with respect to the normal section U, and ∇^{\perp} is the normal connection on TN^{\perp} . Moreover, h and A_U are related by

$$g(h(X,Y),U) = g(A_UX,Y), \quad \forall X,Y \in \Gamma(TN), U \in \Gamma(TN^{\perp}).$$
 (15)

Proposition 3. Let N be a normal anti-invariant submanifold of a paraquaternionic Kähler manifold (M, \mathbf{V}, g) . Then we have

$$h(X, J_a Y) = \lambda_a \sum_{i=1}^n \{ \omega_{ai}(\nabla_X Y) U_i \}, \qquad (16)$$

for any $X, Y \in \Gamma(\mathcal{D})$ and $a \in \{1, 2, 3\}$.

Proof. By direct calculations using (13) and (12a) in (5a) we deduce that

$$\nabla_x J_1 Y + h\left(X, J_1 Y\right) = J_1 P\left(\nabla_x Y\right)$$

$$+\sum_{i=1}^{n} \{\omega_{2i}(\nabla_{X}Y)E_{3i} + \omega_{3i}(\nabla_{X}Y)E_{2i} + \omega_{1i}(\nabla_{X}Y)U_{i}\}$$

$$+J_1h(X,Y)+\mathbf{q}(X)J_2Y-\mathbf{r}(X)J_3Y.$$

Then taking the normal parts in the above equality we obtain (16) for a = 1. In a similar way follows (16) for a = 2 and a = 3.

Now, we say that N is \mathcal{D} -geodesic if its second fundamental form h satisfies (see Bejancu [1])

$$h(X,Y) = 0, \quad \forall X, Y \in \Gamma(\mathcal{D}),$$
 (17)

Then by using (13) and (17) we deduce that N is \mathcal{D} -geodesic if and only if any geodesic of (N, g) passing through each $x \in N$ and tangent to \mathcal{D}_x is a geodesic of (M, g).

Theorem 4. Let N be a normal anti-invariant submanifold of a paraquaternionic $K\ddot{a}hler\ manifold(M,\ \mathbf{V},\ g)$. Then the following assertions are equivalent:

(i) The second fundamental form h of N satisfies

$$h(X, J_a Y) = h(Y, J_a X), \quad \forall X, Y \in \Gamma(\mathcal{D}), \ a \in \{1, 2, 3\}$$

$$(18)$$

- (ii) N is D-geodesic.
- (iii) The paraquaternionic distribution \mathcal{D} is integrable.

Proof. (i) =) (ii). By using (18) and (1b) we deduce that

$$h(J_3X,Y) = h(X,J_3Y) = h(X,J_1(J_2Y)) = h(J_1X,J_2Y)$$
$$= h(J_2(J_1X),Y) = -h(J_3X,Y), \quad \forall X,Y \in \Gamma(\mathcal{D})$$

which implies $h(J_3X, Y) = 0$. Taking into account that J_3 is an automorphism of $\Gamma(\mathcal{D})$ we obtain (17). Hence N is \mathcal{D} -geodesic.

(ii) =) (iii). By using (17) and (11) in (16) we infer that

$$g(\nabla_x Y, E_{ai}) = 0, \quad \forall X, Y \in \Gamma(\mathcal{D}), \ a \in \{1, 2, 3\}, i \in \{1, ..., n\}.$$
 (19)

Hence $\nabla_x Y \in \Gamma(\mathcal{D})$, which implies

$$[X,Y] = \nabla_x Y - \nabla_Y X \in \Gamma(\mathcal{D})$$

Thus \mathcal{D} is integrable.

(iii) =) (i). By using (16) and (11), and taking into account that ∇ is a torsion-free connection, we obtain

$$h(X, J_a Y) - h(Y, J_a X) = \sum_{i=1}^{n} \{g([X, Y], E_{ai}) U_i\} = 0,$$

for any $X, Y \in \Gamma(\mathcal{D})$ and $a \in \{1, 2, 3\}$. This completes the proof of the theorem.

Proposition 5. The shape operators A_i with respect to the normal sections U_i , $i \in \{1, ..., n\}$, satisfy the identities:

$$A_i E_{aj} = A_j E_{ai}, \quad \forall a \in \{1, 2, 3\}, \ i, j \in \{1, ..., n\}.$$
 (20)

Proof. We take $X \in \Gamma(TN)$ and $Y = E_{1i}$ in (5a) and by using (13), (14), (9) and (1) we obtain

$$-A_iX + \nabla_X^{\perp}U_i = J_1(\nabla_X E_{1i}) + J_1h(X, E_{1i}) - \mathbf{q}(X)E_{3i} + \mathbf{r}(X)E_{2i}.$$

Then by using (15), (2), (9) and the above equality we deduce that

$$g(A_{j}E_{1i}, X) = g(h(X, E_{1i}), U_{j})$$

$$= -g(J_{1}h(X, E_{1i}), E_{1j})$$

$$= g(A_{i}X + J_{1}(\nabla_{X}E_{1i}), E_{1j})$$

$$= g(A_{i}X, E_{1j}) - g(\nabla_{X}E_{1i}, U_{j})$$

$$= g(X, A_{i}E_{1j}), \forall X \in \Gamma(TN),$$

which proves (20) for a=1. In a similar way we obtain (20) for a=2 and a=3.

Next, we define on $\Gamma(\mathcal{D})$ the 1-forms

$$\Omega_{aij}(X) = g\left(\nabla_{E_{ai}} E_{aj}, X\right),\tag{21}$$

for any $X \in \Gamma(\mathcal{D})$, $a \in \{1, 2, 3\}$ and $i, j \in \{1, ..., n\}$. Then we state the following.

Proposition 6. Let N be a normal anti-invariant submanifold of a paraquaternionic Kähler manifold (M, \mathbf{V}, g) . Then we have:

$$\Omega_{aij} = \Omega_{aji}, \quad \forall a \in \{1, 2, 3\}, \quad i, j \in \{1, ..., n\},$$
(22)

and

(a)
$$g(\nabla_{E_{1i}}E_{2j}, X) = \Omega_{1ij}(J_3X), \quad g(\nabla_{E_{2j}}E_{1i}, X) = -\Omega_{2ij}(J_3X),$$

$$(b) \quad g\left(\nabla_{E_{2i}}E_{3j},X\right) \quad = \quad -\Omega_{2ij}\left(J_{1}X\right), \qquad g\left(\nabla_{E_{3j}}E_{2i},X\right) = -\Omega_{3ij}\left(J_{1}X\right),$$

(c)
$$g\left(\nabla_{E_{3i}}E_{1j},X\right) = \Omega_{3ij}\left(J_{2}X\right), \quad g\left(\nabla_{E_{1j}}E_{3i},X\right) = \Omega_{1ij}\left(J_{2}X\right), \quad (23)$$

for any $X \in \Gamma(\mathcal{D})$.

Proof. By using (21), (9), (13), (5), (3) and (14) we obtain

$$\Omega_{aij}(X) = g\left(\tilde{\nabla}_{E_{ai}}J_{a}U_{j}, X\right) = g\left(J_{a}(\tilde{\nabla}_{E_{ai}}U_{j}), X\right) =
= -g\left(\tilde{\nabla}_{E_{ai}}U_{j}, J_{a}X\right) = g\left(A_{j}E_{ai}, J_{a}X\right),$$
(24)

for any $a \in \{1, 2, 3\}$ and $i, j \in \{1, ..., n\}$. Then (22) follows by using (24) and (20). Next, by using (13), (2), (5), (1), (9) and (21) we deduce that

$$g\left(\nabla_{E_{1i}}E_{2j},X\right) = g\left(\tilde{\nabla}_{E_{1i}}E_{2j},X\right) = g\left(J_3\left(\tilde{\nabla}_{E_{1i}}E_{2j}\right),J_3X\right)$$
$$= g\left(\tilde{\nabla}_{E_{1i}}E_{1j},J_3X\right) = \Omega_{1ij}\left(J_3X\right), \quad \forall X \in \Gamma\left(\mathcal{D}\right)$$

which proves the first equality in (23a). In a similar way are obtained all the other equalities in (23).

Theorem 7. Let N be a normal anti-invariant submanifold of a paraquaternionic Kähler manifold (M, \mathbf{V}, g) . Then the following assertions are equivalent:

- (i) The distribution \mathcal{D}^{\perp} is integrable.
- (ii) $\Omega_{aij} = 0, \forall a \in \{1, 2, 3\}, i, j \in \{1, ..., n\}.$
- (iii) For any $X \in \Gamma(\mathcal{D})$ and $Y \in \Gamma(\mathcal{D}^{\perp})$ we have

$$h(X,Y) = 0. (25)$$

Proof. Taking into account that ∇ is torsion-free, and by using (21) and (22) we deduce that

$$g([E_{ai}, E_{aj}], X) = 0, \quad \forall X \in \Gamma(\mathcal{D}), \quad a \in \{1, 2, 3\}, \quad i, j \in \{1, ..., n\}.$$
 (26)

On the other hand, by using (23) we obtain

- (a) $g([E_{1i}, E_{2i}], X) = \Omega_{1ii}(J_3X) + \Omega_{2ii}(J_3X)$,
- (b) $g([E_{2i}, E_{3j}], X) = \Omega_{3ij}(J_1X) \Omega_{2ij}(J_1X),$

(c)
$$g([E_{3i}, E_{1j}], X) = \Omega_{3ij}(J_2X) - \Omega_{1ij}(J_2X),$$
 (27)

for any $X \in \Gamma(\mathcal{D})$. Then from (26) and (27) we infer that (ii) implies (i), since $\{E_{ai}\}, a \in \{1,2,3\}, i,j \in \{1,...,n\}$ is an orthonormal basis of $\Gamma(\mathcal{D}^{\perp})$. Now, we suppose that \mathcal{D}^{\perp} is integrable. Then taking into account that J_a , $a \in \{1,2,3\}$, are automorphisms of $\Gamma(\mathcal{D})$ from (27) we deduce that Ω_{aij} satisfy the system

$$\Omega_{1ij} + \Omega_{2ij} = 0$$
, $\Omega_{3ij} - \Omega_{2ij} = 0$, $\Omega_{3ij} - \Omega_{1ij} = 0$.

Hence $\Omega_{aij} = 0$, for all $a \in \{1, 2, 3\}$, and $i, j \in \{1, ..., n\}$. Thus we proved that (i) implies (ii). Finally, by using (24) and (15) we obtain

$$\Omega_{aij}(X) = g\left(h\left(J_aX, E_{ai}\right), U_i\right),\,$$

for any $a \in \{1, 2, 3\}$, and $i, j \in \{1, ..., n\}$, which implies the equivalence of (ii) and (iii). This completes the proof of the theorem.

4 Foliations on a Normal Anti-Invariant Submanifold

Let \mathcal{F} be a foliation on (N, g). Then we say that \mathcal{F} is totally geodesic if each leaf of \mathcal{F} is totally geodesic immersed in (N, g). Denote by $\mathcal{F}(\mathcal{D})$ and $\mathcal{F}(\mathcal{D}^{\perp})$ the foliations determined by \mathcal{D} and \mathcal{D}^{\perp} respectively, provided these distributions are integrable.

Theorem 8. Let N be a normal anti-invariant submanifold of a paraquaternionic Kähler manifold (M, \mathbf{V}, g) . Then we have the assertions:

- (i) If \mathcal{D} is integrable, then the foliation $\mathcal{F}(\mathcal{D})$ is totally geodesic.
- (ii) If \mathcal{D}^{\perp} is integrable, then the foliation $\mathcal{F}(\mathcal{D}^{\perp})$ is totally geodesic.

Proof. Suppose \mathcal{D} is integrable. Then from (19) we deduce that for any . Thus F(D) is a totally geodesic foliation. Next, we suppose that is integrable. Then by using the assertion (ii) of Theorem 7 in (21) and (23) we obtain

$$g\left(\nabla_{U}V,X\right)=0,\ \forall U,V\in\Gamma\left(\mathcal{D}^{\perp}\right),\ X\in\Gamma\left(\mathcal{D}\right),$$

since $\{E_{ai}\}$, $a \in \{1, 2, 3\}$, $i \in \{1, ..., n\}$, is an orthonormal basis in $\Gamma(\mathcal{D}^{\perp})$. Thus $\nabla_U V \in \Gamma(\mathcal{D}^{\perp})$ for any $U, V \in \Gamma(\mathcal{D}^{\perp})$, which means that $\mathcal{F}(\mathcal{D}^{\perp})$ is a totally geodesic foliation.

Next, we say that N is a local (global) normal anti-invariant product if both distributions \mathcal{D} and \mathcal{D}^{\perp} are integrable and N is locally (globally) a semi-Riemannian product $(S, h) \times (S^{\perp}, k)$, where S and S^{\perp} are leaves of \mathcal{D} and \mathcal{D}^{\perp} respectively.

Corollary 9. Let N be a normal anti-invariant submanifold of a paraquaternionic Kähler manifold (M, \mathbf{V}, g) such that \mathcal{D} and \mathcal{D}^{\perp} are integrable. Then N is a local normal anti-invariant product. If in particular, N is complete and simply connected, then it is a global normal anti-invariant product.

Proof. From Theorem 8 we see that both foliations $\mathcal{F}(\mathcal{D})$ and $\mathcal{F}(\mathcal{D}^{\perp})$ are totally geodesic. Hence N is a local normal anti-invariant product. If moreover, N is complete and simply connected then we apply the decomposition theorem for semi-Riemannian manifolds (cf. Wu [8]) and obtain the last assertion of the corollary. \square

Corollary 10. A totally geodesic normal anti-invariant submanifold N of a paraquaternionic Kähler manifold (M, \mathbf{V}, g) is a local normal semi-invariant product. If moreover, N is complete and simply connected, then it is a global anti-invariant product.

Proof. Taking into account that the second fundamental form h of N vanishes identically on N, from Theorems 4 and 7 we deduce that both distributions \mathcal{D} and \mathcal{D}^{\perp} are integrable. Then we apply Corollary 9 and obtain the assertions in this corollary.

Foliations with bundle-like metric on Riemannian manifolds have been introduced by Reinhart[5]. The main properties of these foliations can be found in Reinhart [6], Tondeur [7] and Bejancu-Farran [2]. Here we need the following characterization of such foliations. Let \mathcal{F} be a non-degenerate foliation on a semi-Riemannian

manifold (N, g). Denote by \mathcal{D} and \mathcal{D}^{\perp} the tangent distribution and normal distribution to \mathcal{F} respectively. Then g is a bundle-like metric for \mathcal{F} if and only if (cf. Bejancu-Farran[2], p. 112)

$$g\left(\nabla_{U}V + \nabla_{V}U, X\right) = 0, \quad \forall U, V \in \Gamma\left(\mathcal{D}^{\perp}\right), \ X \in \Gamma\left(\mathcal{D}\right).$$
 (28)

In general, the distribution \mathcal{D}^{\perp} is not necessarily integrable when (28) is satisfied. However, for normal anti-invariant submanifolds we prove the following.

Theorem 11. Let N be a normal anti-invariant submanifold of a paraquaternionic Kähler manifold (M, \mathbf{V}, g) such that the paraquaternionic distribution \mathcal{D} is integrable. Then N is a local normal anti-invariant product if and only if g is a bundle-like metric for the foliation $\mathcal{F}(\mathcal{D})$.

Proof. First, suppose that N is a local normal anti-invariant product. Then \mathcal{D}^{\perp} is integrable and its leaves are totally geodesic immersed in (N, g). Thus $\nabla_U V \in \Gamma(\mathcal{D}^{\perp})$ for any $U, V \in \Gamma(\mathcal{D}^{\perp})$ and therefore (28) is satisfied. Thus g is bundle-like for $\mathcal{F}(\mathcal{D})$. Conversely, suppose that g is bundle-like for $\mathcal{F}(\mathcal{D})$. Then, by using (28), (21) and (22) we deduce that $\Omega_{aij} = 0$, for any $a \in \{1, 2, 3\}$, $i, j \in \{1, ..., n\}$. Thus by Theorem 7, \mathcal{D}^{\perp} is integrable. Moreover, by assertion (ii) of Theorem 8 we infer that the foliation $\mathcal{F}(\mathcal{D}^{\perp})$ is totally geodesic. As $\mathcal{F}(\mathcal{D})$ is also totally geodesic (by (i) of Theorem 8), we conclude that N is a local normal anti-invariant product. \square

Finally, taking into account Theorem 11 and Corollary 9 we obtain the following.

Corollary 12. Let N be a complete and simply connected normal antiinvariant submanifold of a paraquaternionic Kähler manifold (M, \mathbf{V}, g) such that the paraquaternionic distribution \mathcal{D} is integrable. Then N is a global normal anti-invariant product if and only if g is a bundle-like metric for the foliation $\mathcal{F}(\mathcal{D})$.

References

- [1] A. Bejancu, Geometry of CR-Submanifolds, D. Reidel Publish. Comp., Dordrecht, 1986. MR0861408(87k:53126). Zbl 0605.53001.
- [2] A. Bejancu and H.R. Farran, Foliations and Geometric Structures, Springer, Berlin, 2006. MR2190039(2006j:53034). Zbl 1092.53021.
- [3] B.Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
 MR0353212(50 #5697). Zbl 0262.53036.
- [4] E. Garcia-Rio, Y. Matsushita and R. Vazquez-Lorenzo, Paraquaternionic Kähler Manifolds, Rocky Mountain J. Math., 31 (2001), 237-260. MR1821379(2001k:53088). Zbl 0987.53020.

- [5] B.L. Reinhart, Foliated manifolds with bundle-like metrics, Annals Math., 69
 (2) (1959), 119-132. MR0107279(21 #6004). Zbl 0122.16604.
- [6] B.L. Reinhart, Differential Geometry of Foliations, Springer-Verlag, Berlin, 1983. MR0705126(85i:53038). Zbl 0506.53018.
- [7] Ph. Tondeur, *Geometry of Foliations*, Monographs in Mathematics. **90** Basel: Birkhäuser, Basel, 1997. MR1456994(98d:53037). Zbl 0905.53002.
- [8] H. Wu, On the de Rham Decomposition Theorem, Illinois J. Math., 8 (1964), 291-311. MR0161280(28 #4488). Zbl 0122.40005.

University Constantin Brâncuși of Târgu-Jiu, Bld. Republicii 1, 210152, Târgu-Jiu, Romania.

e-mail: novac@utgjiu.ro

http://www.utgjiu.ro/math/nchiriac/