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ON THE LINKING ALGEBRA OF HILBERT
MODULES AND MORITA EQUIVALENCE OF
LOCALLY C*-ALGEBRAS

Maria Joita

Abstract. In this paper we introduce the notion of linking algebra of a Hilbert module over
a locally C*-algebra and we extend in the context of locally C*-algebras a result of Brown, Green
and Rieffel [Pacific J.,1977] which states that two C*-algebras are strongly Morita equivalent if and

only if they are isomorphic with two complementary full corners of a C*-algebra.

1 Introduction and preliminaries

A locally C*-algebra is a complete Hausdorff complex topological * -algebra A whose
topology is determined by a directed family of C*-seminorms in the sense that a
net {a;}icr converges to 0 if and only if the net {p(a;)}icr converges to 0 for all
continuous C*-seminorm p on A. The term of locally C*-algebra is due to Inoue [3].
Now, we recall some facts about locally C*-algebras from [2], [3], [5] and [8].
For a given locally C*-algebra A we denote by S(A) the set of all continuous
C*-seminorms on A. For p € S(A), the quotient * -algebra A/ ker p, denoted by A,,
where kerp = {a € A;p(a) = 0} is a C*-algebra in the C*-norm induced by p. The
canonical map from A to A, is denoted by 7. For p,q € S(A) with p > ¢, there is a
surjective canonical map mp, from A, onto A, such that m,, (7p(a)) = m4(a) for all
a € A. Then {Ap; 7pqtpqes(a)p>q i an inverse system of C*-algebras and Iiin Ap is

P

a locally C*-algebra which can be identified with A.

A Freéchet locally C*-algebra is a locally C*-algebra whose topology is determined
by a countable family of C* -seminorms.

A morphism of locally C*-algebras is a continuous * -morphism from a locally C*-
algebra A to another locally C*-algebra B. An isomorphism of locally C*-algebras
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from A to B is a bijective map ® : A — B such that ® and ®~! are morphisms of
locally C*-algebras.

Hilbert modules over locally C*-algebras are generalizations of Hilbert C*-modules
by allowing the inner product to take values in a locally C*-algebra rather than in
a C*-algebra. Here we recall some facts about Hilbert modules over locally C*
-algebras from [5] and [8].

A pre -Hilbert A-module is a complex vector space E which is also a right A-
module, compatible with the complex algebra structure, equipped with an A-valued
inner product (-,-) : E x E — A which is C -and A-linear in its second variable and
satisfies the following relations:

i (&) = (n,§) for every &,n € E;
ii. (£,€) >0 for every £ € E;

iii. (£,&) =0 if and only if £ = 0.

We say that E is a Hilbert A-module if E' is complete with respect to the topology

determined by the family of seminorms {Pp},e5(4) Where Dp(§) = /p ((£,§)), € € E.

We say that a Hilbert A -module E' is full if the linear subspace (E, E) of A
generated by {(¢,n), {,n € E} is dense in A.

Let E be a Hilbert A-module. For p € S(A), kerpp = {£ € E;pp(§) = 0} is
a closed submodule of E and the quotient linear space E/ ker pg, denoted by Ej, is a
Hilbert Ap-module with (§+kerpp)m,(a) = {a+ker py and (§ + kerpg,n + kerpg) =
7p((€,m)). The canonical map from E onto E,, is denoted by Uf. Forp,q € S(A), p >
q there is a canonical surjective morphism of vector spaces afq from E, onto E,; such
that ol (05 (€)) = o(£), € € E. Then {Ep; Ap; 0 Tpg}p ges(a)pq is an inverse
system of Hilbert C*-modules in the following sense: o (£,a,) = ol (€,)mpq(ap), &, €

EP’ ap € AP; <O-5q(§p)7 O-Eq(np)> = ﬂ-pq(<§p7 77p>)7§p777p € Ep; Ufp(&p) = €p7 fp €
E, and 05 o afq = 05 if p> ¢ >r, and lim E, is a Hilbert A-module which can be
r

identified with F.

Let E and F be Hilbert A-modules. The set L4(E, F) of all adjointable A-
module morphisms from E into F becomes a locally convex space with topol-
ogy defined by the family of seminorms {py,, (g, r)}pes(a), Where pr,(z,r) (1) =
1Dl 5y 5,y T € La(E, F) and (m,) (T)(E + kerBg) = T€ + kery, € €
E. Moreover, {La,(Ep, Fp);  (Tpg)s}pqges(a)pzq Where (mpq)s @ La,(Ep, Fp) —
La,(Ey, Fy), (npq)*(Tp)(af(g)) = aﬁl(Tp(af(f))), is an inverse system of Banach
spaces, and liin La,(Ep, Fy) can be identified with La(E,F). Thus topologized,

p
L4(E, E) becomes a locally C*-algebra, and we write L4(E) for La(E, E).

We say that the Hilbert A-modules E and F' are unitarily equivalent if there is

a unitary element U in L4 (FE, F) (namely, U*U =idg and UU* =idp).
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Linking Algebra and Morita Equivalence of Locally C*-Algebras 25

For § € E and n € I we consider the rank one homomorphism 0, ¢ from E into F’
defined by 0, ¢(¢) = n (£, ¢) . Clearly, 0, ¢ € La(E, F') and 0 . = 0¢ ;.We denote by

KA(E,F) the closed linear subspace of Ls(E,F) spanned by {0, ¢ € E,ne F},
and we write K4(E) for K4(F, E). Moreover, K4(E,F) may be identified with
lgn Ka,(Ep, Fp).
p

Two locally C*-algebras A and B are strongly Morita equivalent if there is a full
Hilbert A -module E such that the locally C*-algebras B and K 4(F) are isomorphic
[4]. In [4], we prove that the strong Morita equivalence is an equivalence relation on
the set of all locally C* -algebras. Also we prove that two Fréchet locally C*-algebras
A and B are strongly Morita equivalent if and only if they are stably isomorphic.
This result extends in the context of locally C*-algebras a well known result of
Brown, Green and Rieffel [1, Theorem 1.2]. In this paper, we extend in the context
of locally C*-algebras another result of Brown, Green and Rieffel [1, Theorem 1.1]
which states that two C*-algebras A and B are strongly Morita equivalent if and only
if there is a C*-algebra C such that A and B are isomorphic with two complementary
full corners in C, Theorem 9. For this, we introduce the notion of linking algebra
of a Hilbert module F over a locally C* -algebra A. Finally, using the fact that any
Hilbert C*-module FE is non-degenerate as Hilbert module (that is, for any £ € E
there is 7 € E such that £ = n(n,n)), and taking into account that the linking
algebra of E is in fact the inverse limit of the linking algebras of E,, p € S(A), we
prove that any Hilbert module E over a locally C*-algebra A is non-degenerate as
Hilbert module, Proposition 10.

2 The main results

Let A be a locally C* -algebra. A multiplier of A is a pair (I,r), where [ and r
are linear maps from A to A such that [(ab) = l(a)b, r(ab) = ar(b) and al(b) =
r(a)b for all @ and b in A. The set M(A) of all multipliers of A is an algebra with
involution; addition is defined as usual, multiplication is (I1,71) (l2,72) = (l1l2, 7172)
and involution is (I,7)* = (r*,1*), where r*(a) = r(a*)* and [*(a) = [ (a*)* for all
a € A. For each p € S(A), the map pyya) : M(A) — [0,00) defined by ppray(l,7) =
sup{p(l(a));a € A, p(a) < 1} is a C*-seminorm on M(A), and M(A) with the
topology determined by the family of C* -seminorms {pas(a)}pes(a) is a locally
C*-algebra [8].

Let p,q € S(A) with p > ¢. Since the C*-morphism m,, : A, — A, is sur-
jective, it extends to a unique morphism of W*-algebras w;q : A; — A,q/, where
A; is the enveloping W*-algebra of A,. Moreover, ﬂ;q (M(A,)) € M(A,), and
{M(Ap);ﬂ';q|M(Ap) }p>q.paes(A) is an inverse system of C*-algebras. The locally
C*-algebras M (A) and lim M (Ap) are isomorphic [8].

P
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Any locally C*-algebra A is a Hilbert A -module with the inner product de-
fined by (a,b) = a*b, a,b € A, and the locally C*-algebras M(A) and La(A) are
isomorphic [8].

Let C be a locally C*-algebra.

Definition 1. A locally C* -subalgebra A of C is called a corner if there is a pro-
jection P € M(C) ( that is, P = P* and PP = P) such that A = PCP.

Remark 2. If A is a corner in C, then A, = W; (P) prg (P) and so Ay is a corner
in Cy for each p € S(C).

Definition 3. Two corners PCP and QCQ in C are complementary if P+ Q =
Larey ( 1am(cy denotes the unit of M(C) ).

Remark 4. If PCP and QCQ are two complementary corners in C, then 7T;; (P)Cp

7T; (P) and W;(Q)Cpﬂ';(Q) are two complementary corners in Cy, for each p € S(C).

Definition 5. A corner PCP in C is full if CPC is dense in C.

"

Remark 6. If PCP is a full corner in C, then m, (P)CPW; (P) is a full corner in
Cy for each p € S(C).

Proposition 7. Let C be a locally C*-algebra and let A be a full corner in C. Then
A and C are strongly Morita equivalent.

Proof. Let P € M(C) such that A = PCP. Then CP is a full Hilbert A -module
with the action of A on C'P defined by (¢P,a) — ca and the inner product defined
by (¢P,dP) = Pc*dP. Moreover, for each p € S(C), the Hilbert A, -modules (CP),
and Cpﬂ'; (P) are unitarily equivalent. Then the locally C*-algebras K4(CP) and
lim K A, ( Cpﬂ'; (P)) are isomorphic [8, Proposition 4.7].

p

For each p € S(A), since A, is a full corner in C,, the C*-algebras A, and C), are
strongly Morita equivalent [1, Theorem 1.1]. Moreover, C'pw; (P) is a full Hilbert

Ay -module such that the C*-algebras K4, (Cpﬂ'; (73)) and C), are isomorphic. The
linear map ®, : Cp — Ka, (prg (’P)) defined by
@, (mp (Pd)) = Or,(cP) mp(aP)
is a morphism of C*-algebras. Indeed, from
H(I)p (7717 (C’Pd» HKAp (Cpfr;' (P)) = Heﬂ-p(cP),ﬂ’p(d*P) HKA,, (Cpﬂ;,' (73))

sup{||m, (cPdeP)|lc ;e € C,|[mp (eP)]|c, <1}
I7p (de)Hcp

IN
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for all ¢,d € E, we conclude that ®, is continuous, and since

Dy, (mp (PA)") = Or(@+P) mp(cP) = O (P)mp(aP) = P (Tp (cPA))”

and

Py (mp (Pd)) @p (1 (€Pf)) = Or(cP)mp(dP) Oy (eP) mp (£+P)
O (cP)mp(f*Perd?)
= &, (m, (cPdePf))

for all ¢,d,e, f € C, ®, is a morphism of C*-algebras. Moreover, @, is surjective.
If &, (7, (cPd)) = 0, then m,(cPdeP) = 0 for all e € C, in particular we have
mp (cPdd*Pc*) = 0. This implies that 7, (¢Pd) = 0 and so ®), is injective. Therefore

®, is an isomorphism of C* -algebras from C), onto K4, (pr; (P)) .
It is not difficult to check that (®,), is an inverse system of isomorphisms of
C*-algebras. Let ® = lim®,. Then ® is an isomorphism of locally C* -algebras
P
from lim C, onto lim K 4, (prg (73)) . From this fact and taking into account that

P p

the locally C*-algebras lim K4, (Cpﬂ; (73)> and K4(CP) can be identified as well

p
as the locally C*-algebras lim C}, and C, we conclude that the locally C*-algebras

P

K4(CP) and C are isomorphic. Therefore the locally C*-algebras A and C are
strongly Morita equivalent. O

From Proposition 7 and taking into account that the strong Morita equivalence
is an equivalence relation on the set of all locally C*-algebras we obtain the following
corollary.

Corollary 8. Let C' be a locally C*-algebra. If A and B are two full corners in C,
then A and B are strongly Morita equivalent.

Let E be a Hilbert A-module.
The direct sum A® FE of the Hilbert A -modules A and F is a Hilbert A -module
with the action of A on A& E defined by

(AGE,A) 5(a®&,b) = (adé)b=abdtbec AGE
and the inner product defined by
(ASE,ADE) 5(a®d&b®n) — (a®&bdn) =a"b+(£,n) € A.

Moreover, for each p € S(A), the Hilbert Aj,-modules (A & E), and A, ® E, can be
identified. Then the locally C*-algebras La(A @ E) and lim L4, (A, ® E,) can be

P

identified.
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Let ac A, € E,ne FEand T € K4(F). The map
La7§7n7T2A@E—>A@E
defined by

Lagnr(b® () = (ab+(£,¢)) ® (nb+T(C))

is an element in Ly(A @® E). Moreover, (Lagy7r)" = La*per+. The locally C*
-subalgebra of Ls(A @ E) generated by

{Lagnria € A€ € E,ne BT e Ka(E)}

is denoted by L(F) and it is called the linking algebra of F.
By Lemma IIT 3.2 in [7], we have

L(E)= liin (mp), (L(E)),

P

where (7,), (L£(£)) means the closure of the vector space (1), (£(E)) in La,(Ap ®
E,). Let p € S(A). From

() (Lagnr) = L, (a),0E(€).0F (),(mp)o(T)

for all a,b € A, for all £,n,¢ € E, and taking into account that L£(E,), the linking
algebra of E,, is generated by

{Lr ()08 () 0B n).(mp)-(1);0 € A, § € B € B, T € Ky(E)}
since m,(A) = Ay, oY (E) = E,, and (mp), (K(E)) = K(E,), we conclude that

L(E) = lim L(E,).

Moreover, since L(E,) = Ka,(Ap @ E,) and the locally C* -algebras K4(A @ E)
and lim K4,(A, @ E,) can be identified, the linking algebra of E coincides with

p
KA(A® E).
The following theorem is a generalization of Theorem 1.1 in [1].

Theorem 9. Two locally C*-algebras A and B are strongly Morita equivalent if
and only if there is a locally C*-algebra C with two complementary full corners
isomorphic with A respectively B.

Proof. First we suppose that A and B are strongly Morita equivalent. Then there
is a full Hilbert A -module E such that the locally C* -algebras K 4(F) and B are
isomorphic. Let C'= L(E). Then, for each p € S(A), Cp, = L(E,). By Theorem 1.1
in [1] we have:
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L. ia, : Ay — Cp defined by ia,(ap) = L
C*-algebras;

ap,0,0,0 18 an isometric morphism of

2. the map Py : Ay®E, — A& E, defined by P, (a, & £,) = a,®0 is a projection
in LAp (Ap D Ep) ;

3. CpP,C, is dense in Cp;
4. PpCpPp =in,(Ap);

5. Uk, (By) Ka,(Ep) — C) defined by iKAp(Ep)(Tp) = Lo,0,0,7, is an isometric
morphism of C*-algebras;

6. the map Q, : 4, ® E, — A, ® E, defined by Q, (ap@fp) =0®¢, s a
projection in L4, (A, ® Ep);

7. C,QpC, is dense in Cp;
8. QpCpr = iKAp(Ep)(KAp (Ep))-
It is not difficult to check that (P,), and (Qp), are elements in lim L4, (4, © Ep) .

P
Let P € La(A@® E) such that (7,), (P) =P, forall pe S(A) and Q € L4 (A E)
such that (7)), (Q) = Q, for each p € S(A). Clearly, P and Q are projections in
La(A®FE) and P+ Q =idagp. Also it is not difficult to check that (iAp)p is an

inverse system of isometric morphisms of C*-algebras as well as (z Ka,( Ep)) . Let

= liin ia, and ik, (p) = liiniKAp(Ep). Then i4 is the embedding of A in C and
p p
ik ,(E) 15 the embedding of K4(F) in C. Moreover, we have:

i4(A) =limia, (4,) = lim P,C, P, = lim m, (PCP) = PCP;

P P p

ixap) (KA(E)) = limig, (g,)(Ka,(Ep)) =lim Q,C,Q,

p P

= lim7,(QCQ) = QCQ

P

Therefore the locally C* -algebras A and K 4(FE) are isomorphic with two com-
plementary corners in C. Moreover, these corners are full since

CPC =limm, (CPC) = limC,P,C, = lim C, = C

p P p
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and

COC =lim, (COC) =1im C,0,C, = lim C, = C.

p p p

Thus we showed that the locally C*-algebras A and B are isomorphic with two
complementary full corners in C.
The converse implication is proved by Corollary 8. O

It is well known that a Hilbert module E over a locally C*-algebra A is non-
degenerate as topological A -module in the sense that the linear space generated
by {£a,§ € E,a € A} is dense in E (see, for example, [5]). Also it is well known
that a Hilbert C* -module F is non-degenerate as Hilbert module, that is, for any
¢ € E there is n € E such that £ = n(n,n). By analogy with the case of Hilbert
C*-modules, we prove that any Hilbert module E over a locally C*-algebra A is
non-degenerate as Hilbert module.

Proposition 10. Let E be a Hilbert A -module. Then for each & € E there isn € E
such that &€ =n(n,n) .

Proof. Let T = Log¢eo € L(E). Clearly, T = T*. As in the case of Hilbert C*
-modules, consider the function f : R — R defined by f(t) = t5 Then, for each

p € S(A), there is n,, € E, such that
f (Lo,og<s),ag(5),o) = Lo, n,.0

(see, for example, [9, Proposition 2.31]) and moreover, Jf &) =, <77p, np> . But, by
functional calculus (see, for example, [8]),

(7). (F(T)) = 1 ((m), (1)) = f (Loapeor©00)

for all p € S(A), and then

LO,qu(np),afq(np),O - (WP‘I)* LO?np)/r]p’O)

f (Lo,af(s),a5<f),o>)
(7p), (f (Loge0))
(Loge0))

- LO,nquO

for all p,q € S(A) with p > ¢. This implies that for p,q € S(A) with p > ¢ we have
(o0 () =006 (Q)) =0
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for all ( € E. From this fact, and taking into account that O'qE (E) = E,,we obtain
051(77[,) = 1,- Therefore (n,), € lim Ej,. Let n € E such that 05(77) = 1, for all

P

p € S(A). From

oy (E=nnm) = o, (&) —0ay; () (o) (n),0; (n))
= 05 (é-) —Mp <77p777p> =0
for all p € S(A), we deduce that & = 1 (n,n) and the proposition is proved. O
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