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Abstract. We obtain a complete characterization of the space of matrix elements dual to
the graded multiplicity space arising from fusion products of Kirillov-Reshetikhin modules
over special twisted current algebras defined by Kus and Venkatesh, which generalizes the
result of Ardonne and Kedem to the special twisted current algebras. We also prove the
conjectural identity of g-graded fermionic sums by Hatayama et al. for the special twisted
current algebras, from which we deduce that the graded tensor product multiplicities of the
fusion products of Kirillov—Reshetikhin modules over special twisted current algebras are
both given by the ¢-graded fermionic sums, and constant term evaluations of products of
solutions of the quantum twisted @)-systems obtained by Di Francesco and Kedem.
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1 Introduction

1.1 Overview

The Kirillov—Reshetikhin (KR-) modules were first introduced in [24] in the context of Bethe
ansatz of generalized inhomogeneous Heisenberg spin chains. These KR-modules are irreducible,
finite-dimensional modules over the Yangian Y'(g) of a simple classical Lie algebra g, and these
modules satisfy two key properties. Firstly, the g-characters of these KR-modules satisfy the
Q-system relations, which is a family of nonlinear recurrence relations [23, 24]. Secondly, the
multiplicities of irreducible, finite-dimensional g-modules in a tensor product of KR-modules are
given by fermionic formulas [24].

Subsequently, the untwisted @)-systems arose in the fusion procedure for the transfer matrices
of the vertex and the restricted solid-on-solid (RSOS) models associated to Yangian Y (g) [25], or
equivalently, an untwisted quantum affine algebra U, (g). The twisted @Q-systems then appeared
in a subsequent sequel [26], where Kuniba and Suzuki generalized the fusion procedure to the
twisted quantum affine algebras.

In [17], Hatayama et al. gave combinatorial definitions of g-deformations of the fermionic
sums, and defined KR-modules over Uy(g) in terms of Drinfeld polynomials [4] in the untwisted
cases. These definitions were then extended to the twisted cases in [16]. In addition, they
showed in [17, Theorem 8.1], [16, Theorem 6.3] that if the U,(g)-characters of the KR-modules
over U,(g) satisfy the Q-system relations, together with some extra asymptotic conditions, then
the multiplicity of an irreducible Uy(g)-module in a tensor product of KR-modules over Uy,(g)
is given by the extended fermionic sum defined by [17, equation (4.16)], [16, equation (4.20)]
at ¢ = 1. As a first step towards proving the claims advanced by Hatayama et al., Nakajima
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showed that the g-characters of the KR-modules over Uy,(g) satisfy the T-system relations in
the simply-laced untwisted cases [29]. Subsequently, Hernandez extended the results to the non-
simply laced untwisted cases [18], and the twisted cases [19], using a different approach from
Nakajima. As the QQ-system relations are specializations of the T-system relations, this implies
the fermionic formulas for the tensor product multiplicities.

In the same papers, Hatayama et al. also conjectured via [17, Conjecture 3.1], [16, Conjec-
ture 3.10] that the g-grading of the fermionic sums also appears in the context of crystals of
tensor products of KR-modules over a quantum affine algebra. Shortly after [17], Kirillov et al.
proved [17, Conjecture 3.1] for the Agl) case, by establishing a bijection between rigged config-
urations and crystal paths in type A. This was then extended to the Df«l) case by Naoi [30] via
a representation theoretic approach.

Subsequently, further interpretations of the g-grading in the g-graded fermionic sums were
given in the untwisted cases. In [1, 7], it was shown that the g-grading corresponds to the
g-equivariant grading on the Feigin—Loktev fusion product [14] of localized KR-modules over
the untwisted current algebra g[t], by showing that the graded tensor product multiplicities
are given by defined by the g-graded fermionic formula given in [17, equation (4.3)]. A subse-
quent interpretation was given in [9, 28], where the ¢-grading corresponds to the ¢-grading of
quantum @-systems. These quantum (-systems arise naturally as the quantum deformation
of the @-system cluster algebras defined in [8, 21], and were used to yield a complete charac-
terization of the fusion product of KR-modules over current algebras in terms of the quantum
Q-systems.

A natural question to ask at this point is whether there are analogues of the various interpre-
tations of the ¢-grading of the fermionic sums [16, equations (4.5) and (4.20)] in the twisted case.
In more recent work, Okado et al. [31] showed that g-grading of the fermionic sums arises in the
context of crystals of tensor products of KR-modules in the non-exceptional twisted cases, and
Scrimshaw did the same in the exceptional twisted cases described in [32, 33], by proving [16,
Conjecture 3.10] in the aforementioned twisted cases.

Our goal in this paper is to extend the results in [1, 9, 28], and show that the g-grading
corresponds to the equivariant grading on the fusion product [27] of localized KR-modules over
special twisted current algebras, as well as that of the quantum twisted Q-systems of type # Agi)
defined by Di Francesco and Kedem [11]. More precisely, we will use the quantum twisted Q-
system relations to prove the identity [16, Conjecture 4.3] of g-graded fermionic sums for all
twisted affine types # Agi). We will also show that the graded multiplicities in the fusion product
of KR-modules over the special twisted current algebras are given by the g-graded fermionic
sums defined in [16, equation (4.5)]. These two results together will then yield a complete
characterization of the fusion product of KR-modules over the special twisted current algebras in
terms of the quantum twisted Q-systems, thereby complementing the characterizations obtained
in the untwisted cases [9, 28].

1.2 Main results

To begin, we let g be a simply-laced simple Lie algebra of Dynkin type X,, # As., o be
a nontrivial Dynkin diagram automorphism of g, and « be the order of ¢. We denote the
subalgebra of o-fixed points of the untwisted current algebra g[t] by g[t]?, and we call g[t]? the
(special) [27, Section 1.5] twisted current algebra of affine Dynkin type Xy, . We also denote
the subalgebra of o-fixed points of g by g7, the Dynkin type of g7 by Y,., and the Cartan matrix
of g% by C.

The KR-modules over g[t|? are parameterized by a € I, where I, = [1,r] is the set of
simple root labels of g7, m € Z,, along with a non-zero localization parameter z € C*, and
are denoted by KRg,,(z). The g7-characters Q) = ch resgf[,t]g KR{ 1 (2) of these KR-modules
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over g[t]? satisfy the X,gf ) Q@-system relations [26], that is, we have

Qa,k-ﬁ-lQa,k—l = l—[ Q_Cba’ ac€ ITa ke Na (11)

b~a

where b ~ a if and only if Cp, < 0.

Our first result involves the identity MX,n (qil) = ]\len (qil) [16, Conjecture 4.3], which was
previously proved for the untwisted simply-laced and untwisted non-simply laced cases in [9,
Theorem 5.1] and [28, Theorem 1.2] respectively. To begin, we let ¢y, ...,tY be integers that sat-
isfy mingey, tY =1 and tY Cyp, = tbvéba for all a,b e I,. Welet n = (n4,i)qer, ien be a vector that
parameterizes a finite set of KR-modules over g[t]”?, where n, ; is the number of KR-modules of
type KR ;. In addition, let us fix any dominant g?-weight A, and write A = )] acr, LaWa, Where w,
is the fundamental g7-weight corresponding to the root label a. For any vector m = (g )aer, ien
of nonnegative integers with a finite number of nonzero entries, we define the total spin ¢, 0 and
the vacancy numbers p,; as follows:

a0 =L+ Y > §(Cavmuj — 6apnnj),  pai = Y, Y, min(i, §)(apns; — Capmp ).

jeNbel, jeNbel,
Next, we define the quadratic form Q(m,n) by
1 P —
Q(m,n) = B Z Z ty min(z, j)maq,; (Capmi; — 20apmp,;)-
i,j€N a,bel,
The M-sum My (¢ ') is given by [16, equation (4.5)]

MX,n (qfl) _ 2 qQ(m,n) H H [ma;;-lpm] 7 (1.2)
’ a

m>=0 ieN ael,
Qa,0:07pa,i>0

where

Up-&-l; v Um—i—l; v 0 '
m (v,v)oo(v ,v)oo izo

and ¢, = g% for all @ € I.. Similarly, the M-sum Mxn(q_l), defined without the con-
straint p,; = 0, is given by [16, equation (4.20)]

MX,n(q_l) _ Z g@(m) H 1—[ [ma;% :ripa,i] |
’ a

m=0 €N ael,
Ga,0=0

The following theorem implies that the identity Ms ( 1) = Mxn(q_l) [16, Conjecture 4.3]
holds for all twisted types not of type Agr).

Theorem 1.1. Let g[t]? be a twisted current algebra of type X(H) # Agz), A be a dominant g°-
weight, andn = (ng, l)ae]hleN be a vector that parameterizes a finite set of KR-modules over g[t]°.
Then we have M ( ) M)\,n (qil)

Here, we would like to remark that Okado et al. [31] proved [16, Conjecture 3.10] in the
non-exceptional twisted cases, and Scrimshaw did the same in the exceptional twisted cases
described in [32, 33]. These results, along with earlier results by Hernandez [19], show that the
conjectural identity [16, Conjecture 4.3] of the g-graded fermionic sums My, (qil) = MX,n (qil)
holds at ¢ = 1 in the twisted cases described above.
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Our next result involves the description of the graded multiplicities of the irreducible g°-
module V(X) of highest g7-weight X in a graded tensor product of KR-modules over g[t]°
in terms of the M-sum M; (q). For each vector n = (n4;)eer, ien, We let Fj; denote the
corresponding graded tensor product of twisted KR-modules parameterized by n, equipped
with a g?-equivariant grading, which is called the fusion product of twisted KR-modules [27]
parameterized by n. Then the graded components F;i[m] of F}t are g”-modules for all m € Z, .

Let us define the generating function MX,n(Q) for the graded multiplicities of V(X) in F} by

M5 a(a) = Z dim Homgo (Fji[m], V (X)) g™ (1.3)

m=0

Here, Homge (F[m], V(X)) denotes the multiplicity space of g7-equivariant maps from F;i[m]
to V(X). The graded g?-character chy F; of Fp is then defined by

chy Fif = ZM q) chge V(X).

By extending the tools developed in [1] to derive the graded dimension of the space of matrix
elements dual to the multiplicity space Homgo (F, V(X)), and using Theorem 1.1 as well, we
arrive at the following fermionic formula for the graded multiplicities Mx | (¢), which extends
the results obtained in [1, 7] for the untwisted types to the twisted types not of type Agr).

Theorem 1.2. Let us keep the assumptions as in Theorem 1.1. Then we have Mxn(q_l) =
Mg,

Our last result involves a g-graded version of the Xﬁf ) @-system relations (1.1), which gen-
eralizes the g-graded version of the Q-system relations of untwisted type obtained in [28, Theo-
rem 1.3] to the twisted types not of type AS}:

Theorem 1.3. For all a € I, and m e N, we let

Kim = QKRE,,)® ),

b~a

and we let (Kg ,,)* denote the fusion product corresponding to the tensor product K¢ ,,, of twisted
KR-modules. Likewise, we let KRy ,, 1 *KRg ,,,_1 and KR7 ,, = KRy, denote the fuszon prod-
ucts corresponding to KRy .1 @ KRg ,,, 1 and KRy, ®KRg ,,, respectively. Then the graded
g% -characters of the fusion products of the twisted KR-modules satisfy the following identity:

chgKR7 1 *KRY,,_; = chy KRY,, * KR, —¢'a ™ chy(KJ )"

a,m—+ am—1 —

Here, we briefly remark that Kus and Venkatesh obtained a short exact sequence of fusion
product of KR-modules in [27] that extends the Xl Q system relations (1.1). We will explain
the connection between Theorem 1.3 and their short exact sequences in Section 5.

1.3 Outline of the paper

The paper is organized as follows. In Section 2, we will review the notion of Kirillov—Reshetikhin
modules and fusion products of cyclic modules over both untwisted and twisted current alge-
bras. In Section 3, we will extend the tools and techniques in [1] to the twisted setting, where
we will describe the decomposition of fusion products of KR-modules over g[t]? into irreducible
g?-modules. Specifically, we will explicitly describe the space of matrix elements dual to the
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multiplicity space Homgeo (]—";, V(X)) to first deduce that an upper bound for the graded multi-
plicity MX,n (qil) is given by the M-sum My (qil).

In Section 4, we will first review the definition and properties of the quantum twisted Q-
systems given by Di Francesco and Kedem [11], which are quantum deformations of the cluster
transformations corresponding to the twisted Q-system relations given by Williams [34]. Sub-
sequently, we will introduce quantum generating functions in the general twisted case whose
constant term evaluation is a scalar multiple of the M -sum, and derive factorization properties
of these generating functions analogous to those in [7, 9, 28]. Using these factorization prop-
erties, along with the Laurent polynomiality property of the solutions of the quantum twisted
Q-systems, we will then show that MX,n (qil) = MX,n (qil) in the twisted cases. Together with
the upper bound on the graded multiplicity MX,n (q_l) derived in Section 3, we will then show
that MX,n (qil) = MX,n (qil). Finally, in Section 5, we will use the results in Section 4 to derive
a g-graded version of the twisted )-system relations.

2 Preliminaries

Throughout this section and beyond, we let g be a finite-dimensional simply-laced simple Lie
algebra of Dynkin type X, # As,.. We will also let h be a Cartan subalgebra of g, g = n_®hPn,
be the triangular decomposition of g with respect to h, and C' be the Cartan matrix of g.

In addition, we let A be the set of roots of g with respect to b, and At € A the subset of
positive roots. We also fix a basis of simple roots II = {aq,...,a,} € h* for A and a basis
of corresponding simple coroots {ay,...,a,,} for h* satisfying a;(a;") = C; ; for all i € [1,m].
Finally, we let {e1q,) | o € AT, i € [1,m]} be a Chevalley basis for g, and we denote the
positive and negative Chevalley generators for g by e; := ey, and f; 1= e_,, for all i € [1,m].

Next, we let P denote the weight lattice of g, and P < P the set of dominant integral weights
of g. The weight lattice P has a basis given by the set {w1,...,wn} € h* of fundamental weights
of g, defined by wj(a)) = d;; for all i, j € [1,m]. The irreducible highest weight g-modules are
parameterized by A € Pt and are denoted by V().

2.1 Untwisted affine and current algebras

Let g[til] =g (C[til] denote the untwisted loop algebra of g, and we denote the current
generators of g[til] by z[n] := 2 ®1t" for all x € g and n € Z. The Lie bracket on g[til]
is given by [m@tm,y®t"] = |z,y] @t™*" for all x,y € g and m,n € Z. The untwisted loop
algebra g[t*!]| contains the untwisted current algebra g[t] := g ® C[t] of positive currents as
a subalgebra, which in turn contains g as a subalgebra, where we identify = with z[0] for all z € g.

The untwisted affine algebra g associated with the simple Lie algebra g is the central extension
of g[t*] by the central element K associated to the cocycle (-,-), where the cocycle (-,-) is
defined by {z ® t™,y @ t") = mby, _n(z|y) for all z,y € g and m,n € Z. Here, (-|) is the
symmetric, nondegenerate, invariant bilinear form on g.

The triangular decomposition of § is given by § = A_ @ h @ s, where h = CK @ b,
and Ry = ny ® (g ® £1C[11]).

The irreducible highest weight g-modules are parameterized by a positive integer k, and
A€ P,j , and are deinoted by ‘7}6)\. Here, the integer k is called the level of Vk A: the central
element K acts on Vj » by the constant k. The set P,j is defined by

P,:_: {A:i&wieP* | i&az\/ <k‘},

i=1 i=1

where ay,...,ay, are the co-marks of g.
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2.2 Untwisted current algebra modules
2.2.1 Localization

Let V be a g[t]-module on which g[¢] acts via some representation 7y. For any z € C*, we define
the localization of V' at z to be the g[t]-module V(z) whose underlying vector space is V', and
on which g[t] acts by expansion in the local parameter ¢, := ¢ — z. More precisely, if we define
the Lie algebra map ¢, : g[t] — g[t] by x ®t" — 2 ® (t + 2)" for all z € g and n € Z., then V(2)
is the pullback of V' under ¢,. By denoting the “translated” action of g[t] on V(z) by =, it
follows that the actions 7y and 7, of g[t] on the vector space V' are related to each other by the
following equation for all z e g, n€ Z,, and ve V,

o (z[n])v = mo(z @ (t + 2)" Z ( ) "o (z[5])v. (2.1)

2.2.2 Associated graded space of cyclic untwisted current algebra modules

The degree d = t3; d ; grading in ¢ on C[¢] induces a natural Z-grading on the current algebra g[t],
and hence also on 1ts universal enveloping algebra U(g[t]). In particular, for any j € Z,, the j-th
graded component U(g[t])) of U(g[t]) is spanned by monomials of the form z1[n1]-- - zx[ns],
where k € Z4, x1,..., 2k € @, N1,...,n € Z4, and Zle n; = j. Consequently, the Z-grading
on U(g[t]) naturally induces a filtration of U(g[t]),

U(e) = U(a[t])” € Ua[t) =Y = U(g[t]) =P < -+,

Ul < = @D U(al)

7=0

forallneZ,.
Let V be a cyclic g[t]-module with cyclic vector v. Then V inherits a filtration (depending
on the choice of v) from the filtration on U(g[t]) as follows:

FOWV) s FOHV) = FRV) -,

where F(i)(V) = (U(g[t])S?)v for all i € Z,. Consequently, the associated graded space
gtV =@, F@)(V)/F(i—1)(V) (where F(—1)(V) := {0}) of the above filtration of V inherits
a canonical structure of a cyclic graded g[t]-module, where the g[t]-action on grV is given
by z[n]-w = z[n] - w for all x € g, n € Zy and w € F(i)(V)/F(i — 1)(V). As the Z,-grading
on the filtration is g-equivariant, it follows that the graded components F(i)(V)/F(i —1)(V)
of grV are g-modules for all i € Z .

2.2.3 Fusion product of untwisted current algebra modules

Let Vi, ..., Vn be cyclic g[t]-modules with cyclic vectors vy,..., vy respectively, and let zq,. ..,
zy € C be pairwise distinct nonzero localization parameters. Feigin and Loktev [14, Propo-
sition 1.4] showed that the tensor product Vi(z1) ® --- ® Vy(zn) is a cyclic g[t]-module with
cyclic vector v1 ® -+ ® vy. Thus, the tensor product Vi(z1) ® --- ® Vi (zn) of localized g[t]-
modules Vi(z1),...,Vn(2zny) can be endowed with a g-equivariant grading, and the resulting
graded tensor product, which we denote by Vj(z1) = -+ = Vn(zn), is called the Feigin—Loktev
fusion product of untwisted current algebra modules.
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2.3 Kirillov—Reshetikhin modules over untwisted current algebras

In this subsection, we will review the construction of Kirillov—Reshetikhin modules over un-
twisted current algebras, in order to motivate the definition of Kirillov—Reshetikhin modules
over twisted current algebras, which we will do in Section 2.5. While the KR-modules over the
untwisted Yangian or the untwisted quantum affine algebra are defined in terms of their Drinfeld
polynomials, the KR-modules over the untwisted current algebra g[t] are defined in terms of
current generators e;[n|, filn], o’[n] (i € [1,m], n € Z.) and relations, and are the classical
limits of the KR-modules over the untwisted quantum affine algebra [5, 22].

Definition 2.1 ([5, Definition 2.1]). Let i € [1,m] and k € Z;. The KR-module KR; j, over g[t]
is the graded g[t]-module generated by a vector v, with relations given by

mo(n4[t])v =0,

mo(filnD)v =0, n=di;,

mo(fi)* v =0, mo(a) [n])v = kdi j0n,0v. (2.2)

Using (2.1) and (2.2), the KR-module KR; ;(2) is then defined to be the localization of the
graded g[t]-module KR; ;, at z, with the relations given by

(s [0 = 0, (2.30)

= (filn])v = & ;2" mo(fi)v, (2.3b)

. (fi)F v =0, (2.3¢)

(o) [n])v = k2" jv. (2.3d)

For any nonzero z € C*, we have that the associated graded space grKR;;(z) of KR;x(2)

is isomorphic to KR, as graded g[t]-modules, and KR, and KR;(z) are isomorphic as g-
modules, but not as g[t]-modules [5].

In type A, we have KR, ;(2) = V(kw;) as g-modules, so KR-modules over g[t| are irreducible
as g-modules. In general, the KR-module KR, ;(z) decomposes into irreducible g-modules as
follows [4]

KR x(2) = V(kw;) ® ( D Viu @mu),

pn<muw;

where < is the usual dominance partial ordering on P. This decomposition immediately implies
that under the restriction of the action to g, KR; x(2) has a highest weight component isomorphic
to V(kw;).

2.4 Twisted affine and current algebras

In this subsection, we will review the definition of twisted affine and current algebras. To begin,
we let & be a nontrivial automorphism of the Dynkin diagram of g of order x > 1, and we
let r denote the number of orbits of . The diagram automorphism & is described explicitly, as
follows:

1

(1) If g is of type Ag,_1, then we have 7 (i) = 2r — i for all 7 € [1,2r — 1].
(2) If g is of type D, 1, then we have (i) = i forallie [1,r—1],5(r) =r+landa(r+1) =r
3)

)

3) If g is of type Eg, then we have (i) = 6 — i for all i € [1,5], and 5(6) = 6.
(4) If g is of type Dy, then we have o(1) = 3,5(2) =2,5(3) =4 and 5(4) = 1.

The diagram automorphism & naturally induces an automorphism o of A, and hence of g.
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The following table lists all g% and their corresponding g°:

~ 2 2 2 3
AREAC AN

¢’ | C, B, Fy | Gy

Next, we let & be a k-th primitive root of unity. Then ¢ can be extended to an automorphism
of g by defining o(K) = K and o(z[n]) = 5*”0(33)[713 for all z € g and n € Z. By [20,
Theorem 8.5], the affine Dynkin type of g° is given by X»’. We denote the o-fixed points of g,
g[t] and g by g7, g[t]” and g°, respectively.

Our next step is to describe the twisted affine and current algebras in further detail, and
review some basic properties concerning the twisted affine and current algebras.

We let A be the set of roots of g° with respect | to the Cartan subalgebra h? of g, and N
be the set of positive roots of g”. Then we have A" = {a|po | @ € AT}. In particular, a set II
of simple roots for A is given by II = {a1,...,a,} € (h?)*, where @; = |y for all j € [1,7].

Let {@),..., @, } be the corresponding basis of simple coroots for (h?)* satisfying a;(e,’) =
61'73- for all ¢ € I,.. Then for all j € I, a; is given by

\2

> ey () # .
k=0

Next, we will describe a Chevalley basis of g7 (and hence g[t]”). To this end, we will first need
to describe the set A% of roots of § g% with respect to h" We let Ay and A, denote the set of long
and short roots of g7, respectively. In addition, we also let Ae =A"n Ay and A N A,.
By letting § denote the unique non-divisible positive imaginary root of g7, it follows that the
set A% is given by

a

"={in5|neN}u{iaerS|an:,neZ}u{iE+/m6|aeﬁz,neZ}.

We are now ready to describe a Chevalley basis of g°. As g7 = CK @ g[til]g, it suffices to
describe a Chevalley basis of g[til]o. A Dbasis for g[tﬂ]a is given by the following elements:

eralnl = . € ey i BT, TEA,,
=0
eralrn] = €+a®t”" aeh,,
aj[n] = 25 noY @t i€l witha(j) £ j,

aj[wn] = af @™, i€l witha(j) =j,

for all n € Z,, where « is a root of g satisfying a|y- = @.
The roots of A% and the basis elements of the corresponding root space of g7, are described
in the following table:

root basis elements
ta+ns, @€, , ne’ e+a[n]
J_ra+mu$,ae&,+, nez €ig|kn]
nd,neZ, k| n ajv[n],jeb
né,ne€Z,k}fn ay[n], j e I, with7(j) # j
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For later convemence we will write f;[t¥n] in lieu of €_g, [t} n] for any n € Z and i € I, (note
that t;’ —11f0¢1€A and ¢ —HldeZEAe)

Next, we will review a few basic facts and properties concerning twisted affine and current
algebras. To begin, we recall that the central element K of g7 is given by K = xK, and
that the triangular decomposition of g restricts to the triangular decomposition of g7, given
by g7 =017 @ h? ®n%, where h” = CK @ b7, and n n+ =nl @ (g tTIC[tT])°.

We let P denote the weight lattice of g7, and P < P the set of dominant integral weights
of g°. The weight lattice P has a basis given by the set {w1,...,w,} S (h°)* of fundamental
weights of g7, where w] = wjlpe for all j € I,. The irreducible hlghest weight g?-modules are
parameterized by \ € P , and by an abuse of notation, are denoted by V()\) as well.

Similar to the untvvlsted case, the irreducible highest weight g°-modules are parameterized
by a positive integer k, and e Pk , and are denoted by Vk - Here, the central element K acts
on Vk 5 by the constant k, and the set Pk is defined by

F;: = {)\: ZE@Z-EFJF | Z&a} < ]{2},
i=1 i=1
where @y, ...,a,; are the co-marks of g.

2.4.1 Fusion product of twisted current algebra modules

Our final goal of this subsection is to recall the construction of fusion product of modules over
twisted current algebras by Kus and Venkatesh [27]. Unlike the untwisted case, the construction
of fusion product of modules over twisted current algebras is more involved, as the Lie algebra
map ¢, : g[t] — g[t] does not restrict to a Lie algebra map g[t]” — g[t]?, and hence the local-
ization of twisted current algebra modules cannot be defined using pullbacks via the restriction
of ¢, to g[t]?. Nevertheless, the fusion product of twisted current algebra modules can still
be defined in the case where the constituent g[t]”-modules are also g[t]-modules, which we will
describe in detail below the fold.

To begin, we first observe that the Z-grading on the universal enveloping algebra U(g|t])
of g[t] naturally induces a Z,-grading on the universal enveloping algebra U(g[t]?) of g[t]° via
restriction, and hence a filtration of U(g[t]?)

Ua[t]?) = U(g[t]”)© < U(g[t]) =Y c U(g[]7) =P < - - -,

where U (g[t]7)(=" = @0 U(g[t]?)Y) for all n € Z, . Similar to the untwisted case, this implies
that for any cyclic g[t]?-module V' with cyclic vector v, V inherits a filtration from the filtration
on U(g[t]?) as follows:

FOV) e FOHV) s FRV) -,
i)

where F(i)(V) = (U(g[t]?)(S?)v for all i € Z;. Consequently, the associated graded space
grV = @2, Fi)(V)/F(i —1)(V) (where F(—1)(V) := {0}) of the above filtration of V inher-
its a canonical structure of a cyclic graded g[t]”-module, with the g[t]”-action on grV given
by z|n]-w = z[n] - w for all z[n| € g[t]” and w € F(i)(V)/F(i — 1)(V). As the Z,-grading
on the filtration is g7-equivariant, it follows that the graded components F(i)(V')/F(i — 1)(V)
of grV are g°-modules for all i € Z.

We are now ready to define the notion of fusion products of twisted current algebra modules.
Let us first recall the following twisted analogue of [14, Proposition 1.4]:

Proposition 2.2 ([27, Proposition 6.3]). Let Vi, ..., Vy be finite-dimensional cyclic g[t]-modules
with cyclic vectors vy, . ..,vN respectively, and z1,...,zN € C be nonzero localization parameters
satisfying z;° # zj for all distinct i, j € [1, N]. Then Vl(z1)® ‘QVN(zn) is a cyclic g[t]7-module
with cyclic Uector MR- QuUn.
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Thus, by Proposition 2.2, the tensor product Vi(z1) ® --- ® Vi(zn) of localized g[t]°-
modules Vi(z1),...,Vn(zn) can be endowed with a gZ-equivariant grading, and we call the
resulting graded tensor product, which we denote similarly by Vi(z1) - - * Viy(2n), the fusion
product of twisted current algebra modules.

2.5 Kirillov—Reshetikhin modules over twisted current algebras

In this subsection, we will recall the construction of Kirillov-Reshetikhin modules over g|t]°
and their associated properties given in [5, 6, 27]. The graded Kirillov—Reshetikhin modules
over g[t]? was first defined by Chari and Moura in [5, 6] in an analogous fashion as their
untwisted counterparts in terms of the current generators €[ty n], f;[tyn], &) [t¥n] (i € I,
n € Z.) of g[t]” and relations. While localized KR-modules over g[t]” cannot be defined directly
using pullbacks via the restriction of the Lie algebra map ¢, : g[t] — g[t] to g[t]?, they can still
be defined by restricting the action of localized KR-modules over g[t] to g[t]? [27, Section 6.5],
and the associated graded space of the localized KR-modules over g[t]? are precisely the graded
KR-modules over g[t]?, which we will explain below the fold.

Definition 2.3 ([5, Definition 3.3] and [6, Definition 2.2]). Let i € I, and k¥ € Z;. The KR-

module KR7, over g[t]” is the graded g[t]”-module generated by a vector v, where g[t]” acts
on V via a representation g, with relations given by
Yo (ny [t 7)o = 0, (2.4a)
Yo (St nl)v = i 0n.0v0(f;[0])v, (2.4D)
Yo (F:l0]) v =0, (2.4¢)
Yo () [ty n])v = b; j6n0kv. (2.4d)

Definition 2.4. Let i € [1,m], k € Z and z € C*. Let us denote the restriction of the action 7,
of g[t] on KR;x(2) to g[t]” by ¢,. We denote the resulting g[t]”-module by KRY(2), and we
call KRY(2) a localized KR-module over g[t]”.

The following proposition justifies the notation and definition of KRf,(2) as a localized KR-
module over g[t]?.

Proposition 2.5 ([15, Theorem 4] and [27, Propositions 6.6, 6.7 and 7.2]). Let j € [1,m],
keZ,, zeC*, andie€ I, be the unique index that satisfies (i) = a(j). Then

gr KR7  (2) = grKR7, (2) = KRY,
as graded g[t]?-modules.

Thus, by Proposition 2.5, we may restrict our attention to localized KR-modules KR, (2)
over g[t]” whose root index i lies in I,.

It remains to describe the relations of KRy, (z) for any z € C*, k € Z; and i € I,. It
follows from the relations (2.3) of the localized KR-module KR; ;,(2) over g[t] that the relations
of KR{ () are given by

e (ni [t71]7)v =0, (2.5a)
0, (f][t]\’n])v = 0; ;29 "mo( fi)v, (2.5b)
b (F:[0]) o = 0, (2.5¢)
o (@) [t n])v = 6;,;2" "kv (2.5d)

forallm = 0 and j € I,.
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Following (2.3b), it follows that we can rewrite (2.5b), using (2.4b), as

T/Jz(?j[tjvn])v = ;42 gl ¢0(fz[ ]) (2.6)
forallm > 0 and j € I,.

3 Fusion products of Kirillov—Reshetikhin modules
over twisted current algebras

Our goal in this section is to establish an upper bound on the graded multiplicity M ().

Theorem 3.1. Let us keep the assumptions as in Theorem 1.1. Then we have Mx ( *1) <
MA,n (q ) where the inequality refers to an inequality in the respective coefficients of each power

of q.

Our strategy in proving Theorem 3.1 is largely similar to that employed by Ardonne et al.
in [1, 2] for the untwisted cases, where they gave an upper bound for the graded multiplicities of
irreducible g-modules in a fusion product of KR-modules over g[t] in terms of ¢-graded fermionic
sums. Before we recall the definitions and results needed to prove Theorem 3.1, we will first start
by recalling some basic results concerning the space of generating functions of matrix elements
corresponding to the fusion products of finite-dimensional cyclic modules over untwisted current
algebras in the following subsection, following the treatment given in [1, Section 3.2], before
extending the tools and techniques developed in [1, 2] to the twisted case.

3.1 Fusion products of current algebra modules and matrix elements
3.1.1 The untwisted case

Let us first recall the relation between fusion products of finite-dimensional cyclic g[¢]-modules
and the fusion product of g-modules. To begin, we let Vi,...,Vy be graded, finite-dimensional
cyclic g[t]-modules with cyclic vectors vy, . .., vy respectively, where the cyclic vectors vy, ..., vy
are also highest weight vectors with respect to the g-action, and z1,...,2zy € C be nonzero
localization parameters satisfying z; # z; for all distinct 4,5 € [1, N]. For convenience, we
let V .= V1(21)®---®VN(ZN). R ~

Next, for any positive integer k, we let V{*(21), ..., V¥(zy) denote the g-modules induced from
the localized g[ |-modules Vi(z1),..., VN QzN) at level k respectlvely The fusion product of the
g-modules Vl (z1),. VN(ZN) denoted VEF(21) X---X VN ZN) L12 is an integrable g-module
of level k (compared to the usual tensor product V1 (21)®---@VE zN) of V1 (1), . VN(ZN)
which is of level Nk), where for any z®f(t) € g and w = w1 ®- - -Quy € V{F(21)X- - .VN(ZN) the
element z® f(t) acts on w by the usual coproduct formula, but similar to the setting of localized
g[t]-modules, the action of z®f(¢) on the i-th component w; is given by the expansion in the local
parameter t,; =t — 2;. For later convenience, we will write V in lieu of V1 (z1) XX VN(zN)

As V is an integrable g-module of level k, Vis completely reducible, and thus V admits
a decomposition into irreducible g-modules of level k (we refer the reader to the Appendlx of [13]
and the introduction of [12] for further details). When k is sufficiently large it follows that
the multiplicity of the g-module Vj, ,u in the fusion product V of g-modules Vl (1), ,YA/]@(ZN)
is equal to the multiplicity of the g-module V(u) in the tensor product V of localized glt]-
modules Vi(z1), ..., Vn(zn) for any dominant weight p of g, that is, we have [1, equation (3.6)]

dim Homg (V, V. ,,) = dim Homgy(V, V (1)). (3.1)
'In the case where the modules Vi, ..., Vi are graded KR-modules over g[t], one can explicitly define a lower

bound for the level k; we refer the reader to the footnote in [1, Section 5.1] for further details.
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Next, we will describe the dual space C ¢ of Homg (V Vk u) in terms of generating functions of
matrix elements (here, we suppress the 1nteger k from the notation C o asit follows from (3.1)
that we may take k to be sufficiently large in all of our subsequent calculatlons) We let vy«
be a lowest We1ght vector of the irreducible lowest weight g-module Vk " where Vk " is the
graded dual of Vk - Let us define the following generating functions of current generators for
any i € [1,m]:
-1 -1
e’z = ), elnlz fiz) =) filnl N R = D) af[nle
n=—ao nezZ n=—uo

Next, we observe that the g[t]-module V' is generated by the action of U(n_[{]) on the cyclic
vector v = v1 ® - - - ® vy, as the cyclic vectors vy, ..., vx of Vi(z1),..., VN(zn) respectively are
highest weight vectors with respect to the g-action. Together with the Poincaré-Birkhoff-Witt
theorem and the triangular decomposition g =n_ @ h@n,, it follows that we have

7 = U @[ YU (b @1l U (- [ e

As the Borel subalgebras ny and n_ are generated by ey, ..., e, and fi,..., fi, respectively, it
follows that C ¢ consists of generating functions of matrix elements of the following form:

oy, (yl) s 65, e b () - b (up) fir (1) -+« fi, () |0), (3.2)

where £,p,n € Zo, ji,--,jo, ks kpy ity .yin € [L,m], and y1, . ye, ua, o Up, @1, Ty
are formal variables. Moreover, as v,= is a lowest weight vector of Vk , it follows that we
have n_ - v, = 0. In particular, we have e;[n]-v,+ = 0 = o’ [n]-v,x foralli € [1,m] and n € Zy.
Thus, it follows from (3.2) that the space C, ; only contains generating functions of matrix
elements of the following form <U#*lfil(ff1)"7' fin(a:n)lv>, where n € Z., i1,...,i, € [1,m],
and x1,...,T, are formal variables, which implies that C v consists of polynomials in the
formal variables x1,...,z,. Subsequently, the graded multiplicity of V(x) in V' is then equal
to the graded dimension of the associated graded space gr Cu ¢» where the filtration on C is
inherited from the Z-filtration on the universal enveloping algiebra U (n, [tﬂ]) of n_ [til]. ’

3.1.2 The twisted case

The approach described above in expressing the graded multiplicity in the fusion product of
localized current algebra modules in terms of generating functions of matrix elements for the
untwisted case can be extended to the twisted case as well, which we will describe below the
fold. Let us keep the notations as above, with the further assumption that we have zf # 27
for all distinct 4,5 € [1,N]. We recall that for any dominant weights p and X\ of g and g
respectively, the multiplicity of the gZ-module V kX in Vk o (regarded as a g7-module of level kk
via restriction, as the central element K of g7 is related to the central element K of g by K = kK)
is equal to the multiplicity of the g”-module V()\) in V(u), that is, we have

dim Homg» (Vk#, Vnk 5) = dim Homge (V' (1), V(X)). (3.3)

We claim that when k is sufficiently large, the multiplicity of the g°-module V ki Vis equal
to the multiplicity of the g?-module V()\) in V, that is, we have

dim Homgo (V Vﬁk )\) = dim Homgo (V,V(X)).

Indeed, as V is finite-dimensional, there are only finitely many dominant g-weights u for
which dim Homg(V, V(1)) # 0. Thus, by equations (3.1) and (3.3), we have

dim Homgo (V, V(X)) = > dimHomg(V, V(1)) dim Homge (V' (), V(X))
pepP+
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= 3" dim Homg (V, V3,,,) dim Homgo (Vi i, Uy 5)

ueP+

= dlmHom (V V/-ck /\)

Similar to the untwisted case, the dual space C~ PN of Homgs (V v L /\) can be described in terms
of generating functions of matrix elements as Well We let Uy be a lowest weight vector of
g°-module V* ~, where V* 5 is the graded dual of V. k- Let us define the following generating
functions of current generators for any i € I,

Fiz) = X filtyn]z 0 0D,

neZ

Next, we observe that the g[t]”-module V' is generated by the action of U(n_[t]?) on the cyclic
vector v = v1 ® - - - ® vy, as the cyclic vectors vy, ..., vx of Vi(21),..., VN(zn) respectively are
highest weight vectors with respect to the g7-action. As the twisted loop algebra n_ [tﬂ]g is
generated by the coefficients of f,(z1),..., f,(z;), it follows from a similar argument as in the
untwisted case that @X‘A/ consists of generating functions of matrix elements of the following
form:

Qo[ fiy (1) -+ fi ()0, (3.4)

where n € Zy, i1,...,in € I, and x1,...,x, are formal variables. The graded multiplicity
of V(X) inV is then equal to the graded dimension of the associated graded space grCy
where the filtration on C N Te is inherited from the Z-filtration on U( [t“] )

The remainder of this section is devoted to describing the structure of the dual space C
in the case where Vi,...,Vy are graded KR-modules over g[t], in which case the assomated
graded space grV of V (With respect to the Z -filtration on U (g [til]o)) is given by the fusion
product of localized twisted KR-modules. In this case, we let n,; denote the number of graded

g[t]-modules V; that are isomorphic to the graded KR-module KR, ; over g[t] for all a € I,
and 7 € N, and we will write C , in lieu of C o> where n = (n4,i) ae -1, ieN-

The approach that we will take in descrlbln the structure of C Xn D the subsequent sub-
sections will follow that of [2] and [1] for the A and the general untwisted cases respectively,
which we will describe briefly here. We will first describe the dual space U of functions to the
universal enveloping algebra U := U (n_ [til]g) of the twisted loop algebra n_ [tﬂ]g, and intro-
duce a filtration on U. We will then specialize to the subspace 6X o of U and its corresponding
filtration, from which we will derive Theorem 3.1. 7

PR A

3.2 The dual space of functions to the universal enveloping algebra
of the twisted loop algebra

A". When @ € ZZ, we define the following generating function f4(z) of

Let us take any @ €
! ] as follows:

elements in n_[
= Z e_g[rn]z D),
nez

When @ € A , we define the following generating functions f ;(2) and fg(z) of elements
in n_[t£1]7 for all j € [0, k — 1] as follows:

k—1
Fas) = e alin + 1, Tl = S Fay() = N il
7=0

neZ

In particular, we have f;(z) = fg.(2) for all i € I,.
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Similar to the untwisted case, the generating currents f,(z), i € I, (or equivalently, fz(2),
@ € II) satisfy two types of operator product expansion (OPE) relations. We will first describe
the first type of OPE relations, which arise as a result of the commutation relations between
the generating currents of n_ [til]a.

Lemma 3.2. Let aﬁ,ﬁ eIl be simple roots that satisfy @ + B € A. Then up to a sign, the
generating currents fs(w) and fg(z) satisfy the following OPEFE relation:

ij:f() + reqular terms ifae Ay,
. -
_ _ L’B() + regular terms ifa, e A,
Faw)F5() =4 w2 (3.5)
1 Rl JwoNk—1—7 _
wh — 2~ ; (;) fa45,402)
+ reqular terms ifae Ay and B e Ay.

Here, “regular terms” refer to terms which have no pole at w = z, and the expansion of the
denominator is taken in the region |w| > |z|.

Proof. Let us first show that (3.5) holds when @, 3 € Ay. In this case, we have @+ 3 € Ay, and
up to a sign, we have

[?a(w)>?§(z)] = Z [e-a[rm],e_z[rn]]w —r(m+1) ,—r(n+1)

m,neZ
= 2 éf(a+B) [k(m +n)]wfﬁ(m+l)zfn(n+1)
m,neZ
=— (2"
- Z a+,8 '%]]Z G ( n)
mgeZ w
= Ecs(z"/uﬁ) Fai5(2);

where §(z) = >, z™. This implies that (3.5) holds when @, 3 € A,. By a similar argument as
above, it follows that (3.5) holds when @, 3 € As.

Next, let us show that (3.5) holds when @ € A, and 3 € A;. In this case, we have @+ 3 € A,
and up to a sign, we have

[Faw), F5(2)] = D) [e-alrml],e_g[n]Jwrm+,=n=1

m,ne”
= Z E_(aJrﬁ) [rm + 7’L]w_"“(m+1)z—"_1
m,neZ
i~ 2 a+,8 2 (;;)
mjeZ
= —0("/w") f,5(2).

Consequently, it follows that (3.5) holds when @ € A andiﬁ e A,.
Finally, let us show that (3.5) holds when @ € A, and 3 € Ay. Then up to a sign, we have

[Ta(w)77§(z)] = 2 [E_a[m],E_B[Hn]]w*mflzf“("“)

m,nez
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K—1
Z 2 [e_g[rm + k],E_B[mn]]w*“m*kflz*“("ﬂ)

k=0 m,nezZ

m )+ k fnmfkflzfm(n+1)
Z Z a+,3 ) ]

k=0 m,nezZ
1 2l N s-1-k B . i [\
= (3) 2, C (gl + k] (w)
k=0 m,jEZ

= —5(2" Jw") Z( )H o a+B,k(z)'

Consequently, it follows that (3.5) holds when @ € A, and 8 € Ay, and this completes the
proof. |

Next, we will describe the second type of OPE relations, which arise mostly as a result of the
Serre relations for g7.

Lemma 3.3. Let @, 3 € II be simple roots that satisfy @ + B € A. Then we have the following
OPE relation:

(w1 = 2)(ws — 2) Fa(wr) P (w2) F(2)],, . = 0. (3.6)
Proof. When @e Ay or @, 5 € A, it follows that we have 2a + 8 ¢ A, or equivalently,
[?E(wl)a Ea(uﬂ)a?ﬁ(z)]] =0

On the other hand, it follows from (3.5) that (wa — Z)?E(U)Q)?E(Z) consists solely of regular
terms. The OPE relation (3.6) then follows by combining the above two observations.

Next, let us show that the OPE relation (3.6) holds when x = 2, @ € A, and 8 € A;. Then
a+BeA;and 2a + B € Ay, and up to a sign, we have

[e—a[2m — j]7é_(a+ﬁ) [2n+j]] = 2(—1)j€_(ga+3) [2(m + n)]
for j € {0,1}. This implies that for j € {0,1}, we have

[Fas(w), fai5,(2)] = D) [e-al2m—jl,2_ 5,520 + jlw) —2m—1+j ,—2n—1—j

m,nez
~ W3] ¢ gl 2
m,nez
1—j -
= (=1) (2) J S 7 (2K <222>
w1 m ez wy
il # o 2, NG
=0 0(2%/wY) fom 5(2),

from which we deduce that

(— 1)3z1_Jw1+]f2a+5( z)

2

5 + regular terms. (3.7)
22 —wi

T (W) fag,(2) =
Consequently, we deduce from (3.5) and (3.7) that we have

wi(wz — w1) fyz,5(2)

falwy) fo(w 2)?3(2) = (2 —?) (2 — u) + regular terms, (3.8)
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and thus (w; — z)(wg — z)?a(wl)?a(wg)fg(z) consists solely of regular terms. As the terms
w1 (wg —wy) and (w1 — 2z)(wg — z) both vanish when wy = wy = z, it follows from (3.8) that the
OPE relation (3.6) holds when k = 2, @ € A and € Ay,

Finally, let us show that the OPE relation (3.6) holds when x = 3, @€ As and 8 € Ay. Then
a+ B,2a+ e A,, and up to a sign, we have

[e—a[3m +i—jl,e_ g5 Bn+ill = (€7 +€7)e_gu5[3(m +n) +1]

for all i, 7 € {0,1,2}. By letting i — j be the unique element in {0, 1,2} that satisfiesi —j =i —j
mod 3 for all 4, j € {0, 1,2}, it follows that we have

[?E,ijj(wl)7?a+ﬁ7j(z)] = Z [ [3m+z ] (a+B)[3n+]]] —3m—1-— 1+J —3n—1—j

m,neZ
_ (é.‘j_l—i-é._]) Z 2a+5 [3(m+n)+l] —3m—1— 7,+j —3n—1—j
m,neZ
(5] Z—i—f z Jw] i—1 2 2a+ﬁ 3k+i]273k7171 (23)
m,keZ wy
= (7 ) w8 (2 ud) Fam (),
from which we deduce that
_ _ (T4 )2 0w 5.(2)
faizwi)fz,5,(2) = - ;3 2545, + regular terms. (3.9)
1
Consequently, we deduce from (3.5) and (3.9) that we have
T an) Fy(e) = A2 F )0 — ) 0()
_(2) =
w2) 75 22 (22 — w%) (z2 — w%)
Ewi (wg + 2w1) (w2 — w1) fog,5.,(2)
2(22 — w%) (z2 — w%)
2(wy —w1)2foe 202
- lws ) Foaipa(2) + regular terms, (3.10)

(22 —w}) (22 — wd)

and thus (w; — 2)(ws — 2) f5(w1) f5 (wg)fﬂ( z) consists solely of regular terms. As the terms
2 2 o
wi (2w + wy) (w2 — w1), wi(we + 2wy ) (w2 — wi), (we —w1)” and (w1 — 2)(we — 2) all vanish
when wy = wg = z, it follows from (3.10) that the OPE relation (3.6) holds when r = 3, @ € A
and B € Ay, and this completes the proof. |

Next, we will describe the dual space U of functions to U = U (n, [tﬂ]a). By the Poincaré—
Birkhoff-Witt theorem, we have

ﬁ:(m(l),..‘,m(r))eZT+

where

m s
Ulm] = {f“[t nil--- f, [t nm]|Z1,---,im€Ir,n1,---,nm€Z,Zaij22m(i)ai}-
j=1 i=1

We define the dual space U to U by

U= @ U[m],
m=(mM,...,m("M)ez",
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where U|m)| is the dual space to U[m] defined as follows: it is a space of functions in

Xm = {(.’I}Eb))t’: | be I’rv ie [17m(b)]},
Q]

where z, is the variable corresponding to a generator of the form ?Eb (:L’Eb)). We define a pair-
ing U[m] x U[n] — C between U[m] and U[n] for all m,n € Z" as follows: the pairing is 0

if m # n, and otherwise it is defined inductively by the relations
d,1y =1,
0

where

m) = (m(l), c,mOD O D m(’")),
and we may take any counterclockwise oriented contour around the point mgb) = 0 that does not
contain the points xgb) = xz(a) for all (a,4) # (b, 1) in our above definition of {g(x), W f, [ty n]).
Similarly,

{g), Tylty nlW'y = <§5@ (2" <”“>‘1g<xm>dx§b>,w>, W e Ulmj,
:l‘l =00

where we may take any clockwise oriented contour around the point x( ) = @ that does not
contain the points :z:gb) = xg 9 for all (a,i) # (b, 1) in our above deﬁnltlon of <g( ), Fulty n]W ).

With this pairing, the first OPE relation (3.5) implies that the functions in the dual space
U[m] may have a simple pole whenever a:l(-a) = :cg for any a,b € I, satisfying Cyy < 0. In
addition, for any c € I, satisfying ¢ty = &, it follows from the definition of xm that any func-
tion f eU[m] is a function in (xéc))”, which implies in particular that we have f (xﬁc)) =
f (fmq:gc)) for all m € [1,k — 1]. These two observations together imply that in the case
where Cab <0 and max(tY,t)) = k, the functions in ¢[m] may have a simple pole when-
ever z;" = 5’” ) for all m e [1,x — 1]. Thus, the dual space U|m] is a space of rational
functions g(xm) in xgz that is of the form

o ’ (3.11)
n7a<b Hi’j((x‘a))kab . (xgb))kab)

where kg, = max(ty,t)) for all a,b € I, satisfying Cyp < 0 The function ¢1(xgx) is a Laurent
polynomial in Xg, and is symmetric in each subset {x | i€ [1 m(“)]} of xm for all a € I,
as we have [f,(w), f,(2)] = 0. Moreover, the second OPE relation (3.6) implies that the
function g1 (xm) satisfies the following vanishing condition:

91(xm)| (@ _gl0) g0 = 0 (3.12)

for all a,b € I, satisfying Cy, < 0, distinct 4,5 € [1,m(a)], and k € [1,m(b)]. Moreover, in
the case where Cy, < 0 and max(t),t)) = k, the function gi(xm) also satisfies the following
vanishing condition:

g1 (Xﬁ)|$§a):x§a):§7nm}(€b) =0 (313)

for all distinct 7,5 € [1, m(“)], ke [1,m(b)] and me [1,k —1].
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3.3 Filtration of the dual space U[m]

Our next step is to introduce a filtration on U[m], following the approaches outlined in [2,
Section 3.4] and [1, Section 4.1]. To begin, we let p = g,u(l),...,u(r)) be a multipartition
of m = (m(l), . ,m(r)), that is, ,u(“) is a partition of m(® for all a € I,. For each a € I,
it € N, we let mg; (,u(“)) denote the number of parts of length ¢ in the partition ,u(“). When
the context is clear, we will write m,; in lieu of mg ; (,u(“)). We note that there is a bijection
between the set of multipartitions pu = (u(l), e ,,u(r)) of m = (m(l), . ,m(r)), and the set of
vectors m = (Mg )aer, ien Of nonnegative integers that satisfy >,y ima; = m® for all a € I,
given by

= (ma,i ('u(a)))aelr,ieN (3.14)

for all multipartitions p of m.

Next, for any multlpartltlon p of m, denoted p  m, we let H[u] be a space of functions
in the variables y,, = {(yz(r) blbel, i€ [1 m(b)] re[l,mp; } For any a € I, and any par-
tition u(® of m(®, we note that there is a bijective correspondence between the parts of (@
and the pairs (i,7), where i € [1,m(“)] and 7 € [1,mg;]. We define an ordering on the parts
of u(@ or equivalently, the pairs {(i,r) | i€ [1,m(a)], re [1,maﬂ-]}, as follows: (i,7) > (j, )
if i >4, ori=7jand r < s. Let us pick a collection T = (T1,...,T,) of tableaux, where T,
is a tableau of shape u(® on the letters 1,...,m{® for all a € I,. For each n e [1,m(“)], we
let i1, (n) be the length of the row in T, in which n appears, and r7,(n) — 1 be the number
of rows above the row in which n appears of the same length iz, (n). We define the evalua-
tion map ¢, 1: U|m] — H[p] by ()O[I,T(‘T’l(l )) = y o (), (n)? O el.,ne [1 m(a)], and extend
the map ou,1 to the whole of U[m] by hnearlty KS the functions in U [m] are symmetric
in {:C |ie [1 m “)]} for each a € I, it follows that any two collections T, T/ of tableaux give
rise to the same map U[m] — H[p]. Thus, we may write ¢, in lieu of ¢, .

We define a lexicographical ordering on the set of multipartitions g - m as follows: p > v
if there exists some index a € I, satisfying () = v® for all b e [1,a — 1] and p(®) > (@) where
we take the lexicographical ordering on partitions here. We define

r,= ﬂ ker ¢, FL = ﬂ ker o, € I',
v>p vz

for all multipartitions p — ﬁ.( )By enu(nglerating th(e)set of multipartitions g - as pu; < o <
1 2 s
- < s where g = (1), (1®),..., (1m7)) and py = ((m®D), (m®),..., (m®)),
and setting Ty, := {0}, it follows that we have I',,, = U[m], and 'y, , = T, for all i€ [1,N].
Thus, we have a filtration Fm on U[m] parameterized by all multipartitions g - m

{0} =Ty, €Ty, Sy, ©--- STy, =U[m)|.

Consequently, the associated graded space gr F of the filtration i on U[m] is given by

N N
gr Fm = @Fﬂi/rﬂi—l = C—BFM/FLZ- = C—B F/—‘*/F;J,' (3.15)
i=1 i=1 pm
Our next step is to understand the graded structure of the functions in U[m] through the
associated graded space gr Fim of Fm on U[m], by relating each graded piece I';,/T"}, of the
associated graded space grfw to its corresponding image under the evaluation map ¢, for
each multipartition g — m. To this end, we will define H|u] to be the space of rational
functions h(y,) in y, that is of the form

t‘/ t&/ . ..
Hae]r H (i,r)>(5 ((yz((j")) - (yj(as)) )len(z,J)

)

kab kap\ min(i,j
H a<b H,gr‘s(( H‘) B (y](f)s)) b) (49

Cab<

h(yp) = hi(yu), (3.16)
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where kq, = max(ty,ty) for all a,b € I, satlsfymg Cap < 0, and hi(y,) is an arbitrary Lau-
rent polynomial in y,, that is symmetric in {y i | € [1,mg z]} for all pairs (a, ).
We are now ready to relate I';, /T"}, to Hp] for each multipartition p - m.

Theorem 3.4. Let p be a multipartition of m. Then the evaluation map ¢,: U[m] — H[p]
induces an isomorphism @,, : FM/F;L — H|p] of graded vector spaces.

The proof of Theorem 3.4 proceeds in a similar manner as in the proof of [2, Theorem 3.6]
and [1, Theorem 4.1], which we will describe below the fold. )
Our first step is to describe the zeros and poles of the functions in H[pu].

Lemma 3.5. Let g(xm) €'y, and a € I,.. (%‘hen the function h(yu) = ¢u(9(xm)) has a zero of

order at least 2min(i, j) whenever yz( T) =Y Moreover if ty = K, then the function h(y,) has
a zero of order at least 2min(i, j) whenever Yy, = fmyj J forallme[1,k—1].

Proof. The proof of the first part of Lemma 3.5 follows in the same fashion as in the proof
of [2, Lemma 3.7], and shall be omltted For the second part of Lemma 3.5, we first note that
asty = k, we have g(xé )) = g(ﬁm )) for allm € [1,k—1]. As the map ¢,, is degree preserving,
it follows that we have h(yég) (§my£ 12) for all m € [1, k — 1]. Together with the first part of
Lemma 3.5, this proves the second part of Lemma 3.5. |

Lemma 3.6. Let g(xm) € U[m], a,b € I, be root indices that satisfy Coq, < 0, and (i,7)

and (j,s) be parts of p% and p®, respectively. Then the function h(y,) = ¢u(9(xm)) has
(a b v

a pole of order at most min(i, j) whenever Yir =Yjs- Moreover, if max(ty,t)) = k, then the

function h(y,) has a pole of order at most mm(z J) whenever yf T) = §myj(b2 for all me [1,k—1].

Proof. Let us write g(xm) in the form given in (3.11). As the vanishing condition (3.12)
satisfied by the function g;(xgm) is identical to the vanishing condition arising from the Serre
relations in the simply-laced untwisted case (see [2, equation (3.15)] and [1, equation (4.4)]), the
first part of Lemma 3.6 follows in a similar fashion as in the proofs of [2, Lemma 3.8] and [1,
Lemma A.2], and shall be omitted. We will omit the proof of the second part of Lemma 3.6 as
well, as it follows from a similar argument as in the proof of the second part of Lemma 3.5. W

As a corollary of Lemmas 3.5 and 3.6, this shows that the evaluation map ¢,: I';y — Hp]
is well-defined.

Our next step is to show that the evaluation map ¢,: '), — H|[p] is surjective. Similar
as before in the proofs of [2, Lemma 3.16] and [1, Theorem A.4], we will produce an explicit
function g(xm) € U[m] for each function h(y,) € H[p], and show that up to a nonzero scalar,
the image of g(xm) under the evaluation map ¢,, is precisely h(yu)-

Let us enumerate the varlables in the pre-image of yl . under the evaluation map ¢, = ou 1
as{:n ) ],...,x } {ml yeen m(a)} We first let

naehm,r) oy Ty (2211 — 2819 ) (@ + 11— 2, 1)
T ass Tlijws IS0 (20 00t — )]

Ca,b<

,(3.17)

go(Xﬁ) =

where kg, = max(ty,t)) for all a,b € I, satisfying Cyp < 0, and a: [z +1] := x(a [1]. Next, for
any Laurent polynomlal hi(yu) in y, that is symmetric in {yZ Sl e [1, M4, } for all pairs (a, i),
and any term

¢ (al))mltll e (ak>)mktlk

11,71 ik Tk

of the Laurent polynomial hq(y,), we let

g1 (xﬁ) = (1‘2(-;1717“)1 [1])m1t‘;1 .. (xEchr)k [1])mktlk’
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and we define

9(xm) = Sym(go(xm)g1 (X)), (3.18)
where the symmetrization is over each of the r sets {:cga), R xfzga)} of variables with the same
label a.

Lemma 3.7. The function g(xm) defined by equation (3.18) is an element of I'y, and the
image ¢, (9(xm)) of the function g(xm) under the evaluation map ¢, : I'yy — H|p] is a nonzero
scalar multiple of the function h(y,) defined by (3.16).

The proof of Lemma 3.7 shall be omitted, as it follows from the proofs of [2, Lemmas 3.11,
3.13, and 3.15], with the appropriate modifications made in the definition of go(xm) in (3.17) to
account for the differences in the structure of zeros and poles between the twisted case and the
untwisted case described in [1, 2].

By Lemma 3.7, this shows that the evaluation map ¢, : I'y — H|p] is surjective. As the
kernel of the evaluation map ¢,,: T'y, — H[p] is given by T', n ker ¢, = I'},, this completes the
proof of Theorem 3.4. Thus, as a corollary of Theorem 3.4 and (3.15), we see that the associated
graded space gr Fig of the filtration Fim on U[m] is given by gr Fim = @, H[1]-

3.4 The dual space of generating functions of matrix elements
to the fusion product of twisted KR-modules

Having provided an explicit description of the dual space U of functions by describing each
associated graded space gr Fi of the filtration Fm on U[m] in terms of spaces H[pu] of functions
associated to multipartitions g — m for each r-tuple m of nonnegative integers, our goal in
this subsection is to give a similar explicit characterization of the subspace Exn of U, consisting
of generating functions of matrix elements that arises from fusion products of localized KR-
modules over g[t]?, by extending the procedure described in Section 3.3 to éX,n’ following the
approaches outlined in [2, Section 5.5] and [1, Section 5.2].

Let us keep the notations as in Sections 3.1.1 and 3.1.2, and write Vj(z;) = KR7_; (2;) for
all j € [1, N]. Here, we view Vi(21),...,Vn(2n) as g[t]?-modules, even though they arise via
the restriction the action of localized KR-modules over g[t] to g[t]?, as we are interested in
computing the graded multiplicities of irreducible g?-modules in fusion products of localized
twisted KR-modules.

Following (3.4), we define @X,n[ﬁ] to be the subspace of U|m], consisting of generating
functions of matrix elements of the form

<UX* ‘Tbl (‘rgbl)) e 7bM (x(b

m

W e @un) (3.19)

for each m = (m, ..., m(’")) € Z', , where M = Zbeh m®  and by, ..., by € I, are root indices
that satisfy >;;_; @, = Dlper m®a,. B

As C5 ,[m] is a subspace of U[m], it follows that all functions g(xm) in Cx ,[m] are of the
form given in (3.11), and its numerator ¢;(Xs) satisfies the vanishing conditions given in (3.12)
and (3.13). In addition, the functions g(xm) (and hence their corresponding numerators g (Xm))
satisfy additional properties that arise mainly from the properties of the lowest weight vector Uy
of the g-module V*kX and the highest weight vector v; ® - - @ vy of Vi(z1) % -+ Vn(2n) =

KRy, ;, (21) # -+ % KHR’ZNJ- v (2n). These additional properties are given as follows:

(1) Zero weight condition: For the matrix element given by (3.19) to be nonzero, the total
weight of this matrix element with respect to h? € g° must be equal to zero, that is, we
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3)

have (recall that the g”-weight of vy« is )
M N
= D @, + > iWa; = 0. (3.20)
j=1 j=1

By letting \ = D e 1, laWa, we may rewrite the left-hand side of the zero weight condi-
tion (3.20) as

M
Z Qp; + Z ija] = — 2 £o0q — 2 m(b)ab + 2 Zina,iwa

7j=1 a€l, bel, a€l, ieN
==Y la@a— Y, CamP@a+ Y Dlingiwa.  (3.21)
agl, a,bel, agl, ieN

Thus, by comparing the coefficients of @, on the right-hand side of (3.20) and (3.21) for
all a € I, it follows that the zero weight condition is equivalent to

lo+ Y. Capm® = Y ing; =0 (3.22)
bel, €N

for all a € I,. In particular, as the Cartan matrix C is invertible, it follows if there exists

a solution m € Z', to (3.22), then it is uniquely determined by the choices of A and n (note

that for fixed A and n, there always exists a unique solution m € Q" to (3.22), as (3.22)

is an equation with integer coefficients). Subsequently, in this subsection and beyond, we

may restrict our attention to pairs (X, n) for which there exists a unique solution m € Z’,
to (3.22), or equivalently, a unique m € Z_ for which C5 ,[m] # {0}.

Lowest weight condition: As vyx is a lowest weight vector of the g°-module V* -, it follows
that we have 1% -vx = 0. In particular, we have f,[tYn]-vsx = Oforalla € I, and n € Z<o.
Thus, we have

?a( E SUpr = Z Faltyn] ) “la(ntl) < Uy

neZ

= Y. faltyn] (%(a))_t‘; " g, (3.23)

neN

A A

which in turn implies that we must have deg_ @ g(xm) < —2t) for all g(xm) € éXn[ﬁ]
and a € I.. Equivalently, by letting

= . faltyn]zte(mHY) (3.24)

neN

for all a € I,., we see from (3.19) and (3.23) that the space C5 ,[m] consists of generating
functions of matrix elements of the form

Cose [P (@) -+ By (00 ) [or @ @ o) (3.25)
for each m = (m(l) m(r)) € 2%, where M = >, ; m ®) and by,...,by € I, are root

indices that satisfy Z C1 Qb = Dper, m®a,.
Highest weight conditions: By (2.6), it follows that for each p € [1, N], we have

Yz, (?a[t;"]) = 5ap7azp ¢0(fap[ ])
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In light of (3.24) and (3.25), it follows that if a # a,, then we have 1, (f (z ga)))vp = 0.
Else, we have

@Z)zp(f ((ap))) Z¢zp(fap[t n]( ))7t(\l/p(n+1)),up

neN
_ Z Z;gpn (IZ(-ap)) —tgp (n-‘rl)wo (?ap [O])Up
neN
£y
2p "

T Y () UenlODt- (3.26)

Using the pairing U[m] x U[m] — C, this shows that for each g(xm) € Cy ,[m] and a €

I\{a,}, the function g(xm) does not have a pole at 2, = z,, and in the case Where ty =k,
the function g(xgmy) does not have a pole at :L‘Z( 9 — £mzp for all m € [1,x — 1] as well. The
function g(xm) may have a simple pole at arja = zp, and in the case where tV = K,

the function g(xm) may have a simple pole at x§ v) = =¢Mz, for all me 1,k — 1] as well.
Thus, if we define g(xm) by (3.11), then we have

92(Xm)
@) 1 (apnty LN
[0 T ()% = 2)
where g2(xm) is a polynomial in Xz that satisfies the vanishing conditions (3.12) and (3.13).

Lastly, g(xsx) does not have a pole at xl(.a) = 0 for all a € I, as there are no g[t]?-modules
localized at 0.

91 (Xm) = (3.27)

(4) Integrability condition: For each p € [1, N], it follows from (2.5¢) that we have

Wy (Fa, [0)" 0y = 0 = o (7, [01) vy (3.28)

On the other hand, it follows from (3.26) that we have

Ve (Fa, (257)) -+, (Fa (2527) v

Jip
tapzp
= — (@) thp N v %(fap[o])ipvp
g, () = =)

for all jy,...,Ji, € [1, m(ap)], which implies that

[T(@S) " = 2 )bs, (T (@57) -+, (P )

l=1

consists solely of regular terms. Together with (3.28), this shows that we have

ip+1
[T () e = 257 )b, (Fay (507)) -+, (i (@5 )l oo =0
=1 J1 Jip+1

for all distinct ji,...,J;,4+1 € [1, m(“P)]. Using the pairing U[m] x U[m] — C, this shows
that if we define g(xm) € C ,[m] by (3.11) and (3.27), then in addition to the vanishing
conditions (3.12) and (3.13) satisfied by g2(xm), the function go(xm) satisfies the following
vanishing condition:

o)l oo _,, =0
4
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for all distinct ji,...,J;,+1 € [1, m(ap)], and in the case where t; = , the function g, (Xm)
also satisfies the following vanishing condition:
Xm a a = 0
g2( m)|x§1p> gﬁl .

for all distinct ji,...,Ji,+1 € [l,m(ap)] and me [1,k —1].

3.5 Filtration of the space of generating functions of matrix elements 5X’n [m]

Following the approaches outlined in [2, Section 5.6] and [1, Section 5.3], our next step is to
describe the induced filtration Fiy on Cx ,[m] from the filtration Fm on U[m]| via restriction
as a subspace of U[m], which can be described explicitly as follows: we enumerate the set of
multipartitions g — m as in Section 3.3, and we define

[p=TunCi,ml, T}, =T} nCx,[m]

for all multipartitions g - M. As we have IN’MF1 = f;u for all i € [1, N|, we have a filtration Fm
on Cy , [m] parameterized by all multipartitions p - m

{0} = fuo = ful S C fHN = éX,n[ﬁ]-

Thus, the associated graded space gr Fm of the filtration Fig on éX o [m] is given by

&/ m = f Lpis (‘BFM/F, @D f“/f;L (3:29)
1 pHm

Similar as before in Section 3.3, we would like to describe the image gou(f“) of the functions
in fu under the evaluation map ¢, for each multipartition p - m. To this end, we will need the
following description of the poles of the functions in ¢, (axn[ﬁ]) that arises from the highest
weight and integrability conditions described in Section 3.4.

Lemma 3.8. Let g(xm) € Cy ,[m], and p € [1, N(] Then the function h(yu) = ¢u(9(xm))
has a pole of order at most min(i,i,) whenever y” = zp. Moreover, if ty, = K, then the

function h(y,) has a pole of order at most min(s, ip) whenever yz(r ») = =Mz, for allm e [1,k—1].

The proof of Lemma 3.8 follows from a similar argument as in the proof of [2, Lemma 3.9],
bearing in mind the presence of extra poles in the twisted case, as compared to the untwisted
case described in [1, 2].

Together with Theorem 3.4 and the lowest weight condition, we have the following charac-
terization of the functions in gou( ) for each multipartition p - m.

Theorem 3.9. Let pu be a multipartition of m. Then the image gou ,u) of F“ under the
evaluation map p,: U] — H[p] is a subspace of H[u| S H[p], where H[p] is the space of
rational functions h(y,) in y, of the form

a a)\ty \2min(7,j
naeh n(i,r)>(j,s)((yz( r)) (yj( s))t ) (49
ap o taYp min iZ b\ min(z,j
I Tl (i) % = 2 T oo Tl (05)"™ = (f22)) ™

Cab<

X hi(yu) (3.30)

h(ypn) =

with kep = max(ty,ty) for all a,b € I. satisfying Cop < 0, and hi(y,) is an arbitrary poly-
nomial in y, that is symmetric in {y“, | € [1,mq;l} for all pairs (a,i), such that the total
degree degy<a) h(yu) of the functwn h(yu) in the variable y( 9 is less than or equal to =2t for
all a € I, and parts (i,r) of p(®.
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As the kernel of the evaluatlon map T, — H|[p] is given by T\, nker g, = f;“ we have
an induced injective map ©,,: I'y, /F — H[p]. As in the untwisted case [1, 2], we are unable to
show that the map ¥, F“/]_“ - ’H[ | is surjective directly, which will only allow us to deduce
Theorem 3.1 at this point. However, we will see in Section 4 that Theorems 1.1 and 1.2 imply
the surjectivity of the evaluation map @, : f‘”/f;‘ — H[p].

3.6 Proof of Theorem 3.1

We are now ready to prove Theorem 3.1. As in [1, 2], we will first relate the g-graded multiplic-
ity M ,(q) of V()\) in the fusion product Fy of localized twisted KR-modules parameterized
by n to the g-graded dimension of Cx o [m], or equivalently, the g-graded dimension of or Fan.
Subsequently, we will compute the g- graded dimension of H[ | for each multipartition g of m us-
ing the characterization of the functions in H[u] given in Theorem 3.9, and show that each H[u]
whose ¢-graded dimension is nonzero corresponds to a (nonzero) term on the right-hand side
of (1.2). Together with the injectivity of the induced evaluation map ©,,: f‘u/f‘;L — H[p]
and (3.29), this will then show that My | ( N < My, ).

To begin, we ﬁrst note that the space C oIm] has a filtration by homogeneous total degree

in tthe variables {ZL’ “) lael, i€ [1 ml@ )]} where we take the degree of the factors ((mga”))tap
— 2z, ") in the denominator on the right-hand side of (3.27) to be equal to —ty, forall p € [1, N]
and i€ [ m(aP)], and is equivalent to setting z, = 0 for all p € [1, N] in (3.27). Let us
denote the graded components by homogeneous total degree of Cy x.nlm] by Cx nl[m][n]. Similarly,
each graded component FH/T’ of the associated graded space gr Fe of the filtration Fm on
Exn[*] admits a filtration by homogeneous total degree in {x( “) lae I, ie[l,m a)]} for all
multipartitions p of m.
Now as the degree of the coefficient (xz(-a))_t‘; (D) ot faltyn] in the generating function
falz a) is equal to —tY(n + 1), it follows that the space Homgo (Fi[m], V(X)) is dual to
the space Exn[ﬁ][—m — Cxg] for all m € Zy, where Oy = D¢ tYm(®. Thus, by letting
chy V=3 7 dimV[m]g™ denote the generating function of the dimensions of the Z-graded
components V[m] of V for any Z-graded vector space V.= @, ., V[m], it follows from (1.3)
and (3.29) that we have

neZ

2 dim Homgo (Fii[m], V(X)) ¢™ = Z dimCx  [m][-m — Cwm]q™

m=0

=q Cm Z dim Cy; , [m][—m — Crlq™ ™ = ¢~ %™ ch, 1 Cy; [

I WA
pm

or equivalently,

MX,n(qil) = quChqéX,n[ﬁ] = ¢ Z chy f‘u/f‘lu' (3.31)
p-m

L1kew1se( the space of functions ’H[ | admit a filtration by homogeneous total degree i in the vari-
ables {yZ Vlael, ie[1,m @], re[l,mg;]} for each multipartition g of m. As @, M/FL

H|[p] is an injective map of Z-graded vector spaces, we have ch, T, /F < chy H|[p] for all mul-
tipartitions g of m. Together with (3.31), we have

Mo (a7h) < ¢ 0 chy Hpl. (3.32)
pm
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It remains to show that the right-hand side of the inequality (3.32) is equal to Mx *n ( 1).
To this end, we will need to compute ch, H[u] for each multipartition g of m. We first note
that the associated graded space of the ﬁltratlon by homogeneous total degree in the variables
{y” lael, ie[l,mY], re[l,mg;]} on H[] is obtained by setting 2z, = 0 for all p € [1, N]
in (3 30), and by Theorem 3.9, this associated graded space is isomorphic to the space of functions
of the form h(y,) = ho(yu)hi(y.), where

[aer, i ((6)' = (420) )70
[0 T (5™ %0 Ty T () = (o) )™

ab<

a a)\tY \ 2 min(i,j
— Haelr H(ir jS)((yz(r))t B (yj(',s))t ) ) ——
[ Toer, HjeN Hi,r (yf?)nb 5 min(d, )ty T a<s Hi,jms ((yl( r)) _ (y](bs)) ab)mln(z,j)

ab<

ho (Yu) =

with kg, = max(t),ty) for all a,b € I, satisfying Cyp < 0,

deg @ hMyu) < —2t)i (3.33)

for all a € I, and parts (i,r) of u®, and hi(yy) is an arbitrary polynomial in y, that is
symmetric in {yz 7| re[l,mq;]} for all pairs (a,1).

Now, using the fact that we have ZZGN Mg; = m @ for alla € 1., we may rewrite the left-hand
side of (3.22) as

by + Z éabm(b) — Z inaﬂ- =/, + 2 2 iéabmb,i — 2 Z‘naﬂ‘

bel, €N ieN bel, ieN
= Lo+ Y > i(Capmii — dabMbs) = Ga0;
ieN bel,

from which we see that the zero weight condition (3.22) is equivalent to requiring the vec-
tor m = (Mq.i)qer, ien satisfy gq0 = 0 for all a € I,. Next, let us compute the total degree
deg @ ho(yp) of the function ho(yy) in the variable yl( T) for all a € I, and parts (i,7) of u(®.
As Wé have Caa = 2, and kqp = max(t),t)) = —t; Cop = —ty Cpq for all b € I, satisfying
Cup < 0, it follows that we have

Z 2t min(i, j) — Zt mln@jnw Z Zkbmlnz]

deg, @ ho(Yu)

(5,8)#(,7) jeN _b#a (4,5)
Cap<0
= —2tvz+22t min(i, j)mq,; — Z Ztvmlnz J)0abmi
jeN jeNbel,
+3 >ty min(i, j)Capma,
jeN b#a
Cap<0
= —2t)i+t) Zmln i,5)C, aaMaj — to Z Z min(i, j)0qpmp 5
jeN JeNbel,
+t, Z 2 min(z’,j)éabmbyj
jeNb#a
= =2t i—t, 2 2 min(i, j)dapnp,; +t, 2 2 min (i, j)Capmms,;
jeNbel, jeNbel,

— 2V —t) pas. (3.34)
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Moreover, as hi(y,) is a polynomial in y,,, it follows from (3.33) and (3.34) that we have
0 < deg @ hi(ypu) < 4 pasi (3.35)

for all a € I, and parts (i,7) of u{®). Thus, the inequality (3.35), the zero weight condition, and
the bijection (3.14) together imply that dim H[p] > 0 if and only if the vector m = (M4 ;)aer, ieN
satisfies ¢,0 = 0 and p,; = 0 for all a € [, and i € N.

Now, we let P|p| denote the space of polynomials p(y,) in y, that are symmetric in {yZ .
7 € [1,mq,;]} for all pairs (a, i), and satisfy the degree restrictions (3.35). Then we have

chy H[p] = gieehou) ch, Plul, (3.36)
Plul= & & Plulai; (3.37)
ael, IeN
ma,i>0
. . . _ (@ (a)
where P[p]q,i is the space of polynomials p(y,;) in ya {(yl 1) N (7 e 1) } that are

symmetric in {y” | me[l,mq, } for all pairs (a,i), and satisfy the degree restriction (3.35).
As the degree of each variable y i of p(ya) is a multiple of ¢ty for all polynomials p(y,:) €
Plpt]q,i, we have

chy Plptlai = {ma’i +,pa’l] = {ma’i +.pw]
Mai gtd Mai da

for all a € I, and i € N that satisfy m,; > 0. Moreover, as

Ma,i + Da,i -1
Mai e

for all a € I, and i € N that satisfy m,; = 0, it follows from (3.37) that we have

e Pa) =TT TT e Plidos = [TTT | ™2, 7) (3.35)

€N ael, €N ael, qa

Finally, to complete the proof of Theorem 3.1, we would need to show that degho(y,) =
—Cm + Q(m, n). Indeed, we have

deg ho(yu) = Z Z 2t min(i, j) Z Z Z ty min(i, j)ng,;

aelr (i,r)>(j,s) ael, jeN (i,r)

D> kapmin(i, )

_a<b (i,r),(],9)

Cab<0
= 2 Z t min(z, j) Z Ztvm1n2]mazna7]
aelr (i,r)#(j,s) a€l, i,jeN
+ 2 Z ty Copmin(i, j)meq imy,
_a<b ijeN
Cab<0
= — Z ty szaz + Z Z ty min(i, j)maq,ima,;
agl, ieN a€el, i,jeN
_ 2 Z ty min(i, j)0apma,impj + Z 2 ty Copmin(i, j)meg imp
a.bel, i jeN a<bi jeN

— Z t(\z/ (@) 2 2 t Caa mln(Z .])m!l iMa,j

ael, aeL« i,JEN
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— Z Z t, min(7, j)6apma,iny,;

abe[r i.jeN
+ = 2 2 t Cap + 1t Cba) min(i, j)mqime,;
a<bz,]eN
= —Cm+ = 2 Z ty C o min(i, J)MaiMa,j
aEIr i,j€N
— 2 Z ty min(i, j)dapma,iMej + = Z 2 t Copmin(i, j)mg imy
a,bel, ,]GN a;ébz,]eN
= — Cﬁ + 5 2 Z tc\z/ min(i,j)ma,i (6abmb7j — 25abnb7j)
i,7€N a,bel,
= _Cﬁ"i_Q(m?n)'

Together with (3.32), (3.36) and (3.38), we have

M3 (qil) < 2 q@mm) H 1—[ {maf’l—l— p,“]
@t da

p,l:ﬁ i€eN ael,
dim H[p]>0
, Mayi + Pa,i -1
= AT | =),
m>0 ieN ael, at da

4a,0 :07pa,i =0

and this completes the proof of Theorem 3.1.

4 Quantum twisted QQ-systems and graded fermionic sums

In this section, we will prove Theorems 1.1 and 1.2. As in [7, 9, 28], we will prove a slightly
stronger statement, where we fix a positive integer k, and define k-restricted sums M- ( I)l(qfl)
and M( )( ) by restricting the respective sums M5 ( - ) and M)\ n( ) to the vectors m
that satlsfy Mg, = 0 for all a € I, and ¢ > k, and show that
F) (~1y — 7R (-1
My (™) = My (™)
are equal to each other. As both M( )( _1) and M( )( ) are equal to M5 ( B ) and

Mxn(qfl), respectively, whenever k is large this will show that Theorem 1.1 holds Together
with a similar argument as in [22, Section 1], this will show that Theorem 1.2 holds as well.

4.1 Quantum twisted Q-systems

In this subsection, we will review the definition and properties of the quantum Xéf ) )-systems
for all twisted affine types Xr(r'f ) # Ag). These quantum twisted @-systems arise from the quan-
tization of the twisted @Q-system cluster algebras defined in [34]. While explicit formulas for
the quantum Xy, () Q-system relations were only given for the class1cal tw1sted affine types
in [11, equations (4.2)—(4.4)], that is, X\ = Ag} 1 7(,231, the quantum Xl Q system relations
for the exceptional twisted affine types, that is, X, () Eé ,Dfl ), can be derived in a similar
fashion as the quantum X, () Q-system relations for the classical twisted affine types # Agr).

More generally, the quantum Xy, () Q-system relations for all affine types # A;, can be
derived from the Q-system cluster algebras defined in [8, 21, 34] in a uniform manner, following
the procedure outhned in [11, Remark 4.2], which we will use to obtain a uniform derivation of
the quantum X Q systems for all twisted affine types Xy, () Ag,) below the fold.
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Let us start by first recalling that the X Q system cluster algebra is defined from the initial
cluster data {Qa0, Qa1 | a € I}, whose exchange matrix is given by? B = (% OC) where the
order of both the row and column indices appearing in the exchange matrix B correspond
to that in the ordered initial cluster data (Q1,0,...,Q@r0,Q1,1,-..,Qr1) of the X Q system.

We let 6 = det(é), TV = diag(ty,...,tY), and A = 6TVC -1 Then A is a symmetric matrix.

Following [3, Definition 3.1], we define a skew-symmetric v-commutation matrix A with respect
to the exchange matrix B by A = (0 A) so that (A B) forms a compatible pair. We let Qa i
denote the quantum cluster variable, which we call a quantum @-system variable, that corre-
sponds to the ()-system variable ), ; in the quantum X’ @Q-system cluster algebra associated
to the compatible pair ([\, B). These quantum Q-system variables satisfy two types of relations.
The first type of relations are the v-commutation relations

QuisiQppyj =V Qy) Qurris,  abel., i,je{0,1}, kel

The second type of relations are the quantum X Q system relations, Wthh are quantum
deformations of the cluster transformations that correspond to the classical X () Q-system rela-
tions (1.1). Up to a renormalization of the quantum -system variables Q(m (see, for instance,
[10, Lemma 4.4] and the derivation of [28, equation (3.20)]), the quantum Xy(r'f) QQ-system rela-
tions are given by

V_Aaa@a,k-i-l@a,k—l = H Q_Cba (41)

b~a
for all a € I, and k € Z.

Remark. In the case where Xr(,f ) — Ag,)_l, DT(, +)1, our choice of the matrices A and A differ from
those in [11] as follows: the matrix A defined in [11, Definition 4.1] is defined by A = pTvéfl,
where p is chosen so that Aj; = 1, and the skew-symmetric v-commutation matrix A defined
in [11, Remark 4.2] differs from ours by a sign. The reader can verify that after accounting for
these differences, the v-commutation relations and quantum @-system relations given here and

in [11] are equivalent to each other.

For later convenience, we will rewrite the quantum X Q system relations (4.1) as

V_Aaa@a,k-i-l@a,kz—l = @27]@ (1 - }/}a,k)a (42)

where lA/a,k = [ Toer. @;gb“ for all a € I, and k € Z.

Next, we will review some basic definitions and properties involving these quantum twisted
Q-systems. We begin by first recalling that a Motzkin path of length £—1 is a vector 11 = (m;)_,
of integers that satisfy |m; — m;1| < 1 for all i€ [1,£—1]. As an example, an initial data for
the quantum Xy, () @-system is given by (Qa 0; Qa 1)a el More generally, by letting QZ = {Qa il
a€ 1, } for all 1 € Z, it follows that the set Qk U Qk+1 forms a valid set of initial data for the
quantum X, (r) Q-system for all k € Z.

Now, each Motzkin path m = (mg)qer, gives rise to a valid set Y5 = (@ama, @avmaﬂ)aeh
of initial data for the quantum @Q-system. As each Y,; corresponds to a cluster consisting of
quantum @-system variables, it follows that the variables in Y 7 lie on the same quantum torus,
and hence satisfy some v-commutation relations, which are given as follows:

Lemma 4.1. Let m = (myg)qer, be a Motzkin path. Then for any pair Qm, Qb] of quantum
Q-system variables in Y3, we have QMQM = yli= J)A“be Qaz

2Qur notation differs from [34], which uses BT instead of B.
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The proof of Lemma 4.1 is similar to that of [9, Lemma 3.2] with minor modifications, and
shall be omitted.

Moreover, as quantum cluster algebras satisfy the Laurent property [3, Corollary 5.2], we
have that the solutions of the quantum @-system inherit the following Laurent property as well.

Lemma 4.2. For any Motzkin path m = (mq)aer,, b € I, and i € Z, the quantum Q-system
variable Qp; can be expressed as a (non-commutative) Laurent polynomial in the initial data Y
with coefficients in Z[l/il].

Finally, similar to the untwisted case, the quantum twisted @)-systems satisfy a translational
invariance property. To state the property clearly, we will need to write the solution of the
quantum twisted Q-system as @a,n(Ym) to display its dependence on the initial data Y,;. Then
we have the following.

Lemma 4.3. For allme Z and j € Z4, we have
Qa,m (Q] o Qj+1) = Qa,erj (QO (% Ql)
The proof of Lemma 4.3 follows from a similar argument as in the proof of [9, Lemma 4.10],
and shall be omitted.
4.2 Quantum generating functions

Let us fix a positive integer k. Throughout this subsection and the next, we will restrict our

attention to vectors m = (mg;)aer, ien that satisfy mg,; = 0 for all a € I, and ¢ > k, or
equivalently, (7 x k)-tuples m = (mq,i)qer, ie[1,k] Of nonnegative integers.
For any (r x k)-tuples m = (Mmai)aer, ie[1,k], B = (Mbj)ber, je(1,4] and any dominant g°-

weight \ = Dae 1, LaWa, we define the k-restricted total spin gq0 and the k-restricted vacancy
numbers p,; by

k k
Ga,0 = Lo + Z Z 3 (Capmpj — dapnn ;) Pai = 2 Z min(4, ) (Sapnv,; — Capmmip,j)-
Jj=10bel, j=10bel,

We will also define the modified k-restricted vacancy numbers g, ; by

k
4a,i = 4a,0 + Pai = Ea + Z Z (] - Z) (Cabmb,j - 5abnb,j)- (43)
Jj=i+10bel,

We see that when gq0 = 0, we have g, ; = pq,; for all a € I, and i € [1, k|.
Next, let us define the k-restricted quadratic form Q%) (m,n) as follows:

k
1 NPT val
Q(k)(m, n) = 3 2 Z ty min(i, j)mq; (Cabmb,j - 25ab”b7j)'
i,7=1a,bel;,

. ~ k _ ~r(k _
The k-restricted M- and M-sums Mér)l (q 1) and ér)l (q 1) are then defined by

k
My = Y @] [ma;n ':ipa,i] |
’ da

m>=0 i=1a€el,
Qa,0:07pa,i>0

k
"~ — i T Da,i
N —
A m=0 i=1 ael, Mayi da
da, 0=

Our first technical lemma involves rewriting the quadratic form Q®*)(m,n) in terms of the
modified k-restricted vacancy numbers g, ; and ng;.
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Lemma 4.4. Let n;, = (na,i)aeh; q; = (qa,j)aefw and my = (mmg)aejr, fO?” alli e N, j € [0, k],
and ¢ € [1,k]. Then we have

k k k
Q™) (m, n) = % 21 ((%—1 —q;) - Agj—1 —qj) — (Z ni> )\ (Z m)) .
j= i=j i=j

Proof. Following the strategy in the proof of [28, Lemma 4.2], but with simplified indices in
the twisted case, we first observe that

k
1 PP —
Q™ (m,n) = 5 Z 2 toy min(é, j)maq,; (Capmp j — 28apm ;)
',j—labeIT

k mmz

o Z Z 2 t maz (lbmb] 25abnb])

i,j=1 £=1 a,bel,

72 Z m; - TV ij—2n])

l=11,j=4
On the other hand, it follows from (4.3) that we have q;_1—q; = Zf:j (Cm;—ny) forall j € [1, k].
This implies that

D i(ajo1 — q) - Ao — q))
7=1

Il
=

<
Il
—_
=
T
<

4(€mi — ni) . A(émg — ng)

[m; - C"A(Cmy — 2ny) + 1, - Any]

Il
]~

<
Il
—_
=
T
<

Il
]~

<
Il
—_
=
T
<

[6m; - TV (Cmy — 2ny) +n; - Any],

where the last statement follows from the fact that AC = 6TV. [ |

Let us fix the quantum parameter to be ¢ = 19, and let u = /2 = q% and Z, = Z[u, uil].
For any ring R and a set of variables = {z1,...,2,}, we let R((z)) denote the ring of formal
Laurent series in the variables z1, ..., zp, with Coefﬁments in R. We define the generating func-
tion for multiplicities Z( ) (QO, Ql) € Z [Q ]((Q1 )) in the fundamental initial data Qo U Q1
for the quantum - system as follows:

Q07Q1 ZqQ( mn)HH{maz‘i‘Qaz} HQ anHQqa1 (4.5)
a€l, i=1 Ma,i da a€cl, ael,

Here, the sum is over all (r x k)-tuples m = (mM4)qer, ie[1,k], and the modified k-restricted
quadratic form @( )(m, n) is defined by

k
k 1
Q" (m,n) = % [(h Aqy + ) (g1 —q;) - Agj1 — qj)] '
7j=2

Thus, when qg = 0, we have

0® (m,n) = Q%) (m, n) + 2—16Lk(n), (4.6)
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where

k k k k k k
= 2 (2 ni) -A (Z ni) = 2 Z n;-An; = 2 min(i, j)n; - An;.
j=1

= i=j 0=14,5=0 ij=1

The generating function Z( ) (Qo, Ql) is related to the k-restricted M-sum Mg?l( ) (4.4) via

a constant term and an evaluatlon For any f € Z, [ ]((Ql )) we denote the constant term
of f by CTQl(f). In particular, if

f= Z Jrs H @Za1 H @z,bo

r,seZ” agl, bel,

with frs € Z,, for all r;s € Z", then we have

= Z fO,s H Q\Z?O

rezr bel,

Similarly, we define the multiple evaluation of f at @170, cees @r’g = 1 to be the following formal
series with coefficients in Z,,:

f|Q0=1: Z frsH ‘11

r,SEZ” ael,

We note that this is a “right evaluation”. The constant term and evaluation maps commute,
and their composition gives

CTy, (Nlgy,r = 3 fro-

rez”

Remark. As @a,o and @b,l g-commute for all a,b € I, we could also define the notion of a “left
evaluation” analogously. The two different ways of evaluation would still lead to the same result,
since all of the variables involved are on the same quantum torus.

To simplify our notation, we will define ¢: Z, [ ]((Q1 )) — Zy, by

¢(f) = CTq =) fro

rez”

for all f € Z,[QF]((Q;Y)).
By (4.6), we may express the k-restricted M-sum M( )( _1) in terms of Z( )(Qg,Ql) as
follows

I (g71) = (28 (Qo, Qu)). (@7

4.3 Factorization properties of the quantum generating functions

In this subsection, we will express the quantum generating function Z (k) (QO, Ql) as a product
of the quantum twisted Q-system variables (and their inverses). In order to arrive at such an
expression, we would need to state a few technical lemmas.

Lemma 4.5. Let th = @a,k@;}cﬂ foralla€ I, and k € Z. Then for any distinct root indices
a,be I, and i€ 7Z, we have

~

(1) QviYai+1 = Ya,i+1Qvi and QaiYai+1 = GaYa,i+1Qayis
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2
3
4
)

asz i+2 =V 2Aabe z+2Qa is
bz+2(Z ' Zais1) = (Zi'Zai-&-l)QbiJr%
b,i az = Za szz and Zb zZaz 1= Za,i—lzb,ia and

> N) @) ©>

(2)
3)
(4)
(5) Z ayi az+1 —QaYaH-lZaz

Proof. We only need to prove (1), since (2) follows from (1) and Lemma 4.1, while (3), (4)
and (5) follows from (2) and the commutation relations in Lemma 4.1. We have

~ ~ ~ Aiéd A 6 Aiéd ~
Qb,iYa,z‘+1 = Qb,i H Qd,i-s—f — p2der, MaCla (H Qd,i—l—f)Qb»i
del, del,

STy o A ~ ~
=700 Y, i 1Qp; = Ya,it1Qb,

where the last equality follows from the fact that AC = 01'Y. A similar argument as above

would also show that Qa itaji+l = = 1% Ya z+1Qaz = da a'HrlQaz u
Lemma 4.6. For all a € I, and i € Z, we have Zm(l — }Afa,iﬂ)*l = A,w-H.

Proof. Similar to the proof of [28, Lemma 4.5], it follows from Lemma 4.1 that we have

~

A A N 51 5
1- Ya,i+1 =V aaQa,i+2Qa,iQa,i+1 = Za7i+1Za,i>
valently, (1 — Y1) = 2 Zas u
Oor equlvalently, ai+1 = L Layitl-

Lemma 4.7. For any a € I, and i,b € Z, we have

2 |:a+b:| Yaaz+1Zb = Za11Zb+1
da

a ai+1°
a=0

Proof. Similar to the proofs of [9, Lemma 4.7] and [28, Lemma 4.6], we have

3y [a ;r b]vxayb —y y(1—2)~)",

a=0

where we consider the right-hand side of the above equation as a formal power series in z. In
particular, by setting v = q,, * = Y, ;41 and y = Z,;, the desired statement follows from the
above equation, along with Lemmas 4.5 (5) and 4.6. [

Lemma 4.8. For any a € I and k,b € Z, we have

ShilA—b | b0+DAea 5 Ay
Zyi Qui= 2 ai%q i1
Proof. We use the commutation relations in Lemma 4.1 to deduce that

-~ b b(b+1)1\aa b(b+1)Aaa ~ ~ b(b+1)1\aa fay ~

b+1~—b __ b+1 22*-)aa 206+1)Aaa
Zai Qai - Q Qa z+1Q - 2 Qa ZCga z+1 - C”Qa a+1- u

Our first goal is to express Z (Qo, Ql) as a product of the quantum twisted (-system
variables, by explicitly summing over mq,1 for all @ € I,. In the case k = 1, it follows from
equation (4.3) that we have gq0 = o + Zbe[ Capmp1 —ng 1 and gq1 = ¢, for all a € I,. Using
the commutation relations in Lemmas 4.1 and 4.5 (1), we have

HQ anHanol_HQnall_[YaﬁiaIHQ HQ

a€l, a€l, a€l, a€l, a€l, a€l,
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—u e [T 05 T 025 T] G0

ael, a€gl, aeIT
2 ~ ~
_ QZa#b Aaplaly— QZaEIr Naa(205—La(La— l_[ Qna1 H Yaﬁ%l H Zﬁ?o
a€l, a€l, a€l,
— 5,3 Za bely Aavlalp—5 Zaelr Aaala H Qna 1 H Yma 17
ael, ael,
=q 351 A1 — 55 Yaer, Maala H Qn“ 1 H m“ 1z
ael, agly,

As we have @(1)(m, n) = 2*15(11 - Aqq, it follows from the previous equation that we have

Z%r)n(QO’Ql) — Z Q( )(m n) H [mal + 4 } H Q —Qa,0 H @270

a€l, qa a€l, a€l,
z TLa 1 ma71 + ea Ama,l AZ
=q° 25 Yacr, Naa H Q H Z [ Mg Ya,l Za(,IO
a€l, ael, mq,1=0 @ qa
Aaala ANa,1 £ +1
=q 25 Yael, Naa H Q a, H Za @
a€l, ael,
=q~ 3% 2aer, Naala H Q”“ 1 H Za() H f +1
a€l, agl, a€gl,
= q 26 Zaelr aala— 5Za bely Aapna,1 H ZaO H Qnal H Z +1 (48)
a€l,. a€l, a€l,.

where we have used the commutation relations in Lemma 4.1, as well as Lemmas 4.5 (4) and 4.7,
to simplify the equalities.

Our next goal is to write Z (Qo,Ql) as a product of the quantum twisted @-system
variables, as well as the generatlng function ZE\ (Ql, Qg) where n’ = (n' :)ael, ieN is defined
by na7 = Ng,it+1 for all a € I, and i € N. We first observe from equation (4. 3) that we have

0— 2Qa,1 + Qa2 = Z 6ab7nb,1 — Na,1
bel,
for all a € I,. Using the commutation relations in Lemmas 4.1 and 4.5 (1), we have
H Q —qa,0 __ H Qna 1 H Yma 1 H Q_ZCIa 1+Qa2 (49)
a€l,. a€l,. a€l,. a€l,

and

Q—Qqa 1+qa,2 Ada,1
a,0

a€l,. a€l,
-2 Aabqa, 1,1+ ANabGa, 10,2 Ada,1 A—2Ga,1 ANda,2
| Lo
acl, ael,
2 1 ~ ~ ~
_ V_Za’bej,r Aaba,1(96,1=9b,2)—20er, Naads 1+35 2acr, Naada,1(da,1—1) H Z;Ijlo,lQaga,l H gl,lf
ael, ael,
1 1 ~ ~ ~
— o~ sArAMai—az)—35 2er, Naada,1(da,1+1) 9a,1 A~9a,1 a,2
=q7 5 26 ZiaEly Zao Qut al - (4.10)
a€el, a€lr

As @(k)(m, n) _@(k—l)(m/’n/) — %ql -AMaq1 — q2) (where m’' = (mg,i)aelr,ie[l,k—l] is defined

by my, ; = Mg i1 for all a € I and i € [1,k —1]), it follows from equations (4.9) and (4.10) that
we have

Zgﬁ(@mél ZqQ( m,n) HH[maz+Qaz] HQ a,0 H "Z:I(,;

ael, i=1 qa a€l, a€l,
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(m ! l) 25 Zae]r aaqa,1 Qa 1+1) H 1_[ Ma,i + 4a,i
Mg,
qa

agl, m’>0 agl, i=2

m(l,l + q(l,l Mq qa, qa, Ada,
([T X [ Ma,1 ] Vi Zas Q| [T Qe (4.11)

ael, mq 120 qa a€l,

(’C 1)

where we used Lemma 4.5 (1) in the last equality. As @(k_l)(m' n') — 55 > oer Maaa1(gar + 1)

is independent of m;, we may sum over m, 1 for all a € I,,, and simplify the internal product of
sums

H Z |:ma77:/[n+ Qa,1:| Y;nia 1 Z;]aolQ qa,1 )
ael, my120 ol lg,
Now, it follows from Lemmas 4.5 (3) and (4), 4.7 and 4.8 that we have

m(l,l + Qa,l Yma 12‘1(1 1, 9a,l
a,l a,0 a,l
ma71
qa

ael; mq,120

— q26 ZaEIT aaqa, 1(Qa 1+].) H Z IZa 1Q —da,1

ael,
—q2§ZaEL’ aaqa, l(qa 1+1) H Z 1Za1 HQ Qal. (412)
agl, agl,

By combining equations (4.11) and (4.12), we have

k
Z0(@ Q1) = T Q' 3 2" e S o [ [+ o]
da

Mo
ael, m’>0 acl, i=2 an

m(l,l + Qa,l Ma,1 Qa 1 —{qa,1 AQa,Q
x H Z Ya 1 Za ,0 Q H a,l
Maq,1

ael, mq,;120 qa a€l,
—(k—1) k . )
_ H Qna 1 Z qQ (m’n’) H H Mai + Gayi
; Mg,
a€l, m’>=0 a€l, 1=2 ’ qa
1 —qa,1 Qa 2
<[] ZsZan [T Q25" [T @8
ael, a€l, ael,
=t [T 23 T] 80 ] 2
a€l, ael, ael,
(k 1) k
Z Q) H H Ma,i + qa,i H Q ~Ga,1 H Qqaz
. Ma,i
m’>=0 a€l, 1=2 qa a€l, a€l,
abNa, Na,1 ~ k—1 A A
=q —5 Zaper, Aabna,1 HZaO HQ HZa,lzén/ )(Ql,QQ), (4.13)
a€l, a€l, a€l, ’

where we have used the commutation relations in Lemma 4.1 in the second last equality.
By invoking Lemma 4.3, along with equations (4.8) and (4.13), we get

~ A~ L ) .
Zéki (Q07 Ql) =q % Yiaer, Naala=35 2g per, 2i=1 DadTa,i

12 (HH@”“) [ 250 410

a€l, i=1a€el, a€l,
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As an immediate consequence of equation (4.14), we deduce that
DA A (k A A
28 (Qo, Q1) = 202, (Qo, Q) 270 (@), Q) (4.15)

for all j € |1, k], where 1) is the (r x % ~tuple of non-negative integers i) = (Ma,i)ae, ie[1.5];

and n/) = (ng{l))ael ieN is defined by n = Ng,i4+; for all a € I, and ¢ € N.

4.4 Proof of Theorems 1.1 and 1.2

We are now ready to show that the two sums M/(\ ) ( *1) and M (qil) are equal to each other.
To this end, we need a few auxiliary lemmas from [9, Section b. 5] We will let A denote the

ring Z, [Ql,Q 1,Q ] and A, denote the ring Z, [{Qb-}—l}bia,Q ]

Lemma 4.9 ([9 Lemma 5.9]). Let ai,...,an € Iy, i1,...,in € Z and my,...,my € Zy. Then
H] lQa],z]

The proof of Lemma 4.9 follows from that of [9, Lemma 5.9], bearing in mind that @a,l
and Q1 v-commute for all distinct a,b € I, by Lemma 4.5 (1).

>/ \

Lemma 4.10 (]9, Lemma 5.12]). For any b € I, we have

(m)a-)

a€l,

=0.
Qo=1

Lemma 4.11 (]9, Lemma 5.14]). For all a € I, and n € Z.., we have @;}L € Aa((@g%))

Proof of Theorem 1.1. By equation (4.7), it suffices to show that if a term S on the right-
hand side of (4.5) corresponds to a vector m that satisfies ¢, ; < 0 for some a € I, and i € [1, k|,
then ¢(S) = 0. To this end, we will prove by induction on j = k,..., 1, and show that if S on
the right-hand side of (4.5) corresponds to a vector m that satisfies ¢q; < 0 for some a € I,
and i € [j, k], then ¢(S) = 0. The base case j = k holds since we have g1 = ¢, = 0 for all
a € I, which implies that there is no such term S that satisfies ¢, < 0 for some a € I,.. Next,
let us assume that the statement holds for j + 1, where j > 1. By equations (4.14) and (4.15),
we have

(QOan) = q 25 ZGEIT Aaala— 5Zu belr Zz 1 Mabma,i H ZaO (H H Qn‘”) H 2[1’]»+1

ael, 1=1ael, ael,

%) () n@)
% Z qQ (m7) n))

i Mg.i + q.
a,i a,i AN—Ya,j ANda,j+1
<TI0 ™| TTau T ak (410
ael, i=j+1 at qa a€l, a€l,

By induction hypothesis, we have g,; = 0 for all @ € I,, and 7 > j + 1. We note that a term in
the right-hand side of (4.16) has the form

s =112 (H I @) [T Zase [TQu TT Q.

a€l, 1=1ael, a€l, a€l, a€l,

When ¢, ; < 0, it follows from Lemmas 4.9 and 4.11 that S € A;. By Lemma 4.10, it follows
that

Slgy-1 € Z[Q][[{@Qu1},]]
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Due to the prefactor [ [,¢; 2(;(1), it follows that the exponent of @a,l in all terms of S|Q0=1 are
positive. Consequently, we have ¢(S) = 0. So this shows that the sum in equation (4.5) is
unchanged if we impose the restriction g, ; = 0. As b € I, is arbitrary, the statement is proved
for j, and we are done. |

Having proved Theorem 1.1, it remains to show that Theorem 1.2 holds. As in [22, Section 1],
Theorem 1.2 will follow from a series of (in-)equalities involving tensor product multiplicities
involving KR-modules over twisted quantum affine and current algebras, as well as fermionic
sums, which we will describe in detail as follows.

Proof of Theorem 1.2. We first recall that similar to the setting of twisted current algebras,
the KR-modules over the twisted quantum affine algebra U,(g”) are parameterized by a € I,
m € Zy, and z € C* as well, and we denote them by W7, (2). By [19, Theorem 8.5], the
multiplicity of the irreducible Ug(g”)-module V() in the tensor product &), I icZs (ng)®"<“
of KR-modules over U,(g?) is given by My, (1), that is, we have

dimHoqu(ga)( X (ng)@”a’i,vq()\))=]\7IA7H(1). (4.17)

o€l i€Z 4

Next, we note that the tensor product & ,e;, ez, (KR ;)®"i of KR-modules over g[t]? arises
as the ¢ — 1 limit of the tensor product &),e;, ez, (ng)®”al of KR-modules over U, (g7). As
both tensor products are defined as quotients by some ideal, and the ideal in the ¢ — 1 limit
may be smaller than that for generic values of g, it follows from general deformation arguments
that we have

dimHoqu(ga)( ) (Wg,i)®na,i’VQ(A))
€l i€7 4

<dimHomga( ) (Kngi)®”a7i,V()\)>. (4.18)

a€ly,1€Z ¢
Likewise, by the definition of F}¥ and by general deformation arguments, we have
dim Homge ( &) (KRZ )&V (A)) < dim Homge (F, V(N)) = M5, (1), (4.19)
o€l €74

Finally, by Theorem 3.1, we have M (1) < M5 (1). Together with Theorem 1.1 and (4.17)—
(4.19), we have the following twisted analogue of pentagon of inequalities and equalities:

dim Homg- (@aeh, i€y (KRZ,i)®"“" Vv (X) ) > dim Homy, (g (®(y€ I, i€Z4 (Wg,i)®"“" Ve (X) )
N I

M;,(1) < My, (1) = My, (1)

In particular, equality must hold throughout, and hence we must have My (1) = M5 (1). As
each of the coefficients in the M-sum Mxn(qfl) are manifestly nonnegative as well, we must
have Mxn(q_l) = Mxn(q_l) as required. |

In particular, Theorem 1.2 implies that the fusion product Fj of twisted KR-modules is
independent of the choice of localization parameters, and the evaluation map ,,: I',/T", — H[u]
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defined in Section 3.5 is an isomorphism of graded vector spaces. Moreover, equations (4.7)
and (4.14) allow us to express the graded multiplicity M n(qil) as a constant term evaluation
of a product of quantum twisted QQ-system variables as follows:

_1 ) )
M (g71) = g 35O Bty Aeatot2 Do per, Tien At )

(H Zan (H [ Q"M) 11 Z‘i““), (4.20)

a€l,. i€N a€l,. a€l,

where

L(n) = lim Li(n) = Z min(é, j)n; - An; = Z 2 min (i, j) Aapna,ine,;,

k—o0
- ijeN i.jeN abel,

Zy = lim Zyy.
k—o0 ’

Here, we note that a similar reasoning as 1n the proof of [9, Theorem 5.17] shows that 7y is
well-defined as a formal power series of Qb ; with coefficients that are Laurent polynomials in
the remaining initial data of Qo V) Q1

5 An identity satisfied by the graded characters
of twisted KR-modules

In this section, we will prove Theorem 1.3, where our approach will follow that taken in the proof
of [28, Section 5]. As our previous calculations only involved nontrivial twisted KR-modules,
whereas the identity of graded g°-characters of the fusion products of twisted KR-modules
stated in Theorem 1.3 involves trivial twisted KR-modules, we would need a generalized form
of equation (4.20) that includes trivial twisted KR-modules. To arrive at this generalized form,
we will need to consider vectors i = (14,i)qer, icz, that parameterizes a finite set of (possibly
trivial) KR-modules over g[t]?. Let us also make the following definitions:

2 Z min(, j)Agpna,ine, j,

1,J€Z+ a,bel,

Mala) =g e vete2F @i, (T 23 T] [ @) ] 26),

a€l, €L+ acl, a€l,.

where ﬁ(ﬁ) = Za,bel,. Zieh Agpng,i. We claim that Mxﬁ(q_l) = /\/lxn(q_l). Indeed, we may
regard

[1Z4( 1 1] @) 112+

a€l, €24 a€l, a€l,

as an element of Z,, [ '] ((Q1 1)) by (4.14). Thus, it follows from the definition of the function ¢
that we have

1
Mx,n (q_l) = qfﬁ(zaelr Aaaea+22a,bel7» 2ien Aaba,i+L(n))

<o(T12(IT11 @) [120+)

a€l, €N ael, a€l,
= qi %(Zaelr Aaala+2 Za,belr ZieN Aapna,i+L(10))
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x¢@IQMﬂI&MGIHQ%0I]%“ﬁ

a€l, a€l, i€eN a€l, a€l,

_ q*%(zaeu Aaala+23, per, ZiGZ+ Aab”a,iJFZ(ﬁ))

<o(T12:3( T TT@) T126) = Msala™)

agl, €L+ acl, agl,

where the third equality follows from Lemma 4.1. This allows us to regard Mx ( B ) as the
graded multiplicity of the irreducible component V()\) in 7%, where F% is the fus1on product of
twisted KR-modules parameterized by n. More precisely, we have

M5 ala 2 dim Homgo (F[m], V(X)) ¢™.

Next, let us use Lemma 4.1 to rewrite the quantum X,(,f ) Q-system relations (4.2) as

1 o ~ ~ v
05 Qapo—1Qaps1 = Q2 (1 — ¢' Yo i) (5.1)

for all a € I, andAk: €. R
Next, we let d = (dp;)ser,,iez,> 8 = (Sb,i)vel,,iez,, and k = (kyi)ver,,icz, be vectors that
correspond to the terms

~ ~ ~5 N ~_T,
Qa,mlea,erly a,m’ and a,mYa,m - H Qbﬁn “

b~a

respectively. Specifically, we define
dpi = 6ab(8iym—1 + dim1), Sbi = 204504,m kb; = —0b~adimCha

for all b € I and i € Z, where the function &y~ is equal to 1 if b ~ a, and 0 otherwise.
By applying the map ¢ to (5.1), we have

Q‘I;Aaa¢<(1_[ 2{2&) @a,m—l@a,m-ﬁ-l <H 2£b+1>)

bel, bel,
>— A o34 Chra %4
= ¢<(H Zb701> 27m(1_[ be+1)) _ qla ¢<H Zb HQb b H be+1)’
bel, bel, bel, b~a bel,

or equivalently,
q%(gﬁ@)mamm) M54 ()
1 omay . T(a 1 v -
_ qﬁ(2F(s)+L(s))MX’§(q—1) +qu(2F(k) L(k)+26t) )MX,f((q 1)' (5.2)

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Firstly, we have

d)= > Y Aadei =2 Aw, (5.3)

c,bel, i€Z bel,
9= 3 Awsei =2 Aw, (5.4)
c,bel, i€Z+ bel,

= Z Z Acbkc,i = - Z Acbéca = _5t¢\z/ +2 Z Aaba (5'5)

c,bel, i€Z + bel,,c~a bel,
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where the last equality in (5.5) follows from the fact that A is symmetric, along with the
equality AC' = §TY.
Next, we observe that

L) = Y > min(i,j)Acdeidy,;

1,J€Z+ c,bel,

Ago[min(m — 1,m — 1) + 2min(m — 1,m + 1) + min(m + 1, m + 1)]

(4m — 2)Aga, (5.6)
L®) = Z Z min(i, j)AepScisp; = 2°Aga min(m, m) = 4mA g, (5.7)

1,J€Z 4 c,bel,

L) = Z Z min(i, j)Acykeiky j = min(m, m) Z ACpoClea
1,j€Z 4 c,bel, c,b~a
=m Z Acbébaéca =m Z Acbébaéca —2m Z Acaéca
c,b#a bel,,c#a c#a
=m Z 5catgéca —2m Z AgeCloq + 4mA,,
bel,,c#a cel,
= —2mdt, + 4mAg,. (5.8)

Again, the last two equalities in (5.8) follows from the fact that A is symmetric, along with the
equality AC' = 0TV. Thus, by (5.3)—(5.8), we have

2F(d) + L(d) + 2Aaq = 2F(8) + L(8) = 2F (k) + L(Kk) + 26t} + 2mdt. ,
which implies that (5.2) reduces to

Ms(a7") = Myg(a™) — 7" My (a7),
or equivalently,

M; 4(9) = M54(a) — ¢"* " M5 (a).

As M5 ;(q) is the graded multiplicity of V(X) for all dominant g°-weights A, we have

chy F% = chy F¥ — ¢'<™ chy FF. (5.9)
Theorem 1.3 now follows from (5.9). |

Remark. Kus and Venkatesh [27, Proposition 7.3] obtained a short exact sequence of fusion
product of KR-modules over g[t]” that generalizes the Xr(r'f ) Q@-system relations (1.1) as follows:

0 — (Kg,,)" — KRg,, *KRg ,, — KR ,,, ;1 *KR7 ,,, ; — 0.

a,m

By applying the character map to the above exact sequence, we see that the resulting identity
of characters coincides with the identity stated in Theorem 1.3 when ¢ = 1.
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