Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 032, 32 pages      arXiv:2307.02346      https://doi.org/10.3842/SIGMA.2025.032
Contribution to the Special Issue on Basic Hypergeometric Series Associated with Root Systems and Applications in honor of Stephen C. Milne

Bilateral Bailey Lattices and Andrews-Gordon Type Identities

Jehanne Dousse a, Frédéric Jouhet b and Isaac Konan b
a) Université de Genève, 7-9, rue Conseil Général, 1205 Genève, Switzerland
b) Univ Lyon, Université Claude Bernard Lyon 1, UMR5208, Institut Camille Jordan, 69622 Villeurbanne, France

Received October 15, 2024, in final form April 11, 2025; Published online April 29, 2025

Abstract
We show that the Bailey lattice can be extended to a bilateral version in just a few lines from the bilateral Bailey lemma, using a very simple lemma transforming bilateral Bailey pairs relative to $a$ into bilateral Bailey pairs relative to $a/q$. Using this and similar lemmas, we give bilateral versions and simple proofs of other (new and known) Bailey lattices, including a Bailey lattice of Warnaar and the inverses of Bailey lattices of Lovejoy. As consequences of our bilateral point of view, we derive new $m$-versions of the Andrews-Gordon identities, Bressoud's identities, a new companion to Bressoud's identities, and the Bressoud-Göllnitz-Gordon identities. Finally, we give a new elementary proof of another very general identity of Bressoud using one of our Bailey lattices.

Key words: Bailey lemma; Bailey lattice; Andrews-Gordon identities; Bressoud identities; $q$-series; bilateral series.

pdf (573 kb)   tex (31 kb)  

References

  1. Afsharijoo P., Mourtada H., New companions to the Andrews-Gordon identities motivated by commutative algebra, Adv. Math. 417 (2023), 108946, 28 pages, arXiv:2104.09422.
  2. Agarwal A.K., Andrews G.E., Bressoud D.M., The Bailey lattice, J. Indian Math. Soc. (N.S.) 51 (1987), 57-73.
  3. Andrews G.E., An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. USA 71 (1974), 4082-4085.
  4. Andrews G.E., Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), 267-283.
  5. Andrews G.E., $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Reg. Conf. Ser. Math., Vol. 66, American Mathematical Society, Providence, RI, 1986.
  6. Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia Math. Appl., Vol. 71, Cambridge University Press, Cambridge, 1999.
  7. Andrews G.E., Schilling A., Warnaar S.O., An $A_2$ Bailey lemma and Rogers-Ramanujan-type identities, J. Amer. Math. Soc. 12 (1999), 677-702, arXiv:math.QA/9807125.
  8. Bailey W.N., Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 50 (1948), 1-10.
  9. Berkovich A., McCoy B.M., Schilling A., $N=2$ supersymmetry and Bailey pairs, Phys. A 228 (1996), 33-62, arXiv:hep-th/9512182.
  10. Berkovich A., Paule P., Variants of the Andrews-Gordon identities, Ramanujan J. 5 (2001), 391-404, arXiv:math.CO/0102073.
  11. Bhatnagar G., Schlosser M.J., Elliptic well-poised Bailey transforms and lemmas on root systems, SIGMA 14 (2018), 025, 44 pages, arXiv:1704.00020.
  12. Bressoud D., A generalization of the Rogers-Ramanujan identities for all moduli, J. Combin. Theory Ser. A 27 (1979), 64-68.
  13. Bressoud D., Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), 54 pages.
  14. Bressoud D., Ismail M.E.H., Stanton D., Change of base in Bailey pairs, Ramanujan J. 4 (2000), 435-453, arXiv:math.CO/9909053.
  15. Dousse J., Jouhet F., Konan I., Combinatorial approach to Andrews-Gordon and Bressoud-type identities, arXiv:2403.05414.
  16. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
  17. Göllnitz H., Partitionen mit Differenzenbedingungen, J. Reine Angew. Math. 225 (1967), 154-190.
  18. Gordon B., A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393-399.
  19. Gordon B., Some continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32 (1965), 741-748.
  20. He T.Y., Zhao A.X.H., New companions to the generalizations of the Göllnitz-Gordon identities, Ramanujan J. 61 (2023), 1077-1120, arXiv:2203.03257.
  21. Jouhet F., Shifted versions of the Bailey and well-poised Bailey lemmas, Ramanujan J. 23 (2010), 315-333, arXiv:0906.1870.
  22. Kim S., Bressoud's conjecture, Adv. Math. 325 (2018), 770-813.
  23. Kim S., Yee A.J., Partitions with part difference conditions and Bressoud's conjecture, J. Combin. Theory Ser. A 126 (2014), 35-69.
  24. Lovejoy J., A Bailey lattice, Proc. Amer. Math. Soc. 132 (2004), 1507-1516.
  25. Lovejoy J., Bailey pairs and indefinite quadratic forms, II. False indefinite theta functions, Res. Number Theory 8 (2022), 24, 16 pages.
  26. McLaughlin J., Topics and methods in $q$-series, Monogr. Number Theory, Vol. 8, World Scientific Publishing, Hackensack, NJ, 2018.
  27. Milne S.C., A multiple series transformation of the very well poised ${}_{2k+4}\Psi_{2k+4}$, Pacific J. Math. 91 (1980), 419-430.
  28. Milne S.C., Lilly G.M., The $A_l$ and $C_l$ Bailey transform and lemma, Bull. Amer. Math. Soc. (N.S.) 26 (1992), 258-263.
  29. Milne S.C., Lilly G.M., Consequences of the $A_l$ and $C_l$ Bailey transform and Bailey lemma, Discrete Math. 139 (1995), 319-346.
  30. Paule P., On identities of the Rogers-Ramanujan type, J. Math. Anal. Appl. 107 (1985), 255-284.
  31. Ramanujan S., Proof of certain identities in combinatory analysis, Cambr. Phil. Soc. Proc. 19 (1919), 211-216.
  32. Schlosser M.J., Bilateral identities of the Rogers-Ramanujan type, Trans. Amer. Math. Soc. Ser. B 10 (2023), 1119-1140, arXiv:1806.01153.
  33. Warnaar S.O., 50 years of Bailey's lemma, in Algebraic Combinatorics and Applications, Springer, Berlin, 2001, 333-347, arXiv:0910.2062.
  34. Warnaar S.O., Partial theta functions. I. Beyond the lost notebook, Proc. London Math. Soc. 87 (2003), 363-395, arXiv:math.QA/0105002.
  35. Warnaar S.O., An ${\rm A}_2$ Bailey tree and ${\rm A}_2^{(1)}$ Rogers-Ramanujan-type identities, J. Eur. Math. Soc., to appear, arXiv:2303.09069.

Previous article  Next article  Contents of Volume 21 (2025)