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Abstract. We determine the possible scaling limits in the quantum central limit theorem
with respect to the Gibbs state, for a growing distance-regular graph that has so-called clas-
sical parameters with base unequal to one. We also describe explicitly the corresponding
weak limits of the normalized spectral distribution of the adjacency matrix. We demon-
strate our results with the known infinite families of distance-regular graphs having classical
parameters and with unbounded diameter.
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1 Introduction

Quantum probability theory is a non-commutative extension of classical probability theory; see,
e.g., [1, 12, 27, 28, 31, 42]. This paper is a contribution to the spectral analysis of growing graphs
from the viewpoint of this theory. The adjacency matrix of a graph is regarded as a random
variable in this context. (Formal definitions will be given in Section 2.) As in many previous
works on this topic, our focus will be on central limit theorems (CLTs) for growing graphs.
Of particular interest are growing Cayley graphs. For example, generators of free groups give
rise to free independent random variables in the sense of Voiculescu, and we obtain the Wigner
semicircle law; cf. [42]. Another important class of graphs to consider here is that of distance-
regular graphs [5, 6, 8, 10], which generalize distance-transitive (i.e., two-point homogeneous)
graphs. Among many other applications and links, these graphs have been often used as test
instances for problems related to random walks on general graphs; see [10] and the references
therein. Hora [16] proved CLTs for several families of distance-regular graphs, including the
Hamming graphs (which are also Cayley graphs) and the Johnson graphs, and obtained various
distributions, such as the Gaussian, Poisson, geometric, and the exponential distributions. The
CLTs in [16] are with respect to the vacuum state, and Hora [17] then considered the Gibbs
state, also known as the deformed vacuum state, and extended the CLT for the Johnson graphs
and the Hamming graphs. Later it turned out that distance-regular graphs are particularly
well-suited for the method of quantum decomposition of the adjacency matrix, which has been
playing a key role in obtaining CLTs. This method was first introduced by Hashimoto [13] for
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certain growing Cayley graphs, and then developed and reformulated further by Hora, Obata,
and others; see, e.g., [14, 15, 18, 19, 20, 29]. It not only made the whole theory transparent, but
also lead to quantum central limit theorems (QCLTs), in which we take into account the three
non-commuting components in the quantum decomposition.

Our goal in this paper is to establish QCLTs for those distance-regular graphs said to have
classical parameters. For such a graph, the structure of the adjacency algebra is described by
just three parameters denoted by q, α, and β, together with the diameter d. The parameter q,
called the base, is known to be an integer distinct from 0 and −1, provided that d ⩾ 3. Having
classical parameters may look like quite a strong restriction, but it is in some sense rather
common among distance-regular graphs. In fact, except the cycles which we view as trivial,
all the known infinite families of distance-regular graphs with unbounded diameter either have
classical parameters or are closely related to those having classical parameters (by means of
halving, folding, doubling, twisting, etc.); cf. [10, Section 3]. See also [33] and [32, Theorem 6.3]
for geometric characterizations of this property. The classification of distance-regular graphs
having classical parameters with q = 1 is already complete, and there exist only four infinite
families: the Hamming graphs, Doob graphs, halved cubes, and the Johnson graphs. These
graphs were discussed by Hora [16, 17] (see also [19]) in detail,1 so we will consider the graphs
with q ̸= 1 in this paper. Our main result is Theorem 3.5 in Section 3, where we let d → ∞ and
determine the possible scaling limits for QCLTs in the Gibbs state, in terms of the behaviors
of the classical parameters and one other parameter associated with the Gibbs state. The
corresponding weak limits of the normalized spectral distributions will be described explicitly in
Section 5. Currently there are fifteen known infinite families of distance-regular graphs having
classical parameters with unbounded diameter, eleven of which are such that q ̸= 1. Our results
apply to these eleven families with q ̸= 1, but we stress that they will also be equally applicable
whenever we find a new such infinite family in the future.2 We may also remark that four out
of the eleven families are Cayley graphs.

The contents of the other sections are as follows. In Section 2, we review basic definitions
and concepts about algebraic probability spaces and distance-regular graphs, and then recall the
QCLT for distance-regular graphs. Our account follows [19]. We will also sharpen the QCLT
slightly (Proposition 2.6), by showing that some assumption is redundant. Section 4 is another
preliminary section and is devoted to establishing formulas which are needed in Section 5.
Section 6 discusses concrete examples from the eleven infinite families with q ̸= 1 mentioned
above.

2 Algebraic probability spaces, distance-regular graphs,
and the quantum central limit theorem

An algebraic probability space is a pair (A, φ), where A is a ∗-algebra over C and φ : A → C is
a state, i.e., a linear map such that φ(1A) = 1 and that φ(a∗a) ⩾ 0 for every a ∈ A, where 1A
denotes the identity of A; cf. [19, Section 1.1]. The elements of A are called (algebraic) random
variables. We call a ∈ A real if a∗ = a. For every real random variable a ∈ A, there exists
a Borel probability measure µ on R (cf. [7, Section 1.3]) such that

φ(ai) =

∫ +∞

−∞
ξiµ(dξ), i = 0, 1, 2, . . . . (2.1)

1The Doob graphs were not mentioned in [16, 17], but they have the same classical parameters as certain
Hamming graphs, and thus separate discussions are not necessary.

2The twisted Grassmann graphs are the last of these fifteen families and were discovered by Van Dam and
Koolen [9] in 2005.
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We note that such a measure µ may not be unique. Several sufficient conditions are known on
its uniqueness, such as Carleman’s moment test; cf. [19, Theorem 1.36].

We are interested in algebraic probability spaces arising from graphs. All the graphs we
consider in this paper are finite and simple. Thus, by a graph we mean a pair Γ = (X,R)
consisting of a non-empty finite set X and a subset R of

(
X
2

)
, the set of two-element subsets

of X. The elements of X are vertices of Γ, and the elements of R are edges of Γ. Two vertices
x, y ∈ X are called adjacent (and written x ∼ y) if {x, y} ∈ R. The degree (or valency) k(x)
of x ∈ X is the number of vertices adjacent to x. We call Γ k-regular if k(x) = k for all x ∈ X.
A path of length n joining x, y ∈ X is a sequence of vertices x = x0, x1, . . . , xn = y such that
xj−1 ∼ xj for j = 1, 2, . . . , n. We will only consider connected graphs, i.e., those graphs in which
any two vertices are joined by a path. The distance ∂(x, y) of x, y ∈ X is the length of a shortest
path joining them. The diameter of Γ is defined by d = max{∂(x, y) : x, y ∈ X}. Let MX(C)
denote the C-algebra consisting of complex matrices with rows and columns indexed by X. The
adjacency matrix A of Γ is the matrix in MX(C) defined by

Ax,y =

{
1 if x ∼ y,

0 otherwise,
x, y ∈ X.

By an eigenvalue of Γ, we mean an eigenvalue of A. Likewise, we speak of the spectrum of Γ.
As usual, we view MX(C) as a ∗-algebra by letting ∗ mean adjoint (i.e., conjugate-transpose).

Associated with the graph Γ above is the adjacency algebra A(Γ), i.e., the commutative ∗-sub-
algebra of MX(C) generated by A. Below we give three examples of states for A(Γ).

The tracial state. This is defined by

φtr(B) =
1

|X|
tr(B), B ∈ A(Γ).

For this state, the Borel probability measure µ from (2.1) for the random variable A is unique
and is the spectral distribution of Γ given by

µ(θi) =
mi

|X|
, i = 0, 1, . . . , e,

where θ0, θ1, . . . , θe are the distinct eigenvalues of Γ, and mi denotes the multiplicity of θi in the
spectrum of Γ.

The vacuum state. Fix a “base vertex” o ∈ X, and let

φ0(B) = ⟨ô, Bô⟩ = Bo,o, B ∈ A(Γ),

where ô denotes the column vector indexed by X with a 1 in the o coordinate and 0 in all other
coordinates, and ⟨·, ·⟩ denotes the standard Hermitian inner product.

The Gibbs state. This generalizes φ0 above. Let t ∈ R, and let

φt(B) =
∑
x∈X

t∂(x,o)⟨x̂, Bô⟩ =
∑
x∈X

t∂(x,o)Bx,o, B ∈ A(Γ),

where 00 := 1. The Gibbs state is also called the deformed vacuum state. The scalar − log t
(when t ⩾ 0) corresponds to the inverse temperature parameter in the case of the Gibbs state
on a canonical ensemble. It should be remarked however that, unlike the first two examples, the
Gibbs state is not always a state.3 See Lemma 2.1 below.

3For this reason, it would be more appropriate to call φt, say, the Gibbs functional.
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Recall that Γ = (X,R) is assumed to be connected with diameter d. For every i = 0, 1, . . . , d,
let Ai be the ith distance matrix of Γ, i.e.,

(Ai)x,y =

{
1 if ∂(x, y) = i,

0 otherwise,
x, y ∈ X.

In particular, A0 = I (the identity matrix) and A1 = A. We call Γ distance-regular if there exist
non-negative integers ai, bi, ci, i = 0, 1, . . . , d, such that bd = c0 = 0, and that

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1, i = 0, 1, . . . , d, (2.2)

where b−1A−1 = cd+1Ad+1 := 0. We note in this case that Γ is k-regular with k = b0, a0 = 0,
c1 = 1,

ai + bi + ci = k, i = 0, 1, . . . , d, (2.3)

and that bi−1ci ̸= 0, i = 1, 2, . . . , d. Moreover, the matrix Ai has constant row and column
sum ki (which is the number of vertices at distance i from any given vertex), where

ki =
b0b1 · · · bi−1

c1c2 · · · ci
, i = 0, 1, . . . , d. (2.4)

Note that k0 = 1 and k1 = k.
From now on, suppose that Γ is distance-regular. It follows from (2.2) that

A(Γ) = span{A0, A1, . . . , Ad},

from which it follows that dimA(Γ) = d + 1, and hence that Γ has exactly d + 1 distinct
eigenvalues k = θ0, θ1, . . . , θd. Moreover, every matrix in A(Γ) has constant diagonal entries,
and hence φtr = φ0. The Gibbs state φt is also independent of the base vertex o ∈ X, and we
have

φt(B) =
1

|X|
tr(KtB), B ∈ A(Γ), (2.5)

where

Kt =
(
t∂(x,y)

)
x,y∈X = A0 + tA1 + t2A2 + · · ·+ tdAd ∈ A(Γ).

From this observation we immediately see that

Lemma 2.1. If Γ is distance-regular, then the Gibbs state φt is a state on A(Γ) if and only if
the matrix Kt is positive semidefinite.

It also follows from (2.2)–(2.5) that the mean and the variance of the random variable A in the
Gibbs state φt are given respectively by (cf. [19, Lemma 3.25])

φt(A) = tk, Σ2
t (A) = φt

(
(A− tkI)2

)
= k(1− t)(1 + t+ ta1). (2.6)

In view of Lemma 2.1, we consider the following subset of R:

π(Γ) = {t ∈ R : Kt is positive semidefinite}. (2.7)

We always have 0, 1 ∈ π(Γ), so that π(Γ) ̸= ∅. Moreover, by looking at the 2 × 2 principal
submatrices of Kt, it follows that

π(Γ) ⊂ [−1, 1].
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With respect to the base vertex o ∈ X, we have the following quantum decomposition of A:

A = A+ +A− +A◦,

where

(Aϵ)x,y =

{
1 if x ∼ y, ∂(x, o) = ∂(y, o) + iϵ,

0 otherwise,
x, y ∈ X

for ϵ ∈ {+,−, ◦}, with i+ = 1, i− = −1, and i◦ = 0. The matrices A+, A−, and A◦ are called
the quantum components of A with respect to o. Consider the C-vector space

W (Γ) = span{Φ0,Φ1, . . . ,Φd}, (2.8)

where the Φi are the unit column vectors given by

Φi =
1√
ki
Aiô, i = 0, 1, . . . , d.

Note that Φ0 = ô. With this notation, we have

φt(B) =

d∑
i=0

ti
√
ki⟨Φi, BΦ0⟩, B ∈ A(Γ). (2.9)

It follows from (2.2) and (2.4) that

A+Φi =
√
ci+1biΦi+1, A−Φi =

√
cibi−1Φi−1, A◦Φi = aiΦi (2.10)

for i = 0, 1, . . . , d, where
√

cd+1bdΦd+1 =
√

c0b−1Φ−1 := 0. In particular, we observe that the
actions of these quantum components on W (Γ) are independent of the base vertex o ∈ X.

Remark 2.2. The subalgebra Ã(Γ) of MX(C) generated by the quantum components A+, A−,
and A◦ of A is non-commutative unless |X| = 1, and is contained in the Terwilliger algebra of Γ
with respect to o; cf. [34, 35, 36]. See [41] for discussions on when the two algebras are equal.
The space W (Γ) is an irreducible module of the Terwilliger algebra, called the primary module.

We now recall the QCLT for a growing distance-regular graph in the Gibbs state φt established
in [19, Section 3.4]. For the rest of this paper, let Λ be an infinite directed set, and let (Γλ)λ∈Λ
be a net of distance-regular graphs; see, e.g., [23, Chapter 2]. To simplify the notation, we will
mostly omit the subscript “λ”. We will view X, d, k, ai, bi, ci, etc., as functions of Γ. The
scalar t ∈ π(Γ) is chosen and fixed for each of the Γ so that the variance Σ2

t (A) > 0 (cf. (2.6)),
and we will also think of t as a function of Γ. In this paper we are mainly interested in limit
distributions with infinite supports, and hence we will assume that

d → ∞. (2.11)

(That is, lim
λ∈Λ

d(Γλ) = ∞.)

In view of (2.6), we work with the following normalization when taking the limit:

A− tkI

Σt(A)
= Ã+ + Ã− + Ã◦, (2.12)

where

Ã± =
A±

Σt(A)
, Ã◦ =

A◦ − tkI

Σt(A)
.
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From (2.10) it follows that

Ã+Φi =
√
ωi+1Φi+1, Ã−Φi =

√
ωiΦi−1, Ã◦Φi = αi+1Φi

for i = 0, 1, . . . , d, where
√
ωd+1Φd+1 =

√
ω0Φ−1 := 0, and

ωi =
cibi−1

Σ2
t (A)

, i = 1, 2, . . . , d, αi =
ai−1 − tk

Σt(A)
, i = 1, 2, . . . , d+ 1.

We also define the scalar γi by (cf. (2.9))

γi = ti
√

ki, i = 0, 1, . . . , d.

Consider the following limits:

ωi → ωi, αi → αi, i = 1, 2, . . . , γi → γi, i = 0, 1, . . . .

These limits do not necessarily exist in general, and we impose the following:

Assumption 2.3. With the above situation, we assume that the limits ωi, αi, and γi exist and
that ωi > 0 for all i. We note that γ0 = 1.

With reference to Assumption 2.3, let W be an infinite-dimensional C-vector space with
a fixed basis {Ψi : i = 0, 1, . . . }, where we equip W with the Hermitian inner product ⟨·, ·⟩ for
which the Ψi are orthonormal. We define the linear operators B+, B−, and B◦ on W by

B+Ψi =
√
ωi+1Ψi+1, B−Ψi =

√
ωiΨi−1, B◦Ψi = αi+1Ψi

for i = 0, 1, . . . , where
√
ω−1Ψ−1 := 0. Note that B+ and B− are adjoints of each other. The

quadruple (W, {Ψi}, B+, B−) is called the interacting Fock space (of one mode) associated with
Jacobi sequence {ωi}.

Recall the non-commutative algebra Ã(Γ) from Remark 2.2, and observe that Ã+, Ã−, and Ã◦

generate Ã(Γ). We now extend the domain of the Gibbs state φt to Ã(Γ); cf. (2.9). This
extension is again independent of the base vertex o ∈ X, but it should be remarked that it may
fail to be a state on Ã(Γ) (though it is indeed a state on A(Γ) by Lemma 2.1). The QCLT in
the Gibbs state is stated as follows:

Theorem 2.4 ([19, Theorem 3.29]). With reference to Assumption 2.3, we have

φt

(
Ãϵm · · · Ãϵ1

)
→

∞∑
i=0

γi⟨Ψi, B
ϵm · · ·Bϵ1Ψ0⟩

for any ϵ1, . . . , ϵm ∈ {+,−, ◦} and m = 1, 2, . . . .

Remark 2.5. There exists a Borel probability measure µ∞ on R such that (cf. (2.1))

∞∑
i=0

γi⟨Ψi, (B
+ +B− +B◦)mΨ0⟩ =

∫ +∞

−∞
ξmµ∞(dξ), m = 1, 2, . . . .

This µ∞ is called the asymptotic normalized spectral distribution of A in the Gibbs state, and
we are interested in finding and describing it. See Section 5.

We end this section with some comments. In [19, Section 3.4], Hora and Obata also considered
the case when ωm = 0 for some m, so that the probability measure µ∞ above has finite support.
However, if we stick to the case when ωi > 0 for all i as in Assumption 2.3, then assuming the
existence of the γi turns out to be redundant. To be more precise, we show the following:
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Proposition 2.6. Suppose that the ωi and the αi exist and that ωi > 0 for all i. Then the γi
exist as well. In particular, Theorem 2.4 holds true under this weaker assumption.

Proposition 2.6 is a consequence of Claims 2.8–2.11 below. For the rest of this section, we
assume the existence of the ωi > 0 and that of the αi.

First, observe that

(1− t)(1 + t+ ta1) =
Σ2
t (A)

k
=

1

ω1
→ 1

ω1
> 0. (2.13)

Since a0 = 0, the existence of γ1 follows from that of α1 and (2.13): γ1 = −α1/
√
ω1. Note

that if k = 2 then Γ is either the 2d-cycle or the (2d + 1)-cycle. Bang, Dubickas, Koolen, and
Moulton [4] proved the Bannai–Ito conjecture:

Theorem 2.7 ([4]). There exist only finitely many distance-regular graphs for each fixed degree
k ⩾ 3.

Since we are letting d → ∞ (cf. (2.11)), it follows that

Claim 2.8. If ξ is an accumulation point of 1/k ∈ (0, 1/2], then ξ ∈ {0, 1/2}.

We next handle each of the two possible accumulation points of 1/k.

Claim 2.9. Suppose that 1/2 is an accumulation point of 1/k, and consider a subnet of (Γλ)λ∈Λ
for which k = 2 eventually. Then the γi exist on this subnet. Moreover, we have ωi = ω1/2
and αi = α1 for i = 2, 3, . . . .

Proof. Recall that γ1 exists. Since k = 2 eventually, this means that t is convergent on this
subnet. For the cycles, we have ki = 2, i = 1, 2, . . . , d − 1. Since d → ∞, it follows that the γi
all exist on this subnet. The last statement also follows from (2.13) and since the cycles satisfy
(ai, bi, ci) = (0, 1, 1) for i = 1, 2, . . . , d− 1. ■

Claim 2.10. Suppose that 0 is an accumulation point of 1/k, and consider a subnet of (Γλ)λ∈Λ
for which k → ∞. Then the γi exist on this subnet. Moreover, we have ai/

√
k → αi+1/

√
ω1+γ1,

bi/k → 1, and ci → ωi/ω1 for i = 1, 2, . . . on this subnet.

Proof. That ai/
√
k → αi+1/

√
ω1 + γ1, i = 1, 2, . . . , is immediate from (2.13). We next show

that bi/k → 1 and ci → ωi/ω1 for i = 1, 2, . . . on this subnet. Suppose by induction that
ci → ωi/ω1 for some i. We have ai = o(k) and ci = o(k) since k → ∞, and hence bi/k → 1
by (2.3). Then it follows in turn that ci+1 ∼ ωi+1/ω1 → ωi+1/ω1. The existence of the γi on
this subnet now follows from these comments, (2.4), and the existence of γ1. ■

Finally, we show that the above two cases do not coexist.

Claim 2.11. There exists exactly one accumulation point of 1/k ∈ (0, 1/2]. More precisely, we
have either k = 2 eventually, or k → ∞.

Proof. In view of Claim 2.8, suppose on the contrary that both 0 and 1/2 are accumulation
points of 1/k. On the one hand, we have ωi = ω1/2, i = 2, 3, . . . , by Claim 2.9. On the other
hand, we have ωi ⩾ ω1, i = 2, 3, . . . , by Claim 2.10 and since ci ⩾ 1. This is a contradiction,
and the result follows. ■

Proof of Proposition 2.6. Immediate from Claims 2.8–2.11. ■

The following is another important consequence of the above discussions:
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Claim 2.12. Each of the ci is eventually constant.

Proof. Follows from Claims 2.8–2.11 and since the ci are integers. ■

Remark 2.13. In [19, Chapter 7], Hora and Obata extended the method of the quantum de-
composition and the QCLT to more general growing regular graphs, and obtained some sufficient
conditions for the theorem to hold. See also [20]. In particular, these conditions can be applied
to Cayley graphs on Coxeter groups, such as the symmetric groups. For distance-regular graphs,
these conditions turn out to be reduced to the following (besides that Σ2

t (A) > 0): (i) k → ∞;
(ii) each of the ci is eventually constant; (iii) the ai/

√
k are convergent; (iv) γ1 exists. See [19,

Theorem 7.14 and Proposition 7.17]. Therefore, if we focus only on distance-regular graphs
with k ⩾ 3, then it follows from Claims 2.8–2.12 that these sufficient conditions are in fact
equivalent to Assumption 2.3 (or the existence of the ωi > 0 and that of the αi, by virtue of
Proposition 2.6).

3 Distance-regular graphs with classical parameters

A distance-regular graph Γ with diameter d is said to have classical parameters (d, q, α, β) (cf. [8,
Section 6.1]) whenever the bi and the ci are expressed as

bi =

([
d

1

]
−
[
i

1

])(
β − α

[
i

1

])
, ci =

[
i

1

](
1 + α

[
i− 1

1

])
(3.1)

for i = 0, 1, . . . , d, where[
i

1

]
= 1 + q + q2 + · · ·+ qi−1

is a Gaussian binomial coefficient. We call q the base. In particular,

k = b0 =

[
d

1

]
β, (3.2)

and by (2.3) we have

ai =

[
i

1

](
β − 1 + α

([
d

1

]
−
[
i

1

]
−
[
i− 1

1

]))
, i = 0, 1, . . . , d. (3.3)

It is known (see [8, Proposition 6.2.1]) that

q ∈ Z \ {0,−1} if d ⩾ 3.

As mentioned in Section 1, all the graphs with q = 1 are known, and the QCLTs for them have
been obtained, so our aim in this paper is to discuss the case where q ∈ {±2,±3, . . . }.

Suppose that Γ has classical parameters (d, q, α, β). By [8, Corollary 8.4.2], the d+1 distinct
eigenvalues of Γ are given by

θi =
bi
qi

−
[
i

1

]
=

[
d− i

1

](
β − α

[
i

1

])
−
[
i

1

]
, i = 0, 1, . . . , d. (3.4)

For i = 0, 1, . . . , d, let Ei denote the orthogonal projection onto the eigenspace of A for θi.
The Ei are polynomials in A, and we have

A(Γ) = span{E0, E1, . . . , Ed}. (3.5)



Scaling Limits for the Gibbs States on Distance-Regular Graphs with Classical Parameters 9

Note by (3.2) that θ0 = k. Since Γ is regular and connected, it follows that (cf. [8, p. 45])

E0 =
1

|X|
J, (3.6)

where J denotes the all-ones matrix.

Recall the set π(Γ) from (2.7). It seems to be a difficult problem to determine π(Γ) in general.
For the Hamming graphs and the Johnson graphs, which have classical parameters with q = 1,
it is shown (see [19, Propositions 5.16 and 6.27]) that this set contains the interval [0, 1], as
consequences of Bożejko’s quadratic embedding test; cf. [19, Proposition 2.14]. For the case
q ̸= 1, the following result again finds infinitely many elements of π(Γ):

Proposition 3.1. Suppose that Γ has classical parameters (d, q, α, β) with d ⩾ 3 and q ∈
{±2,±3, . . . }. Then q−i ∈ π(Γ) for i = 0, 1, 2, . . . .

Proof. We already mentioned that q0 = 1 ∈ π(Γ). By [8, Corollary 8.4.2], the first projection
matrix E1 is of the form

E1 =
1

|X|

d∑
i=0

(
ζ + ηq−i

)
Ai = ζE0 +

η

|X|
Kq−1

for some ζ, η ∈ R, where we have used (3.6). It is customary to write4 θ∗i = ζ + ηq−i, i =
0, 1, . . . , d. Note that θ∗0 = tr(E1) = m1, the multiplicity of θ1 in the spectrum of Γ. It is known
(see [8, Lemma 2.2.1]) that |θ∗i | ⩽ m1 for i = 0, 1, . . . , d. We have η ̸= 0, for otherwise E1 would
be a scalar multiple of E0, a contradiction. If η < 0 then ηq−1 > η, so that θ∗1 > m1, again
a contradiction. Hence η > 0.

We next show that ζ ⩽ 0. If ζ > 0 and q ⩾ 2 then E1 would be a non-zero non-negative matrix
and thus tr(E0E1) > 0 by (3.6), which is absurd. Hence suppose that q ⩽ −2. We observe that
ζ ⩽ 0 if and only if θ∗1 ⩽ m1/q. By [8, Lemma 2.2.1], we have θ1/k = θ∗1/m1. Using this, (3.2),
(3.3), and (3.4), we easily verify that ζ ⩽ 0 if and only if θ1 ⩽ k/q if and only if a1 + q + 1 ⩽ 0.
A kite of length two in Γ is a quadruple (x, y, z, w) of vertices such that x ∼ y ∼ w, x ∼ z ∼ w,
y ∼ z, and x ̸∼ w:

x

y

z

w

A kite of length two is also called a parallelogram of length two. By [37, Theorem 2.12], Γ has
no kite of length two. By [43, Lemma 3.6], we then have a1 + q + 1 ⩽ 0. It follows that ζ ⩽ 0.

Since

Kq−1 =
|X|
η

(E1 − ζE0),

it follows that Kq−1 is positive semidefinite, i.e., q−1 ∈ π(Γ). For i = 2, 3, . . . , we observe
that the matrix Kq−i is a principal submatrix of (Kq−1)⊗i since (Kq−i)x,y = ((Kq−1)x,y)

i for all
x, y ∈ X, and it is therefore positive semidefinite as well. This completes the proof. ■

4The ∗-notation here is used to mean “dual” objects, and is standard in the theory of distance-regular graphs.
The θ∗i are referred to as the dual eigenvalues of Γ.
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We comment on the uniqueness of the classical parameters for Γ. By [8, Corollary 6.2.2],
the classical parameters (d, q, α, β) for Γ are uniquely determined provided that d ⩾ 3, with the
exception of the pairs

(
d, ℓ2, 0, ℓ

)
,

(
d,−ℓ,

ℓ(ℓ+ 1)

1− ℓ
,
ℓ(1 + (−ℓ)d)

1− ℓ

)
, (3.7)

where ℓ ⩾ 2. Ivanov and Shpectorov [22] showed that if Γ has the above classical parameters
then ℓ is a prime power and Γ is the Hermitian dual polar graph 2A2d−1(ℓ) (cf. [8, Section 9.4]).

Assumption 3.2. Recall Assumption 2.3. We moreover assume that the graph Γ = Γλ has
classical parameters (d, q, α, β) with d ⩾ 3 and q ∈ {±2,±3, . . . }. We will view q, α, and β as
functions of Γ. For the classical parameters in (3.7), we understand that we may choose either
set of them.

Recall that we are assuming that d → ∞; cf. (2.11). Our goal is to describe the limit
behaviors of the other parameters q, α, and β. In the following discussions, we will freely use
the expressions (3.1), (3.2), and (3.3). In particular, we note that

α =
c2

q + 1
− 1 ∈ 1

q + 1
Z. (3.8)

The cycles (k = 2) with d ⩾ 3 do not have classical parameters, so that it follows from Claim 2.11
that

k → ∞. (3.9)

Claim 3.3. With reference to Assumption 3.2, lim sup |q| < ∞. In particular, q eventually takes
only finitely many values.

Proof. Suppose that lim sup |q| = ∞, or equivalently, 0 is an accumulation point of 1/q. Then
there exists a subnet of (Γλ)λ∈Λ for which |q| → ∞. By Claim 2.12, c2 is eventually constant,
so that it follows from (3.8) that α → −1 on this subnet. This in turn implies that c3 → ∞ on
this subnet, but this is impossible since c3 is also eventually constant by Claim 2.12. It follows
that lim sup |q| < ∞. ■

Claim 3.4. With reference to Assumption 3.2, suppose that q is not convergent. Then the set
of accumulation points of q is of the form

{
ℓ, ℓ2

}
or

{
ℓ,−ℓ, ℓ2

}
for some ℓ ∈ {±2,±3, . . . },

where α ̸= 0 when q = ±ℓ, and α = 0 when q = ℓ2. Moreover, we have ai/
√
k → 0 for every

i = 1, 2, . . . .

Proof. Recall Claim 3.3. Since c2 is eventually constant by Claim 2.12, it follows from (3.8)
that α is eventually determined by q. We have

ci+1

ci
=

qi+1 − 1

qi − 1
· q − 1 + α(qi − 1)

q − 1 + α(qi−1 − 1)
, i = 1, 2, . . . .

For sufficiently large i (cf. (2.11)), the RHS can be arbitrarily close to q2 when α ̸= 0 and q
when α = 0. Let ℓ and ℓ′ be two distinct accumulation points of q, where |ℓ′| ⩾ |ℓ|(⩾ 2). Since
the LHS above is eventually constant for every i by Claim 2.12, it follows that ℓ′ ∈

{
−ℓ, ℓ2

}
,

where α ̸= 0 when q = ±ℓ, and α = 0 when q = ℓ2.
We next show that ai/

√
k → 0 for every i. Recall that k → ∞ (cf. (3.9)). The ai/

√
k are

convergent by Claims 2.10 and 2.11. Suppose that ai/
√
k ↛ 0 for some i. Then we have ai → ∞

for this i, and since q and α are eventually bounded, it follows that
∣∣β+α

[
d
1

]∣∣ = Θ(ai) → ∞, and
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hence that aj ∼
[
j
1

](
β + α

[
d
1

])
∼

[
j
1

]
a1 for all j. On the one hand, this shows that a1/

√
k ↛ 0.

On the other hand, this also shows that aj/
√
k cannot converge whenever j ⩾ 2 since

[
j
1

]
takes

at least two values depending on q. Hence we must have ai/
√
k → 0 for every i, as desired.

It remains to show that ℓ2 is an accumulation point of q. There is nothing to prove if ℓ′ = ℓ2,
so that we assume that ℓ′ = −ℓ. We have c3 =

(
q2 + q + 1

)
(c2 − q) by (3.8). By setting q = ±ℓ

in this expression and then equating, we find that eventually c2 = ℓ2 + 1. Choose q ∈ {ℓ,−ℓ}
with q < 0, and recall that α ̸= 0 in this case. In particular, we have a2 ̸=

[
2
1

]
a1. Suppose

that a1 = 0. Then a2 ̸= 0, and we have c2 ⩽ 2 by [30, Theorem 2.1], but this is impossible
since c2 = ℓ2 + 1 ⩾ 5. Hence a1 ̸= 0. Then it follows from [44, Main Theorem] that, provided
that d ⩾ 4, either (i) Γ is the dual polar graph 2A2d−1(−q) with α = q(q − 1)/(q + 1) (cf. [8,
Section 9.4]), or (ii) Γ is the Hermitian forms graph Her

(
d, q2

)
with α = q−1 (cf. [8, Section 9.5]),

or (iii) we have α = (q − 1)/2 and β = −
(
qd + 1

)
/2. Since c2 = q2 + 1, it follows from (3.8)

that we are in (i) above. However, the graph 2A2d−1(−q) has another set of classical parameters(
d, q2, 0,−q

)
(cf. (3.7)), and therefore ℓ2 = q2 must also be an accumulation point. ■

Theorem 3.5. With reference to Assumption 3.2, q eventually takes at most three values.
Suppose that q is eventually constant. Then so is α, and the following hold:

(i) If α ̸= 0, then β/
√
k is eventually bounded, and there exist scalars γ and ρ with ρ > 0

and γ(ρ + α/ρ) > −1, such that t
√
k → γ and the accumulation points of β/

√
k are in

{ρ, α/ρ}. Moreover, we have ρ =
√
−α if q < 0.

(ii) If α = 0, then there exist scalars γ and ρ with ρ ⩾ 0 and γρ > −1, such that t
√
k → γ

and β/
√
k → ρ.

Suppose that q is not convergent. Then there exists a subnet of (Γλ)λ∈Λ for which q is eventually
constant and (ii) holds above with ρ = 0.

Conversely, if (Γλ)λ∈Λ is a net of distance-regular graphs having classical parameters with
d ⩾ 3 and q ∈ {±2,±3, . . . }, where q and α are eventually constant, such that d → ∞ and (i)
or (ii) holds above with respect to a suitable function t ∈ π(Γ) with Σ2

t (A) > 0, then (Γλ)λ∈Λ
satisfies Assumption 2.3 (and thus Assumption 3.2 as well).

Proof. The first statement follows from Claims 3.3 and 3.4. We also mentioned earlier (cf. (3.9))
that k → ∞.

Suppose that q is eventually constant. That α is eventually constant follows from Claim 2.12
and (3.8). Set γ = γ1. Since it exists, we have t → 0. Recall again that the ai/

√
k are convergent

by Claims 2.10 and 2.11, and observe that this is equivalent to saying that
(
β + α

[
d
1

])
/
√
k

converges, say, to σ. Assume that α ̸= 0, and let ξ = ρ be a root of the equation ξ + α/ξ = σ
in the variable ξ. Then the other root is ξ = α/ρ. Since β/

√
k and

[
d
1

]
/
√
k are inverses of each

other, it follows that β/
√
k is eventually bounded, and that ρ and α/ρ are its only possible

accumulation points. If q > 0 then α > 0 and β > 0, so that we must have ρ > 0. If q < 0
then α < 0, and since ai/

√
k →

[
i
1

]
σ for every i and the

[
i
1

]
alternate in sign, it follows that

σ = 0, so that we may take ρ =
√
−α > 0 (and thus α/ρ = −

√
−α < 0). By (2.13) and since

ta1 = t
√
k · a1/

√
k → γσ = γ(ρ + α/ρ), we have γ(ρ + α/ρ) > −1. Assume next that α = 0.

We have q > 0 and β > 0 in this case, and set ρ = σ ⩾ 0.
Suppose that q is not convergent, and let the integer ℓ be as in Claim 3.4. Then ℓ2 is an

accumulation point of q, so that there is a subnet of (Γλ)λ∈Λ for which eventually q = ℓ2. Recall
by Claim 3.4 that eventually α = 0, and that ai/

√
k → 0 for every i. Hence we are in the second

case above with ρ = σ = 0.
Finally, let (Γλ)λ∈Λ be a net of distance-regular graphs as described in the last paragraph of

the theorem. Note that k ⩾ 3 since the cycles with d ⩾ 3 do not have classical parameters. Hence
it follows from Theorem 2.7 that k → ∞. Since t

√
k → γ, we then have t → 0. If α ̸= 0 then
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we must also have |β| → ∞ since ρ and α/ρ are non-zero. Observe that ai/
√
k →

[
i
1

]
(ρ+ α/ρ)

for every i, where we set 0/0 := 0 for brevity. In particular, we have ta1 → γ(ρ + α/ρ) > −1,
from which it follows that ω1 exists and is positive. It is now immediate to verify that the ωi

all exist and are positive, and that the αi exist. From Proposition 2.6 it also follows that the γi
exist. ■

Consider the case when q is eventually constant in Theorem 3.5, and recall that so is α in
this case. Recall (cf. (3.1)) also the formula for the ci. The scalars ωi, αi, and γi are expressed
in terms of q, α, and the two scalars γ and ρ in Theorem 3.5 (i) and (ii) as

ωi =
ci

1 + γ(ρ+ α/ρ)
, αi =

[
i−1
1

]
(ρ+ α/ρ)− γ√

1 + γ(ρ+ α/ρ)
, i = 1, 2, . . . ,

and

γi =
γi

√
ci · · · c1

, i = 0, 1, . . . ,

where we set 0/0 := 0 and 00 := 1.

4 More background on graphs with classical parameters

In order to describe the asymptotic normalized spectral distributions corresponding to Theo-
rem 3.5 (i) and (ii), we collect in this section necessary formulas for distance-regular graphs
with classical parameters. Thus, throughout this section, we let Γ = (X,R) denote a (fixed)
distance-regular graph with classical parameters (d, q, α, β), where d ⩾ 3 and q ∈ {±2,±3, . . . }.

Recall the eigenvalues θi, i = 0, 1, . . . , d, of Γ and the corresponding orthogonal projections Ei,
i = 0, 1, . . . , d; cf. (3.4) and (3.5). It is known (see [8, Corollary 8.4.2]) that the ordering
(E0, E1, . . . , Ed) is Q-polynomial ; that is to say, there exist scalars5 a∗i , b

∗
i , c

∗
i ∈ R, i = 0, 1, . . . , d,

such that b∗d = c∗0 = 0, b∗i−1c
∗
i ̸= 0, i = 1, 2, . . . , d, and that

E1 ◦ Ei =
1

|X|
(b∗i−1Ei−1 + a∗iEi + c∗i+1Ei+1), i = 0, 1, . . . , d, (4.1)

where ◦ denotes the entrywise (or Hadamard or Schur) product of matrices, and b∗−1E−1 =
c∗d+1Ed+1 := 0. Note that this property is dual to (2.2). See [10, Section 5] for recent updates
on the study of Q-polynomial distance-regular graphs.

From (2.2) it follows that there exist polynomials vi(ξ) ∈ R[ξ], i = 0, 1, . . . , d, such that
deg vi(ξ) = i and Ai = vi(A). Set ui(ξ) = vi(ξ)/ki, i = 0, 1, . . . , d. In general, by Leonard’s
theorem (see [26], [5, Section III.5]), the polynomials ui associated with every Q-polynomial
distance-regular graph are expressed in terms of the q-Racah polynomials (cf. [25, Section 3.2])
and their special/limit cases in the Askey scheme of (basic) hypergeometric orthogonal polyno-
mials [24, 25]. In the most general (i.e., q-Racah) case, the ui are of the form

ui(θj) = 4ϕ3

(
q−i, s∗qi+1, q−j , sqj+1

r1q, r2q, q
−d

∣∣∣∣ q; q), i, j = 0, 1, . . . , d,

where the parameters r1, r2, s, and s∗ satisfy r1r2 = ss∗qd+1 ̸= 0, and we are using the standard
notation for a basic hypergeometric series mϕn:

mϕn

(
a1, . . . , am
b1, . . . , bn

∣∣∣∣ q; x) =

∞∑
h=0

(a1; q)h · · · (am; q)h
(b1; q)h · · · (bn; q)h

(−1)(m−n−1)hxh

(q; q)hq
(m−n−1)(h2)

,

5See footnote 4.
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where (a; q)h denotes the q-shifted factorial defined by

(a; q)h = (1− a)(1− aq) · · ·
(
1− aqh−1

)
, h = 0, 1, . . . .

To get the ui for our Γ, first fix s, r2 ̸= 0 and let s∗ → 0 (so r1 → 0), and then set

s =
α+ 1− q

(α− β + βq)qd+1
, r2 =

α

(α− β + βq)q
, (4.2)

or equivalently,

α =
r2(1− q)

sqd − r2
, β =

r2q − 1

q(sqd − r2)
.

See [32, Proposition 6.2]. The ui are the dual q-Hahn polynomials (cf. [25, Section 3.7]) for
s ̸= 0 and r2 ̸= 0, the affine q-Krawtchouk polynomials (cf. [25, Section 3.16]) for s = 0 and
r2 ̸= 0, and the dual q-Krawtchouk polynomials (cf. [25, Section 3.17]) for s ̸= 0 and r2 = 0. See
also [40, Examples 5.3–5.9]. We note that, in [32, Proposition 6.2], there is mentioned another
case, called IA, which also corresponds to classical parameters with q ̸= 1. The ui are then
the quantum q-Krawtchouk polynomials (cf. [25, Section 3.14]). However, it is known (see [10,
Proposition 5.8]) that there exists no actual Γ in this case.

For later use, we now establish another basic hypergeometric expression for the polynomi-
als ui. For the moment, fix i, j = 0, 1, . . . , d. Recall Sear’s transformation formula for a termi-
nating balanced 4ϕ3 series (cf. [25, Section 0.6]):

4ϕ3

(
q−i, x, y, z
l, m, n

∣∣∣∣ q; q) = 4ϕ3

(
q−i, x, l/y, l/z

l, xq1−i/m, xq1−i/n

∣∣∣∣ q; q) (m/x; q)i(n/x; q)i
(m; q)i(n; q)i

xi,

where xyzq1−i = lmn ̸= 0. Applying this formula twice and then simplifying a bit, we obtain

4ϕ3

(
q−i, x, y, z
l, m, n

∣∣∣∣ q; q) = 4ϕ3

(
q−i, x, xyq1−i/ln, xzq1−i/ln

xq1−i/n, xq1−i/l, m

∣∣∣∣ q; q) (n/x; q)i(l/x; q)i
(n; q)i(l; q)i

xi.

Set

x = q−j , y = s∗qi+1, z = sqj+1, l = q−d, m = r1q, n = r2q

in this result. Then we obtain the following expression for the ui for the q-Racah case:

ui(θj) = 4ϕ3

(
q−i, q−j , s∗qd−j+1/r2, sq

d−i+1/r2
q−i−j/r2, q

d−i−j+1, r1q

∣∣∣∣ q; q) (r2q
j+1; q)i(q

j−d; q)i
(r2q; q)i(q−d; q)iqij

.

By letting s∗ → 0, the RHS becomes

3ϕ2

(
q−i, q−j , sqd−i+1/r2
q−i−j/r2, q

d−i−j+1

∣∣∣∣ q; q) (r2q
j+1; q)i(q

j−d; q)i
(r2q; q)i(q−d; q)iqij

=
i∑

h=0

(q−i; q)h(q
−j ; q)h(r2; sq

d−i+1; q)hq
h

(r2; q−i−j ; q)h(qd−i−j+1; q)h(q; q)h

(r2q
j+1; q)i(q

j−d; q)i
(r2q; q)i(q−d; q)iqij

,

where we write

(x; y; q)h = (x− y)(x− yq) · · ·
(
x− yqh−1

)
, h = 0, 1, . . .
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for convenience. We then set s and r2 as in (4.2), and obtain the ui for Γ as follows:

ui(θj) =
i∑

h=0

(q−i; q)h(q
−j ; q)h(α; (α+ 1− q)q1−i; q)hq

h

(α; (α− β + βq)q1−i−j ; q)h(qd−i−j+1; q)h(q; q)h

(α− β + βq;αqj ; q)i(q
j−d; q)i

(α− β + βq;α; q)i(q−d; q)iqij
.

Using (2.4) and (3.1) we have

ki =
(q−d; q)i(α− β + βq;α; q)iq

di

(α+ 1− q;α; q)i(q; q)i
,

from which it follows that

vi(θj) = kiui(θj) =
i∑

h=0

(q−j ; q)h(q
j−d; q)i−h(α− β + βq;αqj ; q)i−hq

(i−h)(d−j)+jh

(q; q)h(α+ 1− q;α; q)i−h(q; q)i−h
. (4.3)

Let mi = tr(Ei), the multiplicity of θi in the spectrum of Γ. This value is computed in [8,
Theorem 8.4.3]:

mi =

∏i−1
h=0

[
d−h
1

](
β −

[
h
1

]
α
)(
1 +

[
d−h
1

]
α+ qd−hβ

)∏i
h=1

[
h
1

](
β −

[
h
1

]
α+ qh

)(
1 +

[
d−h
1

]
α
) (

1 +
[
d−2i
1

]
α+ qd−2iβ

)
qi

1 +
[
d
1

]
α+ qdβ

=
(q−d; q)i(α− β + βq;α; q)i(α− β + βq; (α+ 1− q)q−d; q)i
(q; q)i(α− β + βq; (α+ 1− q)q; q)i(α+ 1− q;αqd−i; q)i

× (α− β + βq − (α+ 1− q)q2i−d)q2di−i2

α− β + βq − (α+ 1− q)q−d
. (4.4)

Finally, we obtain a closed formula for |X|, the number of vertices of Γ. Recall the C-vector
space W (Γ) from (2.8). In view of (3.5), W (Γ) has another orthonormal basis Ψ0,Ψ1, . . . ,Ψd

defined by

Ψi =

√
|X|
mi

Eiô, i = 0, 1, . . . , d.

As in the proof of Proposition 3.1, write

E1 =
1

|X|

d∑
i=0

θ∗iAi.

Now, let

D = |X| diagE1ô.

Then we have

AΨi = θiΨi, DΦi = θ∗iΦi, i = 0, 1, . . . , d.

Moreover, it follows from (2.2) and (4.1) that the matrix representing the action of A (resp. D)
on W (Γ) with respect to the Φi (resp. the Ψi) is tridiagonal with non-zero superdiagonal and
subdiagonal entries. This means that A and D act on W (Γ) as a Leonard pair in the sense of [38,
Definition 1.1]. In the theory of Leonard pairs, there is a scalar denoted by ν [39, Definition 9.3],
and it is easy to see that ν = ⟨Φ0,Ψ0⟩−2 = |X| for the above Leonard pair on W (Γ). For the
q-Racah case, the scalar ν is given in [39, p. 273] as follows:

ν =

(
sq2; q

)
d

(
s∗q2; q

)
d

rd1q
d(sq/r1; q)d(s∗q/r1; q)d

.

Again by letting s∗ → 0 and then setting s and r2 as in (4.2), it follows that

|X| = (−1)d(α− β + βq; (α+ 1− q)q1−d; q)dq
(d2)

(α+ 1− q;α; q)d
. (4.5)
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5 Description of asymptotic normalized spectral distributions

In this section, we describe the asymptotic normalized spectral distributions (cf. Remark 2.5)
corresponding to Theorem 3.5 (i) and (ii), following [17].

We retain the notation of the previous section. The Borel probability measure µ on R
from (2.1) associated with the normalized adjacency matrix (2.12) is given by

µ

(
θj − tk

Σt(A)

)
=

d∑
i=0

tivi(θj)
mj

|X|
, j = 0, 1, . . . , d, (5.1)

which follows from (2.5) and since

(
A− tkI

Σt(A)

)ℓ
Ej =

(
θj − tk

Σt(A)

)ℓ
Ej , AiEj = vi(θj)Ej

for ℓ = 0, 1, . . . and i, j = 0, 1, . . . , d. From (4.4) and (4.5) it follows that

mj

|X|
=

(q−d; q)j(α− β + βq;α; q)j(α+ 1− q;α; q)d−j

(q; q)j(α− β + βq; (α+ 1− q)qj−d; q)d+1

× (−1)d(α− β + βq − (α+ 1− q)q2j−d)q2dj−j2−(d2) (5.2)

for j = 0, 1, . . . , d. From (4.3) it follows that

d∑
i=0

tivi(θj) =

d∑
h=0

(q−j ; q)hq
jhth

(q; q)h

d∑
i=h

(qj−d; q)i−h(α− β + βq;αqj ; q)i−hq
(i−h)(d−j)ti−h

(α+ 1− q;α; q)i−h(q; q)i−h

= 1ϕ0

(
q−j

−

∣∣∣∣ q; qjt) d−j∑
ℓ=0

(qj−d; q)ℓ(α− β + βq;αqj ; q)ℓq
ℓ(d−j)tℓ

(α+ 1− q;α; q)ℓ(q; q)ℓ

= (t; q)j

d−j∑
ℓ=0

(qj−d; q)ℓ(α− β + βq;αqj ; q)ℓq
ℓ(d−j)tℓ

(α+ 1− q;α; q)ℓ(q; q)ℓ
(5.3)

for j = 0, 1, . . . , d, where we have used the q-binomial theorem (cf. [25, Section 0.5])

1ϕ0

(
q−n

−

∣∣∣∣ q; x) = (xq−n; q)n, n = 0, 1, 2, . . . . (5.4)

Note that the last sum in (5.3) is a 2ϕ1 in general.

5.1 Case β/
√
k → ρ > 0

With reference to Assumption 3.2, suppose that we are in Theorem 3.5 (i), or (ii) with ρ > 0.
For (i), we moreover assume that ρ is indeed an accumulation point of β/

√
k, and will consider

a subnet of (Γλ)λ∈Λ for which β/
√
k → ρ if necessary (i.e., if α/ρ is also an accumulation point).

We note that k → ∞ (cf. (3.9)), |β| → ∞, t → 0, and that

β(q − 1)

qd
∼ β2

k
→ ρ2, tβ = t

√
k

β√
k
→ γρ, tqd → γ(q − 1)

ρ
.
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Using this, (3.4), (5.2), and (5.3), we routinely compute

θd−j − tk

Σt(A)
→

[
j
1

]
(ρ− α/ρqj)− 1/ρqj − γ√

1 + γ(ρ+ α/ρ)
, (5.5)

md−j

|X|
→

(
α/ρ2qj+1; q−1

)
∞(α+ 1− q;α; q)j

(
1− (α+ 1− q)/ρ2q2j

)(
(α+ 1− q)/ρ2qj ; q−1

)
∞(q; q)jρ2jqj

2−j
, (5.6)

d∑
i=0

tivi(θd−j) →
(
γ(q − 1)/ρqj+1; q−1

)
∞

j∑
ℓ=0

(q−j ; q)ℓ
(
α/ρ2qj ; q

)
ℓ
γℓρℓqjℓ(q − 1)ℓ

(α+ 1− q;α; q)ℓ(q; q)ℓ
(5.7)

for j = 0, 1, 2, . . . . The measure (5.1) converges weakly to the discrete measure µ∞ on R defined
on the limit points in (5.5), where the masses are given by the products of the limits in (5.6)
and (5.7).6

5.2 Case α ̸= 0, β/
√
k → α/ρ

With reference to Assumption 3.2, suppose that we are in Theorem 3.5 (i), and that α/ρ is an
accumulation point of β/

√
k. We will consider a subnet of (Γλ)λ∈Λ for which β/

√
k → α/ρ if

necessary. The formulas for the limit distribution are simply obtained by replacing ρ by α/ρ in
those of the previous case:

θd−j − tk

Σt(A)
→

[
j
1

](
α/ρ− ρ/qj

)
− ρ/αqj − γ√

1 + γ(ρ+ α/ρ)
,

md−j

|X|
→

(
ρ2/αqj+1; q−1

)
∞(α+ 1− q;α; q)j

(
1− (α+ 1− q)ρ2/α2q2j

)
ρ2j(

(α+ 1− q)ρ2/α2qj ; q−1
)
∞(q; q)jα2jqj2−j

,

d∑
i=0

tivi(θd−j) →
(
γρ(q − 1)/αqj+1; q−1

)
∞

j∑
ℓ=0

(q−j ; q)ℓ
(
ρ2/αqj ; q

)
ℓ
αℓγℓqjℓ(q − 1)ℓ

(α+ 1− q;α; q)ℓ(q; q)ℓρℓ

for j = 0, 1, 2, . . . . We note that, while the roles of ρ and α/ρ are interchangeable when q > 0,
their distinction is essential when q < 0, as ρ =

√
−α and α/ρ = −

√
−α.

5.3 Case α = 0, β/
√
k → 0

With reference to Assumption 3.2, suppose that we are in Theorem 3.5 (ii) with ρ = 0. Note
that q > 0 in this case, and let

c =
⌊
logq

√
k
⌋
.

Then we have
√
k/qc ∈ [1, q). Let η/

√
q − 1 ∈ [1, q] be an accumulation point of

√
k/qc, and

consider a subnet of (Γλ)λ∈Λ for which
√
k/qc → η/

√
q − 1 if η is not unique. We note that

k → ∞, t → 0, c → ∞, d− c → ∞, and that

βqd−2c ∼ k(q − 1)

q2c
→ η2, tβ → 0, tqc → γ

√
q − 1

η
.

Using this, (3.4), (5.2), and (5.3), we obtain

θc−j − tk

Σt(A)
→ ηqj − 1/ηqj√

q − 1
− γ,

6This follows for example from the observation that µ((a, b)) → µ∞((a, b)) for every bounded open interval
(a, b) in R and [7, Theorem 8.2.17]. When q > 0, it is also immediate to check that the distribution function of µ
converges to that of µ∞ at the points of continuity of the latter.
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mc−j

|X|
→

(
1 + 1/η2q2j

)
q−2j2+j(

q−1; q−1
)
∞
(
−1/η2; q−1

)
∞
(
−η2/q; q−1

)
∞η4j

,

d∑
i=0

tivi(θc−j) →
(
γ
√
q − 1/ηqj+1; q−1

)
∞
(
−γηqj−1

√
q − 1; q−1

)
∞

for j = 0,±1,±2, . . . , where we have used(
−qc−j−d/β; q

)
d+1

=
(
−qc−j−d/β; q

)
c+j+1

(
−q2c−d+1/β; q

)
d−c−j

for the second formula, and (5.4) for the third one. Again, the measure (5.1) converges weakly
to the discrete measure µ∞ on R defined by the above limits.

6 Examples

There are currently eleven known infinite families of distance-regular graphs having classical
parameters with unbounded diameter and such that q ̸= 1. In this section, we apply the results
of the previous sections to these eleven families. For more detailed information on these families,
see the references given. It should be remarked that, by virtue of Proposition 3.1, there exist
infinitely many choices for the scalar γ in Theorem 3.5 (i) and (ii).

6.1 Grassmann graphs and twisted Grassmann graphs

The Grassmann graph Jq(n, d) has as vertices the d-dimensional subspaces of the n-dimensional
vector space Fn

q over the finite field Fq with q elements, where two vertices x and y are adjacent
when dimx ∩ y = d − 1; cf. [8, Section 9.1]. We always assume that n ⩾ 2d, as Jq(n, d) and
Jq(n, n− d) are isomorphic. The graph Jq(n, d) has classical parameters (d, q, α, β), where

α = q, β = q

[
n− d

1

]
.

Fix q and let d → ∞, t
√
k → γ, and let also n− 2d+ 1 → 2δ for some δ ∈ 1

2Z, so that we have

β/
√
k → ρ := qδ. We are in Theorem 3.5 (i), and from the results of Section 5.1 it follows that

the measure (5.1) converges weakly to µ∞, where

µ∞

(
qδ+j + q−δ−j − qδ − q1−δ − γ(q − 1)

(q − 1)
√
1 + γ(qδ + q1−δ)

)
=

(
1

qj(2δ+j−1)
− 1

q(j+1)(2δ+j)

)(
γ(q − 1)/qδ+j+1; q−1

)
∞

× 2ϕ1

(
q−j , q1−2δ−j

q

∣∣∣∣ q; γ(q − 1)qδ+j

)
for j = 0, 1, 2, . . . . Note that δ ⩾ 1/2 and α/ρ = q1−δ, from which it follows that a different
choice of δ gives rise to a different limit in Theorem 3.5 (i). Hora [16] previously obtained µ∞
for the vacuum state φ0, i.e., for γ = 0.

The twisted Grassmann graph J̃q(2d+1, d) is defined as follows. Fix a hyperplane H of F2d+1
q .

The vertex set consists of the (d + 1)-dimensional subspaces of F2d+1
q which are not contained

in H, together with the (d− 1)-dimensional subspaces of H. Two vertices x and y are adjacent
when dimx + dim y − 2 dimx ∩ y = 2. See [9]. The graph J̃q(2d + 1, d) has the same classical
parameters as Jq(2d+ 1, d), and hence we obtain the above measure µ∞ with δ = 1.
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6.2 Dual polar graphs and Hemmeter graphs

Consider one of the following vector spaces V endowed with a non-degenerate form:

Cd(q): V = F2d
q with a symplectic form;

Bd(q): V = F2d+1
q with a quadratic form;

Dd(q): V = F2d
q with a quadratic form of Witt index d;

2Dd+1(q): V = F2d+2
q with a quadratic form of Witt index d;

2A2d(r): V = F2d+1
q with a Hermitian form (q = r2);

2A2d−1(r): V = F2d
q with a Hermitian form (q = r2).

We note that maximal isotropic subspaces of V have dimension d. The dual polar graph on V
has as vertices these maximal isotropic subspaces, where two vertices x and y are adjacent when
dimx ∩ y = d − 1; cf. [8, Section 9.4]. This graph has classical parameters (d, q, 0, qe), where
we let e be 1, 1, 0, 2, 3/2, 1/2 in the respective types Cd(q), Bd(q), Dd(q),

2Dd+1(q),
2A2d(r),

and 2A2d−1(r). Fix one of these types as well as q, and let d → ∞, t
√
k → γ. We have β/

√
k → 0,

and hence we are in Theorem 3.5 (ii) with ρ = 0. Let the scalar c be as in Section 5.3. Note
that

c =

⌊
logq(q

d − 1)− logq(q − 1) + e

2

⌋
.

Using d ∼ logq(q
d − 1) < d and 0 ⩽ logq(q − 1) < 1, we obtain the value of c for sufficiently

large d as follows:

e = 1 e = 0 e = 2 e = 3/2 e = 1/2

d even d/2 d/2− 1 d/2 d/2 d/2− 1

d odd (d− 1)/2 (d− 1)/2 (d+ 1)/2 (d− 1)/2 (d− 1)/2

For the last two cases (e ∈ {3/2, 1/2}), we have also used q ⩾ 4 (as q = r2 is a square) and
log4 3 = 0.792 . . . . It follows that

√
k/qc ∈ [1, q) has two accumulation points, and considering

limits for even d and odd d separately, the scalar η from Section 5.3 is given as in the following
table:

e = 1 e = 0 e = 2 e = 3/2 e = 1/2

d even q1/2 q q q3/4 q5/4

d odd q q1/2 q1/2 q5/4 q3/4

The measure (5.1) converges weakly to the measure µ∞ as described in Section 5.3. (We do not
write down the result here, since there are four values of η and also since the substitution of
these values does not seem to simplify the formula significantly.)

Note that the graphs Cd(q) and Bd(q) share the same classical parameters (d, q, 0, q). The
extended bipartite double of a graph Γ = (X,R) is the graph with vertex set F2 × X, where
a vertex (ϵ, x) is adjacent to (ϵ+1, x) and all the vertices (ϵ+1, y) with x ∼ y. The graph Dd(q)
is shown to be isomorphic to the extended bipartite double of Bd−1(q). The Hemmeter graph
Hemd(q) is then defined as the extended bipartite double of Cd−1(q); cf. [8, Section 9.4C]. It has
the same classical parameters (d, q, 0, 1) as Dd(q), so that we obtain the above µ∞ for e = 0.

6.3 Half dual polar graphs and Ustimenko graphs

Recall that a graph Γ = (X,R) is said to be bipartite whenever there is a bipartition X =
X+ ⊔ X− such that no edge is contained in X+ or X−. In this case, a halved graph of Γ
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has as vertex set either X+ or X−, where two distinct vertices are adjacent when there is
a path of length two joining them in Γ. The dual polar graph Dn(r) and the Hemmeter graph
Hemn(r) are bipartite, and their halved graphs are called the half dual polar graph Dn,n(r) and
the Ustimenko graph Ustn(r), respectively; cf. [8, Section 9.4C]. These graphs have classical
parameters (d, q, α, β), where

d =
⌊n
2

⌋
, q = r2, α = r(r + 1), β =

r(rm − 1)

r − 1
,

where m = 2⌈n/2⌉− 1. Fix r, and let d → ∞, t
√
k → γ. Note that β/

√
k has two accumulation

points
√
r + 1 and r

√
r + 1 = α/

√
r + 1, where β/

√
k →

√
r + 1 for even n, and β/

√
k →

r
√
r + 1 for odd n. We consider limits for even n and odd n separately. Set ϵ = 0 for even n,

and ϵ = 1 for odd n. From the results of Sections 5.1 and 5.2 it follows that the measure (5.1)
converges weakly to µ∞, where

µ∞

(
rϵ+2j + r−ϵ−2j − r − 1− γ(r − 1)

√
r + 1

(r − 1)
√
r + 1 + γ(r + 1)5/2

)
=

r2ϵ+4j − 1

rϵ+2j − 1

(r−1; r−2)∞

r(ϵ+j)(2j+1)(r−2; r−2)∞

(
γ(r − 1)

√
r + 1/rϵ+2j+2; r−2

)
∞

× 2ϕ1

(
r−2j , r1−2ϵ−2j

r

∣∣∣∣ r2; γrϵ+2j(r − 1)
√
r + 1

)

for j = 0, 1, 2, . . . , where we understand that
(
r0 − 1

)
/
(
r0 − 1

)
= 1 when ϵ = j = 0.

6.4 Second classical parameters for dual polar graphs 2A2d−1(r)

The Hermitian dual polar graph 2A2d−1(r) has another set of classical parameters (d, q, α, β),
where (cf. (3.7))

q = −r, α =
r(r + 1)

1− r
, β =

r(1 + (−r)d)

1− r
.

Fix r, and let d → ∞, t
√
k → γ. Note that β/

√
k has two accumulation points ±

√
−α, where

β/
√
k → −

√
−α for even d, and β/

√
k →

√
−α for odd d. We consider limits for even d and

odd d separately. According to whether β/
√
k → ±

√
−α, the measure (5.1) converges weakly

to µ∞, where

µ∞

(
∓
√
r(−r)j ±

√
r
−1

(−r)−j

√
r2 − 1

− γ

)
=

(r2j+1+1)(r−1;−r−1)∞

r(j+1)2(−r−1;−r−1)∞

(
∓ γ(−r)−j−1

√
r2−1

r
;−r−1

)
∞

(
∓ γ(−r)j−1

√
r2−1

r
; r−2

)
j

for j = 0, 1, 2, . . . . Here we have again used (5.4) to get the result. We may routinely verify
that this measure is identical to the one in Section 6.2 with e = 1/2, using(

r−1;−r−1
)
∞
(
−r−1; r−2

)
∞ = 1,

which is a special case of Lebesgue’s identity; see, e.g., [11].
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6.5 Sesquilinear forms graphs

There are four infinite families of sesquilinear forms graphs, all of which are Cayley graphs.
The bilinear forms graph Bil(d × e, q) has as vertices the d × e matrices over Fq, where two

vertices x and y are adjacent when rank(x − y) = 1; cf. [8, Section 9.5A]. We always assume
that d ⩽ e, as Bil(d× e, q) and Bil(e× d, q) are isomorphic. The graph Bil(d× e, q) has classical
parameters (d, q, q− 1, qe− 1). Fix q and let d → ∞, t

√
k → γ, and e− d → 2δ for some δ ∈ 1

2Z,
so that β/

√
k → ρ := qδ

√
q − 1. The measure (5.1) converges weakly to µ∞, where

µ∞

(
qδ+j − qδ − q−δ − γ

√
q − 1√

q − 1 + γ(qδ + q−δ)(q − 1)3/2

)
=

(−1)j(q−2δ−j−1; q−1)∞

(q; q)jq
2δj+(j2)

(
γ
√

q−1/qδ+j+1; q−1
)
∞2ϕ0

(
q−j , q−2δ−j

−

∣∣∣∣ q; γqδ+j
√

q−1

)

for j = 0, 1, 2, . . . . Since δ ⩾ 0 and α/ρ = q−δ
√
q − 1, it follows that a different choice of δ gives

rise to a different limit in Theorem 3.5 (i).
The alternating forms graph Alt(n, r) has as vertices the n×n skew-symmetric matrices with

zero diagonal over Fr, where two vertices x and y are adjacent when rank(x − y) = 2; cf. [8,
Section 9.5B]. It has classical parameters (d, q, α, β), where

d =

⌊
n

2

⌋
, q = r2, α = r2 − 1, β = rm − 1,

where m = 2⌈n/2⌉ − 1. Fix r, and let d → ∞, t
√
k → γ. Note that we can apply the above

computation with e := m/2. Hence we consider limits for even n and odd n separately, and set
δ = −1/4 for even n and δ = 1/4 for odd n. We then obtain the above measure µ∞ with q = r2.

The quadratic forms graph Qua(n− 1, r) has as vertices the quadratic forms on Fn−1
r , where

two vertices x and y are adjacent when rank(x − y) ∈ {1, 2}. See [8, Section 9.6] for a precise
description. This graph has the same classical parameters as Alt(n, r), and thus the result is
the same as above.

Finally, the Hermitian forms graph Her
(
d, r2

)
has as vertices the d × d Hermitian matrices

over Fr2 , where two vertices x and y are adjacent when rank(x−y) = 1; cf. [8, Section 9.5C]. It has
classical parameters (d,−r,−r − 1,−(−r)d − 1). Fix r, and let d → ∞, t

√
k → γ. We consider

limits for even d and odd d separately, where β/
√
k → −

√
r + 1 for even d, and β/

√
k →

√
r + 1

for odd d. According to whether β/
√
k → ±

√
r + 1, the measure (5.1) converges weakly to µ∞,

where

µ∞

(
∓ (−r)j√

r + 1
− γ

)
=

(
−(−r)−j−1;−r−1

)
∞

(−r;−r)j(−r)(
j
2)

(
∓ γ

√
r + 1/(−r)j+1;−r−1

)
∞

× 2ϕ0

(
(−r)−j ,−(−r)−j

−

∣∣∣∣− r;±γ(−r)j
√
r + 1

)
for j = 0, 1, 2, . . . .

Remark 6.1. Set γ = 0 in the above examples, which is the case when we take scaling limits
of the vacuum state φ0. The measure µ∞ is then an affine transformation of the discrete
orthogonality measure of the Al-Salam–Chihara polynomials (cf. [25, Section 3.8]) for Sections 6.1
and 6.3, that of the continuous q−1-Hermite polynomials (cf. [25, Section 3.26]) for Sections 6.2
and 6.4, and that of the Al-Salam–Carlitz II polynomials (cf. [25, Section 3.25]) with base q−1

for Section 6.5. For the discrete orthogonality measures of the first two families of orthogonal
polynomials, see, e.g., [2, equation (3.82)], [3, equation (3.18)], and [21, equation (6.31)].



Scaling Limits for the Gibbs States on Distance-Regular Graphs with Classical Parameters 21

Acknowledgements

The authors thank the anonymous referees for valuable comments. HT thanks Professor Tom
Koornwinder for letting him know that the measure µ∞ with γ = 0 in Section 6.1 corresponds
to the Al-Salam–Chihara polynomials, and for providing relevant references. Part of this work
was done while MK was visiting Tohoku University from February to July 2020, supported by
K.N. Toosi University of Technology, Office of Vice-Chancellor for Global Strategies and Inter-
national Affairs. NO and HT were supported by JSPS KAKENHI Grant Number JP19H01789.
HT was also supported by JSPS KAKENHI Grant Numbers JP17K05156 and JP20K03551.
This work was also partially supported by the Research Institute for Mathematical Sciences at
Kyoto University.

References

[1] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer-Verlag, Berlin, 2002.

[2] Askey R., Ismail M., Recurrence relations, continued fractions, and orthogonal polynomials, Mem. Amer.
Math. Soc. 49 (1984), iv+108 pages.

[3] Atakishiyev N.M., Klimyk U., Duality of q-polynomials, orthogonal on countable sets of points, Electron.
Trans. Numer. Anal. 24 (2006), 108–180, arXiv:math.CA/0411249.

[4] Bang S., Dubickas A., Koolen J.H., Moulton V., There are only finitely many distance-regular graphs of
fixed valency greater than two, Adv. Math. 269 (2015), 1–55, arXiv:0909.5253.

[5] Bannai E., Ito T., Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing
Co., Inc., Menlo Park, CA, 1984.

[6] Biggs N., Algebraic graph theory, 2nd ed., Cambridge Mathematical Library, Cambridge University Press,
Cambridge, 1993.

[7] Bogachev V.I., Measure theory, Vols. I, II, Springer-Verlag, Berlin, 2007.

[8] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Ergebnisse der Mathematik und ihrer
Grenzgebiete (3), Vol. 18, Springer-Verlag, Berlin, 1989.

[9] Van Dam E.R., Koolen J.H., A new family of distance-regular graphs with unbounded diameter, Invent.
Math. 162 (2005), 189–193.

[10] Van Dam E.R., Koolen J.H., Tanaka H., Distance-regular graphs, Electron. J. Combin. (2016), #DS22,
156 pages, arXiv:1410.6294.

[11] Fu A.M., A combinatorial proof of the Lebesgue identity, Discrete Math. 308 (2008), 2611–2613.

[12] Gudder S.P., Quantum probability, Probability and Mathematical Statistics, Academic Press, Inc., Boston,
MA, 1988.

[13] Hashimoto Y., Quantum decomposition in discrete groups and interacting Fock spaces, Infin. Dimens. Anal.
Quantum Probab. Relat. Top. 4 (2001), 277–287.

[14] Hashimoto Y., Hora A., Obata N., Central limit theorems for large graphs: method of quantum decompo-
sition, J. Math. Phys. 44 (2003), 71–88.

[15] Hashimoto Y., Obata N., Tabei N., A quantum aspect of asymptotic spectral analysis of large Hamming
graphs, in Quantum Information, III (Nagoya, 2000), Editors T. Hida, K. Saitô, World Sci. Publ., River
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