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Abstract. We introduce families of four-regular graphs consisting of chains of hourglasses
which are attached to a finite kernel. We prove a formula for the c2 invariant of these
hourglass chains which only depends on the kernel. For different kernels these hourglass
chains typically give rise to different c2 invariants. An exhaustive search for the c2 invariants
of hourglass chains with kernels that have a maximum of ten vertices provides Calabi–Yau
manifolds with point-counts which match the Fourier coefficients of modular forms whose
weights and levels are [4,8], [4,16], [6,4], and [9,4]. Assuming the completion conjecture,
we show that no modular form of weight 2 and level ≤ 1000 corresponds to the c2 of such
hourglass chains. This provides further evidence in favour of the conjecture that curves are
absent in c2 invariants of ϕ4 quantum field theory.
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1 Introduction

Given a graph G, to each edge e ∈ E(G) associate a variable αe and define the Kirchhoff
polynomial or first Symanzik polynomial to be

ΨG =
∑
T

∏
e̸∈T

αe,

where the sum is over all spanning trees T of G. When it converges define the Feynman period
of G to be the projective integral

PG =

∫
αe≥0

Ω

Ψ2
G

, (1.1)

where Ω =
∑|E(G)|

i=1 (−1)idα1 · · · d̂αi · · · dα|E(G)|. The Feynman period PG is the residue of its
Feynman integral. It contributes to the β-function which controls the way the physical coupling
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K

Figure 1. An illustration of the type of graph we consider. The shaded section is the kernel which is

attached to the hourglass chain.

changes with momentum, see, e.g., [16]. The β-function also plays a prominent role for appli-
cations to phase transitions in statistical physics, see, e.g., [17, 33]. So, the Feynman period is
of significance in various branches of physics. Furthermore, the Feynman period exhibits the
arithmetic content of the Feynman integral, so it is very interesting for anyone studying the
geometry and number theory underlying quantum field theory [1, 3, 21, 24].

In [4] Francis Brown introduced denominator reduction as a tool for studying Feynman
periods algebraically. Denominator reduction describes how the denominators of the Feynman
periods change through successive edge integrations. When these denominators fail to factor into
linear pieces denominator reduction ends. Keeping track of the numerators in this process using
multiple polylogarithms gives an algorithm for parametric Feynman integration which fails when
denominator reduction stops [4, 5]. Improvements and variants of this integration approach have
been implemented [20], but the constraint of the non-factoring denominators remains.

Denominator reduction itself is purely algebraic, but still carries substantial information
about these integrals since the numerator polynomials in each integration step are typically of
simpler geometry than the denominator. This simplicity of the numerators is inherited from
the second integration step, where the polynomials in the numerator are mere coefficients of ΨG

whereas the denominator is a resultant. The geometric domination of the denominator, however,
is not a fully general feature. There exist (rare) examples where the Feynman integral PG has
a geometry which is missed by denominator reduction.

Denominator reduction tells us about weight drop [12] and can be used to compute the c2
invariant, an arithmetic graph invariant that predicts properties of the Feynman periods [9, 25]
(for a definition see Section 2.3).

In [27] one of us defined a generalized denominator reduction, called quadratic denominator
reduction, that can always progress at least one more step than standard denominator reduction,
and sometimes much further. At the cost of not working for even prime powers ̸= 2, this
quadratic denominator reduction can be used to compute c2 invariants and so still tells us about
the geometries underlying the Feynman periods.

The geometric idea behind quadratic denominator reduction is that in certain cases a denom-
inator with a square root still has rational geometry as it defines a projective line.

As a demonstration of the power of quadratic denominator reduction, in this paper we will
study infinite families of graphs built by attaching a chain of hourglasses to a finite kernel,
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Figure 2. The graph K ′ is the kernel K with the two extra edges 1 and 2.

= ×

P (Ḡ) = P (Ḡ1) × P (Ḡ2)

Figure 3. Vertex connectivity 3 leads to a product of periods.

see Figure 1. The c2 invariant for any such graph will only depend on the kernel, giving arbitrarily
many infinite families of graphs for which we know the c2 invariant (for the prime 2 and odd
prime powers).

With the notions of hourglass, kernel, and hourglass chain as illustrated in Figures 1 and 2
we can state our theorem.

Theorem 1.1. Let K be a kernel and let L ∈ GK be a graph of the type we consider with an
hourglass chain of length at least 6, see Section 2.8 for definitions. Let v be a vertex of the
hourglass chain that is shared by the second and third hourglasses from one end. Let K ′ be K
with new edges joining the external vertices as in Figure 2. Index these new edges by 1 and 2
(with variables α1 and α2, respectively). If q is an odd prime power then

c
(q)
2 (L− v) ≡

(
α1

(
Ψ1,2

K′ (α)
)2
Ψ2,2

K′ (α)ΨK′,2(α)
)
q

mod q, (1.2)

where (F )q is the Legendre sum of the polynomial F , see Definition 2.8. For q = 2 the c2

invariant of L− v vanishes, c
(2)
2 (L− v) ≡ 0 mod 2.

The Dodgson polynomials on the right hand side of (1.2) are defined in Section 2. Good
introductory references for the general role of Dodgson polynomial in physics are, e.g., [4, 14, 22].

Graphs G for which the Feynman period exists, sometimes have structures which lead to
graphical reductions, see Section 2.7 and [24]. If G has a three vertex split the period factorizes,
see Figure 3. Double triangles can be reduced without changing the c2 [11], see Figure 4.
Hourglass chains (for suitable kernels) have no such reductions. They establish families of the
most complicated type, the prime ancestors [2, 24]. Hourglass chains are the first families of
prime ancestors for which the c2 invariant can be calculated. In a certain sense these hourglass
chains can be considered as ‘telescopes’ that enable us to look into geometries of Feynman graphs
at very high loop order (i.e., the number of independent cycles in L − v). This has never been
achieved before: all previous techniques were either restricted to the analysis of small graphs, or
they worked in a way which was fundamentally prime-by-prime [13, 30, 32] and hence did not
lead to non-trivial graph families with the same underlying geometries.

The paper is organized as follows: in Section 2 we provide the necessary background informa-
tion on denominator reduction and the c2 invariant. Section 3 contains the proof of Theorem 1.1:
the hourglass reductions.

Finally we use Theorem 1.1 in Section 4 for an exhaustive search for c2 invariants in hourglass
chains with kernels of at most six internal vertices (vertices which are not attached to the
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Figure 4. Double triangle reduction: Replace a joint vertex of two attached triangles by a crossing.

hourglasses, see Figure 19 and Table 2 for a maximum of five internal vertices). We find Legendre
symbols (see Section 2) (4/q) and (−4/q) along with several modular forms. Explicitly the weight
and level of the identified modular forms (given in the notation [weight,level], see [10, 27]) are
[4,8], [4,16], [6,4], and [9,4]. The modular form [9,4] is a new addition to the table of modular
forms in ϕ4 theory as it was not found in ϕ4 graphs of loop orders less or equal twelve which
were studied in [27].

An important outcome of this article is providing further support for the conjecture that
in ϕ4 theory (corresponding to 4-regular graphs) the c2 is free of curves (which correspond to
weight 2 modular forms), [10, Conjecture 26], see also [27]. This puzzling conjecture is for the
first time tested to any loop order for some non-trivial geometries. It seems to be connected to
some deep algebraic structure in quantum field theories. Note that curves in c2 invariants are
ubiquitous if one lifts the (physical) restriction to 4-regular graphs.

For extra support of this “no-curves-puzzle” it might be worthwhile to study kernels in the
future which lead out of ϕ4 graphs. Which non-ϕ4 kernels provide c2 invariants that correspond
to weight two modular forms? It is also possible to extend the c2-search to the rapidly increasing
number of kernels with more than six internal vertices, see Table 1 and Question 3.1.

2 Background

2.1 Dodgsons

In order to define the denominator reductions we first need to give a determinantal expression
for ΨG and define some related polynomials.

Assume for the rest of the paper that G is a connected graph.
Choose an order on the edges E(G) and vertices V (G) of G and choose a direction for each

edge. Then the signed incidence matrix of G is a |V (G)| × |E(G)| matrix with entries −1, 0, 1,
where the i, jth entry is −1 if edge j starts at vertex i, is 1 if edge j ends at vertex i, and is 0
otherwise. Let E be the signed incidence matrix with one row removed. Since G is connected
the rank of the signed incidence matrix is |V (G)| − 1 and so E is full rank.

Define the expanded Laplacian to be the matrix

LG =

[
Λ Et

E 0

]
,

where Λ is the diagonal matrix with diagonal entries αe, e ∈ E(G), in the edge order chosen
above. This matrix is called the expanded Laplacian because it behaves very much like the
Laplacian (with a matching row and column removed), but the pieces of it have been expanded
out into a larger block matrix.

Proposition 2.1.

ΨG = (−1)|V (G)|−1 detLG.
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This proposition is at its core the matrix-tree theorem [4, Section 2.2]. More specifically,
the form of the matrix tree theorem that is most useful here is the form that says given
a |V (G)− 1| × |V (G)− 1| submatrix of E, this matrix has determinant ±1 if the edges cor-
responding to the columns of the submatrix form a spanning tree of G and has determinant 0
otherwise.

In the following we also need the extension to minors of LG. Polynomials from minors
of LG are called Dodgson polynomials in [4]. In general, these polynomials have signs which
depend on the sequence of edges [27]. While in classical denominator reduction signs are often
insignificant, they play an important role in quadratic denominator reduction. By the special
structure of (1.2) it is sufficient for our purpose to define the sign of Dodgson polynomials in
a trivial case.

Definition 2.2. For any subsets I, J , K of the edges of a connected graph G with |I| = |J | we
define the Dodgson polynomials ΨI,J

K as

ΨI,J
G,K = ±detLI,J

G

∣∣
αk=0,k∈K ,

where LI,J
G is LG with rows in I and columns in J deleted. In the case I = J the sign is

(−1)|V (G)|−1.

The contraction-deletion formula (see [4], [27, Lemma 11])

ΨI,J
G,K = αeΨ

Ie,Je
G,K +ΨI,J

G,Ke = αeΨ
I,J
G\e,K +ΨI,J

G/e,K (2.1)

relates Dodgson polynomials to minors. Note that in the context of Dodgson polynomials graphs
may have multiple edges and self-loops (which contract to zero, i.e., every Dodson polynomial
of a graph with a contracted self loop vanishes).

Example 2.3. A tree has the graph polynomial 1. The Dodgson polynomial of a circle C is
the sum of its edge-variables. In this case Ψe,f

C = ±1 for any two edges e, f ∈ E(G).

We get the following vanishing cases (see [4], [11, Section 2.2 (4)], [27, Lemma 13]):

ΨI,J
G,K = 0 if I or J cut G,

ΨI,J
G,K = 0 if (I ∪K)\J or (J ∪K)\I contain a cycle. (2.2)

An important Dodgson identity is (see [4] and [27, Lemma 18])

Ψ1,1
G,2Ψ

2,2
G,1 −Ψ12,12

G ΨG,12 =
(
Ψ1,2

G

)2
(2.3)

for any two edges 1, 2 in G. Many more identities for Dodgson polynomials can be found
in [4, 27].

2.2 Spanning forest polynomials

Dodgson polynomials can also be written in terms of spanning forests. To that end, given
a partition P of a subset of the vertices of G, define the spanning forest polynomial

ΦP
G =

∑
F

∏
e̸∈F

αe,

where the sum is over spanning forests with the property that there is a bijection between the
parts of P and the trees of the forest such that every vertex in a part of the partition is in the
corresponding tree.
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Figure 5. An example of a graph with a partition of some of the vertices marked by the shape of the

large vertices.

For example, given the graph illustrated in Figure 5, with the partition P indicated by the
shape of the large vertices, the corresponding spanning forest polynomial is α3(α4α2 + α1α2 +
α1α5+α2α5). This technique of marking the partition by the shape of the large vertices will be
used without further comment in the main hourglass chain reduction argument.

We have the following proposition

Proposition 2.4.

ΨI,J
G,K =

∑
fkΦ

Pk

G\(I∪J∪K),

where the Pk run over partitions of the ends of I, J , and K, and fk ∈ {−1, 0, 1}. Furthermore,
those fk which are nonzero are exactly those where each forest in the polynomial becomes a tree
in G\I/(J ∪K) and in G\J/(I ∪K); if any forest in the polynomial has this property then all
of them do.

This proposition is a particular interpretation of the all minors matrix tree theorem, for
a proof see [12, Propositions 8 and 12]. To see the connection to the matrix tree theorem briefly,
consider a term in the determinant giving ΨI,J

G,K . The variables indicate edges of G, where the

corresponding columns are removed in E and corresponding rows are removed in Et. The rows
indexed by I are removed in Et but not in E and the columns indexed by J are removed in E
but not in Et. By the matrix tree theorem as summarized after Proposition 2.1, both these sets
of edges must simultaneously be spanning trees. Furthermore the variables indexed by K are
set to 0. So they must not be in the monomial and hence must be in the trees. An edge which
must be in a tree can be contracted, and splitting apart vertices which were identified via a
contraction splits the tree into a forest with constraints on which vertices belong in which tree
of the forest. Working out the details gives the result, see [12] for details.

The signs in the spanning forest polynomial expansion of a Dodgson polynomial can be tricky,
however, the only case we will need for the argument below is given in the following lemma.

Lemma 2.5. With notation as in Proposition 2.4, if P1 and P2 both have nonzero coefficients,
and P1 and P2 differ by swapping two vertices which are in the same component of J viewed as
a subgraph of G, then f1 = −f2.

This is a special case of [12, Corollary 17].
Another useful observation, see [12, Proposition 21], is that if G is formed as the 2-sum of G1

and G2, that is G1 and G2 each have a distinguished edge, e1 and e2 respectively, and G is
the result of identifying e1 and e2 and then removing this new identified edge while leaving the
induced identifications on the incident vertices, then

ΨG = ΨG1\e1ΨG2/e2 +ΨG1/e1ΨG2\e2 = ΨG1\e1Φ
{v1},{v2}
G2\e2 +Φ

{v1},{v2}
G1\e1 ΨG2\e2 , (2.4)

where v1 and v2 are the ends of e1 and e2.
Note that all Dodgson polynomials and all spanning forest polynomials are explicitly linear

in all their variables.
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2.3 The c2 invariant

A general aim in the mathematical theory of Feynman periods is to understand what kind
of numbers can appear [3, 24, 26]. The interest in this topic was recently intensified by the
(conjectural) discovery of a Galois coaction structure on these numbers [6, 7, 21]. In general,
the Feynman period (1.1) is hard to analyze. Even the zero locus of the graph hypersurface
ΨG = 0 has a complicated geometric structure.

The number theoretic content of the Feynman period is intimately related to the motivic
structure of its integral. In general, the motivic setup is a deep superstructure to the cohomology
theory of integrals in algebraic geometry. Going back to ideas of A. Grothendieck it lifts Galois
theory to higher dimensions (for first reading we recommend [23]). This motivic structure unifies
all fields and thus finite fields Fq encapture information on the geometry of the Feynman period.
The motivic information can be extracted from the number of elements on the singular locus of
the integrand. This is, e.g., visible in the action of the Frobenius homomorphism in the classical
Lefschetz fixed point theorem [18]. While the knowledge of this point-count for a single q is
still not very informative, its value for all (or many) q carries important number theoretical
information on the (framing of the) Feynman period [8].

We define

[F ]q = |{F = 0 in Fq}|

as the point-count of the zero locus of the polynomial F . In the context of Feynman periods the
important information of the point-count is hidden in the first non-trivial reduction modulo q.
For any connected graph G with at least three edges we define [25]

c
(q)
2 (G) ≡ [ΨG]q

q2
mod q (2.5)

as the c2 invariant of the Feynman graph G. The above definition implies that the point-count
of the graph hypersurface is always divisible by q2 (the index 2 in c2 refers to this square). For

a given graph G one should think of the c2 as the infinite sequence
(
c
(q)
2

)
q=2,3,4,5,7,8,9,11,...

of
remainders modulo q.

The benefit of the reduction modulo q is that the point-count is combinatorially quite acces-
sible. In practice, non-trivial prime powers are still harder to come by, so that the c2 invariant
is often studied for pure primes only. It is conjectured [27, Conjecture 2], that the knowledge of
the c2 for all primes determines the c2 for all prime powers.

The c2 has been studied quite deeply in the context of ϕ4 quantum field theory (Section 2.7).
The focus of these studies can either be the general mathematical structure of the c2 [11, 15, 31]
or the zoology of the geometries identified by c2s [9, 10, 13, 27, 30, 32]. The nature of this article
is more in the latter direction, particularly when we analyze the c2s of small kernels in Section 4.
We would like to emphasize that although identifying c2s can have an experimental flavour it
might be of high importance to understanding the algebraic structure of quantum field theories.

We can get rid of the division by q2 in (2.5) by using Dodgsons instead of the graph polynomial
(see [9, Corollary 28 and Theorem 29])

c
(q)
2 (G) ≡ −

[
Ψ13,23

G Ψ1,2
G,3

]
q

mod q

for every connected graph G with a degree 3 vertex v. In this version the c2 can be further
simplified by denominator reductions and quadratic denominator reductions as will be outlined
in the next sections.
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2.4 Denominator reduction

Successive integration of the Feynman period (1.1) leads to denominators which are linear in
the next integration variable. After three initial steps the new denominator will be the resultant
of the old denominator with respect to the integration variable. Eventually the denominator
may cease to factor into linear pieces and then one typically enters very complicated territory.
This successive taking of resultants has a point-count version which says that under certain
conditions

[(Aα+B)(Cα+D)]q ≡ −[AD −BC]q mod q.

If the resultant AD−BC factors in some new variable then the reduction can be repeated. The
size of the polynomial that has to be counted reduces rapidly and when no more reduction is
possible then one can still resort to brute force counting at the last step. More precisely, we
obtain the following result.

Definition 2.6 (denominator reduction [4, Definition 120 and Proposition 126]). Given a con-
nected graph G with at least three edges and a sequence of edges 1, 2, . . . , |E(G)| we define

3ΨG(1, 2, 3) = ±Ψ13,23
G Ψ1,2

G,3.

Suppose nΨG for n ≥ 3 factors as

nΨG(1, . . . , n) = (Aαn+1 +B)(Cαn+1 +D)

then we define

n+1ΨG(1, . . . , n+ 1) = ±(AD −BC).

Otherwise denominator reduction terminates at step n. If it exists we call nΨG an n-invariant
of G.

Note that the n-invariants are only defined up to sign. The 4-invariant always factorizes [4,
Lemma 82]

4ΨG = ±Ψ14,23
G Ψ13,24

G . (2.6)

Therefore the 5-invariant always exists. In Lemma 87 of [4] it is proved that for n ≥ 5 the
n-invariants become independent of the sequence of the reduced edges (they only depend on
the set of reduced variables). Denominator reduction is compatible with the c2 invariant in the
following sense.

Theorem 2.7 ([9, Theorem 29]). Let G be a connected graph with at least three edges and
h1(G) ≤ |E(G)|/2 independent cycles. Then

c
(q)
2 (G) ≡ (−1)n[nΨG]q mod q

whenever nΨG exists for n < |E(G)|.

The theorem was proved for ≥ 5 edges in [9]. The proof trivially extends to the case of three
or four edges. If nΨG = 0 for some sequence of edges and some n (and hence for all subsequent n)
then G has weight drop. In this case the c2 invariant vanishes [12].
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2.5 Quadratic denominator reduction

Only in a few particularly simple cases does denominator reduction go through to the very end
where all variables are reduced. Brute force point-counting after the last step of denominator
reduction can be very time consuming and does not lend itself to more theoretical understan-
ding. Therefore it is desirable to continue the reduction as far as possible. The integration of
a denominator that does not factor produces a square root. The existence of further reduction
steps is suggested by the fact that even in the presence of squares and square roots integrals may
stay rational in a geometrical sense. Let us exemplify this by the following toy integrals [27],∫ ∞

0

dα

Aα2 +Bα+ C
=

log(X)√
B2 − 4AC

,

for some algebraic expression X in A, B, C and∫ ∞

0

dα√
Dα2 + Eα+ F (Hα+ J)

=
log(Y )√

DJ2 − EHJ + FH2

for some algebraic expression Y in D, E, F , H, J .
For the formal implementation of this idea we pass from point-counts to Legendre sums.

Definition 2.8 ([27, Definition 29]). Let q be an odd prime power. For any a ∈ Fq the Legendre
symbol (a/q) ∈ {−1, 0, 1} is defined by(

a

q

)
=

∣∣{x ∈ Fq : x
2 = a

}∣∣− 1.

For any polynomial F ∈ Z[α1, . . . , αN ] we define

(F )q =
∑
α∈FN

q

(
F (α)

q

)
,

where the sum is in Z.

The Legendre symbol is multiplicative, (ab/q) = (a/q)(b/q) for a, b ∈ Fq and trivial for
squares

(
a2/q

)
= 1 − δa,0, where the delta is the characteristic function on Fq. This leads to(

F 2
)
q
= qN − [F ]q for any polynomial F in N variables. If N ≥ 1 we get

[F ]q ≡ −
(
F 2

)
q

mod q.

With the above equation we can translate point-counts to Legendre sums. Quadratic denomi-
nator reduction knows two cases,((

Aα2 +Bα+ C
)2)

q
≡ −

(
B2 − 4AC

)
q

mod q,((
Dα2 + Eα+ F

)
(Hα+ J)2

)
q
≡ −

(
DJ2 − EHJ + FH2

)
q

mod q

if the total degree of the polynomials on the left hand sides does not exceed twice the number of
their variables. The proof of these identities is in [27, Section 7]. It uses a Chevalley–Warning-
Ax theorem for double covers of affine space which is proved by F. Knop in [27, Appendix].
As examples, (Wα + X)3(Y α + Z) reduces by the second case to zero whereas

(
Uα2 + V α

+W
)(
Xα2 + Y α+ Z

)
or (Uα+ V )(Wα+X)(Y α+ Z) do not reduce in general.

Note that in the case that both quadratic reductions are applicable one is back to the case
of standard denominator reduction. Then both reductions lead to the same result.

We define quadratic n-invariants nΨ2
G in analogy to Definition 2.6.
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Definition 2.9 (quadratic denominator reduction [27, Definition 34]). Given a connected
graph G with at least three edges and a sequence of edges 1, 2, . . . , |E(G)| we define

3Ψ2
G(1, 2, 3) =

(3
ΨG(1, 2, 3)

)2
. (2.7)

Suppose nΨ2
G for n ≥ 3 is of the form

nΨ2
G(1, . . . , n) =

(
Aα2

n+1 +Bαn+1 + C
)2

(2.8)

then we define

n+1Ψ2
G(1, . . . , n+ 1) = B2 − 4AC.

Suppose nΨ2
G is of the form

nΨ2
G(1, . . . , n) =

(
Dα2

n+1 + Eαn+1 + F
)
(Hαn+1 + J)2 (2.9)

then we define

n+1Ψ2
G(1, . . . , n+ 1) = DJ2 − EHJ + FH2.

Otherwise quadratic denominator reduction terminates at step n. If it exists we call nΨ2
G

a quadratic n-invariant of G. If nΨ2
G = 0 for some sequence of edges and some n then we say

that G has weight drop.

Note that quadratic n-invariants have no sign ambiguity. The connection to the c2 invariant
is similar to the standard case, with a restriction to q = 2 or odd prime powers q.

Theorem 2.10 ([27, Theorem 36 and Remark 37]). Let q be an odd prime power and G be a
connected graph with at least three edges and h1(G) ≤ |E(G)|/2 independent cycles. Then

c
(q)
2 (G) ≡ (−1)n−1

(
nΨ2

G

)
q

mod q

whenever nΨ2
G exists. If nΨ2

G ≡ 0 mod 2 then c
(2)
2 (G) ≡ 0 mod 2.

If the n-invariant nΨG exists, we get nΨ2
G = [nΨG]

2, generalizing (2.7). In many cases
quadratic denominator reduction goes significantly beyond standard denominator reduction.

2.6 Scaling

Even when quadratic denominator reduction stops it is often possible to simplify further by
scaling some variables (see Section 3.4). In the context of Legendre sums this technique is
based on the elimination of square factors from the Legendre symbol. For classical point-counts
scaling was already used in [25] and later in [9], with some observations on some combinatorial
conditions which allow it in [29]. In this article we have a case where the result after scaling
can be further reduced by additional steps of quadratic denominator reduction. This makes the
scaling technique particularly powerful.

2.7 ϕ4 theory

The most interesting graphs for us are the primitive 4-point ϕ4 graphs. Rephrased in a purely
graph theoretic language, this means we are most interested in graphs which can be obtained by
taking a 4-regular graph and removing one vertex. The 4-regular graph needs to be internally
6-edge connected, that is the only 4-edge cuts of the 4-regular graph are those which separate
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one vertex from the rest of the graph. For graphs obtained from an internally 6-edge connected
4-regular graph in this way the Feynman period is convergent [24]. For such graphs we have
(quadratic) denominator reduction, Theorems 2.7 and 2.10 as well as the Chevalley–Warning
theorem as extra tool (see [30, Lemma 2.6] for an exposition).

Furthermore, the Feynman period of a graph obtained by removing a vertex of an internally
6-edge connected 4-regular graph does not depend on the choice of vertex removed. This is the
completion invariance of the Feynman period. The analogous invariance for the c2 invariant is
conjectural [9], but an approach based on counting edge partitions has enabled a proof when
q = 2 and the 4-regular graph has an odd number of vertices [31]. Upcoming work of one of
us with Simone Hu will complete the q = 2 proof. In our hourglass chain graphs, we will be
removing the most convenient vertex; if we assume the conjecture then this is equivalent to
removing any other vertex.

With the completion conjecture we can also ignore 4-regular graphs with three vertex splits
(reducible graphs in [24], see Figure 3): By deleting one of the three split vertices the decompleted
graph inherits a two-vertex split which renders the c2 trivial [11]. The Feynman period of a graph
with a 3-vertex split factorizes [24]. Another reduction is obtained by ignoring graphs with
double triangles (a pair of triangles with a common edge, see Figure 4). It was shown in [11]
that double triangles can be reduced to single triangles (one of the common vertices becomes
a crossing) without changing the c2 invariant. With all reductions (internally 6-connected, 3-
vertex connected, double-triangle-free) we are lead to considering prime ancestors [2, 24]. Note
that for suitable kernels K the hourglass chains in this paper provide infinite families of prime
ancestors.

2.8 Hourglasses

By an hourglass we mean two triangles sharing one common vertex. Taking two of the degree
two vertices of an hourglass which are not in the same triangle and joining to two such vertices in
another hourglass, we obtain a bihourglass, see Figure 6. Continuing by joining a third hourglass
in the same way to the remaining degree 2 vertices of the second hourglass, and so on, we obtain
longer hourglass chains, where the hourglass and bihourglass are the hourglass chains of length 1
and 2 respectively.

Figure 6. An hourglass and a bihourglass.

Hourglass chains of any length have four degree 2 vertices and all remaining vertices of
degree 4. Take another fixed graph K which has four degree 2 vertices and all remaining
vertices of degree 4. Additionally, fix a bipartition of the degree 2 vertices of K into two parts of
size 2. We will call K (with this choice of bipartition) the kernel, see Figure 19. Let GK be the
family of graphs obtained by taking an hourglass chain of any length, joining the two degree 2
vertices at one end of the chain to the two degree 2 vertices in one part of the bipartition
given with K, and joining the 2 vertices at the other end of the chain to the two degree 2
vertices in the other part of the bipartition. See Figure 1 for an illustration. Note there are
two ways to join on any hourglass chain compatible with the bipartition, differing by a half
(Möbius) twist. In the end, this half twist will not affect the c2 invariant, and so we include
both in GK .
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3 Hourglass reductions

The goal of this section is to prove Theorem 1.1. Note that after using the theorem one can
continue to reduce any variable of the kernel K. If K is the kernel of a 4-regular hourglass chain
then K ′ has four vertices of degree three at the ends of the extra edges 1 and 2. The topology
of degree three vertices simplifies the structure of related Dodgsons [4, 9], [27, Lemma 19].
Particularly simple is the case of edge 2 whose variable is absent in (1.2) (note that the choice
of labels 1 and 2 is arbitrary). Experiments suggest that it might always be possible to reduce
both edges ̸= 2 of any vertex adjacent to edge 2.

Question 3.1. Let v be a degree three vertex attached to edge 2 in K ′. Let α3 and α4 be the
edges of v which are in K. Is it always possible to quadratically denominator reduce the right
hand side of (1.2) with respect to α3 and α4? If yes, what expression does one get after the
quadratic reduction of α3 and α4?

In general it is quite helpful for analyzing larger kernels to have closed expressions for the c2
with as many reductions as possible.

Figure 7 gives an overview of how the reductions will proceed. Following the specified order
in an explicit example using a computer for the reductions can also be a helpful way to follow
through the general argument.

3.1 Initial reductions

The first step of the proof is to begin a conventional denominator reduction on L − v, see
Section 2.4.

Consider the two hourglasses around v and label the edges as in Figure 8. Then beginning
our denominator reduction at the 4-invariant with (see (2.6))

Ψ14,23
L−v Ψ

13,24
L−v ,

the reductions of 5 and 6 are forced to avoid contracting the triangles 145 and 236 in the first
factor, and then the reductions of 7 and 8 are forced to avoid disconnecting the degree three
vertices 457 and 268 in the first factor, see (2.2). This yields

Ψ1456,2356
L−v,78 Ψ1378,2478

L−v,56 .

At this point it is more convenient to consider the situation in terms of spanning forest
polynomials via Proposition 2.4 and Lemma 2.5,

Ψ1456,2356
L−v,78 Ψ1378,2478

L−v,56 = ±
(
Φ
{u1,u4},{u2,u3}
L′ − Φ

{u1,u3},{u2,u4}
L′

)
Φ
{u2},{u3}
L′ ,

where L′ is L without v, the edges 1 through 8, and without the three vertices isolated by those
removals. Label the triangle of L′ containing u1 as in Figure 9. Reduce edge 9 by the general
deletion and contraction reduction formula (2.1). Notice that in both terms where 9 was deleted,
10 is an isthmus and u1, the vertex at the isolated end of 10, is not in a part by itself. Thus 10
cannot be cut in these terms, forcing 10 to be contracted in the other factors. This gives

±
(
Φ
{u5,u4},{u2,u3}
L′−u1

− Φ
{u5,u3},{u2,u4}
L′−u1

− Φ
{u6,u4},{u2,u3}
L′−u1

+Φ
{u6,u3},{u2,u4}
L′−u1

)
Φ
{u2},{u3}
L′−u1

,

where the vertices are as labelled in Figure 9.
Consider which trees the vertices u6 and u7 can belong to in the first factor of the previous

expression. This factor is illustrated in Figure 10. Both trees of the forest appear in the portion
of the graph including vertices u2, u5, u6 and u7 and so must exit from this portion to the rest
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v

u3

u4

u1

u2

1

2
34

5

6

7

8

u5

xn = u6

9

10

11

12

13
14

15

zn = u7

16

17

u8

u9 = t4t3 = u10
18

19
20

21

22

2324

25
26

27

b1

c1

d1

e1

f1

Figure 7. The order in which the edges should be reduced. First decomplete at v, thus removing the

red edges. Then reduce the dark blue edges with conventional denominator reduction. Next reduce the

light blue edges with quadratic denominator reduction. Continue with quadratic denominator reduction

to reduce the six pink edges. The same form of denominator reappears, and so inductively we can reduce

the analogous six edges in each subsequent hourglass until we reach the last hourglass. Finally reduce

the remains of the last hourglass, the five dark cyan edges, according to Section 3.4.

v

1

2

3

45 6
7 8

u1

u2 u3

u4

Figure 8. Edge labelling around v.

u1

u2

9
10
11

u6

u5

Figure 9. Edge labelling for the triangle containing u1.
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u2

11

u6

u5

u7 u3

u4

u2

11

u6

u5

u7 u3

u4

u2

11

u6

u5

u7 u3

u4

u2

11

u6

u5

u7 u3

u4

− − +

Figure 10. The first factor in the expression after reducing edge 10.

u2

u6

u5

u7 u3

u4

u8

u9

u10

12

13

14

Figure 11. The vertex labellings for the hourglass containing u3 and u4.

of the graph via the only possible vertices, u6 and u7. Since there are two trees and two vertices,
one must use u6 and the other must use u7. In view of the shape of the graph, the only way
this can happen is that the tree corresponding to the square vertices exits via u7 and the tree
corresponding to the circle vertices exits via u6. Then the only thing undetermined in how the
trees go through the illustrated part of the graph, is the tree to which u5 belongs in the third
and fourth terms. Summing over both possibilities we see that one of the possibilities cancels
with the first two terms, and so what remains of the entire expression is

±
(
Φ
{u2,u5,u7,u3}{u6,u4}
L′−u1

− Φ
{u2,u5,u7,u4}{u6,u3}
L′−u1

)
Φ
{u2},{u3}
L′−u1

.

In the first factor, edge 11 must always be deleted since its two ends are in different parts
and so we obtain

±
(
Φ
{u2,u5,u7,u3}{u6,u4}
(L′−u1)\11 − Φ

{u2,u5,u7,u4}{u6,u3}
(L′−u1)\11

)
Φ
{u2},{u3}
(L′−u1)/11

.

The only way that the hourglass with u3 and u4 affected this computation was to guarantee
that both trees had to leave the part of the graph illustrated on the left. In other words, all
we needed to know is that both trees appeared in the part of the graph illustrated on the right.
Swapping left and right this remains true and so we can use the same argument as above on the
triangle involving u4. Labelling the vertices of the hourglass including u3 and u4 as in Figure 11,
this calculation gives

±
(
Φ
{u2,u5,u7,u3,u8,u9},{u6,u10}
L1

− Φ
{u2,u5,u7,u10},{u3,u8,u9,u6}
L1

)
Φ
{u2},{u3}
L2

,

where L1 = (L′ − {u1, u4})\{11, 14} and L2 = (L′ − {u1, u4})/{11, 14}. Now comes the key
observation that the first factor can be factored. First, the triangles u2, u5, u7 and u3, u8, u9
factor off since they are only joined at a vertex and the tree to which that vertex belongs is
known. Additionally, similarly to the observations used above, both trees need to propagate
through each hourglass remaining in the chain since both trees appear on both sides. How-
ever, the trees cannot cross within an hourglass, so one tree must run down one side of the
hourglasses and the other tree down the other side; only the middle vertex could be in either
tree.

To write this down nicely we need some more systematic notation. The edges and vertices of
each hourglass will be labelled as in Figure 12, where the hourglasses Xi are indexed by i. When
it is useful to talk about an hourglass generically we will leave out the subscripts. Additionally,
let t1, t2, t3 and t4 be the degree 2 vertices of K with the bipartition being {t1, t2}, {t3, t4}. With
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ai

bici

diei
fi

wi xi

yi zi

Xi =

Figure 12. Labels for hourglasses.

∏
i

−±

Figure 13. Diagrammatic representation of (3.1).

this notation, the factorization observation allows us to rewrite the denominator expression so
far as

±ΨL[u2,u5,u7]ΨL[u3,u8,u9]

(∏
i

Φ
{wi,xi},{yi,zi}
Xi

)(
Φ
{t1,t3},{t2,t4}
K − Φ

{t1,t4},{t2,t3}
K

)
× Φ

{u2},{u3}
L2

, (3.1)

where L[S] for a set of vertices S indicates the induced subgraph of L given by the vertices of S,
that is the subgraph with the vertices of S and all edges in L that have both ends in S. In this
case the two induced subgraphs are both triangles. Diagrammatically, this expression can be
represented as in Figure 13. The reader is encouraged to draw all the steps diagrammatically,
as this gives the most insight into the calculation.

Note that due to the choice of v, one of the triangles u2, u5, u7 and u3, u8, u9 shares two
vertices with K, while the other does not. Without loss of generality say that u2, u5, u7 is
the one that is adjacent to other hourglasses, if there are any. This is the one drawn pointing
upwards in Figure 13, and u2 is the top vertex.

3.2 The two triangles

The plan of attack now is to reduce the edges in the two triangles u2, u5, u7 and u3, u8, u9.
After the first such edge, we will need to pass to quadratic denominator reduction. Note that
the only factors in (3.1) containing edge variables from the triangle u2, u5, u7 are ΨL[u2,u5,u7]

and Φ
{u2},{u3}
L2

. Let the edge between u5 and u7 be 15 and let 16 and 17 be the other two edges
of the triangle u2, u5, u7. Reduce 15 in the usual way to obtain

(α16 + α17)Φ
{u2},{u3}
L2\15 − Φ

{u2},{u3}
L2/15
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−

16 17 16 17

16 17factors not
containing
α16, α17

= factors not
containing
α16, α17

α2
16 +α2

17 +2α16α17 +(α16 + α17)α16α17

Figure 14. Diagrammatic rendition of the result of reducing edge 15.

times the factors not involving the triangle u2, u5, u7. Expanding out α16 and α17 we get

(α16 + α17)Φ
{u2},{u3}
L2\15 − Φ

{u2},{u3}
L2/15

= (α16 + α17)
(
α16Φ

{zn},{u3}
L3

+ α17Φ
{xn},{u3}
L3

+ α16α17ΨL3

)
− α16α17ΨL4

= α2
16Φ

{zn},{u3}
L3

+ α2
17Φ

{xn},{u3}
L3

+ 2α16α17Φ
{xn,zn},{u3}
L3

+ (α16 + α17)α16α17ΨL3

times the factors not involving the triangle u3, u5, u7, where

� n is the index of the hourglass adjacent to the triangle u2, u5, u7 with the vertices xn
and zn being the same vertices as u5 (which has also been contracted with the original u6)
and u7 respectively,

� 16 the edge from xn = u5 to u2 and 17 the edge from zn = u7 to u2,

� L3 = (L2 − u2)\15 and L4 = (L2 − u2)/15.

This is illustrated diagrammatically in Figure 14. Note that in these calculations we used
that merging two vertices is equivalent to not having them merged but having them be in
different parts of the vertex partition defining the spanning forest polynomial, and when there
was originally only a single tree, there is no need to consider how the parts interact with any
existing parts. We also used that if a vertex is not in a part of a partition for a spanning forest
polynomial then we can sum over all possibilities for putting that vertex into a part.

Now we need to move to quadratic denominator reduction, see Section 2.5. Reducing α16

according to quadratic denominator reduction (2.8) we obtain

(
2α17Φ

{xn,zn},{u3}
L3

+ α2
17ΨL3

)2
− 4

(
Φ
{zn},{u3}
L3

+ α17ΨL3

)
α2
17Φ

{xn},{u3}
L3

times the square of the factors not involving the triangle u3, u5, u7. Note that α2
17 factors out

of this expression and so following (2.9) quadratic denominator reduction of α17 gives

4
((

Φ
{xn,zn},{u3}
L3

)2 − Φ
{zn},{u3}
L3

Φ
{xn},{u3}
L3

)
times the square of the factors not involving the triangle u3, u5, u7.

Next consider the u3, u8, u9 triangle. Unfortunately we cannot simply use the same argument
as above since we are not starting in conventional denominator reduction this time. This part
of the argument is rather gruesome, but fortunately, it is the last bit of messy work before we
get to the systematic part.
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Let 18 be the edge between u8 and u9, and let 19 and 20 be the edges from u3 to t3 and t4
respectively. For the purposes of these edges, the factors we need to consider are the one given
explicitly above and the factor for the u3, t3, t4 triangle itself. Namely we have

(α18 + α19 + α20)
2
((

Φ
{xn,zn},{u3}
L3

)2 − Φ
{zn},{u3}
L3

Φ
{xn},{u3}
L3

)
times the square of the factors not involving the triangles u3, u5, u7 and u3, t3, t4. We have
included the constant 4 among the suppressed factors as it also is simply carried along through
the calculations that follow.

Reducing edge 18 we obtain

(α19 + α20)
2
((

Φ
{xn,zn},{u3}
L3\18

)2 − Φ
{zn},{u3}
L3\18 Φ

{xn},{u3}
L3\18

)
− (α19+α20)

(
2Φ

{xn,zn},{u3}
L3\18 Φ

{xn,zn},{u3}
L3/18

−Φ
{zn},{u3}
L3\18 Φ

{xn},{u3}
L3/18

−Φ
{xn},{u3}
L3\18 Φ

{zn},{u3}
L3/18

)
+
((

Φ
{xn,zn},{u3}
L3/18

)2 − Φ
{zn},{u3}
L3/18

Φ
{xn},{u3}
L3/18

)
times the square of the factors not involving either triangle. Expanding out all the α19 and α20

explicitly and freely using the observations on spanning forest polynomials used before, there
are many nice cancellations and we obtain

(α19 + α20)
2
(
α2
19

((
Φ
{{xn,zn},{t4}
Mn

)2 − Φ
{zn},{t4}
Mn

Φ
{xn},{t4}
Mn

)
+ α2

20

((
Φ
{xn,zn},{t3}
Mn

)2 − Φ
{zn},{t3}
Mn

Φ
{xn},{t3}
Mn

)
+ α19α20

(
2Φ

{xn,zn},{t3}
Mn

Φ
{xn,zn},{t4}
Mn

− Φ
{zn},{t3}
Mn

Φ
{xn},{t4}
Mn

− Φ
{zn},{t4}
Mn

Φ
{xn},{t3}
Mn

+Φ
{xn},{zn}
Mn

Φ
{t3},{t4}
Mn

)
− α19α20(α19 + α20)ΨMnΦ

{xn},{zn}
)

times the square of the factors not involving either triangle and where Mn = (L3 − u3)\18
(the n refers to the index of the last remaining hourglass). This calculation uses the fact that

Φ
{zn},{t4}
Mn

+Φ
{xn},{t4}
Mn

−2Φ
{xn,zn},{t4}
Mn

= Φ
{zn},{t3}
Mn

+Φ
{xn},{t3}
Mn

−2Φ
{xn,zn},{t3}
Mn

= Φ
{xn},{zn}
Mn

which
can be seen to be true by expanding all the spanning forest polynomials so that each of xn, zn,
t3, t4 is in each partition.

Because of the factor of (α19 + α20)
2 we can proceed to reduce edge 19 to obtain

α2
20

((
Φ
{xn,zn},{t4}
Mn

)2 − Φ
{zn},{t4}
Mn

Φ
{xn},{t4}
Mn

− α20ΨMnΦ
{xn},{zn}
Mn

)
− α20

(
α20

(
2Φ

{xn,zn},{t3}
Mn

Φ
{xnzn},{t4}
Mn

− Φ
{zn},{t3}
Mn

Φ
{xn},{t4}
Mn

− Φ
{zn},{t4}
Mn

Φ
{xn},{t3}
Mn

+Φ
{xn},{zn}
Mn

Φ
{t3},{t4}
Mn

)
− α2

20ΨMnΦ
{xn},{zn}

)
+ α2

20

((
Φ
{xn,zn},{t3}
Mn

)2 − Φ
{zn},{t3}
Mn

Φ
{xn},{t3}
Mn

)
times the square of the factors not involving either triangle. There is a factor of α2

20 in this
expression, so we can reduce α20 to obtain(

Φ
{xn,zn},{t4}
Mn

)2 − Φ
{zn},{t4}
Mn

Φ
{xn},{t4}
Mn

− 2Φ
{xn,zn},{t3}
Mn

Φ
{xn,zn},{t4}
Mn

+Φ
{zn},{t3}
Mn

Φ
{xn},{t4}
Mn

+Φ
{zn},{t4}
Mn

Φ
{xn},{t3}
Mn

− Φ
{xn},{zn}
Mn

Φ
{t3},{t4}
Mn

+
(
Φ
{xn,zn},{t3}
Mn

)2 − Φ
{zn},{t3}
Mn

Φ
{xn},{t3}
Mn

times the square of the factors not involving either triangle. Expanding over all possibilities for
assigning whichever of xn, zn, t3, t4 are not in the partition in each term, cancelling and then
recollecting terms we can simplify the expression above to(

Φ
{xn,t4},{zn,t3}
Mn

− Φ
{xn,t3},{zn,t4}
Mn

)2
− Φ

{xn},{zn}
Mn

Φ
{t3},{t4}
Mn

(3.2)
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factors not
containing
α16, α17

2

−−

Figure 15. Diagrammatic representation of (3.2).

∏
i

−−4

2

2

Figure 16. Diagrammatic representation of (3.3).

times the square of the factors not involving either triangle. This expression is more symmetric
than the notation makes it seem. Figure 15 shows the symmetry better. Note that other than to
choose the labelling of the vertices, we have not used the fact that all the remaining hourglasses
are on one side of K. If we followed the same calculation beginning with v in the middle of
the hourglasses, then at this point we would have hourglasses on each side of K making the
expression nicely symmetric.

To proceed, we can apply a Dodgson identity to the last factor. Let M ′
n be the graph obtained

by adding an edge labelled 1 joining zn and xn and an edge labelled 2 joining t3 and t4 and
let M ′

n. Then (3.2) can be written as
(
Ψ1,2

M ′
n

)2 −Ψ1,1
2,M ′

n
Ψ2,2

1,M ′
n
, so by the Dodgson identity (2.3)

we find that (3.2) is also −ΨM ′
n,12Ψ

12,12
M ′

n
.

Putting back in the factors we have been ignoring we get

−4

(∏
i

Φ
{w,x},{y,z}
Xi

)2(
Φ
{t1,t3},{t2,t4}
K − Φ

{t1,t4},{t2,t3}
K

)2
ΨM ′

n,12Ψ
12,12
M ′

n
. (3.3)

For an illustration of this equation see Figure 16.

3.3 Systematic hourglass reduction

Notice that the two right hand factors of (3.3) are the same except that xn and zn, the top two
vertices as illustrated, are identified or not and likewise for t3 and t4, the bottom two vertices.
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Figure 17. The hourglass pieces that occur.

This will be important, so it will be useful to have a compact notation for this; write

T
n

A
for Ψ1,1

M ′
n,2

,

that is the top vertices together (T ) and the bottom two vertices apart (A), and similarly for

T
n

T
= ΨM ′

n,12,
A
n

A
= Ψ12,12

M ′
n

,
A
n

T
= Ψ1,1

M ′
n,2

.

The next order of business is to start reducing the top hourglass Xn. Recall the hourglass
notation as in Figure 12.

First we reduce an. We are going to need to keep track to all the polynomials that come
about from the remains of Xn as they appear in each term after reducing an. Writing generically
for every hourglass for the moment, define

A = de, B = de(b+ c) + bc(d+ e+ f),

C = d+ e+ f, D = bd+ (b+ d)(e+ f),

E = ce+ (c+ e)(d+ f), F = bd(c+ e) + ce(b+ d) + f(c+ e)(b+ d),

G = (b+ c)(d+ e+ f), H = bcd+ (bc+ bd+ cd)(e+ f),

I = bce+ (bc+ be+ ce)(d+ f), J = f(bcd+ bce+ bde+ cde).

These are the Kirchhoff polynomials and spanning forest polynomials corresponding to the
graphs shown in Figure 17.

Using (2.4) along with the notation above, reducing an gives

−4

(∏
i<n

Φ
{w,x},{y,z}
Xi

)2(
Φ
{t1,t3},{t2,t4}
K − Φ

{t1,t4},{t2,t3}
K

)2

×
(
B2

n

(
CnDn

T
n−1

A

T
n−1

T
+ EnDn

A
n−1

A

T
n−1

T
+ CnFn

T
n−1

A

A
n−1

T
+ EnFn

A
n−1

A

A
n−1

T

)

−AnBn

(
GnDn

T
n−1

A

T
n−1

T
+ InDn

A
n−1

A

T
n−1

T
+GnFn

T
n−1

A

A
n−1

T
+ InFn

A
n−1

A

A
n−1

T

)

−AnBn

(
CnHn

T
n−1

A

T
n−1

T
+ EnHn

A
n−1

A

T
n−1

T
+ CnJn

T
n−1

A

A
n−1

T
+ EnJn

A
n−1

A

A
n−1

T

)

+A2
n ≤

(
GnHn

T
n−1

A

T
n−1

T
+ InHn

A
n−1

A

T
n−1

T
+GnJn

T
n−1

A

A
n−1

T
+ InJn

A
n−1

A

A
n−1

T

))
.
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This expression factors giving

−4

(∏
i<n

Φ
{w,x},{y,z}
Xi

)2(
Φ
{t1,t3},{t2,t4}
K − Φ

{t1,t4},{t2,t3}
K

)2

×
(

T
n−1

A
(BnCn −AnGn) +

A
n−1

A
(BnEn −AnIn)

)

×
(

T
n−1

T
(BnDn −AnHn) +

A
n−1

T
(BnFn −AnJn)

)
.

Plugging in the expressions for the polynomials this simplifies further to

−4

(∏
i<n

Φ
{w,x},{y,z}
Xi

)2(
Φ
{t1,t3},{t2,t4}
K − Φ

{t1,t4},{t2,t3}
K

)2
(dn + en + fn)cnZn

×
(

T
n−1

A
bn(dn + en + fn) +

A
n−1

A
Yn

)(
T

n−1

T
bn(dn + en + fn) +

A
n−1

T
Yn

)
, (3.4)

where

Y = bcd+ bce+ bde+ cde+ bcf + bef,

Z = bcd+ bce+ bde+ cde+ bcf + cdf.

Next we reduce an−1, yielding

−4

( ∏
i<n−1

Φ
{w,x},{y,z}
Xi

)2(
Φ
{t1,t3},{t2,t4}
K − Φ

{t1,t4},{t2,t3}
K

)2
(dn + en + fn)cnZn

×
(

T
n−2

A
((dn + en + fn)bn(Bn−1Dn−1 −An−1Hn−1) + Yn(Bn−1Cn−1 −An−1Gn−1))

+
A
n−2

A
((dn + en + fn)bn(Bn−1Fn−1 −An−1Jn−1) + Yn(Bn−1En−1 −An−1In−1))

)

×
(

T
n−2

T
((dn + en + fn)bn(Bn−1Dn−1 −An−1Hn−1) + Yn(Bn−1Cn−1 −An−1Gn−1))

+
A
n−2

T
((dn + en + fn)bn(Bn−1Fn−1 −An−1Jn−1) + Yn(Bn−1En−1 −An−1In−1))

)
.

Substituting in the expressions for the polynomials something special happens; a square factor
appears:

−4

( ∏
i<n−1

Φ
{w,x},{y,z}
Xi

)2(
Φ
{t1,t3},{t2,t4}
K − Φ

{t1,t4},{t2,t3}
K

)2
(dn + en + fn)cnZn

×
(
(dn + en + fn)bnZn−1 + Yncn−1(dn−1 + en−1 + fn−1)

)2
×
(

T
n−2

A
(dn−1+ en−1+fn−1)bn−1+

A
n−2

A
Yn−1

)(
T

n−2

T
(dn−1+ en−1+ fn−1)bn−1+

A
n−2

T
Yn−1

)
.

We have a square term T 2
n−1,n, where Tn−1,n = (dn + en + fn)bnZn−1 + Yncn−1(dn−1 + en−1

+fn−1). The factor Tn−1,n involves edge variables from both of the top two hourglasses. It is the
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Figure 18. Spanning forest polynomial giving the factor Tn−1,n.

spanning forest polynomial illustrated in Figure 18. We use this factor to reduce the variables
of the hourglass Xn (in any order). This part of the calculation is routine and can be done by
hand or rigorously on a computer (reductions are, e.g., implemented in [28]), obtaining

(dn + en + fn)cnZnT
2
n−1,n → cn−1(dn−1 + en−1 + fn−1)Zn−1

which exactly leads to (3.4) with n− 1 in place of n.
Inductively, we can reduce until only pieces from one hourglass X1 remain. At this step the

quadratic denominator reduction will give

−4
(
Φ
{t1,t3},{t2,t4}
K − Φ

{t1,t4},{t2,t3}
K

)2
c1(d1 + e1 + f1)Z1

×
(
T
0

A
(d1 + e1 + f1)b1 +

A
0

A
Y1

)(
T
0

T
(d1 + e1 + f1)b1 +

A
0

T
Y1

)
.

Next we want to rewrite the parts involving the kernel in terms of Dodgson polynomials
rather than spanning forest polynomials or the apart-together notation (which no longer has
any hourglasses in it). Using K ′ as in the statement of the theorem this gives (see Figure 2)

−4c1(d1 + e1 + f1)Z1

(
Ψ1,2

K′
)2(

Ψ2,2
K′,1(d1 + e1 + f1)b1 +Ψ12,12

K′ Y1
)

×
(
ΨK′,12(d1 + e1 + f1)b1 +Ψ1,1

K′,2Y1
)
. (3.5)

3.4 The endgame

Because the expression (3.5) vanishes modulo 2 we get the result for q = 2 from the last statement
in Theorem 2.10.

We now restrict ourselves to odd prime powers and show that the last hourglass can be
eliminated. With (3.5) we achieved the following situation: we have two sets of variables,
the five variables b1, c1, d1, e1, f1 from the hourglass X1 and some variables αi in the Dodgson
polynomials with the kernel K ′. The expression (3.5) does not depend on the two variables α1

and α2 which are associated to the extra edges 1 and 2 in K ′. Let d be the degree of Ψ12,12
K′ .

Then Ψ2,2
K′,1, Ψ

1,2
K′ , and Ψ1,1

K′,2 have degree d + 1, while ΨK′,12 has degree d + 2 (see, e.g., [27]).
The total degree of (3.5) is 4d+ 14 which equals twice the total number of its variables.

Quadratic denominator reduction stops at (3.5). To obtain further reductions we use a scaling
technique which was first used in [25] and later adopted in [9] to exhibit a K3 structure in ϕ4

theory at loop order eight. Considering (3.5) as a denominator of an integrand it is clear that
the variables separate under a scaling transformation of all αi by S = Y1/[b1c1(d1 + e1 + f1)].
Because S has total degree zero, homogeneity of (3.5) is preserved.

For Legendre sums over finite fields we need the following argument. If S ∈ F×
q the αi-

variables in the Legendre sum can be multiplied by S yielding

−b1(d1 + e1 + f1)
2Y1Z1

(
Ψ1,2

K′
)2(

Ψ2,2
K′,1 + c1Ψ

12,12
K′

)(
ΨK′,12 + c1Ψ

1,1
K′,2

)
(2S2d+2)2.
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The last factor is a non-zero square which can be dropped from the Legendre sum. This suggests
that

(expression (3.5))q

=
(
−b1(d1 + e1 + f1)

2Y1Z1

(
Ψ1,2

K′
)2(

Ψ2,2
K′,1 + c1Ψ

12,12
K′

)(
ΨK′,12 + c1Ψ

1,1
K′,2

))
q
. (3.6)

In Fq, we cannot ignore the singular locus of the scaling transformation. We need the following
lemma.

Lemma 3.2. Let P be a homogeneous polynomial of odd degree and let q be an odd prime power.
Then (P )q = 0.

Proof. Because q is odd there exists an x ∈ F×
q which is not a square (half the elements in F×

q

are non-squares). Scaling all variables by x gives

(P )q =
(
PxD

)
q
= (P )q

(
x

q

)D

= −(P )q,

where we used that the degree D of P is odd. ■

We observe that in any situation where S is singular (i.e., some of the Y1, b1, c1, d1+ e1+ f1 are
zero) both expressions – (3.5) and the polynomial on the right hand side of (3.6) – are either
zero or the product of two factors in separate variables which are homogeneous of odd degree.
The validity of (3.6) follows from the Lemma with an inclusion-exclusion argument.

The term on the right hand side of (3.6) is homogeneous of degree 4d+14 which equals twice
the number of variables. We may use quadratic denominator reduction in the variables f1, e1,
d1, b1 (in this sequence) yielding (use, e.g., [28])

(expression (3.5))q ≡
(
c1
(
Ψ1,2

K′
)2(

Ψ2,2
K′,1 + c1Ψ

12,12
K′

)(
ΨK′,12 + c1Ψ

1,1
K′,2

))
q

mod q.

By contraction-deletion (2.1) the polynomial on the right hand side is α1

(
Ψ1,2

K′
)2
Ψ2,2

K′ΨK′,2, where
we renamed c1 to α1.

Theorem 1.1 follows from Theorem 2.10 because the number of reduced variables is odd.

4 Kernels

In this section we study kernels which lead to 4-regular hourglass chains. This implies that the
kernelK is internally 4-regular while every external vertex has two incident edges (see Figure 19).

4.1 Trivial kernels

Periods which admit a 3-vertex split are products (see Figure 3). Assuming the completion
conjecture, their c2 invariants vanish. We hence skip kernels with a 3-vertex split. If a kernel
has a double triangle (see Figure 4), the c2 invariant is equal to the c2 of a smaller graph, where
the double triangle is reduced [11, 24]. We also exclude these cases in K because their c2s are
found in smaller kernels. Moreover, we ignore kernels which have an external hourglass in such
a way that it adds to the chain (with the exception that K is an hourglass).

Assume a kernel K with at least two internal vertices has two or more edges between external
vertices. Then, every hourglass chain L ∈ GK splits if one cuts the four or less edges of K which
have exactly one external vertex. The chain L has a subdivergence, its period diverges and
the c2 vanishes [11]. The same holds true if K has a non-trivial internal four edge cut.
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0 1 2 3

4, 1 4, 2 4, 3 4, 4 4, 5

5, 1 5, 2 5, 3 5, 4

5, 5 5, 6 5, 7 5, 8 5, 9

5, 10 5, 11 5, 12 5, 13

5, 14 5, 15 5, 16 5, 17

Figure 19. The kernels with up to five internal vertices. Here, edges 1 and 2 in K ′ would be vertical

edges on either sides of the depicted kernels K.

Table 1. The number of effectively different kernels in ϕ4 theory increases rapidly with the number of

internal vertices.

# internal vertices 0 1 2 3 4 5 6 7 8 9 10

# different kernels 1 1 1 1 5 17 78 497 3882 33587 316860

So, for kernels K with ≥ 2 internal vertices we restrict ourselves to the case that K has
at most one edge between external vertices. If such an edge e shares its vertices with edge 1
or 2 in K ′, then any L ∈ GK has a double-triangle. After two double-triangle reductions we
are left with a graph which has a three vertex split and the c2 (conjecturally) vanishes. We are
effectively left with the case that e joins the vertices of the hourglasses from opposite ends of
the chain. By Theorem 1.1 Möbius twists can be ignored as they lead to equal c2s. The case of
one edge between external vertices of K thus reduces to a single setup (which becomes relevant
for kernels with ≥ 6 internal vertices).

If K has no edge between external vertices, there exist three potentially distinct cases how
to glue the kernel K into the hourglass chain (corresponding to the 2,2 set partitions of the
external vertices).

4.2 Small kernels

We generated all effectively different kernels with up to ten internal vertices. We use the fact
that every kernel K can be made 4-regular by adding a square to the external edges. Non-trivial
kernels with at least one internal vertex can be found in 4-regular graphs which are internally
six-connected and do not have a three vertex cut. Such 4-regular graphs are called irreducible
primitive in [24]. From opening these graphs along all their squares we obtain the number
of effectively different kernels given in Table 1 (graphs were generated with nauty [19]). See
Figure 19 for the cases with at most five internal vertices.

The connection between c2 invariants and geometries is described in [10, 27]. Here, we
investigated all kernels with at most six internal vertices. For kernels with up to five internal
vertices the c2 invariants are listed in Table 2. Note that most results are not proven but
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Table 2. The c2 invariants for kernels with up to five internal vertices. The first column in the table

refers to the number of internal vertices and the label in Figure 19. Unidentified sequences in the second

column are specified by their prime prefix
(
−c

(p)
2 mod p

)
p=2,3,5,7,11,...

(note that modularity, e.g., applies

to the negative c2).

kernel c2 invariant

0 Legendre symbol (−4/q)

1 Legendre symbol (4/q)

2 Legendre symbol (4/q)

3 modular form of weight 4 and level 8

4,1 Legendre symbol (−4/q)

4,2 unidentified sequence 0, 2, 3, 2, 3, 8, 15, 9, 6, 27, 11, 32 . . .

4,3 Legendre symbol (4/q)

4,4 unidentified sequence 0, 0, 0, 0, 0, 7, 16, 0, 0, 22, 0, 19, . . .

4,5 unidentified sequence 0, 1, 3, 5, 8, 8, 15, 10, 17, 27, 20, 32 . . .

5,1 modular form of weight 4 and level 16

5,2 Legendre symbol (4/q)

5,3 modular form of weight 9 and level 4

5,4 unidentified sequence 0, 1, 1, 1, 2, 4, . . .

5,5 unidentified sequence 0, 1, 1, 0, 2, 0, 3, . . .

5,6 unidentified sequence 0, 1, 4, 2, 0, 3, 1, . . .

5,7 unidentified sequence 0, 2, 4, 2, 8, 4, . . .

5,8 unidentified sequence 0, 2, 0, 6, 10, 9, 10, . . .

5,9 unidentified sequence 0, 2, 4, 5, 0, 3, 1, 2, . . .

5,10 unidentified sequence 0, 1, 1, 1, 1, 7, 6, 17, 2, . . .

5,11 unidentified sequence 0, 1, 1, 6, 1, 11, 2, . . .

5,12 unidentified sequence 0, 1, 4, 5, 4, 4, 11, . . .

5,13 unidentified sequence 0, 0, 1, 5, 1, 3, 16, . . .

5,14 modular form of weight 6 and level 4

5,15 unidentified sequence 0, 0, 0, 4, 5, 10, 3, . . .

5,16 unidentified sequence 0, 0, 3, 0, 0, 3, 1, 0, 0, 25, . . .

5,17 modular form of weight 6 and level 4

obtained by identifying finite c2 prefixes (indexed by primes). In general it is convenient to
restrict prefix calculations to primes because (1) computations are simpler and faster, (2) it is
assumed that prime prefixes determine the geometry, see [27, Conjecture 2], and (3) modularity
only uses primes, see [10, Definition 21]. All identified modular c2s are confirmed up to prime 29
using the Maple package HyperlogProcedures by the first author [28]. Computations for the
primes 31 and 37 are ongoing.

Full reductions were possible for the Legendre symbol (−4/q) in kernel 4,1 and for the Leg-
endre symbol (4/q) in kernel 5,2 and in a kernel with six internal vertices. For these hourglass
families of ϕ4 ancestors the c2 is proved (except for non-trivial even prime powers).

The modular form [9,4] in kernel 5,3 was not found in the c2 invariants of ϕ4 graphs of loop
order ≤ 12 (see [27]). It is the first form of weight 9 that has been found in ϕ4 theory. Note
that 4 is the lowest level of all forms of weight 9 which fits into the picture that forms in ϕ4

have very low level. No new modular forms were found in hourglass chains of kernels with six
internal vertices.
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Assuming the completion conjecture we could show that no weight 2 modular form of level
≤ 1000 (corresponding to point-counts of curves) exists in hourglass chains of kernels with
at most six internal vertices. This result provides substantial extra support for the no-curve
conjecture in [10, 27].

The analysis of kernels with seven (or more) internal vertices requires significantly more
computing power. We did not pursue this here.
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