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Abstract. We construct two new one-parametric families of separated variables for the
classical Lax-integrable Hamiltonian systems governed by a one-parametric family of non-
skew-symmetric, non-dynamical gl(2)⊗gl(2)-valued quasi-trigonometric classical r-matrices.
We show that for all but one classical r-matrices in the considered one-parametric families
the corresponding curves of separation differ from the standard spectral curve of the initial
Lax matrix. The proposed scheme is illustrated by an example of separation of variables for
N = 2 quasi-trigonometric Gaudin models in an external magnetic field.

Key words: integrable systems; separation of variables; classical r-matrices

2020 Mathematics Subject Classification: 14H70; 17B80; 37J35

1 Introduction

The problem of the separation of variables is one of the most studied, but yet the most diffi-
cult and not completely resolved problems in the theory of integrable systems. The separated
variables are important because they give one a possibility to integrate classical equations of
motion [9]. They are also used to solve exactly quantum integrable systems [19]. In this context
it is worth to mention, for example, the recent results in quantum separation of variables (SoV)
for the higher-rank models [7, 15, 16].

The problem of construction of separated variables can be divided into three parts:

1. Construction of a set of canonical coordinates on the phase space.

2. Proof that the constructed coordinates satisfy the so-called equations of separation.

3. Proof that the constructed system of canonical coordinates is complete.

The important class of integrable models are the models admitting Lax representation. For
such the models one can much advance in the solution of the problem of separation of vari-
ables [19]. In the classical case the approach of [19] – the roots of which go back to the previous
papers [1, 3, 8, 12, 18, 30] – permits to construct a set of variables that belong to a spectral
curve of the Lax matrix, playing the role of equation of separation, i.e., the approach of [19] –
the so-called “magic recipe” – automatically guarantees the validity of item two.

Unfortunately “the magic recipe” does not guarantee that the constructed variables belonging
to the spectral curve of the Lax matrix are the canonical variables indeed. Moreover, it often
happens that the number of variables produced by the method is not equal to the dimension of
the corresponding phase space, i.e., item three is not guaranteed even if both of the items one
and two are fulfilled. Although in some cases the problem can be resolved by certain tricks, e.g.,
by complementing of the set of the obtained canonical variables by a linear integrals playing the
role of the additional momenta of separation and by finding of the corresponding canonically
conjugated variables [1, 2, 18] but, unfortunately, it is not always the case.
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That is why we propose to re-consider a scheme of [19], making its starting point a con-
struction of the complete set of canonical coordinates (items 1, 3) and only after that start to
check item 2, i.e., to check what equations of separation the constructed canonical coordinates
satisfy. This changing of accents permits to obtain separated variables for which the equations
of separation do not coincide with a spectral curve of the initial Lax matrix [29].

In order to find a complete set of the canonical coordinates we use, similar to [19], the
method of separating functions B(u) and A(u), such that zeros of the first function generate the
Poisson-commuting coordinates and the values of the second function in these zeros generate the
canonically conjugated momenta: B(xi) = 0, pi = A(xi). The most important in this method
is a Poisson algebra to be satisfied by the functions B(u) and A(u) [10]:

{B(u), B(v)} = b(u, v)B(u)− b(v, u)B(v), (1.1a)

{A(u), B(v)} = α(u, v)B(u)− β(u, v)B(v), (1.1b)

{A(u), A(v)} = a(u, v)B(u)− a(v, u)B(v), (1.1c)

for some functions a(u, v), b(u, v), α(u, v), β(u, v) such that the following limit holds true

lim
u→v

(α(u, v)B(u)− β(u, v)B(v)) = ∂vB(v) + γ(v)B(v).

The corresponding restrictions imposed on B(u) and A(u) permit their explicit construction.
In the present paper we consider the examples of Lax-integrable models with gl(2)-valued

Lax matrices L(u) =
∑2

i,j=1 Lij(u)Xij possessing the tensor Lie–Poisson bracket

{L(u)⊗ 1, 1⊗ L(v)} = [r12(u, v), L(u)⊗ 1]− [r21(v, u), 1⊗ L(v)],

governed by gl(2)⊗ gl(2)-valued non-skew-symmetric “quasi-trigonometric” classical r-matrix

r(u, v) =

(
1

2

(u+ v)

(v − u)
+ c1

)
X11 ⊗X11 +

(
1

2

(u+ v)

(v − u)
+ c2

)
X22 ⊗X22

+
v

(v − u)
X12 ⊗X21 +

u

(v − u)
X21 ⊗X12, (1.2)

where the parameters ci are arbitrary and {Xij | i, j = 1, 2} is a standard matrix basis of gl(2),
i.e., the matrices Xij have the following matrix elements: (Xij)αβ = δiαδjβ.

Although the mentioned above trick with the complement of the standard Sklyanin variables
is valid in the considered cases (see [14] for the standard trigonometric case), i.e., it helps to
produce a complete set of variables of separation, in the present paper we have succeeded in
a construction of two new one-parametric families of separating functions for the r-matrix (1.2)
in the subcase c2 = −c1, which are complete at once without any additional tricks.

The first family has the following explicit form

B(u) = L12(u) +
k

u
(L11(u)− L22(u))− k2

u2
L21(u), (1.3a)

A(u) = L22(u) +
k

u
L21(u) +

(
c1 +

1

2

)
M, (1.3b)

where the parameter k is arbitrary and M is a special “geometric” integral [26] possessing the
following Poisson brackets with the matrix elements of the Lax matrix:

{M,Lij(u)} = sign(j − i)(1− δij)Lij(u).

The second family is organized in a similar way. In the case k 6= 0 both the families produce
the complete set of canonical coordinates. The important property of the both sets of separated
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coordinates is that they satisfy the spectral curve equation modified with the help of the geo-
metric integral M . For the first family of separated variables the equations of separation have
the following explicit form

det

(
L(xj)−

(
xjpj −

(
c1 +

1

2

)
M

)
Id

)
= 0. (1.4)

They coincides with a spectral curve of the initial Lax matrix only in the special case c1 = −1
2 .

The function B(u) given by (1.3a) and the function A(u) given by (1.3b) are obtained –
modulo the integral M – using the gauge transformation K(u) of the initial Lax matrix (see
Remarks 4.5 and 4.10). Due to the fact that the gauge-transformed r-matrix rK(u, v) =
K−1(u) ⊗ K−1(v)r(u, v)K(u) ⊗ K(v) does not satisfy the conditions of [10] (see also [28]),
we have inserted the integral M into the momenta-generating function A(u) in order to achieve
the needed structure (1.1) of Poisson algebra of separating functions.

Hence, the main difference of our approach with the standard one is in the form of the
momenta-generating function (1.3b) and of the equations of separation (1.4). It evidently leads
to the SoV non-equivalent with the standard one. Our SoV is naturally characterized by another
form of the Abel-type equations and of the reconstruction formulae. Besides the difference in
the form of separation curves leads to the profound mathematical difference of our SoV with
the standard SoV based on the usual spectral curve. In particular, the proposed SoV is not bi-
Hamiltonian one (see [11]), since – as the result of the M -shift – the integrals of the corresponding
models do not enter into the equations of separation (1.4) in the form of the Casimirs of the
corresponding Poisson pencil.

In order to be more concrete we consider a class of examples of the Lax matrices possessing the
poles of the first order in the points ν1, ν2, . . . , νN , i.e., the Lax matrices of the generalized Gaudin
models [20, 21, 22]. We devote special attention to the case N = 2. The corresponding Poisson-
commuting Gaudin-type Hamiltonians in an external magnetic field are written as follows

H1 =

(
1

2

(ν1 + ν2)

(ν2 − ν1)
+ c1

)
T11S11 +

(
1

2

(ν1 + ν2)

(ν2 − ν1)
+ c2

)
T22S22

+
ν1T12S21
(ν2 − ν1)

+
ν2T21S12
(ν2 − ν1)

+ c1S
2
11 + c2S

2
22 + 2c11S11 + 2c22S22,

H2 =

(
1

2

(ν1 + ν2)

(ν1 − ν2)
+ c1

)
S11T11 +

(
1

2

(ν1 + ν2)

(ν1 − ν2)
+ c2

)
S22T22

+
ν2S12T21
(ν1 − ν2)

+
ν1S21T12
(ν1 − ν2)

+ c1T
2
11 + c2T

2
22 + 2c11T11 + 2c22T22,

where cii are the components of an external magnetic field and

{Sij , Skl} = δkjSil − δilSkj , {Tij , Tkl} = δkjTil − δilTkj , {Tij , Skl} = 0.

For the considered N = 2 Gaudin models we explicitly write coordinates and momenta of
separation, the reconstruction formulae and the Abel-type equations corresponding to the both
constructed one-parametric families of separating functions.

We remark, that our previous result [29] on separation of variables in trigonometric models is
recovered, in the case c1 = c2 = 0 and for certain fixed value of the parameter k, from our first
family of separated coordinates after suitable re-parametrization and gauge transformation.

The structure of the present article is the following: in Section 2 we remind main facts about
separation of variables and about the method of separating functions, in Section 3 we recall
the general theory of the classical r-matrices and generalized Gaudin models and specialize this
theory for the case of quasi-trigonometric r-matrices. In Section 4 we construct two families of
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separating functions for any integrable system governed by the quasi-trigonometric r-matrix. In
Section 5 we perform variable separation for the N = 2 quasi-trigonometric Gaudin models. In
Section 6 we briefly conclude and discuss the on-going problems. At last in Appendices A and B
we give the explicit form of the reconstruction formulae for the both cases of SoV discovered in
the present paper and for N = 2 quasi-trigonometric Gaudin models.

2 Separation of variables: general scheme

2.1 Definitions

Let us recall the definition of Liouville integrability and separation of variables in the theory
of Hamiltonian systems [19]. An integrable Hamiltonian system with D degrees of freedom
is determined on a 2D-dimensional symplectic manifold M – symplectic leaf in the Poisson
manyfold (P, { , }) – by D independent first integrals Ij commuting with respect to the Poisson
bracket

{Ii, Ij} = 0, i, j = 1, . . . , D.

For the Hamiltonian H of the system may be taken any first integral Ij .
To find separated variables means to find (at least locally) a set of coordinates xi, pj , i, j =

1, . . . , D such that there exist D relations – equations of separation

Φi(xi, pi, I1, . . . , ID) = 0, i = 1, . . . , D, (2.1)

where the coordinates xi, pj , i, j = 1, . . . , D are canonical, i.e.,

{xi, pj} = δij , {xi, xj} = 0, {pi, pj} = 0, ∀ i, j = 1, . . . , D.

The separated variables provide a way to a construction of the action-angle coordinates from
the Liouville theorem and a way to explicit integration of the equations of motion.

Unfortunately, in the general case no algorithm is known to construct a set of separated
variables for any given integrable system. One of the possible methods of their construction
is the so-called method of separating functions permitting one to construct a set of canonical
coordinates.

2.2 Separating functions and canonical coordinates

Let us remind a method of construction of canonical coordinates using separating functions.
Generally speaking this method can be considered independently of separation of variables. That
is why in this subsection we do not assume any special properties of the Poisson manyfold P or
Poisson structure { , }. Neither we assume integrability or existence of the Lax representation.

Let B(u) and A(u) be some functions of the dynamical variables and an auxiliary parameter u,
which is constant with respect to the bracket { , }. Let the points xi, i = 1, . . . , P be zeros of
the function B(u) and pi, i = 1, . . . , P be the values of A(u) in these points, i.e.,

B(xi) = 0, pi = A(xi).

We wish to construct Poisson brackets among these new coordinates using the Poisson brackets
between B(u) and A(u). The following proposition holds true [10].

Proposition 2.1. Let B(xi) = 0, pj = A(xj). Then

(i) {xi, xj} =

(
{B(u), B(v)}
∂uB(u)∂vB(v)

) ∣∣∣∣
u=xi, v=xj

,
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(ii) {xj , pi} =

(
{A(u), B(v)}
∂vB(v)

) ∣∣∣∣
u=xi, v=xj

+ {xi, xj}(∂uA(u))|u=xi ,

(iii) {pi, pj} =
(
{A(u), A(v)}

)∣∣
u=xi, v=xj

+ {pi, xj}(∂vA(v))|v=xj + {xi, pj}(∂uA(u))|u=xi
− {xi, xj}(∂uA(u)∂vA(v))|u=xi, v=xj ,

where i 6= j.

Proof. The equalities (i)–(iii) are obtained by the decomposition of B(u), A(u), B(v), A(v)
in Taylor power series in the neighborhood of the points u = xi, v = xj in the expressions
{B(u), B(v)}, {A(u), B(v)}, {A(u), A(v)} and by considering the limits u → xi, v → xj after
the calculation of the Poisson brackets. �

Now we are ready to formulate the following important lemma [10].

Lemma 2.2. Let the coordinates xi and pj, i, j = 1, . . . , P be defined as above. Let the functions
A(u), B(u) satisfy the following Poisson algebra

{B(u), B(v)} = b(u, v)B(u)− b(v, u)B(v), (2.2a)

{A(u), B(v)} = α(u, v)B(u)− β(u, v)B(v), (2.2b)

{A(u), A(v)} = a(u, v)B(u)− a(v, u)B(v). (2.2c)

Then the Poisson bracket among the functions xi and pj, ∀ i, j = 1, . . . , P , i 6= j are trivial

{xi, xj} = 0, ∀ i, j = 1, . . . , P,

{xj , pi} = 0, if i 6= j,

{pi, pj} = 0, ∀, i, j ∈= 1, . . . , P.

If, moreover holds also the condition

lim
u→v

(α(u, v)B(u)− β(u, v)B(v)) = ∂vB(v) + γ(v)B(v) (2.3)

then the corresponding Poisson brackets are canonical, i.e., {xi, pi} = 1, ∀ i = 1, . . . , P .

Remark 2.3. Observe, that the method of the separating functions A(u) and B(u) does not,
generally speaking, guarantee that the number P of the constructed canonical variables is equal
to D, i.e., to half of the dimension of the generic symplectic leaf. Neither it guarantees that the
constructed canonical coordinates satisfy the equations of separation (2.1) for some integrable
Hamiltonian system defined by the Poisson-commuting Hamiltonians {Ii, i = 1, . . . , D}. Never-
theless it is often the case and it is necessary only to find the explicit form of the corresponding
functions Φi(xi, pi, I1, . . . , ID). In the next sections we will illustrate this by a class of new
examples.

3 Classical r-matrices and generalized Gaudin models

3.1 Definition and notations

Let g = gl(2) be the Lie algebra of the general linear group over the field of complex numbers.
Let Xij , i, j = 1, 2 be a standard basis in gl(2) with the commutation relations

[Xij , Xkl] = δkjXil − δilXkj .
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Definition 3.1. A function of two complex variables r(u1, u2) with values in the tensor square
of the algebra g = gl(2) is called a classical r-matrix if it satisfies the following generalized
classical Yang–Baxter equation

[r12(u1, u2), r13(u1, u3)] = [r23(u2, u3), r12(u1, u2)]− [r32(u3, u2), r13(u1, u3)], (3.1)

where

r12(u1, u2) ≡
2∑

i,j,k,l=1

rij,kl(u1, u2)Xij ⊗Xkl ⊗ 1,

r13(u1, u3) ≡
2∑

i,j,k,l=1

rij,kl(u1, u3)Xij ⊗ 1⊗Xkl,

etc. and rij,kl(u, v) are matrix elements of the r-matrix r(u, v).

Remark 3.2. The definition (3.1) holds true also for other semisimple (reductive) Lie algebras g.
It has appeared in the different forms in the papers [4, 5, 13]. In the case of skew-symmetric
r-matrices, i.e., when r12(u1, u2) = −r21(u2, u1) the generalized classical Yang–Baxter equation
reduces to the usual classical Yang–Baxter equation [6, 17].

In the present paper we are interested only in the meromorphic r-matrices that possess the
following decomposition

r(u1, u2) =
Ω

u1 − u2
+ r0(u1, u2), (3.2)

where r0(u1, u2) is a holomorphic gl(2)⊗ gl(2)-valued function and Ω =
∑2

i,j=1Xij ⊗Xji.
We will need also the following definitions:

Definition 3.3. The classical r-matrix is called g0 ⊂ g-invariant if

[r12(u1, u2), X ⊗ 1 + 1⊗X] = 0, ∀X ∈ g0. (3.3)

Definition 3.4. A gl(2)-valued function c(u) =
∑2

i,j=1 cij(u)Xij of one complex variable is
called a generalized shift element if it satisfies the following equation

[r12(u1, u2), c(u1)⊗ 1]− [r21(u2, u1), 1⊗ c(u2)] = 0. (3.4)

3.2 Lax algebra and generalized Gaudin models in external field

Using the classical r-matrix r(u1, u2) it is possible to define the tensor Lie–Poisson bracket in
the space of certain gl(2)-valued functions of the complex parameter u [4, 5, 13]:

{L(u1)⊗ 1, 1⊗ L(u2)} = [r12(u1, u2), L(u1)⊗ 1]− [r21(u2, u1), 1⊗ L(u2)], (3.5)

where

L(u) =
2∑

i,j=1

Lij(u)Xij .

The tensor bracket (3.5) guarantees commutativity of spectral invariants of the Lax matrix{
trLm(u), trLn(v)

}
= 0

and permits one to define a completely integrable Hamiltonian system.
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For a given classical r-matrix there exist different types of the dependence of L(u) on spectral
parameter and dynamical variables [24, 25, 26]. In the present paper we will consider the
dependence leading to Gaudin-type models in an external magnetic field [20, 21, 22].

In more details, let S
(m)
ij , i, j = 1, . . . , n, m = 1, . . . , N be linear coordinate functions on the

dual space to the Lie algebra gl(2)⊕N with the following Poisson brackets{
S
(m)
ij , S

(p)
kl

}
= δpm

(
δkjS

(m)
il − δilS

(m)
kj

)
. (3.6)

Let us fix N distinct points of the complex plane νm, m = 1, . . . , N . As a consequence of the
generalized classical Yang–Baxter equation (3.1) and of the shift equation (3.4), it is possible to
introduce the following classical Lax operator [20, 21, 22]:

L(u) =
2∑

i,j=1

Lij(u)Xij ≡
N∑
m=1

2∑
i,j,p,q=1

rij,pq(νm, u)S
(m)
ij Xpq + c(u), (3.7)

where c(u) =
2∑

i,j=1
cij(u)Xij is a solution of the shift equation (3.4).

The corresponding Poisson-commuting Gaudin-type Hamiltonians read as follows

Hl =
N∑

k=1,k 6=l

n∑
i,j,p,q=1

rij,pq(νk, νl)S
(k)
ij S

(l)
pq +

n∑
i,j,p,q=1

rij,pq0 (νl, νl)S
(l)
ij S

(l)
pq +

n∑
i,j=1

cij(νl)S
(l)
ij ,

where rij,pq0 (u, v) are the matrix elements of the regular part of the r-matrix and cij(νl) play the
role of the components of external magnetic field.

Remark 3.5. The brackets (3.6) possess the following Casimir functions

I1i =

N∑
i=1

(
S
(i)
11 + S

(i)
22

)
, I2i =

N∑
i=1

(
S
(i)
11 S

(i)
22 − S

(i)
12 S

(i)
21

)
, i = 1, . . . , N.

3.3 Quasi-trigonometric case

In this subsection we will illustrate the material of the previous subsections by the concrete
example of gl(2)⊗ gl(2)-valued classical r-matrices and the corresponding Gaudin models.

3.3.1 Quasi-trigonometric r-matrices

Let us consider the following gl(2)⊗ gl(2)-valued function of two complex variables

r(u, v) =

(
1

2

(u+ v)

(v − u)
+ c1

)
X11 ⊗X11 +

(
1

2

(u+ v)

(v − u)
+ c2

)
X22 ⊗X22

+
v

(v − u)
X12 ⊗X21 +

u

(v − u)
X21 ⊗X12. (3.8)

It is possible to show [23] that the function (3.8) satisfies generalized classical Yang–Baxter
equation (3.1), i.e., is a classical r-matrix. Using the trigonometric parametrization u = eφ,
v = eψ it is easy to show that the r-matrix (3.8) satisfies the condition (3.2).

We will call the r-matrix (3.8) to be quasi-trigonometric.

It is easy to show that the r-matrix (3.8) possess a symmetry (3.3) with respect to the
Cartan-subalgebra of the diagonal matrices.
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It is also easy to show that the shift element for the r-matrix (3.8) satisfying the equation (3.4)
has the following form

c(u) = 2(c11X11 + c22X22), (3.9)

where the overall coefficient (two) is introduced for the further notational convenience.

Remark 3.6. In the case c1 = 0, c2 = 0 the r-matrix (3.8) coincides with skew-symmetric
trigonometric r-matrix. In all other cases this r-matrix is not skew-symmetric.

Remark 3.7. In the present paper we will concentrate on the one-parametric sub-family of
the r-matrices (3.8) characterized by the property c2 = −c1. This family evidently includes
a skew-symmetric point c1 = c2 = 0 as a special partial case.

3.3.2 Quasi-trigonometric Lax algebra and Gaudin-type-models

The Lax algebra that correspond to the r-matrix (3.8) usually possesses [26] the function M
associated with the Cartan-invariance of the r-matrix (3.8), that satisfies the following equality

{M,Lij(u)} = sign(j − i)(1− δij)Lij(u). (3.10)

It is easy to show [26] that M is an integral of motion, i.e.,{
M, trLk(u)

}
= 0, ∀ k ∈ N.

As we will show below this additional integral is important for a separation of variables.
The Lax matrix of the Gaudin-type models in an external magnetic field (3.7) corresponding

to the r-matrix (3.8) has the following form

L(v) =

N∑
i=1

((
1

2

νi + v

νi − v
+ c1

)
S
(i)
11X11 +

(
1

2

νi + v

νi − v
+ c2

)
S
(i)
22X22

+
vS

(i)
12

(νi − v)
X21 +

νiS
(i)
21

(νi − v)
X12

)
+ c(v), (3.11)

where c(v) is given by the formula (3.9).
The Poisson-commuting Gaudin-type Hamiltonians in an external magnetic field are

Hj =
1

2
resv=νj trL2(v), j = 1, . . . , N.

They have the following explicit form

Hj =

N∑
i=1,i 6=j

((
1

2

νi + νj
νi − νj

+ c1

)
S
(i)
11 S

(j)
11 +

(
1

2

νi + νj
νi − νj

+ c2

)
S
(i)
22 S

(j)
22 +

νjS
(i)
12 S

(j)
21

(νi − νj)

+
νiS

(i)
21 S

(j)
12

(νi − νj)

)
+ c1(S

(j)
11 )2 + c2(S

(j)
22 )2 + 2c11S

(j)
11 + 2c22S

(j)
22 , j = 1, . . . , N. (3.12)

There additional linear integral M commutes with all the functions Hj and has the form

M =
1

2

N∑
j=1

(
S
(j)
22 − S

(j)
11

)
.

Remark 3.8. Observe that the Hamiltonians (3.12) differ from the standard trigonometric
Gaudin Hamiltonians by “dynamical”, i.e., dependent on the integral M and linear Casimir
functions, magnetic fields [27]. By the other words, all the corresponding “quasi-trigonometric”
models are very close to the trigonometric ones, but not equivalent to them, in particular because
the corresponding quasi-trigonometric r-matrices are not equivalent to the trigonometric one.
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4 Separation of variables: quasi-trigonometric case

Let us consider the case of the Lax-integrable models governed by quasi-trigonometric r-mat-
rix (3.8). It occurred that in the case c2 = −c1 for such the models there exist two one-parametric
families of separating functions A(u), B(u). We will consider them one by one in the next
subsections.

4.1 The first family of separated variables

Let us consider the following linear in the matrix elements of the Lax matrix functions

B(u) = L12(u) +
k

u
(L11(u)− L22(u))− k2

u2
L21(u), (4.1a)

A(u) = L22(u) +
k

u
L21(u) +

(
c1 +

1

2

)
M, (4.1b)

C(u) = L21(u). (4.1c)

The following proposition holds true.

Proposition 4.1. Let the gl(2)-valued Lax matrix L(u) satisfy tensor Poisson bracket (3.5)
with the r-matrix (3.8). Let c2 = −c1. Then the functions B(u) and A(u) satisfy the following
Poisson algebra

{B(u), B(v)} =
k

uv
(uB(u)− vB(v)), (4.2a)

{A(u), B(v)} =
1

u− v
(uB(u)− vB(v)), (4.2b)

{A(u), A(v)} = 0. (4.2c)

Proof. The proposition is proven by the direct calculation using the explicit form of the func-
tions A(u), B(v), the explicit form of the classical r-matrix, the Poisson brackets (3.5) and the
relation (3.10). �

Comparing the algebra (4.2) with the algebra (2.2) we obtain that the relations (2.2a)–
(2.2c) are automatically satisfied and the relation (2.3) is satisfied after the transformation

A(u)→ A(u)
u . That is why introducing the coordinates xj , pj by the relations

B(xj) = 0, pj =
A(xj)

xj

we obtain that these coordinates are canonical

{xi, xj} = 0, {pi, pj} = 0, {xj , pi} = δij .

Hence we have constructed a set of canonical coordinates associated with the quasi-trigono-
metric r-matrices. Now it is necessary to show that they satisfy the equations of separation.

The following proposition holds true.

Proposition 4.2. The functions A(u), B(u), C(u) satisfy the following algebraic relation

det

(
L(u)−

(
A(u)−

(
c1 +

1

2

)
M

)
Id

)
+B(u)C(u) = 0. (4.3)

Proof. The proposition is proven by the direct calculation using the explicit form of the func-
tions A(u), B(v), C(u). �
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From the relation (4.3) follows that we have obtained the equations of separation for the
trigonometric models which can be written more explicitly as follows

det

(
L(xj)−

(
xjpj −

(
c1 +

1

2

)
M

)
Id

)
= 0. (4.4)

Now in order to state that the obtained coordinates are the separated coordinates indeed, it
is necessary to show that the set of the constructed coordinates is complete on symplectic leaves
of the Lie–Poisson brackets. The following proposition holds true.

Proposition 4.3. Let L(u) be the Lax matrix of the N -spin Gaudin model (3.11). Let k 6= 0.
Then the function B(u) given by the formula (4.1a) possesses N non-constant zeros.

Proof. The proposition is proven by a direct calculation. Using the explicit form (4.1a) of the
function B(u) and the Lax matrix (3.11) it is easy to show that it is a rational function in u,
nominator of which is a polynomial of degree N whose constant in u term is not zero if k 6= 0.

Now, using the fact that symplectic leafs of the Lie–Poisson brackets in gl(2)⊕N are 2N -
dimensional we obtain that our construction produce the needed number of the canonical coor-
dinates satisfying the equations of separation (4.4), i.e., produce a complete set of the coordinates
of separation. �

Remark 4.4. Observe that the constructed set of the separated coordinates is complete even
without external magnetic field, i.e., when c11 = c22 = 0.

Remark 4.5. Observe, that B(u) = LK12(u), where LK(u) = K(u)−1L(u)K(u) and

K(u) =

1
k

u
0 1

 .

The element A(u) coincides with LK22(u) only in the case c1 = −1
2 . Consequently the equations

of separation (4.4) do not coincide with the spectral curve of the Lax matrix if c1 6= −1
2 .

4.2 The second family of separated variables

Let us consider the following linear in the matrix elements of the Lax matrix functions

B(u) = L12(u) + k(L11(u)− L22(u))− k2L21(u), (4.5a)

A(u) = L11(u)− kL21(u) +

(
c1 +

1

2

)
M, (4.5b)

C(u) = L21(u). (4.5c)

The following proposition holds true.

Proposition 4.6. Let the gl(2)-valued Lax matrix L(u) satisfy tensor Poisson bracket (3.5)
with the r-matrix (3.8). Let c2 = −c1. Then the functions B(u) and A(u) satisfy the following
Poisson algebra:

{B(u), B(v)} = −k(B(u)−B(v)), (4.6a)

{A(u), B(v)} = − u

u− v
(B(u)−B(v)), (4.6b)

{A(u), A(v)} = 0. (4.6c)
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Proof. The proposition is proven by the direct calculation using the explicit form of the func-
tions A(u), B(v), the explicit form of the classical r-matrix, the Poisson brackets (3.5) and the
relation (3.10). �

Comparing the algebra (4.6) with the algebra (2.2) we obtain that the relations (2.2a)–
(2.2c) are automatically satisfied and the relation (2.3) is satisfied after the transformation

A(u)→ −A(u)
u . That is why introducing the coordinates xj , pj by the relations

B(xj) = 0, pj = −A(xj)

xj

we obtain that these coordinates are canonical

{xi, xj} = 0, {pi, pj} = 0, {xj , pi} = δij .

Hence we have constructed a set of canonical coordinates associated with the quasi-trigono-
metric r-matrices. Now it is necessary to show that they satisfy some equations of separation.

The following proposition holds true.

Proposition 4.7. The functions A(u), B(u), C(u) satisfy the following algebraic relation

det

(
L(u)−

(
A(u)−

(
c1 +

1

2

)
M

)
Id

)
+B(u)C(u) = 0. (4.7)

Proof. The proposition is proven by the direct calculation using the explicit form of the func-
tions A(u), B(v), C(u). �

From the relation (4.7) it follows that we have obtained new equations of separation for the
trigonometric models which can be written explicitly as follows

det

(
L(xj) +

(
xjpj +

(
c1 +

1

2

)
M

)
Id

)
= 0. (4.8)

Now, in order to state that the obtained coordinates are indeed the separated coordinates it
is necessary only to show that the set of the constructed coordinates is complete on symplectic
leafs of the Lie–Poisson brackets. The following proposition holds true.

Proposition 4.8. Let L(u) be the Lax matrix of the N -spin Gaudin model (3.11). Let k 6= 0.
Then the function B(u) given by the formula (4.1a) possesses N non-constant zeros.

Proof. The proposition is proven by a direct calculation. Using the explicit form of the func-
tion B(u) and the Lax matrix (3.11) it is easy to show that it is a rational function in u,
nominator of which is a polynomial of degree N whose higher order term is non-zero if k 6= 0.

Now, using the fact that symplectic leafs of the Lie–Poisson brackets in gl(2)⊕N are 2N -
dimensional we obtain that our construction produces the needed number of the canonical
coordinates satisfying the equations of separation (4.8), i.e., produces a complete set of the
coordinates of separation. �

Remark 4.9. Observe that, similar to the first set of separated variables, the constructed second
set of separated variables is complete even without external magnetic field.

Remark 4.10. Observe, that B(u) = LK12(u), where LK(u) = K−1L(u)K and

K =

(
1 k
0 1

)
.

The element A(u) coincide with LK11(u) only in the case c1 = −1
2 . Consequently the equations

of separation (4.8) do not coincide with the spectral curve of the Lax matrix unless c1 = −1
2 .
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5 Example: N = 2 quasi-trigonometric Gaudin model

In this section we will illustrate the results of the previous section by the example of N = 2
quasi-trigonometric Gaudin models.

5.1 N = 2 quasi-trigonometric Gaudin model

Let us consider the Hamiltonians and Lax operators of N = 2 Gaudin-type models more ex-

plicitly. Let S
(m)
ij , i, j,m = 1, 2 be coordinate functions on (gl(2) ⊕ gl(2))∗ with the standard

Lie–Poisson brackets (3.6). Here-after for the further notational convenience we will use the
following new notations

S
(1)
ij ≡ Sij , S

(2)
ij ≡ Tij .

The above Poisson brackets have two linear Casimir functions

I11 = S11 + S22, I12 = T11 + T22

and two quadratic ones

I21 = S11S22 − S12S21, I22 = T11T22 − T12T21.

The Lax operator L(v) of two-spin quasi-trigonometric Gaudin model in an external magnetic
field is written as follows

L(v) = LS(v) + LT (v) + c(v), (5.1a)

LS(v) =

(
1

2

ν1 + v

ν1 − v
+ c1

)
S11X11 +

(
1

2

ν1 + v

ν1 − v
+ c2

)
S22X22

+
vS12

(ν1 − v)
X21 +

ν1S21
(ν1 − v)

X12, (5.1b)

LT (v) =

(
1

2

ν2 + v

ν2 − v
+ c1

)
T11X11 +

(
1

2

ν2 + v

ν2 − v
+ c2

)
T22X22

+
vT12

(ν2 − v)
X21 +

ν2T21
(ν2 − v)

X12, (5.1c)

c(v) = 2c11X11 + 2c22X22. (5.1d)

The corresponding Gaudin-type Hamiltonians in a magnetic field have the following form

H1 =

(
1

2

(ν1 + ν2)

(ν2 − ν1)
+ c1

)
T11S11 +

(
1

2

(ν1 + ν2)

(ν2 − ν1)
+ c2

)
T22S22

+
ν1T12S21
(ν2 − ν1)

+
ν2T21S12
(ν2 − ν1)

+ c1S
2
11 + c2S

2
22 + 2c11S11 + 2c22S22,

H2 =

(
1

2

(ν1 + ν2)

(ν1 − ν2)
+ c1

)
S11T11 +

(
1

2

(ν1 + ν2)

(ν1 − ν2)
+ c2

)
S22T22

+
ν2S12T21
(ν1 − ν2)

+
ν1S21T12
(ν1 − ν2)

+ c1T
2
11 + c2T

2
22 + 2c11T11 + 2c22T22.

The additional linear integral M associated with the Cartan-symmetry of the r-matrix is

M = −1

2
(S11 − S22 + T11 − T22).
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It is not independent – it is related with H1, H2 and linear Casimir functions as follows

H1 +H2 + 2c1(I11 + I12)M + c11(2M − I11 − I12)− c22(2M + I11 + I12)

−
(

1

4
(c1 + c2)

)
(2M + I11 + I12)

2 = 0.

In the interesting for us case c2 = −c1 we obtain that

M =
1

2

((c11 + c22)I11 + (c11 + c22)I12 −H1 −H2)

((I11 + I12)c1 + c11 − c22)
.

Remark 5.1. Hereafter we will consider the case of the r-matrices with c2 = −c1 only. For the
purpose of convenience will chose the following poles of the Lax matrix

ν2 = −ν1.

In order to simplify all the formulae we will restrict ourselves to the consideration of the traceless
case, i.e., we will hereafter put I11 = 0, I12 = 0.

5.2 The first family of separated variables

5.2.1 The separating functions

The first family of the separated variables are given by the separating functions (4.1a)–(4.1b).
Let us specify them for the Lax matrix (5.1). We will have

B(u) =
1

2u(u− ν1)(u+ ν1)

((
k(2c1 − 1)S11 − 2ν1S21 + k(2c1 + 1)S22 + k(2c1 − 1)T11

+ 2T21ν1 + k(2c1 + 1)T22 + 4k(−c22 + c11)
)
u2 +

(
2k2T12 + 2S12k

2

+ 2kν1S22 + 2kν1T11 − 2kν1T22 − 2ν21S21 − 2ν21T21 − 2kν1S11
)
u

− k
(
ν21(2c1 + 1)S11 + 2ν1S12k − ν21(2c1 − 1)S22 − ν21(2c1 + 1)T11 − 2ν1T12k

− ν21(2c1 − 1)T22 − 4ν21(−c22 + c11)
))
,

A(u) =
1

4(u2 − ν21)

((
−(1 + 2c1)S11 − (1 + 2c1)S22 − (1 + 2c1)T11 − (1 + 2c1)T22

+ 8c22
)
u2 +

(
−4S12k + 4T22ν1 − 4T12k − 4S22ν1

)
u+ ν21(2c1 + 1)S11 − 4kS12ν1

+ ν21(2c1 − 3)S22 + ν21(2c1 + 1)T11 + 4kT12ν1 + ν21(2c1 − 3)T22 − 8c22ν
2
1

)
.

The coordinates of separation are two solutions x1, x2 of the quadratic in u equation

B(xi) = 0.

The canonically conjugated momenta are given by the formula

pi =
A(xi)

xi
, i = 1, 2.

Remark 5.2. Observe that in the case k = 0 the polynomial B(u) has only one non-constant
root and, that is why, can not be used in our construction of separated variables.
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5.2.2 The equations of separation and Abel-type equations

In terms of the HamiltoniansH1, H2, the Casimir functions I21, I22 and the canonical coordinates
xi, pi the curves of separation (4.4) have the following form

Φ(xi, pi, H1, H2, I21, I22) = x2i p
2
i +

(
H1 +H2

2(c11 − c22)
− 2(c11 + c22)

)
xipi +

xiν1I21
(ν1 − xi)2

− xiν1I22
(xi + ν1)2

− (ν1c11 − xic22)H1

(c11 − c22)(ν1 − xi)
− (ν1c11 + xic22)H2

(c11 − c22)(xi + ν1)
+ 4c11c22 = 0, i = 1, 2. (5.2)

Using either equations of separation (5.2) or the reconstruction formulas it is possible to express
H1, H2 via the coordinates of separation xi, pi, i = 1, 2 and the Casimir functions.

Taking into account the canonical Poisson brackets

{xi, pj} = δij , {xi, xj} = 0, {pi, pj} = 0, i, j = 1, 2,

calculating with their help the time derivatives of the coordinates of separation

dxi
dtj
≡ {xi, Hj}

and making simple transformations we obtain Abel-type equations in the differential form

(x1p1(x1 − ν1) + 2c11ν1 − 2c22x1)dx1(
4x1p1(c11 − c22) +H1 +H2 − 4

(
c211 − c222

))
x1(x1 − ν1)

+
(x2p2(x2 − ν1) + 2c11ν1 − 2c22x2)dx2(

4x2p2(c11 − c22) +H1 +H2 − 4
(
c211 − c222

))
x2(x2 − ν1)

= −dt1,

(x1p1(x1 + ν1)− 2c11ν1 − 2c22x1)dx1(
4x1p1(c11 − c22) +H1 +H22 − 4

(
c211 − c222

))
x1(x1 + ν1)

+
(x2p2(x2 + ν1)− 2c11ν1 − 2c22x2)dx2(

4x2p2(c11 − c22) +H1 +H22 − 4
(
c211 − c222

))
x2(x2 + ν1)

= −dt2,

where the momenta pi, i = 1, 2 are calculated using the curves of separation (5.2).

5.3 The second family of separated variables

5.3.1 The separating functions

The second family of the separated variables is obtained using the separating functions (4.5a)–
(4.5b). Let us specify it for the Lax matrix (5.1). We will have

B(u) =
1

2
(
u2 − ν21

)(k((2c1 − 1)S11 + 2kS12 + k(2c1 + 1)S22 + (2c1 − 1)T11 + 2kT12

+ (2c1 + 1)T22 + 4(c11 − c22)
)
u2 + ν1

(
2k2S12 + 2kT11 + 2kS22 + 2T21 − 2k2T12

− S21 − 2kS11 − 2kT22
)
u− ν21

(
k(2c1 + 1)S11 − 2S21 − k(2c1 − 1)S22

− k(2c1 + 1)T11 − 2T21 − k(2c1 − 1)T22 − 4k(c11 − c22)
))
,

A(u) =
1

4
(
ν21 − u2

)(((3− 2c1)S11 − 4S12k + (−2c1 − 1)S22 + (3− 2c1)T11 − 4T12k

+ (−2c1 − 1)T22 − 8c11
)
u2 + (4S11ν1 − 4T11ν1 − 4kS12ν1 + 4kT12ν1)u

+ ν21(2c1 + 1)S11 + ν21(2c1 + 1)S22 + ν21(2c1 + 1)T11 + ν21(2c1 + 1)T22 + 8c11ν
2
1

)
.



Separation of Variables, Quasi-Trigonometric r-Matrices and Generalized Gaudin Models 15

The coordinates of separation are two solutions x1, x2 of the quadratic in u equation

B(xi) = 0.

The canonically conjugated momenta are given by the formula

pi = −A(xi)

xi
, i = 1, 2.

Remark 5.3. Observe that in the case k = 0 the polynomial B(u) has only one root and, that
is why, can not be used in our construction of separated variables.

5.3.2 The Abel-type equations

In terms of the Hamiltonians H1, H2 and Casimir functions I21, I22 and the canonical coordinates
xi, pi the curves of the separation (4.8) have the following form

Φ(xi, pi, H1, H2, I21, I22) = x2i p
2
i −

(
H1 +H2

2(c11 − c22)
− 2(c11 + c22)

)
xipi +

xiν1I21
(ν1 − xi)2

− xiν1I22
(xi + ν1)2

− (ν1c11 − xic22)H1

(c11 − c22)(ν1 − xi)
− (ν1c11 + xic22)H2

(c11 − c22)(xi + ν1)
+ 4c11c22 = 0, i = 1, 2. (5.3)

Using either equations of separation (5.3) or the reconstruction formulae it is possible to express
H1, H2 via the coordinates of separation xi, pi, i = 1, 2 and the Casimir functions.

Taking into account canonical commutation relations

{xi, pj} = δij , {xi, xj} = 0, {pi, pj} = 0, i, j = 1, 2,

calculating with their help the time derivatives of the coordinates of separation

dxi
dtj
≡ {xi, Hj}, i, j = 1, 2

and making simple transformations we obtain the equations of motion in the Abel-type form

(−x1p1(x1 − ν1) + 2c11ν1 − 2c22x1)dx1(
4x1p1(c11 − c22)−H1 −H2 + 4

(
c211 − c222

))
x1(x1 − ν1)

+
(−x2p2(x2 − ν1) + 2c11ν1 − 2c22x2)dx2(

4x2p2(c11 − c22)−H1 −H2 + 4
(
c211 − c222

))
x2(x2 − ν1)

= −dt1,

(−x1p1(x1 + ν1)− 2c11ν1 − 2c22x1)dx1(
4x1p1(c11 − c22)−H1 −H22 + 4

(
c211 − c222

))
x1(x1 + ν1)

+
(−x2p2(x2 + ν1)− 2c11ν1 − 2c22x2)dx2(

4x2p2(c11 − c22)−H1 −H22 + 4
(
c211 − c222

))
x2(x2 + ν1)

= −dt2,

where the momenta pi, i = 1, 2 are calculated using the curves of separation (5.3).

Remark 5.4. Observe, that the equations of separation and Abel-type equations for our two
families of separated variables do not coincide. The corresponding reconstruction formulae do
not coincide either (see Appendices A and B).
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6 Conclusion and discussion

In this paper for the classical Lax-integrable Hamiltonian systems governed by the one-para-
metric family of non-skew-symmetric, non-dynamical gl(2) ⊗ gl(2)-valued quasi-trigonometric
classical r-matrices we have constructed two new one-parametric families of separated variables.
We have shown that for all but one r-matrices in the considered one-parametric families the
corresponding curves of separation are “shifted” spectral curves of the initial Lax matrix. We
have illustrated the proposed scheme by an example of SoV for N = 2 quasi-trigonometric
Gaudin models.

It would be interesting to specify other classes of non-skew-symmetric classical r-matrices for
which separation curves are the shifted spectral curves of the Lax matrices and to perform SoV
for them. The work over this problem is now in progress.

A The reconstruction formulae for the first SoV

Let us now reconstruct the dynamical variables Sij , Tij , i, j = 1, 2 using the variables of sep-
aration pi, xj constructed in Section 5.2 and the Casimir functions. For this purpose we solve
a system of eight linear-quadratic equations on eight variables Sij , Tij :

(x1 + x2) = −
(
2k2T12 + 2S12k

2 + 2kν1S22 + 2kν1T11 − 2kν1T22 − 2ν21S21 − 2ν21T21

− 2kν1S11
)(
k(2c1 − 1)S11 − 2ν1S21 + k(2c1 + 1)S22 + k(2c1 − 1)T11

+ 2T21ν1 + k(2c1 + 1)T22 + 4k(−c22 + c11)
)−1

, (A.1a)

x1x2 = k
(
ν21(2c1 + 1)S11 + 2ν1S12k − ν21(2c1 − 1)S22 − ν21(2c1 + 1)T11 − 2ν1T12k

− ν21(2c1 − 1)T22 − 4ν21(−c22 + c11)
)(
k(2c1 − 1)S11 − 2ν1S21 + k(2c1 + 1)S22

+ k(2c1 − 1)T11 + 2T21ν1 + k(2c1 + 1)T22 + 4k(−c22 + c11)
)−1

, (A.1b)

4
(
x21 − ν21

)
x1p1 =

((
−(1 + 2c1)S11 − (1 + 2c1)S22 − (1 + 2c1)T11 − (1 + 2c1)T22

+ 8c22
)
x21 +

(
−4S12k + 4T22ν1 − 4T12k − 4S22ν1

)
x1 + ν21(2c1 + 1)S11

− 4kS12ν1 + ν21(2c1 − 3)S22 + ν21(2c1 + 1)T11 + 4kT12ν1

+ ν21(2c1 − 3)T22 − 8c22ν
2
1

)
, (A.1c)

4
(
x22 − ν21

)
x2p2 =

((
−(1 + 2c1)S11 − (1 + 2c1)S22 − (1 + 2c1)T11 − (1 + 2c1)T22

+ 8c22
)
x22 +

(
−4S12k + 4T22ν1 − 4T12k − 4S22ν1

)
x2 + ν21(2c1 + 1)S11

− 4kS12ν1 + ν21(2c1 − 3)S22 + ν21(2c1 + 1)T11 + 4kT12ν1

+ ν21(2c1 − 3)T22 − 8c22ν
2
1

)
, (A.1d)

I21 = S11S22 − S12S21, (A.1e)

I22 = T11T22 − T12T21, (A.1f)

I11 = S11 + S22, (A.1g)

I12 = T11 + T22. (A.1h)

The following proposition is proven by the direct calculations.

Proposition A.1. The system of equations (A.1) is solved with respect of the variables Sij, Tij,
i, j = 1, 2 as follows

S11 = − 1

2ν1

(
x21x2(ν1 − x2)2(ν21 − x21)2p21 − x1x2(x1 + x2)(ν1 + x2)(ν1 − x2)2(ν1 + x1)

× (ν1 − x1)2p2p1 + x1x
2
2(ν

2
1 − x22)2(ν1 − x1)2p22 + 2x1(x1 − x2)(ν1 − x2)2(ν1 + x1)
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× (ν1 − x1)2(c11ν1 − x2c22)p1 − 2x2(x1 − x2)(ν1 + x2)(ν1 − x2)2(ν1 − x1)2

× (c11ν1 − x1c22)p2 + 4x1x2ν
3
1(x1 − x2)2I21 − 4c11ν1c22(x1 − x2)2(x2 − ν1)2

× (x1 − ν1)2
)(

(x1 − x2)
(
(x1x2(ν1 + x1)(ν1 − x1)2(ν1 − x2)p1 − x1x2(ν1 + x2)

× (ν1 − x2)2(ν1 − x1)p2 + 2(x1 − x2)(ν1 − x2)(ν1 − x1)(c11ν21 + x1c22x2)
))−1

,

S12 = −x1x2
2kν1

(
x21(ν1 − x2)2(ν1 − x1)2(ν1 + x1)

2p21 − 2x1x2(ν1 + x2)(ν1 − x2)2(ν1 + x1)

× (ν1 − x1)2p2p1 + x22(ν1 − x2)2(ν1 + x2)
2(ν1 − x1)2p22 − 4x1c22(x1 − x2)(ν1 − x2)2

× (ν1 + x1)(ν1 − x1)2p1 + 4x2c22(x1 − x2)(x2 + ν1)(ν1 − x2)2(ν1 − x1)2p2
+ 4ν41(x1 − x2)2I21 + 4c222(x1 − x2)2(ν1 − x2)2(ν1 − x1)2

)(
(ν1 − x2)(ν1 − x1)

× (x1 − x2)
(
x1x2

(
ν21 − x21

)
p1 − x1x2

(
a21 − x22

)
p2 + 2(x1 − x2)

×
(
c11ν

2
1 + x1c22x2

)))−1
,

S21 =
k

2ν1x1x2

(
x21x

2
2(ν1 − x2)2(ν1 − x1)2(ν1 + x1)

2p21 − 2x21x
2
2(ν1 + x2)(ν1 − x2)2

× (ν1 + x1)(ν1 − x1)2p2p1 + x21x
2
2(ν1 − x2)2(ν1 + x2)

2(ν1 − x1)2p22 + 4c11ν1x1x2

× (x1 − x2)(ν1 − x2)2(ν1 + x1)(ν1 − x1)2p1 − 4c11ν1x1x2(x1 − x2)(ν1 + x2)

× (ν1 − x2)2(ν1 − x1)2p2 + 4x21ν
2
1x

2
2(x1 − x2)2I21 + 4ν21c

2
11(x1 − x2)2(ν1 − x2)2

× (ν1 − x1)2
)(
x1x2(x1 − x2)(ν1 − x2)(ν1 + x1)(ν1 − x1)2p1 − x1x2(x1 − x2)

× (ν1 + x2)(ν1 − x2)2(ν1 − x1)p2 + 2(x1 − x2)2(ν1 − x2)(ν1 − x1)

× (c11ν
2
1 + x1c22x2)

)−1
,

S22 = −S11,

T11 = − 1

2ν1

(
−x21x2(ν1 + x2)

2(ν1 − x1)2(ν1 + x1)
2p21 + x1x2(x1 + x2)(ν1 − x2)(ν1 + x2)

2

× (ν1 − x1)(ν1 + x1)
2p2p1 − x1x22(ν1 − x2)2(ν1 + x2)

2(ν1 + x1)
2p22

− 2x1(−x2 + x1)(ν1 + x2)
2(ν1 − x1)(ν1 + x1)

2(c11ν1 + x2c22)p1 + 2x2(−x2 + x1)

× (ν1 − x2)(ν1 + x2)
2(ν1 + x1)

2(c11ν1 + x1c22)p2 + 4x1x2ν
3
1(−x2 + x1)

2I22

− 4c11ν1c22(−x2 + x1)
2(ν1 + x2)

2(ν1 + x1)
2
)((

x1x2(ν1 − x1)(ν1 + x1)p1

− x1x2(ν1 − x2)(ν1 + x2)p2 + 2(−x2 + x1)
(
c11ν

2
1x1c22x2

))
(−x2 + x1)(ν1 + x2)

× (ν1 + x1)
)−1

,

T12 =
x1x2
2kν1

(
x21(ν1 + x2)

2(ν1 − x1)2(ν1 + x1)
2p21 − 2x1x2(ν1 − x2)(ν1 + x2)

2(ν1 − x1)

× (ν1 + x1)
2p2p1 + x22(ν1 − x2)2(ν1 + x2)

2(ν1 + x1)
2p22 + 4x1c22(−x2 + x1)

× (ν1 + x2)
2(ν1 − x1)(ν1 + x1)

2p1 − 4x2c22(−x2 + x1)(ν1 − x2)(ν1 + x2)
2(ν1 + x1)

2

× p2 + 4ν41(−x2 + x1)
2I22 + 4c222(−x2 + x1)

2(ν1 + x2)
2(ν1 + x1)

2
)(

(x1x2(ν
2
1 − x21)p1

×−x1x2(ν21 − x22)p2 + 2(x1 − x2)(c11ν21 + x1c22x2))(x1 − x2)(ν1 + x2)(ν1 + x1)
)−1

,

T21 = − k

2ν1x1x2

(
x21x

2
2(ν1 + x2)

2(ν1 − x1)2(ν1 + x1)
2p21 − 2x21x

2
2(ν1 − x2)(ν1 + x2)

2

× (ν1 − x1)(ν1 + x1)
2p2p1 + x21x

2
2(ν1 − x2)2(ν1 + x2)

2(ν1 + x1)
2p22 + 4c11ν1x1x2

× (−x2 + x1)(ν1 + x2)
2(ν1 − x1)(ν1 + x1)

2p1 − 4c11ν1x1x2(−x2 + x1)(ν1 − x2)
× (ν1 + x2)

2(ν1 + x1)
2p2 + 4x21ν

2
1x

2
2(−x2 + x1)

2I22 + 4ν21c
2
11(−x2 + x1)

2(ν1 + x2)
2

× (ν1 + x1)
2
)((

x1x2(x1 − x2)(ν1 + x2)(ν1 − x1)(ν1 + x1)
2p1 − x1x2(x1 − x2)
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× (ν1 − x2)(ν1 + x2)
2(ν1 + x1)p2 + 2(x1 − x2)2(ν1 + x2)(ν1 + x1)

×
(
c11ν

2
1 + x1c22x2

)))−1
,

T22 = −T11,

where for the purpose of simplicity we have put I11 = 0, I12 = 0.

B The reconstruction formulae for the second SoV

Let us now reconstruct the dynamical variables Sij , Tij , i, j = 1, 2 using the variables of sep-
aration pi, xj constructed in Section 5.3 and the Casimir functions. For this purpose we solve
a system of eight linear-quadratic equations in eight variables Sij , Tij :

(x1 + x2) = −ν1
k

(2k2S12 + 2kT11 + 2kS22 + 2T21 − 2k2T12 − S21 − 2kS11 − 2kT22)

×
(
(2c1 − 1)S11 + 2kS12 + k(2c1 + 1)S22 + (2c1 − 1)T11 + 2kT12

+ (2c1 + 1)T22 + 4(c11 − c22)
)−1

, (B.1a)

x1x2 =
ν21
k

(k(2c1 + 1)S11 − 2S21 − k(2c1 − 1)S22 − k(2c1 + 1)T11 − 2T21 − k(2c1 − 1)T22

− 4k(c11 − c22)
(
(2c1 − 1)S11 + 2kS12 + k(2c1 + 1)S22 + (2c1 − 1)T11 + 2kT12

+ (2c1 + 1)T22 + 4(c11 − c22)
)−1

, (B.1b)

−4
(
x21 − ν21

)
x1p1 =

(
((3− 2c1)S11 − 4S12k + (−2c1 − 1)S22 + (3− 2c1)T11 − 4T12k

+ (−2c1 − 1)T22 − 8c11)x
2
1 + (4S11ν1 − 4T11ν1 − 4kS12ν1

+ 4kT12ν1)x1 + ν21(2c1 + 1)S11 + ν21(2c1 + 1)S22 + ν21(2c1 + 1)T11

+ ν21(2c1 + 1)T22 + 8c11ν
2
1

)
, (B.1c)

−4
(
x22 − ν21

)
x2p2 =

(
((3− 2c1)S11 − 4S12k + (−2c1 − 1)S22 + (3− 2c1)T11 − 4T12k

+ (−2c1 − 1)T22 − 8c11)x
2
2 + (4S11ν1 − 4T11ν1 − 4kS12ν1

+ 4kT12ν1)x2 + ν21(2c1 + 1)S11 + ν21(2c1 + 1)S22 + ν21(2c1 + 1)T11

+ ν21(2c1 + 1)T22 + 8c11ν
2
1

)
, (B.1d)

I21 = S11S22 − S12S21, (B.1e)

I22 = T11T22 − T12T21, (B.1f)

I11 = S11 + S22, (B.1g)

I12 = T11 + T22. (B.1h)

The following proposition is proven by the direct calculations.

Proposition B.1. The system of equations (B.1) is solved with respect of the variables Sij, Tij,
i, j = 1, 2 as follows

S11 = − 1

2ν1

(
x21x2(−x2 + ν1)

2
(
ν21 − x21

)2
p21 − x2x1(x1 + x2)(x2 + ν1)(ν1 − x2)2

×
(
ν21 − x21

)2
p2p1 + x22x1(−x2 + ν1)

2(x2 + ν1)
2(ν1 − x1)2p22 − 2x1(−x2 + x1)

× (−x2 + ν1)
2(x1 + ν1)(−x1 + ν1)

2(c11ν1 − c22x2))p1 + 2x2(x1 − x2)(x2 + ν1)

× (ν1 − x2)2(ν1 − x1)2(c11ν1 − c22x1)p2 + 4x1ν
3
1x2(x1 − x2)2I21 − 4c11ν1c22

× (x1 − x2)2(ν1 − x2)2(ν1 − x1)2
)((
−x1x2(x1 + ν1)(ν1 − x1)p1 + x1x2(x2 + ν1)

× (ν1 − x2)p2 + 2(x1 − x2)
(
x1c22x2 + c11ν

2
1

))
(x1 − x2)(ν1 − x2)(ν1 − x1)

)−1
,
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S12 = − 1

2kx1x2

(
x22x

2
1(ν1 − x2)2(ν1 − x1)2(x1 + ν1)

2p21 − 2x22x
2
1(x2 + ν1)(ν1 − x2)2

× (x1 + ν1)(ν1 − x1)2p2p1 + x22x
2
1(ν1 − x2)2(x2 + ν1)

2(ν1 − x1)2p22 − 4ν1x2c11x1

× (x1 − x2)(ν1 − x2)2(x1 + ν1)(ν1 − x1)2p1 + 4ν1x2c11x1(x1 − x2)(x2 + ν1)

× (ν1 − x2)2(ν1 − x1)2p2 + 4x22ν
2
1x

2
1(x1 − x2)2I21 + 4ν21c

2
11(x1 − x2)2(ν1 − x2)2

× (ν1 − x1)2
)((
−x2x1(x1 − x2)(ν1 − x2)(x1 + ν1)(ν1 − x1)2p1 + x2x1(x1 − x2)

× (x2 + ν1)(ν1 − x2)2(ν1 − x1)p2 + 2(x1 − x2)2(ν1 − x2)(ν1 − x1)

×
(
x1c22x2 + c11ν

2
1

)))−1
,

S21 =
x2x1k

2ν21

(
x21(ν1 − x2)2(ν1 − x1)2(x1 + ν1)

2p21 − 2x1x2(x2 + ν1)(ν1 − x2)2(x1 + ν1)

× (ν1 − x1)2p2p1 + x22(ν1 − x2)2(x2 + ν1)
2(ν1 − x1)2p22 + 4c22x1(x1 − x2)(ν1 − x2)2

× (x1 + ν1)(ν1 − x1)2p1 − 4c22x2(x1 − x2)(x2 + ν1)(ν1 − x2)2(ν1 − x1)2p2
+ 4ν41(x1 − x2)2I21 + 4c222(x1 − x2)2(ν1 − x2)2(ν1 − x1)2

)((
−x1x2(ν1 − x1)

× (x1 + ν1)(x1 − x2)p1 + x1x2(ν1 − x2)(x2 + ν1)(x1 − x2)p2 + 2(x1 − x2)2

×
(
x1c22x2 + c11ν

2
1

))
(ν1 − x2)(ν1 − x1)

)−1
,

S22 = −S11,

T11 = − 1

2ν1

(
−x21x2(x2 + ν1)

2
(
ν21 − x21

)2
p21 + x1x2(x1 + x2)(ν1 − x2)(x2 + ν1)

2(ν1 − x1)

× (x1 + ν1)
2p2p1 − x22x1(ν1 − x2)2(x2 + ν1)

2(x1 + ν1)
2p22 + 2x1(x1 − x2)

× (x2 + ν1)
2(ν1 − x1)(x1 + ν1)

2(c11ν1 + c22x2))p1 − 2x2(x1 − x2)(ν1 − x2)
× (x2 + ν1)

2(x1 + ν1)
2(c11ν1 + c22x1)p2 + 4x1ν

3
1x2(x1 − x2)2I22 − 4c11ν1c22

× (x1 − x2)2(x2 + ν1)
2(x1 + ν1)

2
)(

(x1 − x2)
(
−x1x2(ν1 − x1)(x1 + ν1)

2(x2 + ν1)p1

+ x1x2(ν1 − x2)(x2 + ν1)
2(x1 + ν1)p2 + 2(x1 − x2)(x2 + ν1)(x1 + ν1)

×
(
x1c22x2 + c11ν

2
1

)))−1
,

T12 = −x1x2k
2

(
x21x

2
2(x2 + ν1)

2
(
ν21 − x21

)2
p21 − 2x21x

2
2(ν1 − x2)(x2 + ν1)

2(ν1 − x1)

× (x1 + ν1)
2p2p1 + x21x

2
2(ν1 − x2)2(x2 + ν1)

2(x1 + ν1)
2p22 − 4ν1x2c11x1(x1 − x2)

× (x2 + ν1)
2(ν1 − x1)(x1 + ν1)

2p1 + 4ν1x2c11x1(x1 − x2)(ν1 − x2)(x2 + ν1)
2

× (x1 + ν1)
2p2 + 4ν21x

2
2x

2
1(x1 − x2)2I22 + 4ν21c

2
11(x1 − x2)2(x2 + ν1)

2(x1 + ν1)
2
)

×
((
−x1x2(x1 − x2)(x2 + ν1)(ν1 − x1)(x1 + ν1)

2p1 + x1x2(x1 − x2)(ν1 − x2)

× (x2 + ν1)
2(x1 + ν1)p2 + 2(x1 − x2)2(x2 + ν1)(x1 + ν1)

(
x1c22x2 + c11ν

2
1

)))−1
,

T21 =
kx1x2
2ν21

(
x21(x2 + ν1)

2
(
ν21 − x21

)2
p21 − 2x1x2(ν1 − x2)(x2 + ν1)

2(ν1 − x1)

× (x1 + ν1)
2p2p1 + x22(ν1 − x2)2(x2 + ν1)

2(x1 + ν1)
2p22 − 4c22x1(x1 − x2)

× (x2 + ν1)
2(ν1 − x1)(x1 + ν1)

2p1 + 4c22x2(x1 − x2)(ν1 − x2)(x2 + ν1)
2

× (x1 + ν1)
2p2 + 4ν41(x1 − x2)2I22 + 4c222(x1 − x2)2(x2 + ν1)

2(x1 + ν1)
2
)

×
(
(−x1x2(ν1 − x1)(x1 + ν1)(x1 − x2)p1 + x1x2(ν1 − x2)(x2 + ν1)(x1 − x2)p2

+ 2(x1 − x2)2(x1c22x2 + c11ν
2
1))(x2 + ν1)(x1 + ν1)

)−1
,

T22 = −T11,

where for the purpose of simplicity we have put I11 = 0, I12 = 0.
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