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Abstract. We give a general definition of Manin matrices for arbitrary quadratic algebras
in terms of idempotents. We establish their main properties and give their interpretation
in terms of the category theory. The notion of minors is generalised for a general Manin
matrix. We give some examples of Manin matrices, their relations with Lax operators
and obtain the formulae for some minors. In particular, we consider Manin matrices of the
types B, C and D introduced by A. Molev and their relation with Brauer algebras. Infinite-
dimensional Manin matrices and their connection with Lax operators are also considered.
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1 Introduction

In the second half of the 80s Yuri Manin proposed to consider non-commutative quadratic
algebras as a generalisation of vector spaces and called them “quantum linear spaces” [23,
24, 26]. A usual finite-dimensional vector space is presented by the algebra of polynomials.
The linear maps correspond to the homomorphisms of these algebras in the category of graded
algebras. One can consider homomorphisms of a quadratic algebra over a non-commutative ring
(algebra). Such “non-commutative” homomorphisms of finitely generated quadratic algebras
(“finite-dimensional” quantum linear spaces) are described by matrices with non-commutative
entries satisfying some commutation relations. We call them Manin matrices.

The main example proposed by Manin is the “quantum plane” defined by the algebra
with 2 generators x, y and the commutation relation yx = qxy. He established the connec-
tion of the quantum plane with some quantum group (Hopf algebra). This quantum group gives
a “non-commutative” endomorphism of the quantum plane.

This picture was also generalised to the case of n generators with the commutation relations
xjxi = qxixj , i < j. The algebra describing all the “non-commutative” endomorphisms of
the corresponding quantum linear space was called right quantum algebra in [10], where the
authors proved a q-analogue of MacMahon master theorem. The “non-commutative” endomor-
phisms and homomorphisms of these quadratic algebras are described by square and rectangular
matrices respectively. We call them q-Manin matrices.

‘Non-commutative’ endomorphisms and homomorphisms of a usual finite-dimensional vector
space generalise the matrices with commutative entries to the matrices with non-commutative
entries satisfying certain commutation relations (these are the commutation relations of the right
quantum algebra for q = 1). This type of matrices were observed in the Talalaev’s formula [35]
and called then Manin matrices [4]. These Manin matrices have a lot of applications to integrable
systems, Sugawara operators, affine Lie algebras and quantum groups [4, 7, 34]. Since they are
an immediate generalisation of the usual matrices to the non-commutative case, almost all the
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formulae of the matrix theory are valid for these Manin matrices [5]. Most of them are also
generalised to the q-Manin matrices [6].

The “non-commutative” homomorphisms between two quantum linear spaces are described
by an algebra that can be constructed as internal hom [24]. These “non-commutative” homo-
morphisms give us a notion of a Manin matrix for a pair of finitely generated quadratic algeb-
ras (A,B). These are the matrices with non-commutative entries satisfying the commutation
relations of the internal hom algebra. In previous works on Manin matrices the attention was
concentrated on the case A = B corresponding to the “non-commutative” endomorphisms. This
general case allows us to consider more examples and answer some questions about q-Manin
matrices, which was unclear before.

For instance, the column determinant is a natural generalisation of the usual determinant
for the q = 1 Manin matrices, but some properties of this determinant are proved by using
a part of commutation relations for the entries of these matrices. We show here that this part
of commutation relations define Manin matrices for some pair of different quadratic algebras.

In the case q 6= 1 the column determinant is generalised to (column) q-determinant. It is
a natural generalisation for q-Manin matrices. Permutation of columns of q-Manin matrices gives
a matrix, which is not a q-Manin matrix. However its natural analogue of the determinant is also
q-determinant. In contrast, the q-determinant is not relevant operation for a q-Manin matrix
with permuted rows. To consider the permuted q-Manin matrices as another type of Manin
matrices and to define natural determinants for them one needs to consider some pairs of different
quadratic algebras. It is convenient to do it in a more universal case when the role of quadratic
algebras is played by multi-parametric deformations of the polynomial algebras.

A multi-parametric deformation of super-vector spaces was considered by Manin in the ar-
ticle [25]. The super-versions of Manin matrices and MacMahon master theorem for the non-
deformed case were also considered in [30]. Here we do not consider the super-case, but we plan
to do it in future works.

The notion of Manin matrices for two different quadratic algebras includes Manin matrices
of types B, C and D introduced by Molev in [28].

In this work we use tensor notations to describe quadratic algebras and Manin matrices
by generalising the tensor approach given in [5, 6]. In this frame a quadratic algebra is defined
by an idempotent that gives commutation relations for this algebra. E.g., the commutative
algebra of polynomials is defined by the anti-symmetrizer of the tensor product of two copies of
a vector space. Two different idempotents may define the same quadratic algebra. This gives
an equivalence relation between the idempotents.

The relations for Manin matrices can be written in tensor notations with the corresponding
idempotents. In the case of two different quadratic algebras these commutation relations are
given by a pair of idempotents A and B, so we call the matrices, satisfying these relations,
(A,B)-Manin matrices. In the case A = B we call them A-Manin matrices.

The important notion in the matrix theory is the notion of minor, which is usually defined as
a determinant of a square submatrix. The minors (defined via column determinant) play a role
of decomposition coefficients in the expression for a “non-commutative” homomorphism of the
anti-commutative polynomial algebras (Grassmann algebras). The dual notion is permanent
of square submatrices (where some rows and columns may be repeated) that give coefficients
in the case of commutative polynomial algebras.

This is directly generalised to some kinds of Manin matrices including the q-Manin matrices
and the multi-parametric case. However in the general situation an analogue of minors is not
defined by an operation (determinant or permanent) on submatrices. The minors are defined
immediately without such operations. To do it we introduce some auxiliary “dual” quadratic
algebras for a given idempotent and define a non-degenerate pairing between quadratic algebras
(if it exists). In the tensor notation this pairing is written by using some higher idempotents,
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which we call pairing operators. These operators allow to define minors as entries of some
operators with non-commutative entries, we call them minor operators. For the main examples
the pairing operators is related with the representation theory of the symmetric groups, Hecke
algebras and Brauer algebras.

The paper is organised as follows.
In Section 2 we consider quadratic algebras and related Manin matrices. In Section 2.1

we consider the quadratic algebras in terms of idempotents. Section 2.2 is devoted to the
equivalence relations between idempotents. In Sections 2.3 and 2.4 we define A- and (A,B)-
Manin matrices in terms of matrix commutation relations and in terms of quadratic algebras,
we give the main properties of these matrices. In Section 2.5 we interpret Manin matrices in
terms of comma categories and define a general right quantum algebra via adjoint functors.
Section 2.6 is devoted to multiplication of Manin matrices and to bialgebra structure on the
right quantum algebra. A generalisation of Manin matrices to the infinite-dimensional case was
done in Section 2.7.

In Section 3 we consider the following particular cases: the Manin matrices of [4, 5], q-
Manin matrices [6] and multi-parametric case [25] (the Sections 3.1, 3.2 and 3.3 respectively).
We recall basic properties of these Manin matrices and their determinants. In Section 3.4 we
consider a generalisation of the n = 3 case from Section 3.3.

Section 4 is devoted to relationship between Manin matrices and Lax operators. In Section 4.1
we explain the known connection of q-Manin matrices with some Lax operators (without spectral
parameter) via a decomposition of an R-matrix into idempotents. This gives an important
example of the idempotent equivalence. In Section 4.2 we interpret Lax operators (with a spectral
parameter) for the rational R-matrix as infinite-dimensional Manin matrices.

In Section 5 we generalise the notion of minors for Manin matrices. Section 5.1 has a moti-
vating role, where we consider minors for q-Manin matrices (defined via determinant and per-
manent) as some decomposition coefficients. In Sections 5.2 and 5.3 we define “dual” quadratic
algebras and the corresponding parings via pairing operators. In Sections 5.4 and 5.5 we define
minors as entries of minor operators and give some properties of these operators. In Section 5.6
we investigate the relation of pairing and minor operators for equivalent idempotents. Section 5.7
devoted to an algebraic approach to construction of pairing operators.

We consider examples of pairing and minor operators in Section 6. Section 6.1 is devoted to
the multi-parametric case (which includes the case of q-Manin matrices). In Section 6.2 we again
consider the case of q-Manin matrices, but we construct the pairing operators by using another
idempotent (equivalent to the idempotent used in Section 6.1), which was found in Section 4.1.
We show how they give related minor operators. Section 6.3 is devoted to the case defined in
Section 3.4.

Section 7 is devoted to the Manin matrices of types B, C and D. In Section 7.1 we recall
the Molev’s definition of these matrices and interpret them as Manin matrices for pairs of idem-
potents. We consider the corresponding quadratic algebras. In Section 7.2 we construct the
pairing operators by means of Brauer algebra.

In Appendix A we give a formulae for a set of inversions in the case of arbitrary Weyl group.
In Appendix B the universal enveloping algebras of Lie algebras are represented as quadratic
algebras.

2 Quadratic algebras and Manin matrices

As a basic field we choose the field of complex numbers C, however we note that all the statements
are valid for any field of characteristic zero, unless the contrary is explicitly indicated. All the
vector spaces are supposed to be defined over C. By an algebra we understand an associative
unital algebras over C (not necessary commutative). By a graded algebra we mean an N0-graded
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associative unital algebra over C, where N0 is the set of non-negative integers: the grading
of such algebra has the form A =

⊕
k∈N0

Ak and the condition AkAl ⊂ Ak+l is implied for all
k, l ∈ N0. By a quadratic algebra1 we mean a graded algebra of the form A = R ⊗ (TV/I),
where R is an arbitrary algebra, TV =

⊕
k∈N0

V ⊗k = C ⊕ V ⊕ (V ⊗ V ) ⊕ · · · is the tensor
algebra of a finite-dimensional vector space V and I ⊂ TV is its (two-sided) ideal generated by
a subspace of V ⊗ V ; in particular, A0 = R, A1 = R⊗ V .

Let Cn be the space of complex column vectors of the size n. Its dual (Cn)∗ = Hom(Cn,C)
is the space of complex row vectors. Their standard bases (ei)

n
i=1 and (ei)ni=1 are dual to each

other: eiej = δij . Let Ei
j be the n×m matrices with entries

(
Ei

j
)
kl

= δki δ
j
l . It acts on Cm from

the left and on (Cn)∗ from the right as Ei
jek = δjkei, e

iEj
k = δije

k. We have Ei
j = eie

j .
We use the following tensor notations. Let M ∈ R⊗Hom(Cm,Cn) be an n×m matrix over

an algebra R. It can be considered as an operator from Cm to Cn with entries Mij = M i
j ∈ R,

that is M =
∑

i,jM
i
jEi

j . Introduce the notation

M (a) =
∑
i,j

M i
j(1⊗ · · · ⊗ 1⊗ Eij ⊗ 1⊗ · · · ⊗ 1),

where Ei
j is placed to the a-th site and 1 are identity matrices (of different sizes in general). This

is an operator from Cm1 ⊗· · ·⊗Cmr to Cn1 ⊗· · ·⊗Cnr , where ma = m, na = n and mb = nb for
all b 6= a. Analogously, for a matrix T =

∑
i,j,k,l T

ij
klEi

k ⊗Ej l ∈ R⊗Hom
(
Cm ⊗Cm′ ,Cn ⊗Cn′

)
with entries T ijkl ∈ R we denote

T (ab) =
∑
i,j,k,l

T ijkl
(
1⊗ · · · ⊗ 1⊗ Eik ⊗ 1⊗ · · · ⊗ 1⊗ Ej l ⊗ 1⊗ · · · ⊗ 1

)
,

with Ei
k in the a-th site and Ej

l in the b-th site. The numbers a and b should be different but
the both cases a < b and a > b are possible. In particular,

T (21) =
∑
i,j,k,l

T ijkl
(
Ej

l ⊗ Eik
)
.

In the same way the notations M (a) and T (ab) can be defined for any vector spaces V , W ,
V ′, W ′ and any operators M ∈ R ⊗ Hom(V,W ), T ∈ R ⊗ Hom(V ⊗ V ′,W ⊗ W ′) (in the
infinite-dimensional case the tensor product with R may be completed in some way).

2.1 Quadratic algebras

Consider a quadratic algebra with n generators, that is an algebra generated by the elements
x1, . . . , xn over C with some quadratic commutation relations. Since the number of elements xixj

is equal to n2 the number of independent quadratic relations is less or equal to n2. It means
that these relations can be presented in the form

n∑
i,j=1

Aklijx
ixj = 0, k, l = 1, . . . , n, (2.1)

where Aklij ∈ C. The quadratic algebra with these relations is the quotient TV/I, where V =

(Cn)∗ and I is the ideal generated by the elements
∑n

i,j=1A
kl
ije

i ⊗ ej . An element xi ∈ TV/I is

the class of ei ∈ (Cn)∗ ⊂ T (Cn)∗.
The coefficients Aklij can be considered as entries of a matrix A acting on Cn ⊗ Cn. In terms

of basis this action looks as follows: A(ei ⊗ ej) =
∑n

k,l=1A
kl
ij (ek ⊗ el). Note that for any

1There are more general quadratic algebras over R, but we do not consider them in this work.
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invertible n2 × n2 matrix G, the product GA defines the same quadratic algebra, since the
relations

∑n
ij=1(GA)klijx

ixj = 0 is equivalent to (2.1).

Proposition 2.1. For each quadratic algebra the matrix A defining its relations can be chosen
to be an idempotent:

A2 = A. (2.2)

Proof. Let the given quadratic algebra be defined by the relations with a matrix A. If one has
proved that there exists an invertible G ∈ Aut(Cn ⊗ Cn) such that (GA)2 = GA then we can
choose GA as an idempotent matrix defining the quadratic relations for this algebra. Since G
should be invertible the equation GAGA = GA is equivalent to AGA = A. Let us reduce the
matrix A to a Jordan form. In the corresponding basis of Cn ⊗ Cn it takes the form

A =


α1 0 · · · 0
0 α2 · · · 0
· · · · · · · · · · · ·
0 0 · · · αr

,
where αk are Jordan cells. Let us find the solution in the form (in the same basis)

G =


β1 0 · · · 0
0 β2 · · · 0
· · · · · · · · · · · ·
0 0 · · · βr

,
where each βk is an invertible square submatrix, which has the same dimension as the Jordan
cell αk. Then, the equation AGA = A is equivalent to system of r equations αkβkαk = αk.
If the Jordan cell αk corresponds to the non-zero eigenvalue of the matrix A, then the matrix α
is invertible and we can choose βk = α−1

k . Otherwise, αk has the form

αk =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0


and βk can be chosen as

βk =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0

.

For αk = 0 we choose βk = 1. In all the cases such chosen matrices βk are invertible. �

Remark 2.2. This construction of an idempotent A is appropriate for algebraically closed fields
only. In general case one needs to consider decomposition of the vector space (Cn ⊗ Cn)∗ into
a direct sum R⊕Rc such that R is the subspace spanned by the quadratic relations. Then the
matrix A is the transposed to the idempotent projecting (Cn ⊗ Cn)∗ onto R in parallel to the
complementary subspace Rc.
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Henceforth we suppose that the matrix A is an idempotent unless otherwise specified. Denote
the corresponding quadratic algebra by XA(C).

More generally, for an algebra R define the quadratic algebra XA(R) = R⊗ XA(C). This is
a graded algebra generated by the elements x1, . . . , xn over R with the quadratic commutation
relations (2.1) and rxi = xir, r ∈ R, i = 1, . . . , n. The formulae deg xi = 1, deg r = 0 ∀ r ∈ R
give the grading on XA(R). An idempotent A ∈ End(Cn ⊗ Cn) defines a functor XA from
the category of algebras to the category of graded algebras: XA(f)(rxi1 · · ·xik) = f(r)xi1 · · ·xik ,
∀f ∈ Hom(R,R′), ∀r ∈ R. Due to Proposition 2.1 any quadratic algebra is isomorphic to XA(R)
for some A and R.

The relations (2.1) can be rewritten in matrix notations as follows. Consider the column
vector X =

∑n
i=1 x

iei. Then the relations (2.1) takes the form

A(X ⊗X) = 0, (2.3)

where X ⊗X =
∑n

i,j=1 x
ixj(ei ⊗ ej).

The fact that there is no another independent relations for xi besides (2.1) can be reformulated
as follows: if Tijx

ixj = 0 for some Tij ∈ R then Tij =
∑n

k,l=1GklA
kl
ij for some Gkl ∈ R.

Lemma 2.3. The following equations for a matrix T ∈ R⊗ End(Cn ⊗ Cn) are equivalent:

T (X ⊗X) = 0, (2.4)

T (1−A) = 0. (2.5)

Proof. The equation (2.4) is derived from (2.5) by multiplying by (X ⊗ X) from the right.
Conversely, if the equation (2.4) holds then we have n2 relations

∑n
i,j=1 T

ab
ij x

ixj = 0 enumerated

by a, b = 1, . . . , n, where T abij is entries of the matrix T . This implies T abij =
∑n

k,l=1G
ab
klA

kl
ij

for some matrix G = (Gabkl ) that is T = GA. By multiplying the last equality by (1−A) on the
right and by taking into account (2.2) one yields (2.5). �

Let us consider the “change of variables” yi =
∑m

k=1M
i
kx

k, i = 1, . . . , n, where x1, . . . , xm

are the generators of XA(C). In general, the transition matrix M is an n × m matrix with
non-commutative entries M i

k ∈ R, so that yi ∈ XA(R). In terms of Y =
∑n

i=1 y
iei we have

Y = MX. (2.6)

Lemma 2.4. The equation

A(Y ⊗ Y ) = 0 (2.7)

is equivalent to

AM (1)M (2)(1−A) = 0. (2.8)

Proof. Note that the generators xi ∈ XA(C) commute with Mk
l ∈ R as elements of algebra

XA(R) = R ⊗ XA(C). Then by substituting (2.6) to (2.7) we obtain AM (1)M (2)(X ⊗X) = 0,
which in turn is equivalent to (2.8) by Lemma 2.3. �

Consider the quadratic algebra ΞA(R) generated by the elements ψ1, . . . , ψn over R with the
commutation relations

ψiψj =
n∑

k,l=1

Aklijψkψl (2.9)

and rψi = ψir, r ∈ R. Each idempotent A ∈ End(Cn ⊗ Cn) defines a functor ΞA from the
category of algebras to the category of graded algebras: ΞA(R) = R⊗ΞA(C). Consider the row
vector Ψ =

∑n
i=1 ψie

i = (ψ1, . . . , ψn). Then the relations (2.9) take the form

(Ψ⊗Ψ)(1−A) = 0. (2.10)
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Remark 2.5. If XA(C) is a Koszul algebra, then the algebra ΞA(C) is its Koszul dual algebra.

We will use the following conventions. We write XA(R) = XA′(R) iff there exists an alge-
bra isomorphism XA(R) ∼−→ XA′(R) identical on generators, that is xi 7→ xi ∀i and r 7→ r
∀r ∈ R. We write ΞA(R) = ΞA′(R) iff there exists an isomorphism ΞA(R) ∼−→ ΞA′(R) identical
on generators ψi and r ∈ R. We also write ΞA(R) = XA′(R) iff there exists an isomorphism
XA(R) ∼−→ ΞA′(R) such that ψi 7→ xi ∀i and r 7→ r ∀r ∈ R.

Remark 2.6. We have XA(R) = XA′(R), ΞA(R) = ΞA′(R) or ΞA(R) = XA′(R) iff XA(C) =
XA′(C), ΞA(C) = ΞA′(C) or ΞA(C) = XA′(C) respectively. The latter equalities are exactly the
isomorphisms of quadratic algebras TV/I as TV -modules (left, right of two-sided), where in the
case ΞA(C) = XA′(C) we identify Cn with (Cn)∗ via ei 7→ ei.

Note that S = 1 − A is an idempotent iff A is idempotent. The transformation S → SG
by an invertible matrix G ∈ Aut(Cn ⊗ Cn) does not change the relation (2.10). By trans-
posing the relation (2.10) we see that it is equivalent to the relation (2.3) with X replaced
with Ψ> and A replaced with S> = 1−A>, where (−)> means the matrix transposition. Hence
ΞA(R) = XS>(R) the functor ΞA can be identified with the functor XS> = X1−A> .

2.2 Left and right equivalence of idempotents

A fixed quadratic algebra can be defined by different idempotents. Here we give a condition when
it happens. To do it we introduce two equivalence relations for idempotent endomorphisms acting
on a vector space. We prove some useful properties of these idempotents and their equivalence
relations.

Let V be a finite-dimensional vector space (here we use that the field C is algebraically
closed). Note that the Jordan form of an idempotent A ∈ End(V ) in an appropriate basis of V
is a diagonal matrix diag(1, . . . , 1, 0, . . . , 0). It can be written in the block form as

A =

(
1 0
0 0

)
(2.11)

with the blocks of the sizes r× r, r×d, d× r, d×d, where r is the rank of A and d = dimV − r.
We obtain the first property of the idempotents.

Proposition 2.7. The rank of an idempotent A ∈ End(V ) equals to its trace: rkA = trA.

Let us say that two idempotents A,A′ ∈ End(V ) are left-equivalent (to each other) if there
exists an operator G ∈ Aut(V ) such that A′ = GA, and we call them right-equivalent if there
exists G ∈ Aut(V ) such that A′ = AG. The both relations are true equivalence relations.

Proposition 2.8. Two idempotents A,A′ ∈ End(V ) are left-equivalent iff the dual idempotents
S = 1−A and S′ = 1−A′ are right-equivalent.

Proof. Let us fix a basis of V such that the idempotent A has the form (2.11). Suppose
that A is left-equivalent to A′, then there exists an invertible matrix G such that A′ = GA.
The matrices G and A′ have the form

G =

(
α β
γ δ

)
, A′ = GA =

(
α 0
γ 0

)
,

where α, β, γ and δ are d× d, d× `, `× d and `× ` matrices respectively. The idempotentness
of A′ implies AA′ = A, that is α = 1. Hence A′ = Aγ , where Aγ :=

(
1 0
γ 0

)
. Since S =

1 − A = ( 0 0
0 1 ) and S′ = 1 − A′ =

(
0 0
−γ 1

)
we have S′ = SG−γ , where Gγ :=

(
1 0
γ 1

)
. Further,

note that two idempotents S1 and S2 are right-equivalent iff the idempotents S>1 and S>2 are
left-equivalent. Thus the right equivalence of S and S′ implies the left equivalence of A = 1−S
and A′ = 1− S′. �
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Remark 2.9. We see from the proof that any matrix left-equivalent to (2.11) has the
form Aγ = GγA. Analogously, any matrix right-equivalent to S = 1 − A has the form
Sγ = 1−Aγ = SG−γ .

Proposition 2.10. If two idempotents S, S′ ∈ End(V ) are right-equivalent then SV = S′V .
If two idempotents A,A′ ∈ End(V ) are left-equivalent then V ∗A = V ∗A′, where V ∗ = Hom(V,C).

Proof. If G ∈ Aut(V ) then GV = V , so from S′ = SG one yields S′V = SGV = SV .
The second statement follows from the first one for S = A>, S′ = (A′)>. �

Lemma 2.11. If two idempotents A,A′ ∈ End(V ) satisfy the relations A′(1 − A) = 0 and
A(1−A′) = 0 then they are left-equivalent.

Proof. By substituting (2.11) and A′ =
(
α β
γ δ

)
to these relations we obtain β = 0, δ = 0

and α = 1, so that A′ = Aγ = GγA (see the proof of Proposition 2.8). �

Consider the case V = Cn ⊗ Cn. Recall that any idempotent A ∈ End(Cn ⊗ Cn) defines
quadratic algebras XA(C) and ΞA(C).

Proposition 2.12. Let A,A′ ∈ End(Cn ⊗ Cn) be idempotents. Then the following conditions
are equivalent.

(a) A is left-equivalent to A′.

(b) S = 1−A is right-equivalent to S′ = 1−A′.

(c) XA(C) = XA′(C).

(d) ΞA(C) = ΞA′(C).

Proof. The conditions (a) and (b) are equivalent due to Proposition 2.8. Two left-equivalent
idempotents A and A′ define the same commutation relations (2.3). This means that (a) imp-
lies (c). Let us prove the converse implication. If XA(C) = XA′(C) then A′(X ⊗ X) = 0
and A(X⊗X) = 0. By Lemma 2.3 we obtain the relations A′(1−A) = 0 and A(1−A′) = 0. Due
to Lemma 2.11 these relations imply the left equivalence of A and A′. Since ΞA(C) = XS>(C)
the equivalence of (b) and (d) is derived by considering the transposed matrices. �

Remark 2.13. Note that the vanishing of A′(1−A) and A(1−A′) is equivalent to V ∗A = V ∗A′.
Due to Proposition 2.8 and Lemma 2.11 can be reformulated in the following way: idempotents A
and A′ are left equivalent iff V ∗A = V ∗A′. Analogously, idempotents S and S′ are right equiv-
alent iff SV = S′V . For the case V = Cn ⊗ Cn we can add two more equivalent conditions to
the list of Proposition 2.12:

(e) (Cn ⊗ Cn)∗A = (Cn ⊗ Cn)∗A′ and

(f) S(Cn ⊗ Cn) = S′(Cn ⊗ Cn).

Thus, the choice of an idempotent A from a class of the left equivalence corresponds to the
choice of complementary subspace Rc in the decomposition V ∗ = R ⊕ Rc, where R is the fixed
subspace defining this class. Note also that all the statements of this subsection are valid for
any field C.
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2.3 A-Manin matrices

Definition 2.14. An n× n matrix M over some algebra R satisfying the equation

AM (1)M (2)(1−A) = 0 (2.12)

is called Manin matrix corresponding to the idempotent A or simply A-Manin matrix.

The definition (2.12) can be rewritten in the following form

AM (1)M (2) = AM (1)M (2)A. (2.13)

This relation means that the expression AM (1)M (2) is invariant with respect to multiplication
by A from the right.

Proposition 2.15. Let M be an n×n matrix over R. Let xi and ψi be the generators of XA(C)
and ΞA(C) respectively. Consider the elements yi ∈ XA(R) and φi ∈ ΞA(R) defined as follows:y1

· · ·
yn

 =

M1
1 · · · M1

n

· · · · · · · · ·
Mn

1 · · · Mn
n

x1

· · ·
xn

, (2.14)

(φ1, . . . , φn) = (ψ1, . . . , ψn)

M1
1 · · · M1

n

· · · · · · · · ·
Mn

1 · · · Mn
n

. (2.15)

Then the following three conditions are equivalent:

� The matrix M is an A-Manin matrix.

� The elements yi satisfy the relations (2.1), i.e., A(Y ⊗ Y ) = 0, where Y =
∑n

i=1 y
iei.

� The elements φi satisfy the relations (2.9), i.e., (Φ⊗Φ)(1−A) = 0, where Φ =
∑n

i=1 φie
i.

Proof. Note that the formulae (2.14) and (2.15) have the form Y = MX and Φ = ΨM .
The second condition is equivalent to the first one due to Lemma 2.4. The third condition can
be written as

(
1 − A>

)(
Φ> ⊗ Φ>

)
= 0. Since the operator 1 − A> is also idempotent we can

again apply Lemma 2.4, so the third condition is equivalent to the equation(
1−A>

)(
M>

)(1)(
M>

)(2)
A> = 0.

Transposition of this equation and the formula
((
M>

)(1)(
M>

)(2))>
= M (1)M (2) gives exac-

tly (2.12), which is the first condition. �

Note that the relation (2.12) has the form AM (1)M (2)S = 0, where S = 1− A. It is equiva-
lent to

M (1)M (2)S = SM (1)M (2)S. (2.16)

Let P = 1− 2A. Then P 2 = 1. We have A = 1−P
2 and S = 1+P

2 . The idempotents A and S
are often given by the matrix P satisfying P 2 = 1. The relation (2.12) in terms of P takes the
form

M (1)M (2) − PM (1)M (2) +M (1)M (2)P − PM (1)M (2)P = 0. (2.17)

Remark 2.16. The notations A, S, P and the sign of P is chosen according to the basic case:
the algebra of commutative polynomials. In this case the roles of A, S and P are played by
antisymmetrizer, symmetrizer and permutation matrix respectively. See Section 3.1 for details.
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Consider some trivial examples. For A = 0 we have P = S = 1. The algebra X0(C) =
C〈x1, . . . , xn〉 is the algebra of all the non-commutative polynomials of the variables x1, . . . , xn

(without any relations). The algebra Ξ0(C) is defined by the relations ψiψj = 0, i, j = 1, . . . , n.
As a linear space it has the from Ξ0(C) = C ⊕ Cψ1 ⊕ · · · ⊕ Cψn. For A = 1 we have P = −1,
S = 0, X1(C) = C ⊕ Cx1 ⊕ · · · ⊕ Cxn ∼= Ξ0(C), Ξ1(C) = C〈ψ1, . . . , ψn〉 ∼= X0(C). In the both
cases the relation defining Manin matrices has the form 0 = 0, so that any n × n matrix M is
a Manin matrix for the idempotent A = 0 as well as for the idempotent A = 1.

Due to Propositions 2.12 and 2.15 the notion of A-Manin matrix does not change if we
substitute A by a left-equivalent idempotent A′. This means that M is an A-Manin matrix iff
it is an A′-Manin matrix. This implies that A-Manin matrices are associated to the quadratic
algebras XA(C) and ΞA(C) (with fixed generators).

More generally, the definition of A-Manin matrix can be written in the form

ÃM (1)M (2)(1−A′) = 0,

where Ã = G̃A, A′ = GA and G̃,G ∈ Aut(Cn ⊗ Cn) are such that A′ is an idempotent (i.e.,
AGA = A). The most general form is

ÃM (1)M (2)S̃ = 0,

where Ã = G̃A and S̃ = SG for any G̃,G ∈ Aut(Cn ⊗ Cn).

2.4 (A,B)-Manin matrices

Let A ∈ End(Cn ⊗ Cn) and B ∈ End(Cm ⊗ Cm) be two idempotents and R be an algebra.
Let x1, . . . , xm be generators of XB(C) and ψ1, . . . , ψn be generators of ΞA(C). They satisfy the
relations B(X ⊗X) = 0 and (Ψ ⊗ Ψ)(1 − A) = 0, where X =

∑m
j=1 x

jej and Ψ =
∑n

k=1 ψke
k.

Let M be an n×m matrix with entries M i
j ∈ R. Consider a “change of variables”

yi =
m∑
j=1

M i
jx
j ∈ XB(R), i = 1, . . . , n, (2.18)

φj =
n∑
i=1

ψiM
i
j ∈ ΞA(R), j = 1, . . . ,m. (2.19)

Consider n × 1 and 1 × m matrices Y =
∑n

i=1 y
iei and Φ =

∑m
j=1 φje

j . Then one can
rewrite (2.18), (2.19) in the matrix form: Y = MX and Φ = ΨM . Now let us generalise
Proposition 2.15 to this case.

Proposition 2.17. The following three conditions are equivalent:

AM (1)M (2)(1−B) = 0, (2.20)

A(Y ⊗ Y ) = 0,

(Φ⊗ Φ)(1−B) = 0.

The proof of this proposition repeats the proof of Proposition 2.15 with B instead of A
somewhere.

Definition 2.18. An n×m matrix M over an algebra R satisfying the equation (2.20) is called
(A,B)-Manin matrix or Manin matrix corresponding to the pair of idempotents (A,B).
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The defining relation for the (A,B)-Manin matrices can be also written in terms of dual
idempotents S and matrices P . For instance, the relation (2.20) is equivalent to (2.17), where
we should understand the matrices P placing to the left from the matrices M as 1− 2A and P
placing to the right as 1− 2B. In the similar way we can generalise the relation (2.16).

Proposition 2.19. Let A be an algebra and M be an (A,B)-Manin matrix with entries M i
j ∈ A.

Let x1, . . . , xm ∈ A be elements commuting with all M i
j and satisfying

∑m
i,j=1B

kl
ij x

ixj = 0,

k, l = 1, . . . ,m, (in particular, it is valid for the algebra A = XB(R), the generators xi ∈ XB(C)
and an (A,B)-Manin matrix M over R). Then the elements yi =

∑m
j=1M

i
jx
j satisfy∑n

i,j=1A
kl
ijy

iyj = 0, k, l = 1, . . . , n.

Proof. We use the matrix notations introduced below. From Y = MX and (2.20) we obtain

A(Y ⊗ Y ) = AM (1)M (2)(X ⊗X) = AM (1)M (2)B(X ⊗X).

The right hand side vanishes since B(X ⊗X) = 0. �

Note if M is an (A,B)-Manin matrix then M> is
(
1−B>, 1−A>

)
-Manin matrix. By means

of the identification of the functors ΞA and X1−A> we can write Proposition 2.19 in the follo-
wing form.

Proposition 2.20. Let A be a algebra and M be an (A,B)-Manin matrix with entries M i
j ∈ A.

Let ψ1, . . . , ψn ∈ A be elements commuting with all M i
j and satisfying

∑m
i,j=1A

ij
klψiψj = ψkψl,

k, l = 1, . . . , n, (in particular, it is valid for the algebra A = ΞA(R), the generators ψi ∈ ΞA(C)
and an (A,B)-Manin matrix M over R). Then the elements φj =

∑n
i=1M

i
jψi satisfy∑m

i,j=1B
ij
klφiφj = φkφl, k, l = 1, . . . ,m.

For arbitrary operators A′ ∈ End(Cn ⊗ Cn) and S′ ∈ End(Cm ⊗ Cm) (not necessarily idem-
potents) the relation A′M (1)M (2)S′ = 0 is equivalent to (G1A

′)M (1)M (2)(S′G2) = 0, where
G1 ∈ Aut(Cn ⊗ Cn) and G2 ∈ Aut(Cn ⊗ Cn). Hence it is equivalent to (2.20) for some idem-
potents A and B, which have the forms A = G1A

′ and B = 1 − S′G2. In particular, if A′

is an idempotent it is left-equivalent to the idempotent A; if S′ is an idempotent it is right-
equivalent to 1−B, which means that 1− S is left-equivalent to B (see Proposition 2.8). Thus
we obtain the following statement.

Proposition 2.21. Let M be an n×m matrix over R. Let A,A′ ∈ End(Cn⊗Cn) and B,B′ ∈
End(Cm⊗Cm) be idempotents. Suppose A is left-equivalent to A′ and B is left-equivalent to B′

(equivalently, 1−A is right-equivalent to 1−A′ and 1−B is right-equivalent to 1−B′). Then M
is an (A,B)-Manin matrix iff it is an (A′, B′)-Manin matrix.

We see from this proposition that the property of the matrix M to be an (A,B)-Manin
matrix effectively depends on the algebras XA(C) = XA′(C) and XB(C) = XB′(C) (with fixed
generators). So the notion of (A,B)-Manin matrix can be associated with the pair of X-quadratic
algebras XA(C) and XB(C). Alternatively it can be associated with the pair of Ξ-quadratic
algebras ΞA(C) and ΞB(C). We will see this in Section 2.5 more explicitly.

Consider the question of permutation of rows and columns of a Manin matrix. Let Sn be the
n-th symmetric group. For a permutation σ ∈ Sn let us permute the rows of an n×m matrix M
in the following way: we put the i-th row to the place of the σ(i)-th row. We denote the obtained
matrix by σM . By permuting columns of M with a permutation σ ∈ Sm in the same way we

obtain a matrix denoted by σM . More explicitly we have (σM)
σ(i)
j = M i

j and (σM)iσ(j) = M i
j .

We write the permutation-index from the left since τ (σM) = τσM and τ (σM) = τσM for
any τ , σ from Sn and Sm respectively. Note that the space Cn has a structure of Sn-module:
a permutation σ ∈ Sn acts by the formula σei = eσ(i), and we denote the corresponding operator
Cn → Cn by the same letter σ. In this notation we have σM = σM and σM = Mσ−1.
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Proposition 2.22. Let M be an n × m matrix over R. Let σ ∈ Sn and τ ∈ Sm or, more
generally, σ ∈ GL(n,C), τ ∈ GL(m,C). Then the following statements are equivalent:

� M is an (A,B)-Manin matrix.

�
σM = σM is a

(
(σ ⊗ σ)A

(
σ−1 ⊗ σ−1

)
, B
)
-Manin matrix.

� τM = Mτ−1 is a
(
A, (τ ⊗ τ)B

(
τ−1 ⊗ τ−1

))
-Manin matrix.

Proof. Multiplication of the condition (2.20) by the operator σ ⊗ σ from the left gives the
relation (σ ⊗ σ)A

(
σ−1 ⊗ σ−1

)
(σM)(1)(σM)(2)(1−B) = 0. By multiplying (2.20) by τ ⊗ τ from

the right we obtain A
(
Mτ−1

)(1)(
Mτ−1

)(2)
(τ ⊗ τ)(1−B)

(
τ−1 ⊗ τ−1

)
= 0. �

Proposition 2.22 can be interpreted in terms of linear change of generators of the corre-
sponding quadratic algebras. Indeed, consider another generators ψ̃i =

∑n
j=1 α

j
iψj of the alge-

bra ΞA(C), where αji are entries of an invertible matrix α ∈ GL(n,C). Let σ ∈ GL(n,C)

be the inverse matrix:
∑n

i=1 α
j
iσ
i
k = δjk. By substituting ψk =

∑n
i=1 σ

i
kψ̃i to (2.19) we ob-

tain φj =
∑n

i=1 ψ̃i(σM)ij . The quadratic commutation relation for the generators ψ̃i are

Ãijklψ̃iψ̃j = ψ̃kψ̃l, where Ãijkl are entries of the idempotent matrix Ã = (σ ⊗ σ)A
(
σ−1 ⊗ σ−1

)
.

The formulae ψ̃i =
∑n

j=1 α
j
iψj , ψk =

∑n
i=1 σ

i
kψ̃i describe the isomorphism ΞA(C) ∼= ΞÃ(C).

It corresponds to the change of basis in (Cn)∗, namely Ψ =
∑n

i=1 ψie
i =

∑n
k=1 ψ̃kẽ

k, where
ẽk =

∑n
i=1 σ

k
i e
i. Since XA(C) = Ξ1−A>(C) we have an isomorphism XA(C) ∼= XÃ(C), where A

is an arbitrary idempotent and Ã = (σ ⊗ σ)A
(
σ−1 ⊗ σ−1

)
.

Analogously, the matrix Mτ−1 corresponds to the new generators x̃i =
∑m

j=1 τ
i
jx
j of the alge-

bra XB(C), where τ ji are entries of τ ∈ GL(m,C). The transition to these generators corresponds
to the change of basis in Cn. The new basis elements are ẽj =

∑m
i=1 β

i
jei, where βij are such

that
∑m

j=1 β
i
jτ
j
k = δik. The formulae x̃i =

∑m
j=1 τ

i
jx
j , xk =

∑m
i=1 β

k
i x̃

i define an isomorphism

XB(C) ∼= XB̃(C), where B̃ = (τ ⊗ τ)B
(
τ−1 ⊗ τ−1

)
.

Thus the notion of (A,B)-Manin matrix is not associated with a pair of isomorphism classes
of quadratic algebras. However, isomorphisms of quadratic algebras gives a transformation of the
Manin matrix in the same way as the change of bases of vector spaces V and W transform a ma-
trix of a linear operator V → W . The notion associated with isomorphism classes of quadratic
algebras is a notion of Manin operator, which we will introduce in Section 2.7.

Finally, consider the case when A = 0 or B = 1 in the both cases the defining relation (2.20)
is 0 = 0. This means that any n × m matrix is a (0, B)-Manin matrix as well as an (A, 1)-
Manin matrix, where 0 ∈ End(Cn ⊗ Cn) and 1 ∈ End(Cm ⊗ Cm). Further, the definition (2.20)
for B = 0 ∈ End(Cm⊗Cm) has the from AM (1)M (2) = 0. By multiplying if by (1−B) from the
right with an arbitrary idempotent B ∈ End(Cm⊗Cm) we obtain (2.20). Thus any (A, 0)-Manin
matrix is in particular an (A,B)-Manin matrix. Analogously, any (1, B)-Manin matrix is also
an (A,B)-Manin matrix, where 1 ∈ End(Cn ⊗ Cn).

2.5 Comma categories and Manin matrices

Consider first the set Hom
(
XA(C),XB(R)

)
with A and B as above. It consists of algebra

homomorphisms f : XA(C) → XB(R) preserving the grading. Let x1
A, . . . , x

n
A and x1

B, . . . , x
m
B

be the generators of XA(C) and XB(C) respectively, they satisfy
∑n

i,j=1A
kl
ijx

i
Ax

j
A = 0 and∑m

i,j=1B
kl
ij x

i
Bx

j
B = 0. To give a homomorphism f ∈ Hom

(
XA(C),XB(R)

)
it is enough to give

its value on the generators xiA; since f(xiA) has degree 1 in XB(C) it has the form

f(xiA) =
m∑
j=1

M i
jx
j
B, (2.21)
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where M i
j ∈ R. This means that each f is given by a matrix M =

(
M i
j

)
over R. Proposi-

tion 2.15 implies that the formula (2.21) defines a homomorphism f iff the matrix M =
(
M i
j

)
is an (A,B)-Manin matrix. Denote this homomorphism f : XA(C) → XB(R) by fM . Thus
we obtain a bijection fM ↔ M between Hom

(
XA(C),XB(R)

)
and the set of all (A,B)-Manin

matrices over the algebra R. Note that this bijection depends on the choice of generators of the
algebras XA(C) and XB(C).

More generally, consider the set Hom
(
XA(S),XB(R)

)
for two algebras S and R. It can be

identified with a subset of Hom(S,R)×Hom
(
XA(C),XB(R)

)
, since each graded homomorphism

f : XA(S)→ XB(R) is given on the zero-degree elements s ∈ S and the generators xiA ∈ XA(C).
Let α : S → R be an algebra homomorphism and fM ∈ Hom

(
XA(C),XB(R)

)
be a graded

algebra homomorphism defined by an (A,B)-Manin matrix M =
(
M i
j

)
, then the formulae

f(s) = α(s), s ∈ S, f(xiA) = fM (xiA) =
m∑
j=1

M i
jx
j
B, i = 1, . . . , n, (2.22)

define a homomorphism f : XA(S) → XB(R) iff α(s)M i
j = M i

jα(s) for all s ∈ S, i = 1, . . . , n
and j = 1, . . . ,m. We write f = (α, fM ) in this case. We have

Hom
(
XA(S),XB(R)

)
=
{

(α, fM ) ∈ Hom(S,R)×Hom
(
XA(C),XB(R)

)
|
[
α(s),M i

j

]
= 0 ∀ s, i, j

}
. (2.23)

Analogously, we obtain that the set Hom
(
ΞB(C),ΞA(R)

)
consists of the algebra homomor-

phisms fM : ΞB(C) → ΞA(R) defined on generators as fM
(
ψBj
)

=
∑n

i=1M
i
jψ

A
i , where M i

j ∈ R

are entries of an (A,B)-Manin matrix M =
(
M i
j

)
. More generally,

Hom
(
ΞB(S),ΞA(R)

)
=
{(
α, fM

)
∈ Hom(S,R)×Hom

(
ΞB(C),ΞA(R)

)
|
[
α(s),M i

j

]
= 0 ∀ s, i, j

}
.

Definition 2.23 ([22]). Let C and D be categories, c be an object of C and G : D → C be
a functor. The comma category (c ↓ G) consists of the pairs (d, f), where d is an object of D
and f ∈ HomC(c,Gd) is a morphism in C. A morphism in (c ↓ G) from (d, f) to (d′, f ′) is
a morphism h ∈ HomD(d, d′) such that the diagram

c
f

~~

f ′

!!
Gd

Gh
// Gd′

is commutative.

LetA be the category of associative unital algebras over C and G be the category of associative
unital N0-graded algebras over C. By setting C = G, D = A, c = XA(C) and G = XB in Defini-
tion 2.23 we obtain the comma category

(
XA(C) ↓ XB

)
. It consists of the pairs (R, fM ), where R

is an algebra and fM ∈ Hom
(
XA(C),XB(R)

)
is a homomorphism corresponding to some (A,B)-

Manin matrix M over R. Thus we can interpret the (A,B)-Manin matrices as objects of the
comma category

(
XA(C) ↓ XB

)
.

The morphisms in
(
XA(C) ↓ XB

)
from (R, fM ) to (R′, fM ′) are all the homomorphisms

h : R → R′ such that h
(
M i
j

)
= (M ′)ij , where M i

j and (M ′)ij are entries of the corresponding
(A,B)-Manin matrices M and M ′. Two (A,B)-Manin matrices M ∈ R ⊗ Hom(Cm,Cn) and
M ′ ∈ R′⊗Hom(Cm,Cn) are isomorphic to each other iff there exists an isomorphism h : R ∼−→ R′
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such that h
(
M i
j

)
= (M ′)ij (note that (A,B)-Manin matrices which have the same entries but

are formally considered over different algebras may be non-isomorphic).

In the same way the (A,B)-Manin matrices can be interpreted as objects of the comma
category

(
ΞB(C) ↓ ΞA

)
. So that the last one is equivalent to

(
XA(C) ↓ XB

)
.

One of the application of the comma categories in the category theory is the universal mor-
phism (universal arrow).

Definition 2.24 ([22]). Let C and D be categories, c be an object of C and G : D → C be
a functor. The universal morphism from c to G is the initial object in the comma category
(c ↓ G), that is a pair (r, u) of an object r ∈ D and a morphism u ∈ HomC(c,Gr) such
that for any object d ∈ D and any morphism f ∈ HomC(c,Gd) there is a unique morphism
h ∈ HomD(r, d) making the diagram

c
u //

f   

Gr

Gh
��

Gd

commutative.

As an initial object the universal morphism is unique up to an isomorphism. Let us des-
cribe the universal morphism (UA,B, uA,B) from the object XA(C) to the functor XB. It con-
sists of the algebra UA,B generated by the elements Mi

j , i = 1, . . . , n, j = 1, . . . ,m, with

the commutation relation AM(1)M(2)(1 − B) = 0, where M is the n × m matrix with ent-
ries Mi

j . Due to Definition 2.18 it is an (A,B)-Manin matrix. It defines a homomorphism
uA,B = fM : XA(C) → XB(UA,B). On can check that (UA,B, uA,B) is the universal morphism
from XA(C) to XB: for any morphism f = fM : XA(C) → XB(R) corresponding to the (A,B)-
Manin matrix M with entries M i

j ∈ R there is a unique homomorphism h : UA,B → R such that

f = XB(h)uA,B, namely, h(Mi
j) = M i

j . Via the equivalence of comma categories
(
XA(C) ↓ XB

)
and

(
ΞB(C) ↓ ΞA

)
we obtain the universal morphism from the object ΞB(C) to the functor ΞA,

this is the pair (UA,B, ũA,B), where ũA,B = fM : ΞB(C)→ ΞA(UA,B).

Let us call the matrix M the universal (A,B)-Manin matrix. The algebra UA,B is a genera-
lisation of the right quantum algebra [10], so we call it the right quantum algebra for the pair
of idempotents (A,B).

Consider more general comma category
(
XA(S) ↓ XB

)
. It consists of pairs (R, f) of an alge-

bra R and a homomorphism f ∈ Hom
(
XA(S),XB(R)

)
. Such a homomorphism f can be identi-

fied with a pair of homomorphisms in the sense of the formulae (2.22), (2.23). If f = (α, fM ) we
write also (R, f) = (R, α, fM ). A morphism h : (R, α, fM ) → (R′, α′, fM ′) is a homomorphism
h : R→ R′ such that hα = α′ and h

(
M i
j

)
= (M ′)ij .

The initial object in
(
XA(S) ↓ XB

)
is the universal morphism (S ⊗ UA,B, ι, uA,B), where

ι : S ↪→ S ⊗ UA,B is the inclusion. A homomorphism f = (α, fM ) : XA(S) → XB(R) gives the
unique homomorphism h : S⊗UA,B → R defined by the formulae h(s) = α(s) and h(Mi

j) = M i
j

and making the diagram

XA(S)
(ι,uA,B)

//

f ))

XB(S⊗ UA,B)

XB(h)

��
XB(R)

(2.24)

commutative.
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Now let us calculate a composition

XA(S)
(α,fM )−−−−→ XB(R)

(β,fN )−−−−→ XC(T),

where C ∈ End(Ck ⊗ Ck) is an idempotent, T is an algebra, β : R → T is a homomor-
phism and fN : XB(C) → XC(T) is defined by (B,C)-Manin matrix N = (N j

l ). On the ele-
ments s ∈ S we have (β, fN )(α, fM )(s) = β(α(s)). On the generators xiA ∈ XA(C) we obtain

(β, fN )(α, fM )(xiA) = (β, fN )(
∑m

j=1M
i
jx
j
B) =

∑m
j=1

∑k
l=1 β

(
M i
j

)
N j
l x

l
C . Thus,

(β, fN )(α, fM ) =
(
βα, fK

)
, (2.25)

where K = β(M)N is the n× k matrix with entries Ki
l =

∑m
j=1 β

(
M i
j

)
N j
l ∈ T. Since (2.25) is

a morphism the matrix K is an (A,C)-Manin matrix.
Recall also (see [22]) that the functor F : C → D is called left adjoint to the functor G : D → C

(while the functor G : D → C is called right adjoint to F : C → D), iff there is an isomorphism
HomC(c,Gd) ∼= HomD(Fc, d) natural in c and d. To construct a left adjoint functor to a functor
G : D → C it is enough to construct a universal morphism (rc, uc) from each c ∈ C to G. Then
the left adjoint functor on objects is defined as Fc = rc. For a morphism α : c→ c′ the morphism
Fα : Fc→ Fc′ is the unique morphism h : Fc→ Fc′ such that the diagram

c
uc //

α
��

GFc

Gh
��

c′
uc′ // GFc′

is commutative (as consequence, we obtain a natural transformation u : idC → GF with com-
ponents uc : c→ GFc).

Let Q be the full subcategory of G consisting of the graded algebras of the form XA(S).
This is the category of quadratic algebras. We can consider the functors XA and ΞA as functors
from A to Q. This means that we can substitute G by Q in the previous considerations.

From the diagram (2.24) we see that the functor G = XB : A → Q has a left adjoint functor
F = FB : Q → A. It is defined on objects as FB

(
XA(S)

)
= S ⊗ UA,B. In particular, on the

quadratic algebras XA(C) ∈ Q the functor FB gives the right quantum algebra UA,B.

Let us calculate the functor FB on a morphism XA(S)
(α,fN )−−−−→ XA′(S

′), where α : S→ S′ is
a homomorphism and fN is defined by an (A,A′)-Manin matrix N = (N i

j). We need to construct
a commutative diagram

XA(S)
(ι,uA,B)

//

(α,fN )

��

f

))

XB(S⊗ UA,B)

XB(h)

��
XA′(S

′)
(ι′,uA′,B)

// XB(S′ ⊗ UA′,B).

Remind that uA,B = fM and uA′,B = fM′ , where M′ is the universal (A′, B)-Manin matrix.
By the formula (2.25) we have f = (ια, fK), where K = NM′. Thus we obtain the homomor-
phism FB(α, fN ) = h : S⊗ UA,B → S′ ⊗ UA′,B defined by the formulae

h(s) = α(s), s ∈ S, h(Mi
j) =

∑
l

N i
l (M′)lj .

The left adjoint to the functor ΞA : A → Q is the functor F̃A : Q → A defined on objects
as F̃A

(
ΞB(S)

)
= S ⊗ UA,B. The value of F̃A on (α, fN ) ∈ Hom

(
ΞB(S),ΞB′(S

′)
)

is the
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homomorphism h : S ⊗ UA,B → S′ ⊗ UA,B′ such that h(s) = α(s) and h(Mi
j) =

∑
l(M′)ilN l

j ,

where M = (Mi
j) and M′ =

(
(M′)il

)
are the universal (A,B)- and (A,B′)-Manin matrices.

In particular, for S = C we have the natural bijections

Hom
(
XA(C),XB(R)

)
= Hom

(
ΞB(C),ΞA(R)

)
= Hom(UA,B,R). (2.26)

This means that the set of (A,B)-Manin matrices over R is identified with the set of algebra
homomorphisms f : UA,B → R. Namely, each (A,B)-Manin matrix M =

(
M i
j

)
has the form

M i
j = f(Mi

j) for some homomorphism f : UA,B → R and any homomorphism f : UA,B → R
gives an (A,B)-Manin matrix M . In terms of non-commutative geometry [26] this means that
an (A,B)-Manin matrix over R is an R-point of the algebra UA,B.

Proposition 2.25. Let A ∈ End(Cn ⊗Cn) and A′ ∈ End(Cm ⊗Cm) be idempotents. Then the
following three statements are equivalent:

� XA(C) ∼= XA′(C) as graded algebras.

� ΞA(C) ∼= ΞA′(C) as graded algebras.

� n = m and there exists σ ∈ GL(n,C) such that A is left-equivalent to the idempotent
(σ ⊗ σ)A′

(
σ−1 ⊗ σ−1

)
(that is A′ = GA(σ ⊗ σ) for some operators G ∈ Aut(Cn ⊗ Cn)

and σ ∈ Aut(Cn)).

Proof. If A is left-equivalent to Ã = (σ⊗σ)A′
(
σ−1⊗σ−1

)
then XA(C) = X

Ã
(C) ∼= XA′(C) and

ΞA(C) = Ξ
Ã

(C) ∼= ΞA′(C) (see Section 2.4). Conversely let f : XA(C) → XA′(C) be an isomor-
phism and f−1 : XA′(C) → XA(C) be its inverse. They correspond to (A,A′)-Manin matrices
σ ∈ Hom(Cm,Cn) and σ−1 ∈ Hom(Cn,Cm) respectively. Due to invertibility of these matrices
we must have n = m. The relations A(σ ⊗ σ)(1 − A′) = 0 and A′

(
σ−1 ⊗ σ−1

)
(1 − A) = 0

imply A(1− Ã) = 0 and Ã(1−A) = 0. By virtue of Lemma 2.11 the idempotents A and Ã are
left-equivalent. One can similarly prove that the second statement implies the third one. �

Remark 2.26. In the same way one can prove that XA(S) and XA′(R) are isomorphic as
graded algebras iff n = m, S ∼= R and there exist invertible matrices M ∈ Z(R) ⊗ End(Cn),
G ∈ R⊗End(Cn⊗Cn) such that A′ = GA(M⊗M), where Z(R) = {z ∈ R | [z, r] = 0 ∀ r ∈ R} is
the centre of R. The isomorphism and its inverse have the form (α, fM ) : XA(S)→ XA′(R) and(
α−1, fN

)
: XA′(R)→ XA(S), where α : S→ R is an isomorphism in A and N = α−1

(
M−1

)
∈

Z(S)⊗ End(Cn).

2.6 Products of Manin matrices and co-algebra structure

The main property of Manin matrices is that their product is also a Manin matrix under some
condition.

Proposition 2.27. Let R be an algebra. Let A ∈ End(Cn ⊗ Cn), B ∈ End(Cm ⊗ Cm) and
C ∈ End

(
Ck ⊗ Ck

)
be idempotents. Let M and N be n × m and m × k matrices over R.

Suppose that M and N are (A,B)- and (B,C)-Manin matrices respectively and that[
M i
j , N

j′

l

]
= 0 ∀i = 1, . . . , n, j, j′ = 1, . . . ,m, l = 1, . . . , k. (2.27)

Then the n× k matrix K = MN is an (A,C)-Manin matrix over R.

Proof. Since M is an (A,B)-Manin matrix we have AM (1)M (2) = AM (1)M (2)B. The commu-
tativity condition (2.27) implies that N (1)M (2) = M (2)N (1), hence

AK(1)K(2)(1− C) = AM (1)N (1)M (2)N (2)(1− C) = AM (1)M (2)N (1)N (2)(1− C)

= AM (1)M (2)BN (1)N (2)(1− C).

The right hand side vanishes since N is a (B,C)-Manin matrix. �
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Remark 2.28. Proposition 2.27 can be proved by using the functors XA or ΞA. In the case of XA
one needs to consider the elements yj =

∑
lN

j
l x

l and zi =
∑

jM
i
jy
j of the algebra A = XC(R),

where xl = xlC . By applying Proposition 2.19 twice we obtain the relations
∑

k,lA
ij
klz

kzl = 0.

Since zi =
∑

lK
i
lx
l the matrix K is an (A,C)-Manin matrix by virtue of Proposition 2.17.

Analogously, one can apply Propositions 2.20 and 2.17 to the elements φj =
∑

iM
i
jψi and

χl =
∑

j N
j
l φj of the algebra ΞA(R).

In some particular case the property claimed in Proposition 2.27 was deduced in Section 2.5
(see the formula (2.25) and the text after it). The role of R is played by the algebra T. The homo-
morphism β : R → T gives a R-algebra structure on T and maps entry-wise the (A,B)-Manin
matrix M =

(
M i
j

)
over R to a (A,B)-Manin matrix β(M) =

(
β
(
M i
j

))
over T. The entries of

this matrix commute with the entries of N since [β(r), N i
j ] = 0 for any r ∈ R.

The typical case of Proposition 2.27 is R = S ⊗S′, M i
j ∈ S, N j

l ∈ S′. In this case it can
be formulated in terms of comma categories as follows. Let (S, fM ) and (S′, fN ) be objects of
the categories

(
XA(C) ↓ XB

)
and

(
XB(C) ↓ XC

)
corresponding to (A,B)- and (B,C)-Manin

matrices M and N . Then (S ⊗ S′, fK) is an object of
(
XA(C) ↓ XC

)
, where K = MN .

In particular, for A = B = C we obtain a structure of tensor category on the comma category(
XA(C) ↓ XA

)
with the unit object

(
C, idXA(C)

)
corresponding to the unit matrix.

Proposition 2.27 can be formulated in terms of right quantum algebras. This formulation
was described in the works [23, 24, 26].

Proposition 2.29. Let M, N and K be universal (A,B)-, (B,C)- and (A,C)-Manin matrices
respectively. They have entries Mi

j ∈ UA,B, N i
j ∈ UB,C and Kij ∈ UA,C . Then the formula

∆A,B,C(Kil) =
m∑
j=1

Mi
j ⊗N

j
l

defines a homomorphism ∆A,B,C : UA,C → UA,B ⊗ UB,C .

Proof. Let R = UA,B ⊗UB,C . The matrix K̃ with entries K̃il = ∆A,B,C

(
Kil
)
∈ R is the product

of the matrices M and N . We need to check that AK̃(1)K̃(2)(1 − C) = 0. The last equality
means that K̃ is an (A,C)-Manin matrix, but this follows from Proposition 2.27. �

Note that in terms of functors FA, F̃A : Q → A constructed in Section 2.5 (as left adjoint
functors to the functors XA,ΞA : A → Q) we have ∆A,B,C = FC(uA,B) = F̃A(ũB,C), where
uA,B = fM : XA(C) → XB(UA,B) and ũB,C = fN : ΞC(C) → ΞB(UB,C) are the corresponding
universal homomorphisms.

Consider the algebra UA = UA,A. Proposition 2.29 implies that the map ∆A = ∆A,A,A is
a homomorphism UA → UA⊗UA. Moreover, it is easy to check that ∆A is a comultiplication, that
is (id⊗∆A)∆A = (∆A ⊗ id)∆A. More generally, we have the following commutative diagram:

UA,D
∆A,B,D //

∆A,C,D

��

UA,B ⊗ UB,D

id⊗∆B,C,D

��
UA,C ⊗ UC,D

∆A,B,C⊗id
// UA,B ⊗ UB,C ⊗ UC,D,

which reflects the associativity of the matrix multiplication.

Proposition 2.30. The algebra UA has a bialgebra structure defined by the following comulti-
plication ∆A : UA → UA ⊗ UA and counit εA : UA → C:

∆A(Mi
k) =

n∑
j=1

Mi
j ⊗M

j
k, εA

(
Mi

j

)
= δij . (2.28)
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The formula (2.21) for the universal A-Manin matrixM gives a coaction of the bialgebra UA
on the algebra XA(C). This is a homomorphism δ = fM : XA(C)→ UA ⊗ XA(C) defined as

δ(xi) =

n∑
j=1

Mi
j ⊗ xj .

It satisfies the coaction axiom (id⊗δ)δ = (∆⊗ id)δ. In terms of non-commutative geometry the
algebra XA(C) is interpreted as an algebra of functions on a non-commutative space and the
coaction δ as an action on this space. Thus the bialgebra UA (or its dual) plays the role of algebra
of endomorphisms of a non-commutative space corresponding to the algebra XA(C).

More generally, for arbitrary A,B,C we have (id⊗uB,C)uA,B = (∆A,B,C ⊗ id)uA,C and
(id⊗ũA,B)ũB,C =

(
∆op
A,B,C ⊗ id

)
ũA,C , where ∆op

A,B,C : UA,C → UB,C ⊗ UA,B is an algebra homo-

morphism defined as ∆op
A,B,C

(
Kil
)

=
∑m

j=1N
j
l ⊗M

i
j . In particular, the homomorphism ũA,A:

ΞA(C) → UA ⊗ ΞA(C) is a coaction on the algebra ΞA(C) with respect to the comultiplication
∆op
A = ∆op

A,A,A : UA → UA ⊗ UA.

Remark 2.31. The bialgebra UA is not a Hopf algebra: an antipode S for the bialgebra struc-
ture (2.28) should have the form S(M) = M−1, but the matrix M is not invertible over UA.

One can extend the algebra AA by adding new generators M̃i
j being elements of the formal

inverse matrix M̃ = M−1. Then the matrix S(M)> should be inverse to M̃>, however its
invertibility is not guaranteed in this extended algebra. The universal construction of a Hopf
algebra extending the bialgebra UA is Hopf envelope [26]. This is the algebra HA generated
by the entries of the infinite series of matrices Mk, k ∈ N0, with the relations

M>kMk+1 =Mk+1M>k = 1, AM(1)
2kM

(2)
2k (1−A) = 0,(

1−A>
)
M(2)

2k+1M
(1)
2k+1A

> = 0,

k ∈ N0. Its Hopf structure is given by the formulae

∆A

(
(Mk)

i
l

)
=

n∑
j=1

(Mk)
i
j ⊗ (Mk)

j
l , εA(Mk) = 1, S(Mk) =M>k+1.

The algebra UA is mapped to HA by the formula M 7→ M0. Note also that the matrix M̃ =
M−1

0 =M1 satisfies the relation

AM̃(2)M̃(1)(1−A) = 0.

The complex square and rectangular matrices are often interpreted as homomorphisms in
a category with objects n ∈ N0 and homomorphisms Hom(m,n) = Matn×m(C) (it is equiva-
lent to the category of finite-dimensional vector spaces). One can interpret the Manin mat-
rices in a similar way. Let A′ ⊂ A be a small full tensor subcategory, this means that A′
is a full subcategory of A such that C ∈ A′, R ⊗ S ∈ A′ ∀R,S ∈ A′ and Ob(A′) is
a small set (in practice one needs only a small set of algebras, so we can take the full ten-
sor subcategory generated by this set as A′). Define the following category MA′ . The ob-
jects of MA′ are all the idempotents A ∈ End(Cn ⊗ Cn), n ∈ N0. The homomorphisms
A → B are all the (A,B)-Manin matrices M over algebras R ∈ A′. In other words, we define
Hom(A,B) =

⊔
R∈A′ Hom

(
XA(C),XB(R)

)
, these sets are small since A′ is small. The composi-

tion of homomorphisms (M,R) ∈ Hom
(
XA(C),XB(R)

)
and (N,S) ∈ Hom

(
XB(C),XC(R)

)
we

define as (NM,R ⊗S). Due to Proposition 2.27 the product NM is an (A,C)-Manin matrix
over R⊗S.
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If two idempotents are left-equivalent, then they are isomorphic as objects of MA′ , so it is
enough to take the quadratic algebras XA(C) as objects of MA′ instead of the idempotents.
Moreover, one can prove that XA(C) and XA′(C) are isomorphic as objects of MA′ iff they are
isomorphic as objects of Q. Indeed, if (R, fM ) ∈ Hom

(
XA(C),XB(R)

)
is an isomorphism MA′

and (S, fN ) ∈ Hom
(
XB(C),XA(S)

)
is its inverse then R ⊗ S = C, hence R = S = C and

fM : XA(C)→ XB(C), fN : XA(C)→ XB(C) are isomorphisms in Q.

Remark 2.32. Due to Proposition 2.12 the formula XA(C) 7→ ΞA(C) correctly define an ope-
ration on the quadratic algebras A ∈ MA′ . It was denoted in the works of Manin [23, 24, 26]
by A 7→ A!. The first equality (2.26) gives a contravariant fully faithful functor (−)! : MA′ →
MA′ . Since any object of MA′ isomorphic to ΞA(C) for some idempotent A this functor is an
anti-autoequivalence of the category MA′ . The (quasi-)inverse of (−)! is (−)! itself.

Remark 2.33. One can extend the category MA′ up to a category M̂A′ by taking all the
algebras XA(S) ∈ Q as objects of M̂A′ . The sets of homomorphisms in M̂A′ can be defined as

Hom(XA(S),XB(S′)) =
⊔

R∈A′

{
(α,M) | α ∈ Hom(S,S′),

(M,R) ∈ Hom
(
XA(C),XB(S′ ⊗R)

)
,
[
α(s),M i

j

]
= 0 ∀ s ∈ S

}
with some natural composition rule. In these settings XA(S) and XA′(S

′) are isomorphic as

objects of M̂A′ iff they are isomorphic as objects of Q (see Remark 2.26).

2.7 Infinite-dimensional case: Manin operators

Let V and W be two vector spaces (may be infinite-dimensional). Let A ∈ End(V ⊗ V ) and
B ∈ End(W ⊗W ) be idempotents and R be an algebra. Instead of a matrix over R we need to
take an element M of the space R⊗ Hom(W,V ) or of some completion of this space. We con-
sider M as an operator with entries in the algebra R: this means that λMw ∈ R, where λ ∈ V ∗
and w ∈ W (in the case of completion the covector λ runs over a subset of the dual space V ∗

such that λMw is well defined).

Definition 2.34. The operator M (from the space R⊗Hom(W,V ) or its completion) is called
an (A,B)-Manin operator if it satisfies the relationAM (1)M (2)(1−B) = 0, whereM (1) = M⊗idV
and M (2) = idW ⊗M . In the case V = W , A = B it is called A-Manin operator.

Let (vi) be a basis of the space V , so that any vector v ∈ V has the from v =
∑

i α
ivi for

unique coefficients αi ∈ C and the sum is finite. Then the action of the operator A can be
written as A(vk ⊗ vl) =

∑
i,j A

ij
klvj ⊗ vj for unique coefficients Aijkl ∈ C. Since the sum

∑
i,j

should be finite there are only finitely many non-zero coefficients Aijkl for any fixed k, l, we

call it column finiteness condition for the matrix (Aijkl). This condition allows as to define the

quadratic algebra ΞA(C) generated by ψi with commutation relations ψkψl =
∑

i,j A
ij
klψiψj .

Formally this is the quotient ΞA(C) = T/I, where T is the algebra of all the non-commutative
polynomials of the formal variables ψi while I is the ideal of T generated by the elements
ψkψl −

∑
i,j A

ij
klψiψj ∈ T. Another choice of the basis (vi) leads to an isomorphic quadratic

algebra, so it essentially depends on the operator A only.
To interpret an (A,B)-Manin operator M as an object of a comma category as in Section 2.5

we need to define also an algebra ΞA(R). Let (vi) and (wi) be bases of V and W . The
formula Mwj =

∑
iM

i
jvi defines the entries M i

j ∈ R of an (A,B)-Manin operator M in these
bases. If M ∈ R⊗Hom(W,V ) (without completion), then there are only finitely many non-zero
entries M i

j for any fixed j
(
column finiteness condition for the matrix

(
M i
j

))
and hence the sum
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iM

i
jψi is finite. Define ΞA(R) = R⊗ ΞA(C) (non-completed). Then the set of (A,B)-Manin

operators M ∈ R⊗Hom(W,V ) bijectively corresponds to the set Hom
(
ΞB(C),ΞA(R)

)
.

To consider the case of arbitrary infinite matrix
(
M i
j

)
without any finiteness condition we

define a completion of the space R ⊗ Hom(W,V ) as the set of all the infinite formal sums∑
i,jM

i
jEi

j , where M i
j ∈ R and Ei

j ∈ Hom(W,V ) are operators acting as Ei
jwk = δjkvi. Denote

this completion by R ⊗̂Hom(W,V ). It can be identified with Hom
(
W,R ⊗̂ V

)
, where R ⊗̂ V is

the completion of R⊗V consisting of all the infinite formal sums
∑

i rivi, ri ∈ R. The operator
M =

∑
i,jM

i
jEi

j acts by the formula Mwj =
∑

iM
i
jvi.

Note that the completion R ⊗̂ V
(
and hence R ⊗̂ Hom(W,V ) = Hom

(
W,R ⊗̂ V

))
does

not depend on the choice of the basis (wi), but it does depend on the choice of the basis (vi).
Namely, a basis (vi) defines the following topology in the R-module R⊗ V : neighbourhoods of
0 are the R-submodules generated by all vi except finitely many of them. The module R ⊗̂ V is
the completion of R⊗ V with respect to this topology. Any two bases (vi) and (v′i) are related
by vi =

∑
k α

k
i v
′
k, v

′
j =

∑
k β

k
j vk, they define the same topology of R⊗ V iff for any k there are

only finitely many non-zero αki and βkj .

Suppose A satisfy row finiteness condition: there are only finitely many non-zero Aijkl for
fixed i, j. This condition means exactly that the operator A : V ⊗ V → V ⊗ V is continuous
with respect to the topology corresponding to the basis (vi ⊗ vj). Define Ξ̂A(R) = T̂/Î, where

T̂ =
⊕

k∈N0
T̂k is the graded algebra with grading component T̂k consisting of the infinite formal

sums ∑
i1,...,ik

ri1...ikψi1 · · ·ψik , ri1...ik ∈ R,

and Î =
{∑

k,l tkl(ψkψl−
∑

i,j A
ij
klψiψj)t

′
kl | tkl, t′kl ∈ T̂

}
(due to the row finiteness condition the

sum over k and l is correctly defined). The algebra Ξ̂A(R) is a completion of ΞA(R), it depends
on the choice of the basis (vi) due to the identification ΞA(C)1 = V via ψi ↔ vi.

The proof of Lemma 2.3 holds for the completed algebra Ξ̂A(R), so that the system of equa-
tions

∑
i,j ψiψjT

ij
ab = 0 for T ijab ∈ R is equivalent to the system

∑
k,lA

ij
klT

kl
ab = 0. Hence

we have a bijection between the set of (A,B)-operators M ∈ R ⊗̂ Hom(W,V ) and the set
Hom

(
ΞB(C), Ξ̂A(R)

)
.

Let V ⊗̂V be the completion of V ⊗V with respect to the topology corresponding to the basis
(vi ⊗ vj). It consists of all the infinite formal sums

∑
i,j αijvi ⊗ vj , αij ∈ C. Any matrix

(
Aijkl
)

satisfying row finiteness condition define a continuous operator A : V ⊗̂ V → V ⊗̂ V by the
formula Avk ⊗ vl =

∑
i,j A

ij
klvi ⊗ vj . Denote by End

(
V ⊗̂ V

)
the space of all the continuous

operators V ⊗̂ V → V ⊗̂ V . Note that we do not need the column finiteness condition to define
the algebra Ξ̂A(R). Hence the (A,B)-Manin operators M ∈ R ⊗̂ Hom(W,V ) for arbitrary
idempotents A ∈ End

(
V ⊗̂ V

)
and B ∈ End(W ⊗ W ) can be identified with the elements

of the set Hom
(
ΞB(C), Ξ̂A(R)

)
. Explicitly, the relations

∑
k,l,a,bA

ij
klM

k
aM

l
b

(
δar δ

b
s − Bab

rs

)
= 0

are correctly defined in this case since all the sums in these relations are finite.
Thus the (A,B)-Manin operators in the non-completed or completed case are objects of the

comma category
(
ΞB(C) ↓ ΞA

)
or
(
ΞB(C) ↓ Ξ̂A

)
for the functor ΞA : A → G or Ξ̂A : A → G

respectively.
One can also generalise the graded algebras XA(C) to the case of infinite-dimensional matri-

ces (Aijkl). To do it one needs to require the row finiteness condition, which means that this matrix
defines a continuous operator A : V ⊗̂V → V ⊗̂V . For any idempotent A ∈ End

(
V ⊗̂V

)
define

the quadratic algebra XA(C) as the algebra generated by xi with the commutation relations∑
k,lA

ij
klx

kxl = 0. That is XA(C) = Ξid−A>(C), where A> is the operator V ⊗ V → V ⊗ V
defined as A>vi⊗vj =

∑
k,lA

ij
klvk⊗vl. Let W ⊗̂W be the completion of W ⊗W with respect to
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the basis (wi ⊗ wj) and B ∈ End(W ⊗W ) be an idempotent. The corresponding matrix (Bij
kl)

satisfy the column finiteness condition. Define X̂B(R) = Ξ̂id−B>(R), where B> ∈ End
(
W ⊗̂W

)
is the continuous operator W ⊗̂W → W ⊗̂W acting as B>wi ⊗ wj =

∑
k,lB

ij
klwk ⊗ wl. Then

we have the comma category (XA(C) ↓ X̂B) equivalent to
(
ΞB(C) ↓ Ξ̂A

)
.

In particular, the completions allow us to consider the universal (A,B)-Manin operator.
It has the form M =

∑
i,jMi

jEi
j , where Mi

j are generators of the algebra UA,B with the

commutation relations
∑

k,l,a,bA
ij
klM

k
aMl

b

(
δar δ

b
s−Bab

rs

)
= 0. These relations are correctly defined

iff the matrices
(
Aijkl
)

and
(
Bij
kl

)
satisfy the row and column finiteness conditions respectively.

Proposition 2.27 can be generalised if we additionally suppose that the sums
∑

jM
i
jN

j
l are

well defined: if nether M nor N satisfies a needed finiteness condition, then we need to com-
plete R in order to include all these sums. In particular, the map ∆A,B,C is a homomorphism

from UA,C to a completion of UA,B ⊗ UB,C which contains the sums
∑

jMi
jN

j
l (we need to

suppose that A, B and C satisfy the row, both and column finiteness conditions respectively).
In the case A = B = C the map ∆A is a “completed” comultiplication for UA = UA,B. In terms
of representations this means that tensor product of UA-modules are not always defined: we
need to impose some finiteness condition on the modules to guarantee the existence of their
tensor product.

Finally, we consider some examples of completions used below. The simplest example of the
infinite-dimensional space is the space of polynomials V = C[u]. It has the basis

(
vi = ui−1

)
i>1

.

The completion of R[u] = R ⊗ C[u] is the algebra of formal series R[[u]]. It consists of all the
formal infinite sums

∑∞
k=0 rku

k, rk ∈ R. The algebra of finite Laurent polynomials R
[
u, u−1

]
=

R ⊗ C
[
u, u−1

]
can be completed to the algebra R((u)) consisting of the series

∑∞
k=N rku

k,

N ∈ Z, rk ∈ R. It has another completion – the algebra R((u−1)) consisting of
∑N

k=−∞ rku
k,

N ∈ Z, rk ∈ R. Note that the space R[[u, u−1]] consisting of
∑∞

k=−∞ rku
k is also a completion

of R
[
u, u−1

]
, but it is not an algebra in the usual sense.

3 Particular cases

Here we consider the main examples corresponding to the polynomial and Grassmann algebras
and their deformations. We also consider a generalisation of a deformed polynomial algebra
with three variables. More examples will appear in Sections 4, 6, 7 and Appendix B.

3.1 Manin matrices for the polynomial algebras

Let Pn ∈ End(Cn ⊗ Cn) be the permutation operator acting as

Pn(v ⊗ w) = w ⊗ v, v, w ∈ Cn. (3.1)

Substituting basis elements v = ek and w = el we obtain the entries (Pn)ijkl = δilδ
j
k. Since P 2

n = 1
the operators

An =
1

2

(
1− Pn

)
, Sn =

1

2

(
1 + Pn

)
= 1−An (3.2)

are idempotents: A2
n = An, S2

n = Sn. These are anti-symmetrizer and symmetrizer for two
tensor factors respectively. Note that the permutation operator satisfies the braid relation

P (23)
n P (12)

n P (23)
n = P (12)

n P (23)
n P (12)

n (3.3)

(this is an equality of operators acting on the space Cn ⊗ Cn ⊗ Cn).
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The commutation relations (2.1) and (2.9) for A = An have the form xixj − xjxi = 0
and ψiψj + ψjψi = 0. Hence the algebra XAn(C) is the polynomial algebra C[x1, . . . , xn]
and ΞAn(C) is the Grassmann algebra with Grassmann variables ψ1, . . . , ψn.

The (An, Am)-Manin matrices are n×m matrices M over an algebra R satisfying the relation

AnM
(1)M (2)Sm = 0. (3.4)

These matrices were called Manin matrices in [4]. In this subsection we call them just Manin
matrices if there is no confusion with the general notion of Manin matrix.

To write the matrix relation (3.4) in terms of entries one can substitute P ijkl = δilδ
j
k to the

formula (2.17) written in entries. We obtain the following system of commutation relations:[
M i
k,M

j
k

]
= 0, i < j, (3.5)[

M i
k,M

j
l

]
+
[
M i
l ,M

j
k

]
= 0, i < j, k < l, (3.6)

(the relations (3.5) is in fact the relations (3.6) for k = l). The commutation relations (3.5) mean
that any two entries of the same column commute. The formula (3.6) is so-called cross-relation
for the 2× 2 submatrix with rows i, j and columns k, l.

For example, consider a 2× 2 matrix

M =

(
a b
c d

)
. (3.7)

It is a Manin matrix iff its entries a, b, c, d ∈ R satisfy

[a, c] = 0, [b, d] = 0, [a, d] + [b, c] = 0. (3.8)

In the case n > 2 an n ×m matrix is a Manin matrix iff any 2 × 2 submatrix of this matrix is
a Manin matrix. In particular, any matrix over a commutative algebra is a Manin matrix.

The notion of (An, Am)-Manin matrix is such a non-commutative generalisation of matrix
that the most of the properties of the usual matrices are inherited (with some generalisation
of the notion of determinant). These properties are described in the works [4] and [5] in details.

It is clear, that a Manin matrix keeps to be a Manin matrix after the following operations:
taking a submatrix, permutation of rows or columns, doubling of a row or a column. In other
words, if M =

(
M i
j

)
is an n×m Manin matrix and i1, . . . , ik ∈ {1, . . . , n}, j1, . . . , jl ∈ {1, . . . ,m}

then the new k× l matrix N with the entries N s
t = M is

jt
is also a Manin matrix. Note that in the

case of a permutation this fact follows from Proposition 2.22 and (σ ⊗ σ)An
(
σ−1 ⊗ σ−1

)
= An

∀σ ∈ Sn.

Let us recall one more important fact on the Manin matrices [5].

Proposition 3.1. A matrix M ∈ R ⊗ Hom(Cm,Cn) has pairwise commuting entries (i.e.,
[M i

j ,M
k
l ] = 0 for any i, j, k, l) iff M and its transposed M> are both Manin matrices.

Proof. If all entries of M commute with each other then M as well as M> is a Manin matrix.
In the converse direction it is enough to prove the statement for the case of 2× 2 matrix, since
any two entries are contained in some 2 × 2 submatrix (if n = 1 or m = 1 there are no 2 × 2
submatrices – in this case the commutativity of entries follows from the relations (3.5) for M>

or M respectively).

The condition that the matrix M> = ( a cb d ) is a Manin matrix is equivalent to the relations
[a, b] = 0, [c, d] = 0, [a, d] − [b, c] = 0. Together with the relations (3.8) they imply that all the
entries a, b, c, d pairwise commute. �
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For a general Manin matrix the entries from different columns do not commute, so the notion
of determinant should be generalised in a special way. It turns out that the natural generalisation
is so-called column determinant. For a n× n matrix M over an algebra (or a ring) R it is defi-
ned as

detM = detcolM =
∑
σ∈Sn

(−1)σM
σ(1)
1 M

σ(2)
2 · · ·Mσ(n)

n ,

where (−1)σ is the sign of the permutation σ. This is the usual expression for the determinant,
but with the specified order of entries in each term: they are ordered in accordance with the
order of columns. If M is a Manin matrix then the order of columns can be chosen in a different
way and this leads to the same result (see [4, 5]):∑

σ∈Sn

(−1)σM
σ(i1)
i1

M
σ(i2)
i2

· · ·Mσ(in)
in

= detcolM,

(
1 2 · · · n
i1 i2 · · · in

)
∈ Sn. (3.9)

However, we can not take different order for different terms. For example, the determinant
of the 2 × 2 matrix (3.7) is det(M) = ad − cb. If it is a Manin matrix then due to the last
relation (3.8) we have det(M) = da − bc, but in general det(M) does not equal to ad − bc or
to da− cb even for a Manin matrix.

An important property of the column determinant of Manin matrices is its behaviour under
the permutation of rows and columns. The determinant of an n × n Manin matrix M changes
the sign under the transposition of two columns or rows. In the notations of Section 2.4 we have
det(τM) = (−1)τ detM and det(τM) = (−1)τ detM for any τ ∈ Sn. The first formula is de-
duced as

det(τM) =
∑
σ∈Sn

(−1)σM
τ−1σ(1)
1 · · ·M τ−1σ(n)

n = (−1)τ detM,

where we made the substitution σ → τσ and used (−1)τσ = (−1)τ (−1)σ. The second formula
follows from (3.9) in a similar way.

Since any submatrix of a Manin matrix M is also a Manin matrix, it is natural to define
k × k minors of M to be the column determinants of k × k submatrices. We say that a Manin
matrix has rank r if there is non-zero r × r minor and all the k × k minors vanish for all k > r.
In fact, it is enough to check it for k = r + 1 (see [4, 5]). Many important properties of the
Manin matrices are formulated in terms of column determinants and minors. In particular, one
can construct “spectral invariants” of square Manin matrices [4, 5].

The theory of Manin matrices are applies to the Yangians Y (gln), affine Lie algebras ĝln,
Heisenberg gln XXX-chain, Gaudin gln model [4], to elliptic versions of these models [34] etc.

Let us, for example, present the connection of the notion of An-Manin matrix with the
Yangian Y (gln). Consider the rational R-matrix R(u) = u−Pn. The Yangian Y (gln) is defined

as the algebra generated by t
(r)
ij , i, j = 1, . . . , n, r ∈ Z>1, with the commutation relation

R(u− v)T (1)(u)T (2)(v) = T (2)(v)T (1)(u)R(u− v), (3.10)

where u and v are formal variables and T (u) = 1 +
∑∞

r=1

 t
(r)
11 ···t

(r)
1n

...
. . .

...
t
(r)
n1 ···t

(r)
nn

u−r. Note that for u = 1

we have R(u) = 2An. Substituting v = u − 1 to (3.10) and multiplying by Sn = 1 − An
from the right we obtain AnT

(1)(u)T (2)(u − 1)Sn = 0 (we understand (u − 1)−r as a series

in u−1). This relation means that the matrix M = T (u)e−
∂
∂u is a Manin matrix over the algebra

R = Y (gln)
[[
u−1

]][
e−

∂
∂u

]
. See details in [4].
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The column determinant of M = T (u)e−
∂
∂u is related with the notion of quantum determinant

important in the theory of Yangians. Namely, we have detM = (qdetT (u)) e−n
∂
∂u , where

qdetT (u) =
∑
σ∈Sn

(−1)σT
σ(1)
1 (u)T

σ(2)
2 (u− 1) · · ·T σ(n)

n (u− n+ 1)

is the quantum determinant. The coefficients of the series qdetT (u) ∈ Y (gln)
[[
u−1

]]
generate

the centre of the Yangian Y (gln) (see [29]).
Now let us consider (An, 0)-Manin matrices M =

(
M i
j

)
, where 0 ∈ End(Cm⊗Cm). They are

defined by the relation M i
kM

j
l = M j

kM
i
l , where i, j = 1, . . . , n, k, l = 1 . . . ,m. The 2× 2 matrix

of the form (3.7) is an (A2, 0)-Manin matrix iff ad = cb, bc = da, ac = ca, bd = db. These are
the relations (3.8) plus the condition detM = 0. Again one can see that an n ×m matrix is
an (An, 0)-Manin matrix iff any 2×2 submatrix of this matrix is an (A2, 0)-Manin matrix. Thus
the set of an (An, 0)-Manin matrices over R coincides with the set of rank 6 1 Manin matrices
over R of the size n×m.

Recall that the formula (3.9) is valid for all matrices satisfying the cross-relations (3.6). This
is more general case than the case of Manin matrices. To describe it we first consider a 2 × 2
matrix of the form (3.7) and the “transformation” (2.19), that is

φ1 = aψ1 + cψ2, φ2 = bψ1 + dψ2.

Then we have φ1φ2 + φ2φ1 = (ab+ ba)ψ2
1 + (ad+ bc)ψ1ψ2 + (da+ cb)ψ2ψ1 + (cd+ dc)ψ2

2. The
relation [a, d] + [b, c] = 0 follows from the relations ψ1ψ2 + ψ2ψ1 = 0 and φ1φ2 + φ2φ1 = 0
only. Hence by refusing the relations φ2

i = 0 we have only the cross-relations (3.6) without
commutation in columns (3.5). If we refuse from ψ2

i = 0, then we obtain the anti-commutation
in rows:

M i
kM

i
l +M i

lM
i
k = 0, k < l. (3.11)

Let P̃n ∈ End(Cn ⊗ Cn) be the matrix with the entries
(
P̃n
)ij
kl

= (−1)δijδilδ
j
k = (−1)δklδilδ

j
k.

Then the commutation relations ψiψj + ψjψi = 0, i < j (without ψ2
i = 0) can be written as

(Ψ⊗Ψ)
(
1+P̃n

)
= 0, so these commutation relations define the quadratic algebra Ξ

Ãn
(C), where

Ãn = 1
2

(
1− P̃n

)
. Let us conclude.

� The matrix M is an
(
An, Ãn

)
-Manin matrix iff it satisfies (3.6).

� The matrix M is an
(
Ãn, Ãn

)
-Manin matrix iff it satisfies (3.6) and (3.11).

� The matrix M is an
(
Ãn, An

)
-Manin matrix iff it satisfies (3.5), (3.6) and (3.11).

The notion of Manin matrix can be generalized to the infinite-dimensional case. Denote for
any vector space V the operator PV ∈ End(V ⊗ V ) by

PV (v ⊗ v′) = v′ ⊗ v, v, v′ ∈ V.

Let AV = 1−PV
2 and SV = 1−AV = 1+PV

2 be corresponding anti-symmetrizer and symmetrizer.
Let us call an (AV , AW )-Manin operator M ∈ R ⊗ Hom(V,W ) just Manin operator (over R,
from V to W ).

Consider the case of the space of polynomials: V = W = C[u]. Its tensor square can be
identified with the space of polynomials of two variables: V ⊗ V = C[u1, u2]. In terms of this
identification the operator PC[u] can be interpreted as the operator permuting the variables u1

and u2, we denote it by Pu1,u2 . Let (vi)
∞
i=1 be a basis of the space C[u]. For example, one can take

vi = ui−1. Acting by the operator M to the basis we obtain Mvj =
∑

iM
i
jvi (the sum is finite),
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so we have infinite-dimensional matrix
(
M i
j

)
with the column finiteness condition. The relation

AVM
(1)M (2)SV = 0 in the basis (vi) takes the form (3.5), (3.6), where i, j, k, l = 1, . . . ,∞. This

means that M is a Manin operator iff any 2× 2 submatrix of
(
M i
j

)
is a Manin matrix. The set

of Manin operators includes all the n×m Manin matrices as well as (An, AC[u])- and (AC[u], Am)-
Manin operators (all over a fixed R).

To generalise the consideration to the case of any infinite matrix
(
M i
j

)
without any finiteness

condition we should suppose that the operator M belongs to the completion of R⊗ End
(
C[u]

)
consisting of the formal infinite sums

∑∞
i,j=1M

i
jEi

j , where M i
j ∈ R and Ei

jvk = δjkvi. This

completion is the space Hom
(
C[u],R[[u]]

)
.

3.2 q-Manin matrices

Let q be a non-zero complex number. Consider the q-commuting variables x1, . . . , xn, that is
xjxi = qxixj for i < j. By means of the notation

sgn(k) =


+1, if k > 0,

0, if k = 0,

−1, if k < 0,

one can write these relations as

xixj = qsgn(i−j)xjxi, i, j = 1, . . . , n. (3.12)

In the matrix form they have the form (X ⊗X) = P qn(X ⊗X), where X =
∑n

i=1 x
iei and P qn ∈

End(Cn ⊗ Cn) is the q-permutation operator acting as P qn(ei ⊗ ej) = q− sgn(i−j)ej ⊗ ei, that is

P qn =
n∑

i,j=1

qsgn(i−j)Ei
j ⊗ Ej i.

Its entries are
(
P qn
)ij
kl

= qsgn(i−j)δilδ
j
k = qsgn(l−k)δilδ

j
k. It also satisfies the braid relation(

P qn
)(23)(

P qn
)(12)(

P qn
)(23)

=
(
P qn
)(12)(

P qn
)(23)(

P qn
)(12)

.

Since (P qn)2 = 1 the matrices

Aqn =
1

2

(
1− P qn

)
, Sqn =

1

2

(
1 + P qn

)
= 1−Aqn

are idempotents. The corresponding algebra XAqn(C) is generated by xi with the relations (3.12).
It can be interpreted as an “algebra of functions” on the n-dimensional quantum space Cnq . The
algebra ΞAqn(C) is the q-Grassmann algebra generated by ψ1, . . . , ψn with the relations

ψiψj = −q− sgn(i−j)ψjψi, i, j = 1, . . . , n.

The matrix M ∈ R⊗Hom(Cm,Cn) is an
(
Aqn, A

q
m

)
-Manin matrix iff the following equivalent

relations hold

AqnM
(1)M (2)Sqm = 0,(

1− P qn
)
M (1)M (2)

(
1 + P qm

)
= 0,

AqnM
(1)M (2) = AqnM

(1)M (2)Aqm,

M (1)M (2)Sqm = SqnM
(1)M (2)Sqm. (3.13)
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In terms of entries these relations have the form

M i
kM

j
k = q−1M j

kM
i
k, i < j,[

M i
k,M

j
l

]
+ qM i

lM
j
k − q

−1M j
kM

i
l = 0, i < j, k < l. (3.14)

The (Aqn, A
q
m)-Manin matrices are called q-Manin matrices. The Manin matrices considered

in Section 3.1 are q-Manin matrices for q = 1. The properties of the Manin matrices described
in [4, 5] were generalised to the q-case in the work [6].

A natural generalisation of the column determinant to the case of q-Manin matrices is q-
determinant defined for a matrix M ∈ R⊗ End(Cn) as

detq(M) =
∑
σ∈Sn

(−q)− inv(σ)M
σ(1)
1 M

σ(2)
2 · · ·Mσ(n)

n , (3.15)

where inv(σ) is the number of inversions: it is equal to the number of pairs (i, j) such that
1 6 i < j 6 n and σ(i) > σ(j). It coincides with the length of σ defined as the minimal l such
that σ can be presented as a product of l elementary transpositions σi = σi,i+1 (see Appendix A
for details).

For the 2× 2 matrix M =
(
a b
c d

)
the q-determinant has the from detqM = ad− q−1cb. This

matrix M is a q-Manin matrix iff

ca = qac, db = qbd, ad− da+ qbc− q−1cb = 0.

In this case the q-determinant can be rewritten as detqM = da− qbc.
A general n ×m matrix is a q-Manin matrix iff any 2 × 2 submatrix of this matrix is a q-

Manin matrix (n > 2). For an n×n q-Manin matrix we can change the order of columns in the
expression of q-determinant in the following way [6]:∑

σ∈Sn

(−1)σM
σ(1)
τ(1)M

σ(2)
τ(2) · · ·M

σ(n)
τ(n) = (−q)− inv(τ) detqM, τ ∈ Sn. (3.16)

By changing τ by τ−1 in (3.16) and by taking into account inv(τ−1) = inv(τ) one can write this
formula in the form detq(τM) = (−q)− inv(τ) detqM . In contrast with the case of Section 3.1 the
q-determinant of the matrix τM obtained from an n×n q-Manin matrix by a permutation of rows
does not related with detqM (the proof done for the q = 1 case does not work since qinv(τσ) 6=
qinv(τ)qinv(σ)). Moreover, neither τM nor τM are q-Manin matrices in general. However they
are Manin matrices for another idempotents. Namely, by virtue of Proposition 2.22 they are(
(τ ⊗ τ)Aqn

(
τ−1 ⊗ τ−1

)
, Aqm

)
- and

(
Aqn, (τ ⊗ τ)Aqm

(
τ−1 ⊗ τ−1

))
-Manin matrices respectively

(see Section 3.3). As we will see in Section 6.1 the q-determinant is a natural operation for(
Aqn, B

)
-Manin matrices for any B, but not for

(
B,Aqm

)
-Manin matrices (the symmetry of the

q-determinant of an
(
Aqn, B

)
-Matrix with respect to permutation of columns depends on the

choice of the idempotent B).
Analogously to the case q = 1, the formula (3.16) is valid for any M ∈ R ⊗ End(Cn)

satisfying the cross-relations (3.14), that is for any
(
Aqn, Ã

q
n

)
-Manin matrix M , where Ãqn = 1−P̃ qn

2 ,(
P̃ qn
)ij
kl

= (−1)δijqsgn(i−j)δilδ
j
k, i, j, k, l = 1, . . . , n.

3.3 Multi-parametric case: (q̂, p̂)-Manin matrices

In Section 3.2 we introduced a q-deformation of the polynomial algebra C[x1, . . . , xn]. The
q-commutation of variables was defined by a unique parameter q. However we can consider
multi-parameter deformation [25]. One has n(n − 1)/2 deformation parameters: one for each
pair of variables.
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We will say that an n× n matrix q̂ = (qij) is parameter matrix iff it has entries qij ∈ C\{0}
satisfying the conditions

qij = q−1
ji , qii = 1.

A parameter matrix q̂ defines the commutation relations

xjxi = qijx
ixj ,

where i, j = 1, . . . , n are arbitrary or subjected to i < j. It gives the algebra XAq̂(C), where

Aq̂ =
1− Pq̂

2
, Sq̂ =

1 + Pq̂
2

, (Pq̂)
kl
ij = qijδ

k
j δ
l
i.

It is immediately checked that (Pq̂)
2 = 1 and that Pq̂ satisfies the braid relation

P
(23)
q̂ P

(12)
q̂ P

(23)
q̂ = P

(12)
q̂ P

(23)
q̂ P

(12)
q̂ .

The corresponding algebra ΞAq̂(C) is defined by the relations

ψjψi = −q−1
ij ψiψj . (3.17)

The independent relations are (3.17) for i < j and ψ2
i = 0.

Let p̂ = (pij) be an m ×m parameter matrix. An
(
Aq̂, Ap̂

)
-Manin matrix M is an n ×m

matrix over an algebra R satisfying

Ap̂M
(1)M (2)Sp̂ = 0.

In terms of entries this relation can be written as

M i
kM

j
k = qjiM

j
kM

i
k, (3.18)

M i
kM

j
l − qjipklM

j
lM

i
k + pklM

i
lM

j
k − qjiM

j
kM

i
l = 0. (3.19)

These conditions are empty for i = j and they do not change under i ↔ j or k ↔ l, hence
it is enough to check (3.18) for i < j and (3.19) for i < j, k < l (the relation (3.18) is the
relation (3.19) for k = l).

Definition 3.2. A matrix M is called a (q̂, p̂)-Manin matrix satisfying the relations (3.18),
(3.19). A square matrix M satisfying these relations is called q̂-Manin matrix if q̂ = p̂.

Now let us consider the permutation of rows and columns of such matrices.

Proposition 3.3. Let M be an n×m matrix over R, σ ∈ Sn and τ ∈ Sm. Then the following
statements are equivalent:

� M is an (q̂, p̂)-Manin matrix.

�
σM = σM is a

(
σq̂σ−1, p̂

)
-Manin matrix.

� τM = Mτ−1 is a
(
q̂, τ p̂τ−1

)
-Manin matrix.

The matrix σq̂σ−1 has entries(
σq̂σ−1

)
ij

= qσ−1(i),σ−1(j). (3.20)
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Proof. It follows from Proposition 2.22 and the formula

(σ ⊗ σ)Pq̂
(
σ−1 ⊗ σ−1

)
= Pσq̂σ−1 , (3.21)

which in turn is deduced by direct calculation. �

Remark 3.4. Proposition does not work for any operators σ ∈ GL(n,C) and τ ∈ GL(m,C)
since the formula (3.21) is not valid for general σ ∈ GL(n,C).

Let us consider more general situation: one can apply the following operations on a mat-
rix M : taking a submatrix, permutation of rows or columns, doubling of a row or a column.
The result of a sequence of such operations is a new matrix N = MIJ considered below.

Theorem 3.5. Let I = (i1, . . . , ik) and J = (j1, . . . , jl), where 1 6 is 6 n and 1 6 jt 6 m
for any s = 1, . . . , k and t = 1, . . . , l. Let M =

(
M i
j

)
be an n × m matrix over R and MIJ

be k× l matrix with entries (MIJ)st = M is
jt

. Let q̂ and p̂ be n×n and m×m parameter matrices
and let p̂II and q̂JJ be k × k and l × l matrices with entries (q̂II)su = qisiu, s, u = 1, . . . , k,
(p̂JJ)tv = qjtjv , t, v = 1, . . . , l. They are also parameter matrices. If M is a (q̂, p̂)-Manin matrix
then MIJ is a (q̂II , p̂JJ)-Manin matrix.

Proof. By substituting i → is, j → iu, k → jt, l → jv to (3.19) we obtain the relations (3.19)
for the matrix MIJ with coefficients defined by the parameter matrices q̂II and p̂JJ . �

For a non-zero complex number q let us denote by q[n] the n×n parameter matrix with entries(
q[n]
)
ij

= qsgn(j−i). Then Pq[n] = P qn and the
(
q[n], q[m]

)
-Manin matrices are exactly the n×m q-

Manin matrices. A permutation of rows or columns of a such matrix M gives a
(
σq[n]σ−1, q[m]

)
-

or
(
q[n], τq[m]τ−1

)
-Manin matrix respectively. In general these are not q-Manin matrices any

more (see Section 3.2), but they are related with the quadratic algebras isomorphic to XAqn(C)
and XAqm(C), so that they have the same properties permuted in some sense. For instance,
properties of the q-determinant of σM are similar to ones of the q-determinant of a q-Manin
matrix.

Let x1, . . . , xn be the generators of XAqn(C). Then the n× n diagonal matrix

M =


x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xn

 (3.22)

is an (Aqn, An)-Manin matrix, i.e., a
(
q[n], 1[n]

)
-Manin matrix. More generally, for any p ∈ C\{0}

the matrix (3.22) is a
(
(pq)[n], p[n]

)
-Manin matrix.

An analogue of the q-determinant for a (q̂, p̂)-Manin matrix depends on q̂, but not on p̂.
We call it q̂-determinant, it is defined for an n× n matrix M as follows [25]:

detq̂(M) =
∑
σ∈Sn

(−1)σ
∏
i<j

σ(i)>σ(j)

q−1
ij ·M

σ−1(1)
1 M

σ−1(2)
2 · · ·Mσ−1(n)

n

=
∑
σ∈Sn

(−1)σ
∏
i<j

σ−1(i)>σ−1(j)

q−1
ij ·M

σ(1)
1 M

σ(2)
2 · · ·Mσ(n)

n . (3.23)

The products in this formula runs over all inversions of the permutations σ and σ−1 respectively.
Hence for q̂ = q[n] the formula (3.23) gives the q-determinant (3.15). The q̂-determinant is
a “generalised” determinant for the square (q̂, p̂)-Manin matrices. In particular, q-determinant
is a “generalised” determinant for the square

(
q[n], p̂

)
-Manin matrices.
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Lemma 3.6. Let ψ1, . . . , ψn satisfy (3.17). Then

ψi1ψi2 · · ·ψin = 0, if ik = il for some k 6= l; (3.24)

ψσ(1)ψσ(2) · · ·ψσ(n) = (−1)σψ1ψ2 · · ·ψn
∏
i<j

σ−1(i)>σ−1(j)

q−1
ij , for any σ ∈ Sn. (3.25)

Proof. The relations (3.17) allows us to permute the factors in the left hand side of (3.24).
In particular, one can place the factors ψik and ψil to neighbour sites. It ik = il then ψikψil = 0.

Let us rewrite the formula (3.25) in terms of Appendix A. Consider the root system for
the reflection group Sn. Denote qα = qij for the root α = ei − ej . Then due to (A.2) the
formula (3.25) takes the form

ψσ(1) · · ·ψσ(n) = (−1)σψ1 · · ·ψn
∏

α∈R+

σ−1

q−1
α . (3.26)

We prove the formula (3.26) by using induction on the length ` = `(σ). Let σ = σi1 · · ·σi`−1
σi`

be a reduced expression and τ = σi1 · · ·σi`−1
. Then ψσ(1) · · ·ψσ(n) = ψτσi` (1) · · ·ψτσi` (n) =

−q−1
τ(αi` )

ψτ(1) · · ·ψτ(n). Note that `(τ) = ` − 1. From (A.4) we obtain R+
σ−1 = R+

τ−1 t {τ(αi`)}.
Together with the induction assumption this implies the formula (3.26). �

Lemma 3.6 implies that for any n× n matrix M such that [M i
j , ψk] = 0 we have

φ1φ2 · · ·φn = detq̂(M)ψ1ψ2 · · ·ψn, (3.27)

where φj =
∑n

i=1 ψiM
i
j . A permutation of rows or columns corresponds to a permutation of

ψ1, . . . , ψn or φ1, . . . , φn respectively:

φj =
n∑
i=1

(τM)ijψτ−1(i), φτ−1(j) =
n∑
i=1

(τM)ijψi. (3.28)

Theorem 3.7. Let q̂ = (qij) and p̂ = (pij) be n × n parameter matrices and τ ∈ Sn. Let M
be a (q̂, p̂)-Manin matrix over R. Then the “generalised” determinants of the (τ q̂τ−1, p̂)-Manin
matrix τM and of the (q̂, τ p̂τ−1)-Manin matrix τM have the form

detτ q̂τ−1(τM) = (−1)τ detq̂(M)
∏
i<j

τ(i)>τ(j)

qij , (3.29)

detq̂(τM) = (−1)τ detq̂(M)
∏
i<j

τ(i)>τ(j)

p−1
ij . (3.30)

More generally, the formula (3.29) is valid for any n× n matrix M .

Proof. Let ψi be generators of the algebra ΞAq̂(C). Then Proposition 2.17 implies that the

elements φj =
∑n

i=1M
i
jψi ∈ ΞAq̂(R) satisfy the commutation relations (3.17) with the parameter

matrix p̂. Due to the formula (3.20) the elements ψ′i = ψτ−1(i) and φ′j = φτ−1(j) satisfy the

commutation relations (3.17) with the parameter matrices σq̂σ−1 and σp̂σ−1 respectively. From
the formulae (3.27) and (3.28) we obtain

φ1 · · ·φn = ψ′1 · · ·ψ′n detτ q̂τ−1(τM), φ′1 · · ·φ′n = ψ1 · · ·ψn detq̂(τM). (3.31)
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The formula (3.25) for φj and ψi with σ = τ−1 takes the form

ψ′1 · · ·ψ′n = (−1)τψ1 · · ·ψn
∏
i<j

τ(i)>τ(j)

q−1
ij , φ′1 · · ·φ′n = (−1)τφ1 · · ·φn

∏
i<j

τ(i)>τ(j)

p−1
ij .

Substitution of these formulae and the formula (3.27) to (3.31) gives (3.29) and (3.30). We did
not use the commutation relations of φj for the proof of the formula (3.29), so it is valid for any
matrix M . �

Let us consider the case when two rows or two columns coincide. We write some conditions
leading to vanishing of the q̂-determinant.

Corollary 3.8. Let M be a k × k matrix over R. Let q̂ and p̂ be k × k parameter matrices.

� Let i 6= j. If M i
l = M j

l and qil = qjl ∀ l (in particular, qij = 1) then detq̂(M) = 0.

� If two columns of a (q̂, p̂)-Manin matrix M coincide (that is M l
i = M l

j ∀ l for some i 6= j)
then detq̂(M) = 0.

Proof. Let σij ∈ Sk be the transposition of i and j. Suppose i < j (without loss of generality).
The conditions qil = qjl imply σij q̂σij = q̂ and

∏
s<t

σij(s)>σij(t)

qst = qij

j−1∏
s=i+1

(qsjqis) = 1,

so the substitution τ = σij to (3.29) gives detq̂(M) = −detq̂(M). For generic p̂ one can similarly
prove the second statement by using the formula (3.30) with τ = σij . For arbitrary p̂ it follows
from the relations (3.27) and φiφj = φ2

i = 0. �

Corollary 3.9. Let M be an n×m matrix over R. Let q̂ and p̂ be n×n and m×m parameter
matrices. Let I = (i1, . . . , ik) and J = (j1, . . . , jk), where 1 6 is 6 n and 1 6 js 6 m for all
s = 1, . . . , k. Let τ ∈ Sk, K = (iτ(1), . . . , iτ(k)) and L = (jτ(1), . . . , jτ(k)).

� We have

detq̂KK (MKJ) = (−1)τ detq̂II (MIJ)
∏
s<t

τ−1(s)>τ−1(t)

qisit .

� If is = it for some s 6= t then detq̂II (MIJ) = 0.

� If M is a (q̂, p̂)-Manin matrix then

detq̂II (MIL) = (−1)τ detq̂II (MIJ)
∏
s<t

τ−1(s)>τ−1(t)

p−1
jsjt

.

� If M is a (q̂, p̂)-Manin matrix and js = jt for some s 6= t then detq̂II (MIJ) = 0.

Proof. Note that τ−1q̂IIτ = q̂KK , MKJ = τ−1

(MIJ) and MIL = τ−1(MIJ), so the statements
follow from Theorems 3.5, 3.7 and Corollary 3.8. �
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Remark 3.10. The formula (3.25) follows from ψjψi = −q−1
ij ψiψj , i < j. As consequence, we

did not need the relations φ2
i = 0 to prove the formula (3.30). The relations ψjψi = −p−1

ij ψiψj ,

i < j, define the algebra Ξ
Ãp̂

(C), where Ãp̂ =
1−P̃p̂

2 and
(
P̃p̂
)kl
ij

= (−1)δijpijδ
k
j δ
l
i. Hence the for-

mula (3.30) is valid for any
(
Aq̂, Ãp̂

)
-Manin matrix M . As consequence, the second statement

of Corollary 3.8 is valid for these matrices if p̂ is generic. However they are not valid for some p̂,
so it is necessary to require M to be a (q̂, p̂)-Manin matrix. Moreover the third and forth state-
ments of Corollary 3.9 are not valid for

(
Aq̂, Ãp̂

)
-Manin matrices even if p̂ is generic since we

used Theorem 3.5. For example, let M =
(
a b
c d

)
, I = (1, 2), J = (1, 1). Then the q-determinant

of the matrix MIJ = ( a ac c ) is detq(MIJ) = ac − q−1ca. It vanishes if M is a
(
q[2], p[2]

)
-Manin

matrix, but the cross relation ad− q−1pda+ pbc− q−1cb = 0 is not enough for detq(MIJ) = 0.
The cross relation for the matrix ( a ac c ) itself gives ac − qp−1ca + pac − q−1ca = 0. This imply
detq(M) = 0 unless p = −1.

Remark 3.11. Let n = k + l, qij = −1 for i, j = k + 1, . . . , n, i 6= j, and qij = 1 for other i, j.
By factorizing the algebra XAq̂(C) over the relations x2

i = 0, i = k + 1, . . . , n, and introducing
a Z2-grading we obtain the free super-commutative quadratic algebra with k even and l odd
generators. However the approach of Section 2 applied to this algebra does not give super-Manin
matrices considered in [25, 30]. The reason is that we suppose commutativity of xi with entries
of M , which should be replaced by super-commutativity in the super-case. We will consider
Manin matrices for quadratic super-algebras in future works.

3.4 A 4-parametric quadratic algebra

Consider the algebra with generators x, y, z and relations

axy − a−1yx = κz2, byz − b−1zy = κx2, czx− c−1xz = κy2, (3.32)

where a, b, c ∈ C\{0}, κ ∈ C.
Let x1 = x, x2 = y, x3 = z, a12 = a, a23 = b, a31 = c, aij = a−1

ji , aii = 1. Let εijk be the
totally antisymmetric tensor such that ε123 = 1. Then (3.32) is equivalent to the system

aijx
ixj − ajixjxi = κ

3∑
k=1

εijkx
kxk, i, j = 1, 2, 3. (3.33)

These relations can be written as xixj =
∑3

k,l=1 P
ij
klx

kxl, where

P ijkl = a2
jiδ

j
kδ
i
l + κajiδklεijk. (3.34)

The operator P ∈ End
(
C3 ⊗ C3

)
with the entries (3.34) satisfies P 2 = 1. Hence the operator

Aa,b,cκ := 1−P
2 is an idempotent and the relations (3.32) define the algebra X

Aa,b,cκ
(C). By setting

κ = 0 we obtain the quadratic algebra XAq̂(C) with the parameters qij = a2
ij , so the alge-

bra X
Aa,b,cκ

(C) is a generalisation of the 3-dimensional case of the algebra XAq̂(C) considered

in Section 3.3 (this is not a κ-deformation in general, see Remark 6.5).

Let us consider some examples of Manin matrices by taking A = Aa,b,cκ as one of the idem-
potents. A 2× 3 matrix M =

( α1 α2 α3
β1 β2 β3

)
is an

(
Aq2, A

a,b,c
κ

)
-Manin matrix iff

q(ajiαiβj + aijαjβi) = ajiβiαj + aijβjαi, (3.35)

q(aijαkβk + καiβj) = aijβkαk + κβiαj (3.36)

for all cyclic permutation (i, j, k) of (1, 2, 3). The relation (3.35) is exactly the cross rela-
tion (3.19) for the parameters qij = qsgn(j−i) and pij = a2

ij , while the relation (3.36) is a gener-
alisation of the q-commutation (3.18).
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A 3 × 2 matrix M =

(
α1 β1

α2 β2

α3 β3

)
is an

(
Aa,b,cκ , Aq2

)
-Manin matrix iff the relations (3.33) are

satisfied by the substitutions xi = αi and xi = βi and

aij
(
αiβj + qβiαj

)
− aji

(
αjβi + qβjαi

)
= κ

(
αkβk + qβkαk

)
for all cyclic permutations (i, j, k) of (1, 2, 3).

4 Lax operators

Lax operators are different square matrices and endomorphisms of vector spaces arisen in the
theories of integrable systems and quantum groups. We will consider Lax operators satisfying
RLL-relations with some R-matrices (solutions of the Yang–Baxter equation). Different R-
matrices give different types of Lax operators. Since many quantum groups can be defined by
RLL-relations the Lax operators of a certain type are related with the representation theory
of the corresponding quantum group. Here we consider connections between Manin matrices
associated with some quadratic algebras and the Lax operators associated with the quantum
groups Uq(gln), Y (gln). Notice also that a connection between the q-Manin matrices and Lax

operators associated the affine quantum group Uq
(
ĝln
)

was described in [6].

4.1 Lax operators of Uq(gln) type and q-Manin matrices

A relationship between Lax operator and q-Manin matrices was first described by Manin, see [24].
We investigate this relationship by applying a decomposition of the corresponding R-matrix.

Let us first write the relations for a transposed q-Manin matrix. Recall that the matrices Pn
defined by (3.1) permute the factors Hom(Cm,Cn)⊗Hom(Cm,Cn) in the following way:

PnTPm = T (21), PnM
(1)N (2)Pm = M (2)N (1), (4.1)

where T ∈ R⊗Hom(Cm ⊗ Cm,Cn ⊗ Cn), M,N ∈ R⊗Hom(Cm,Cn). Let us note that(
P qn
)(21)

= P q
−1

n ,
(
Aqn
)(21)

= Aq
−1

n ,
(
Sqn
)(21)

= Sq
−1

n . (4.2)

Note also that transposition gives the same:(
P qn
)>

= P q
−1

n ,
(
Aqn
)>

= Aq
−1

n ,
(
Sqn
)>

= Sq
−1

n . (4.3)

Lemma 4.1. Let M ∈ R⊗ Hom(Cm,Cn). The transposed matrix M> is a q-Manin matrix iff
the matrix M satisfies one of the following equivalent relations:

Sq
−1

n M (1)M (2)Aq
−1

m = 0, (4.4)

SqnM
(2)M (1)Aqm = 0. (4.5)

Proof. The relation (3.13) for the m×n matrix M> has the form Aqm
(
M>

)(1)(
M>

)(2)
Sqn = 0.

If we transpose the both hand sides and take into account
(
M (1)M (2)

)>
=
(
M>

)(1)(
M>

)(2)

and (4.3) we obtain (4.4). Due to (4.2) the permutation of tensor factors yields (4.5). �

Suppose that q2 6= −1. Consider the R-matrix

Rq = Rqn = q−1
n∑
i=1

Ei
i ⊗ Eii +

∑
i 6=j

Ei
i ⊗ Ejj +

(
q−1 − q

)∑
i>j

Ei
j ⊗ Ej i.
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It satisfies the Yang–Baxter equation

(Rq)(12)(Rq)(13)(Rq)(23) = (Rq)(23)(Rq)(13)(Rq)(12). (4.6)

A Lax operator of Uq(gln) type is an n×n matrix L ∈ R⊗End(Cn) satisfying the RLL-relation

RqL(1)L(2) = L(2)L(1)Rq.

More generally, consider an n×m matrix L ∈ R⊗Hom(Cm,Cn) satisfying

RqnL
(1)L(2) = L(2)L(1)Rqm. (4.7)

Remark 4.2. The commutation relations for the quantum group Uq(gln) can be written as

three matrix relations RqnL
(1)
± L

(2)
± = L

(2)
± L

(1)
± Rqn, RqnL

(1)
+ L

(2)
− = L

(2)
− L

(1)
+ Rqn for some matrices

L+, L− ∈ Uq(gln)⊗ End(Cn) [9, 33].

By multiplying the relation (4.7) by Pn from the left and by taking into account (4.1) we
obtain the equivalent relation

R̂qnL
(1)L(2) = L(1)L(2)R̂qn, (4.8)

where

R̂q = R̂qn := PnR
q
n = q−1

n∑
i=1

Ei
i ⊗ Eii +

∑
i 6=j

Ei
j ⊗ Ej i +

(
q−1 − q

)∑
i<j

Ei
i ⊗ Ejj . (4.9)

The matrix (4.9) satisfies the braid relation(
R̂q
)(23)(

R̂q
)(12)(

R̂q
)(23)

=
(
R̂q
)(12)(

R̂q
)(23)(

R̂q
)(12)

, (4.10)

which is obtained by multiplying left and right hand sides of (3.3) and (4.6).

Lemma 4.3 ([33]). The matrix (4.9) can be decomposed as

R̂q = q−1R̂q+ − qR̂
q
−, (4.11)

where

R̂q+ = R̂qn+ :=
q + R̂qn
q + q−1

=

n∑
i=1

Ei
i ⊗ Eii+

1

q+q−1

∑
i 6=j

Ei
j ⊗ Ej i+

1

q+q−1

∑
i<j

(
q−1Ei

i ⊗ Ejj+qEjj ⊗ Eii
)
, (4.12)

R̂q− = R̂qn− :=
q−1 − R̂qn
q + q−1

= − 1

q + q−1

∑
i 6=j

Ei
j ⊗ Ej i +

1

q + q−1

∑
i<j

(
qEi

i ⊗ Ejj + q−1Ej
j ⊗ Eii

)
(4.13)

are orthogonal idempotents:

R̂q+ + R̂q− = 1,
(
R̂q+
)2

= R̂q+,
(
R̂q−
)2

= R̂q−, R̂q+R̂
q
− = R̂q−R̂

q
+ = 0. (4.14)

The matrix (4.9) satisfies the Hecke relation:(
R̂q − q−1

)(
R̂q + q

)
= 0. (4.15)
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Proof. The formulae (4.11), (4.12), (4.13) and the first of (4.14) are obtained directly from the

definitions of R̂q+ = q+R̂qn
q+q−1 and R̂q− = q−1−R̂qn

q+q−1 . Further

(
q + q−1

)2(
R̂q−
)2

=

(
−
∑
i 6=j

Ei
j ⊗ Ej i +

∑
i<j

(
qEi

i ⊗ Ejj + q−1Ej
j ⊗ Eii

))2

=
∑
i 6=j

Ei
i ⊗ Ejj −

∑
i<j

(
qEi

j ⊗ Ejj + q−1Ej
i ⊗ Eii

)
−
∑
i<j

(
q−1Ei

j ⊗ Ejj + qEj
i ⊗ Eii

)
+
∑
i<j

(
q2Ei

i ⊗ Ejj + q−2Ej
j ⊗ Eii

)
= −(q+q−1)

∑
i 6=j

Ei
j ⊗ Ej i +

∑
i<j

((
q2 + 1

)
Ei

i ⊗ Ejj+
(
1+q−2

)
Ej

j ⊗ Eii
)

=
(
q + q−1

)(
−
∑
i 6=j

Ei
j ⊗ Ej i +

∑
i<j

(
qEi

i ⊗ Ejj + q−1Ej
j ⊗ Eii

))
=
(
q + q−1

)2
R̂q−.

Thus we obtain
(
R̂q−
)2

= R̂q−. Other relations (4.14) follows from R̂q+ = 1− R̂q−. Then the Hecke

relation (4.15) is a consequence of R̂q−R̂
q
+ = 0. �

We see that

R̂qn− =
PnP

q
n − Pn

q + q−1
= − 2

q + q−1
PnA

q
n. (4.16)

This means that the idempotents Aqn and R̂qn− are left-equivalent. Thus an n × m q-Manin

matrix is exactly the Manin matrix for the pair
(
R̂qn−, R̂

q
m−
)
. Due to (4.2) we obtain

R̂qn− = − 2

q + q−1
Aq
−1

n Pn, (4.17)

so idempotent R̂qn− is right-equivalent to Aq
−1

n .

Note that the relation
(
R̂q−
)2

= R̂q− implies(
− 2

q + q−1

)2

PnA
q
nPnA

q
n = − 2

q + q−1
PnA

q
n,

so that

Aq
−1

n Aqn = −q + q−1

2
PnA

q
n, AqnA

q−1

n = −q + q−1

2
AqnPn. (4.18)

Theorem 4.4. Let L ∈ R⊗Hom(Cm,Cn), then the following statements are equivalent:

� L satisfies (4.7), that is RqnL(1)L(2) = L(2)L(1)Rqm.

� L satisfies (4.8), that is R̂qnL(1)L(2) = L(1)L(2)R̂qm.

� L satisfies the relation

R̂qn+L
(1)L(2) = L(1)L(2)R̂qm+. (4.19)

� L satisfies the relation

R̂qn−L
(1)L(2) = L(1)L(2)R̂qm−. (4.20)
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� L satisfies the relation

AqnL
(1)L(2) = L(2)L(1)Aqm. (4.21)

� L satisfies the relations

AqnL
(1)L(2)Sqm = 0, SqnL

(2)L(1)Aqm = 0. (4.22)

� The matrices L and L> are both q-Manin matrices.

Proof. By adding qL(1)L(2) to the both hand sides of (4.8) and by dividing by q + q−1 we
obtain the equivalent relation (4.19). The equivalence of the relations (4.8) and (4.20) is proved
similarly. Further, by using (4.16) one establishes the equivalence of (4.20) and (4.21). The
relations (4.22) are obtained from (4.21) by multiplying by Sqm from the right and by multiply-
ing by Sqn from the left respectively. Conversely, suppose that L satisfies the relations (4.22).
By virtue of the formulae (4.2) the second of the relations (4.22) can be written in the form

Sq
−1

n L(1)L(2)Aq
−1

m = 0. Thus we have

AqnL
(1)L(2)Aqm = AqnL

(1)L(2), L(1)L(2)Aq
−1

m = Aq
−1

n L(1)L(2)Aq
−1

m .

These relations implies

AqnL
(1)L(2)AqmA

q−1

m = AqnL
(1)L(2)Aq

−1

m = AqnA
q−1

n L(1)L(2)Aq
−1

m .

By using (4.18) one yields

AqnL
(1)L(2)AqmPm = AqnPnL

(1)L(2)Aq
−1

m .

Multiplication by Pm from the right gives

AqnL
(1)L(2)Aqm = AqnL

(2)L(1)Aqm.

By taking into account (4.22) we obtain (4.21) in the following way:

AqnL
(1)L(2) = AqnL

(1)L(2)
(
Aqm + Sqm

)
= AqnL

(1)L(2)Aqm = AqnL
(2)L(1)Aqm

=
(
Aqn + Sqn

)
L(2)L(1)Aqm = L(2)L(1)Aqm.

Finally, by virtue of Lemma 4.1 the relations (4.22) mean exactly that L and L> are q-Manin
matrices. �

Theorem 4.4 implies that a Lax operator of Uq(gln) type is a particular case of q-Manin
matrix. Some properties of these Lax operators can be generalised to the case of q-Manin
matrices. The q-determinant (3.15) arose as a natural generalisation of the determinant for the
Lax operators of Uq(gln) type, its properties were generalised for the case of q-Manin matrices
in [6].

Note that the fact that the RLL-relation (4.7) is equivalent to the claim that L and L> are
both q-Manin matrices can be proved in the same way as Proposition 3.1 (see [5, 24]). The
approach considered here explains this fact in terms of left equivalence of idempotents, which
will be applied in Section 6.2. This allows to explain why the Newton identities for the q-
Manin matrices proved in [6] differs from the Newton identities for L-operators and R̂qn−-Manin
matrices deduced in [15, 16, 17, 32].

Remark 4.5. Replacement of R̂qn by the idempotent Aqn in the equation (4.8) leads to another
relations for the entries of the matrix L. Though L is also a q-Manin matrix in this case, the
matrix L> is not. For n = 2 it is described in details in [12].

Decomposition of the operator R̂q into dual idempotents described in Lemma 4.3 gives a gene-
ral idea how to connect Lax operators with Manin matrices. It can be applied to some general
class of R-matrices.
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4.2 Lax operators of Yangian type as Manin operators

The decomposition method described in Section 4.1 is generalised here to the case of the rational
R-matrix. This gives an interpretation of the corresponding Lax matrices as a class of Manin
operators.

Let h : Y (gln) → R be a homomorphism from the Yangian to some algebra R. It is defined

by the image of the matrix T (u). It has the form L(u) = 1 +
∑∞

r=1

∑n
i,j=1 `

(r)
ij Ei

ju−r, where

`
(r)
ij = h(t

(r)
ij ), and satisfies the RLL-relation

R(u1 − u2)L(1)(u1)L(2)(u2) = L(2)(u2)L(1)(u1)R(u1 − u2), (4.23)

where R(u) = Rn(u) = u − Pn. Conversely, any n × n matrix over R which has this form and
satisfies (4.23) defines a homomorphism Y (gln)→ R. These are Lax operators of Yangian type.

We consider a more general matrix L(u) ∈ R((u−1)) ⊗ Hom(Cm,Cn) satisfying the RLL-
relation

Rn(u1 − u2)L(1)(u1)L(2)(u2) = L(2)(u2)L(1)(u1)Rm(u1 − u2). (4.24)

It could be the Lax operator of the gln XXX-model (which is an image of T (u) under some
representation of Y (gln) multiplied by a polynomial), the Lax operator of the n particle Toda
chain etc.

Note that the matrix R(u) satisfies the Yang–Baxter equation

R(12)(u12)R(13)(u13)R(23)(u23) = R(23)(u23)R(13)(u13)R(12)(u12) (4.25)

and

R(21)(u21)R(12)(u12) = 1− u2
12, (4.26)

where uij = ui − uj .
Define an operator on Cn

((
u−1

))⊗2
= Cn ⊗ Cn

((
u−1

1 , u−1
2

))
by the formula

R̂ = R̂n := Pu1,u2PnRn(u12) = Pu1,u2(u12Pn − 1), (4.27)

where Pu1,u2 is the operator permuting u1 and u2, that is (Pu1,u2f)(u1, u2) = f(u2, u1). The
relation (4.24) is equivalent to

R̂nL
(1)(u1)L(2)(u2) = L(1)(u1)L(2)(u2)R̂m. (4.28)

The relation (4.26) takes the from

R̂nR̂n = 1− u2
12. (4.29)

Remark 4.6. The operator (4.27) satisfies the braid relation

R̂(23)R̂(12)R̂(23) = R̂(12)R̂(23)R̂(12). (4.30)

It is obtained from the Yang–Baxter equation (4.25) via multiplication by Pu2,u3Pu1,u2Pu2,u3 =
Pu1,u2Pu2,u3Pu1,u2 and (3.3) from the left. Due to the formula (4.29) this operator gives a repre-
sentation of the group Sk for an arbitrary k after some renormalization. Namely, the normalised

rational R-matrix R(u) = (1 − u)−1R(u) satisfies R
(21)

(u21)R
(12)

(u12) = 1 and the same Yang
Baxter equation (4.25). Hence the operator R̃ = Pu1,u2PnR̃(u12) satisfies R̃2 = 1 and the braid

relation (4.30). This implies that the map σa 7→ R̃(a,a+1) gives a representation of Sk on the
space (Cn)⊗k(u1, . . . , uk).
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Proposition 4.7. The operators

R̂+ = R̂n+ :=
1− u12 + R̂n

2
, R̂− = R̂n− :=

1 + u12 − R̂n
2

are orthogonal idempotents dual to each other:

R̂+ + R̂− = 1,
(
R̂+
)2

= R̂+,
(
R̂−
)2

= R̂−, R̂+R̂− = R̂−R̂+ = 0. (4.31)

Proof. The first of (4.31) is obvious. By using (4.29) and R̂f(u1, u2) = f(u2, u1)R̂ we obtain(
R̂+ 1− u12

)(
R̂− 1− u12

)
= 0. This implies the rest of (4.31). �

Now consider

Ân := R̂n− ·
1

u12
=

1 + u−1
12 − Pu1,u2PnR(u12)u−1

12

2
=

1 + u−1
12 + Pu1,u2

(
u−1

12 − Pn
)

2
. (4.32)

Lemma 4.8. The operator Ân is an idempotent acting on the space Cn
[
u1, u

−1
1

]
⊗Cn

[
u2, u

−1
2

]
.

It preserves the subspaces Cn[u1]⊗ Cn[u2] and Cn
[
u−1

1

]
⊗ Cn

[
u−1

2

]
.

Proof. Let us rewrite (4.32) in the form

Ân =
1− Pu1,u2Pn

2
+

1

2(u1 − u2)
(1− Pu1,u2).

The first term is obviously preserves all tree spaces. Let us prove that so does the second
term. By acting by (1 − Pu1,u2) on a Laurent polynomial p(u1, u2) ∈ C

[
u1, u

−1
1 , u2, u

−1
2

]
we

obtain the Laurent polynomial q(u1, u2) = p(u1, u2) − p(u2, u1). Since q(u1, u1) = 0 we have
the formula q(u1, u2) = (u1 − u2)r(u1, u2) for some r(u1, u2) ∈ C

[
u1, u

−1
1 , u2, u

−1
2

]
. Hence

1
2(u1−u2)(1 − Pu1,u2)p(u1, u2) = 1

2r(u1, u2) is also a Laurent polynomial. If p(u1, u2) ∈ C[u1, u2]

then r(u1, u2) ∈ C[u1, u2]. Analogously, for a Laurent polynomial p(u1, u2) ∈ C
[
u−1

1 , u−1
2

]
we

obtain q(u1, u2) = p(u1, u2)− p(u2, u1) =
(
u−1

1 − u
−1
2

)
r(u1, u2) for some r(u1, u2) ∈ C

[
u−1

1 , u−1
2

]
and hence 1

2(u1−u2)(1− Pu1,u2)p(u1, u2) = −u−1
1 u−1

2
2 r(u1, u2) ∈ C

[
u−1

1 , u−1
2

]
.

By multiplying 2Ân = 1 + u−1
12 + u−1

12 R̂ with itself we obtain

4Â2
n =

(
1 + u−1

12

)2
+
(
1 + u−1

12

)
u−1

12 R̂+ u−1
12 R̂

(
1 + u−1

12

)
+ u−1

12 R̂u
−1
12 R̂

= 1 + 2u−1
12 + u−2

12 +
(
1 + u−1

12 + 1− u−1
12

)
u−1

12 R̂− u
−2
12 R̂

2.

By taking into account (4.29) we obtain 4Â2
n = 2 + 2u−1

12 + 2u−1
12 R̂ = 4Ân. �

The basis of Cn⊗Cn
[
u1, u

−1
1 , u2, u

−1
2

]
is
(
ei⊗ejuk1ul2

)
, where k, l ∈ Z, i, j = 1, . . . , n, and the

completion with respect to this basis is the space Cn⊗Cn
[[
u1, u

−1
1 , u2, u

−1
2

]]
. Since Ân preserves

the space Cn⊗Cn
[
u1, u

−1
1 , u2, u

−1
2

]
its matrix in this basis satisfies the column finiteness condition

introduced in Section 2.7. However it does not satisfies the row finiteness condition since it can
not be extended to the completed tensor product space Cn ⊗ Cn

[[
u1, u

−1
1 , u2, u

−1
2

]]
. Explicitly

these can be seen from the formulae

2Ân
(
ei ⊗ ejuk1ul2

)
= ei ⊗ ejuk1ul2 − ej ⊗ eiuk1ul2 + ei ⊗ ej

uk1u
l
2 − ul1uk2
u1 − u2

, (4.33)

uk1u
l
2 − ul1uk2
u1 − u2

=


−
∑l−1

m=k u
m
1 u

k+l−1−m
2 , k < l,

0, k = l,∑k−1
m=l u

m
1 u

k+l−1−m
2 , k > l.

(4.34)
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For instance, for any k > 1 the vector Ân
(
ei ⊗ ejuk1u

1−k
2

)
has a non-zero coefficient at the term

ei ⊗ eju0
1u

0
2.

Consider the topology of the space V = Cn
[
u, u−1

]
defined by the neighbourhoods of 0

of the form Vr =
{∑N

k=−r tku
k | N > −r, tk ∈ Cn

}
. The completion of V with respect to

this topology is the space Cn
((
u−1

))
. The corresponding completion of the space R ⊗ V is

R ⊗̂ V = R
((
u−1

))
⊗ Cn. The neighbourhoods Vr ⊗ Vs defines the topology of V ⊗ V which

gives the completion Cn ⊗ Cn
((
u−1

1 , u−1
2

))
. The operator Ân ∈ End(V ⊗ V ) is continuous

with respect to this topology. In particular, it means that Ân is extended to the completion
Cn ⊗ Cn

((
u−1

1 , u−1
2

))
.

Thus an
(
Ân, Âm

)
-Manin operator is an elementM of the space Hom

(
Cm
[[
u, u−1

]]
,R⊗̂V

)
=

Hom
(
Cm
[[
u, u−1

]]
,R
((
u−1

))
⊗ Cn

)
, satisfying

ÂnM
(1)M (2) = ÂnM

(1)M (2)Âm.

Note also that the operators ea(∂u1+∂u2 ) = ea∂u ⊗ ea∂u commute with Ân. Hence if M is an(
Ân, Âm

)
-Manin operator then ea∂uMeb∂u is also an

(
Ân, Âm

)
-Manin operator for any a, b ∈ C

(this follows from Proposition 2.22 generalised to the infinite-dimensional case).

Theorem 4.9. Let L(u) ∈ R
((
u−1

))
⊗Hom(Cm,Cn). The matrix L(u) is an

(
Ân, Âm

)
-Manin

operator iff it satisfies RLL-relation (4.24).

Proof. Remind first that the relation (4.24) is equivalent to (4.28). Let us multiply

ÂnL
(1)(u1)L(2)(u2) = ÂnL

(1)(u1)L(2)(u2)Âm

by 4u12 from the right and substitute 2u12Ân = 1 + u12 + R̂n, 2Âm = 1 + u−1
12 + u−1

12 R̂m. This
gives the equivalent relation(

u12 − u−1
12

)
L(1)(u1)L(2)(u2) + u−1

12 R̂nL
(1)(u1)L(2)(u2)R̂m

=
(
1 + u−1

12

)
L(1)(u1)L(2)(u2)R̂m −

(
1 + u−1

12

)
R̂nL

(1)(u1)L(2)(u2). (4.35)

The left hand side of (4.35) does not change at the conjugation T 7→ u12Tu
−1
12 while the right

hand side changes the sign. This means that (4.35) is valid iff the both hand sides vanish. Due
to (4.29) the vanishing of each hand side of (4.35) is equivalent to (4.28). �

Let L(u) be an
(
Ân, Âm

)
-Manin operator. Then M = L(u + a)eb∂u is also an

(
Ân, Âm

)
-

Manin operator for any a, b ∈ C. In particular, the An-Manin matrix M = L(u)e−∂u considered
in Section 3.1 is an Ân-Manin operator.

Remark 4.10. One can renormalise the matrix L(u) ∈ R
((
u−1

))
⊗Hom(Cm,Cn) by multiplying

it by a function in u. Such renormalization does not violate the RLL-relation (4.24). Hence one
can suppose that L(u) ∈ R[[u−1]] ⊗ Hom(Cm,Cn) by multiplying L(u) by uk for big enough k
if needed. A matrix L(u) ∈ R

[[
u−1

]]
⊗ Hom(Cm,Cn) satisfying RLL-relation is exactly an((

Ân
)−

res
,
(
Âm
)−

res

)
-Manin operator, where

(
Ân
)−

res
is the restriction of Ân to Cn⊗Cn

[
u−1

1 , u−1
2

]
.

We see from the formulae (4.33), (4.34) that
(
Ân
)−

res
satisfies the row finiteness condition.

In particular, we have the right quantum algebra U
(Ân)−res

and Theorem 4.9 implies that the

Yangian Y (gln) is a factor algebra of U
(Ân)−res

.

Remark 4.11. The facts described in this Section works also for a matrix L(u) ∈ R((u)) ⊗
Hom(Cm,Cn) since we can consider another completion of R

[
u, u−1

]
. Again, one can suppose

that L(u) ∈ R[[u]] ⊗ Hom(Cm,Cn) making a renormalization if needed. A matrix L(u) ∈
R[[u]] ⊗ Hom(Cm,Cn) satisfying RLL-relation is an

((
Ân
)+

res
,
(
Âm
)+

res

)
-Manin operator, where(

Ân
)+

res
is the restriction of Ân to Cn ⊗ Cn[u1, u2].
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5 Minors of Manin matrices

The notion of minor (determinant of a submatrix) is an important tool in the classical matrix
theory. It can be interpreted in terms of the Grassmann algebra as some coefficients. This gives
minors of (An, Am)-Manin matrices which we defined in Section 3.1 as column determinants
of submatrices. The same can be done for q- and (q̂, p̂)-Manin matrices by considering the
quadratic algebras ΞA(C) for A = Aqn and Aq̂ respectively. There is a dual notion of minors
corresponding to the quadratic algebras XA(C). In the case of the polynomial algebras these
dual minors are written via permanent.

For a general (A,B)-Manin matrix M we define two types of minors corresponding to the
homomorphisms fM : XA(C)→ XB(R) and fM : ΞB(C)→ ΞA(R). In fact these minors give the
graded components of these homomorphisms. As usual minors they have a good behaviour at
the multiplication of Manin matrices and under permutations of rows and columns. In future
works we hope to find more properties of these minors by generalising the properties of the usual
minors.

5.1 The q-minors and permanents

First we remind that the q-determinant (3.15) is the coefficient of proportionality for the product
of the q-Grassmann variables [6] (see also the formula (3.27) for the q̂-version). Namely, let
ψ1, . . . , ψn be the generators of ΞAqn(C), M be an n × n matrix over an algebra R and φj =∑n

i=1 ψiM
i
j , where j = 1, . . . , n, then

φ1φ2 · · ·φn = detq(M)ψ1ψ2 · · ·ψn.

More generally, let M be n×m matrix over R and φj =
∑n

i=1 ψiM
i
j , where j = 1, . . . ,m. For

two k-tuples of indices I = (i1, . . . , ik) and J = (j1, . . . , jk) we denote by MIJ the k × k matrix
over R with entries

(MIJ)ab = M ia
jb
, a, b = 1, . . . , k,

where we suppose 1 6 ia 6 n and 1 6 jb 6 m. If i1 < · · · < ik and j1 < · · · < jk then MIJ

is a k × k submatrix of M and detq(MIJ) is a q-analogue of minor defined in Section 3.1. The
q-determinants detq(MIJ) are the coefficients in the decomposition

φj1φj2 · · ·φjk =
∑

I=(i1<···<ik)

detq(MIJ)ψi1ψi2 · · ·ψik , (5.1)

where the sum is taken over k-tuples I = (i1, . . . , ik) such that 1 6 i1 < · · · < ik 6 n.
If M is a q-Manin matrix then φ1, . . . , φm are also q-anticommuting and hence the ele-

ments φj1φj2 · · ·φjk with 1 6 j1 < · · · < jk 6 m span the subalgebra of ΞAqn(R) generated by
φ1, . . . , φm. This means that the q-determinants of submatrices of M are enough to describe the
decompositions (5.1) in this case.

A dual notion to column determinant is row permanent. Recall that the permanent of an n×n
matrix M is

perm(M) =
∑
σ∈Sn

M1
σ(1) · · ·M

n
σ(n). (5.2)

This is the same expression as for the determinant but without the factors (−1)σ. If M is
over non-commutative algebra the factors in this expression should be placed in a certain way.
The formula (5.2) defines the row permanent of M (see [4, 5]). It is invariant under a permutation
of columns: perm(τM) = perm(M). Contrary to the determinant it does not change sign, so,
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in particular, the permanent of a matrix with coinciding rows can be non-zero. If M is an An-
Manin matrix, then the permanent is invariant under a permutation of rows: perm(τM) =
perm(M).

Now consider the analogues decompositions of products of yi =
∑m

j=1M
i
jx
j , where x1, . . . , xm

are generators of XAm(C) (for simplicity we consider the case q = 1). Define an action of the
group Sk on k-tuples by the formula σ(j1, . . . , jk) =

(
jσ−1(1), . . . , jσ−1(k)

)
. For any tuple I =

(i1, . . . , ik) we have (cf. [5])

yi1 · · · yik =
m∑

l1,...,lk=1

M i1
l1
· · ·M ik

lk
xl1 · · ·xlk =

∑
J=(j16···6jk)

xj1 · · ·xjk
∑

(l1,...,lk)∈SkJ

M i1
l1
· · ·M ik

lk

=
∑

J=(j16···6jk)

xj1 · · ·xjk 1

|(Sk)J |
perm(MIJ),

where |(Sk)J | is the order of the stabiliser subgroup (Sk)J = {σ ∈ Sk | σJ = J}. For a fixed
J = (j1, . . . , jk) let νj = |{a | ja = j}|, then |(Sk)J | = ν1!ν2! · · · νm!. The normalised permanents

1
|(Sk)J | perm(MIJ) = 1

ν1!ν2!···νm! perm(MIJ) are analogues of the minors for the polynomial algebra

XAm(C) = C
[
x1, . . . , xm

]
.

For a general idempotent A we will define minors of two types and they will be coefficients
of decomposition of yi1 · · · yik and φi1 · · ·φik into sums of xj1 · · ·xjk and ψj1 · · ·ψjk respectively
(up to a factor).

5.2 Dual quadratic algebras and their pairings

Consider the question of decomposition coefficients in general settings. Let V and W be vector
spaces with a non-degenerate pairing 〈·, ·〉 : V ×W → C. Let them have dual bases (vi) and (wi),
〈vi, wj〉 = δij . Let R be an algebra, then R⊗V is a free R-module with the basis (vi). Consider

a decomposition α =
∑

i αiv
i of an element α ∈ R⊗V in the basis (vi). The coefficients αi ∈ R

can be calculated via the pairing: αi = 〈α,wi〉, where 〈r ⊗ v, w〉 := r · 〈v, w〉 ∀r ∈ R, v ∈ V ,
w ∈W .

More generally, let A ∈ End(V ) and A∗ ∈ End(W ) be adjoint operators: 〈Av,w〉 = 〈v,A∗w〉
∀v ∈ V, w ∈ W . They act on basis vectors as Avi =

∑
j A

i
jv
j , A∗wj =

∑
iA

i
jwi, A

i
j ∈ C (the

both sums are finite). Suppose they are idempotents:
∑

j A
i
jA

j
k = Aik. Consider the subspaces

V = AV and W = A∗W . These subspaces are spanned by the vectors vi = Avi and wi = A∗wi
respectively. We have 〈vi, wj〉 = Aij . A decomposition α =

∑
i αiv

i of an element α ∈ R⊗ V is

not unique since vi are not linearly independent in general. However we can fix the coefficients αi
by imposing some “symmetry” conditions.

Proposition 5.1.

1. The restriction of the non-degenerate pairing 〈·, ·〉 : V ×W → C to V ×W is also non-
degenerate.

2. For any α ∈ R ⊗ V there is a unique (finite) sequence (αi) such that α =
∑

i αiv
i and∑

iA
i
jαi = αj. The coefficients αi ∈ R fixed by these conditions can be found by the

formula αi = 〈α,wi〉.

Proof. (1) If w ∈ W and 〈v, w〉 = 0 for all v ∈ V , then for any v ∈ V we have 〈v, w〉 =
〈v,A∗w〉 = 〈Av,w〉 = 0 and hence w = 0. (2) Since α ∈ R ⊗ V we have Aα = α, where
the action of A is extended on R ⊗ V by the formula A(r ⊗ v) = r ⊗ Av. Let αi = 〈α,wi〉,
then αi = 〈α,A∗wi〉 = 〈Aα,wi〉 = 〈α,wi〉. Hence

∑
iA

i
jαi =

∑
iA

i
j〈α,wi〉 = 〈α,wj〉 = αj .

Moreover, 〈α −
∑

i αiv
i, wj〉 = αj −

∑
iA

i
jαi = 0, so that α −

∑
i αiv

i = 0. To show the
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uniqueness suppose that α =
∑

i αiv
i for some αi ∈ R such that

∑
iA

i
jαi = αj , then we have

〈α,wj〉 =
∑

i αiA
i
j = αj . �

Let A ∈ End(Cn ⊗ Cn) be an idempotent. Consider the corresponding quadratic alge-
bra XA(C). We need to define a vector space X∗A(C) and a non-degenerate pairing with XA(C).
This implies that X∗A(C) is a graded vector space and the pairing respects the grading.

Define the algebra X∗A(C) as the graded algebra generated by the elements x1, . . . , xn with

the “dual” quadratic commutation relations:
∑n

i,j=1 xixjA
ij
kl = 0, that is

(X∗ ⊗X∗)A = 0, (5.3)

where X∗ =
∑n

i=1 xie
i. We have the algebra isomorphisms X∗A(C) = Ξ1−A(C) = XA>(C).

Let us introduce a pairing 〈·, ·〉 : XA(C) × X∗A(C) → C respecting the grading, i.e., the product
〈xi1 · · ·xil , xj1 · · ·xjk〉 vanishes if k 6= l. The pairing for the elements of the degree 0 and 1 are
defined as follows: 〈1, 1〉 = 1 and 〈xi, xj〉 = δij . For the higher degree elements the pairing has
the form

〈xi1 · · ·xik , xj1 · · ·xjk〉 = Si1...ikj1...jk
, (5.4)

for some Si1...ikj1...jk
∈ C. The commutation relations (2.3) and (5.3) implies that

n∑
ia,ia+1=1

Almiaia+1
Si1...ikj1...jk

= 0,
n∑

js,js+1=1

Si1...ikj1...jk
A
jaja+1

lm = 0, (5.5)

for all a = 1, . . . , k − 1 and l,m = 1, . . . , n. Under these conditions the formula (5.4) correctly
defines a pairing 〈·, ·〉 : XA(C)× X∗A(C)→ C that respects the grading.

Remark 5.2. In contrast to the situation described in Remark 2.32 one can not correctly define
an operation on quadratic algebras by mapping an algebra XA(C) to X∗A(C). It happens since the
equality XA(C) = XA′(C) does not imply an isomorphism of X∗A(C) and X∗A′(C) (see Section 5.6
for details).

To write the formulae (5.4), (5.5) in a matrix form we introduce some conventions. Let V
and W be vector spaces and W ∗ = Hom(W,C). The product πξ of elements π ∈ V and ξ ∈W ∗
is usually identified with the linear operator W → V acting as (πξ)(w) = ξ(w) · π, w ∈ W .
For example, eie

j = Ei
j ∈ End(Cn). More generally, ei1...ike

j1...jk = Ei1
j1 ⊗ · · · ⊗ Eik jk , where

ej1...jk = ej1 ⊗ · · · ⊗ ejk and ei1...ik = ei1 ⊗ · · · ⊗ eik .
Let us introduce the notation 〈α, β〉 for α ∈ XA(C) ⊗ V and β ∈ X∗A(C) ⊗W ∗. The pair-

ing acts on the first tensor factors while in the second factor the elements are multiplied as
above: 〈uπ, vξ〉 = 〈u, v〉πξ ∈ Hom(W,V ), where u ∈ XA(C), v ∈ X∗(C), π ∈ V and ξ ∈ W ∗.
In particular,〈 ∑

i1,...,ik

ui1...ikei1...ik ,
∑

j1,...,jk

vj1...jke
j1...jk

〉
=

∑
i1,...,ik,j1...,jk

〈ui1...ik , vj1...jk〉Ei1
j1 ⊗ · · · ⊗ Eik

jk .

By using this notation we can write the pairing of degree 1 elements in matrix form:

〈X,X∗〉 = 〈xiei, xjej〉 = δijEi
j = 1.

Consider the operators S(k) =
∑

i1,...,ik,j1,...,jk
Si1...ikj1...jk

Ei1
j1 ⊗ · · · ⊗ Eik jk ∈ End

(
(Cn)⊗k

)
. For

k = 1 the operator S(1) is the n× n unit matrix. The formula (5.4) in matrix form reads

〈X ⊗ · · · ⊗X,X∗ ⊗ · · · ⊗X∗〉 = S(k) (5.6)
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(here and below dots mean that we have k tensor factors). The conditions (5.5) is written as

A(a,a+1)S(k) = S(k)A
(a,a+1) = 0, (5.7)

a = 1, . . . , k − 1. In terms of P = 1− 2A we can rewrite (5.7) in the form

P (a,a+1)S(k) = S(k)P
(a,a+1) = S(k).

Analogously, one can define the algebra Ξ∗A(C) generated by the elements ψ1, . . . , ψn over C
with the commutation relations ψiψj =

∑
k,lA

ij
klψ

kψl, i.e.,

(1−A)(Ψ∗ ⊗Ψ∗) = 0,

where Ψ∗ =
n∑
i=1

ψiei. The pairing 〈·, ·〉 : ΞA(C)× Ξ∗A(C)→ C is defined by the formula

〈ψi1 · · ·ψil , ψj1 · · ·ψjk〉 = δklA
i1...ik
j1...jk

, (5.8)

where Ai1...ikj1...jk
∈ C, Aij = δij , A

∅
∅ = 1. The formula (5.8) for k = l can be written as

〈Ψ∗ ⊗ · · · ⊗Ψ∗,Ψ⊗ · · · ⊗Ψ〉 = A(k), (5.9)

where A(k) =
∑

i1,...,ik,j1,...,jk

Ai1...ikj1...jk
Ei1

j1 ⊗ · · · ⊗ Eik jk , A(1) = 1. Again, we should require

S(a,a+1)A(k) = A(k)S
(a,a+1) = 0,

where a = 1, . . . , k − 1, S = 1−A, or, equivalently,

P (a,a+1)A(k) = A(k)P
(a,a+1) = −A(k).

Lemma 5.3. Let V and W be vector spaces. For any operators T ∈ Hom
(
(Cn)⊗k, V

)
and

T̃ ∈ Hom
(
W, (Cn)⊗k

)
we have〈

T (X ⊗ · · · ⊗X), (X∗ ⊗ · · · ⊗X∗)T̃
〉

= TS(k)T̃ , (5.10)〈
T (Ψ∗ ⊗ · · · ⊗Ψ∗), (Ψ⊗ · · · ⊗Ψ)T̃

〉
= TA(k)T̃ (5.11)

(we understand T (X ⊗ · · · ⊗X), (X∗ ⊗ · · · ⊗X∗)T̃ , T (Ψ∗ ⊗ · · · ⊗ Ψ∗) and (Ψ ⊗ · · · ⊗ Ψ)T̃ as
elements of XA(C)⊗ V , X∗A(C)⊗W ∗, Ξ∗A(C)⊗ V and ΞA(C)⊗W ∗ respectively).

Proof. By substituting T (X ⊗ · · · ⊗ X) =
∑

i1,...,ik

xi1 · · ·xikTei1...ik and (X∗ ⊗ · · · ⊗ X∗)T̃ =∑
j1,...,jk

xj1 · · ·xjkej1...jk T̃ we derive

〈
T (X ⊗ · · · ⊗X), (X∗ ⊗ · · · ⊗X∗)T̃

〉
=

∑
i1,...,ik,j1,...,jk

〈xi1 ⊗ · · · ⊗ xik , xj1 ⊗ · · · ⊗ xjk〉Tei1...ike
j1...jk T̃

=
∑

i1,...,ik,j1,...,jk

Si1...ikj1...jk
T (Ei1

j1 ⊗ · · · ⊗ Eik
jk)T̃ = TS(k)T̃ .

The formula (5.11) are proved in a similar way (it can be considered as the formula (5.10) for the
algebras ΞA(C) = X∗1−A(C) and Ξ∗A(C) = X1−A(C)). �
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Corollary 5.4. Let T ∈ Hom
(
(Cn)⊗k, V

)
and T̃ ∈ Hom

(
W, (Cn)⊗k

)
.

(a) If T (X ⊗ · · · ⊗X) = 0 then TS(k) = 0.

(b) If (X∗ ⊗ · · · ⊗X∗)T̃ = 0 then S(k)T̃ = 0.

(c) If (Ψ⊗ · · · ⊗Ψ)T̃ = 0 then A(k)T̃ = 0.

(d) If T (Ψ∗ ⊗ · · · ⊗Ψ∗) = 0 then TA(k) = 0.

In particular, these statements are valid for T, T̃ ∈ End
(
(Cn)⊗k

)
and for T ∈

(
(Cn)⊗k

)∗
,

T̃ ∈ (Cn)⊗k.

Proof. The statement (a) are obtained from (5.10) in the case W = (Cn)⊗k, T̃ = 1 ∈
End

(
(Cn)⊗k

)
. For V = (Cn)⊗k, T = 1 ∈ End

(
(Cn)⊗k

)
we obtain (b). The statements (c) and

(d) are obtained from (5.11) in the same way. In the cases V = W = (Cn)⊗k and V = W = C
we obtain Hom

(
(Cn)⊗k, V

)
= Hom

(
W, (Cn)⊗k

)
= End

(
(Cn)⊗k)

)
and Hom

(
(Cn)⊗k, V

)
=(

(Cn)⊗k
)∗

, Hom
(
W, (Cn)⊗k

)
= (Cn)⊗k respectively. �

5.3 Pairing operators

Let A ∈ End(Cn ⊗Cn) be an idempotent and S = 1−A. We formulate some conditions on the
operators (5.6) and (5.9) that guarantee non-degeneracy of the corresponding pairings.

Definition 5.5. Operators S(k), A(k) ∈ End
(
(Cn)⊗k

)
are called pairing operators (for the idem-

potent A) if they satisfy the following conditions:

A(a,a+1)S(k) = S(k)A
(a,a+1) = 0, (5.12)

(X∗ ⊗ · · · ⊗X∗)S(k) = (X∗ ⊗ · · · ⊗X∗), (5.13)

S(k)(X ⊗ · · · ⊗X) = (X ⊗ · · · ⊗X), (5.14)

S(a,a+1)A(k) = A(k)S
(a,a+1) = 0, (5.15)

(Ψ⊗ · · · ⊗Ψ)A(k) = (Ψ⊗ · · · ⊗Ψ), (5.16)

A(k)(Ψ
∗ ⊗ · · · ⊗Ψ∗) = (Ψ∗ ⊗ · · · ⊗Ψ∗). (5.17)

We call them the k-th S-operator and the k-th A-operator.

The conditions (5.14) and (5.16) for k = 1 implies that S(1) = A(1) = 1. For k = 2 the
equations (5.12)–(5.14) and (5.15)–(5.17) have the solutions S(k) = S and S(k) = A respectively.
Let us prove the uniqueness of solutions of these equations for any k (we do not prove their
existence for k > 2 in a general case).

Proposition 5.6. The pairing operators are unique. In particular, S(2) = S and A(2) = A.

Proof. Let S′(k) and S̄(k) be k-th S-operators for the same idempotent A. By applying the

part (a) of Corollary 5.4 for S(k) = S′(k), T = 1 − S̄(k) and the part (b) of Corollary 5.4 for

S(k) = S̄(k), T = 1 − S′(k) we obtain S′(k) = S̄(k)S
′
(k) and S̄(k) = S̄(k)S

′
(k). Hence we obtain

S′(k) = S̄(k). The uniqueness of the A-operators follows similarly from the parts (c) and (d)
of Corollary 5.4. �

Proposition 5.7. Pairing operators S(k) and A(k) are idempotents; they are orthogonal for
k > 2:

S2
(k) = S(k), A2

(k) = A(k), S(k)A(k) = A(k)S(k) = 0. (5.18)

(X∗ ⊗ · · · ⊗X∗)A(k) = 0, A(k)(X ⊗ · · · ⊗X) = 0, (5.19)

(Ψ⊗ · · · ⊗Ψ)S(k) = 0, S(k)(Ψ
∗ ⊗ · · · ⊗Ψ∗) = 0. (5.20)
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Proof. Due to Corollary 5.4 the formula (5.14) gives S2
(k) = S(k), while the formula (5.16)

implies A2
(k) = A(k). Further, from (5.12) and (5.15) we derive S(k)A(k) = S(k)P

(a,a+1)A(k) =

−S(k)A(k) and A(k)S(k) = A(k)P
(a,a+1)S(k) = −A(k)S(k). The formulae (5.19) and (5.20) follows

from the orthogonality and (5.13), (5.14), (5.16), (5.17). For example, the relation (5.14) implies
A(k)(X ⊗ · · · ⊗X) = A(k)S(k)(X ⊗ · · · ⊗X) = 0. �

Below we suppose that S(k) and A(k) are pairing operators for an idempotent A. Note that
in general the sum S(k) +A(k) does not coincide with the identity operator.

The following formulae generalise the equalities (5.18). They are proved in the same way.

Proposition 5.8. If ` 6 k then

S
(a,...,a+`−1)
(`) S(k) = S(k)S

(a,...,a+`−1)
(`) = S(k), A

(a,...,a+`−1)
(`) A(k) = A(k)A

(a,...,a+`−1)
(`) = A(k),

A
(a,...,a+`−1)
(`) S(k) = S(k)A

(a,...,a+`−1)
(`) = 0, S

(a,...,a+`−1)
(`) A(k) = A(k)S

(a,...,a+`−1)
(`) = 0,

where a = 1, . . . , k − `+ 1 and we used the notation T (a,...,a+`−1) = id⊗(a−1)⊗T ⊗ id⊗(k−`−a+1)

for T ∈ End
(
(Cn)⊗`

)
.

Since ΞA(C) = X∗S(C) and Ξ∗A(C) = XS(C) the conditions (5.12), (5.13), (5.14) interchange
with the conditions (5.15), (5.16), (5.17) under the substitutions

A↔ S, P ↔ −P, A(k) ↔ S(k), X ↔ Ψ∗, X∗ ↔ Ψ. (5.21)

Thus if S(k) and A(k) are pairing operators for A then A(k) and S(k) are pairing operators for
S = 1−A.

The following property of the pairing operators shows their role for the quadratic algebras.
Recall that we have identifications XA(C)1 = (Cn)∗ and ΞA(C)1 = Cn. Let us identify the higher
graded components XA(C)k and ΞA(C)k with subspaces of

(
(Cn)⊗k

)∗
and

(
(Cn)⊗k

)
by using

the idempotents S(k) and A(k) respectively.

Proposition 5.9. We have the following isomorphisms of vector spaces:(
(Cn)⊗k

)∗
S(k)
∼= XA(C)k, ξ 7→ ξ(X ⊗ · · · ⊗X),

S(k)

(
(Cn)⊗k

) ∼= X∗A(C)k, π 7→ (X∗ ⊗ · · · ⊗X∗)π,
A(k)

(
(Cn)⊗k

) ∼= ΞA(C)k, π 7→ (Ψ⊗ · · · ⊗Ψ)π,(
(Cn)⊗k

)∗
A(k)

∼= Ξ∗A(C)k, ξ 7→ ξ(Ψ∗ ⊗ · · · ⊗Ψ∗). (5.22)

The pairings 〈·, ·〉 : XA(C)k × X∗A(C)k → C and 〈·, ·〉 : Ξ∗A(C)k × ΞA(C)k → C correspond to the
multiplication (ξ, π) 7→ ξπ ∈ C.

Proof. All these maps are linear. Consider the map (5.22). Due to (5.14) the image of the
covector ξ = ei1...ikS(k) is ei1...ikS(k)(X⊗· · ·⊗X) = ei1...ik(X⊗· · ·⊗X) = xi1 · · ·xik . Hence this
map is surjective. Let us check injectivity. If ξ(X ⊗ · · · ⊗X) = 0 then by using Corollary 5.4
for T = ξ we obtain ξS(k) = 0. Since ξ ∈

(
(Cn)⊗k

)∗
S(k) we have ξ = ξS(k) = 0. The bijectivity

of other maps are proved in the same way. The last statement follows from Lemma 5.3, for
example,

〈
ξ(X ⊗ · · · ⊗X), (X∗ ⊗ · · · ⊗X∗)π

〉
= ξS(k)π = ξπ. �

Let dk = rkS(k) and rk = rkA(k). Then Proposition 5.9 implies

dimXA(C)k = dimX∗A(C)k = dk, dim ΞA(C)k = dim Ξ∗A(C)k = rk. (5.23)
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Proposition 5.10. Let S(k) and A(k) be the pairing operators for the idempotent A. Then the
pairings 〈·, ·〉 : XA(C)×X∗A(C)→ C and 〈·, ·〉 : Ξ∗A(C)×ΞA(C)→ C defined by the formulae (5.6)
and (5.9) are non-degenerate.

Proof. Since the pairing 〈·, ·〉 : XA(C) × X∗A(C) → C respects the grading its non-degeneracy
is equivalent to non-degeneracy of the restricted pairings 〈·, ·〉 : XA(C)k × X∗A(C)k → C. Due to
Proposition 5.9 it is enough to prove that the pairings

(
(Cn)⊗k

)∗
S(k)×S(k)

(
(Cn)⊗k

)
→ C given

by (ξ, π) 7→ ξπ are non-degenerate, but this fact follows from the part (1) of Proposition 5.1.
The non-degeneracy of the pairing 〈·, ·〉 : Ξ∗A(C)× ΞA(C)→ C is obtained in the same way. �

The space (Cn)⊗k is decomposed into the direct sum of S(k)(Cn)⊗k and
(
1 − S(k)

)
(Cn)⊗k.

Let vα = v
S(k)
α ∈ (Cn)⊗k be eigenvectors: S(k)vα = vα for α = 1, . . . , dk and S(k)vα = 0 for

α = dk + 1, . . . , nk. Then (vα) is a basis of (Cn)⊗k such that (vα)α6dk and (vα)α>dk are bases
of the subspaces S(k)(Cn)⊗k and

(
1 − S(k)

)
(Cn)⊗k respectively. Let (vα = vαS(k)

) be dual basis

of
(
(Cn)⊗k

)∗
, i.e., vαvβ = δαβ . Since vαS(k)vβ = δαβ for β > dk and vαS(k)vβ = 0 for β > dk

we obtain vαS(k) = vα, α = 1, . . . , dk, v
αS(k) = 0, α = dk + 1, . . . , nk. In coordinates we

have vα =
∑

i1,...,ik
vi1...ikα ei1...ik , vα =

∑
i1,...,ik

vαi1...ike
i1...ik for some vi1...ikα , vαi1...ik ∈ C such that∑

i1,...,ik
vi1...ikα vβi1...ik = δβα and

∑nk

α=1 v
i1...ik
α vαj1...jk = δi1j1 · · · δ

ik
jk

.

Analogously, let wα = v
A(k)
α =

∑
i1,...,ik

wi1...ikα ei1...ik and wα = vαA(k)
=
∑

i1,...,ik
wαi1...ike

i1...ik

form dual bases of (Cn)⊗k and
(
(Cn)⊗k

)∗
such that A(k)wα = wα for α = 1, . . . , rk and

A(k)wα = 0 for α = rk + 1, . . . , nk. Then wαA(k) = wα, α = 1, . . . , rk and wαA(k) = 0,

α = rk + 1, . . . , nk.

Proposition 5.11. The elements

xα(k) = vα(X ⊗ · · · ⊗X) =
∑
i1,...,ik

vαi1...ikx
i1 · · ·xik , α = 1, . . . , dk, (5.24)

x(k)
α = (X∗ ⊗ · · · ⊗X∗)vα =

∑
i1,...,ik

vi1...ikα xi1 · · ·xik , α = 1, . . . , dk, (5.25)

ψ(k)
α = (Ψ⊗ · · · ⊗Ψ)wα =

∑
i1,...,ik

wi1...ikα ψi1 · · ·ψik , α = 1, . . . , rk, (5.26)

ψα(k) = wα(Ψ∗ ⊗ · · · ⊗Ψ∗) =
∑
i1,...,ik

wαi1...ikψ
i1 · · ·ψik , α = 1, . . . , rk, (5.27)

form the dual bases of the k-th graded components XA(C)k, X∗A(C)k, ΞA(C)k, Ξ∗A(C)k.

Proof. This is consequence of Proposition 5.9 and the fact that (vα)dkα=1, (vα)dkα=1, (wα)rkα=1

and (wα)rkα=1 are dual bases of
(
(Cn)⊗k

)∗
S(k), S(k)

(
(Cn)⊗k

)
, A(k)

(
(Cn)⊗k

)
and

(
(Cn)⊗k

)∗
A(k)

respectively. �

In contrast to the uniqueness the existence of the pairing operators is not guaranteed for an
arbitrary idempotent A. In many interesting cases the pairing operators can be found explicitly.
In general situation we can claim the existence of S(1), A(1), S(2) and A(2) only. In Section 6.3
we consider cases when the third pairing operators do not exist. Now we give necessary and
sufficient conditions for existence of a pairing operator.

Theorem 5.12. Let A ∈ End(Cn ⊗ Cn) be an idempotent and k > 2. Consider the subspaces

Vk =
{
π ∈ (Cn)⊗k | A(a,a+1)π = 0

}
, V k =

{
ξ ∈

(
(Cn)⊗k

)∗ | ξA(a,a+1) = 0
}
,

Wk =
{
π ∈ (Cn)⊗k | S(a,a+1)π = 0

}
, W k =

{
ξ ∈

(
(Cn)⊗k

)∗ | ξS(a,a+1) = 0
}
.
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We have isomorphisms XA(C)k ∼= V ∗k , X∗A(C)k ∼= V
∗
k, ΞA(C)k ∼= W

∗
k, Ξ∗A(C)k ∼= W ∗k given by

the pairings〈
ξ(X ⊗ · · · ⊗X), π

〉
= ξπ, ξ ∈

(
(Cn)⊗k

)∗
, π ∈ Vk, (5.28)〈

(X∗ ⊗ · · · ⊗X∗)π, ξ
〉

= ξπ, π ∈ (Cn)⊗k, ξ ∈ V k, (5.29)〈
(Ψ⊗ · · · ⊗Ψ)π, ξ

〉
= ξπ, π ∈ (Cn)⊗k, ξ ∈W k, (5.30)〈

ξ(Ψ∗ ⊗ · · · ⊗Ψ∗), π
〉

= ξπ, ξ ∈
(
(Cn)⊗k

)∗
, π ∈Wk. (5.31)

� The k-th S-operator S(k) for the idempotent A exists iff the spaces Vk and V k are dual

via the natural pairing, that is dimVk = dimV k and there are bases (vα) and (vα) of Vk
and V k such that vαvβ = δαβ . This pairing operator has the form S(k) =

∑
α vαv

α.

� The k-th A-operator A(k) for the idempotent A exists iff the spaces Wk and W k are dual

via the natural pairing, that is dimWk = dimW k and there are bases (wα) and (wα) of Wk

and W k such that wαwβ = δαβ . This pairing operator is A(k) =
∑

αwαw
α.

Proof. Due to the symmetry (5.21) it is enough to prove the statements concerning Vk and V k.

By definition the algebra X∗A(C) is the quotient of the tensor algebra TCn =
⊕

k∈N0
(Cn)⊗k

by its two sided ideal I generated by the elements
∑n

s,t=1 estA
st
ij . In the k-th graded compo-

nent we have X∗A(C)k = (Cn)⊗k/Ik, where Ik is a subspace of (Cn)⊗k spanned by the vectors∑n
s,t=1 ei1...ia−1 ⊗

(
estA

st
iaia+1

)
⊗ eia+2...ik = A(a,a+1)ei1...ik , where a = 1, . . . , k − 1, i1, . . . , ik =

1, . . . , n. That is Ik =
∑k−1

a=1 A
(a,a+1)(Cn)⊗k. This definition implies that the element xi is the

class [ei], hence [ei1...ik ] = [ei1 ⊗ · · · ⊗ eik ] = xi1 · · ·xik = (X∗ ⊗ · · · ⊗ X∗)ei1...ik , so the canon-
ical projection pk : (Cn)⊗k → X∗A(C)k has the form pk : π 7→ (X∗ ⊗ · · · ⊗ X∗)π. The subspace
orthogonal to Ker pk = Ik is I⊥k =

{
ξ ∈

(
(Cn)⊗k

)∗ | ξIk = 0
}

= V k.

Note that for any subspace U0 of a vector space U we have an isomorphism U⊥0
∼= (U/U0)∗ via

the pairing
〈
[u], λ

〉
= λ(u), where λ ∈ U⊥0 and [u] ∈ U/U0 is the class of a vector u ∈ U . Hence

we obtain the isomorphism V k = I⊥k
∼=
(
(Cn)⊗k/Ik

)∗
=
(
X∗A(C)k

)∗
given by the pairing (5.29).

In the same way we obtain the isomorphism Vk ∼=
(
XA(C)k

)∗
.

If S(k) exists then there are dual bases (vα)dkα=1 and (vα)dkα=1 of the spaces S(k)(Cn)⊗k and(
(Cn)⊗k

)∗
S(k). Since S(k)A

(a,a+1) = 0 we have
(
(Cn)⊗k

)∗
S(k) ⊂ V k. The equality (5.23) and

the isomorphism V
∗
k
∼= X∗A(C)k imply dimV k = dimX∗A(C)k = dk = dim

(
(Cn)⊗k

)∗
S(k), hence(

(Cn)⊗k
)∗
S(k) = V k. Similarly we obtain dimVk = dk and S(k)(Cn)⊗k = Vk. Thus (vα)dkα=1 and

(vα)dkα=1 are dual bases of Vk and V k respectively.

Conversely, let d = dimVk = dimV k and let (vα)dα=1 and (vα)dα=1 be dual bases of Vk and V k.
Since the vectors vα are not orthogonal to V k they do not belong to Ik, that is Vk ∩ Ik = 0.
Moreover, dim Ik = nk − dimV k = nk − dimVk and hence (Cn)⊗k = Vk ⊕ Ik. This implies that
the restriction of the projection pk to the subspace Vk is an isomorphism and hence the elements

x
(k)
α := (X∗⊗· · ·⊗X∗)vα form a basis of X∗A(C)k. In particular, xi1 · · ·xik =

∑d
α=1 c

α
i1...ik

x
(k)
α for

some cαi1...ik ∈ C, so that (X∗ ⊗ · · · ⊗X∗) =
∑d

α=1 x
(k)
α ξα, where ξα =

∑n
i1,...,ik=1 c

α
i1...ik

ei1...ik ∈(
(Cn)⊗k

)∗
. By multiplying this by A(a,a+1) from the right and taking into account (5.3) we

obtain
∑d

α=1 x
(k)
α ξαA(a,a+1) = 0. Since the elements x

(k)
α are linearly independent, we have

ξαA(a,a+1) = 0 for all a = 1, . . . , k − 1, so that ξα ∈ V k. Multiplication of the same relation
by vβ from the right gives ξαvβ = δαβ , hence ξα = vα. Let S(k) =

∑d
α=1 vαv

α, then we have

(X∗ ⊗ · · · ⊗X∗)S(k) =
∑d

α,β=1 x
(k)
α vαvβv

β =
∑d

α=1 x
(k)
α vα = (X∗ ⊗ · · · ⊗X∗). Analogously we

obtain S(k)(X⊗· · ·⊗X) = (X⊗· · ·⊗X). Since S(k) satisfies also A(a,a+1)S(k) = S(k)A
(a,a+1) = 0

it is the k-th S-operator for the idempotent A. �
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Remark 5.13. Theorem 5.12 means in fact that the non-degeneracies of the pairings V k×Vk →
C and W k × Wk → C given by 〈ξ, π〉 = ξπ imply that they induce non-degenerate pairings
X∗A(C)k × XA(C)k → C and ΞA(C)k × Ξ∗A(C)k → C respectively. Conversely, if there exists
a non-degenerate pairing X∗A(C)k × XA(C)k → C or ΞA(C)k × Ξ∗A(C)k → C then the induced
pairing V k×Vk → C or W k×Wk → C is non-degenerate but it may differ from the corresponding
pairing defined by 〈ξ, π〉 = ξπ. In other words, the conditions dimX∗A(C)k = dimXA(C)k and
dim Ξ∗A(C)k = dim ΞA(C)k do not guarantee the existence of S(k) and A(k) respectively (e.g.,
see Section 6.3).

Remark 5.14. If some pairing S- or A-operators do not exist then one can consider the dual
space

(
XA(C)

)∗
=
⊕∞

k=0 Vk or
(
ΞA(C)

)∗
=
⊕∞

k=0W k (without a structure of algebra) instead of
the algebra X∗A(C) or Ξ∗A(C) respectively. The algebra structures on the spaces X∗A(C) and Ξ∗A(C)
are auxiliary. They are not in agreement with the algebra structures of XA(C) and ΞA(C), but
they are used to define these spaces in a more convenient way.

5.4 Minor operators

Let S(k), A(k) ∈ End
(
(Cn)⊗k

)
and S̃(k), Ã(k) ∈ End

(
(Cm)⊗k

)
be pairing operators for idempo-

tents A ∈ End(Cn ⊗ Cn) and Ã ∈ End(Cn ⊗ Cn) respectively. Let X, X∗, Ψ, Ψ∗ denote the
same as previous subsection. The corresponding column- and row-vectors for Ã we denote by X̃,
X̃∗, Ψ̃∗, Ψ̃.

By virtue of Proposition 5.9 any graded linear operator XA(C) → X
Ã

(R) is given by the
formula

ξ(X ⊗ · · · ⊗X) 7→ ξTk
(
X̃ ⊗ · · · ⊗ X̃

)
, ξ ∈

(
(Cn)⊗k

)∗
(5.32)

for some operators Tk ∈ R⊗Hom
(
(Cm)⊗k, (Cn)⊗k

)
such that S(k)TkS̃(k) = TkS̃(k). In the same

time a graded linear operator X∗
Ã

(C)→ X∗A(R) has the form

(X̃∗ ⊗ · · · ⊗ X̃∗)π 7→ (X∗ ⊗ · · · ⊗X∗)Tkπ, π ∈ (Cm)⊗k (5.33)

for some Tk ∈ R⊗Hom
(
(Cm)⊗k, (Cn)⊗k

)
such that S(k)TkS̃(k) = S(k)Tk.

Analogously, a graded linear operator Ξ
Ã

(C)→ ΞA(R) can be written as

(Ψ̃⊗ · · · ⊗ Ψ̃)π 7→ (Ψ⊗ · · · ⊗Ψ)Rkπ, π ∈ (Cm)⊗k (5.34)

for Rk ∈ R ⊗ Hom
(
(Cm)⊗k, (Cn)⊗k

)
such that A(k)RkÃ(k) = A(k)Rk, while a graded linear

operator Ξ∗A(C)→ Ξ∗
Ã

(R) has the form

ξ(Ψ∗ ⊗ · · · ⊗Ψ∗) 7→ ξRk
(
Ψ̃∗ ⊗ · · · ⊗ Ψ̃∗

)
, ξ ∈

(
(Cn)⊗k

)∗
(5.35)

for some operators Rk ∈ R⊗Hom
(
(Cm)⊗k, (Cn)⊗k

)
such that A(k)RkÃ(k) = RkÃ(k).

Note that Tk and Rk can be replaced by S(k)TkS̃(k) and A(k)RkÃ(k) respectively and this does

not change the maps (5.32), (5.33), (5.34), (5.35). Hence we can always suppose S(k)TkS̃(k) = Tk

and A(k)RkÃ(k) = Rk.
Denote X∗A(R) = R ⊗ X∗A(C) and Ξ∗A(R) = R ⊗ Ξ∗A(C). The pairings are invariant in the

following sense.

Proposition 5.15. Let t : XA(C) → X
Ã

(R) and t∗ : X∗
Ã

(C) → X∗A(R) be the operators (5.32)

and (5.33) defined by the same Tk ∈ R⊗Hom
(
(Cm)⊗k, (Cn)⊗k

)
satisfying S(k)TkS̃(k) = Tk. Let

r : Ξ
Ã

(C) → ΞA(R) and r∗ : Ξ∗A(C) → Ξ∗
Ã

(R) be the operators (5.34) and (5.35) defined by the
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same Rk ∈ R ⊗ Hom
(
(Cm)⊗k, (Cn)⊗k

)
satisfying A(k)RkÃ(k) = Rk. Then for any u ∈ XA(C),

v ∈ X∗
Ã

(C), ν ∈ Ξ∗A(C), µ ∈ Ξ
Ã

(C) we have

〈u, t∗(v)〉 = 〈t(u), v〉, 〈ν, r(µ)〉 = 〈r∗(ν), µ〉, (5.36)

where the pairings XA(C) × X∗A(C) → C, Ξ∗A(C) × ΞA(C) → C and X
Ã

(C) × X∗
Ã

(C) → C,

Ξ∗
Ã

(C)× Ξ
Ã

(C)→ C are defined by the pairing operators S(k), A(k) and S̃(k), Ã(k) respectively.

Proof. Let u = ξ(X ⊗ · · · ⊗X) and v =
(
X̃∗⊗ · · · ⊗ X̃∗

)
π. Then by using Lemma 5.3 we have

〈u, t∗(v)〉 =
〈
ξ(X ⊗ · · · ⊗X), (X∗ ⊗ · · · ⊗X∗)Tkπ

〉
= ξS(k)Tkπ = ξTkS̃(k)π

=
〈
ξTk
(
X̃ ⊗ · · · ⊗ X̃

)
,
(
X̃∗ ⊗ · · · ⊗ X̃∗

)
π
〉

= 〈t(u), v〉.

The second formula (5.36) is proved similarly. �

Recall that in Section 2.5 we introduced the homomorphisms fM : XA(C) → X
Ã

(C) and

fM : Ξ
Ã

(C) → ΞA(C) for a
(
A, Ã

)
-Manin matrix M ∈ R ⊗ Hom(Cm,Cn). Their definition

on generators can be written in the matrix form as

fM (X) = MX̃, fM (Ψ̃) = ΨM.

Since homomorphisms preserve multiplications we obtain

fM (X ⊗ · · · ⊗X) = M (1) · · ·M (k)
(
X̃ ⊗ · · · ⊗ X̃

)
, (5.37)

fM (Ψ̃⊗ · · · ⊗ Ψ̃) = (Ψ⊗ · · · ⊗Ψ)M (1) · · ·M (k). (5.38)

For general elements of XA(C) and Ξ
Ã

(C) the values of the maps fM and fM are obtained via
multiplication of these formulae by ξ and π respectively, so these maps have the form (5.32)
and (5.34) for Tk = Rk = M (1) · · ·M (k). In this way we obtain the following generalisation
of (2.13) and (2.16).

Proposition 5.16. Any
(
A, Ã

)
-Manin matrix M ∈ R⊗Hom(Cm,Cn) satisfy the relations

M (1) · · ·M (k)S̃(k) = S(k)M
(1) · · ·M (k)S̃(k), (5.39)

A(k)M
(1) · · ·M (k) = A(k)M

(1) · · ·M (k)Ã(k). (5.40)

Proof. Note that the left hand sides of (5.37) and (5.38) are invariant under multiplication
by S(k) from the left and by Ã(k) from the right respectively. As consequence, we obtain

S(k)M
(1) · · ·M (k)

(
X̃ ⊗ · · · ⊗ X̃

)
= M (1) · · ·M (k)

(
X̃ ⊗ · · · ⊗ X̃

)
,

(Ψ⊗ · · · ⊗Ψ)M (1) · · ·M (k)Ã(k) = (Ψ⊗ · · · ⊗Ψ)M (1) · · ·M (k).

Then, (5.39) and (5.40) are derived by application of Corollary 5.4 for V = R ⊗ (Cn)⊗k,
T = S(k)M

(1) · · ·M (k) −M (1) · · ·M (k) ∈ Hom
(
(Cm)⊗k, V

)
and for W = R∗ ⊗ (Cm)⊗k, T̃ =

M (1) · · ·M (k)Ã(k) −M (1) · · ·M (k) ∈ Hom
(
W, (Cn)⊗k

)
respectively. �

For an arbitrary M ∈ R ⊗ Hom(Cm,Cn) define the linear operators tM : XA(C) → X
Ã

(R)

and t∗M : X∗
Ã

(C)→ X∗A(R) by the operators Tk = S(k)M
(1) · · ·M (k)S̃(k), that is

tM (X ⊗ · · · ⊗X) = S(k)M
(1) · · ·M (k)

(
X̃ ⊗ · · · ⊗ X̃

)
, (5.41)

t∗M
(
X̃∗ ⊗ · · · ⊗ X̃∗

)
= (X∗ ⊗ · · · ⊗X∗)M (1) · · ·M (k)S̃(k). (5.42)
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Analogously, for an arbitrary matrix M ∈ R ⊗ Hom(Cm,Cn) define the linear operators
rM : Ξ

Ã
(C) → ΞA(R) and r∗M : Ξ∗A(C) → Ξ∗

Ã
(R) by the operators Rk = A(k)M

(1) · · ·M (k)Ã(k),
that is

rM
(
Ψ̃⊗ · · · ⊗ Ψ̃

)
= (Ψ⊗ · · · ⊗Ψ)M (1) · · ·M (k)Ã(k), (5.43)

r∗M (Ψ∗ ⊗ · · · ⊗Ψ∗) = A(k)M
(1) · · ·M (k)

(
Ψ̃∗ ⊗ · · · ⊗ Ψ̃∗

)
. (5.44)

Remark 5.17. If M is an
(
A, Ã

)
-Manin matrix then the maps (5.41) and (5.43) are homo-

morphisms: tM = fM and rM = fM (however, the maps t∗M and r∗M are not homomorphisms).

Conversely, if tM or rM is a homomorphism then M is an
(
A, Ã

)
-Manin matrix. The maps t∗M

and r∗M are homomorphisms iff M is a
(
S, S̃

)
-Manin matrix, where S = 1−A, S̃ = 1− Ã.

For a matrix M ∈ R⊗Hom(Cm,Cn) we introduce minor operator corresponding to a pair of
operators T ∈ End

(
(Cn)⊗k

)
and T̃ ∈ End

(
(Cm)⊗k

)
by the formula

MinT
T̃
M := TM (1) · · ·M (k)T̃ . (5.45)

From (5.41)–(5.44) we obtain

Min
S(k)

S̃(k)

M =
〈
tM (X ⊗ · · · ⊗X), X̃∗ ⊗ · · · ⊗ X̃∗

〉
=
〈
X ⊗ · · · ⊗X, t∗M

(
X̃∗ ⊗ · · · ⊗ X̃∗

)〉
,

Min
A(k)

Ã(k)

M =
〈
Ψ∗ ⊗ · · · ⊗Ψ∗, rM (Ψ̃⊗ · · · ⊗ Ψ̃)

〉
=
〈
r∗M (Ψ∗ ⊗ · · · ⊗Ψ∗), Ψ̃⊗ · · · ⊗ Ψ̃

〉
.

If M is an
(
A, Ã

)
-Manin matrix then due to Proposition 5.16 these operators take the form

Min
S(k)

S̃(k)

M = S(k)M
(1) · · ·M (k)S̃(k) = M (1) · · ·M (k)S̃(k), (5.46)

Min
A(k)

Ã(k)

M = A(k)M
(1) · · ·M (k)Ã(k) = A(k)M

(1) · · ·M (k). (5.47)

In these case these minor operators are defined by one operator only: S̃(k) and A(k) respectively,
so we can denote them as

Min
S̃(k)

M := M (1) · · ·M (k)S̃(k) =
〈
fM (X ⊗ · · · ⊗X), X̃∗ ⊗ · · · ⊗ X̃∗

〉
, (5.48)

MinA(k) M := A(k)M
(1) · · ·M (k) =

〈
Ψ∗ ⊗ · · · ⊗Ψ∗, fM

(
Ψ̃⊗ · · · ⊗ Ψ̃

)〉
. (5.49)

Definition 5.18. Let M ∈ R ⊗ Hom(Cm,Cn) be an
(
A, Ã

)
-Manin matrix. Then the minor

operators (5.48) and (5.49) are called S-minor and A-minor operators respectively. We also call
them minor operators for

(
A, Ã

)
-Manin matrix. Their entries(

Min
S̃(k)

M
)i1...ik
j1...jk

= ei1...ik
(

Min
S̃(k)

M
)
ej1...jk =

〈
fM
(
xi1 · · ·xik

)
, x̃j1 · · · x̃jk

〉
, (5.50)(

MinA(k) M
)i1...ik
j1...jk

= ei1...ik
(

MinA(k) M
)
ej1...jk =

〈
ψi1 · · ·ψik , fM

(
ψ̃j1 · · · ψ̃jk

)〉
(5.51)

are called S-minors and A-minors of the order k or simply minors for
(
A, Ã

)
-Manin matrix

(here x̃i and ψ̃i are the generators of X∗
Ã

(C) and Ξ
Ã

(C) respectively).

In terms of yi = fM (xi) =
∑m

j=1M
i
j x̃
j and φj = fM

(
ψ̃j
)

=
∑n

i=1 ψiM
i
j the minors can be

written as(
Min

S̃(k)
M
)i1...ik
j1...jk

=
〈
yi1 · · · yik , x̃j1 · · · x̃jk

〉
, (5.52)(

MinA(k) M
)i1...ik
j1...jk

=
〈
ψi1 · · ·ψik , φj1 · · ·φjk

〉
. (5.53)
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They are coefficients in the decompositions

yi1 · · · yik =
m∑

j1,...,jk=1

(
Min

S̃(k)
M
)i1...ik
j1...jk

x̃j1 · · · x̃jk , (5.54)

φj1 · · ·φjk =

n∑
i1...ik=1

(
MinA(k) M

)i1...ik
j1...jk

ψi1 · · ·ψik . (5.55)

In the matrix form these formulae are written as

(Y ⊗ · · · ⊗ Y ) =
(

Min
S̃(k)

M
)(
X̃ ⊗ · · · ⊗ X̃

)
,

(Φ⊗ · · · ⊗ Φ) = (Ψ⊗ · · · ⊗Ψ)
(

MinA(k) M
)
,

where Y =
∑n

i=1 y
iei and Φ =

∑m
j=1 φje

j .
The formulae (5.54) and (5.55) are not decompositions by bases. However, due to Proposi-

tion 5.9 they have the form of the decompositions considered in the part (2) of Proposition 5.1.
For example, for the formula (5.54) we need to set V =

(
(Cm)⊗k

)∗
and W = (Cm)⊗k, while

the operator S(k) acting on ξ ∈
(
(Cm)⊗k

)∗
from the right plays the role of the idempotent A.

Thus the minors of an
(
A, Ã

)
-Manin matrix M are the coefficients of the decompositions (5.54)

and (5.55) satisfying the conditions

m∑
l1,...,lk=1

(
Min

S̃(k)
M
)i1...ik
l1...lk

S̃l1...lkj1...jk
=
(

Min
S̃(k)

M
)i1...ik
j1...jk

,

n∑
l1,...,lk=1

Ai1...ikl1...lk

(
MinA(k) M

)l1...lk
j1...jk

=
(

Min
S̃(k)

M
)i1...ik
j1...jk

.

In operator form these symmetries can be written as(
Min

S̃(k)
M
)
S̃(k) = Min

S̃(k)
M, A(k)

(
MinA(k) M

)
= MinA(k) M.

The expression for the S- and A-minors of an
(
A, Ã

)
-Manin matrix M depends on the pairing

operators S̃(k) and A(k) only, hence they are defined if these pairing operators exist even if S(k)

and Ã(k) do not exist. The condition that M is a
(
A, Ã

)
-Manin matrix implies the symmetry

of the minor S- and A-operators with respect to the upper and lower indices:

S(a,a+1)
(

Min
S̃(k)

M
)

= Min
S̃(k)

M,
(

MinA(k) M
)
Ã(a,a+1) = MinA(k) M.

If S(k) and Ã(k) do exist these symmetries can be written in the form

S(k)

(
Min

S̃(k)
M
)

= Min
S̃(k)

M,
(

MinA(k) M
)
Ã(k) = MinA(k) M.

5.5 Properties of the minor operators

The determinant of usual complex matrices is a homomorphism: det(MN) = det(M) det(N).
The generalisation of this property to the case of k × k minors is (a generalisation of the)
Cauchy–Binet formula:

det
(
(MN)IJ

)
=

∑
L=(l1<···<lk)

det(MIL) det(NLJ).

The right hand side corresponds to the product of the A-minor operators. This property is
generalised to Manin matrices.
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Proposition 5.19. Let S(k), A(k), S̃(k), Ã(k) and Ŝ(k), Â(k) be the pairing operators for idem-

potents A ∈ End(Cn ⊗ Cn), Ã ∈ End(Cm ⊗ Cm) and Â ∈ End
(
Cl ⊗ Cl

)
respectively. Let M

and N be n×m and m× l matrices over an algebra R. Suppose that the entries of the first one
commute with the entries of the second one:

[
M i
j , N

k
l

]
= 0.

� If N is an (Ã, Â)-Manin matrix then

Min
S(k)

Ŝ(k)

(MN) =
(

Min
S(k)

S̃(k)

M
)(

Min
Ŝ(k)

N
)
. (5.56)

� If M is an
(
A, Ã

)
-Manin matrix then

Min
A(k)

Â(k)

(MN) =
(

MinA(k) M
)(

Min
Ã(k)

Â(k)

N
)
. (5.57)

� If M and N are Manin matrices for
(
A, Ã

)
and

(
Ã, Â

)
respectively then MN is a Manin

matrix for
(
A, Â

)
and the formulae (5.56), (5.57) take the form

Min
Ŝ(k)

(MN) =
(

Min
S̃(k)

M
)(

Min
Ŝ(k)

N
)
, (5.58)

MinA(k)(MN) =
(

MinA(k) M
)(

MinÃ(k) N
)
. (5.59)

Proof. The first and second statements follow from Proposition 5.16. For instance, the for-
mula (5.57) is derived in the following way:

A(k)(MN)(1) · · · (MN)(k)Â(k) = A(k)M
(1) · · ·M (k)N (1) · · ·N (k)Â(k)

= A(k)M
(1) · · ·M (k)Ã(k)N

(1) · · ·N (k)Â(k),

where we used the commutativity in the form N (i)M (j) = M (j)N (i), i < j. The last statement
is implied by Proposition 2.27 and the formulae (5.46), (5.47). �

Now we give formulae for permutations of rows and columns. For any n and σ ∈ GL(n,C)
denote the conjugation by the element σ⊗k = σ ⊗ · · · ⊗ σ as

ισT := σ⊗kT
(
σ⊗k

)−1
, (5.60)

where T ∈ End
(
(Cn)⊗k

)
and

(
σ⊗k

)−1
= σ−1 ⊗ · · · ⊗ σ−1. Note that ισS(k) and ισA(k) are

pairing operators for the idempotent ισA = (σ ⊗ σ)A
(
σ−1 ⊗ σ−1

)
.

Proposition 5.20. For any matrix M ∈ R ⊗ Hom(Cm,Cn) and operators σ ∈ GL(n,C),
τ ∈ GL(m,C) we have

Min
ισS(k)

ιτ S̃(k)

(
σMτ−1

)
= σ⊗k

(
Min

S(k)

S̃(k)

M
)(
τ⊗k

)−1
, (5.61)

Min
ισA(k)

ιτ Ã(k)

(
σMτ−1

)
= σ⊗k

(
Min

A(k)

Ã(k)

M
)(
τ⊗k

)−1
. (5.62)

If M is an
(
A, Ã

)
-Manin matrix then

Min
ιτ S̃(k)

(
σMτ−1

)
= σ⊗k

(
Min

S̃(k)
M
)(
τ⊗k

)−1
, (5.63)

MinισA(k)
(
σMτ−1

)
= σ⊗k

(
MinA(k) M

)(
τ⊗k

)−1
. (5.64)
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Proof. The formulae (5.61), (5.62) follow directly from the definition (5.45). If M is an
(
A, Ã

)
-

Manin matrix, then Proposition 2.22 implies that σMτ−1 is a
(
ισA, ιτ Ã

)
-Manin matrix. Thus

we obtain (5.63), (5.64). �

In particular, Proposition 5.20 gives the minors of σM = σM and τM = Mτ−1 for a matrix
M ∈ R⊗Hom(Cm,Cn) and permutations σ ∈ Sn, τ ∈ Sm.

Let us consider the minor operators Min
S̃(k)

M and MinA(k) M for an
(
A, Ã

)
-Manin matrix M

as nk ×mk matrices over R with the entries (5.52) and (5.53). They are also Manin matrices
for some pairs of idempotents.

Proposition 5.21. Let M be an
(
A, Ã

)
-Manin matrix. Let S(k), A(k) and S̃(k), Ã(k) are the

pairing operators for A and Ã. For any k, ` > 1 we have(
Min

S̃(k)
M
)
⊗
(

Min
S̃(`)

M
)
S̃(k+`) = M (1) · · ·M (k+`)S̃(k+`) = Min

S̃(k+`)
M, (5.65)

A(k+`)

(
MinA(k) M

)
⊗
(

MinA(`) M
)

= A(k+`)M
(1) · · ·M (k+`) = MinA(k+`) M. (5.66)

In particular, Min
S̃(k)

M and MinA(k) M are
(
1 − S(2k), 1 − S̃(2k)

)
- and

(
A(2k), Ã(2k)

)
-Manin

matrices respectively.

Proof. The formulae (5.65) and (5.66) follow from Proposition 5.8. To prove the second state-
ment one needs to put ` = k in these formulae and to apply Proposition 5.16 for 2k. �

Let us finally write the minor operators in terms of bases. Denote yα(k) = vα(Y ⊗ · · · ⊗ Y ),

x̃α(k) = ṽα
(
X̃⊗· · ·⊗X̃

)
, φ

(k)
α = (Φ⊗· · ·⊗Φ)w̃α, where ṽα = vα

S̃(k)
and w̃α = v

Ã(k)
α are eigenvectors

of the idempotents S̃(k) and (Ã(k))
> respectively. Let d̃k and r̃k be the ranks of S̃(k) and Ã(k).

Consider matrix entries of the minor operators:(
Min

S̃(k)
M
)α
β

:= vα
(

Min
S̃(k)

M
)
ṽβ = vαM (1) · · ·M (k)ṽβ, (5.67)(

MinA(k) M
)γ
δ

:= wγ
(

MinA(k) M
)
w̃δ = wγM (1) · · ·M (k)w̃δ, (5.68)

where α 6 dk, β 6 d̃k, γ 6 rk and δ 6 r̃k. Then the formulae (5.54), (5.55) are rewritten as

yα(k) =

d̃k∑
γ=1

(
Min

S̃(k)
M
)α
γ
x̃γ(k), φ

(k)
β =

rk∑
γ=1

(
MinA(k) M

)γ
β
ψ(k)
γ , (5.69)

where α = 1, . . . , dk, β = 1, . . . , r̃k. These are decompositions by bases. They generalise the
formulae given in Section 5.1.

Note that yα(k) = fM
(
xα(k)

)
and φ

(k)
α = fM

(
ψ̃

(k)
α

)
. Thus the formulae (5.69) describe the

homomorphisms fM : XA(C) → X
Ã

(R) and fM : Ξ
Ã

(C) → ΞA(R) in terms of bases (5.24)–
(5.27).

The formulae (5.58) and (5.59) are written in terms of bases in the form

(
Min

Ŝ(k)
(MN)

)α
γ

=

d̃k∑
β=1

(
Min

S̃(k)
M
)α
β

(
Min

Ŝ(k)
N
)β
γ
, (5.70)

(
MinA(k)(MN)

)α
γ

=

r̃k∑
β=1

(
MinA(k) M

)α
β

(
MinÃ(k) N

)β
γ
. (5.71)
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5.6 Minors for left-equivalent idempotents

In contrast with the quadratic algebras XA(C) and ΞA(C) their dual algebras X∗A(C) and Ξ∗A(C)
do not coincide with the corresponding algebras for a left-equivalent idempotent A′ in general,
but they do coincide for a right-equivalent idempotent A′. Indeed, by applying Proposition 2.12
to for A> and (A′)> we see that the following 4 conditions are equivalent: X∗A(C) = X∗A′(C),
Ξ∗A(C) = Ξ∗A′(C), A is right-equivalent to A′, S = 1−A is left-equivalent to S′ = 1−A′.

Proposition 5.22. Let S(k), A(k) and S′(k), A
′
(k) be the pairing operators for idempotents A

and A′. If A is left-equivalent to A′ then A(k) is left-equivalent to A′(k), while S(k) is right-equi-

valent to S′(k) for each k > 0. If A is right-equivalent to A′ then A(k) is right-equivalent to A′(k),

while S(k) is left-equivalent to S′(k) for each k > 0.

Proof. The left equivalence of A and A′ implies ΞA(C) = ΞA′(C) and hence we obtain the
equality (Ψ⊗ · · · ⊗Ψ)A(k) = (Ψ⊗ · · · ⊗Ψ) = (Ψ⊗ · · · ⊗Ψ)A′(k). By applying Corollary 5.4 we

obtain A′(k)

(
1−A(k)

)
= 0 and A(k)

(
1−A′(k)

)
= 0. Then, due to Lemma 2.11 the idempotents A(k)

and A′(k) are left-equivalent. Analogously, we obtain
(
1 − S(k)

)
S′(k) = 0,

(
1 − S′(k)

)
S(k) = 0.

By Lemma 2.11 this implies the left equivalence of 1 − S(k) and 1 − S′(k), which means in turn

the right equivalence of S(k) and S′(k) by Proposition 2.8. �

Let A,A′ ∈ End(Cn⊗Cn) be left-equivalent idempotents and let S(k), A(k) and S′(k), A
′
(k) be

the corresponding pairing operators. From Proposition 5.22 we obtain

A′(k) = G[k]A(k), S′(k) = S(k)G(k)

for some G[k], G(k) ∈ Aut
(
(Cn)⊗k

)
. Then, by means of Proposition 5.9 the identification

XA(C)k = XA′(C)k induces an isomorphism
(
(Cn)⊗k

)∗
S(k)

∼=
(
(Cn)⊗k

)∗
S′(k). Explicitly it has

the form

ξ 7→ ξ′ = ξG(k) = ξS′(k), ξ ∈
(
(Cn)⊗k

)∗
S(k).

Indeed, we have ξ′ ∈
(
(Cn)⊗k

)∗
S′(k) and ξ′(X⊗· · ·⊗X) = ξS′(k)(X⊗· · ·⊗X) = ξ(X⊗· · ·⊗X).

The inverse map is ξ′ 7→ ξ′G−1
(k) = ξS(k). Analogously, the identification ΞA(C)k = ΞA′(C)k gives

A(k)

(
(Cn)⊗k

) ∼= A′(k)

(
(Cn)⊗k

)
,

π 7→ π′ = G[k]π = A′(k)π, π ∈ A(k)

(
(Cn)⊗k

)
.

Proposition 2.10 implies the equalities of subspaces: S(k)

(
(Cn)⊗k

)
= S′(k)

(
(Cn)⊗k

)
and(

(Cn)⊗k
)∗
A(k) =

(
(Cn)⊗k

)∗
A′(k). Proposition 5.9 in turn gives the isomorphisms of vector spaces

X∗A(C)k ∼= X∗A′(C)k and Ξ∗A(C)k ∼= Ξ∗A′(C)k (these are not homomorphisms of algebras). They

are given by the formulae xAi1 · · ·x
A
ik
7→ xA

′
i1
· · ·xA′ik and ψi1A · · ·ψ

ik
A 7→ ψi1A′ · · ·ψ

ik
A′ , where xAi , xA

′
i ,

ψiA and ψiA′ are the generators of the algebras X∗A(C), X∗A′(C), Ξ∗A(C) and Ξ∗A′(C) respectively.

Let (vα)dkα=1, (vα)dkα=1 and (wα)rkα=1, (wα)rkα=1 be dual bases of S(k)

(
(Cm)⊗k

)
,
(
(Cm)⊗k

)∗
S(k),

A(k)

(
(Cm)⊗k

)
and

(
(Cm)⊗k

)∗
A(k) respectively. Then

v′α = vα, (v′)α = vαG(k) = vαS′(k), α = 1, . . . , dk,

(w′)α = wα, w′α = G[k]wα = A′(k)wα, α = 1, . . . , rk, (5.72)

are dual bases of S′(k)

(
(Cm)⊗k

)
,
(
(Cm)⊗k

)∗
S′(k),

(
(Cm)⊗k

)∗
A′(k) and A′(k)

(
(Cm)⊗k

)
.
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By substituting (v′)α and w′α to the formulae (5.24) and (5.26) we obtain the same bases
of XA′(C)k = XA(C)k and ΞA′(C)k = ΞA(C)k:

(v′)α(X∗ ⊗ · · · ⊗X∗) = vαS′(k)(X
∗ ⊗ · · ·X∗) = vα(X∗ ⊗ · · ·X∗) = xα(k),

(Ψ⊗ · · · ⊗Ψ)w′α = (Ψ⊗ · · · ⊗Ψ)A′(k)wα = (Ψ⊗ · · · ⊗Ψ)wα = ψ(k)
α . (5.73)

Note that the bases of X∗A′(C)k and XA(C)k defined by the formula (5.25) for v′α = vα are not
identified since they are elements of different algebras. The same is valid for the bases (5.27)
of ΞA′(C)k and ΞA(C)k.

Let S̃(k), Ã(k) and S̃′(k), Ã
′
(k) be the pairing operators for two left-equivalent idempotents

Ã, Ã′ ∈ End(Cm ⊗ Cm). We have S̃′(k) = S̃(k)G̃(k) and Ã′(k) = G̃[k]Ã[k] for some matrices

G̃(k), G̃[k] ∈ Aut
(
(Cm)⊗k

)
. Let M be an

(
A, Ã

)
-Manin matrix. Due to Proposition 2.21 this

means that M is an
(
A′, Ã′

)
-Manin matrix. We can consider different minor operators for M ,

but they are related by a multiplication of a complex matrix in the following way.

Proposition 5.23. For any
(
A, Ã

)
-Manin matrix we have

Min
S̃′
(k)
M =

(
Min

S̃(k)
M
)
G̃(k) =

(
Min

S̃(k)
M
)
S̃′(k),

Min
A′

(k) M = G[k]

(
MinA(k) M

)
= A′(k)

(
MinA(k) M

)
. (5.74)

Proof. The formulae are obtained by the definitions of the minors:

Min
S̃′
(k)
M = M (1) · · ·M (k)S̃′(k) = M (1) · · ·M (k)S̃(k)G̃(k) =

(
Min

S̃(k)
M
)
G̃(k),

Min
S̃′
(k)
M = M (1) · · ·M (k)S̃′(k)S̃

′
(k) =

(
Min

S̃(k)
M
)
S̃′(k),

Min
A′

(k) M = A′(k)M
(1) · · ·M (k) = G[k]A(k)M

(1) · · ·M (k) = G[k]

(
MinA(k) M

)
,

Min
A′

(k) M = A′(k)A
′
(k)M

(1) · · ·M (k) = A′(k)

(
MinA(k) M

)
. �

Note that an nk×mk matrix is a
(
A(2k), Ã(2k)

)
-Manin matrix iff it is an

(
A′(2k), Ã

′
(2k)

)
-Manin

matrix. It is a
(
1−S(k), 1−S̃(k)

)
-Manin matrix iff it is a

(
1−S′(2k), 1−S̃

′
(2k)

)
-Manin matrix. Due

to Proposition 5.21 the both matrices Min
S̃(k)

M and Min
S̃′
(k)
M are

(
1 − S(k), 1 − S̃(k)

)
-Manin

matrices as well as
(
1 − S′(2k), 1 − S̃

′
(2k)

)
-Manin matrices. They are related by the change of

basis in the space (Cm)⊗k corresponding to the matrix G̃−1
(k) (see Section 2.4). In the same way

the matrices MinA(k) M and Min
A′

(k) M are
(
A(k), Ã(k)

)
-Manin matrices as well as

(
A′(2k), Ã

′
(2k)

)
-

Manin matrices, and they are related by the change of basis in the space (Cn)⊗k corresponding
to the matrix G[k].

Let (ṽα)d̃kα=1, (ṽα)d̃kα=1 and (w̃α)r̃kα=1, (w̃α)r̃kα=1 be dual bases of S̃(k)

(
(Cm)⊗k

)
,
(
(Cm)⊗k

)∗
S̃(k),

Ã(k)

(
(Cm)⊗k

)
and

(
(Cm)⊗k

)∗
Ã(k). Let

ṽ′α = ṽα, (ṽ′)α = ṽαG̃(k) = ṽαS̃′(k), α = 1, . . . , d̃k,

(w̃′)α = w̃α, w̃′α = G̃[k]w̃α = Ã′(k)w̃
α, α = 1, . . . , r̃k.
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Proposition 5.24. Consider the entries of minor operators (5.67) and (5.68) in the bases
defined above:(

Min
S̃(k)

M
)α
β

= vα
(

Min
S̃(k)

M
)
ṽβ,

(
Min

S̃′
(k)
M
)α
β

= (v′)α
(

Min
S̃′
(k)
M
)
ṽ′β,(

MinA(k) M
)γ
δ

= wγ
(

MinA(k) M
)
w̃δ,

(
Min

A′
(k) M

)γ
δ

= (w′)γ
(

Min
A′

(k) M
)
w̃′δ.

These entries coincide:(
Min

S̃(k)
M
)α
β

=
(

Min
S̃′
(k)
M
)α
β
,

(
MinA(k) M

)γ
δ

=
(

Min
A′

(k) M
)γ
δ
.

Proof. By using
(

Min
A′

(k) M
)
Ã′(k) =

(
Min

A′
(k) M

)
, Proposition 5.23 and (w′)γA′(k) = (w′)γ we

obtain(
Min

A′
(k) M

)γ
δ

= (w′)γ
(

Min
A′

(k) M
)
w̃′δ = (w′)γ

(
Min

A′
(k) M

)
Ã′(k)w̃δ

= (w′)γ
(

Min
A′

(k) M
)
w̃δ = (w′)γA′(k)

(
MinA(k) M

)
w̃δ

= (w′)γ
(

MinA(k) M
)
w̃δ =

(
MinA(k) M

)γ
δ
.

The equality of the entries of the S-minors is proved similarly. �

5.7 Construction of pairing operators

Theorem 5.12 gives a formula for the pairing operators via dual bases. However there is basisless
method of construction. It uses the representation theory of groups and algebras, for which some
appropriate idempotents are already constructed.

The operators A(1,2), A(2,3), . . . , A(k−1,k) ∈ End
(
(Cn)⊗k

)
generate a subalgebra Uk of the alge-

bra End
(
(Cn)⊗k

)
. Equivalently, the algebra Uk can be defined as a subalgebra of End

(
(Cn)⊗k

)
generates by P (a,a+1) or S(a,a+1). Let U+

k and U−k be ideals of Uk generated by A(a,a+1)

and S(a,a+1) respectively. The commutation relations for the algebras X∗A(C), XA(C), ΞA(C)
and Ξ∗A(C) imply

(X∗ ⊗ · · · ⊗X∗)T = 0, T (X ⊗ · · · ⊗X) = 0 ∀T ∈ U+
k ,

(Ψ⊗ · · · ⊗Ψ)T = 0, T (Ψ∗ ⊗ · · · ⊗Ψ∗) = 0 ∀T ∈ U−k . (5.75)

Thus, if S(k) ∈ Uk satisfies (5.12) and 1−S(k) ∈ U+
k then S(k) is the k-th S-operator. Analogously,

an operator A(k) ∈ Uk satisfying (5.15) and 1 − A(k) ∈ U−k is the k-th A-operator. If the alge-

bra Uk admits an involution ω : P (a,a+1) 7→ −P (a,a+1) then A(k) = ω
(
S(k)

)
, so by using this

involution one can obtain the k-th A-operator from the k-th S-operator and vice versa.
Let us consider a case when the algebra Uk is a group algebra of a finite group.

Proposition 5.25. Let G+
k and G−k be subgroups of End

(
(Cn)⊗k

)
generated by the operators

P (1,2), P (2,3), . . . , P (k−1,k) and −P (1,2),−P (2,3), . . . ,−P (k−1,k) respectively. The group G+
k is fi-

nite iff the group G−k is finite. In this case the pairing operators exist and have the form

S(k) =
1

|G+
k |
∑
g∈G+

k

g, A(k) =
1

|G−k |
∑
g∈G−k

g. (5.76)

Proof. Suppose G+
k is finite. If −1 ∈ G−k then G−k = G+

k ∪
(
−G+

k

)
, so that G−k is also finite (more

precisely we haveG−k = G+
k if−1 ∈ G+

k orG−k = G+
k t
(
−G+

k

)
if−1 /∈ G+

k ). Hence we can suppose

−1 /∈ G−k . For brevity we denote ga = P (a,a+1) and g∗a = −ga = −P (a,a+1). The finiteness of
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the group G+
k means that there exists N ∈ N0 such that any element g ∈ G+

k can be written
as ga1ga2 · · · gam with m 6 N . Then any product g∗a1 · · · g

∗
aN+1

= (−1)N+1ga1 · · · gaN+1 can be

written as (−1)N+1ga′1 · · · ga′m = (−1)N+1+mg∗a′1
· · · g∗a′m for some m 6 N . By using (g∗s)

2 = 1 we

obtain (−1)N+1+m = g∗a1 · · · g
∗
aN+1

g∗a′m · · · g
∗
a′1
∈ G−k . Since −1 /∈ G−k we have (−1)N+1+m = 1, so

for any a1, . . . , aN , aN+1 there exist m 6 N and a′1, . . . , a
′
m such that g∗a1 · · · g

∗
aN+1

= g∗a′1
· · · g∗a′m .

This means that by induction we can write any element of G−k as a product g∗a1 · · · g
∗
am for some

m 6 N , which implies the finiteness of the group G−k . The converse implication is obtained by
changing the sign of P .

We have Uk = C[G+
k ] = C[G−k ]. Moreover, 1 − g ∈ U±k for any g ∈ G±k . Indeed, for

g = ±P (a,a+1) it follows from the definition of the ideals U±k ; further, if 1 − g and 1 − g′

belongs to U±k , then 1 − gg′ = (1 − g) + (1 − g′) − (1 − g)(1 − g′) ∈ U±k . Note that the
operators (5.76) satisfy gS(k) = S(k)g = S(k) ∀ g ∈ G+

k and AS(k) = A(k)g = A(k) ∀g ∈ G−k ,

hence conditions (5.12) and (5.15) are valid. Since 1 − S(k) = 1
|G+
k |
∑

g∈G+
k

(1 − g) ∈ U+
k and

1 − A(k) = 1
|G−k |

∑
g∈G−k

(1 − g) ∈ U−k , the operators S(k) and A(k) are the pairing operators for

the idempotent A. �

At k = 2 the groups consist of exactly two elements: G+
2 = {1, P}, G−2 = {1,−P}. Hence

we obtain S(2) = 1
2(1 + P ) = S and A(2) = 1

2(1 − P ) = A, which is in accordance with
Proposition 5.6.

Let Uk be an abstract algebra with an augmentation ε : Uk → C. We call an element s(k)

left invariant or right invariant (with respect to ε) if us(k) = ε(u)s(k) ∀u ∈ Uk or s(k)u =
ε(u)s(k) ∀u ∈ Uk respectively. If an element s(k) ∈ Uk is left or right invariant and normalised
as ε(s(k)) = 1, then it is an idempotent.

Let ρ : Uk → End
(
(Cn)⊗k

)
be an algebra homomorphism (representation) satisfying the

condition Uk ⊂ ρ(Uk). By applying it to the conditions of left and right invariance of s(k) we see
that S(k) = ρ(s(k)) satisfy (5.12), if we additionally suppose that ε(u1) = · · · = ε(uk−1) = 0 for

some u1, . . . , uk−1 ∈ Uk such that ρ(ua) = A(a,a+1). In the case ρ(Uk) = Uk we have S(k) ∈ Uk,
so due to the formulae (5.75) the operator S(k) is the k-th S-operator. In more general case one
need to check the conditions (5.13), (5.14); due to the normalisation ε(s(k)) = 1 it is enough
to show that the operators ρ(u)− ε(u) annihilate (X∗ ⊗ · · · ⊗X∗) and (X ⊗ · · · ⊗X) by acting
from the right and left respectively, where u runs over the algebra Uk or at least over a set of
its generators.

The pairing operators A(k) are obtained in the same way. Usually one needs to consider the
same Uk, ε, s(k) with different representation ρ or the same representation with different s(k)

and ε. Let us formulate a general statement.

Theorem 5.26. Let ρ : Uk → End
(
(Cn)⊗k

)
and ε : Uk → C be algebra homomorphisms. Let

s(k) ∈ Uk be a normalised left and right invariant element:

us(k) = s(k)u = ε(u)s(k) ∀u ∈ Uk, ε(s(k)) = 1. (5.77)

� Suppose there exist elements u1, . . . , uk ∈ Uk such that ρ(ua) = A(a,a+1) and ε(ua) = 0.
If ρ and ε satisfy

(X∗ ⊗ · · · ⊗X∗)ρ(u) = ε(u)(X∗ ⊗ · · · ⊗X∗), (5.78)

ρ(u)(X ⊗ · · · ⊗X) = ε(u)(X ⊗ · · · ⊗X) (5.79)

for all u ∈ Uk, then S(k) = ρ(s(k)) ∈ End
(
(Cn)⊗k

)
is the k-th S-operator.
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� Suppose there exist elements u1, . . . , uk ∈ Uk such that ρ(ua) = S(a,a+1) and ε(ua) = 0.
If ρ and ε satisfy

(Ψ⊗ · · · ⊗Ψ)ρ(u) = ε(u)(Ψ⊗ · · · ⊗Ψ), (5.80)

ρ(u)(Ψ∗ ⊗ · · · ⊗Ψ∗) = ε(u)(Ψ∗ ⊗ · · · ⊗Ψ∗) (5.81)

for all u ∈ Uk, then A(k) = ρ(s(k)) ∈ End
(
(Cn)⊗k

)
is the k-th A-operator.

Remark 5.27. If X∗A(C)k 6= 0 or XA(C)k 6= 0, then X∗ ⊗ · · · ⊗ X∗ 6= 0 or X ⊗ · · · ⊗ X 6= 0.
Analogously, ΞA(C)k 6= 0 and Ξ∗A(C) imply Ψ⊗ · · · ⊗Ψ 6= 0 and Ψ∗ ⊗ · · · ⊗Ψ∗ 6= 0 respectively.
In these cases the condition ε(ua) = 0 can be derived from (5.78), (5.79), (5.80) or (5.81) by the
substitution u = ua. However, to prove the non-vanishing of a component of a quadratic algebra
(and, more generally, to find its dimension) one needs sometimes to construct the corresponding
pairing operator by using Theorem 5.26.

Remark 5.28. The augmentation ε : Uk → C defines the ideal Ik := Ker(ε) of Uk. It is
a maximal ideal consisting of the elements u − ε(u), where u ∈ Uk. In terms of this ideal the
conditions (5.77) take the form us(k) = s(k)u = 0 ∀u ∈ Ik and 1− s(k) ∈ Ik.

Conversely, for any maximal ideal Ik of a finite-dimensional algebra Uk there is a unique
algebra isomorphism Uk/Ik ∼= C, so the canonical projection Uk � Uk/Ik defines an augmen-
tation ε : Uk → C. In particular, if the ideal U±k ⊂ Uk is proper, it gives an augmentation
Uk � Uk/U±k ∼= C.

If the algebra Uk admits an anti-automorphism which does not change generators then it is
enough to check only left invariance (or only right invariance) due to the following fact.

Proposition 5.29. Let ε : Uk → C be a homomorphism.

� Let s(k) be left invariant and s̄(k) be right invariant elements of the algebra Uk. If ε(s(k)) =
ε(s̄(k)) = 1, then s(k) = s̄(k).

� Let s(k) ∈ Uk be left-invariant and ε(s(k)) = 1. If there exists an anti-automorphism
α : Uk → Uk such that εα = ε then s̄(k) := α(s(k)) is right invariant and ε(s̄(k)) = 1. Hence
s(k) = s̄(k), and s(k) is right invariant as well.

� If a solution of (5.77) exists then it is unique.

Proof. The first part is proved as Proposition 5.6, that is s̄(k)s(k) = ε(s̄(k))s(k) = s(k), s̄(k)s(k) =
ε(s(k))s̄(k) = s̄(k). The second part follows from the fact that s̄(k) = α(s(k)) is right invariant
with respect to the augmentation εα−1 = ε. �

Consider the case when P satisfies the braid relation P (12)P (23)P (12) = P (23)P (12)P (23).
Since P 2 = 1 we have the homomorphisms ρ± : C[Sk]→ End

(
(Cn)⊗k

)
defined by the formulae

ρ±(σa) = ±P (a,a+1). The role of Uk is played by C[Sk]. Since G±k = ρ±(Sk) the groups G+
k

and G−k are finite. The pairing operator can be obtained by Proposition 5.25 or by Theorem 5.26.
The augmentation ε : C[Sk] → C is the counit ε(σ) = 1 ∀σ ∈ Sk. The elements ua have
the form 1−σa

2 . The operators (5.76) coincide with the image of s(k) = 1
k!

∑
σ∈Sk σ under the

homomorphisms ρ+ and ρ−, these are

S(k) =
1

k!

∑
σ∈Sk

ρ+(σ), A(k) =
1

k!

∑
σ∈Sk

(−1)σρ+(σ). (5.82)

Note that A(k) can be obtained as the image of a(k) = 1
k!

∑
σ∈Sk(−1)σσ under ρ+. In this

case one need to consider the augmentation ε(σa) = −1 and ua = 1+σa
2 .
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6 Examples of minor operators

Here we construct pairing operators for the examples given in Section 3 and consider the cor-
responding minors. Since the Manin matrices described in Sections 3.1 and 3.2 are particular
cases of the (q̂, p̂)-Manin matrices it is sufficient to consider minors for the case of Section 3.3.
The formulae for S- and A-minors of the (q̂, p̂)-Manin matrices are valid for more general case:
for (B,Ap̂)- and (Aq̂, B)-Manin matrices respectively. By starting with the idempotents R̂q− int-
roduced in Section 4.1 we write another pairing operators, which gives related minor operators
for q-Manin matrices. Finally we investigate the case of Section 3.4.

6.1 Minors for the (q̂, p̂)-Manin matrices

Consider the idempotent A = Aq̂. The pairing operators for A are given by the formulae (5.82),

where ρ+ = ρq̂ : C[Sk]→ End
(
(Cn)⊗k

)
, ρq̂(σa) = P

(a,a+1)
q̂ .

Let I = (i1, . . . , ik) and q̂II be the corresponding k × k matrix with entries (q̂II)st = qisit .
Then we have homomorphism ΞAq̂II (C)→ ΞAq̂(C) given by the formula ψs 7→ ψis . By applying
it to (3.25) one yields

ψiσ(1) · · ·ψiσ(k) =
(−1)σ

µ(q̂II , σ)
ψi1 · · ·ψik , (6.1)

where

µ(q̂, σ) :=
∏
s<t

σ−1(s)>σ−1(t)

qst, µ(q̂II , σ) =
∏
s<t

σ−1(s)>σ−1(t)

qisit .

Since Ξ∗Aq̂(C) = ΞA
q̂′

(C), where q′ij = q−1
ij we obtain

ψiσ(1) · · ·ψiσ(k) = (−1)σµ(q̂II , σ)ψi1 · · ·ψik . (6.2)

Denote eI := ei1...ik = ei1 ⊗ · · · ⊗ eik and eJ := ej1...jk = ej1 ⊗ · · · ⊗ ejk for arbitrary
I = (i1, . . . , ik) and J = (j1, . . . , jk). Let us write I = (i1 < · · · < ik 6 n) if I = (i1, i2, . . . , ik)
such that 1 6 i1 < i2 < · · · < ik 6 n.

Since ρq̂(σ)eI is proportional to eσI we have

〈ψj1 · · ·ψjk , ψi1 · · ·ψik〉 = Aj1...jki1...ik
=

1

k!

∑
σ∈Sk

(−1)σeJρq̂(σ)eI =
1

k!
eJeI =

1

k!
δJI (6.3)

for any I = (i1 < · · · < ik 6 n) and J = (j1 < · · · < jk 6 n).
The formulae (6.1), (6.2) and (6.3) give the formula for the entries of the A-operator:

A
iσ(1)...iσ(k)
jτ(1)...jτ(k)

=
〈
ψiσ(1) · · ·ψiσ(k) , ψjτ(1) · · ·ψjτ(k)

〉
=

1

k!
(−1)τ (−1)σ

µ(q̂II , σ)

µ(q̂II , τ)
δIJ , (6.4)

where I = (i1 < · · · < ik 6 n), J = (j1 < · · · < jk 6 n) and σ, τ ∈ Sk. Due to the formula (3.24)
the other entries vanish.

Note that the vectors ψi1 · · ·ψik , where 1 6 i1 < · · · < ik 6 n, form a basis of ΞAq̂(C)k, so

its dimension is rk = dim ΞAq̂(C)k = dim Ξ∗Aq̂(C)k =
(
n
k

)
. By using the formula (6.4) one can

directly check that trA(k) = rk:

trA(k) =
n∑

l1,...,lk=1

Al1...lkl1...lk
=

∑
16i1<···<ik6n

σ∈Sk

A
iσ(1)...iσ(k)
iσ(1)...iσ(k)

=
∑

16i1<···<ik6n
1 =

(
n

k

)
. (6.5)



Manin Matrices for Quadratic Algebras 59

Let us calculate the A-minors of an
(
Aq̂, Ã

)
-Manin matrix M ∈ R ⊗ Hom(Cm,Cn), where

Ã ∈ End(Cm ⊗ Cm) is an arbitrary idempotent. For any I = (i1 < · · · < ik 6 n) and
J = (j1, . . . , jk), where j1, . . . , jk = 1, . . . ,m, we have

(
MinA(k) M

)iσ(1)...iσ(k)
j1...jk

=
n∑

l1,...,lk=1

A
iσ(1)...iσ(k)
l1...lk

M l1
j1
· · ·M lk

jk

=
1

k!

∑
τ∈Sk

(−1)τ (−1)σ
µ(q̂II , σ)

µ(q̂II , τ)
M

iτ(1)
j1
· · ·M iτ(k)

jk

=
1

k!
(−1)σµ(q̂II , σ) detq̂II (MIJ) (6.6)

(the other entries vanish). Note that this is in agreement with the formulae (5.51) and (6.2).
Together with the properties the q̂-determinant with respect to a change of rows formulated
in Corollary 3.9 the relation (6.6) implies(

MinA(k) M
)i1...ik
j1...jk

=
1

k!
detq̂II (MIJ) (6.7)

for any I = (i1, . . . , ik) and J = (j1, . . . , jk).
Let Ã = Ap̂, then M is a (q̂, p̂)-Manin matrix. The formulae (5.51) and (6.1) gives us the

symmetry with respect to the lower indices in the form(
MinA(k) M

)i1...ik
jτ(1)...jτ(k)

=
(−1)τ

µ(p̂JJ , τ)

(
MinA(k) M

)i1...ik
j1...jk

,

where J = (j1 < · · · < jk 6 m) and i1, . . . , ik are arbitrary (the entries for other lower indices
vanish). This also follows from the formula (6.7) and Corollary 3.9.

Since A(k)eσI is proportional to A(k)ρq̂(σ)eI = (−1)σA(k)eI the vectors

wI = A(k)eI =
1

k!

∑
τ∈Sk

(−1)τµ(q̂II , τ)eiτ(1)...iτ(k) , I = (i1 < · · · < ik 6 n), (6.8)

form the basis of A(k)(Cn)⊗k. The corresponding elements of the dual basis are

wI = k!eIA(k) =
∑
σ∈Sk

(−1)σ
1

µ(q̂II , σ)
eiσ(1)...iσ(k) .

The A-minors in these bases are exactly q̂-minors of the matrix M :(
MinA(k) M

)I
J

= wI
(

MinA(k) M
)
w̃J = k!eIA(k)M

(1) · · ·M (k)Ã(k)eJ = wIM (1) · · ·M (k)eJ

=
∑
σ∈Sk

(−1)σ
1

µ(q̂II , σ)
M

iσ(1)
j1
· · ·M iσ(k)

jk
= detq̂II (MIJ),

where I = (i1 < · · · < ik 6 n) and J = (j1 < · · · < jk 6 m), w̃J = Ã(k)eJ . Thus we have

φ
(k)
J =

∑
I=(i1<···<ik6n) detq̂II (MIJ)ψ

(k)
I , where

φ
(k)
J =

1

k!

∑
σ∈Sk

(−1)σµ(p̂JJ , σ)φjσ(1) · · ·φjσ(k) = φj1 · · ·φjk , φj =

n∑
i=1

M i
jψi,

ψ
(k)
I =

1

k!

∑
σ∈Sk

(−1)σµ(q̂II , σ)ψiσ(1) · · ·ψiσ(k) = ψi1 · · ·ψik .
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To consider S-operators for A = Aq̂ and corresponding S-minors we first note the formula

xσ(1) · · ·xσ(n) = x1 · · ·xn
∏
i<j

σ−1(i)>σ−1(j)

qij , σ ∈ Sn, (6.9)

It is proved in the same way as (3.25). Let I = (i1 6 · · · 6 ik 6 n), i.e., I = (i1, . . . , ik) such
that 1 6 i1 6 · · · 6 ik 6 n. By applying the homomorphism XAq̂II (C) → XAq̂(C), xs 7→ xis ,
to (6.9) we obtain

xiσ(1) · · ·xiσ(k) = µ(q̂II , σ)xi1 · · ·xik . (6.10)

By changing xi → xi, qij → q−1
ij we derive

xiσ(1) · · ·xiσ(k) =
1

µ(q̂II , σ)
xi1 · · ·xik . (6.11)

Recall that for a tuple I = (i1, . . . , ik) we defined νi = |{s | is = i}| (see Section 5.1).
As we mentioned the stabiliser (Sk)I has order ν1! · · · νn!. This means that the group (Sk)I is
generated by σs ∈ (Sk)I , since the subgroup of Sk generated by these elements has exactly the
order ν1! · · · νn!. In other words, we have (Sk)I ∼= Sν1 × · · · × Sνn . Denote

νI :=
∣∣(Sk)I ∣∣ = ν1! · · · νn!. (6.12)

By taking into account Pq̂(ei ⊗ ei) = ei ⊗ ei we obtain ρq̂(σ)eI = eI for any σ ∈ (Sk)I , so that〈
xi1 · · ·xik , xj1 · · ·xjk

〉
= Si1...ikj1...jk

=
νI
k!
δIJ ,

where I = (i1 6 · · · 6 ik 6 n), J = (j1 6 · · · 6 jk 6 n). Any k-tuple is a permutation of some
I = (i1 6 · · · 6 ik 6 n), so an arbitrary entry of S(k) has the form

S
iσ(1)...iσ(k)
jτ(1)...jτ(k)

=
〈
xiσ(1) · · ·xiσ(k) , xjτ(1) · · ·xjτ(k)

〉
=
νI
k!
· µ(q̂II , σ)

µ(q̂II , τ)
δIJ . (6.13)

Note that σ−1I ≡ (iσ(1), . . . , iσ(k)) = (iτ(1), . . . , iτ(k)) ≡ τ−1I iff (Sk)I · σ = (Sk)I · τ . Hence

by permuting I = (i1 6 · · · 6 ik 6 n) by all the permutations σ ∈ Sk we obtain k!
νI

groups of νI
identical tuples. This implies the formula

n∑
l1,...,lk=1

Cl1...lk =
∑

I=(i16···6ik6n)

1

νI

∑
σ∈Sk

Ciσ(1)...iσ(k) . (6.14)

Since the vectors xi1 · · ·xik , 1 6 i1 6 · · · 6 ik 6 n form a basis of the vector space XAq̂(C)k, its

dimension is dk = dimXAq̂(C)k = dimX∗Aq̂(C)k =
(
k+n−1

k

)
. The equality trS(k) = dk for (6.13)

can be checked as

trS(k) =
n∑

l1,...,lk=1

Sl1...lkl1...lk
=

∑
I=(i16···6ik6n)

σ∈Sk

1

νI
S
iσ(1)...iσ(k)
iσ(1)...iσ(k)

=
∑

I=(i16···6ik6n)

1 =

(
k + n− 1

k

)
.

Let M ∈ R ⊗ Hom(Cm,Cn) be a (B,Ap̂)-Manin matrix and I = (i1, . . . , ik), 1 6 is 6 n,

J = (j1 6 · · · 6 jk 6 m). Let S̃(k) be the k-th S-operator for Ã = Ap̂. Then by using the
formula (6.14) we obtain(

Min
S̃(k)

M
)i1...ik
j1...jk

=
m∑

l1,...,lk=1

M i1
l1
· · ·M ik

lk
S̃l1...lkj1...jk

=
1

k!

∑
σ∈Sk

µ(p̂JJ , σ)M i1
jσ(1)
· · ·M ik

jσ(k)
,

where S̃l1...lkj1...jk
are entries of S̃(k).
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Let us introduce the q̂-permanent for a n× n matrix M by the formula

permq̂(M) =
∑
σ∈Sn

M1
σ(1) · · ·M

n
σ(n)

∏
i<j

σ−1(i)<σ−1(j)

qij ,

Then we can write〈
fM (xi1 · · ·xik), x̃j1 · · · x̃jk

〉
=
(

Min
S̃(k)

M
)i1...ik
j1...jk

=
1

k!
permp̂JJ (MIJ),

where x̃j are the generators of X∗Ap̂(C). The other entries of the S-minors are calculated by

means of the formulae (6.11):(
Min

S̃(k)
M
)i1...ik
jτ(1)...jτ(k)

=
〈
fM
(
xi1 · · ·xik

)
, x̃jτ(1) · · · x̃jτ(k)

〉
=

1

µ(p̂JJ , τ)

〈
fM
(
xi1 · · ·xik

)
, x̃j1 · · · x̃jk

〉
=

1

k!

1

µ(p̂JJ , τ)
permp̂JJ (MIJ). (6.15)

Note that q̂-determinant becomes q̂-permanent of the transposed matrix after the substitution
qij → −q−1

ij (i 6= j), so the formula (3.29) gives the corresponding properties of q̂-permanent.
In this way we obtain

permp̂LL(MIL) = detp̂JJ (MIJ)
∏
s<t

τ−1(s)>τ−1(t)

p−1
isit

for arbitrary matrix M and k-tuples I = (i1, . . . , ik), J = (j1, . . . , jk), L = (jτ(1), . . . , jτ(k))
(cf. Corollary 3.9). By using this formula and the relation (6.15) we derive(

Min
S̃(k)

M
)i1...ik
j1...jk

=
1

k!
permp̂JJ (MIJ).

for any I = (i1, . . . , ik), J = (j1, . . . , jk).
Let B = Aq̂, so M is a (q̂, p̂)-Manin matrix. The symmetry of the S-minors with respect to

the upper indices follows from the formulae (6.10):(
Min

S̃(k)
M
)iσ(1)...iσ(k)
j1...jk

=
〈
fM
(
xiσ(1) · · ·xiσ(k)

)
, x̃j1 · · · x̃jk

〉
= µ(p̂II , σ)

(
Min

S̃(k)
M
)i1...ik
j1...jk

,

where I = (i1, . . . , ik) and J = (j1, . . . , jk) are arbitrary.
The basis of S(k)(Cn)⊗k and its dual are formed by the vectors

vI =
k!

νI
S(k)eI =

1

νI

∑
σ∈Sk

µ(q̂II , σ)eiσ(1)...iσ(k) ,

vI = eIS(k) =
1

k!

∑
σ∈Sk

1

µ(q̂II , σ)
eiσ(1)...iσ(k) ,

where I = (i1 6 · · · 6 ik 6 n). The S-minors in these bases are(
Min

S̃(k)
M
)I
J

= vI
(

Min
S̃(k)

M
)
ṽJ =

k!

νJ
eIS(k)M

(1) · · ·M (k)S̃(k)eJ = eIM (1) · · ·M (k)ṽJ

=
1

νJ

∑
σ∈Sk

µ(p̂JJ , σ)M i1
jσ(1)
· · ·M ik

jσ(k)
=

1

νJ
permp̂JJ (MIJ),
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where I = (i1 6 · · · 6 ik 6 n), J = (j1 6 · · · 6 jk 6 m) and ṽJ = k!
νJ
S̃(k)eJ . We derive

yI(k) =
∑

J=(i16···6ik6m)
1
νJ

permq̂JJ (MIJ) x̃J(k), where

yI(k) =
1

k!

∑
σ∈Sk

1

µ(q̂II , σ)
yiσ(1) · · · yiσ(k) = yi1 · · · yik , yi =

m∑
j=1

M i
j x̃
j ,

x̃J(k) =
1

k!

∑
σ∈Sk

1

µ(p̂JJ , σ)
x̃jσ(1) · · · x̃jσ(k) = x̃j1 · · · x̃jk .

Let M be an n ×m (q̂, p̂)-Manin matrix and N be an m × ` (p̂, r̂)-Manin matrix such that
[M i

j , N
k
l ] = 0. From (5.70) and (5.71) we obtain the formulae

permr̂LL

(
(MN)IL

)
=

∑
J=(j16···6jk6m)

1

νJ
permp̂JJ (MIJ) permr̂LL(NJL), (6.16)

detq̂II
(
(MN)IL

)
=

∑
J=(j1<···<jk6m)

detq̂II (MIJ) detp̂JJ (NJL), (6.17)

where I = (i1 6 · · · 6 ik 6 n) and L = (l1 6 · · · 6 lk 6 `) in (6.16) and I = (i1 < · · · < ik 6 n)
and L = (l1 < · · · < lk 6 `) in (6.17).

Now let us demonstrate how the general formulae (5.63), (5.64) can be applied to q̂-permanent
and q̂-determinant. Let M be an n × n (q̂, p̂)-Manin matrix. According to Proposition 3.3 the
matrix σ

τM = σMτ−1 is a
(
σq̂σ−1, τ p̂τ−1

)
-Manin matrix. Let us use the formulae (5.63),

(5.64) for M and σ, τ ∈ Sn (this is the case m = n = k). The formula (3.21) implies

ιτ
(
ρq̂(σ)

)
= τ⊗kρq̂(σ)

(
τ⊗k

)−1
= ρτ q̂τ−1(σ). Hence ιτ S̃(n) and ισA(n) are the n-th S- and A-

operators for Aτ p̂τ−1 and Aσq̂σ−1 respectively. Note that
(
σ⊗nT (τ⊗n)−1

)i1...in
j1...jn

= T
σ−1(i1)...σ−1(in)
τ−1(j1)...τ−1(jn)

.

By taking is = s and js = s we obtain

permτ p̂τ−1(σMτ−1) =
∏
s<t

σ(s)>σ(t)

qst

∏
s<t

τ(s)>τ(t)

p−1
st permp̂(M), (6.18)

detσq̂σ−1(σMτ−1) =
∏
s<t

σ(s)>σ(t)

qst

∏
s<t

τ(s)>τ(t)

p−1
st detq̂(M). (6.19)

Consider the 2× 2 example of a (q̂, p̂)-Manin matrix:

M =

(
a b
c d

)
, q̂ =

(
1 q
q−1 1

)
, p̂ =

(
1 p
p−1 1

)
.

The formulae (3.18), (3.19) have the form

ac = q−1ca, bd = q−1db, ad− q−1pda+ pbc− q−1cb = 0.

The q̂-determinant and p̂-permanent have the from

detq̂M = ad− q−1cb = detqM, permpM := permp̂M = ad+ pbc.

Let σ = τ = σ12 ∈ S2. Since σM =
(
c d
a b

)
, Mτ−1 =

(
b a
d c

)
we obtain

detq(Mτ−1) = bc− q−1da = −p−1 detqM,

permp−1(Mτ−1) = bc+ p−1ad = p−1 permpM,

detq−1(σM) = cb− qad = −q detqM, permp(σM) = cb+ pda = q permpM.

These formulae are particular cases of (6.18), (6.19).
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6.2 Pairing operators for q-Manin matrices from Hecke algebras

The formulae of the Section 6.1 at q̂ = q[n] and p̂ = q[m] give the corresponding formulae
for the q-Manin case. Here we construct the minors for the q-Manin matrices by using the
idempotent (4.13) by supposing that q ∈ C\{0} is not a root of unity. In particular, this
condition implies that the q-numbers

kq :=
qk − q−k

q − q−1
= qk−1 + qk−3 + qk−5 + · · ·+ q1−k

do not vanish for any k ∈ Z>1.
Remind that due to the formula (4.16) the idempotents A = R̂qn− = 2−1

q

(
q−1 − R̂qn

)
and

A′ = Aqn are left-equivalent, so the quadratic algebras for these idempotents coincide with each
other: X

R̂qn−
(C) = XAqn(C) and Ξ

R̂qn−
(C) = ΞAqn(C). The “dual” quadratic algebras do not

coincide. Namely, since the idempotent R̂qn− is right-equivalent to Aq
−1

n (the formula (4.17)) we
have X∗

R̂qn−
(C) = X∗

Aq
−1
n

(C) = XAqn(C) and Ξ∗
R̂qn−

(C) = Ξ∗
Aq
−1
n

(C) = ΞAqn(C).

Let us construct pairing operators for the idempotent A = Rqn−. Due to Lemma 4.3 the dual
idempotent S = 1−A = Rqn+ has the form (4.12). The algebra Uk in this case is a subalgebra of

End
(
(Cn)⊗k

)
generated by the matrices

(
R̂qn
)(a,a+1)

, while its maximal ideals U±k are generated

by
(
R̂qn±

)(a,a+1)
. Since R̂qn satisfies the braid relation (4.10) and Hecke relation (4.15) the role

of this algebra is Uk is played by the Hecke algebra.
Recall that the Hecke algebra Hqk is the algebra generated by h1, . . . , hk−1 with the relations(

ha − q−1
)
(ha + q) = 0 a = 1, . . . , k − 1, (6.20)

hahb = hbha, |a− b| > 1, (6.21)

haha+1ha = ha+1haha+1, a = 1, . . . , k − 2. (6.22)

For b 6 k we will identify the subalgebra generated by h1, . . . , hb with Hqb . Note that the
relations (6.21) implies that the elements of Hqb commute with hb+1, . . . , hk−1.

The algebra Uk is the image of the representation

ρ : Hqk → End
(
(Cn)⊗k

)
, ρ(ha) =

(
R̂qn
)(a,a+1)

. (6.23)

The relations (6.20), (6.22) and the conditions on the parameter q imply that there are exactly
two augmentations

ε+ : Hqk → C, ε+(ha) = q−1, ε− : Hqk → C, ε−(ha) = −q. (6.24)

Since R̂qn−q−1 = −2qR̂
q
n− and R̂qn+q = 2qR̂

q
n+, we have ρ(u±a ) =

(
R̂qn∓

)(a,a+1)
and ε(u±a ) = 0 for

u±a = q∓1∓ha
2q

. Hence to apply Theorem 5.26 we only need idempotents s+
(k), s

−
(k) ∈ H

q
k invariant

with respect to the augmentations ε+ and ε− respectively. Such idempotents were constructed
by D. Gurevich on the level of representation (6.23). We define the idempotents s±(k) (as some

elements of the abstract Hecke algebra) by following his work [11].
Consider the elements

t+k = qk−1 + qk−2hk−1 + qk−3hk−2hk−1 + · · ·+ h1 · · ·hk−1, (6.25)

t−k = q1−k − q2−khk−1 + q3−khk−2hk−1 − · · ·+ (−1)k−1h1 · · ·hk−1. (6.26)

By applying the augmentations (6.24) we obtain

ε±(t±k ) = kq. (6.27)
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The elements (6.25), (6.26) can be defined iteratively by the formulae t±1 = 1 and

t±k = q±(k−1) ± t±k−1hk−1.

Define the elements s±(k) iteratively as

s±(k) = k−1
q t±k s

±
(k−1), s±(1) = 1. (6.28)

Note that ρ
(
s±(2)

)
= R̂qn±.

It was proved in [11] that ρ
(
s±(k)

)
are left and right invariant with respect to corresponding

augmentations of Uk = ρ(Hqk). This proof is suitable to establish the invariance of s±(k) with

respect to ε±, but we give an alternative proof.

Proposition 6.1. The formulae (6.28) define idempotents s±(k) satisfying

ε±
(
s±(k)

)
= 1, us±(k) = s±(k)u = ε±(u)s±(k) ∀u ∈ Hqk. (6.29)

Hence S(k) = ρ
(
s+

(k)

)
and A(k) = ρ

(
s−(k)

)
are pairing operators for A = R̂qn−.

Proof. The first formula follows from (6.27) and the equality ε±
(
s±(k−1)

)
= 1 which can be

supposed by induction. Further we prove the left invariance. Suppose us±(k−1) = ε±(u)s±(k−1)

∀u ∈ Hqk−1. We need to prove has
±
(k) = ±q∓1s±(k) for a = 1, . . . , k − 1. Denote by I±b,k the left

ideal of Hqk generated by the elements u − ε±(u), u ∈ Hqb . Due to the induction assumption
we have I±b,ks

±
(k−1) = 0 for b = 1, . . . , k− 1. Then the relations we need to prove follows from the

formulae hk−lt
±
k ∈ ±q

∓1t±k + I±k−l,k which we prove by induction in l > 1. For l = 1 we have

hk−1t
±
k = q±(k−1)hk−1 ± q±(k−2)h2

k−1 + hk−1

k−1∑
a=2

(±1)aq∓ahk−a · · ·hk−3hk−2hk−1.

By using the relations (6.20)–(6.22) we obtain

hk−1t
±
k = q±(k−1)hk−1 ± q±(k−2) ± q±(k−2)

(
q−1 − q

)
hk−1

+
k−1∑
a=2

(±1)aq∓ahk−a · · ·hk−3hk−2hk−1hk−2.

By taking into account qk−1 + qk−2
(
q−1 − q

)
= q−1qk−2 and q1−k − q2−k(q−1 − q

)
= qq2−k we

derive hk−1t
±
k ∈ ±q

∓1t±k + I±k−1,k. Suppose that hk−lt
±
k ∈ ±q

∓1t±k + I±k−l,k for some l > 1 and
all k > l then for any k > l + 1 we obtain

hk−l−1t
±
k = q±(k−1)hk−l−1 ± hk−l−1t

±
k−1hk−1

∈ q±(k−1)hk−l−1 ±
(
±q∓1

)
t±k−1hk−1 + I±k−l−1,k−1hk−1.

Since uhk−1 = hk−1u for any u ∈ Hqk−l−1 we have the inclusion I±k−l−1,k−1hk−1 ⊂ I±k−l−1,k, so that

hk−l−1t
±
k ∈ ±q

∓1t±k + I±k−l−1,k. The right invariance of s±(k) now follows from Proposition 5.29,

since the formula ρ(ha) = ha defines an anti-automorphism of Hqk. �

Corollary 6.2. We have the following symmetric recurrent formulae:

s±(k) =
q±(k−1)

kq
s±(k−1) ±

(k − 1)q
kq

s±(k−1)hk−1s
±
(k−1), (6.30)

S(k) =
qk−1

kq
S(k−1) +

(k − 1)q
kq

S(k−1)

(
R̂qn
)(k−1,k)

S(k−1), (6.31)

A(k) =
q1−k

kq
A(k−1) −

(k − 1)q
kq

A(k−1)

(
R̂qn
)(k−1,k)

A(k−1). (6.32)
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Proof. By multiplying t±k = q±(k−1) ±
∑k−2

a=0(±1)aq±(k−2−a)hk−1−a · · ·hk−1 by s±(k−1) from the

right and taking into account (6.29) for k − 1 we obtain

s±(k−1)t
±
k = q±(k−1)s±(k−1) ±

k−2∑
a=0

(±1)aq±(k−2−a)ε±(hk−1−a · · ·hk−2)s±(k−1)hk−1

= q±(k−1)s±(k−1) ±
k−2∑
a=0

q±(k−2−a)q∓as±(k−1)hk−1

= q±(k−1)s±(k−1) ± (k − 1)qs
±
(k−1)hk−1.

Substituting it to s±(k) = s±(k−1)s
±
(k) = 1

kq
s±(k−1)t

±
k s
±
(k−1) we obtain (6.30). Application of the

homomorphism ρ to (6.30) gives the formulae (6.31) and (6.32). �

Let us calculate the entries of the A-operators for the idempotent A = Rqn−. Since we have

XA(C) = XAq̂(C) and X∗A(C) = X∗Ap̂(C) for qij = qsgn(j−i) and pij = qsgn(i−j) the formulae (6.1),

(6.2) take the form

ψiσ(1) · · ·ψiσ(k) = (−1)σq− inv(σ)ψi1 · · ·ψik ,

ψiσ(1) · · ·ψiσ(k) = (−1)σq− inv(σ)ψi1 · · ·ψik ,

where i1 < · · · < ik. Hence

A
iσ(1)...iσ(k)
jτ(1)...jτ(k)

= (−1)σ(−1)τq− inv(σ)−inv(τ)Ai1...ikj1...jk
, (6.33)

for i1 < · · · < ik, j1 < · · · < jk and the other entries of A(k) vanish.

To find Ai1...ikj1...jk
we first write the formula (6.33) for the longest permutation σ = τ :

Aik...i1jk...j1
= q−k(k−1)Ai1...ikj1...jk

. (6.34)

Let us prove that there are numbers λk ∈ C such that

Aik...i1jk...j1
= λkδ

ik
jk
· · · δi1j1 (6.35)

for any ik > ik−1 > · · · > i1 and jk > jk−1 > · · · > j1. This holds for k = 1 with λ1 = 1.
Suppose it holds for k − 1, then by taking the corresponding entries in (6.32) we obtain

Aik...i1jk...j1
=
q1−k

kq
Aik...i2jk...j2

δi1j1 −
(k − 1)q
kq

∑
lk...l2l

′
2

Aik...i2lk...l2

(
R̂qn
)l2i1
l′2j1

A
lk...l3l

′
2

jk...j3j2
.

If the term in the sum does not vanish then l2 = is for some s = k, . . . , 2 and l′2 = jt for some

t = k, . . . , 2, so we have l2 > i1 and l′2 > j1. The expression (4.9) implies that
(
R̂qn
)ii′
jj′

= 0

for i > i′ and j > j′. Hence the sum vanishes and we obtain (6.35) with λk = q1−k

kq
λk−1.

Iteratively we derive λk = q−k(k−1)/2

kq !
, where kq! = kq(k − 1)q · · · 2q1q. Thus due to (6.33), (6.34)

and (6.35) we obtain

A
iσ(1)...iσ(k)
jτ(1)...jτ(k)

=
qk(k−1)/2

kq!
(−1)σ(−1)τq− inv(σ)−inv(τ)δi1j1 · · · δ

ik
jk

for i1 < · · · < ik and j1 < · · · < jk.
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Since rk = dim Ξ
R̂qn−

(C)k = dim ΞAqn(C)k =
(
k
n

)
we have trA(k) =

(
k
n

)
. Explicit calculation

of the trace (cf. (6.5)) gives us the formula∑
σ∈Sk

q−2 inv(σ) = q−k(k−1)/2 kq! (6.36)

(it can be also checked by induction).

Denote by A′(k) the k-th A-operator for A′ = Aqn. Its non-zero entries are given by the

formula (6.4) for q̂ = q[n], that is

(A′)
iσ(1)...iσ(k)
jτ(1)...jτ(k)

=
1

k!
(−1)τ (−1)σqinv(σ)−inv(τ)δIJ ,

where I = (i1 < · · · < ik 6 n), J = (j1 < · · · < jk 6 n). Due Proposition 5.22 the idempo-
tents A′(k) and A(k) are left-equivalent, so that A′(k) = G[k]A(k) for some invertible matrix G[k].
The latter can be chosen as a diagonal matrix with entries

(
G[k]

)iσ(1)...iσ(k)
iσ(1)...iσ(k)

=
kq!

k!
q2 inv(σ)−k(k−1)/2, for i1 < · · · < ik, σ ∈ Sk,(

G[k]

)l1...lk
l1...lk

= 1, if ls = lt for some s 6= t. (6.37)

Let M be an
(
R̂qn−, Ap̂

)
-Manin matrix, i.e., a

(
q[n], p̂

)
-Manin matrix. Its A-minors are related

by the formula (5.74). Substitution q̂ = q[n] to (6.6) yields

(
Min

A′
(k) M

)iσ(1)...iσ(k)
jτ(1)...jτ(k)

=
1

k!
(−1)τ (−1)σ

qinv(σ)

µ(p̂JJ , τ)
detq(MIJ).

By dividing this by (6.37) we obtain the A-minors

(
MinA(k) M

)iσ(1)...iσ(k)
jτ(1)...jτ(k)

=
qk(k−1)/2

kq!
(−1)τ (−1)σ

q− inv(σ)

µ(p̂JJ , τ)
detq(MIJ).

Let w′I = A′(k)eI be the basis (6.8) for q̂ = q[n]. Then by the formula (5.72) we obtain the

corresponding basis of A(k)

(
(Cn)⊗k

)
:

wI = G−1
[n]w

′
I = G−1

[n]A
′
(k)eI = A(k)eI =

qk(k−1)/2

kq!

∑
σ∈Sk

(−1)σq− inv(σ)eiσ(1)...iσ(k) . (6.38)

One can directly check that the basis ψ
(k)
I defined by the bases wI and w′I coincide (see (5.73)):

by using the formulae (6.38), (6.1) and (6.36) we derive

ψ
(k)
I =

qk(k−1)/2

kq!

∑
σ∈Sk

(−1)σq− inv(σ)ψiσ(1) · · ·ψiσ(k) = ψi1 · · ·ψik .

Due to Proposition 5.24 the entries of the corresponding A-minor operators coincide for the
corresponding bases:

wI
(

Min
A′

(k)
)
w̃J = wI

(
MinA(k)

)
w̃J ,

where w̃J is the same as in Section 6.1.
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6.3 Pairing operators for the 4-parametric case

Here we consider the case described in Section 3.4. The idempotent A = Aa,b,cκ is parametrised
by a, b, c ∈ C\{0} and κ ∈ C. The commutation relations for the quadratic algebra ΞA(C) are
ψiψj +

∑3
k,l=1 ψkψlP

kl
ij = 0. They can be written in the form ψiψj + a2

ijψjψi = 0, i 6= j, and

2ψ2
i = −κ

∑3
k,l=1 εiklalkψkψl or

ψ2
i = κajkψkψj = −κakjψjψk, (i, j, k) ∈ C3, (6.39)

where C3 is the set of cyclic permutations (1, 2, 3), (2, 3, 1) and (3, 1, 2).
The algebra Ξ∗A(C) is defined by the commutation relations ψiψj +

∑3
k,l=1 P

ij
klψ

kψl = 0,

these are ψiψj + a2
jiψ

jψi + κaji
∑3

k=1 εijkψ
kψk = 0. For i = j we obtain ψiψi = 0, so we have

Ξ∗
Aa,b,cκ

(C) = Ξ∗Aq̂(C), where qij = a2
ij . This implies that the idempotents Aa,b,cκ and Aq̂ are

right-equivalent. In particular, Ξ∗
Aa,b,cκ

(C) =
⊕3

k=0 Ξ∗
Aa,b,cκ

(C)k and the dimensions of the com-

ponents are dim Ξ∗
Aa,b,cκ

(C)0 = 1, dim Ξ∗
Aa,b,cκ

(C)1 = 3, dim Ξ∗
Aa,b,cκ

(C)2 = 3, dim Ξ∗
Aa,b,cκ

(C)3 = 1,

dim Ξ∗
Aa,b,cκ

(C)k = 0 for k > 4.

From the relations (6.39) we see that dim Ξ
Aa,b,cκ

(C)2 = 3. However, the dimension of

Ξ
Aa,b,cκ

(C)3 is not always equal to 1, it depends on the parameters. The following theorem
describes these dependence and gives the necessary and sufficient condition for existence of the
corresponding pairing operator. Note that it is enough to consider the case κ 6= 0 since the case
of the idempotent Aa,b,c0 = Aq̂ was considered in Section 6.1.

Theorem 6.3. Assume κ 6= 0. Consider the conditions

(i) a2 = b2 = c2;

(ii) a4b2 = b4c2 = c4a2 = −1, κ3 = −a3b−1c;

(iii) a4c2 = b4a2 = c4b2 = −1, κ3 = a−3b−1c. (6.40)

Any two of these conditions implies the third one. We have Ξ
Aa,b,cκ

(C) =
⊕3

k=0 Ξ
Aa,b,cκ

(C)k with
the dimensions of the components

dim Ξ
Aa,b,cκ

(C)0 = 1, dim Ξ
Aa,b,cκ

(C)1 = 3, dim Ξ
Aa,b,cκ

(C)2 = 3,

dim Ξ
Aa,b,cκ

(C)3 =


3 iff all three conditions (6.40) hold,

1 iff one and only one of three conditions (6.40) holds,

0 iff no one of three conditions (6.40) holds,

dim Ξ
Aa,b,cκ

(C)k = 0 for k > 4.

The third A-operator exists iff the condition (i) holds and (ii), (iii) do not. It equals

A(3) = w1w
1, where w1 =

1

6
(e123 + e231 + e312)− a2

6
(e132 + e213 + e321), (6.41)

w1 = e123 + e231 + e312 − a−2
(
e132 + e213 + e321

)
− κ
(
b−1e111 + c−1e222 + a−1e333

)
.

(6.42)

In this case the elements ψiψjψk ∈ Ξ
Aa,b,cκ

(C)3 have the form

ψiψjψk = ψ
(3)
1 , ψiψkψj = −a−2ψ

(3)
1 , (i, j, k) ∈ C3, (6.43)

ψ2
i ψj = ψiψjψi = ψjψ

2
i = 0, i 6= j, (6.44)

ψ3
1 = −κb−1ψ

(3)
1 , ψ3

2 = −κc−1ψ
(3)
1 , ψ3

3 = −κa−1ψ
(3)
1 , (6.45)

where ψ
(3)
1 = (Ψ⊗Ψ⊗Ψ)w1 = ψ1ψ2ψ3.
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Proof. Under the condition (i) both conditions (ii) and (iii) gives a6 = −1, which in turn im-
plies −a3b−1c = a−3b−1c. Hence (i) implies equivalence of (ii) and (iii). Further, by comparing
the conditions (ii) and (iii) we see that they imply (i).

Now let us use Theorem 5.12. Since the idempotents Sa,b,cκ = 1−Aa,b,cκ and Sq̂ = 1−Aq̂ are

left-equivalent the space Wk for the case A = Aa,b,cκ coincide with the space Wk for A = Aq̂.

In particular, W3 = Cw1. The space W 3 consists of the covectors ξ =
∑3

i,j,k=1 ξijke
ijk satisfying

ξP (12) = ξP (23) = −ξ. This gives us the system of equations

ξijl = −a2
ijξjil, ξlij = −a2

ijξlji, i 6= j, (6.46)

ξiil = κajkξkjl, ξlii = κajkξlkj , (i, j, k) ∈ C3. (6.47)

The coefficients ξijk can be divided into three sets:

{ξiii | i = 1, 2, 3} ∪ {ξijk | i 6= j 6= k 6= i}, (6.48)

{ξiij , ξiji, ξjii | (i, j, k) ∈ C3}, (6.49)

{ξijj , ξjij , ξjji | (i, j, k) ∈ C3}. (6.50)

The relations (6.46), (6.47) imply that any two coefficients from the same set are proportional to
each other (with a non-zero coefficient of proportionality), so that dimW 3 6 3. The isomorphism
ΞA(C)3

∼= W
∗
3 implies that dim ΞA(C)3 = dimW 3. Let us prove that non-vanishing of the

coefficients from the sets (6.48), (6.49), (6.50) corresponds exactly to the conditions (i), (ii),
(iii) respectively.

Note that there are two types of symmetries of the system of equations (6.46), (6.47). First,
it is invariant under the cyclic permutations of indices 1 7→ 2 7→ 3 7→ 1 and 1 7→ 3 7→ 2 7→ 1.
Second, it is invariant under other permutations i ↔ j, i 6= j, with the sign change κ 7→ −κ.
This system implies that ξ111 = κa23ξ132 = κa23a

2
13a

2
12ξ321 = a2

13a
2
12ξ111. A cyclic permutation

gives ξ222 = a2
21a

2
23ξ222. If the coefficients from the set (6.48) do not vanish then a2

31 = a2
12 = a2

23.
This is the condition (i). Conversely, if the condition (i) holds then there exists a solution with
non-vanishing coefficients (6.48), namely ξ = w1 (the coefficients from (6.49) and (6.50) vanish
in this solution).

Write down some relations between the coefficients (6.49) that follows from the system (6.46),
(6.47):

ξ112 = −a2
12ξ121 = a4

12ξ211 = κa23a
4
12ξ232, (6.51)

ξ112 = κa23ξ322 = −κa23a
2
32ξ232, (6.52)

ξ322 = −κa13ξ331 = κ2a13a21ξ121. (6.53)

All other relations is obtained by the symmetry of the first type. By equating the same coef-
ficients we obtain the condition of existence of non-vanishing solution of (6.51)–(6.53), they are
a4

12a
2
23 = −1, κ3 = −a3

12a
−1
23 a31. The symmetry gives the whole condition (ii). Thus there is

a non-zero solution ξ = w2 with vanishing coefficients from (6.48) and (6.50). By applying
the symmetry of the second type we obtain the relations between the coefficients (6.50) and
the condition (iii). This means that (iii) is necessary and sufficient condition for existence of
a non-zero solution ξ = w3 with vanishing coefficients (6.48) and (6.49).

The isomorphism ΞA(C)3
∼= W

∗
3 identifies the elements ψiψjψk with linear functions on W 3.

By substituting π = eijk to the formula (5.30) we obtain ψiψjψk(ξ) = ξijk, where i, j, k = 1, 2, 3
and ξ =

∑3
i,j,k=1 ξijke

ijk ∈ W k. Thus the elements ψiψjψk for i 6= j 6= k 6= i and ψ3
i do not

vanish iff (i) holds. Similarly, (ii) and (iii) are conditions of non-vanishing of the elements
ψ2
i ψj , ψiψjψi, ψjψ

2
i , where (i, j) = (1, 2), (2, 3), (3, 1) and (i, j) = (2, 1), (3, 2), (1, 3) respectively.
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To prove that dim ΞA(C)k = 0 for k > 0 it is enough to check it for k = 4. Note that
the relations (6.39) implies that all the elements ψi1ψi2ψi3ψi4 are proportional to each other,
that is dim ΞA(C)4 6 1. If dim ΞA(C)3 < 3 then ψi1ψi2ψi3 vanishes for some i1, i2, i3 and
hence ΞA(C)4 = 0. In the case dim ΞA(C)3 = 3 all the conditions (6.40) hold. In particular,
a6 = −1. Suppose that dim ΞA(C)4 6= 0 and hence all the elements ψi1ψi2ψi3ψi4 do not vanish.
From the chain of relations ψ3ψ

2
1ψ2 = κa23ψ

2
3ψ

2
2 = κ3a23a12a31ψ2ψ

2
1ψ3 = κ3a23a12a31ψ2ψ

2
1ψ3 =

−κ3a23a12a31a
4
21a

2
23a

4
13ψ3ψ

2
1ψ2 we obtain κ3a3

21a
3
23a

3
13 = −1. By substituting (i) and (ii) we

obtain −1 = −a3b−1ca−1b3c−3 = −a2b2c−2 = −a2, which implies a6 = 1. This contradicts with
a6 = −1, hence ΞA(C)4 = 0.

The existence of A(3) implies dimW 3 = dimW3 = 1, so that one and only one of the

conditions (6.40) holds. Namely W 3 has the form Cw1, Cw2 or Cw3 under the condition
(i), (ii) or (iii) respectively. But wαw1 = 0 for α = 2, 3, so that only the condition (i) is
relevant. Since w1w1 = 1 we have A(3) = w1w

1. Note that ψiψjψk = (X ⊗ X ⊗ X)eijk =

(X⊗X⊗X)A(3)eijk = ψ
(3)
1 w1eijk, i, j, k = 1, 2, 3. By substituting the explicit expression for w1

we derive the formulae (6.43)–(6.45). �

Remark 6.4. The three cases when dim Ξ
Aa,b,cκ

(C)3 = 1 correspond to the conditions

(I) a2 = b2 = c2 and
(
a6 6= −1 or κ3 6= −abc

)
;

(II) b2 = a14, c2 = a26, a18 = −1, a6 6= −1, κ3 = a7bc;

(III) b2 = a26, c2 = a14, a18 = −1, a6 6= −1, κ3 = a7bc

(cf. [21, conditions (1.4.1) and (1.4.5)]). The condition (I) is exactly the case when A(3) exists.

Remark 6.5. The dimension of the space XA(C)3 also depends on the values of the parame-
ters a, b, c, κ. By using the relations (3.32) one can relate xyz with zyx in two different ways.
As a result we obtain two different expressions for xyz − a−2b−2c2zyx, namely,

κb−1x3 − κcb−2y3 + κa−1b−2c2z3 = κa−1z3 − κca−2y3 + κb−1a−2c2x3.

Assume κ 6= 0. Then we see that the elements x3, y3, z3 are linearly independent iff the
condition (i) holds. One can also obtain the relation(

κa−1bc−1 + a2
)
x2y +

(
κa−1b3c−1 − a−2

)
yx2

= κ
(
a+ a−1c−4

)
xz2 + κa−1

(
c−3 + b4c−1

)
y2z.

One can deduce that the dimension of the subspace spanned by the elements x2
ixj , xixjxi, xjx

2
i ,

(i, j, k) ∈ C3, equals 4 if the condition (ii) holds and it equals 3 if this condition is false. The
dimension of the subspace spanned by the elements x2

jxi, xjxixj , xix
2
j , (i, j, k) ∈ C3, depends on

the condition (iii) in the same way (see [21, Theorem 1.4]). Thus the difference dimXA(C)3 −
dim ΞA(C)3 does not depend on the values of the parameters and equals 9. Moreover, the third

S-operator S(3) for the idempotent Aa,b,cκ exists iff the A-operator A(3) exists.

Finally we write the A-Minors for an
(
Aa,b,cκ , B

)
-Manin matrix M . By substituting the

expression Aijkl = 1
2(δikδ

j
l − a2

jiδ
i
lδ
j
k − κajiδklεijk) to

(
MinA(2) M

)ij
j1j2

=
∑3

k,l=1A
ij
klM

k
j1
M l
j2

we
obtain(

MinA(2) M
)ij
j1j2

=
1

2

(
M i
j1M

j
j2
− a2

jiM
j
j1
M i
j2 − κajiM

k
j1M

k
j2

)
,(

MinA(2) M
)ji
j1j2

= −a2
ij

(
MinA(2) M

)ij
j1j2

,
(

MinA(2) M
)ii
j1j2

= 0,

where (i, j, k) ∈ C3.
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Let a2 = b2 = c2 and the condition (ii) do not hold (a6 6= −1 or κ 6= −abc). The com-
ponents of the pairing operator A(3) = w1w

1 have the form Ai1i2i3k1k2k3
= wi1i2i31 w1

k1k2k3
. Hence(

MinA(3) M
)i1i2i3
j1j2j3

= wi1i2i31

∑3
k1,k2,k3=1w

1
k1k2k3

Mk1
j1
Mk2
j2
Mk3
j3

. By using (6.41), (6.42) we obtain(
MinA(3) M

)123

j1j2j3
=

1

6

∑
(i,j,k)∈C3

(
M i
j1M

j
j2
Mk
j3 − a

−2M j
j1
M i
j2M

k
j3

)
− κ

6

(
b−1M1

j1M
1
j2M

1
j3 + c−1M2

j1M
2
j2M

2
j3 + a−1M3

j1M
3
j2M

3
j3

)
,

(
MinA(3) M

)i1i2i3
j1j2j3

=


(

MinA(3) M
)123

j1j2j3
if (i1, i2, i3) ∈ C3,

−a2
(

MinA(3) M
)123

j1j2j3
if (i2, i1, i3) ∈ C3,

0 if ik = il for some k 6= l.

7 Manin matrices of types B, C and D

Remind that the An-Manin matrices and Aqn-Manin matrices are related with the Yangi-
ans Y (gln) and quantum affine algebras Uq

(
ĝln
)

respectively. The Lie algebra gln = gl(n,C) is
usually considered as the case “type A”, since gln

∼= C⊕ sln, where sln = sl(n,C) is the simple
algebra of the type An−1. Hence these Manin matrices can be referred to the type A. Moreover,
the minor operators for more general (q̂, p̂)-Manin matrices are described by using the symmetric
groups Sk, which are the Weyl groups of the type Ak−1 and participate in Schur–Weyl duality
with the Lie algebras gln.

A generalisation of the An-Manin matrices to the types B, C and D was introduced by
A. Molev. Remind that so2r+1 = so(2r+ 1,C), sp2r = sp(2r,C) and so2r = so(2r,C) are simple
Lie algebras of types Br, Cr and Dr respectively (where r > 2 for Dr). In this section we assume
that n = 2r + 1 for the Br case and n = 2r for the Cr and Dr cases.

7.1 Molev’s definition and corresponding quadratic algebras

By starting with the definition of Manin matrices of types B, C and D we interpret them as
Manin matrices for quadratic algebras. To do it we use the notations i′ = n− i+ 1 and

εi =

{
1, i = 1, . . . , r,

−1, i = r + 1, . . . , n;

(the notation εi is used for the case Cr only). Introduce the operators Qn ∈ End(Cn ⊗ Cn) for
the B and D cases and Q̃n ∈ End(Cn ⊗ Cn) for the C case:

Qn =

n∑
i,j=1

Ei
j ⊗ Ei′j

′
, Q̃n =

n∑
i,j=1

εiεjEi
j ⊗ Ei′j

′
.

One can check that these operators satisfies the following relations:

(Qn)2 = nQn, PnQn = QnPn = Qn, (7.1)

(Q̃n)2 = nQ̃n, PnQ̃n = Q̃nPn = −Q̃n, (7.2)

where Pn is the permutation operator defined in Section 3.1.

Definition 7.1 ([28]). A matrix M ∈ R⊗End(Cn) is a Manin matrix of the type B (for odd n)
or D (for even n) if it satisfies

(1− Pn)M (1)M (2)

(
1 + Pn

2
− Qn

n

)
= 0. (7.3)
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A matrix M ∈ R⊗ End(Cn) for even n is a Manin matrix of the type C if it satisfies(
1− Pn

2
− Q̃n

n

)
M (1)M (2)(1 + Pn) = 0. (7.4)

Introduce operators Bn ∈ End(Cn ⊗Cn) for the B and D cases and B̃n ∈ End(Cn ⊗Cn) for
the C case as

Bn =
1− Pn

2
+
Qn
n

= An +
Qn
n
, B̃n =

1− Pn
2

− Q̃n
n

= An −
Q̃n
n
.

The formulae (7.1), (7.2) implies that these operators are idempotents. We see that the re-
lations (7.3) and (7.4) can be written as the definition (2.20) by means of the idempotents
An = 1−Pn

2 , Bn and B̃n.

Proposition 7.2. A matrix M ∈ R ⊗ End(Cn) is a Manin matrix of type B or D iff it is
an (An, Bn)-Manin matrix. A matrix M ∈ R ⊗ End(Cn) is a Manin matrix of type C iff it is
an
(
B̃n, An

)
-Manin matrix (for even n).

Now let us consider the quadratic algebras related with the idempotents Bn and B̃n.

Proposition 7.3. The commutation relations for the algebras XBn(C) and Ξ
B̃n

(C) are

Pn(X ⊗X) = X ⊗X, Qn(X ⊗X) = 0 (7.5)

and

(Ψ⊗Ψ)Pn = −Ψ⊗Ψ, (Ψ⊗Ψ)Q̃n = 0 (7.6)

respectively.

Proof. The relation Bn(X ⊗X) = 0 has the form(
1− Pn

2
+
Qn
n

)
(X ⊗X) = 0.

Multiplication by Qn from the left gives Qn(X ⊗X) = 0, so we derive (7.5). Analogously, (7.6)
can obtained from (Ψ⊗Ψ)

(
1− B̃n

)
= 0 by multiplication by Q̃n from the right. The converse

implications are obvious. �

The algebra XBn(C) is the quotient of the polynomial algebra C[x1, . . . , xn] = XAn(C) by the
relation

n∑
i=1

xixi
′

= 0.

The group of matricesG ∈ GL(n,C) preserving the symmetric bilinear form gn(x, y) =
∑n

i=1 x
iyi
′

is isomorphic to O(n,C).
The algebra ΞBn(C) is generated by λ, ψ1, . . . , ψn with the relations

ψiψj + ψjψi = λδi,j′ .

Note that λ = ψ1ψn + ψnψ1 = 2
n

∑n
i=1 ψiψi′ is a central element and the Grassmann algebra

ΞAn(C) is the quotient of ΞBn(C) by the relation λ = 0 (by fixing a non-zero value of λ we
obtain the Clifford algebra Cln(C)).
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The algebra X
B̃n

(C) is generated by λ̃, x1, . . . , xn with the relations

xixj − xjxi = λ̃εiδi,j′ ,

where n = 2r. If n > 4 then the element λ̃ = x1xn − xnx1 = 1
r

∑r
i=1(xixi

′ − xi′xi) is central
and X

B̃n
(C) is the universal enveloping of the (n + 1)-dimensional Heisenberg Lie algebra (by

fixing a non-zero value of λ̃ we obtain the Weyl algebra Ar(C)).
The algebra Ξ

B̃n
(C) the quotient of the Grassmann algebra ΞAn(C) with the Grassmann

variables ψ1, . . . , ψn by the relation

r∑
i=1

ψiψi′ = 0.

Note that
∑r

i=1 ψiψi′ = 1
2

∑r
i=1(ψiψi′ − ψi′ψi). The group of matrices G ∈ GL(n,C) preserving

the antisymmetric bilinear form ωr(x, y) =
∑r

i=1(xiyi′ − yi′xi) is isomorphic to Sp(2r,C).
These forms of the quadratic algebras XBn(C) and Ξ

B̃n
(C) give us the relation between

the Manin matrices of the types B, C, D and the Manin matrices (of type A) considered
in Section 3.1.

Proposition 7.4. Let M ∈ R⊗Hom(Cm,Cn).

� If M is an (An, Am)-Manin matrix, then M is an (An, Bm)-Manin matrix and an(
B̃n, Am

)
-Manin matrix in the same time.

� If M is a (Bn, Bm)-Manin matrix, then M is an (An, Bm)-Manin matrix.

� If M is a
(
B̃n, B̃m

)
-Manin matrix, then M is a

(
B̃n, Am

)
-Manin matrix.

This proposition follows from Propositions 7.3 and 2.17. Alternatively one can use the
algebras X

B̃n
(C) and ΞBn(C). One can also prove Proposition 7.4 directly by multiplying

the definition (2.20) from the left or from the right by an appropriate matrix: for exam-
ple, multiplication of 1−Pn

2 M (1)M (2) 1+Pm
2 = 0 by the operator 1 − Qm

m from the right gives
1−Pn

2 M (1)M (2)
(

1+Pm
2 − Qm

m

)
= 0.

Consider a 2 × 2 matrix M =
(
a b
c d

)
. It is an (A2, B2)-Manin matrix (a Manin matrix

of type D) iff [a, c] = [b, d] = 0. Note that B̃2 = 0, so the algebra X
B̃2

(C) is a free non-
commutative algebra with 2 generators (without relations). This implies that any 2× 2 matrix
is an

(
B̃2, A2

)
-Manin matrix (a Manin matrix of type C).

Let us generalise the relations (3.5) and (3.6) to the case of Manin matrices of the ty-
pes B, C, D.

Proposition 7.5. A matrix M ∈ R⊗Hom(Cm,Cn) is an (An, Bm)-Manin matrix iff[
M i
k,M

j
l

]
+
[
M i
l ,M

j
k

]
= Λijδk+l,m+1, i < j, k 6 l, (7.7)

where Λij =
[
M i

1,M
j
m

]
+
[
M i
m,M

j
1

]
. The matrix M is a

(
B̃n, Am

)
-Manin matrix iff[

M i
k,M

j
l

]
+
[
M i
l ,M

j
k

]
= Λ̃klδi+j,n+1, i < j, k 6 l, (7.8)

where Λ̃kl =
[
M1
k ,M

n
l

]
+
[
M1
l ,M

n
k

]
.

Proof. We use Proposition 2.17. Let ψ1, . . . , ψn ∈ ΞAn(C) be the Grassmann variables. We
need to subject the new variables φk =

∑n
i=1 ψiM

i
k ∈ ΞAn(R) to the relations of the alge-

bra ΞBm(C), we derive φkφl + φlφk = λδk+l,m+1, where k 6 l and λ = φ1φm + φmφ1. Sub-
stitution φk =

∑n
i=1 ψiM

i
k and pairing with ψiψj = −ψjψi ∈ Ξ∗An(C) gives the formula (7.7).

The relations (7.8) is obtained similarly by considering the elements yi =
∑

k=1M
i
kx

k ∈ XAm(R),
where xk are the generators of XAm(C) = C[x1, . . . , xm]. �
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Corollary 7.6. The algebra UAn,Bm is generated by M i
k, i = 1, . . . , n, k = 1, . . . ,m, and Λij,

i, j = 1, . . . , n, i < j, with the relations (7.7). The algebra U
B̃n,Am

is generated by M i
k, i =

1, . . . , n, k = 1, . . . ,m, and Λ̃kl, k, l = 1, . . . ,m, k 6 l, with the relations (7.8).

A Manin matrix of type B, C or D does not always keep so under such operations as taking
a submatrix, permutation of rows or columns, doubling of a row or column, a composition of
them, but sometimes it does.

Corollary 7.7. Let I = (i1, . . . , ik) and J = (j1, . . . , jl), where 1 6 is 6 n and 1 6 jt 6 m for
any s = 1, . . . , k and t = 1, . . . , l. Let M =

(
M i
j

)
be an n×m matrix over R and MIJ be k × l

matrix with entries (MIJ)st = M is
jt

.

� Let M be an (An, Bm)-Manin matrix and js + jt 6= m+ 1 for any s, t = 1, . . . , l, then MIJ

is an (Ak, Al)-Manin matrix.

� Let M be an (An, Bm)-Manin matrix and js + jt = m+ 1 iff s+ t = l + 1 (this condition
implies that j1, . . . , jl are pairwise different and hence l 6 m), then the matrix MIJ is
an (Ak, Bl)-Manin matrix.

� Let M be a
(
B̃n, Am

)
-Manin matrix and is + it 6= n+ 1 for any s, t = 1, . . . , k, then MIJ

is an (Ak, Al)-Manin matrix.

� Let M be a
(
B̃n, Am

)
-Manin matrix and is + it = n + 1 iff s + t = k + 1 (this condition

implies that i1, . . . , ik are pairwise different and hence k 6 n), then MIJ is a
(
B̃k, Al

)
-

Manin matrix.

Finally we give the relation of the Manin matrices of types B, C and D with the Yangians [1,
2, 28]. Let gn = son for the B and D cases and gn = spn for the C case. Consider the R-matrices

Rson(u) = 1− Pn
u

+
Qn

u− n/2 + 1
, Rspn(u) = 1− Pn

u
+

Q̃n
u− n/2− 1

.

The Yangian Y (gn) is an algebra generated by t
(r)
ij , i, j = 1, . . . , n, r ∈ Z>1, with the commuta-

tion relations

Rgn(u− v)T (1)(u)T (2)(v) = T (2)(v)T (1)(u)Rgn(u− v), (7.9)

and T ′(u)T (u) = 1, where T (u) = 1 +
∑

r>1

∑n
i,j=1 t

(r)
ij Ei

j u−r,

T ′(u) = 1 +
∑
r>1

n∑
i,j=1

t
(r)
j′i′Ei

j (u+ n/2− 1)−r for gn = son,

T ′(u) = 1 +
∑
r>1

n∑
i,j=1

εiεjt
(r)
j′i′Ei

j (u+ n/2 + 1)−r for gn = spn.

Note that Rson(−1) = 2(1 − Bn) and Rspn(1) = 2B̃n, hence by substituting u = v − 1 and
v = u− 1 to (7.9) we obtain

(1−Bn)T (1)(v − 1)T (2)(v) = T (2)(v)T (1)(v − 1)(1−Bn), for gn = son, (7.10)

B̃nT
(1)(u)T (2)(u− 1) = T (2)(u− 1)T (1)(u)B̃n, for gn = spn. (7.11)

By multiplying (7.10) by Bn from the left and by exchanging tensor factors we derive that

M = T (v)e−
∂
∂v is a Bn-Manin matrix. Due to Propositions 7.2 and 7.4 this is a Manin matrix

of type B or D.

By multiplying (7.11) by 1 − B̃n from the right we see that M = T (u)e−
∂
∂u is a B̃n-Manin

matrix and hence is a Manin matrix of the type C.
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7.2 Minor operators for B, C, D cases and Brauer algebras

Remind that the pairing operators S(k) and A(k) for the idempotent An are the symmetrizers

and anti-symmetrizers of the k-th tensor power. We will denote them as S
gln
(k) and A

gln
(k) to differ

them from other pairing operators. The A-minors for a Manin matrix of type B or D (or, more
generally, of an (An, Bm)-Manin matrix) is the column determinants of submatrices. The S-
minors for a Manin matrix M of type C (or, more generally, of a

(
B̃n, Am

)
-Manin matrix M)

are the normalised row permanents 1
νJ

perm(MIJ) (see the formulae (5.2) and (6.12)).
The S-minors for the Manin matrices of types B, D and the A-minors for the Manin matrices

of type C are given by k-th S-operators for Bn and by k-th A-operators for B̃n respectively.
They can be constructed by the method described in Section 5.7. In this case the role of the
algebra Uk is played by the Brauer algebra [3]. Invariant idempotents in this algebra were
constructed in [8, 13, 18, 19].

Definition 7.8. Let ω ∈ C. The Brauer algebra Bk(ω) is an algebra generated by the elements
σ1, . . . , σk−1 and ε1, . . . , εk−1 with the relations

σ2
a = 1, ε2a = ωεa, σaεa = εaσa = εa, a = 1, . . . , k − 1, (7.12)

σaσb = σbσa, εaεb = εbεa, σaεb = εbσa, |a− b| > 1, (7.13)

σaσa+1σa = σa+1σaσa+1, εaεa+1εa = εa, εa+1εaεa+1 = εa+1,

σaεa+1εa = σa+1εa, εa+1εaσa+1 = εa+1σa, a = 1, . . . , k − 2. (7.14)

The subalgebra of Bk(ω) generated by σ1, . . . , σk−1 is naturally identified with the group
algebra C[Sk]. Also, for b 6 k the subalgebra of Bk(ω) generated by σ1, . . . , σb−1, ε1, . . . , εb−1 is
naturally identified with Bb(ω).

If ω is a positive integer or an even negative integer then the Brauer algebra Bk(ω) has the
following representation on a tensor power of a finite-dimensional vector space, which extends
the representation ρ+ or ρ− of the symmetric group (see, e.g., [3, 19, 31, 28]).

Proposition 7.9. The formulae

ρ(σa) = P (a,a+1)
n , ρ(εa) = Q(a,a+1)

n ,

ρ̃(σa) = −P (a,a+1)
n , ρ̃(εa) = −Q̃(a,a+1)

n .

define algebra homomorphisms ρ : Bk(n)→ End
(
(Cn)⊗k

)
and ρ̃ : Bk(−n)→ End

(
(Cn)⊗k

)
.

Proof. The relations for the generators σa are valid since Pn satisfies the braid relation. The
relations (7.12) follow from (7.1), (7.2). The relations (7.13) are obvious. Further, by direct
calculation we obtain

Q(12)
n Q(23)

n Q(12)
n = Q(12)

n , P (12)
n Q(23)

n Q(12)
n = P (23)

n Q(12)
n , (7.15)

Q̃(12)
n Q̃(23)

n Q̃(12)
n = Q̃(12)

n , P (12)
n Q̃(23)

n Q̃(12)
n = −P (23)

n Q̃(12)
n . (7.16)

They give some of the relations (7.14). The rest of (7.14) is a consequence of the formulae (7.15),

(7.16), (4.1), Q
(21)
n = Q

(12)
n and Q̃

(21)
n = Q̃

(12)
n . �

Define an augmentation ε : Bk(ω)→ C by

ε(σa) = 1, ε(εa) = 0.

The subalgebras Uk and Ũk of End
(
(Cn)⊗k

)
generated by B

(a,a+1)
n and B̃

(a,a+1)
n are contained

in the images of ρ and ρ̃ respectively, but they do not coincide with these images, so we need to
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check the conditions (5.78)–(5.81) of Theorem 5.26. They follow from Proposition 7.3. Moreover,

we have ε(ua) = 0, ρ(ua) = B
(a,a+1)
n and ρ̃(ũa) = 1 − B̃(a,a+1)

n for the elements ua = 1−σa
2 + εa

ω
∈ Bk(ω), where ω = n and ω = −n for ρ and ρ̃ respectively. Hence, if we construct an element
s(k) ∈ Bk(ω) such that

σas(k) = s(k)σa = s(k), εas(k) = s(k)εa = 0, ε(s(k)) = 1 (7.17)

for any a = 1, . . . , k−1 we obtain the corresponding pairing operators, namely a k-th S-operator
S(k) = ρ(s(k)) for A = Bn and a k-th A-operator A(k) = ρ̃(s(k)) for A = B̃n.

Let τab = σaσa+1 · · ·σb−1, a < b. This is the cycle (a, a + 1, . . . , b) ∈ Sk. Note that the
transpositions have the form σab = σba = τab−1σb−1τ

−1
ab−1. Define εab = εba = τab−1εb−1τ

−1
ab−1.

We have σσabσ
−1 = σσ(a)σ(b) and σεabσ

−1 = εσ(a)σ(b) for any σ ∈ Sk. These elements can be
considered graphically in the following way [3, 28]. Remind that an element σ ∈ Sk is presented
by a diagram where each number i from the top row is connected with σ(i) from the bottom
row. In particular, the diagram corresponding to the element σab is

1 · · · a− 1 a a+ 1 · · · b− 1 b b+ 1 · · · k

1 · · · a− 1 a a+ 1 · · · b− 1 b b+ 1 · · · k

The element εab is presented by the diagram

1 · · · a− 1 a a+ 1 · · · b− 1 b b+ 1 · · · k

1 · · · a− 1 a a+ 1 · · · b− 1 b b+ 1 · · · k

To multiply two elements one needs to put the corresponding diagrams one over the other and
substitute each arising loop by a factor ω. This allows to simplify calculations in the Brauer
algebra.

Consider the elements

yb =

b−1∑
a=1

(σab − εab) ∈ Bb(ω).

These elements (up to a constant term) were introduced in [31] as analogues of Jucys–Murphy
elements for the Brauer algebra. One can check that each element yb commute with the sub-
algebra Bb−1(ω). This implies, in particular, commutativity [ya, yb] = 0 (see [31] for details).
The images of the elements yb ∈ Bk(n) and yb ∈ Bk(−n) under the homomorphisms ρ and ρ̃ are
the matrices

Yb = ρ(yb) =

b−1∑
a=1

(
P (ab)
n −Q(ab)

n

)
, Ỹb = ρ̃(yb) = −

b−1∑
a=1

(
P (ab)
n − Q̃(ab)

n

)
,

respectively.
The following analogue of the symmetrizer can be written in terms of the Jucys–Murphy

elements (see [8, 20, 28]):

s(k) =
1

k!

k∏
b=2

(yb + 1)(yb + ω + b− 3)

2b+ ω − 4
. (7.18)
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Proposition 7.10. The elements (7.18) satisfy the conditions (7.17). Hence the matrices

S(k) = Sson
(k) = ρ(s(k)) =

1

k!

k∏
b=2

(Yb + 1)(Yb + n+ b− 3)

2b+ n− 4
(2 6 k),

A(k) = A
spn
(k) = ρ̃(s(k)) =

1

k!

k∏
b=2

(Ỹb + 1)(Ỹb − n+ b− 3)

2b− n− 4
(2 6 k 6 r + 1).

are the k-th S-operator for Bn and the k-th A-operator for B̃n respectively.

Proof. By substituting ε(yb) = b − 1 we obtain ε(s(k)) = 1. Suppose by induction that
σas(k−1) = s(k−1) and εas(k−1) = 0 for all a = 1, . . . , k − 2. Let Ik−1,k be the left ideal of Bk(ω)
generated by the elements u− ε(u), u ∈ Bk−1(ω), then us(k−1) = 0 for any u ∈ Ik−1,k. Since yk
commutes with elements of Bk−1(ω) and s(k) is proportional to (yk + ω + k − 3)(yk + 1)s(k−1)

we have σas(k) = s(k) and εas(k) = 0 for all a = 1, . . . , k − 2. Further, we obtain

εk−1(yk + ω + k − 3) = εk−1σk−1 − ε2k−1 + εk−1

k−2∑
a=1

(σak − εak) + (ω + k − 3)εk−1. (7.19)

Note that εk−1σk−1 = εk−1, ε2k−1 = ωεk−1, εk−1σak = σakεk−1,a ∈ Ik−1,k and εk−1εak =
εk−1σa,k−1 ∈ εk−1 + Ik−1,k for any a 6 k − 2, so the element (7.19) belongs to Ik−1,k. Hence
εk−1s(k) is proportional to the element εk−1(yk+ω+k−3)(yk+1)s(k−1) ∈ Ik−1,k(yk+1)s(k−1) = 0.
Analogously, we derive

σk−1(1 + yk) = σk−1 + 1− εk−1 +
k−2∑
a=1

(σakσk−1,a − σk−1εak)

∈ 1 + yk + Ik−1,k

k−2∑
a=1

Bk(ω)εak.

By using the formulae εak = σa,k−1εk−1σa,k−1, (σa,k−1 − 1)yk = yk(σa,k−1 − 1) ∈ Ik−1,k and the
fact that (7.19) belongs to Ik−1,k one yields εak(yk+ω+k−3) ∈ Ik−1,k. This implies the inclusion
σk−1(1+yk)(yk+ω+k−3) ∈ (1+yk)(yk+ω+k−3)+Ik−1,k, so that σk−1s(k) = s(k). Thus s(k)

is left invariant with respect to ε. Due to Proposition 5.29 we obtain the right invariance of s(k).
The rest follows from Theorem 5.26 and Proposition 7.3 (see the reasoning above). �

The element (7.18) can be rewritten in the following form [18, 19]:

s(k) =
1

k!

∏
16a<b6k

(
1 +

σab
b− a

− εab
ω/2 + b− a− 1

)
,

where the product is calculated in the lexicographic order on the pairs (a, b). By taking represen-
tations ρ : Bk(n)→ End

(
(Cn)⊗k

)
and ρ̃ : Bk(−n)→ End

(
(Cn)⊗k

)
we obtain the corresponding

pairing operators:

Sson
(k) =

1

k!

∏
16a<b6k

Rson(a− b), A
spn
(k) =

1

k!

∏
16a<b6k

Rspn(b− a).

In particular, Sson
(2) = 1−Bn and A

spn
(2) = B̃n.
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Remark 7.11. One can define another augmentation ε′ : Bk(ω)→ C by ε′(σa) = −1, ε′(εa) = 0.
The corresponding idempotent coincides with the usual anti-symmetrizer a(k) = 1

k!

∏
σ∈Sk(−1)σσ

since σba(k) = −a(k), εba(k) = εbσba(k) = −εba(k) for all b = 1, . . . , k − 1 and ε′(a(k)) = 1. Hence

the operators A
gln
(k) = ρ(a(k)) and S

gln
(k) = ρ̃(a(k)) define the pairings Ξ∗Bn(C) × ΞBn(C) → C

and X
B̃n

(C) × X∗
B̃n

(C) → C respectively. But these pairings are degenerate since the condi-

tions (5.78)–(5.81) are not valid for ε′.

Let us calculate the ranks of the pairing operators Sson
(k) and A

spn
(k) . They are equal to their

traces. According to [28, formulae (1.52), (1.72), (1.77)] the (full) traces of these pairing opera-
tors are

trSson
(k) =

n+ 2k − 2

n+ k − 2

(
n+ k − 2

k

)
=
n+ 2k − 2

k

(
n+ k − 3

k − 1

)
(2 6 k),

trA
spn
(k) = (−1)k

−n+ 2k − 2

−n+ k − 2

(
−n+ k − 2

k

)
=
n− 2k + 2

k

(
n+ 1

k − 1

)
(2 6 k 6 r + 1).

In particular, by substituting n = 2r and k = r + 1 to the expression for trA
spn
(k) we derive

rkA
spn
(k) = trA

spn
(k) = 0. Hence

A
spn
(k) = 0 and Ξ

B̃2r
(C)k = 0 for all k > r + 1.

This explains the inequality for k in the formula (7.10): for other k the operator A
spn
(k) vanishes

(it vanishes even for the last value k = r + 1). Let us conclude.

Proposition 7.12. The dimension of the component XBn(C)k is not zero for any k > 0. The
dimension of ΞBn(C)k is not zero iff 0 6 k 6 r. Namely, we have

dimXBn(C)k =
n+ 2k − 2

k

(
n+ k − 3

k − 1

)
(1 6 k),

dim Ξ
B̃n

(C)k =
n− 2k + 2

k

(
n+ 1

k − 1

)
(1 6 k 6 r).

The minor operators for Manin matrices M of the types B and D have the form

MinS(k)
(M) = M (1) · · ·M (k)Sson

(k) , MinA(k)(M) = A
gln
(k)M

(1) · · ·M (k),(
A

gln
(k) = 0 for k > n+ 1

)
. For Manin matrices M of the type C we have

MinS(k)
(M) = M (1) · · ·M (k)S

gln
(k) , MinA(k)(M) = A

spn
(k)M

(1) · · ·M (k),(
A

sp2r
(k) = 0 for k > r + 1

)
.

Let us give an example. The bases of the spaces XB2(C)2 and X∗B2
(C)2 consist of the elements

xi(2) = (xi)2 and x
(2)
i = (xi)

2, i = 1, 2, respectively. The operator Sso2
(2) = 1 − B2 defines the

pairing
〈
xj(2), x

(2)
i

〉
= δji . Let yi =

∑
j=1,2M

i
jx
j , then yi(2) = (yi)2. Since x1x2 = x2x1 = 0 we

have yi(2) =
∑

j=1,2

(
M i
j

)2
xj(2). Thus the second S-minor of a (B2, A2)-Manin matrix M =

(
a b
c d

)
in the basis

(
x1

(2), x
2
(2)

)
has the form

MinS(2)
(M) =

(
a2 b2

c2 d2

)
.
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Remark 7.13. The existence of the pairing operators for the idempotents A = Bn and A = B̃n
can be deduced from Theorem 5.12 (in the case, when C is exactly the field of complex numbers).
Since A> = A we have isomorphisms Vk ∼= V k and Wk

∼= W k given by restriction of the
map (Cn)⊗k →

(
(Cn)⊗k

)∗
, ei1...ik 7→ ei1...ik . Under these isomorphisms the natural pairings

Vk × V k → C and Wk ×W k → C are identified with restrictions of the standard bilinear form
〈ei1...ik , ej1...jk〉 = δi1j1 · · · δikjk to the spaces Vk and Wk respectively. Since the subspaces Vk and
Wk are given by linear equations with real coefficients the restrictions of this bilinear form are
non-degenerate, so the pairing operators S(k) and A(k) exist for any k. In particular, the pairing

A-operators for Bn and the pairing S-operators for B̃n also exist.

Conclusion

It was demonstrated in the works [4, 5, 6, 7, 30, 34] as well as in the current paper that the
Manin matrices have a lot of applications to integrable systems, representation theory and other
fields of mathematics and physics. These results show importance of non-commutative geometry
developed by Manin in [23, 24, 25, 26, 27] for many questions of mathematics and mathematical
physics.

By switching the consideration from A-Manin matrices to more general (A,B)-Manin matri-
ces we obtain a larger class of useful examples such as the (q̂, p̂)-Manin matrices and the Manin
matrices of types B, C and D. In particular, the theory of the (q̂, p̂)-Manin matrices gives more
complete picture for the q-Manin matrices.

It was shown that the tensor notations and usage of idempotents gives a convenient approach
to the Manin matrices. In particular, it allows to generalise the notion of minors to the general
case. This general theory of minors relates Manin matrices with the representation theory of
the symmetric groups and their generalisations such as Hecke and Brauer algebras. This alludes
to a possible relation between the theory of Manin matrices and the Schur–Weyl duality.

The left equivalence of idempotents gives us relationship between different considerations
of Manin matrices. For example, the minors of q-Manin matrices can be considered by means
of the q-antisymmetrizer arisen from a representation of the symmetric group as well as by
using higher idempotents of the Hecke algebra; the left equivalence implies a simple relation
between the minor operators constructed in these two different ways. Moreover, left and right
equivalences can be used to investigate the corresponding quadratic algebras as it was done
in Section 6.3.

It is also discovered that some Lax matrices with spectral parameter is a type of Manin
matrices generalised to the infinite-dimensional case. Namely, we defined an idempotent Ân
acting on a completed tensor power

(
Cn
[
u, u−1

])⊗2
and proved that these Lax matrices are

exactly Manin operators that acts on the tensor factor C
[
u, u−1

]
by a function multiplication.

Appendices

A Reduced expression and set of inversions

Let R be a finite root system and W be the corresponding reflection group in the sense of [14,
Chapter 1]. Let R+ ⊂ R be a subset of positive roots. Denote the corresponding simple roots
by α1, . . . , αr, where r is the rank of the root system R. The simple reflections si = sαi generate
the group W . The length of w ∈W , denoted by `(w), is the minimal k ∈ N0 such that w can be
presented as a product of k simple reflections. If ` = `(w), then any expression w = si1 · · · sil is
called a reduced expression for the element w ∈W .
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Note that `(w−1) = `(w). Indeed, since s2
i = 1 we have (si1 · · · sik)−1 = sik · · · si1 , so the

element w can be presented as a product of k simple reflections iff the element w−1 can be
presented as a product of k simple reflections.

Let R− = −R+ be the set of negative roots and let R+
w := R+ ∩ w−1R−. The latter is

the set of positive roots α ∈ R+ such that wα ∈ R−. As it is proved in [14, Section 1.7] the
number of such roots is equal to the length of w, that is `(w) = |R+

w |. Note also that from
−wR+

w = (−wR+) ∩ (−R−) = R+ ∩ wR− we obtain

R+
w−1 = −wR+

w . (A.1)

The symmetric group Sn is a reflection group with the root system R = {ei − ej | i 6= j} of
rank r = n−1. In this case we have R+ = {ei−ej | i < j}, R− = {ei−ej | i > j}, αi = ei−ei+1,
si = σi. For a permutation σ ∈ Sn the set R+

σ is identified with the set of inversions of σ:

R+
σ = {ei − ej | i < j, σ(i) > σ(j)}. (A.2)

In particular, the number of inversions is equal to the length: inv(σ) = `(σ). Note that the
number of elements σ ∈ Sk with a fixed length `(σ) can be calculated from the generating
function (6.36).

Proposition A.1. Let `(w) = ` and w = si1 · · · si` be a reduced expression. Then

R+
w = {αi` , si`αi`−1

, . . . , si` · · · si2αi1} = {si` · · · sik+1
αik | k = 1, . . . , `}, (A.3)

R+
w−1 = {αi1 , si1αi2 , . . . , si1 · · · si`−1

αi`} = {si1 · · · sik−1
αik | k = 1, . . . , `}. (A.4)

Proof. First we prove that all the roots βk := si` · · · sik+1
αik belongs of R+

w . Note that si1 · · · sik
is a reduced expression for any k = 1, . . . , `, since otherwise `(w) < `. By virtue of [14,
Section 1.6] the equality `(si1 · · · sik−1

sik) = `(si1 · · · sik−1
) + 1 implies

si1 · · · sik−1
αik ∈ R

+, k = 1, . . . , `.

In the same way for the reduced expression w−1 = si` · · · si1 we obtain

βk = si` · · · sik+1
αik ∈ R

+, k = 1, . . . , `.

Since wβk = si1 · · · sik−1
sikαik = −si1 · · · sik−1

αik ∈ R− we derive βk ∈ R+
w . Due to the formula

`(w) = |R+
w | we only need to prove that the roots β1, . . . , β` are pairwise different. We prove

it by induction on `. For ` = 0 and ` = 1 there is nothing to check. Let w′ = si1 · · · si`−1

and β′k = si`−1
· · · sik+1

αik ∈ R
+
w′ . Due to the induction assumption the roots β′1, . . . , β

′
`−1 are

pairwise different. Hence βk = si`β
′
k, k = 1, . . . , ` − 1 are also pairwise different. Now suppose

that β` = βk for some k = 1, . . . , ` − 1. By acting by si` to the both hand sides we obtain
−αi` = β′k, but the roots β′k ∈ R+

w′ are positive. This contradiction ends the proof of the
formula (A.3). The formula (A.4) is obtained from (A.1) and (A.3). �

B Lie algebras as quadratic algebras

Here we present a quadratic algebra closely related with a finite dimensional Lie algebra g.
Let n = dim g + 1 and

(
x1, . . . , xn−1

)
be a basis of the Lie algebra g with the brackets

[xi, xj ] =
∑n−1

k=1 C
ij
k x

k, Cijk ∈ C. Consider the quadratic algebra with generators x1, . . . , xn−1, xn

and relations

xixj − xjxi =
n−1∑
k=1

Cijk x
kxn, i, j = 1, . . . , n− 1, (B.1)

xixn − xnxi = 0, i = 1, . . . , n− 1. (B.2)
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Let Cg ∈ End(Cn ⊗ Cn) be a matrix with entries

(Cg)
ij
kl = Cijk δln + Cijl δkn, i, j, k, l = 1, . . . , n, (B.3)

where we set Cijn = Cink = Cnjk = 0. Since (B.3) is antisymmetric in i, j and symmetric in k, l
we have the formulae

C2
g = 0, CgAn = 0 AnCg = Cg.

They imply that the operator Ag = An − 1
4Cg is an idempotent. The relations (B.1) and (B.2)

define the algebra XAg(C).

Remark B.1. By fixing a non-zero value of the central element xn we obtain the universal
enveloping algebra U(g). In other words, the algebra XAg(C) is the quantisation of the algebra

Sg = C[g∗] with the Lie–Poisson brackets {xi, xj} =
∑n−1

k=1 C
ij
k x

k. The central element xn plays
the role of the quantisation parameter.

Acknowledgements

The author is grateful to A. Chervov, V. Rubtsov, An. Kirillov, A. Isaev and A. Molev for
useful discussions and advice. The author also would like to thank anonymous referees for their
attentive reading and numerous useful advice and remarks.

References
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[10] Garoufalidis S., Lê T.T.Q., Zeilberger D., The quantum MacMahon master theorem, Proc. Natl. Acad. Sci.
USA 103 (2006), 13928–13931, arXiv:math.QA/0303319.

[11] Gurevich D.I., Algebraic aspects of the quantum Yang–Baxter equation, Leningrad Math. J. 2 (1991),
801–828.

[12] Gurevich D.I., Saponov P.A., Determinants in quantum matrix algebras and integrable systems, Theoret.
and Math. Phys. 207 (2021), 626–639, arXiv:1906.07287.

[13] Hu J., Xiao Z., On tensor spaces for Birman–Murakami–Wenzl algebras, J. Algebra 324 (2010), 2893–2922.

[14] Humphreys J.E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics,
Vol. 29, Cambridge University Press, Cambridge, 1990.

https://doi.org/10.1063/1.1525406
https://arxiv.org/abs/math.QA/0111325
https://doi.org/10.1007/s00023-006-0281-9
https://arxiv.org/abs/math.QA/0511481
https://doi.org/10.2307/1968843
https://doi.org/10.1088/1751-8113/41/19/194006
https://arxiv.org/abs/0711.2236
https://doi.org/10.1016/j.aam.2009.02.003
https://arxiv.org/abs/0901.0235
https://doi.org/10.1016/j.aam.2014.06.001
https://arxiv.org/abs/1210.3529
https://doi.org/10.1093/imrn/rnn168
https://arxiv.org/abs/0808.1947
https://doi.org/10.2969/aspm/01910567
https://doi.org/10.1073/pnas.0606003103
https://doi.org/10.1073/pnas.0606003103
https://arxiv.org/abs/math.QA/0303319
https://doi.org/10.1134/S004057792105007X
https://doi.org/10.1134/S004057792105007X
https://arxiv.org/abs/1906.07287
https://doi.org/10.1016/j.jalgebra.2010.08.017
https://doi.org/10.1017/CBO9780511623646


Manin Matrices for Quadratic Algebras 81

[15] Isaev A., Ogievetsky O., Half-quantum linear algebra, in Symmetries and Groups in Contemporary Physics,
Nankai Ser. Pure Appl. Math. Theoret. Phys., Vol. 11, World Sci. Publ., Hackensack, NJ, 2013, 479–486,
arXiv:1303.3991.

[16] Isaev A., Ogievetsky O., Pyatov P., Generalized Cayley–Hamilton–Newton identities, Czechoslovak J. Phys.
48 (1998), 1369–1374, arXiv:math.QA/9809047.

[17] Isaev A., Ogievetsky O., Pyatov P., On quantum matrix algebras satisfying the Cayley–Hamilton–Newton
identities, J. Phys. A: Math. Gen. 32 (1999), L115–L121, arXiv:math.QA/9809170.

[18] Isaev A.P., Molev A.I., Fusion procedure for the Brauer algebra, St. Petersburg Math. J. 22 (2011), 437–446,
arXiv:0812.4113.

[19] Isaev A.P., Molev A.I., Ogievetsky O.V., A new fusion procedure for the Brauer algebra and evaluation
homomorphisms, Int. Math. Res. Not. 2012 (2012), 2571–2606, arXiv:1101.1336.

[20] Isaev A.P., Rubakov V.A., Theory of groups and symmetries. Representations of groups and Lie algebras,
applications, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2021.

[21] Iyudu N., Shkarin S., Three dimensional Sklyanin algebras and Gröbner bases, J. Algebra 470 (2017),
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