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Abstract. We establish the representability of the general linear Z3-group and use the
restricted functor of points — whose test category is the category of Z3-manifolds over a single
topological point — to define its smooth linear actions on Z4-graded vector spaces and linear
Zy-manifolds. Throughout the paper, particular emphasis is placed on the full faithfulness
and target category of the restricted functor of points of a number of categories that we are
using.
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1 Introduction

In order to be able to deal with the technical details of vector bundles and related structures
in the category of Zj-manifolds (for n = 1 see [6]), we need some foundational results on Z3-Lie
groups and their smooth linear actions on linear Zj-manifolds. However, the proofs of some
folklore results, i.e., results that we tended to accept somewhat hands-waving, are often not
at all obvious in the Z3y-context. The present paper, beyond its supposed applications, intrinsic
interest and the beauty of some of its developments, raises the question of the scientific value
of “results” that are partially based on speculations.

Loosely speaking, Z5-manifolds (Z5 = ZJ") are “manifolds” for which the structure sheaf
has a Z3-grading and the commutation rules for the local coordinates comes from the standard
scalar product (see [11, 13, 14, 15, 18, 19, 20, 21, 37] for details). This is not just a trivial
or straightforward generalization of the notion of a standard supermanifold, as one has to deal
with formal coordinates that anticommute with other formal coordinates, but are themselves
not nilpotent. Due to the presence of formal variables that are not nilpotent, formal power
series are used rather than polynomials. Recall that for standard supermanifolds all functions
are polynomial in the Grassmann odd variables. The theory of Z3-geometry is currently being
developed and many foundational questions remain. For completeness, we include Appendix B
in which the foundations of Z5-geometry are given. In this paper, we examine the relation
between Z3-graded vector spaces and linear Ziy-manifolds, and then we use this to define linear
actions of Z3-Lie groups.

In the literature on supergeometry, the symbol RPI? has two distinct, but related meanings.
First, we have the notion of a Zy-graded, or super, vector space with p even and ¢ odd dimensions,
i.e., the real vector space RPI9 = RP P RY. Secondly, we have the locally ringed space RPlY =
(Rp, o [f]), where ¢ (i € {1,...,q}) are the generators of a Grassmann algebra. The difference
can be highlighted by identifying the points of these objects. The Zo-graded vector space has
as its underlying topological space RPT? (we just forget the “superstructure”), while for the
locally ringed space the topological space is RP. There are several ways of showing that these
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two notions are deeply tied. In particular, the category of finite dimensional super vector spaces
is equivalent to the category of “linear supermanifolds” (see [8, 32, 33, 34, 38]).

In this paper, we will show that the categories of finite dimensional Z3-graded vector spaces
V and linear Z5-manifolds V' are isomorphic. We do this by explicitly constructing a “manifold-
ification” functor J/l, which associates a linear Z3-manifold to every finite dimensional Z3-graded
vector space, and a “vectorification” functor, which is the inverse of the previous functor. It turns
out that working in a coordinate-independent way (V, V') is much more complex than working
with canonical coordinates (Rp@,Rp Iﬂ).

Throughout this article, a special focus is placed on functors of points. The functor of points
has been used informally in physics as from the very beginning. It is actually of importance
in contexts where there is no good notion of point as in super- and Z5-geometry and in algebraic
geometry. For instance, homotopical algebraic geometry [42, 43] and its generalisation that
goes under the name of homotopical algebraic geometry over differential operators [25, 26], are
completely based on the functor of points approach. In this paper, we are particularly interested
in functors of A-points, i.e., functors of points from appropriate locally small categories C to
a functor category whose source is not the category C°P but the category G of Z3j-Grassmann
algebras A. However, functors of points that are restricted to the very simple test category G
are fully faithful only if we replace the target category of the functor category by a subcategory
of the category of sets.

More precisely, closely related to the above isomorphism of supervector spaces and linear
supermanifolds is the so-called “even rules”. Loosely this means including extra odd parameters
to render everything even and in doing so one removes copious sign factors (see for example [24,
Section 1.7]). We will establish an analogue of the even rules in our higher graded setting which
we will refer to as the “zero degree rules” (see Definition 2.1). To address this we will make ex-
tensive use of Z5-Grassmann algebras A, A-points and the Schwarz—Voronov embedding, which
is a fully faithful functor of points § from Z3-manifolds to a functor category with source G and
the category of Fréchet manifolds (see for example [30]) over commutative Fréchet algebras as
target (see [13]). We show that the zero degree rules functor %, understood as an assignment of
a functor from G to the category of modules over commutative (Fréchet) algebras, given a (finite
dimensional) Z3-graded vector space, is fully faithful (see Theorem 2.2 and Proposition 2.25).
The “zero degree rules” allow one to identity a finite dimensional Z5-graded vector space, con-
sidered as a functor, with the functor of points of its “manifoldification”. In other words, the
composite § o M and F can be viewed as functors between the same categories and are nat-
urally isomorphic. This identification is fundamental when describing linear group actions on

5-graded vector spaces and linear Zi-manifolds.

Another important part of this work is the category of Zj-Lie groups and its fully faithful
functor of points valued in a functor category with G as source category and Fréchet Lie groups
over commutative Fréchet algebras as target category. We define the general linear Z5-group
as a functor in this functor category and show that it is representable, i.e., is a genuine Zj-
manifold (see Theorem 3.4). This leads to interesting insights into the computation of the
inverse of an invertible degree zero Zj-graded square matrix of dimension p|g with entries in
a Z5-commutative algebra. Furthermore, the approach using A-points and the zero rules allows
us to construct a canonical smooth linear action of the general linear Zi-group on Zj-graded
vector spaces and linear Zj-manifolds. All these notions, in particular the equivalence between
the definitions of a smooth linear action as natural transformation and as Z3-morphism, are
carefully and explicitly explained in the main text.

We remark that many of the statements in this paper are not surprising in themselves.
However, due to the subtleties of Z}-geometry, many of the proofs are much more involved than
the analogue statements in supergeometry. The main source of difficulty is that one has to deal
with formal power series in non-zero degree coordinates, rather than polynomials as one does
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in supergeometry. This forces one to work with infinite dimensional objects and the ¥-adic
topology (¥ is the ideal generated by non-zero degree elements). Many of the “categorical”
proofs are significantly more involved than the proofs for supermanifolds. In general, there is
a lot of work to establish the form of natural transformations as we have non-nilpotent elements
of non-zero degree. While the ethos of the proofs may be standard, they are not, in general,
simple or routine checks due to the aforementioned subtleties.

Motivation from physics: Z5-gradings (n > 2) can be found in the theory of parastatistics
(see for example [27, 28, 29, 48]) and in relation to an alternative approach to supersymmetry [1,
2, 44]. “Higher graded” generalizations of the super Schrodinger algebra (see [3]) and the super
Poincaré algebra (see [10]) have appeared in the literature. Furthermore, such gradings appear
in the theory of mixed symmetry tensors as found in string theory and some formulations
of supergravity (see [12]). It must also be pointed out that quaternions and more general
Clifford algebras can be understood as Z§-graded Zj-commutative algebras [4, 5]. Finally, any
“sign rule” can be interpreted in terms of a ZJ-grading (see [18]).

Background: For various sheaf-theoretical notions we will draw upon Hartshorne [31, Chap-
ter IT] and Tennison [41]. There are several good introductory books on the theory of supermani-
folds including Bartocci, Bruzzo and Herndndez Ruipérez [7], Carmeli, Caston and Fioresi [16],
Deligne and Morgan [24] and Varadarajan [45]. For categorical notions we will be based on Mac
Lane [35]. We will make extensive use of the constructions and statements found in our earlier
publications [13, 14, 15].

2 Z4-graded vector spaces and Linear Zj-manifolds

2.1 Z3-graded vector spaces and the zero degree rules

When dealing with linear superalgebra one encounters the so-called even rules (see [16, Sec-
tion 1.8], [24, Section 1.7] and [45, pp. 123-124], for example). Very informally, the idea is to
remove sign factors by allowing extra parameters to render the situation completely even. The
idea has been applied in physics since the early days of supersymmetry. More precisely, let

V(A) = (A2 V),

be the even part of the extension of scalars in a (real) super vector space V', from the base field R
to a supercommutative algebra A € SAlg (in the even rules that we are about to describe, it
actually suffices to use supercommutative Grassmann algebras A = R[fy,...,0x]: the 0; are
then the extra parameters mentioned before). The main result in even rules states, roughly,
that defining a morphism ¢: V ® V. — V is equivalent to defining it functorially on the even
part of V after extension of scalars, i.e., is equivalent to defining a functorial family of morphisms

p(A): V(A)xV(A) - V(A)

(indexed by A € SAlg). More precisely, there is a 1 : 1 correspondence between parity respecting
R-linear maps ¢: V; ® --- ® V;, — V and functorial families

d(A): Vi(A) x - x V,(A) = V(A)

(A € SAlg) of Ap-multilinear maps.

We now proceed to generalise this theorem to the Zj-setting. We will work with the category
75GrAlg of Zy-Grassmann algebras rather than the category ZjAlg of all Z3-commutative
algebras.

Let V = éBfV: o V5, be a (real) Z3-graded vector space, i.e., a (real) vector space with a direct
sum decomposition over i € {0,..., N} (we say that the vectors of V,, are of degree v; € Z%).
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The category of Z5-graded vector spaces (not necessarily finite dimensional) we denote as ZjVec.
Morphisms in this category are degree preserving linear maps. We denote the category of modu-
les over commutative algebras as AMod (see Appendix A).

To V' we associate a functor

V(—) € Fung(Z5Pts°P, AMod)

in the category of those functors whose value on any Z3-Grassmann algebra A € ZjPtsP is
a Ap-module, and of those natural transformations that have Ag-linear A-components. The
functor V(—) is essentially the tensor product functor — @ V. It is built in the following way.
First, for every Z5-Grassmann algebra A, we define

V(A) = (A & V)o € AogMod,

where the tensor product is over R. Secondly, for any Zj-algebra morphism ¢*: A — A’, we
define

V(g") = (¢" @ 1y),,

where the RHS is the restriction of ¢* ® 1y to the degree 0 part of A ® V, so that V(¢*) is
an AMod-morphism

V(p*): V(A) = V(A), (2.1)

whose associated algebra morphism is the restriction (¢*)o: Ag — Aj. It is clear that V(—)
respects compositions and identities and is thus a functor, as announced.
We thus get an assignment

F: ZyVec 3V > F(V) :=V(—) € Funy(Z5Pts°, AMod).

The map F is essentially — ® e and is itself a functor. It associates to any grading respecting
linear map ¢: V — W and any Z3-Grassmann algebra A, a Ag-linear map

o = (]]-A X ¢)0: V(A) — W(A)

The family F(¢) := ¢_ is a natural transformation from F(V) to F(W). Since F respects
compositions and identities, it is actually a functor valued in the restricted functor category
Fun (Z5Pts°P, AMod).

Definition 2.1. The functor
F: Z3Vec —s Fung(Z3Pts°?, AMod)

is referred to as the zero degree rules functor.

Theorem 2.2. The zero degree rules functor
F: Z3Vec — Fung(Z5PtsP, AMod)

is fully faithful, i.e., for any pair of Zy-graded vector spaces V. and W, the map
Fvw: Homgpyec(V, W) — Hompuy,(zgpesor amoa) (F(V), F(W)),

s a bijection.

This result is the Z5-counterpart of the 1 : 1 correspondence mentioned above.
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Proof. We show first that the map Fy/y is injective. Let ¢, : V — W be two degree preserving
linear maps, and assume that F(¢) = ¢_ = _ = F(¢), so that, for any A € Z5Pts°? and
any A ® v € V(A), we have

A®P(V) = A A @ V) = PA(A®v) =A@ Y (v). (2.2)

Notice now that

N
V(A) = (A ® V)O = @A% ® V%‘
=0

and let A be the Grassmann algebra

Ay =R, ...,00]] (2.3)

that has exactly one generator #; in each non-zero degree v; € Zy (N = 2" —1). For any
v; € V,,, equation (2.2) implies that 0; ® ¢(v;) = 0; ® ¥(v;), so that ¢ and 9 coincide on V,,
for all j € {1,...,N}. For vy € Vp :=V,, and A = 1, the same equation shows that ¢ and
coincide also on Vj.

To prove surjectivity, we consider an arbitrary natural transformation ®_: V(—) — W(-)
and will define a degree 0 linear map ¢: V' — W, such that F(¢) = ¢_ = ®_, i.e., such that,
for any A € ZyPts°P, we have

oA = P

on V(A). Since an element of V(A) (uniquely) decomposes into a sum over i € {0,...,N}
of (not uniquely defined) finite sums of decomposable tensors \; ® v;, with (not uniquely defined)
factors A; and v; of degree ~;, it suffices to show that

AN ®vi) = DA (N ® v5), (2.4)

for alli € {0,...,N}.

Further, it suffices to prove condition (2.4) for A; (see (2.3)) and for the tensors 6; ® v;
(6o :=1,v; € V,,,i€{0,...,N}). The observation follows from naturality of ®. Indeed, assume
that (2.4) is satisfied for A1 and the decomposable tensors just mentioned (assumption (*)). For
any fixed ¢ € {1,...,N} (resp., i = 0), and for A, \; and v; as above, let ¢*: A; — A be the
Zy-algebra map defined by ¢*(6;) = N, ¢*(0;) = 0 for j # i, j # 0, and ¢*(6y) = ¢*(1) =1
(resp., ¢*(0;) = 0 for all j # 0, and ¢*(0y) = ¢*(1) =1). Fori € {1,..., N}, when applying the
naturality condition

V(A My
V(e*) W)
V() W)

to 0; ® v;, we get clockwise

W (") (@, (0: @ vi)) = W(p")(0: ® ¢(vi)) = " (0:) @ p(vi) = Ai @ d(vi) = pa(Ni © vi),
in view of (%), whereas anticlockwise we obtain

(I)A(V((,O*)(Qi ®v;)) = PaA(Ni ® v;).
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Hence, condition (2.4) holds for ¢ € {1,..., N}. For i = 0, the above naturality condition yields
1® ¢(vg) = PA(1®wp), when applied to 1 ® vg. In view of the Ag-linearity of the A-components
of the natural transformations considered, we get now

A (Ao @) = Ao PA(1 ® vo) = Ao(1 @ ¢(vg)) = Pa(No ® vo).

Finally, condition (2.4) holds for an arbitrary A, if it holds for A;.

Surjectivity now reduces to constructing a Z5Vec-morphism ¢: V' — W that satisfies (2.4)
for A; and decomposable tensors of the type 6; @ v; (i € {0,...,N}).

We first build ¢(v;) € W, linearly in v; € V,, for an arbitrarily fixed j € {0,..., N}. We set
again 0y = 1 € Ay . Since Oy, (0; ® v5) € (A1 ® W)y, it reads

7

N M;
Dy, (0 @ vj) ZZ/\ ® wk,

=0 k=1
where M; € N, \¥ € Ay, and wF € W,,. When setting
N
d; = {Oé e N*V: Zam = %}
=1

and

)\k - Z T]CCt,i Ga (74577; S R),

acd;
where we used the standard multi-index notation, we get
M; N
o on)=Y Yo (Lrhat) =Y Y e oun (W)
=0 a€ed; k=1 =0 aed;

Denoting the canonical basis of RV by (e;), and decomposing the RHS with respect to the values
of |a| = a1 + -+ any € N, we obtain

Dy, (0 ® v)) —w00+29 ®ww+z > 0" Dwa (2.5)
1=0 aed;: |a|>2

Let now @5, (ro € R, 7o > 0 and rog # 1) be the Zj-algebra endomorphism of A; that is
defined by ¢y, (0r) = 700 if k # 0 and by ¢y (6o) = 1. It follows from the naturality condition

VA My
V(gr,) W(er,)
V() g WA

that

W (5, (@, (0 ® ;) —w00+29 ®© (rowe, ) +Z S 0@ (1 way)

1=0 aed;: |a|>2
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and
1 5 1 )
Oa, (Vg )0 @) =1y woo+29 @ (ry” " we, i +Z Y 0w P Wai)s
=0 aed;: |a|>2

where d;9 is the Kronecker symbol, coincide. As all the monomials in ¢ in the RHS-s of the two
last equations are different, we get,

(1) if j # 0: woo =0 and w,,; =0, for all € {0,..., N} and all @ € d;: |a| > 2, and,

(2) if j =0: we,; =0, forall i € {1,...,N}, and w,; = 0, for all i € {0,..., N} and all
acd;: o> 2.

Equation (2.5) thus yields
Dy, (0 @ vj) ZH ®we, i (j#0) and Dy, (1 ® o) = woo. (2.6)

If j # 0, a new application of naturality, now for the Zy-algebra endomorphism ¢} (Ro € R,
Ry # 1) of Ay that is defined by ¢§ (6:) = Rob;i (i # 0,7 # j), ¢}, (05) = 6; and § (6o) = 1,
leads to

9] &® wejvj + E 61 &® (Rowei,i) - 6] & wej,j + E 92 ® wei,ia
i#£] i#£j
so that

Pp, (05 @) =0 @we; 5 (J#0). (2.7)

The vectors wop € Wo (see (2.6)) and we; ; € W,, (j # 0) (see (2.7)) are well-defined
and depend obviously linearly on vy and vj, respectively. Hence, setting ¢(vg) = wgo and
B(vj) = we,; 5 (j # 0), we define a degree 0 linear map from V' to W. Moreover, since (2.4) is
clearly satisfied for A; and the 6, ® v; (i € {0,...,N}), it is satisfied for any A, which completes
the proof of surjectivity. |

Since
F: Z3Vec — Fung(ZyPts®P, AMod)
is fully faithful, it is essentially injective, i.e., it is injective on objects up to isomorphism.

It follows that ZyVec can be viewed as a full subcategory of the target category of F
The above considerations lead to the following definition.

Definition 2.3. A functor
U € Fung(Z5Pts®, AMod)

is said to be representable, if there exists V' € ZjVec, such that F(V') is naturally isomorphic
to V.

As F is essentially injective, a representing object V, if it exists, is unique up to isomorphism.
We therefore refer sometimes to V' as “the” representing object.
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2.2 Cartesian Zj-graded vector spaces and Cartesian Zj-manifolds

In the literature, the space RP 19 is viewed, either as the trivial Z5-manifold
RP = (R?, O3 [€]])

with canonical Z3-graded formal parameters £, or as the Cartesian Z3-graded vector space

N
R4 =RP @ng"
j=1

where R? (resp., R%) is the term of degree 79 = 0 € Z5 (resp., 7; € Zy). Observe that we
use the notation R® (resp., R®), when R*® is viewed as a vector space (resp., as a manifold).
It can happen that we write R® for both, the vector space and the manifold, however, in these
cases, the meaning is clear from the context. Further, we set ¢o = p, 9 = (0,41, ---,qn), and
la| = >, . When embedding R% (i € {0,...,N}) into RP!7, we identify each vector of the
canonical basis of R% with the corresponding vector of the canonical basis of R4, We denote
this basis by

(eh)p (€I={0,....N}, ke Ki={L,....q;})

and assign of course the degree v; to every vector e;. We can now write

N
R =(PR"= P Re.
=0

(i,k)eIXKi

The dual space of RP1? is defined by
(RPI9)” = Hom (RP4, R @Hom (RFI4,R),

where Hom is the internal Hom of ZjVec, i.e., the Zj-graded vector space of all linear maps,

and where Hom, is the vector space of all degree 7; linear maps. We sometimes write Homznye.

instead of Hom. The dual basis of (ei )

k) ik is defined as usual by

i (e7) = 01¢,

(]

so that €f is a linear map of degree ~; and

(RF9) = P Rek

(i,k‘)EIXKi
Let us finally mention that any Zj-vector z € RP! reads 2 = > ea: ee and that

24

(x) = af, (2.8)

as usual.
Notice now that if M is a smooth m-dimensional real manifold and (U, ¢) is a chart of M,
the coordinate map ¢ sends any point x € M to ¢(z) = (z!,...,2™) € R™, so that

o'(x) = z°. (2.9)
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Hence, what we refer to as coordinate function ' € C°°(U) is actually the function ¢’. Equa-
tions (2.8) and (2.9) suggest to associate to any Z2Z-graded vector space RP! a ZZ-manifold R?!4
with coordinate functions Ef. In other words, the associated p|¢-dimensional Zy-manifold will
be the locally Z3-ringed space B

RPIZ = (RP, Gp,1s) = (RP, C3[lel, ..., %)),

where Cg; is the standard function sheaf of RP, where the degree 7; linear maps 6]1, e ,z-:?j
(j € {1,...,N}) are interpreted as coordinate functions or formal parameters of degree ~;, and
where the degree 0 linear maps &g, . . . ,ep are viewed as coordinates in RP. We often set

ff = Ef (7 #0) and 2t = €. (2.10)

Remark 2.4. In the following, we denote the coordinates of RPl¢ by

(a,€)) = (%, €") = (u"),
if we wish to make a distinction between the coordinates of degree 0,71, ..., vn, if we distinguish

between zero degree coordinates and non-zero degree ones, or if we consider all coordinates
together.

We refer to the category of Zj-graded vector spaces RPle (pyq1,--.,qn € N) and degree 0
linear maps, as the category ZjCarVec of Cartesian Zj-vector spaces. As just mentioned, the
interpretation of the dual basis as coordinates leads naturally to a map

M : ZhCarVec 3 RPI? — RPlZ € Z2Man,

where ZiMan is the category of Z5-manifolds and corresponding morphisms. This map can
easily be extended to a functor. Indeed, if L: R4 — R7E is a morphism in ZjCarVec (it is
canonically represented by a block diagonal matrix L € gl (r| sxplg, R)), its dual (Z5-transpose)

LV: (R’"|§)v — (Rplﬂ)v (Which is represented by the standard transpose ‘L € gl (p|g X r|s, R))
is also a degree 0 linear map. If we set

L = (L),

where i € I, £ € {1,...,s;} label the row and i € I, k € {1,...,¢} label the column, we get

Z szgz ’

where (Ege)i , is the basis of (Rr|§)v. When using notation (2.10), we obtain

p
L (2") =1LY(2") =Y L a* €0, (R?)  (Le{l,....r}) (2.11)
k=1
and
L*(&f) =LY (¢ ZL Fe0, (R (#0,Le{l,....5)). (2.12)

These pullbacks define a Zj-morphism L: RPI¢ — Rrls, This is the searched Z5-morphism
J(L): J%(Rp'ﬂ) — J%(RT|§). Since J((L) is defined interpreting the standard transpose 'L as
pullback (ML(L))* of coordinates, we have

(M(Mo L))" =~ "Lo "M (M (L)" o (M(M))" = (M(M) o M (L))",
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so that Jl respects composition. Further, it obviously respects identities. Hence, we defined
a functor (.

The pullbacks (2.11) and (2.12) are actually linear homogeneous Z5-functions, i.e., homoge-
neous Z4-functions in

N g
Oppy (RP) = {Zrkx +3 N ki € R} = (RP12)" C 0,4 (RP), (2.13)

k=1 j=1k=1

where the last equality is obvious because of equation (2.10). Hence, the functor J is valued
in the subcategory ZiCarMan C ZfMan of Cartesian Z3-manifolds RP la (p,q1,-..,qn € N) and Z3-
morphisms whose coordinate pullbacks are global linear functions of the source manifold that
have the appropriate degree:

M : Z5CarVec — ZiyCarMan.

The inverse “vectorification functor” ¥ of this “manifoldification functor” Al is readily defined:
to a Cartesian ZJ-manifold RP1¢ we associate the Cartesian Zg-vector space R”4, and to a linear
Z5-morphism we associate the degree 0 linear map that is defined by the transpose of the block
diagonal matrix coming from the morphism’s linear pullbacks. It is obvious that ¥ o Ml =
MoV =id.

Proposition 2.5. We have an isomorphism of categories

M: 7ZiHCarVec = ZjCarMan : TV (2.14)

between the full subcategory ZyCarVec C ZiyVec of Cartesian Z5-vector spaces RPY and the
subcategory Z5CarMan C ZyMan of Cartesian Ziy-manifolds RPl and Z5-morphisms with linear
coordinate pullbacks.

Remark 2.6. Let us stress that the Z3-vector space of linear Z5-functions

(RPI2)" ~ 0/1% (RP) C Opyiq (RP)

is of course not an algebra. In the case p = 0, we get
Ot ({x}) = AT C Opoia ({*}) = A

where {x} denotes the 0-dimensional base manifold R? of the ZZ-point R*4, where A = R[[0},. ..,
63)']] is the Z5-Grassmann algebra that corresponds to R, and where A" is the Z5-vector space
of homogeneous degree 1 polynomials in the 61, ... N (w1th vanishing term Ahn of Z5-degree
7Z€ero).

We close this subsection with some observations regarding the functor of points.
The Yoneda functor of points of the category Z5Man is the fully faithful embedding

Y : ZjMan — Fun(Z5Man?, Set).

In [13], we showed that Y remains fully faithful for appropriate restrictions of the source and
target of the functor category, as well as of the resulting functor category. More precisely,
we proved that the functor

§: ZiMan — Fung(ZyPtsP, A(N)FM) (2.15)
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is fully faithful. The category A(N)FM is the category of (nuclear) Fréchet manifolds over a (nuc-
lear) Fréchet algebra, and the functor category is the category of those functors that send a Z5-
Grassmann algebra A to a (nuclear) Fréchet Ap-manifold, and of those natural transformations
that have Ap-smooth A-components. For any M € ZjMan and any RI™m ~ A € Z5PtsP, we
have

M(A) := S(M)(A) = Y (M)(A) = Homzgua (R, 11).

On the other hand, the Yoneda functor of points of the category ZiCarVec is the fully faithful
embedding

e: ZiCarVec > RPl4 s RPIE .= Homzpyec (—, Rp‘ﬂ) € Fun(ZSCarVecoP, Set).
The value of this functor on RO ~ ROI™ ~ A is the subset

EP‘Q(A) = HomZg”Vec (Rolm, Rp‘g) = HomZQCarMan (Ro\m7 Rp‘g)
C RPIZ(A) = S(RPI9)(A) = HomZnMan (Rolm Rp\z)

= DD 6o () - DDA, - @@A%QQR%—@A%@@R%

=0 k=1 =0 k=1 =0 k=1
= (A® RPM) | = F(RP4)(A) = RP14(A) € AgMod. (2.16)

More precisely,

RP4(A) = Homzgye (R, RPI) @ @@ﬁg‘m ({*}) = (A" @ RM) € set. (2.17)
=0 k=1

Remark that, if we denote the coordinates of R4 compactly by (u®), the bijection in equa-
tion (2.17) sends a degree 0 linear map L to the linear pullbacks L*(u®) of the corresponding
Zy-morphism L = J(L).

Remark 2.7. If we restrict the functor Rl (resp., the functor SZ(RP \g)) from ZyCarVec® o~
Z5CarMan®? (resp., from Z5Pts®P) to the joint subcategory Z5CarPts® of ZJ-points and Z5-
morphisms with linear coordinate pullbacks, the restricted Hom functor R” 9 is actually a sub-
functor of the restricted tensor product functor OJ(Rp‘g). This observation clarifies the rela-
tionship between the fully faithful “functor of points” F(e)(—) = e(—) of the full subcategory
ZyCarVec C ZyVec and its standard fully faithful Yoneda functor of points e(—).

Indeed, we observed already that the values of the Hom functor on Z3-points are subsets of
the values of the tensor product functor. Further, on morphisms, the values of Hom (—, RP |9)

are restrictions of the values of (— ® RP Ig)0. Indeed, if
Homzgcarpes (RO, RO™) 5 L ~ % (L) = L € Homzgyec (RO2, RO™),
the morphisms RP4(L) and 97(Rp|ﬂ) (L) are defined on RPIY(A) and its supset F (Rp‘q)(A)

respectively. When interpreting an element K of the first as an element of the second, we use
the identifications

K~K ~ e@@A%

=0 k=1
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Similar identifications are of course required when A is replaced by A’. We thus get

R”4(L)(K) = Homzpye (L, RP)(K) = KoL ~ K o L ~ (L*(K*(u")))..

a

On the other hand, we have
F (RP1) (L*) (K™ (u))a) = (L*(K*(u")))

@
since
N g
(L" @ Lgoia) g ~ @ @L*’
i=0 k=1
when read through the isomorphism
N 4 N 4
P roPRe, ~PEPA,.
i=0 k=1 i=0 k=1

This completes the proof of the subfunctor-statement.

2.3 Finite dimensional Z}-graded vector spaces and linear Z7-manifolds

In this subsection, we extend equivalence (2.14) in a coordinate-free way.

2.3.1 Finite dimensional Z3-graded vector spaces

We focus on the full subcategory ZjFinVec C ZijVec of finite dimensional Z5-graded vector
spaces, i.e., of Zj-vector spaces V of finite dimension

pla (PeN, ¢=(q1,...,qv) € N*V).
Clearly
ZyCarVec C ZyFinVec

is a full subcategory.
Above, we already used the canonical basis of R”¢ ie., the basis

et = %0...0;...;0...1...0;...;0...0),
where 1 sits in position k of block 7. If
(bi)ix (i€I={0,....,N}, ke K;={1,...,q}, deg(b},) =, € Z)
is a basis of V', the degree respecting linear map
b: Vou= z:vf“‘b}€ > vae}; = (vg,..., o) = vl € Rl
maps a basis to a basis and is thus an isomorphism of Z3-vector spaces.
We already discussed extensively the functor of points & = F(e)(—) = e(—) of Z5Vec. Since

Z5FinVec is a full subcategory of ZjVec, the functor & remains fully faithful when restricted
to ZyFinVec:

Proposition 2.8. The functor of points F: Z5FinVec — Fung (ZgPtSOP,AMod) of the category
Z5FinVec s fully faithful.

Remark 2.9. Later on, we consider linear Z5-manifolds and denote them sometimes using
the same letter V' as for Zj-vector spaces. We often disambiguate the concept considered by
writing V in the vector space case.
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2.3.2 Linear Zy-manifolds

In this subsection, we investigate the category of linear Zj-manifolds, linear Z5-functions of its
objects, as well as its functor of points.

Linear Z7-manifolds and their morphisms. A Zj-manifold of dimension pl|q is a locally
Zy-ringed space M := (|M|,0y;) that is locally isomorphic to R? la,

Definition 2.10. A linear Zy-manifold of dimension p|q is a locally Zj-ringed space L =

(|L\,®|_) that is globally isomorphic to RPIZ, ie., it is a Zy-manifold such that there exists a
Z5-diffeomorphism

h: L — RPle,

The diffeomorphism h is referred to as a linear coordinate map or a linear one-chart-atlas.

We now mimic classical differential geometry and say that two linear one-chart-atlases are
linearly compatible, if their union is a “linear two-chart-atlas”. In other words:

Definition 2.11. Two linear coordinate maps hy, ho: L — RPZ are said to be linearly compatible,
if the Z5-morphisms

hoohl!, hyohy!: RPI4 — RPI
have linear coordinate pullbacks, i.e., if they are ZjCarMan-morphisms.

Linear compatibility is an equivalence relation on linear one-chart-atlases. There is a 1:1
correspondence between equivalence classes of linear one-chart-atlases and maximal linear atla-
ses, i.e., the unions of all linear one-chart-atlases of an equivalence class. For simplicity, we refer
to a maximal linear atlas as a linear atlas.

Just as a classical smooth manifold is a set that admits an atlas, or, better, a set endowed
with an equivalence class of atlases, a linear Z4-manifold is a locally Z3-ringed space L equipped
with a linear atlas (L, hy)q.-

We continue working in analogy with differential geometry and define a linear Z3-morphism
between linear Z5-manifolds as a locally Zj-ringed space morphism, or, equivalently, a Zj-
morphism, with linear coordinate form:

Definition 2.12. Let L and L’ be two linear Z5-manifolds of dimension p|g and r|s, respectively.
A Z3-morphism ¢: L — L' is linear, if there exist linear coordinate maps

h: LRI and  k: ' 5 R

in the linear atlases of L and L', such that the ZJ-morphism
kopoh™!: RPlZ 5 RIS

has linear coordinate pullbacks.

It follows that any linear coordinate map h of the linear atlas of a linear Zy-manifold L,
is a linear Zj-morphism between the linear Z5-manifolds L and RP!4. This justifies the name
“linear coordinate map”. Further, the inverse h™! of h is a linear Z5-morphism.

Proposition 2.13. If ¢: L — L’ is a linear ZY-morphism, then, for any linear coordinate maps
(L,1) and (L',X') of the linear atlases of L and L', respectively, the Z3-morphism k' o ¢ o h'~1
has linear coordinate pullbacks.
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Proof. We use the notations of Definition 2.12 and Proposition 2.13. Since
kK'ogpoh'™! = (k/ok ) (kogboh_l)o(hoh/_l)

and each parenthesis of the RHS has linear pullbacks, their composite has linear pullbacks
as well. m

Proposition 2.14. Linear Z5-manifolds and linear Z§-morphisms form a subcategory
Z3LinMan C Z3iMan of the category of Zy-manifolds. Further, Cartesian Z%-manifolds and
Z5-morphisms with linear coordinate pullbacks form a full subcategory Z5CarMan C ZjLinMan.

Proof. If ¢: L — L’ and ¢: L’ — L” are linear Zj-morphisms, the composite ZJ-morphism is
linear as well. Indeed, if kogoh™! and qowop~! have linear pullbacks, then qot ok ! has linear
pullbacks and so has qo (1 o ¢) o h™!. Further, for any linear Z5-manifold L, the Z3-identity
gela- The second
statement is obvious. |

map idy is linear, as for any linear coordinate map h, we have hoid; oh™! = id

Sheaf of linear Z7-functions.

Definition 2.15. Let L € ZjLinMan be of dimension p|g and let |U| C |L| be open. A Zj-

function f € O(|U]) is a linear Z3-function, if there exists a linear coordinate map h: L — RPIZ,
such that

(h*)7H(f) € O (IRI(UD).

We denote the subset of all linear Z3-functions of 6 (|U]) by 6{"(|U]).
The subset 61"

Rpla (Jh[(|U])) is defined in the obvious way. If f € 6[*(|U]|), then for any chart
, of the linear atlas of L, we have
L,h') of the li las of L h

(W) 7H(f) € O (IV'I(1UT))-
This follows from the equation
(™)) = (ho ™) () 71(/)

and the compatibility of the two charts.
As O6/(|U]) c 6.(|U]) is visibly closed for linear combinations, it is a vector subspace
of O_(|U]). Hence, the intersection

6%, (1U]) := O™ (U]) N 6L, (IU]) € 6L(U])

is also a vector subspace. We thus get vector subspaces @}_”%(]U ) € 6{n(|U]), so their direct
sum over 1 is a vector subspace as well. Since any f € @ll_m(\UD reads uniquely as

N
f=> 1 (fie0,(UD),
i=0
we get
()" o+ D)= )T =D et 1YY g
J 0 4
As (h*)~! is ZB-degree preserving, we find that f; € @hn (IU]), so that

o (|U)) @@hn (|U|) € Z3Vec.
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Remark 2.16. Observe that:
(i) For any open subset |U| C |L| and any linear coordinate map h: L — RP!4, the map

h*: Opy, (IRI(1U]) — o™ (|U1)

is an isomorphism of Z5-vector spaces of dimension p|q.

(7i) The restriction maps and the gluing property of O endow @}_m with a sheaf of Zj-vector
spaces structure.

(i14) A Z3-morphism ¢: L — L between linear Z5-manifolds is itself linear, if and only if ¢* is
a degree respecting linear map

¢": OPP(IL]) — O (L)

It is straightforward to check the first two statements. For the third one, let L (resp., L)
be of dimension p|q (resp., r|s) and denote the coordinates of the corresponding Cartesian Zj-
manifold by u®* = (x“,ﬁA) (resp.7 b = (yb,nB)). The morphism ¢ is linear, if and only if
there exist linear coordinate maps (L, h) and (L, k), such that k o ¢ o h™! has linear coordinate
pullbacks, i.e., such that

(1)1 o g" o k*) (v°) € O, (RP). (2.18)
On the other hand, in view of the first item of the previous remark, the condition
¢* (07 (IL']) € 6" (L)

of the third item is equivalent to asking that
¢ © k* (ZT‘[}U > S h* @Ilég‘g(Rp)). (2'19)

The conditions (2.18) and (2.19) are visibly equivalent.

Functor of points of Z3LinMan. We start with the following

Proposition 2.17. For any linear Zy-manifold L (of dimension p|q) and any Z3-Grassmann
algebra A ~ RO™ | the set

L(A) == Homzguan (R, L) ~ Homgzgpg(OL(|L]), A)

of A-points of L admits a unique Fréchet Ag-module structure, such that, for any chart h: L —
RPI9 of the linear atlas of L, the induced map

ha: L(A) 3 x* — x* o h* € RPIZ(A)
18 a Fréchet Ag-module isomorphism.
The definition of the category FAMod of Fréchet modules over Fréchet algebras can be found

in Appendix A. In the preceding proposition, it is implicit that the (unital) Fréchet algebra
morphism that is associated to hp is idy,.
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Proof. Let A € Z5GrAlg. In view of the fundamental theorem of Z3-morphisms, thereisa 1 :1
correspondence between the A-points x* of RPI and the (p + |q|)-tuples

* a A Xp Xq Xq
X —(‘TA’SA)EAO XA,th"'XA,YNN

(we used this correspondence already in equation (2.16)). Indeed, the algebra A is the Zj-
commutative nuclear Fréchet R-algebra of global Z3-functions of some ROIm (in particular, the
degree zero term Ag of A is a commutative nuclear Fréchet algebra). Hence, all its homogeneous
subspaces Ay, (i € {0,...,N}, 70 = 0) are nuclear Fréchet vector spaces. Since any product
(resp., any countable product) of nuclear (resp., Fréchet) spaces is nuclear (resp., Fréchet), the
set RPIZ(A) of A-points of RPI? is a nuclear Fréchet space. The latter statements can be found
in [14]. The Fréchet Ag-module structure on RPI4(A) is then defined by

a: Ao x RPIE(A) 3 (a,x") > aax™ = (a- 2%, a- &) € RPIZ(A). (2.20)

Since this action (which is compatible with addition in Ay and addition in RP/4(A)) is defined
using the continuous associative multiplication -: Ay, x A, — Ay, 4., of the Fréchet algebra A,
it is (jointly) continuous.

We now define the Ag-module structure on L(A). Observe first that, for any chart map
h: L = RPZ :h~1 of the linear atlas of L, the induced maps hy: L(A) = RPI4(A) : (h_l)A are
inverse maps: (h™'), = (hy)™! = hy!'. For K € N\ {0}, k € {1,...,K}, a* € A, and
vi € L(A), we set

Zak *xyp=hyt (Zak N hA(yZ)> € L(A).
k k

This defines a Agp-module structure on L(A) that makes hy a Ag-module isomorphism. The
Ag-module structures L(A), and L(A)g that are implemented by h and another chart k of the
linear atlas, respectively, are related by the Ag-module isomorphism

ky'ohp: L(A) — L(A)x.

Hence, the Ag-module structure on L(A) is well-defined.

In order to get a Fréchet structure on the real vector space L(A) that we just defined, we
need a countable and separating family of seminorms (p,)nen, such that any sequence in L(A)
that is Cauchy for every p,,, converges for every p,, to a fixed vector (i.e., a vector that does not
depend on n). We define this family (of course) by transferring to L(A) the analogous family
(pr)nen of the Fréchet vector space RPIZ(A) (see [14, Theorem 14]). In other words, for each
y* € L(A), we set

(") == pu(ha(y™)) € Ry

It is straightforwardly checked that (p,)nen is a countable family of seminorms that has the
required properties. Moreover, the vector space isomorphism hy is an isomorphism of Fréchet
vector spaces, i.e., a continuous linear map with a continuous inverse. We show that hp is
continuous for the seminorm topologies implemented by the p, and the p,, i.e., that, for all
n € N, there exist m € N and C > 0, such that

pn(ha(y™)) < Cpm(y™),

for all y* € L(A). This requirement is of course satisfied. Hence, the composite kxl o hp
of isomorphisms of Fréchet spaces is an isomorphism of Fréchet spaces, so that the Fréchet
space structure on L(A) is well-defined.
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The Ag-module structure and the Fréchet vector space structure on L(A) combine into
a Fréchet Ag-module structure, if they are compatible, i.e., if the Ag-action

x: Ao x L(A) 3 (a,y*) = hy'(a<ha(y*)) € L(A) (2.21)

is continuous. The condition is obviously satisfied as this action is the composite of the continu-
ous maps id xhy, < and th. Further, the map hy is clearly a Fréchet Ag-module isomorphism,
for any h in the linear atlas of L.

There is obviously no other Fréchet Ag-module structure on L(A) with that property. Indeed,
if there were, it would be isomorphic to the Fréchet Ag-module structure on ]Rp@(A), hence
isomorphic to the Fréchet Ag-module structure that we just constructed. |

In the following, we denote the Ag-action x on L(A) by simple juxtaposition, i.e., we write ay*
instead of a x y*.

To proceed, we need some preparation.

Let Fun(Z5Pts?,FAMod) be the category of functors F', whose values F(A) are Fréchet Ag-
modules, and of natural transformations 8, whose A-components S5 are continuous Ag-linear
maps. We already used above the category Fung (ZQPtSOP,AFM) of functors, whose values are
Fréchet Ap-manifolds, and of natural transformations, whose components are Ag-smooth maps.

Proposition 2.18. The category Funo(ZgPtSOP,FAMod) is a subcategory of the category
Fun (Z3Pts°P, AFM).

Proof. Observe first that composition of natural transformations (resp., identities of functors)
is (resp., are) induced by composition (resp., identities) in the target category of the functors con-
sidered, which is (resp., are) in both target categories the standard set-theoretical composition
(resp., identities). Hence, composition and identities are the same in both functor categories.
However, we still have to show that objects (resp., morphisms) of the first functor category are
objects (resp., morphisms) of the second.

Let F' be a functor with target FAMod. Since a Fréchet Ag-module (i.e., a Fréchet vector space
with a (compatible) continuous Ag-action) is clearly a Fréchet Ag-manifold, the functor F' sends
Zy-Grassmann algebras A to Fréchet Ag-manifolds F'(A). Let now ¢*: A — A’ be a morphism
of Z5-algebras. As F(¢*): F(A) — F(A’) is a morphism between Fréchet modules over the
Fréchet algebras Ag and A(), respectively, it is continuous and it has an associated continuous
(unital, R-) algebra morphism t¢: Ag — Aj), such that

F(p")(av +a'v') = ¥(a) F(¢")(v) + (@) F(¢") (v'), (2.22)

for all a,a’ € Ag and all v,v' € F(A). We must show that F'(¢*) is a morphism between Fréchet
manifolds over Ay and Aj), respectively, i.e., we must show that F(¢*) is smooth and has first
order derivatives that are linear in the sense of (2.22) (see [13]). Since, for any ¢t € R, we have
P(t) = ty(1) = t, it follows from (2.22) that

du (") (v) := lim 1(F(<P*)(>< +1v) = F(e")(x) = F(¢*)(v)

t—0 ¢t
and
AP (") (v, - Vi) =0,
for any x,v,vy,...,vgr1 € F(A) and any k£ > 1. Hence, all derivatives exist everywhere and are

(jointly) continuous. This implies that F'(¢*) has the required properties, so that F' is a functor
with target AFM.
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As for morphisms, let n: F© — G be a natural transformation between functors valued
in FAMod. Its A-components np: F(A) — G(A) are continuous and Ap-linear maps. Repeat-
ing the proof given in the preceding paragraph for F(¢*), we obtain that 1, is Agp-smooth, i.e.,
is smooth and has Ag-linear first order derivatives. Therefore, the morphism 7 of the functor
category with target FAMod is a morphism of the functor category with target AFM. |

Since
ZyLinMan C Z5Man ~ and  Fung(Z5Pts°®,FAMod) C Fung(Z3Pts®?, AFM)
are subcategories, we expect that:

Proposition 2.19. The functor
S: Z3Man — Fung(Z3Pts®P, AFM)

(see equation (2.15)) restricts to a functor
§: ZjLinMan — Fung(Z3Pts?, FAMod).

Proof. We have to explain why § sends linear Zy-manifolds and linear Z5-morphisms to objects
and morphisms, respectively, of the target subcategory.

Let L € ZyLinMan. The functor §(L) is an object of the functor category with target AFM.
Since composition and identities are the same in both target categories, it suffices to show that,
for any Z5-Grassmann algebra A, the value S(L)(A) = L(A) is a Fréchet Ap-module and that,
for any Z3-algebra morphism ¢*: A — A’; the morphism

L(p"): L(A) 2y = ¢ oy € L(A)

is a morphism of the category FAMod. The first of the preceding conditions holds in view of Pro-
position 2.17. We start proving the second condition for L = RP 9. Since RP ‘Q(cp*) is a morphism
of AFM, it is smooth, hence, continuous. Further, omitting the summation symbols and using
our standard notation, we get

RPIZ (") (" ax}) = RPI9 (%) (ab - 25 4, 0" - €8 0) = (07 (a%) - o (@G 1), 0" (a%) - 0" (€2 0))
= ¢*(a¥) < RPIE(p*)(x}).

It now suffices to recall that the Z5-algebra morphism ¢* is the pullback ¢} over the whole base
manifold {x} of a Z§-morphism ¢: RO™ s RO and that all pullbacks of Z5-morphisms are
continuous, so that the restriction ¢*: Ay — Aj, is a continuous algebra morphism. We are now
able to prove that the second condition holds also for an arbitrary linear Z5-manifold L. Indeed,
since *: A — A’ is a morphism of ZJ-algebras, the map L(¢*): L(A) — L(A’) is a morphism
of AFM, hence, it is continuous. Recall now that any chart h: L — RP 9 is a Z5-morphism, so that
8(h): L(=) — RPI%(—) is a natural transformation h_ with A-components hy: L(A) — RPIZ(A)
that are Fréchet Ag-module isomorphisms in view of Proposition 2.17. Naturality of h_ implies
that

har o L(¢*) = RP9(p*) o hy,
and, due to invertibility, that

L(¢*) = hy} o RP4(p*) o hy.
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Definition (2.21) yields
L") (a" *y}) = (hy! o RP9(p") o hy) (hy! (a* ahia(v)))) = @7 (a*) * L(¢")(vE)

(we used our standard notation). Hence, the functor S(L) is an object of the functor category
with target FAMod.
As for morphisms, we consider a linear Z5-morphism

¢: L—L

and will prove that §(¢), which is a natural transformation ¢_ of the functor category with target
AFM, i.e., a natural transformation with Ag-smooth A-components ¢p, has actually continuous
(but this results from Ag-smoothness) Ag-linear components.

Let p|q (resp., r|s) be the dimension of L (resp., of L’). We first discuss the case of a linear
Zg—morpﬂism

$: RPl4 5 Rl

between the corresponding Cartesian Zy-manifolds with canonical coordinates (x“,fA) and
(yb,nB), respectively. We know from [13] that, if the ZJ-morphism (resp., the linear Zj-
morphism) ® reads

o* (yb) = Z @2(:@ & <resp., = ZLZ:L‘“), (2.23a)

|| >0
() = ¥ afwe (rep. = Y ket (2.230)
|a|>0 A
(where the right-hand sides have the appropriate degree and where the coefficients L} are real
numbers), then the A-component ®, associates to the A-point x* ~ (a:f{;@‘\“) = (g;ﬁﬂ‘}?x;gf)
of RPIZ(A), the A-point x* o §* ~ (y&;n%) of R"2(A) that is given by

=D Bl!(aaf@?y)(ﬁn)fﬁiﬁ (resp-, = ZLZrﬂ‘A>, (2.24a)

lo|20]8]=0

> 51.(35‘1’5)($)i§63“ <resp-7 ZZL’E’&?). (2.24b)
' A

la|>0[8]20

B
LN

Here, we used the obvious decomposition A = R x A and wrote Ty = (:Eﬁ, z%). The particular
linear versions of equations (2.24a) and (2.24b) (in parentheses), show that the component @,
is Ag-linear, as needed.

In the general case of a linear Z5-morphism ¢: L — L', the ZJ-morphism ® := ko ¢ o
h~1: RPI¢ — R"Is has linear coordinate pullbacks ®* (yb) and ®* (nB ) (and is thus a linear Z3-
morphism), for any charts h and k of L and L', respectively. Since ¢ = k™! o ® o h, we have
oA = le o ®p ohp and, in view of Proposition 2.17 and the result of the preceding paragraph,
all three factors of the RHS are Ag-linear.

Finally, the natural transformation §(¢) is a natural transformation of the functor category
with target FAMod. |

Theorem 2.20. The functor of points
§: ZjyLinMan — Fung(Z3Pts°?, FAMod)

of the category Z5LinMan is fully faithful.
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Proof. We need to prove that the map
SL,L’: HomZQLinMan(Lv L/) = (b = ¢— S HomFuno(ZgPtSOP,FAMod)(L(_)a L/(_))

is bijective, for all linear Z3-manifolds L, L'.

Since § is the restriction of the fully faithful functor §: ZiMan — Fung (ZgPtSOP, AFM), the
map S|/ is injective.

To prove that 8 |- is also surjective, it actually suffices to show that the property holds for
Cartesian Z5-manifolds. Indeed, in this case, if n: L(—) — L’(—) is a natural transformation
of Fung (ZgPts(’p,FAMod), then k_ o noh~! is a natural transformation in the same category

from RP4(—) to R"lS(—), and this transformation is implemented by a linear ZZ-morphism
©: RPIE 5 R7I5 Tt follows that

n=kltop_oh_=(k‘topoh)_,

where the latter composite is a linear Z5-morphism.
Let now H: RPlZ(—) — R"I5(—) be a natural transformation of Fung (Z3Pts°P, FAMod), hence,
a natural transformation of Fung(Z4Pts?, AFM). We know from [13] that H is implemented by

a Zy-morphism @: R? la R”l2, but we still have to prove that this morphism is linear. It follows
from equations (2.24a) and (2.24b) that Hy, = ®, is given by

vh= > Y Flglxy) ih &8, (2.252)

la|>018|>0

K= D Fab(a) ah &, (2.25b)

|e|>08]>0
where we set

ra(z) = ,3%* € C°°(RP) (2.26)

A

(the ®F € C*°(RP) are the coefficients of the coordinate pullbacks by ®, see equations (2.23a)
and (2.23b)), and where the RHS-s have of course the same Zj-degree as the corresponding
coordinates of R"l2. Since Hy is Ag-linear, we have

ZZF T:UH ‘M"!‘W‘jﬁ@a\:rzz aB $|| ZEAfA,

i.e.,
Pl P E s (ray) = 7 Fig (ay),

for any r € Rso C Ao, any «, 8 and for any z; € RP. When deriving with respect to r, we
obtain

P
plal+18-1 <(|a] + |5])F§B(raf“) + TZxﬁ (amﬁF;B) (m:|)> = F;ﬂ (a:H),
a=1
so that setting r = 1 yields
Z:}:HG aFrg=(1-n)Fis(z))  (n:=l|a|+|8 €N), (2.27)

again for all , § and all z)| € RP.
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Recall now that Euler’s homogeneous function theorem states that, if ' € C1(RP\{0}), then,
for any v € R, we have

P
> 20 F =vF(z),  VzeRP\{0}
a=1
is equivalent to
F(rz) =r"F(x), Vr >0, VzeRP\{0}.
In view of (2.27), we thus get

Fig(ray) =r'""Fig(z)),  Vr>0, Vo R, (2.28)

e} «

where we could extend the equality from R? \ {0} to R? due to continuity. If r tends to 0T, the
limit of the LHS is Fofﬁ(O) € R and, for n = 0 (resp., n = 1; resp., n > 2), the limit of the RHS

is 0 (resp., F;B(a:”); resp., +00 - F;ﬁ(w”)).
In the case n > 2, we conclude that

Frg(x)) =0, Vo € RP, Vo, B: |al+ 8] > 2. (2.29)
For n = 0, we get

Observe that a = 8 = 0 is only possible in equation (2.25a). Differentiating (2.28), in the case
n = 0, with respect to any component :z:ﬁ of 2, and simplifying by r, we obtain

(0ag Foo) (r) = 8ug Foo (),
and taking the limit r — 07, we get

O Fo(z)) = 8xﬁFé’O(O) =L cR.
Integration yields

Fly(ay) =Y Lbaf,  Vay €RP, Wb, (2.30)

as F{,(0) = 0.

In the remaining case n = |a| + |f| = 1, we have necessarily « = 0 and = ¢4, or @ = €4
and S = 0 (the e, are of course the vectors of the canonical basis of RP and Rl4l respectively).
For Zy-degree reasons, the first (resp., second) possibility is incompatible with equation (2.25b)
(resp., equation (2.25a)). Hence, the only terms in (2.25a) that still need being investigated are
the terms (o, ) = (0,¢e,). It follows from equation (2.28) and its limit » — 0T (see above) that
Fé’ea (JcH) = K?, where we set K? := Fé’% (0) € R. However, equations (2.26) and (2.30) imply
that

K, = Fy,, (1)) = 0ag Fio (7)) = Lo,
so that

R, (v)=LeR,  Vx €R’, Va,b. (2.31)
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In equation (2.25b), the only terms that still need being investigated are the terms (o, ) =
(e4,0). Using again the limit r — 0% of equation (2.28), we find

FPo(z) =LE, V) €eRP, VA B, (2.32)

e

where we wrote L instead of F.5(0).
When combining now the results of equations (2.29), (2.30), (2.31), and (2.32), we see that
equations (2.25a) and (2.25b) reduce to

vi =Y Lo(ef+4%) and nf =) Li¢
a A

and that the Z3-morphism & that induces the natural transformation H is defined by the
coordinate pullbacks

o* (yb) = Z | and o* (nB) = ZLE &4,
a A
i.e., that @ is linear (see (2.23a), (2.23b), (2.24a), and (2.24b)). [

2.3.3 Isomorphism between finite dimensional Z7-graded vector spaces
and linear Zj-manifolds

In this subsection, we extend the isomorphism
M: Z5CarVec = ZyCarMan : U

of Proposition 2.5 between the full subcategories ZjCarVec C Z4jFinVec and ZjCarMan C
Z5LinMan, to an isomorphism

M: Z5FinVec = ZyLinMan : 7/ .

Zy-symmetric tensor algebra. We start with some remarks on tensor and Zj-symmetric
tensor algebras over a (finite dimensional) Z3-vector space (see [36] and [9]).
Let

N N
V= @ Vi = @ V,, € ZyFinVec
1=0 1=0

be of dimension plg. The Zj-symmetric tensor algebra of V' is defined exactly as in the non-
graded case, as the quotient of the Z3-graded associative unital tensor algebra of V by the
homogeneous ideal

I=(vi®@uv;— (—1)<%’W>Uj ® vz v; € Vi, v € Vj).
More precisely, for k > 2, we have
N
vib— @D Vieoeli= @ Via= @ ( D Vi ®...®V0ik>7
i150esi=0 i1 <<ig i1<+<iy \o€Perm

where Perm is the set of all permutations of i1 < --- < i;. For instance, if n = 1, i.e., in the
standard super case, the space V®3 is the direct sum of the tensor products whose three factors
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have the subscripts 000, 001, 010, 011, 100, 101, 110, 111. The notation we just introduced
means that we write

V& = Vooo @ Voor @ Vorr @ Vi,
where we used the lexicographical order and where
Vooo = Vo ® Vo ® W, Voor =W eaWweaVieoWeWVieVue Vi VeV, et cetera.

Further, as we are dealing with formal power series in this paper, we define the Z3-graded
tensor algebra of V' by

TV =11, V®*,

where Il means that we consider not only finite sums of tensors of different tensor degrees, but
full sequences of such tensors. The vector space structure on such sequences is obvious and the
algebra structure is defined exactly as in the standard case. Indeed, for T% € V& and U € V¢,
we have TF@U* € VE*+) and we just extend this tensor product by linearity. In other words, if

o0 (o)
T=>TreTV —and U=)» U'eTV,
k=0 (=0
we set

TeU=> Y TFeU'=)" Y TreU'cTV. (2.33)
k£

m k4+l=m

It is clear that the just defined tensor multiplication endows TV with a Zj-graded algebra
structure. Indeed, since

N N
D Vii=B B Vi.w=€ (),
p=0

i1 <<, p=0 iy <--<iy,
is visibly a Z3-graded vector space, the space TV is itself Z3-graded:

N N N

TV =1 @ (VE"), = P (V) = P (TV)
p=0 p=0 p=0
Now, if T € (TV)p and U € (TV)q, we have TF € (V®k)p and U’ € (V®€)q, so that T ® U €
(TV)p g (where p + g means 7y, +,), which shows that TV is a Zj-graded (associative unital)

algebra (over R), as announced.
The ideal I is homogeneous with respect to the decomposition

TV = 11, @ ‘/Z'h_..7ik, i.e., I= Hk(zQ) @ (Vi17---7’ik N f)

1< 11 <

Therefore, the Z5-symmetric tensor algebra of V' is given by

SV=1y B Vi.i Vi) =1, @ Vo0V,

11 < <ig i1 <o <ip
N
=D n P vie-ov, (2.34)
p=0 zl< <ig

Zj Yi; =p
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see [9]. We denote by ® the ZZ-commutative multiplication that is induced on SV by the
multiplication ® of TV. By definition, we have, for [T'] € (SV),, and [U] € (SV),,; (obvious
notation),

[T]o U] =[TeU]= (-1 [U]o (1]
For instance, if v; € V; C (SV),,, v; € V; C (SV),, and if i < j, we get
v Ov; = [v; @ vj] = (=)0 @ v;] = (=1)0; O v € V; OV (2.35)
Notice further that, if ¢ < j, the linear map
Lt VieV,aT— [T eV;0V; (t: Vi®Vi30,Q0vj —v0vj € V;OV;) (2.36)

is a vector space isomorphism. Indeed, if [T'] = 0, the representative 1" is a vector in (V; @ V; &
V; ® Vi) NI and is therefore a finite sum of generators of I:

(=D "k @uf =) vfeuf —T e (Ve V) n(V;® Vi) = {0}, (2.37)
k k

It follows that the LHS of equation (2.37) vanishes; hence, the first term of the RHS vanishes,
due to the isomorphism V; ® V; ~ V; ® V;, and thus T vanishes as well. In order to show that ¢
is also surjective, consider an arbitrary vector in V; © V;. It reads

)= | Sk o+ S ufeu
k ¢
The image by ¢ of

va ® vf + (_1)<vmg'> wa ® wf eV,®V;
* ¢

is the corresponding class. This class coincides with [T, since the difference of the representatives
is a vector of 1.
It follows that, for n = 2 for instance, we have in particular

Voo © Voo @ Vo1 @ Vig @ Vig @ Vig @ Vi1 = Vo @ Vi ® ©°Vip @ Vi
~ \/2V00 Q@ Vo1 ® /\3V10 ® Vi1, (2.38)

where V (resp., A) is the symmetric (resp., antisymmetric) tensor product. Moreover, if the
(finite dimensional) vector space V' has dimension qy|q1, g2, g3, we denote the vectors of its basis
(in accordance with the notation we adopted earlier in this text) by bé», where ¢ € {0,1,2,3}
refers to the degrees 00, 01, 10, 11 and where j € {1,...,¢;}. The basis of the Zy-symmetric
tensor product (2.38) is then made of the tensors

0 0 1 2 2 2 3
bjl v bjz ® bj3 ® bj4 A bj5 A bje ® bj7
(1 < j2and j4 < j5 < jg), which can also be written
0 0 1 2 2 2 3
bjl © bjz © bj3 © bj4 © bj5 © bj6 © bj7

(1 <j2and js < Js < je) (see (2.36)). More generally, the basis of V;; ©®---©V;, (i1 <--- <)
is made of the tensors

b OO bk (2.39)
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(Je < jegr (vesp., <), if ip = igy1 and (v, 7i,,,) even (resp., odd)). To refer to the previous
condition regarding the j-s, we write in the following j; <1 --- <1 jg.
Observe also that

k
S'V= P WIQ--~®%k=Sk@%=<®S%),
i1 <<y i i

as well as that, in order to define a linear map on V;; ®---©V;, (see (2.38)), it suffices to define
a k-linear map on V;, x --- x V;, that is Z5-commutative in the variables iy = - - - = i,,.

Manifoldification functor. If V is a Z3-graded vector space, its dual V" is defined by

N N N
VY :=Hom(V,R) = @ Hom,, (V,R) = @) Hom(V;, R) = @H(V;)" € ZjVec.
=0 =0 =0

More explicitly, we consider the space of R-linear maps from V' to R of any Z3-degree. It is clear
that the linear maps of degree ; are the linear maps from V; to R (that vanish in any other
degree). Hence,

(V), = (W)Y =17

i_

It follows that, if V' is finite dimensional of dimension plg, its dual V" has the same dimension.
Moreover, any basis (b%); (i € {0,...,N} and k € {1,...,q;}, where we set gy := p) of V
defines a dual basis (8F);  of VV.

Let now V' € ZyFinVec be of dimension p|q. We set

N
V) = @ Vjv € ZyFinVec (dim (V,') = 0lq).
j=1

Proposition 2.21. If V is a Zy-graded vector space of dimension plq, there is a non-canonical
isomorphism of Zy-commutative associative unital R-algebras

b: S(V.) — R[],
where R[[€]] is the global function algebra of ROI4.

Proof. As usual, we ordered the Z3-degrees lexicographically, so that the §f-s are ordered
unambiguously. We have

R[[]] = TIaR &7,

where the multi-index a has components oz? € N (resp., af € {0,1}), if (vj,7;) is even (resp.,
odd).
On the other hand, it follows from equations (2.34) and (2.39) that, choosing a basis (b})

of V. (defined similarly as V,”) and denoting its dual basis by (Bf) j.¢, leads to

gt

SV =, @ P REFo--0pF =1 P RE =TLRA, (2.40)

J1 < <gg A1 <1<y, |a|=F

where af € N (resp., af € {0,1}), if (7;,~;) is even (resp., odd).

In view of (2.33) and (2.35), the multiplications of R[[¢]] and S(V,") are exactly the same, so
that the two Zj-commutative algebras are canonically isomorphic, once a basis of V, has been
chosen. |
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Remark 2.22. We denoted the isomorphism by b to remind us of its dependence on the ba-
sis (bz)j,l'

We are now prepared to define the linear Zy-manifold associated to a finite dimensional Z-
vector space. From here we denote the vector space by V instead of V' and reserve the notation V'
for the manifold V := M (V).

Hence, let V € ZJFinVec be of dimension p|q. The p-dimensional vector space V of degree 0
is of course a smooth manifold of dimension p, as well as a linear Zy-manifold Vp of dimension p|0.
On the other hand, the algebra S (V}k/ ) is a sheaf of Zj-commutative associative unital R-
algebras over {x}, i.e., it is a Z5-ringed space with underlying topological space {*x}, and, in view
of Proposition 2.21, this space is (non-canonically) globally isomorphic to R = ({«}, R[[¢]]).
Hence, the space ({*}, S (V;/)) is a linear Zj-manifold V- of dimension 0|g. Finally, the product
V = Vp x V5 is a Z§-manifold of dimension p|g, with base manifold Vj x {x} ~ Vj and function
sheaf Oy that is, for any open subset Q C V ~ RP, given by

Ov () = Oyyxvs (2 x {#}) = O (DBR Ovs, ({+}) = C*(Q)@r RIE]]
= CF(Q)[[€]] = Ogpia () (2.41)

(since Q and {x} are Z5-chart domains; for more information about the problem with the function
sheaf of product Zj-manifolds, we refer the reader to [15]). In particular, the Z5-algebras Oy (Vp)
and Opyq (R?) are isomorphic (see also Definition 13 of product Z5-manifolds in [15]), so that the
Z5-manifolds V' and RP 9 are diffeomorphic (given what has been said above, the diffeomorphism
is implemented by the choice of a basis of V). Finally V € Z§LinMan (dimV = p|g). We define
the manifoldification functor 4l on objects by

M(V) = V.

We now define M on morphisms. A degree zero linear map L: V — W between finite
dimensional vector spaces (of dimensions p|g and r|s, respectively) is a family of linear maps
L;: Vi = W; (i € {0,...,N}). We denote the transpose maps by ‘L;: W) — V.

The linear map Lg: Vo — W is of course a smooth map Lg: Vy — Wy, where V, Wy are
the vector spaces Vg, Wq viewed as smooth manifolds. The map Ly can also be interpreted as
Zy-morphism Lg: Vy — Wy between the Zj-manifolds Vp, Wy (which are of dimension zero in
all non-zero degrees). The base morphism of Ly is Ly itself and, for any open subset Q C Wy,
the pullback (Lo)§, is the (unital) algebra morphism — o Lg|,: C%() — C®(w) (w := Ly (2))
that extends the transpose ‘Lo(—) = — o Ly.

The linear maps ‘L;: WY — VY (j € {1,..., N}) define a linear map

S('L): S(WY) = §(VY).
Observe first that to define such a map, it suffices to define a linear map in each tensor degree k,

hence, it suffices to define a linear map

tr\Ok | % Y% v v
(L)jl...jk' W]d@'”@ij_)le@'“@ij’

for any j; <--- <ji (jo € {1,...,N}). Since the k-linear maps
try <k v v 1 k
(L)jl..,jk- Wi X x Wi (w0 w), ) =
¢ 1 t k v v
Lj, (U')Ji) ©--- O "Ly, (wjk) = le ©--0 ij
are Ziy-commutative in the variables j; = --- = jy,, they define the degree zero linear maps

(tL)ili.jk (We set (tL)QO = idR) and thus the degree zero linear map S (tL) that we are looking
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for. In view of our definitions, the latter is a (unital) Z3-algebra morphism between the global
function algebras of the Z3-manifolds W~ and V5, and it therefore defines a unique Z5-morphism
L~ : V5 — W~. The base morphism of L~ is the identity c¢: {x} — {*}.

We thus get a Z5-morphism

ML) :=L:=Lox Ls: M(V)=V =Vyx Vo = M(W) =W =Wy x Ws, (2.42)
with base map Lo x ¢ ~ Lo and pullback (€ open subset of Wy, w := Ly'(Q))
Ly: Ow(Q) = Cip, (BRr S(WY) — Oy (w) = O (w)@r S(VY), (2.43)

which is fully defined by (— o Lol,) ® S(‘L).

We must now prove that the Z5-morphism Ml(L) = L is a morphism of Z5LinMan, i.e., that
in linear coordinates it has linear coordinate pullbacks. As said above, the linear coordinate map
k: W — R’l2 is the product of the linear coordinate maps ko: Wo — R7I2 and ks : W — ROk,
The first of these coordinate maps is implemented by a basis by of Wy and its global pullback
by C°(R") — O (Wo) sends a coordinate function y' € C®(R") to

biv (¥°) = " o bw = Biy € Ci, (Wa),

where Sy is the dual basis (observe that by, extends the transpose of by viewed as vector space
isomorphism). Similarly, it is clear from Proposition 2.21 that the global pullback b;Vl of the
second coordinate map sends a coordinate function 77? € R[[n]] to

w (1) = B € S(W),

where (ﬁf)j , 1s the dual of a basis of W,. Based on what we just said and on the state-
ment (2.43), we get that the coordinate pullbacks in the linear coordinate expression of L are

b)) = L) = (60) " (LaBi)) = 04" ( Rk ) = S (ware®

k k

and

o (L O (1)) = b (T(3) = b ( (LAY ) = (L

k k

where the notations are self-explanatory. Hence, J((L): (V) — M(W) is a morphism of
Z3LinMan.
Since Jl(L) is essentially the transpose of L, we have defined a functor

M: Z5FinVec — ZyLinMan

and this functor coincides on ZjCarVec with the functor /I that we defined earlier.

We already mentioned that the Z5-diffeomorphism, say h, between V = (V) and RPl2
is implemented by a basis (bi); of V. Now we can explain this observation in more detail.
Indeed, the basis chosen provides a Zj-vector space isomorphism b: V. — R? |ﬂ, hence, the image
M(b): M(V) — J/L(Rp@) is a Zb-diffeomorphism (it is even an isomorphism of ZjLinMan),
say b: V — RPI. The diffecomorphism b = Jl(b) is a special case of the map L = J((L)
of Z3LinMan, whose construction has been described above. It is almost obvious from the
penultimate paragraph that the diffeomorphism h coincides with the diffeomorphism b. Indeed,
the diffeomorphism h is the product of two Zj-diffeomorphisms hy: Vo — RPIO and he: VA —
ROl (see k in the penultimate paragraph). The same holds for b, which is defined as b = by x b,
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where by: Vo — RPI2 and bs: Vo — R (see (2.42) and (2.43)). The map hy is canonically
induced by the basis (b9)) of Vg, and so is by; hence hg = by. The Z3-diffeomorphism b is
defined by the corresponding Z3-algebra isomorphism

S(*b): S((RY9)Y) = S(VY),

where the source algebra is I[I,Re® = R[[{]]. As seen above, this algebra morphism is fully
defined by the transposes 'b;: (R%)Y — V7 and their action on the basis (¢ J) The action is

'b;(cf) = &fob; = B,
since the image of any v; = >, vf bi; € V, by the two maps is vf. It follows that

S('b) =b~1. (2.44)
This yields b~ = h~. Finally, we get

h = b= Jl(b). (2.45)
Vectorification functor. In this subsection, we define the vectorification functor

% : ZyLinMan — ZsFinVec.

If L € ZjLinMan has dimension p|q, we set

V(L) :=L:= (0 hn(|L\)) @( Il_l,%z(||-| @L € ZyFinVec, (2.46)

i

where L; has dimension ¢; (g0 = p). Further, in view of item (iii) of Remark 2.16, if ¢: L — L'
is a morphism of ZJLinMan, then ‘¢* is a degree preserving linear map

V(p) =& := to*: V(L) = (6{"(L]))" — (6r(IL']))" =7 (L).
The definition of ¥ (¢) implies that ¥ is a functor.

Compositions of the manifoldification and the vectorification functors.
(1) We first turn our attention to ¥ o Jl. If

V € Z5FinVec (dimV = plg),
its image
M(V)=V =Vyx V5 € ZiLinMan  (dim V = p|g)

is the product of the linear Z5-manifolds Vp and V. Let (b@)i , be a basis of V with dual (ﬂf)i ¢

and induced Zj-vector space isomorphism b: V — RPle (we denote the induced diffeomorphism
from Vj to RP by bg). As explained above, it defines a linear coordinate map

h=Jl(b): V — Rl (2.47)
with pullback morphism

h* = (—obg)®rD™': CPR))rR[E]] — C7F(Vo)®r S(VY)
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(see (2.45), (2.43) and (2.44)). Using equation (2.13), denoting the basis of (Rplﬂ)v as usual
by (Ef)i ;» and remembering the identifications (2.10), we thus get

V(MV)) = (61" (Vo))" = (h*6Ln, (RP) V:<h*(@Re€@@Re§>)v
(@R eb 0 by) @@Rb 1@) (@Rﬁo@@lwf) =V.

(17) Regarding Jl o ¥/, recall that if
L € Z5LinMan (dimL = plg).

Definition (2.46) yields 7 (L) = L = (@ll_in(|L|))v (notice that L denotes a vector space here,
and not a linear map) and Definition (2.41) leads to M (L) := L := (Lo,0r), where Ly is

Lo = (@ll_‘I}YO(|L\))V viewed as smooth manifold, and where O (w) (w C Lg open) is

Op(w) = CFy (w)®r S(LY)
(see (2.41)). If we choose a basis (/BZ) of LY, we have
SLH = P P R o--0F =TLRE",
TS S L1 <D<,

where af € N (resp., af € {0,1}), if (7, ;) is even (resp., odd) (see (2.40)). Just as
CRe (VBRI REY = CR (VB RI[E]] = CR(D[€]] = o CF5(Q) €

(© C R? open) (see [15]), we have

Op(w) =T, CRW) " =1 P P CRw) ook (2.48)

15 <gg 1 <<y,

Remark 2.23. Let us mention that L and L denote a priori different linear Z5-manifolds and
that our goal is to show that they do coincide.

Recall first that, for any Zy-manifold M, there is a projection
EM - ®M — Cloj\?[‘

of | M|-sheaves of Z-algebras and that ey commutes with pullbacks. In particular, ifh: L — R? la
is a linear coordinate map of L (a (linear) Z5-diffeomorphism), its pullback is, for any open subset
|U| C |L|, a Z5-algebra isomorphism

h™: Ot ([RI(1UT)) = OL(U])
and it restricts to a Z§-vector space isomorphism

s O, (IRI(IU]) — O™ (|U)).

Further, as just said, we have

eLoh® =h"oeppiqy = (— o |h|) 0 €ppig
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on Oppiq([R[(|U])). Taking |[U[ = [L| and restricting the equality to degree zero linear functions

o, (R?) = (R?)"

(see (2.13)), we obtain

el oh* = —o |, (2.49)
or, equivalently,

et = (— o [hf) o ()7, (2.50)

where (h*)~! is a vector space isomorphism from (Lg)V = @EI;O(|L\) to (RP)Y and where —o|h| is
an algebra isomorphism from C*°(RP) to C*°(|L|). In view of the diffeomorphism |h|: |L| — RP,
the smooth manifold |L| is linear. Hence, it is a finite dimensional vector space also denoted |L|
and |h| is a vector space isomorphism, whose dual /h| = — o |h| is a vector space isomorphism
from (RP)Y C C°(RP) to |L|Y. Tt follows (see also equation (2.50)) that the canonical map €L
is a vector space isomorphism from (L)Y to |L|Y. When identifying these vector spaces, we get
€. = id and |L| = Lo, hence the corresponding linear manifolds do also coincide: |L| = L.

To prove that the linear Zg-manifolds L and L coincide, it now suffices to show that their
function sheaves coincide. The pullback of h is an isomorphism h*: 6 — O of sheaves
of Z3-algebras. Since h* is a Zj-vector space isomorphism

RP@

h*: (R%9)" = 6%, (RP) — 6% (|L|) =

the images (h* (5?))] , are a basis (54) of LY. Moreover, we know that

)= (....ec(b*(gf)),...) = (..., h*(f),...),
as €. = id on (Lg)Y. Therefore, if f(z) € C>(RP), we get

W (f(2)) = FC@) = Fo (.. (<L), ... ) = folh] € C¥(L]). (2.51)
Equation (2.51) (which generalizes equation (2.49)) shows that h* is an algebra isomorphism

h*: C>*°(RP) — C*°(|L|). Similarly, if w C |L| is open,  := |h|(w) C RP and f(z) € C*°(Q), we
have

h*(f(x)) = f o hll. € CF(w),
so that

h*: C*(Q) - C*(w) (2.52)
is also an algebra isomorphism. Finally, the Z5-algebra isomorphism

h*: II,C(2) &Y — O (w) (2.53)

sends any series ) fo(2)£“ to
> 0t (fal@) (... h5(&h), Zh* (fa(@))(... 0% (h),...)"
—Zh* fa(x))B* € O (w)
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(see (2.48)). The Zj5-algebra morphism
h*: II,C° ()€ — Of(w) (2.54)

we get this way (notice that the targets of the arrows (2.53) and (2.54) are different) is visibly
an isomorphism. Indeed, it is obviously injective, and it is surjective due to (2.52). It follows
from (2.53) and (2.54) that O (w) = Or(w), for any open subset w C [L|. Since h* commutes with
restrictions, the sheaves O and Op, coincide and (7 (L)) = L. An alternative way of saying
what we just said is to observe that in view of (2.53) every element of O (w) is the image by
h* of a unique series ) fo(2){* and therefore belongs to O (w). Conversely, in view of (2.52)
every element ) ga3% (9o € C*(w)) of Of(w) uniquely reads > h*(fa(z))5“, is therefore the
image by h* of >  fo(x)&* and so belongs to O (w). (i7i) We leave it to the reader to check
that both functors, ¥ o M and M o ¥V, coincide also on morphisms with the identity functors.

Theorem 2.24. The functors
M: ZyFinVec = ZjLinMan 7/
are an isomorphism of categories.

Comparison of the functors of points. Since ZjFinVec ~ ZjLinMan, the fully faithful
functors of points F (see Proposition 2.8) and § (see Theorem 2.20) of these categories should
coincide. However, up till now, the functor % is valued in Fung (ZgPtSOP,AMOd), whereas the
functor § is valued in Fung (ZgPtSOP, FAMod). Since FAMod is a subcategory of AMod, the latter
functor category is a subcategory of the former. Hence, if we show that the image F(V) of
any object V of ZFinVec is a functor of Fung (ZgPtSOP, FAMod) (%) and that the image F(¢) of
any morphism ¢: V. — W of ZjFinVec is a natural transforation of Fung (ZQPtSOP, FAMod) (%),
we can conclude that F is a functor

F: ZyFinVec — Fung(Z3Pts®®, FAMod).

We start proving (x). Since FAMod is a subcategory of AMod, we just have to show that the
image

FV)(A) =V(A)=(Ax V)
of any object A of Z§Pts®P is a Fréchet Ag-module (o) and that the image
FV)(¢") =V(") = (¢ @1v)o

of any morphism ¢*: A — A’ of ZJAlg is a morphism of FAMod (o).

To prove (), we consider a basis of V (dim V = p|q), i.e., an isomorphism b: V = RPZ; p!
of Zj-vector spaces. Since F(b) = b_ is a natural isomorphism of Fung(Z4Pts°P, AMod), any of
its A-components is an isomorphism

ba: V(A) 2 RFIE(A) byt
of Ag-modules. We use this isomorphism to transfer to V(A) the Fréchet vector space structure of

RPS(A) = (AR =P EP A, =ILIA,, = Ay x AZXT x - x AZIY (2.55)
7 k

(see proof of Proposition 2.17 and equation (2.16)), thus obtaining a well-defined Fréchet struc-
ture and making b a Fréchet vector space isomorphism, i.e., a continuous linear map with
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continuous inverse. Since by is Ag-linear, the action - of Ag on V(A) is related to its action <
on RPIZ(A) by

a-v= bxl(aq ba(v)),

for any a € Ag and any v € V(A). The action - is thus the composite of the continuous maps
id X by, <, and le, hence, it is itself continuous. The Ap-module and the Fréchet vector space
structures on V(A) therefore define a Fréchet Ag-module structure on V(A) and bp becomes
an isomorphism of Fréchet Ag-modules (for any basis b of V).

As concerns (o), recall that V(p*) is a (p*)g-linear map, where the algebra morphism
(¢*)o: Ao — A{ is the restriction of ¢*. Observe now that, in view of (2.55), we have

RP4(p*) = (¢* @ 1)g = ILIT;, ¢,

so that RP |ﬂ(<p*) is continuous as product of continuous maps (indeed, the Z5Alg-morphism ¢*
is continuous as pullback of the associated Zj-morphism). As b_ is a natural transformation
of Fung (ZSPtsOp, AMod), we have

V(p*) = by o RY4(p") o by,

so that V(¢*) is continuous (and (¢*)o-linear), hence, is a morphism of FAMod.

It remains to show that (%) holds. We know that F(¢) = ¢_ is a natural transformation
of Fung (ZgPtsof’, AMod), i.e., its A-components ¢ are Ag-linear maps and the naturality con-
dition is satisfied. It thus suffices to explain that ¢ = (1 ® ¢)o is continuous. Since A is
a Fréchet algebra, it is a locally convex topological vector space (LCTVS) and 1: A — A is
a degree zero continuous linear map. Further, since V and W are finite dimensional Z3-vector
spaces, the degree zero linear map ¢: V — W is automatically continuous for the canonical
LCTVS structures on its source and target. It follows that 1 ® ¢ and (1 ® ¢)¢ are continuous
linear maps.

Proposition 2.25. The functor
F: ZyFinVec — Fung (ZSPtsOp, FAMod)
is fully faithful.

Proof. The result is obvious in view of Proposition 2.8, since Fung (ZgPts"p, FAMod) is a sub-
category of Fung (ZgPts"p, AMod). |

We are now ready to refine the idea expressed at the beginning of this subsection that the
(fully faithful) functors of points

F: Z3FinVec — Fung(Z5Pts®?, FAMod)
(see Proposition 2.25) and

§: ZyLinMan — Fung(Z5Pts®?, FAMod)
(see Theorem 2.20) of the isomorphic categories

M: ZyFinVec = ZgLinMan :

should coincide.
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Theorem 2.26. The functors
SoJl,F: ZyFinVec — Fung(ZyPts’, FAMod)
are naturally isomorphic.
We first prove the theorem in the Cartesian case
M: ZyCarVec = ZyCarMan :

(see Proposition 2.5). More precisely, it follows from Proposition 2.25 and Theorem 2.20 that
the functors & and § are (fully faithful) functors

F: ZjCarVec — Fung(Z5Pts®?, FAMod)
and

§: ZjCarMan — Fung(Z5Pts?, FAMod).
Actually:
Proposition 2.27. The functors

Sodl,F: ZjCarVec — Fung(ZyPts?, FAMod)
are naturally isomorphic.

Proof. In order to construct a natural isomorphism I: Sol — F, we must define, for any R? |ﬂ,
a natural isomorphism

lgria: S (RPIE) — o (RPI4)
of Fung (ZgPtSOP, FAMod) that is natural in R”/4. To build |

an isomorphism

rrla; We have to define, for each A,

| S(RPIZ)(A) — F(RPIZ)(A)

RPI4 A

of Fréchet Ag-modules that is natural in A. Recalling that the source and target of this arrow
are

RPIZ(A) = Homppyan (RO, RPIE) (RO~ A)

and
N  q; ‘ N q;
RPI(A) = (A@RMY) = PP A, @Rel, = PP A, = A7 x ALT x o x AXIN,
=0 k=1 =0 k=1

respectively, we set

ooyt X = DX (uf) @ el = (" (u) = (<" (2%), %) =5 (@K, &)

where (uf ) = (a:k, £ f ) are the coordinates of RP!¢ and where (efc)i . is the canonical basis of R” la,
Since we actually used this 1 : 1 correspondence to transfer the Fréchet Ag-module structure from

RPIZ(A) to RPIZ(A) (see (2.20)), the bijection |grla , is an isomorphism of Fréchet Ag-modules.
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This isomorphism is natural with respect to A. Indeed, if p*: A — A’ is a Z-algebra map (with
corresponding Z5-morphism ), we have

Igta o (RM(07) () = Igpta oo (x 0 0) = (7 (5" (27), " (x°(&))) = (¢7 @ Lo (Iggpia 5 (x)-

It now suffices to check that |g,|, is natural with respect to R” la Hence, let L: RP 2 R"Is be

a degree zero linear map and let L: RP l2 5 R"I# be the corresponding linear Z5-morphism J((L).
In order to prove that

lgris 0 S(L) = F(L)o IRp\ga (2.56)

we have to show that the A-components of these natural transformations coincide. To find
that these Fréchet Ag-module morphisms coincide, we must explain that they associate the
same image to every x € RPZ(A). When denoting the coordinates of RIS by (ulf) = (a;’f,ggﬁ’),
we obtain

lreien (SIL)A()) = Igeie (Lo x) = (" (L7 (")), x"(L7(€]))) = (" (L7 (),

where

*
Z sz uz ’

in view of (2.11) and (2.12). It follows that
(< (1 (szkx* ) - z(szx* i)w
=)o (D) - S () o L(eh)
ik

L

1eL) <ZX ®6k>=%<L>A(Iqu,A(x>)7

where (67)2.78 is the basis of R"ls. [
We are now able to prove Theorem 2.26.
Proof. For simplicity, we set
T := Fung (Z3Pts°?, FAMod).

In order to build a natural isomorphism .¥: S oMl — %, we must define, for any V € ZjFinVec,
a natural isomorphism

Fv:S(V) = F(V)
of T that is natural in V. Set
dimV = plq

and let b be a basis of V, or, equivalently, a Zj-vector space isomorphism b: V. — R? 9. Tn view
of (2.47), the morphism Jl(b): V — R? |9 is a linear Z3-diffeomorphism. Using Proposition 2.25
and Theorem 2.20, we obtain that

F(b): F(V) — F(RPl)
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and
S((b)): S(V) — S(RPI4)
are natural isomorphisms of T. As

lgria: S (RPIE) — o (RPI4)

is a natural isomorphism of T as well, the transformation

Fv :=F(b7) o lgpiq 0 S(M(b))

is a natural isomorphism
Fv: S(V) = F(V)

as requested. In view of equation (2.56), the transformation Fy is well-defined, i.e., is indepen-
dent of the basis chosen.

It remains to show that Jy is natural in V, i.e., that, for any degree zero linear map ¢: V —
W (dim'W = r|s) and for any basis b (resp., ¢) of V (resp., W), we have

F(¢) oF (b™") o lgplg 0 S(AM(b)) = F(c ") o lges 0 S(Al(c)) o S(M()),

RPl2

or, equivalently,

Igrie 0 S (M (cogob™)) =F(copob ) olg,.
Since L := co ¢ ob~! is a degree zero linear map L: RP — R’ equation (2.56) allows once
more to conclude. |

Internal Homs. A topological property is a property of topological spaces that is invariant
under homeomorphisms (isomorphisms of topological spaces). More intuitively, a “topological
property” is a property that only depends on the topological structure, or, equivalently, that can
be expressed by means of open subsets. Similarly, equivalences of categories (“isomorphisms”
of categories) preserve all “categorical properties and concepts”. Hence, an equivalence should
preserve products. It turns out that this statement is actually correct. More precisely, if €: S —
T is part of an equivalence of categories, then a functor @: I — S has limit s if and only if the
functor € 0 @: I — T has limit €(s). Applying the statement to the discrete index category I
with two objects {1,2} and setting D (i) = s; (i € {1,2}), we get that s; and sy have product s
if and only if €(s1) and €(s2) have product €(s). Now, the category ZFinVec has the obvious
binary product x. It follows that, for any vector spaces V, W & ZjFinVec, the manifolds
M(V), M(W) € ZyLinMan have product

(V) x M(W) =MV x W).

If L,L’ € Z5LinMan, the categorical isomorphism implies that L = J((% (L)) and similarly for L’
so that the product L x L’ exists and is

L x L' = (¥ (L) x V(L)) (2.57)

Hence, the category ZjLinMan has finite products.

Equation (2.57) shows that we got the product of Z5LinMan by transferring to T := Z5LinMan
the product of S := ZjFinVec. We can similarly transfer to T the closed symmetric monoidal
structure of S. Indeed, the category ZjVec is closed symmetric monoidal for the standard
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tensor product — ®zzvec — of Zjy-vector spaces and the standard internal Hom Homzpy,.(—, —)
of Z3-vector spaces, which is defined, on objects for instance, by

ngvec(v, W) = @MZSVec,% (Vv W) S ngeca
i

for any V, W € ZzVec. Of course, if V, W € S, then Homzyyec (V, W) € 8, and the same holds
for V Qznvec W. It follows that S = Z5FinVec is also a closed symmetric monoidal category.
If we set now
L 1 l—/ = *M(CI/(L) ®Z§Vec W(L/))a 7HOH1T(L, L/) = ﬂ(iHomZgVec(ol/(L)vOI/(L,)))7
(2.58)

and similarly for morphisms, we get a closed symmetric monoidal structure on T = Z4LinMan:

Proposition 2.28. The category ZyLinMan is closed symmetric monoidal for the struc-
ture (2.58).

Alternatively, we could have defined Homy(L, L") € T using the fully faithful functor of points
§: T3> L~ Homzpyan(—,L) =: L(—) € Fung(Z5Pts°?, FAMod),

i.e., defining first a functor F{ |/(—) in the target category, and then showing that this functor
is representable by some Homq(L,L’) € T

FL,L/(—) = HomZng(—,@T(Lv L,)) = Homg(L, L,)(—)-

This “functor of points approach” is often easier.

To shed some light on our more abstract definition above, we now compute
Hom, (R? la, R’"‘ﬁ) (A) (o) assuming some familiarity with Z5-graded matrices gl(r|s x p|g, A) with
entries in A € Z3Alg. Details can be found in Section 3.1 which we leave in its natural place.
However, we highly recommend reading it before working though the end of this section.

We observe first that

Homgznyec -, (Rp‘Q,RT‘é) =gl (r|s x plg, R) € Vec.

In order to understand the gist here, we consider the case n = 2, so that a matrix X € gl (7“| s X
plg, R) has the block format

Xoo | Xo1 | Xo2 | Xosz
Xio | X11 | X2 | X3

X = , 2.59
Xoo | Xo1 | Xoo | Xo3 (2.59)
X30 | X31 | X32 | X33
where the degree x;; of the block X;; is
Tij = Yi + Vi + V. (2.60)

Since the entries of the X;; are real numbers and so of degree 7y, all the blocks with non-vani-
shing x;; do vanish. For instance, if 5, = 01 € Z5 (resp., v = 11) (do not confuse with the row-
column index 01 in Xo; (resp., 11 in X11)), the degree z;; = 0 if and only if ij € {01, 10,23, 32}
(resp., ij € {03,12,21,30}) (as in most of the other cases in this text, the ZZ-degrees are
lexicographically ordered), so that only these X;; do not vanish. It follows that

Homppyee (Rp‘g, RTE) = gl (r|s x plg,R) € ZjFinVec
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is made of the matrices (2.59), where no block X;; vanishes a priori. The canonical basis of this
Zy-vector space are the obvious matrices Eiy jo (i,7 € {0,..., N}, ke {1,...,s;}, L € {1,...,q;})
with all entries equal to 0 except the entry £kl in X;; which is 1. In view of equation (2.60), the
vectors of this basis have the degrees v; + ;. We can of course identify (up to renumbering)
this Z5-vector space with R'%, where u, (n € {0,...,N}) is equal to

un =Y s (2.61)

0] Y=
(we set s =7, qo = p, up :=t). Hence:
Homgyyeo (RP,R™%) = gl (r[s x plg, R) = R € ZjcarVec. (2.62)
Combining (2.58) and (2.62), we get
Homy sy s pyan (RP'9, R™2) = il (Homyyy (R”, R72) ) = R € Z5CarMan. (2.63)
We now come back to (). Setting as usual RO ~ A we get the isomorphism

7H0mZ§LinMa_n (Rplg’ RTE) (A) = Rtm(A) = ijyzo Ayxnun

of Fréchet Apg-modules. On the other hand, the vector space gl (r]g x plg, A) is a Ag-module
and this module “coincides” obviously with

gly (r\g x plg, A) = HQIZO Af;:‘"

By transferring the Fréchet structure, we get an “equality” of Fréchet Ag-modules. Hence, the
Fréchet Ap-module isomorphism

Homyup san (R4, R72) (A) = RI(A) ~ TN AXU" = gl (r]s x plg, A) € FAgMod.  (2.64)

There is a natural upgrade that is independent of the internal Homs and makes G := gl (r|s %
plg, —) a functor G € Fung (ZgPts"p, FAMod). Indeed, it suffices to define G on a Z#Alg-morphism
e*: A — A as

G(e*): G(A) 3 X — ¢*(X) € G(N),

where ¢*(X) is defined entry-wise. The morphism G(¢*) is clearly (¢*)o-linear. It is also
continuous, as it can be viewed as a product of copies of ¢*. Since G respects compositions
and identities it is actually a functor of the functor category mentioned. The functors G and
Ri%(—) = S(R%) are of course naturally isomorphic. Since § is a fully faithful functor

§: ZyLinMan — Funo(Z5Pts®, FAMod),
the functor G can be viewed as represented by the linear Z3-manifold R,

Proposition 2.29. The functor gly(r|s x p|q, —) is representable and the Cartesian Ziy-manifold

gly (rls x plg) == R,
with dimension t|u defined in equation (2.61), is “its” representing object.

Example 2.30. For n = 2, we find that gly(1]1,1,1) = R*444,
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3 Zy-Lie groups and linear actions

3.1 Zj-matrices

We will consider matrices that are valued in some Z3-Grassmann algebra A, though everything
we say generalizes to arbitrary Z3-commutative associative unital R-algebras. A homogeneous
matrix X € gl, (r\g X plg, A) of degree x € Z3 is understood to be a block matrix

Xoo ... Xon
Xyo ... XnN

with the entries of each block X;; being elements of the Zy-Grassmann algebra A. Here the
degree z;; € Zy of Xj; is

Tij =i + i +x
and the dimension of Xj; is
dhn(XQ) = S5; X gy

(setting sp = r and g9 = p as usual). Addition of such matrices and multiplication by reals
are defined in the obvious way and they endow gl (7“]§ x plq, A) with a vector space structure.
We set

gl (7“’§ X p|ﬂa A) = @ gl (?”|§ X p\g, A) € ZsVec.
TELy

Multiplication by an element of A requires an extra sign factor given by the row of the matrix,
i.e., for any homogeneous A € A, , we have that

(A X)ij = (=1)7\ X5

We thus obtain on gl (r|§ X plg, A) a Zy-graded module structure over the Zy-commutative
algebra A. If r|s = plq, we write

gl (plg, A) == gl(plg x plg, A).

Multiplication of matrices in gl(p|g, A) is via standard matrix multiplication — now taking care
that the entries are from a Zg—com;nutative algebra. Equipped with this multiplication, the Zg-
graded A-module gl (p\ q, A) is a Zy-graded associative unital R-algebra. In particular, the degree
zero matrices gl (p|g, A) form an associative unital R-algebra. Since multiplication of matrices
only uses multiplication and addition in A, we can replace A not only, as said above, by any
Z5-commutative associative unital R-algebra, but also by any Zf-commutative ring R and then
get a ring gly(p|g, R). We denote by GL(p|q, R) the group of invertible matrices in gly(p|q, R).
For further details the reader may consult [23]. N

3.2 Invertibility of Z3-matrices

Let R be a Zy-commutative ring which is Hausdorff-complete in the J-adic topology, where J
is the (proper) homogeneous ideal of R that is generated by the elements of non-zero degree
v; € Zy, j € {1,...,N}. The Z3-graded ring morphism ¢: R — R/J, where

R/J=EDRi/(Rin.J)=Re/(RoN J)
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vanishes in all non-zero degrees, induces a ring morphism
g: gly (p|g, R) > X — &(X) € Diag (p|g, R/J),

where £(X) is the block-diagonal matrix with diagonal blocks £(Xj;) (with commuting entries).
The following proposition appeared as Proposition 5.1 in [22]:

Proposition 3.1. Let R be a J-adically Hausdorff-complete Zy -commutative ring and let X €
gly (p]g, R) be a degree zero plq x plq matriz with entries in R, written in the standard block
format

Xoo | .- | Xon

Xno | ... | XNN

We have:

X e GL(p‘g, R) & X € GL(qi,R), Vi
& &(X) € GL(plg, R/J) < &(Xii) € GL(qi, R/J), Vi.

In this work, we are of course mainly interested in the case R := A = R & A and J = JOX,
so that R/J = R.

3.3 Z3-Lie groups and their functor of points

Groups, or, better, group objects can easily be defined in any category with finite products, i.e.,
any category C with terminal object 1 and binary categorical products ¢ x ¢’ (¢, € C).

If C is a concrete category, the definition of a group object is very simple. For instance, if C
is the concrete category AFM of Fréchet manifolds over a Fréchet algebra A, a group object €
in C is just an object € € C that is group whose structure maps p: € x ¢ — € and inv: € - €
are C-morphisms, i.e., A-smooth maps. We refer of course to a group object in AFM as a Fréchet
A-Lie group.

If C is the category ZiMan of Zj-manifolds, the definition of a group object is similar, but
all the (natural) requirements (above) have to be expressed in terms of arrows (since there are
no points here). More precisely, a group object G in C is an object G € C that comes equipped
with C-morphisms

w: GxG—=GaG, inv: G—>G and e: 1 -G

(the terminal object 1 is here the Z%-manifold R9 = ({x},R)), which are called multiplication,
inverse and unit, and satisfy the standard group properties (expressed by means of arrows): p is
associative, inv is a two-sided inverse of p and e is a two-sided unit of u. To understand the arrow
expressions of these properties, we need the following notations. We denote by A: G — G x G
the canonical diagonal C-morphism and we denote by eq: G — G the composite of the unique
C-morphism 1g: G — 1 and the unit C-morphism e: 1 — G. The left inverse condition now
reads

po (inv xidg) o A = e
and the left unit condition reads

Mo(egXidg)oAZidG
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(and similarly for the right conditions). The associativity of u is of course encoded by
po (pxidg) = po (idg xp). (3.1)

We refer to a group object in ZiMan as a Zy-Lie group.

A morphism F: € — €' of Fréchet A-Lie groups is of course defined as an A-smooth map
that is a group morphism. Analogously, a morphism F: ¢ — €’ from a Fréchet A-Lie group
to a Fréchet A’-Lie group is a morphism of AFM that is also a group morphism. We denote the
category of Fréchet A-Lie groups by AFLg and we write AFLg for the category of Fréchet Lie
groups over any Fréchet algebra.

Further, a morphism ®: G — G’ of Z3-Lie groups is a Z5-morphism that respects the multi-
plications, the inverses and the units (obvious arrow definitions). The category of Z5-Lie groups
we denote by Z5Lg.

The functor of points of Z4-manifolds

§: ZiMan — Fung(ZyPts, AFM) (3.2)
induces a fully faithful functor of points of Z3-Lie groups:
Theorem 3.2. The functor

§: ZyLg — Funy(Z5Pts®P, AFLg) (3.3)
15 fully faithful. Moreover, if M € ZiMan and

S(M) = M(—) € Fung(Z3Pts®?, AFLg),
then M € ZyLg.

This theorem was announced as [13, Theorem 3.30] without proper explanation or proof.

Proof. It is clear that we have subcategories

AFLg C AFM,  Fung(Z3Pts°®,AFLg) C Fung(ZjPts®?,AFM)  and  ZjLg C ZjMan.

Therefore, in order to prove that the functor (3.2) restricts to a functor (3.3), it suffices to show
that § sends objects G and morphisms ® of ZjLg to objects and morphisms of the functor
category with target AFLg. Observe first that, for any M, N € ZiMan, we have the functor
equality

S(M x N) = (M x N)(=) = M(—) x N(=) = §(M) x S(N), (3.4)

in view of the universal property of M x N. Further, if ¢: M — M’ and ¢: N — N’ are two
Z3-morphisms, the natural transformation

S(¢x ) = (¢ x¢p)—: (M x N)(=) = (M x N')(-)

becomes ¢_ x 1_, if we read it through the identification (3.4).

Now, if G € ZyLg with structure Zj-morphisms u, inv (and e), then the AFM-valued functor
8(G) = G(—) is actually AFLg-valued. This means that it sends any Z3-Grassmann algebra A
and any Z5Alg-morphism ¢*: A — A’ to an object G(A) and a morphism G(¢*) of AFLg.

For G(A) € AgFM, notice that the natural transformations §(u) = p—, S(inv) = inv_ (and
S(e) = e_) have Ag-smooth A-components

pa: G(A) x G(A) = G(A), inva: G(A) — G(A) (and ep: 1(A) = G(A))
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(the Fréchet Ag-manifold 1(A) is the singleton that consists of the Z5Alg-morphism ¢4 that sends
any real number to itself viewed as an element of A) that define a group structure on G(A)
(with unit 15 := ea(ta)), which is therefore a Fréchet Ag-Lie group. The group properties
of these structure maps are consequences of the group properties of the structure maps of G.
For instance, when we apply S to the associativity equation (3.1) and then take the A-component
of the resulting natural transformation, we get

pa o (ua X idgay) = pa o (idgeay Xpa).

As for G(¢*): G(A) — G(A'), we know that it is an AFM-morphism and have to show that it
respects the multiplications ua and pyr, i.e., that

par o (G(e") x G(¢7)) = G(¢") o pn. (3.5)

However, this equality is nothing other than the naturalness property of u_.

Finally, let ®: G — G’ be a ZJLg-morphism and denote the multiplications of the source
and target by p and y/, respectively. In order to prove that the natural transformation §(®) =
P_: G(—) — G'(—) of the functor category with target AFM is a natural transformation of the
functor category with target AFLg, it suffices to show that ®, is a morphism of AFLg, which
results from the application of the functor § to the commutative diagram

po(dx®) =>dopu. (3.6)
The next task is to show that the functor (3.3) is fully faithful, i.e., that the map
SG,G’: HomZng(Ga G/) >0 d_€ HomFuno(ZgPtSOP,AFLg) (G(_)7 G/(_)) (37)

is a 1:1 correspondence, for any ZJ-Lie groups G,G’. Since the functor (3.2) is fully faithful,
any natural transformation in the target set of (3.7) is implemented by a unique Z3-morphism
¢: G — G’ and it suffices to show that ¢ respects the group operations, for instance, that is
satisfies equation (3.6). However, equation (3.6) is satisfied if and only if

Wa o (A X PA) = Pa © ua,

for all A. The latter condition holds, since ¢, is, by assumption, a group morphism.

We must still prove the last statement of Theorem 3.2. The assumption implies that, for
any Z5-Grassmann algebra A and any Zj-algebra morphism ¢*: A — A’, we get a Fréchet
Aop-Lie group M(A) and a (p*)g-smooth group morphism M (¢*): M(A) — M(A’). We denote
by 1o (resp., ua,invy) the unit element (resp., the Ag-smooth multiplication, the Ag-smooth
inverse) of the group structure on the Fréchet Ap-manifold M (A). We have already observed
(see (3.5)) that the fact that M (*) respects the multiplications pp and pys is equivalent to that
of p— being natural. The natural transformation pu_: (M x M)(—) — M (—) is implemented by
a unique Z5-morphism p: M x M — M. We obtain similarly a Z5-morphism inv: M — M.
As for e: 1 — M, we notice that the maps

en: 1(A)dua—= 15 € M(A) (A € Z5GrAlg)
define visibly a natural transformation with Ag-smooth A-components. Hence, it is implemented

by a unique Z3-morphism e: 1 — M. We leave it to the reader to check that p, inv and e
satisfy (3.1) and the other group properties. |
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3.4 The general linear Z3-group

We want to define the general linear Zy-group of order p|q so that it is a Z3-Lie group GL (p|g).
In view of Theorem 3.2, it suffices to define a functor

GL (plg)(—) € Funo(Z5Pts®P, AFLg)
that is represented by a Z3-manifold GL (p|g).
Definition 3.3. The general linear Z3-group GL (p]g) is defined, for any A € Z5GrAlg, by
GL (p\g) (A) := GL (p\g, A) = {X € gly(plg, A): X is invertible},
and, for any Z5Alg-morphism ¢*: A — A’ and any X € GL (p|q)(A), by
GL (plg) (¢*)(X) := "X,
where ¢* is p* acting on X entry-by-entry.

Theorem 3.4. The maps GL (p]g) (=) of Definition 3.3 define a representable functor. We refer
to the representing object GL (p\g) € ZyLg as the general linear Zj-group of dimension plgq.

Proof. Recall that:
1. It follows from equation (2.64) that
glo (plg, A) = I gAX" = AF? x TN AL ~ RI%(A),

where u,, is given by (2.61) (t = up).

2. It follows from Proposition 3.1 that X € gl, (p]g, A) is invertible if and only if &(X) €
GL (plg,R), if and only if &(X;;) € GL(g;,R), for all i € {0,..., N}, if and only if X;; €
GL(¢,A), for all i € {0,...,N}.

In particular, a matrix

X €gly (plg,R) = R = R”%,% = Diag (p|g, R)
is invertible if and only if X;; € GL(g;, R), for all i. It follows that

U' := GL (plg) (R) = I}, GL(g;, R) C R". (3.8)
As U C R! is open, we can consider the ZJ-domain

U = (U, Ogrrulae), (3.9)
as well as its functor of points

U'l(~) € Fung (Z5Pts°P, AFM),
with value on A

WUME(A) ~ Ut x A = T A5

(see [13]).
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On the other hand, we get

GL (plg)(A) = {X e R' x AF' x T AT (.., &8(X5), ... ) € T  GL(q;, R) }

_ gt \ AXt N\ Xuj
=U" x Ag" x I AS 7,

so that UUL(—) and GL (plg)(—) “coincide” on objects A: if we denote the coordinates of Rtlw
as usually by (u%) = (xa,fA), this “equality” reads

UTE(A) 3 x* = (x*(u))a € GL (plg) (A).

Moreover, UM% (—) and GL (plg)(—) coincide on morphisms ¢*: A — A’. Indeed, the map
GL (plg) (¢*) acts on a matrix

(x*(u")a € GL (plg) (A) € A" x T AT

by acting on all its entries x*(u®) by ¢*, whereas the map U%(p*) acts on a ZFAlg-morphism
x* € UL(A) by left composition p* ox*; if we identify x* with the tuple (x*(u®))q, then UHE(¢*)
acts by acting on each x*(u®) by ¢*, which proves the claim.

It follows that GL (p|g)(—) is a functor

GL (plg)(~) € Fung(Z5PtsP, AFM)
that is represented by
GL (plg) := U™ € Z5Man, (3.10)

so that it now suffices to prove that this functor is valued in AFLg, i.e., it suffices to show that
GL (plg)(A) € AoFLg and that GL (p|q)(¢*) is an AFLg-morphism.

Recall that gl, (p|g, A) is an associative unital R-algebra for the standard matrix multipli-
cation - (standard matrix addition, standard matrix multiplication by reals and standard unit
matrix I) (see Section 3.1). It is clear that the subset GL (p|q)(A) C gly (plg, A) is closed under -:

pa: GL (plg) (A) x GL (plg)(A) 3 (X,Y) = X -Y € GL (plg) (A) (3.11)
is an associative unital multiplication on GL (p|q)(A). Therefore, pua and
invy: GL (plg)(A) 2 X — X! € GL (p|g)(A) (3.12)

endow GL (p|g)(A) with a group structure (with unit I). Finally, the Fréchet Ag-manifold
GL (p|g) (A) together with its group structure up,invy (and I) is a Fréchet Ag-Lie group, if its
structure maps pp and inva are Ag-smooth. This condition is actually satisfied (see below).

As for GL (p\g) (¢*), we know that it is an AFM-morphism and need to show that it respects
the multiplications pa, pas. This condition is clearly met because GL (p\ g)(cp*) acts entry-wise
by the ZjAlg-morphism ¢*.

It remains to explain why pa and inva are Ag-smooth.

Notice first that the source of the multiplication (3.11) is the open subset Q(A) := UHE(A) x
UHL(A) of the Fréchet space F(A) := RU%(A) x RUZ(A) (see [13]) and that we can choose
the Fréchet vector space (and Fréchet Ag-module) RY%(A) as its target. Since A is the (Z3-
commutative nuclear) Fréchet R-algebra of global Z5-functions of some Z5-point RO jts ad-
dition and internal multiplication (its multiplication by reals and subtraction) are continuous
maps. It follows that each component function of the standard matrix multiplication wy is
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continuous, so that pp is itself continuous. We must now explain why all directional deriva-
tives of pup exist everywhere and are continuous, and why the first derivative is Ag-linear. Let
(X,Y) € Q(A) and (V,W) € F(A). We get

. (X+tV)- (Y +tW) - XY
d(X,Y)MA(V,W):hm( ) ( )

=X-W+V.Y.
t—0 t

Hence, the first derivative exists everywhere, is continuous and Ag-linear. Indeed, for any a € Ay,
we have

dixyyka (a-Via- W) =a-dixyyua (V, W).
It is easily checked that
Al yypa(Vi, W, Vo, Wa) = Vo - Wi+ Vi - Wo  and (G5 ma(Vi, Wi, -, Vi, W) = 0,

so that ua is actually Ag-smooth.
As for

inva: UNLA) C RUIE(A) — RI(A),
we start computing the directional derivative of
Ty := pp o (inva xidy) o Apx: UME(A) C RI%(A) 3 X s X1 X =T e Ri%(A)

(Ay is the diagonal map), assuming continuity of invy, for the time being. For any V € R%(A),
we have

X+t X+t - XX

dxIs(V) = lim XV (X 4 V) — Jim (Fxv(t) - X + gxv(t) - V) =0,
t—0 t t—0

where

(X +tV)t—Xx"1
t

fxv(t) = and gxv(t) = (X +tV)~ L

It follows that

dy inva(V) = lim fxv (t) = lim ((fxv () X +gxv(t) - V) - X7 —gxv(t) - V- X7T)
— —X_l-V-X_l,

so that the first derivative is defined everywhere, is continuous, as well as Ag-linear. Also the
higher order derivatives exist everywhere and are continuous. For instance, the second order
derivative is given by

d% inva(V, W) = —%1_1)1% (fxw®) V- X"+ gxw(t) - V- fxw(t))
=x'w.-xtv.x'+xtv.xtw.x1

Finally, the inverse map invy is Ag-smooth, provided we prove its still pending continuity.

We will show that the continuity of (3.12) boils down to the continuity of the inverse map
tar A3 A= At e A% in A. Here AX C A is the group of invertible elements of A. Since A is
a (unital) Fréchet R-algebra, its inverse map ¢y is continuous if and only if A* is a Gs-set, i.e.,
if and only if it is a countable intersection of open subsets of A [47]. We will show that A~ is
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actually open in the specific Fréchet R-algebra A considered. In view of Equation (16) in [14],
the topology of A = R[[A]] (A ~ R%™) is induced by the countable family of seminorms

1
o) = @V = sl (5Nl A= T a6 e ),

where ¢ is the projection €: A — R. This means that the topology is made of the unions of
finite intersections of the open semiballs

Bg(v,e) ={ e A:pg(A—v)<e}={AeA: | Ng—vg|<e}={AeA: N\g€b(rs,e)}

(6 e NXIml = Yoo val® € A, e > 0 and b(vg,€) is the open ball in R with center vg and
radius z—:). Since

A ={xeA: N e R\ {0}} and R\ {0} = U b(r, ) (for some &, > 0),
reR\{0}

we get

M= ) (red:ixnedbrne)t= ] Bolre),
reR\{0} reR\{0}

which implies that A* is open and that ¢ is continuous, as announced.

Before we are able to deduce from this that inv, is continuous, we need an inversion formula
for X € GL (p|q)(A). Notice first that, in view of [23, Proposition 4.7], an invertible 2 x 2 block
matrix

A B
(2 1)
with square diagonal blocks A and D and entries (of all blocks) in a ring, has a block UDL
decomposition if and only if D is invertible. In this case, the UDL decomposition is

A B\ (I BD'\[(A-BD'C 0 I 0
¢ D) \0 I 0 D) \D'C 1)

As upper and lower unitriangular matrices are obviously invertible, it follows that the diagonal
matrix is invertible, hence that A — BD~'C is invertible. Similarly, the invertible matrix X
has a block LDU decomposition if and only if A is invertible and in this case D — CA™'B is
invertible. Moreover, in view of Proposition 3.1, a matrix X € gl, (p]g, A) is invertible if and
only if all its diagonal blocks Xj;; are invertible. Let now

()

be a 2 x 2 block decomposition of X € gly (plg, A) that respects the (N 4 1) x (N + 1) block
decomposition

Xoo | --- | Xon

X =

Xno | ... | XNN

Since A (resp., D) is invertible if and only if

A:(é (D <resp.,f7:<g 10?))
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is invertible, hence, if and only if the X} on the diagonal of A (resp., D) are invertible, we get
that X is invertible if and only if A and D are invertible. If we combine everything we have said
so far in this paragraph, we find that if X € GL (p]g) (A), then A,D,A— BD'C,D - CA~'B
are all invertible. Therefore, we can use the formula

_ —1) L _ -1 _ A1)t
-1 (,14 BD C)1 | A™'B(D CIA _J_?) ’ (3.13)
-D7'C(A-BD'C) (D—-CA™'B)
for any X € GL (p]g) (A).
In order to simplify proper understanding, we consider for instance the case n = 2,
plg = plat, g2, 93 = 112, 1,1
and
a|bc|dle
A B flghli]yg al| bc
X = =| k|lm|n|p | € GL(12,1,1)(A), where A= | flgh |,
C D
ql rs|t|u kllm
viwz|y|z

and so on. We focus for instance on the first of the four block matrices in X!, i.e., on (A —

BDflC)fl. The matrix D is a 2 x 2 invertible matrix with square diagonal blocks and entries
in A. Since the four diagonal block matrices in X are invertible, it follows from what we have said
above that the inverse D! is given by equation (3.13) with A=t € A, B=u&c A, C=y €A
and D = z € A. Hence all entries of D~! are composites of the addition, the subtraction, the
multiplication and the inverse in A, and so are all entries in the invertible 2 x 2 block matrix

a| By
A-BD'C=| §|e¢ (3.14)
URNAS

with square diagonal blocks (which are invertible) and with entries in A (the square diagonal
blocks have entries in Ag). Hence, the inverse (A — BD~*C)~! can again be computed by (3.13).
We focus on its entry

e (o (; () en e

Notice that here we cannot conclude that £ and £ are invertible and apply (3.13) to compute
the internal inverse. However, this inverse is the inverse of a square matrix with entries in the
commutative ring A, for which the standard inversion formula holds (recall that a square matrix
with entries in a commutative ring is invertible if and only if its determinant is invertible):

<; g)_lz(sgge)—l <_€0 :f) (3.16)

Since all the entries of (3.14) are composites of the addition, subtraction, multiplication and
inverse in A, it follows from (3.15) and (3.16) that the same is true for the entry x of X 1. More
precisely the entry x corresponds to a map & that is a composite of the inclusion of GL (p|g) (A)
into its topological supspace AX(t+u) (continuous), the projection of AXEH) onto AXY (v <
t+|u|) (continuous) and of products of the identity map id of A (continuous), the diagonal map A
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of A (continuous), the switching map o of A x A (continuous), the addition a of A (continuous),
the scalar multiplication e of A (continuous), its subtraction s (continuous), multiplication m
(continuous) and its inverse ¢ (continuous). Indeed, it is for instance easily seen that the map

A s (tu,y, 2) — —zy(t - uzfly)fl €A

is a (continuous) composite of products of these continuous maps. We thus understand that
the entry & of X! corresponds to a continuous map #: GL (p|g) (A) — A. The same holds of
course also for all the other entries of X ~!. Finally, the inverse map

inva: GL (p|g)(A) 5 X — X1 e Ax(EF[u)
is continuous and it remains continuous when view as valued in the subspace GL (p|g)(A). W

Example 3.5. In view of equations (3.10), (3.9) and (3.8), the general linear Z2-group of order
101,11 is

GL(11,1,1) = ((R*)*, Ogajs,aal@eys) ,

where R* =R\ {0}.

3.5 Smooth linear actions

In this section we define linear actions of Z3-Lie groups G on finite dimensional Z3-vector spaces
V ~ V (we identify the isomorphic categories Z§FinVec and Z5LinMan). The definition can be
given in the category of Z5-manifolds, but it is slightly more straightforward if we use the functor
of points. Notice that the functors of points of G € ZjLg C ZiMan and V' € ZjLinMan C ZjMan
are functors

$(G) = G(—) € Fung(Z4Pts°?, AFLg) C Fung(Z5Pts°P, AFM)
and
8(V) = V(—) € Fung(Z3Pts®?, FAMod) C Fun(Z5Pts?, AFM).

Definition 3.6. Let G € ZjLg and V € ZjLinMan. A smooth linear action of G on V is
a natural transformation

o-: (GXV)(=)=G(=)x V(=) = V(-)

in Fung (ngt sOP, AFM) (natural transformation with Ag-smooth A-components) that satisfies the
following conditions:

(7) Identity: for all vy € V(A), we have
oa(1a,va) = va,
where 14 is the unit of G(A).
(it) Compatibility: for all ga, gy € G(A) and all vy € V(A), we have
oa(gn,on(gh,va)) = oa(palga, i) va),

where pp is the multiplication of G(A).
(243) Ao-linearity: for all gn € G(A), all vp,v) € V(A) and all a € Ag, we have
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(a) oa(ga,va +v)) = oa(ga,va) +oalga,v)),
(b) oa(ga,a-va) =a-oa(ga,va),

where - is the action of Ag on V(A).
Since
§: ZiMan — Fung(ZyPtsP, AFM) (3.17)

is fully faithful (for more details, see [13, 14, 15]), there is a 1 : 1 correspondence between natural
transformations o_ as above and Z5-morphisms

o: GxV = V.
This correspondence implies in particular that condition (i7) is equivalent to the equality
oo (idg xo) =00 (uxidy) (3.18)

of Z3-morphisms from G x G x V — V (u: G x G — G is the multiplication of G). The same
holds for condition (i) and the equality

oo (exidy)=idy (3.19)

of Z%-morphisms from V>~ 1xV — V (e: 1 — G is the two-sided unit of p).

3.5.1 Canonical action of the general linear group

We will now define the canonical action of the general linear Z3-group GL (plg) = Ut € 73Lg

on the Cartesian Zi-manifold RPl ¢ Z3LinMan. To do this, we use both, the fully faithful
functor (3.17) and the fully faithful functor

Y: ZiMan 3 M — Homgzpyan(—, M) € Fun(Z5Man®®, Set). (3.20)

We start defining a natural transformation o_ of Fun(Z5Man®?, Set) from UL(—) x RPIZ(—)

to RPIZ(—). We will denote the coordinates of UM% (resp., RPI) here by Xg (resp., «¢), where
a,b € {1,...,p+ |q|} (resp., where ¢ € {1,...,p + |¢g|}). For this, we must associate to any
S € Z3Man, a set-theoretical map og that assigns to any

(X, ¢) € UM(S) x RPI4(S) = Homppyan (S, U'™) x Homzpyan (S, RPI2),
i.e., to any (appropriate) coordinate pullbacks
(A8 25) 1= (X(XD), 6 (29)) € 6(S)<PHD*  0()xplaD, (3.21)
a unique element og(X, ¢) € Rp@(S), i.e., unique (appropriate) coordinate pullbacks
o5(Xp ) € 6(5)* @D,

Since (mg)c is viewed as a tuple (horizontal row), the natural definition of this image (horizontal
row) is

05 (T, 25) = (23 L) o (3.22)

where the sum and products are taken in the global ZJ-function algebra 6(S) of S. It is clear that
the elements of this target-tuple have the required degrees, as the same holds for the elements
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of the source-tuple. The transformation o_ we just defined is clearly natural. Indeed, for any Z7-
morphism v: 8" — S, the induced set-theoretical mapping between the Hom-sets with source S
and the corresponding ones with source S’ is — o1, so that the induced set-theoretical mapping
between the tuples of global Z3-functions of S and S’ is ¢*. The naturalness of o_ follows now
from the fact that ¢* is a ZjAlg-morphism.

Since (3.20) is fully faithful, the natural transformation o_ is implemented by a unique Z3-
morphism

o: GL (plg) x RFIZ — RPI4, (3.23)

which in turn implements, via (3.17), a unique natural transformation in Fung (ZSPtsOp, AFM)
between the same functors, but restricted to Z5Pts®P. Since this transformation is the restriction
of o_ to Z5Pts°P, we use this symbol for both transformations (provided that any confusion can
be excluded). It is easily seen that

oa(XR g, 2h) = (2R AR ),

with sum and products in A, has the properties (), (i) and (ii7) of Definition 3.6, so that we
defined a smooth linear action of GL (p|g) on RPl4.

The interesting aspect here is that we are able to compute the Z5-morphism (3.23). Indeed,
in view of the proof of the full faithfulness of the standard Yoneda embedding ¢ — Home(—, ¢)
of an arbitrary locally small category C into the functor category Fun(COp, Set), the morphism
o € Homg(c, ¢) that implements a natural transformation

o_: Homg¢(—,c) — Homg(—,c)
is
o = o.(id.) € Homg(c, ).

In our case of interest C = Z4Man, the previous Yoneda embedding is the functor (3.20) and the
morphism

o € Homgpyan (GL (p|g) X Rp|9, Rplg)
is
o = o.(id.), with ¢ = GL (plg) x RPla,

Since the pullback of the identity Z5-morphism id, is identity and the coordinate pullbacks (3.21)
are

(%{?,wc) c @(C)X(pﬂgl)(pﬂglﬂ)'
Equation (3.22) yields
o= o¢(ide) ~ ac(srg,mC) = (a;b ?Ig)

a)
with sum and products in O(c). In other words:

Proposition 3.7. The canonical action o of the general linear Z3-group GL (p|g) on the linear

Z5-manifold or Z5-graded vector space ]Rp@, is the Zy-morphism that is defined by the coordinate
pullbacks

o (x%) = x® AL, (3.24)

where we denoted the coordinates of GL (plq) (resp., RPIZ) by Xg (resp., x°).



50 A.J. Bruce, E. Ibarguéngoytia and N. Poncin

Example 3.8. We know that the general linear Z3-group GL(1|1,1,1) can be identified with
the open Z2-submanifold U444 of RH4444, We denote the global coordinates of this Cartesian
Z%—manifold by (a:o‘,fﬁ ,97,25). The indices run over {1,2,3,4} and the Zg—degrees of these
coordinates are (0,0), (0,1), (1,0) and (1,1), respectively. We already mentioned that if we
view U444 as GL(1]1,1,1), we must rearrange the coordinates:

1‘1 fl 01 Zl
52 ZE2 22 02
93 Z3 x3 53
2,4 94 54 1,4

X = (%l?)a,h

In view of (3.24), the action o of GL(1|1,1,1) on R with global coordinates

€T = (ma)a = (‘,1:07507907’20)7

is given as
o*(2%) = 2% + %" + 090" + 202,
0_* (60) $0£2 + 50172 + 9022 + 2002
o*(0°) = 2°0° + £92° + 02® + 20¢3,
o*(2%) = a2 + %01 + 0%¢* 4 200t

3.5.2 Connection between the canonical action and the internal Hom

Since
GL (plg) = U™

(see equation (3.10)) is an open Z4-submanifold (see equation (3.9)) of
gly (p‘g) — Rl — HOiIDZgLinMan (Rplg, Rp\g)

(see Proposition 2.29 and equation (2.63)), we can expect a connection between the canonical
action of GL (p|g) on RPIZ and Homgzny s nuan (RP |Q,Rp‘ﬂ). It turns out that this link becomes
apparent as soon as we understand the connection between the internal Hom of linear Z3-
manifolds and the internal Hom of arbitrary Z5-manifolds. Indeed, for any A ~ RO™ we have

Homy sy (RY9, RPI) (A) := Homzgyan (R, RP19)
see [13]). we denote the coordinates o T by 0 = and those o L by x = (%) =
If d h di f RO by @ o° d th f RPl4 1 a

(:1:“,5’4), the RHS Hom-set can be identified with the set of (degree respecting) coordinate
pullbacks:

@Zng(Rp|gaRplg)(A) = {90 =a"(2,¢,0) Zfa faaﬁ}

On the other hand, when denoting the coordinates of Rfl% as above by & = (Xg), we get similarly

7H0mZgLinMan (Rplga Rp‘g) (A) = Rtm(A) = Homzzyan (A7 Rtm)

— {8 = 220) = 1850 | = o (ol ). (3.25)
§
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An obvious identification leads now to

mZgLian (Rplg 7 Rp\g) (A)
= {x =a%(2,£,0) = a®A(0) = _2"AL(0) + ) &P %g(e)}. (3.26)
b b B

When comparing (3.26) and (3.25), we see that the internal Hom of linear Z4-manifolds consists
of the pullbacks of the internal Hom of arbitrary Z5-manifolds which are defined by the canonical
action of gly (p|g)(A) on RPI, in the sense of (3.24).

3.5.3 Equivalent definitions of a smooth linear action

Section 3.5 already implicitly contained the idea that a smooth linear action of a Z3-Lie group G
on a linear Zy-manifold V' in the sense of Definition 3.6, is equivalent to a Z4-morphism o: G x
V — V that satisfies the conditions (3.18) and (3.19) and additionally has a certain linearity
property with respect to V. A natural idea is that ¢* should send linear Z3-functions of V' to
Z5-functions of G x V that are linear along the fibers. The meaning of this concept becomes
clear when we think of the classical differential geometric case in which the functions of a trivial
vector bundle £ = M x R" are

C®(E) = T(VE*) = C®(M) ® V (R")*

(V is the symmetric tensor product), i.e., are the functions that are smooth in the base and
polynomial along the fiber. Hence, linear functions of E are the functions that are smooth
in the base and linear along the fiber, i.e.,

Cin(E) = C*(M) @ (R")" = C=(M) @ Ci(R").
We can choose the same definition in the case of the trivial Zg-vector bundle F' = G x V:
05 (1G] x |V]) := 0 (IG]) @ 67" ([V ).

This definition is of course in particular valid for G = GL (p|g) € Z5Lg. However, let us
mention that the linear functions (“linear along the fibers”) of the trivial Z5-vector bundle E =
GL (plg) x V that are defined on | GL (plg)| x |V| do not coincide with the linear functions

(“globally linear”) of the linear Z3-manifold M = RU% x V' (see (2.57)) that are defined on the
open subset | GL (p|g)| x |V| of its base R* x [V|:

0" (| GL (pla) | x V1) # 037 (| GL (plg) | x [V'])-
Given what we have just said, we expect the following proposition to hold:

Proposition 3.9. A smooth linear action o_ of the Zy-Lie group G = GL (p[g) on a linear
Z5-manifold V' in the sense of Definition 3.6, is equivalent to a Zy-morphism o: G x V. =V
that satisfies the conditions (3.18) and (3.19) and has the linearity property

(O (V) € 0a(IG]) ® O3 (V). (3.27)
Notice first that the pullback ¢* is a morphism of Z%-algebras
o* Oy([V]) = Oaxv (|G| x [V]).
Since G and V have global coordinates, it follows from [15] that the target of o* is given by

Ocxv (|G| x |V]) = 0a(|G])@ Oy ([V]),
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which shows that it contains
Oc(|G|) ® 6 (V)

and that the requirement (3.27) actually makes sense.
Another fact is also worth noting. We know from standard supergeometry that the classical
Berezinian defines a super-Lie group morphism

Ber: GL(p|q) — GL(1]0),

so that we get a linear action of GL(p|q) on R°. The point here is that linear actions of GL(p|q)
are not limited to actions on RPl4.

Proof. In the light of the observations that follow Definition 3.6, it suffices to prove that the
Ag-linearity requirement (7ii) in Definition 3.6 is equivalent to the linearity condition (3.27)
in Proposition 3.9. Hence, let o_ be a smooth action of G on V and let o be the corresponding
Z3-morphism. If h: V — R"I2 is a linear coordinate map of V, the Z5-morphism

S:=hooo (idG thl) . G xR'lE 5 RTI
satisfies (3.27) if and only if the Z5-morphism o does. Indeed, if o has the property (3.27), then
&* = (idG Xh_l)* oo*oh* = (idé@ (h_l)*) oo*oh*

has obviously the same property. We similarly find that the converse implication holds. On the
other hand, if we denote the coordinates of R"l$ by y = () = (yc, nc), the A-components of
the natural transformations o_ and G_ satisfy

6/\ = hA OO\ © (ldg(A) thl)

and
Sa (gA, > Akym) = hp <0'A (gm hy! < > )\ku/\,k) > ) ;
ks k

for any gn € G(A), any yar € R75(A) and any \* € Ag (where k runs through a finite set).
Since

ha: V(A) = R7IE(A)

is an isomorphism of Fréchet Ag-modules, the Ag-smooth map &y is Ag-linear in y, if and
only if the Ag-smooth map oy is Ag-linear in vy € V(A). It is therefore sufficient to prove the
equivalence “(iii) if and only if (3.27)” for V = R’ls,

We refrain from writing down the proof of the implication “if (¢i7) then (3.27)”. It is technical
and partially reminiscent of a part of the proof of Theorem 2.20 (for the super-case, see [17] and
the references it contains).

We now prove the converse implication from scratch. Assume that

&* (6, (R") € 66(G]) © 61, (). (3.28)

In view of the universal property of the product of Z5-manifolds, we have

G(A) x R"E(A) 3 (ga, ya) ~up € (G x R"E)(A).
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If we identify the ZZ-morphisms gp, ya, ua with the corresponding continuous Z5-algebra
morphisms

g € Homzpng (66(IG|),A), yi € Homzparg (Ogris(R7), A), uj
€ Homzp g (6 (|G|)®@ Ogaris (R7), A),

we get
uj = ma o (9O yR),

where mp: A® A — A is continuous ZJ-algebra morphism that extends the multiplication
mp = -5 of A (see [15]). We denote the coordinates of G x R™S as % = (x°) = (X, u°).
Since

Ga: (G xR (A) 3 up =~ (ga, ya) > uj ~uj () = Goup ~uj o &*
~ uj (67 (yf)) € R™E(A),

we find that
Sa (gA, Z /\ky.A,k> ~ M ( (g}k\@) ( Z Aky/\,k> *) (6*(uc))> -
k k
In view of the definition of the Ag-module structure on R”£(A), we have
< > Aki.h\,k) - > Ny
k k

and in view of the assumption (3.28), we get for any fized ¢ that

M
&y = st on (Zu)
n=1

C/

where M € N, where s € O¢(|G|) and where r € R. Since A\* € Ay, what we just said yields

M
& (gA, > A'm,k) ~ 3 galsE) 4 3N (Z uz,km"))
k n=1 k o/

o~ ZAk Sa(gn, Uak)- u
%

4 Future directions

We view the current paper as the first steps towards understanding actions of Z3-Lie groups
on Zj-manifolds and we claim that it will be vital in carefully constructing the total spaces
of Z4-vector bundles, for example. In both these settings, the functor of points, and in particular
A-points, are expected to be of fundamental importance. In particular, the typical fibres of Z5-
vector bundles cannot be Zj-graded vector spaces, but rather they are linear Z%-manifolds.
Moreover, the transition functions will correspond to an action of the general linear Z3-group
and as such a careful understanding of linear actions is needed. This paper provides some of
this technical background. We plan to explore the algebraic and geometric definitions of vector
bundles in the category of Z4-manifolds in a future publication.
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A The category of modules over a variable algebra

We define the category AMod (resp., FAMod) of modules (resp., Fréchet modules) over any (unital)
algebra (resp., any (unital) Fréchet algebra) A. The algebra A can vary from object to object.
The objects are the modules over some A (resp., the Fréchet vector spaces that come equipped
with a (compatible) continuous A-action). We denote such modules by M4. Morphisms consist
of pairs (¢, @), where

p: A— B

is an algebra morphism (resp., a continuous algebra morphism), and
®: My — Mp

is a map (resp., a continuous map) that satisfies
B(am + a'm') = p(a)®(m) + @(a)d(m'),

for all a,a’ € A and m,m’ € M 4. It is evident that we do indeed obtain a category in this way.

The preceding categories AMod and FAMod are similar to the category AFMan that we used
in [13]. They naturally appear when considering the zero degree rules functor or the functor
of points. See for instance equations (2.1) and (2.22).

B Basics of Z3-geometry

B.1 Z3-manifolds and their morphisms

The locally ringed space approach to Zy-manifolds was pioneered in [18]. We work over the
field R of real numbers and set Zj := Zg X Za X - - - X Zg (n-times). A Z-graded algebra is an R-
algebra ol with a decomposition into vector spaces o := @, ezz 9y, such that the multiplication,
say -, respects the Zy-grading, i.e., d, - dg C dy3. We will always assume the algebras to be
associative and unital. If for any pair of homogeneous elements a € d, and b € dlg we have that

a-b=(-1)p.q, (B.1)

where (—, —) is the standard scalar product on Z%, then o is a Z%-commutative algebra.

Essentially, Z5-manifolds are “manifolds” equipped with both, standard commuting coordi-
nates and formal coordinates of non-zero Zj-degree that Zj-commute according to the general
sign rule (B.1). Note that in general we need to deal with formal coordinates that are not
nilpotent.

In order to keep track of the various formal coordinates, we need to introduce a convention
on how we fix the order of elements in Z% and we choose the lexicographical order. For example,
with this choice of ordering

z3 = {(0,0), (0,1), (1,0), (1,1)}.
Note that other choices of ordering have appeared in the literature. A tuple ¢ = (q1,q2,...,qn) €
N*N (N = 2" — 1) provides the number of formal coordinates in each Z3-degree. We can now
recall the definition of a Z#-manifold.
Definition B.1. A (smooth) Z3-manifold of dimension pl|q is a locally Zj-ringed space M :=
(|M],6nr), which is locally isomorphic to the Z%-ringed space RPl2 .= (RP,CR2[[€]]). Local
sections of M are formal power series in the Z3-graded variables £ with smooth coefficients,

O (U1) = C(U[E]] = { S fag fac 0°°<\U|>},

a€NXN
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for “small enough” opens |U| C |M|. Morphisms between Z5-manifolds are morphisms of Z3-
ringed spaces, that is, pairs ® = (¢, ¢*): (|M|,0p) — (|N|,0n) consisting of a continuous map
¢: [M| — |N| and a sheaf morphism ¢*: On(—) — Opn (¢~ (—)), i.e., a family of Zj-algebra
morphisms ¢y, : On(IV]) = 6a (o ([V])) (V| C |N| open) that commute with restrictions.
We sometimes denote Z5-manifolds by Ml = (M, Oy) instead of M = (|M|,0p) and we some-
times denote Z45-morphisms by ¢ = (|¢|, ¢*) instead of & = (¢, ¢*).

Example B.2 (the local model). The locally Z2-ringed space UPI? := (U, Cs5[[€]]) (UP C RP
open) is naturally a Zj-manifold — we refer to such Zj-manifolds as Zy -domains of dimension plq.
We can employ (natural) coordinates (:L'“, fA) on any Zg-domain, where the 2 form a coordinate
system on UP and the €4 are formal coordinates.

Many of the standard results from the theory of supermanifolds pass over to Z5-manifolds. For
example, the topological space | M| comes with the structure of a smooth manifold of dimension p,
hence our suggestive notation. Moreover, there exists a canonical projection ¢: 65y — CIC;\%I'
What makes the category of Zj-manifolds a very tractable form of noncommutative geometry
is the fact that we have local models. Much like in the theory of smooth manifolds, one can
construct global geometric concepts via the gluing of local geometric concepts. That is, we can
consider a Z4-manifold as being covered by Z3-domains together with specified gluing data. More
precisely, a p|g-chart (or p|g-coordinate-system) over a (second-countable Hausdorff) smooth
manifold |M| is a Z§-domain

UL = (UP, O35 [[€])).

together with a diffeomorphism |¢|: |U| — UP, where |U| is an open subset of |M|. Given two
plg-charts

| |
(Ua™ Ial)  and  (Ug", l¥5]) (B.2)
over | M|, we set Vog := |[¢a|(|Uagl|) and Vaq := [10g|(|Uag|), where |Uag| := |Ua| N|Us|. We then
denote by [134| the diffeomorphism

W)ﬁa‘ = |¢ﬁ| o |¢a|_1: Vaﬁ — Vﬁa- (B.3)

Whereas in classical differential geometry the coordinate transformations are completely defined
by the coordinate systems, in Zj-geometry, they have to be specified separately. A coordinate
transformation between two charts, say the ones of (B.2), is an isomorphism of Z3-manifolds

* \ \
d}ﬁa = (|wﬁa|ad)ﬁo¢): Zg’Va@ — cuggh/ﬁa, (B4)

where the source and target are the open Zj-submanifolds
| 00
Uy, = (Vs 55, [1€]])

(note that the underlying diffeomorphism is (B.3)). A p|g-atlas over |M]| is a covering ( 2‘%|¢a|)a
by charts together with a coordinate transformation (B.4) for each pair of charts, such that the
usual cocycle condition 13,1ya = 184 holds (appropriate restrictions are understood).
Moreover, we have the chart theorem [18, Theorem 7.10] that says that Z5-morphisms from
a Z3-manifold (|M|,Oy) to a Zj-domain (UP,CS5[[€]]) are completely described by the pull-
backs of the coordinates (m“,ﬁA). In other words, to define a Zy-morphism valued in a Z3-
domain, we only need to provide total sections (s“, SA) € Opr(|M]) of the source structure sheaf,
whose degrees coincide with those of the target coordinates (:L'a, £A). Let us stress the condition

(....es%,.. ) (IM]) C U,

where € is the canonical projection, is often understood in the literature.
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B.2 Z3-Grassmann algebras, Z3-points and the Schwarz—Voronov embedding

It is clear that Z5-manifolds, as they are locally ringed spaces, are not fully determined by their
topological points. To “claw back” a fully useful notion of a point, one can employ Grothendieck’s
functor of points. This is, of course, an application of the Yoneda embedding (see [35, Chap-
ter III, Section 2]). For the case of supermanifolds, it is well-known, via the seminal works
of Schwarz and Voronov [39, 40, 46], that superpoints are sufficient to act as “probes” for the
functor of points. That is, we only need to consider supermanifolds that have a single point
as their underlying topological space. Dual to this, we may consider finite dimensional Grass-
mann algebras A = Ay @ A; as parameterizing the “points” of a supermanifold. One can thus
view supermanifolds as functors from the category of finite dimensional Grassmann algebras to
sets. However, it turns out that the target category is not just sets, but (finite dimensional)
Ag-smooth manifolds. That is, the target category consists of smooth manifolds that have
a Ag-module structure on their tangent spaces. Morphisms in this category respect the module
structure and are said to be Ag-smooth (we will explain this further later on). In [13], it was
shown how the above considerations generalize to the setting of Z3-manifolds. We will use the
notations and results of [13] rather freely. We encourage the reader to consult this reference for
the subtleties compared to the standard case of supermanifolds.

A Z%-Grassmann algebra we define to be a formal power series algebra R[[f]] in ZJ-graded,
Z3-commutative parameters Qf . All the information about the number of generators is specified
by the tuple ¢ as before. We will denote a Zj-Grassmann algebra by A, as usually we do
not need to specify the number of generators. A ZY-point is a Z3-manifold (that is isomor-
phic to) R4, Tt is clear, from Definition B.1, that the algebra of global sections of a Zj-point
is precisely a Zy-Grassmann algebra. There is an equivalence between Z3-Grassmann algebras
and Z4-points:

ZyGrAlg = ZyPtsP.

The Yoneda functor of points of the category ZiMan of Z5-manifolds is the fully faithful
embedding

Y: ZiMan 3 M — Homgzpyan(—, M) € Fun(Z5Man®, Set).

In [13], we showed that Y remains fully faithful for appropriate restrictions of the source and
target of the functor category, as well as of the resulting functor category. More precisely, we
proved that the functor

§: ZyjMan 3 M +— Homggyan(—, M) € Fung(Z5PtsP, A(N)FM)

is fully faithful. The category A(N)FM is the category of (nuclear) Fréchet manifolds over a (nuc-
lear) Fréchet algebra, and the functor category is the category of those functors that send a Z5-
Grassmann algebra A to a (nuclear) Fréchet Ag-manifold, and of those natural transformations
that have Ag-smooth A-components.
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