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Abstract. We derive all eighteen Gauss hypergeometric representations for the Ferrers
function of the second kind, each with a different argument. They are obtained from the
eighteen hypergeometric representations of the associated Legendre function of the second
kind by using a limit representation. For the 18 hypergeometric arguments which correspond
to these representations, we give geometrical descriptions of the corresponding convergence
regions in the complex plane. In addition, we consider a corresponding single sum Fourier
expansion for the Ferrers function of the second kind. In four of the eighteen cases, the
determination of the Ferrers function of the second kind requires the evaluation of the hyper-
geometric function separately above and below the branch cut at [1,∞). In order to complete
these derivations, we use well-known results to derive expressions for the hypergeometric
function above and below its branch cut. Finally we give a detailed review of the 1888 paper
by Richard Olbricht who was the first to study hypergeometric representations of Legendre
functions.
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1 Introduction

In 1888, Richard Emil Olbricht, a student of Felix Klein, gave a list of 72 solutions of the asso-
ciated Legendre differential equation [10, Section 3] (see Appendix A for a detailed description
of Olbricht’s analysis), [11, equation (14.2.1)]
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In fact, as Olbricht has pointed out, there are 18 possible arguments w of this type of hyper-
geometric series. Olbricht has arranged these arguments into three separate groups which we
now list.
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.
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The associated Legendre functions of the first kind Pµν (x) and of the second kind Qµν (x) are
solutions of (1.1) with simple behavior at the regular singularities x = 1 and x =∞, respectively.
In Magnus, Oberhettinger and Soni [9, pp. 155–163] (see also [2, pp. 124–139]) these associated
Legendre functions are expressed as linear combinations of one or two of Olbricht’s 72 solutions
for every of the 18 possible wj . The hypergeometric representations of the associated Legendre
function Pµν (x) involving wj , 1 ≤ j ≤ 18, is labelled by the number j, and the corresponding
formulas for Qµν (x) are labelled by j + 18.

The purpose of this paper is to generate a complete list of 18 such hypergeometric represen-
tations for the Ferrers function of the second kind Qµν (x) which is also a solution of (1.1). Some
of these 18 representations can be found in the literature but we have not seen a complete list.
We will also discuss a related Fourier expansion and some relevant geometric topics. We pay
special attention to a precise formulation of the domains of validity of the stated representations
in the complex plane including a discussion of branch cuts.

Of course, the theory of the associated Legendre differential equation is a very classical
topic. For instance, we refer to Heine [4, 5], Hobson [6], Lebedev [8], Schäfke [12], Magnus,
Oberhettinger and Soni [9], Andrews, Askey and Roy [1], as well as Zhurina and Karmazina [13].
In such a well-investigated area one cannot claim to have new results. This is a review paper
that, as we may hope, throws a new light on the theory of the Ferrers function of the second
kind. Since this review contains a large number of individual formulas, we have summarized the
main results in Table 1. We will use the complex domains

D1 := C \ ((−∞,−1] ∪ [1,∞)), (1.2)

D+
1 := D1 ∩ {x : Rex > 0}, (1.3)

D2 := C \ (−∞, 1], (1.4)

D+
2 := D2 ∩ {x : Rex > 0}, (1.5)

D3 := C \ (−1,∞) = −D2. (1.6)

Remark 1.1. The DLMF tabulates hypergeometric representations for the Ferrers function
of the first kind [11, equations (14.3.1) and (14.3.11)] with arguments (1− x)/2 and x2 respec-
tively. One may also find representations with arguments (x− 1)/(x+ 1), 1− x2, 1− x−2 in [9,
pp. 166–167]. As far as we are aware, an extensive list for all of the hypergeometric representa-
tions of the Ferrers function of the first kind does not exist in the literature. However, such a list
could easily be generated by starting with the hypergeometric representations of the associated
Legendre function of the first kind tabulated in [9] and using (2.7).

http://dlmf.nist.gov
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Table 1. This table lists all Gauss hypergeometric representations of the Ferrers function of the second

kind presented in this paper. In regard to Theorem 6.1, u = x+ i
√

1− x2, v = x− i
√

1− x2.

Olbricht
group

Domain
of x

Domain
of ν

Domain
of µ

Extra
restriction

Argument(s) Theorem

I x ∈ D1 ν ∈ C µ ∈ C \ Z ν + µ 6∈ −N 1−x
2 3.1

I x ∈ D1 ν ∈ C µ ∈ C \ Z ν + µ 6∈ −N 1+x
2 3.2

I x ∈ D1 ν ∈ C µ ∈ C \ Z ν + µ 6∈ −N x−1
x+1 3.3

I x ∈ D1 ν ∈ C µ ∈ C \ Z ν + µ 6∈ −N x+1
x−1 3.4

I ± Imx ≶ 0 ν ∈ C, 2ν 6∈ Z µ ∈ C ν + µ 6∈ −N0
2

1+x 3.5

I ± Imx ≶ 0 ν ∈ C, 2ν 6∈ Z µ ∈ C ν + µ 6∈ −N0
2

1−x 3.6

I x ∈ D1 ν ∈ C µ ∈ C ν + µ 6∈ −Z 1−x
2 , 1+x

2 3.9

II x ∈ D+
1 ν ∈ C µ ∈ C \ Z ν + µ 6∈ −N 1− x2 4.1

II ± Imx ≶ 0 ν ∈ C, ν + 1
2 6∈ Z µ ∈ C ν + µ 6∈ −N 1

1−x2 4.2

II x ∈ D1 ν ∈ C µ ∈ C ν + µ 6∈ −N x2 4.3

II ± Imx ≶ 0 ν ∈ C, ν + 1
2 6∈ Z µ ∈ C ν + µ 6∈ −N 1

x2 4.4

II x ∈ D+
1 ν ∈ C µ ∈ C \ Z ν + µ 6∈ −N x2−1

x2 4.5

II x ∈ D1 ν ∈ C µ ∈ C ν + µ 6∈ N x2

x2−1 4.6

III x ∈ D1 ν ∈ C, ν + 1
2 6∈ Z µ ∈ C ν + µ 6∈ −N ±x+i

√
1−x2

2i
√
1−x2

5.1

III x ∈ D1 ν ∈ C, ν + 1
2 6∈ Z µ ∈ C ν + µ 6∈ −N x∓i

√
1−x2

x±i
√
1−x2

5.2

III x ∈ D+
1 ν ∈ C µ ∈ C, 2µ 6∈ Z ν + µ 6∈ −N 2i

√
1−x2

±x+i
√
1−x2

5.3

III x ∈ D1 ν ∈ C µ ∈ C ν + µ 6∈ −N u
v ,

v
u 6.1

This paper is organized as follows. In Section 2 we provide definitions and properties of the
special functions used in this paper. In Sections 3 (Group I), 4 (Group II), and 5 (Group III),
we give the list of 18 Gauss hypergeometric representations of Qµν (x) in terms of Olbricht’s
solutions and include some discussion of these results. In Section 6 we look at the Fourier
expansion of the function (sin θ)−µQµν (cos θ), and in Section 7 we list the regions in the complex
x-plane, where the hypergeometric arguments |wj | < 1 for each j = 1, 2, . . . , 18.

2 Special functions

We will use the following notations. Let N := {1, 2, 3, . . .}, N0 := N ∪ {0}, Z := {0,±1,±2, . . .},
R real numbers, C complex numbers.

2.1 The gamma and Gauss hypergeometric functions

The gamma function Γ: C \ −N0 → C generalizes the factorial n! = Γ(n + 1), n ∈ N0 (see [11,
Chapter 5]). We will use Euler’s reflection formula [11, equation (5.5.3)]

Γ(z)Γ(1− z) =
π

sin(πz)
, (2.1)
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and the duplication formula [11, equation (5.5.5)]

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(
z + 1

2

)
.

The hypergeometric function 2F1(a, b; c;w), where (a, b, c, w) ∈ C2 × (C \ −N0) × (C \ [1,∞))
is a complex valued analytic function which can be defined in terms of the infinite series for
|w| < 1,

2F1

(
a, b

c
;w

)
:=

∞∑
n=0

(a)n(b)n
(c)n

wn

n!
, (2.2)

where (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol [11, equation (5.2.4)], and
elsewhere by analytic continuation. Frequently, we will use the following linear transformations
of the Gauss hypergeometric function, valid for w ∈ C \ [1,∞), namely Euler’s and and Pfaff’s
transformations [11, equation (15.8.1)]

2F1

(
a, b

c
;w

)
= (1− w)c−a−b2F1

(
c− a, c− b

c
;w

)
(2.3)

= (1− w)−a2F1

(
a, c− b

c
;

w

w − 1

)
(2.4)

= (1− w)−b2F1

(
b, c− a

c
;

w

w − 1

)
. (2.5)

Please see Appendix B for a presentation of the values of the hypergeometric function from
above and below its branch cut [1,∞). Unless stated otherwise the complex power xy denotes
its principal value defined for x ∈ C \ (−∞, 0].

2.2 The associated Legendre and Ferrers functions

We will follow the notation for Legendre functions as used in [11, Chapter 14]. The associated
Legendre functions of the first kind Pµν (z) is given by [11, equation (14.3.6)]

Pµν (z) :=
1

Γ(1− µ)

(
z + 1

z − 1

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1− z

2

)
.

It is defined for all ν, µ ∈ C and all z ∈ D2. The associated Legendre function of the second
kind Qµν (z) is given by [11, equation (14.3.7)]

Qµν (z) :=

√
π eiπµΓ(ν + µ+ 1)

(
z2 − 1

) 1
2
µ

2ν+1Γ
(
ν + 3

2

)
zν+µ+1 2F1

(
ν+µ+2

2 , ν+µ+1
2

ν + 3
2

;
1

z2

)
, (2.6)

where z ∈ D2 and ν + µ ∈ C \ −N. Note that for any expression of the form
(
z2 − 1

)α
, read

this as(
z2 − 1

)α
:= (z + 1)α(z − 1)α,

for any fixed α ∈ C and z ∈ D2.
The Ferrers functions of the first and second kind respectively Pµν (x), Qµν (x), can be defined

by [11, cf. equations (14.23.4) and (14.23.5)]

Pµν (x) = e
1
2

iπµPµν (x+ i0), (2.7)

Qµν (x) = 1
2

[
e−

1
2

iπµ
(
e−iπµQµν (x+ i0)

)
+ e

1
2

iπµ
(
e−iπµQµν (x− i0)

)]
, (2.8)
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for x ∈ (−1, 1), although the Ferrers functions can be extended analytically to the domain D1.
Note that we have written (2.8) in this particular form since the table of associated Legendre
functions of the second kind found in Magnus, Oberhettinger and Soni (1966) [9, pp. 155–
163] (see also [2, pp. 124–139]), are listed in terms of e−iπµQµν (z), so this form of the limit
representation is particularly useful.

In regard to the name Ferrers functions (also known as Legendre functions on the cut), this
is the name adopted for these functions in the NIST DLMF [11, Chapter 14]. This is because the
mathematician Norman Macleod Ferrers (1829–1903), was the first to extensively describe their
properties [3]. Of course, since they are intimately connected to associated Legendre functions,
another name as suggested by a referee could be Legendre–Ferrers functions.1 2

Common applications of the Ferrers functions include spherical or hyperspherical and hyper-
spheroidal harmonics (e.g., the quantum theory of angular momentum), conical functions,
the Mehler–Fock integral transforms, opposite antipodal fundamental solutions of the Laplace–
Beltrami operator and Helmholtz operators on hyperspheres, and many other applications.
The Ferrers functions appear whenever one performs harmonic analysis on spheres or hyper-
spheres with dimension greater than or equal to one because they arise from the method of sepa-
ration of variables for the Laplace–Beltrami operator on these constant positive curvature Rie-
mannian manifolds. In fact, the orthogonal Gegenbauer (or ultraspherical) polynomials provide
a basis for functions on hyperspheres (as well as on Euclidean space, hyperbolic geometry and
other isotropic manifolds) and are fundamentally connected to the Ferrers functions of the first
kind (see [11, equation (14.3.21)].

The following relations expressing the Ferrers function of the second kind Qµν in terms of the
associated Legendre functions Pµν and Qµν will be useful. Equations (2.9) and (2.12) can be found
in [11, equation (14.23.6)], and the other equations follow from the connection relations [11,
equations (14.9.12) and (14.9.15)].

Theorem 2.1.

(a) For Imx > 0, we have

Qµν (x) = e−
3
2
πiµQµν (x) +

πi

2
e

1
2
πiµPµν (x) (2.9)

=
1

2
π cot(πµ)e

1
2
πiµPµν (x)− πe−

1
2
πiµ

2 sin(πµ)

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (x) (2.10)

= e−
1
2
πiµ

(
cos(πµ)− i

sin(π(µ− ν))

2 cos(πν)

)
Qµν (x)

+ ie−
1
2
πiµ sin(π(µ− ν))

2 cos(πν)
Qµ−ν−1(x). (2.11)

(b) For Imx < 0, we have

Qµν (x) = e−
1
2
πiµQµν (x)− πi

2
e−

1
2
πiµPµν (x) (2.12)

1One may compute the Ferrers function of the first and second kind respectively with the computer algebra
system Mathematica by using the commands LegendreP[ν,µ,p,x] and LegendreQ[ν,µ,p,x], where p = 1, 2.
In the computer algebra system MAPLE if you define EnvLegendreCut := -1..1; (default), then you get the
standard associated Legendre functions. Alternatively, if you define EnvLegendreCut :=1..infinity; then you
get the Ferrers functions.

2The mention of specific products, trademarks, or brand names is for purposes of identification only. Such
mention is not to be interpreted in any way as an endorsement or certification of such products or brands by the
National Institute of Standards and Technology, nor does it imply that the products so identified are necessarily
the best available for the purpose. All trademarks mentioned herein belong to their respective owners.
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=
1

2
π cot(πµ)e−

1
2
πiµPµν (x)− πe

1
2
πiµ

2 sin(πµ)

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (x) (2.13)

= e−
3
2
πiµ

(
cos(πµ) + i

sin(π(µ− ν))

2 cos(πν)

)
Qµν (x)

− ie−
3
2
πiµ sin(π(µ− ν))

2 cos(πν)
Qµ−ν−1(x). (2.14)

3 Group I hypergeometric representations for Qµ
ν(x)

The following result appears in [9, p. 167] in a slightly different form. However, it is claimed
therein that the result is only valid for x ∈ (0, 1), where in fact it is valid for x ∈ (−1, 1). On the
other hand, the same formula is reproduced in terms of trigonometric functions in [9, p. 169],
where the full range x ∈ (−1, 1) is indicated. This result is also stated in [11, equation (14.3.2)].

Theorem 3.1. Let x ∈ D1, ν ∈ C, µ ∈ C \ Z, ν + µ 6∈ −N. Then

Qµν (x) =
π

2 sin(πµ)

[
cos(πµ)

Γ(1− µ)

(
1 + x

1− x

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1− x

2

)

− Γ(ν + µ+ 1)

Γ(µ+ 1)Γ(ν − µ+ 1)

(
1− x
1 + x

) 1
2
µ

2F1

(
−ν, ν + 1

1 + µ
;
1− x

2

)]
.

Proof. According to [11, equation (14.3.20)] and [9, Entry 19, p. 160], the associated Legendre
function of the second kind satisfies

e−iπµQµν (z) =
Γ(−µ)Γ(ν + µ+ 1)

2Γ(ν − µ+ 1)

(
z − 1

z + 1

) 1
2
µ

2F1

(
−ν, ν + 1

1 + µ
;
1− z

2

)
+

1

2
Γ(µ)

(
z + 1

z − 1

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1− z

2

)
,

where z ∈ D2. This can be rewritten as

e−iπµQµν (z) =
−Γ(ν + µ+ 1)

2Γ(ν − µ+ 1) sin(πµ)Γ(µ+ 1)

(
z − 1

z + 1

) 1
2
µ

2F1

(
−ν, ν + 1

1 + µ
;
1− z

2

)
+

π

2 sin(πµ)Γ(1− µ)

(
z + 1

z − 1

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1− z

2

)
,

using the reflection formula (2.1). Using (2.8), we derive from this equation an expression
for Qµν (x), namely

Qµν (x) =
π

4 sin(πµ)

[
−2Γ(ν + µ+ 1)

Γ(ν − µ+ 1)Γ(µ+ 1)

(
1− x
1 + x

) 1
2
µ

2F1

(
−ν, ν + 1

1 + µ
;
1− x

2

)

+
e−iπµ + eiπµ

Γ(1− µ)

(
1 + x

1− x

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1− x

2

)]

=
π

2 sin(πµ)

[
cos(πµ)

Γ(1− µ)

(
1 + x

1− x

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1− x

2

)

− Γ(ν + µ+ 1)

Γ(ν − µ+ 1)Γ(µ+ 1)

(
1− x
1 + x

) 1
2
µ

2F1

(
−ν, ν + 1

1 + µ
;
1− x

2

)]
,
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which is true for all x ∈ (−1, 1). Since both sides of the claimed identity are analytic functions
on D1, the identity is true for all x ∈ D1. �

Theorem 3.2. Let x ∈ D1, ν ∈ C, µ ∈ C \ Z, such that ν + µ /∈ −N. Then

Qµν (x) = −1

2

[
cos(πν)Γ(µ)

(
1− x
1 + x

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1 + x

2

)

+ cos(π(ν + µ))Γ(−µ)
Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

(
1 + x

1− x

) 1
2
µ

2F1

(
−ν, ν + 1

1 + µ
;
1 + x

2

)]
.

Proof. According to [9, Entry 20, p. 160], the associated Legendre function of the second kind
satisfies

e−iπµQµν (z) = −1

2
e∓iπνΓ(µ)

(
z − 1

z + 1

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1 + z

2

)
− 1

2
e∓iπν Γ(ν + µ+ 1)Γ(−µ)

Γ(ν − µ+ 1)

(
z + 1

z − 1

) 1
2
µ

2F1

(
−ν, ν + 1

1 + µ
;
1 + z

2

)
,

when ± Im z > 0. Using (2.8), we derive from this equation an expression for Qµν (x), namely

Qµν (x) = −1

4

[
e−iπνΓ(µ)

(
1− x
1 + x

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1 + x

2

)

+ e−iπ(ν+µ) Γ(ν + µ+ 1)Γ(−µ)

Γ(ν − µ+ 1)

(
1 + x

1− x

) 1
2
µ

2F1

(
−ν, ν + 1

1 + µ
;
1 + x

2

)
+ eiπνΓ(µ)

(
1− x
1 + x

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1 + x

2

)
+ eiπ(ν+µ) Γ(ν + µ+ 1)Γ(−µ)

Γ(ν − µ+ 1)

(
1 + x

1− x

) 1
2
µ

2F1

(
−ν, ν + 1

1 + µ
;
1 + x

2

)]

= −1

2

[
cos(πν)Γ(µ)

(
1− x
1 + x

) 1
2
µ

2F1

(
−ν, ν + 1

1− µ
;
1 + x

2

)

+ cos(π(ν + µ))
Γ(ν + µ+ 1)Γ(−µ)

Γ(ν − µ+ 1)

(
1 + x

1− x

)µ
2

2F1

(
−ν, ν + 1

1 + µ
;
1 + x

2

)]
.

This completes the proof. �

Theorem 3.3. Let x ∈ D1, ν ∈ C, µ ∈ C \ Z, such that ν + µ /∈ −N. Then

Qµν (x) =
(1 + x)ν

2ν+1

[
cos(πµ)Γ(µ)

(
1 + x

1− x

) 1
2
µ

2F1

(
−ν,−ν − µ

1− µ
;
x− 1

x+ 1

)

+
Γ(ν + µ+ 1)Γ(−µ)

Γ(ν − µ+ 1)

(
1− x
1 + x

) 1
2
µ

2F1

(
−ν, µ− ν

1 + µ
;
x− 1

x+ 1

)]
.

Proof. This follows from [9, Entry 21, p. 160]. �
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Theorem 3.4. Let x ∈ D1, ν ∈ C, µ ∈ C \ Z, such that ν + µ /∈ −N. Then

Qµν (x) =
−2ν

(1− x)ν+1

[
Γ(µ) cos(πν)

(
1− x
1 + x

) 1
2
µ

2F1

(
ν + 1, ν − µ+ 1

1− µ
;
x+ 1

x− 1

)

+
Γ(−µ) cos(π(ν + µ))Γ(ν + µ+ 1)

Γ(ν − µ+ 1)

(
1 + x

1− x

) 1
2
µ

2F1

(
ν + 1, ν + µ+ 1

1 + µ
;
x+ 1

x− 1

)]
.

Proof. This follows from [9, Entry 22, p. 160]. �

Theorem 3.5. Let ν, µ ∈ C such that ν + µ /∈ −N0, 2ν /∈ Z. If ± Imx > 0 then

Qµν (x) = 2ν
(

cos(πµ)∓ i
sin(π(µ− ν))

2 cos(πν)

)
Γ(ν + 1)Γ(ν + µ+ 1)

Γ(2ν + 2)

× (1 + x)−1+ 1
2
µ−ν(1− x)−

1
2
µ

2F1

(
ν − µ+ 1, ν + 1

2ν + 2
;

2

1 + x

)
± iπ2−ν−2 sec(πν)

Γ(−ν)

Γ(−2ν)Γ(ν − µ+ 1)

× (1 + x)ν+ 1
2
µ(1− x)−

1
2
µ

2F1

(
−ν,−ν − µ
−2ν

;
2

1 + x

)
.

Proof. We represent Qµν (x) by (2.11) if Imx > 0 and by (2.14) if Imx < 0. Then we use [9,
Entry 23, p. 161], namely

e−iπµQµν (x) = 2ν
Γ(ν + 1)Γ(ν + µ+ 1)

Γ(2ν + 2)

(x+ 1)
1
2
µ−ν−1

(x− 1)
1
2
µ

2F1

(
ν + 1, ν − µ+ 1

2ν + 2
;

2

1 + x

)
,

for x ∈ D2 and the desired result follows. �

Theorem 3.6. Let ν, µ ∈ C such that ν + µ /∈ −N0, 2ν /∈ Z. If ± Imx > 0 then

Qµν (x) = 2νe∓πi(ν+1)

(
cos(πµ)∓ i

sin(π(µ− ν))

2 cos(πν)

)
Γ(ν + 1)Γ(ν + µ+ 1)

Γ(2ν + 2)

× (1 + x)
1
2
µ(1− x)−ν−

1
2
µ−1

2F1

(
ν + µ+ 1, ν + 1

2ν + 2
;

2

1− x

)
± iπ2−ν−2e±πiν sec(πν)

Γ(−ν)

Γ(−2ν)Γ(ν − µ+ 1)

× (1 + x)
1
2
µ(1− x)ν−

1
2
µ

2F1

(
−ν, µ− ν
−2ν

;
2

1− x

)
.

Proof. We represent Qµν (x) by (2.11) if Imx > 0 and by (2.14) if Imx < 0. Then we use [9,
Entry 24, p. 161], namely

e−iπµQµν (x) = 2ν
Γ(ν + 1)Γ(ν + µ+ 1)

Γ(2ν + 2)

(x+ 1)
1
2
µ

(x− 1)ν+ 1
2
µ+1

2F1

(
ν + 1, ν + µ+ 1

2µ+ 2
;

2

1− x

)
,

for x ∈ D2 and the desired result follows. �

Remark 3.7. The hypergeometric representations of Qµν (x) given in the previous six theorems
can be written in slightly different forms by applying Euler’s transformation (2.3). For instance,
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the result of Theorem 3.1 can be written as

Qµν (x) =
π

2 sin(πµ)

[
2µ

cos(πµ)

Γ(1− µ)

(
1− x2

)−µ
2

2F1

(
ν − µ+ 1,−µ− ν

1− µ
;
1− x

2

)

− 2−µ
Γ(ν + µ+ 1)

Γ(µ+ 1)Γ(ν − µ+ 1)

(
1− x2

)µ
2

2F1

(
ν+ µ+ 1, µ− ν

1 + µ
;
1− x

2

)]
.

We observe that by applying Pfaff’s transformation (2.4) and (2.5), the results of Theorems 3.3,
3.4 and 3.6 follow immediately from those of Theorems 3.1, 3.2 and 3.5, respectively.

Each of the previous six theorems represents Qµν (x) as a sum of two functions each of which
is itself a solution of the associated Legendre equation (1.1). In the following we identify these
solutions.

Remark 3.8. In Theorems 3.1 and 3.3, Qµν (x) is expressed as a linear combination of Pµν (x)
and P−µν (x). This follows from the connection formula [11, cf. equation (14.9.2)]

2

π
sin(πµ)Qµν (x) = cos(πµ)Pµν (x)− Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (x), (3.1)

and the hypergeometric representation [11, equation (14.3.1)] of the Ferrers function of the first
kind

Pµν (x) =

(
1 + x

1− x

) 1
2
µ 1

Γ(1− µ)
2F1

(
−ν, ν + 1

1− µ
;
1− x

2

)
. (3.2)

Analogously, in Theorems 3.2 and 3.4, Qµν (x) is written as a linear combination of Pµν (−x)
and P−µν (−x). This follows from the connection relation

2

π
sin(πµ)Qµν (x) = − cos(πν)Pµν (−x) + cos(π(ν + µ))

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
P−µν (−x),

which is a consequence of [11, equations (14.9.7) and (14.9.10)]. We will use this observation to
derive additional hypergeometric representations of Qµν (x).

The connection relation [11, equation (14.9.10)]

2

π
sin(π(ν + µ))Qµν (x) = cos(π(ν + µ))Pµν (x)− Pµν (−x),

and (3.2) lead to the following result.

Theorem 3.9. Let x ∈ D1, µ, ν ∈ C such that ν + µ /∈ −Z. Then

Qµν (x) =
π

2
cot(π(ν + µ))

(
1 + x

1− x

) 1
2
µ 1

Γ(1− µ)
2F1

(
−ν, ν + 1

1− µ
;
1− x

2

)
− π

2
csc(π(ν + µ))

(
1− x
1 + x

) 1
2
µ 1

Γ(1− µ)
2F1

(
−ν, ν + 1

1− µ
;
1 + x

2

)
.

Remark 3.10. The hypergeometric representation in Theorem 3.9 involves two hypergeometric
functions with the same parameters a = ν + 1, b = −ν, c = 1 − µ but two different argu-
ments (1± x)/2 while the previous results in this section involve two hypergeometric functions
with two different set of parameters but the same argument. By representing Qµν (x) in terms
of
{
Pµν (−x),P−µν (x)

}
,
{
P−µν (−x),Pµν (x)

}
,
{
P−µν (−x),P−µν (x)

}
, respectively, we can obtain three

additional hypergeometric representations of Qµν (x).
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Remark 3.11. In Theorem 3.5, Qµν (x) is expressed as a linear combination of Qµν (x) and
Qµ−ν−1(x) in the upper and lower half-plane. The argument of the hypergeometric function is
w5 = 2/(1 + x). If one considers x ∈ (−1, 1), then this function maps to (1,∞), where the
hypergeometric function takes two values depending on whether the value is approached from
above or below the ray [1,∞). These values can be computed by Theorems B.1–B.4 which are
given in Appendix B. We map w5(x± i0) to (1+x)/2, (x−1)/(x+1), (1−x)/2, (x+1)/(x−1),
which have already been encountered in Theorems 3.2, 3.3, 3.1 and 3.4, respectively. Similar
remarks apply to Theorem 3.6.

4 Group II hypergeometric representations for Qµ
ν(x)

Theorem 4.1. Let x ∈ D+
1 , ν ∈ C, µ ∈ C \ Z, ν + µ ∈ C \ −N. Then

Qµν (x) =
2µ−1Γ(µ) cos(πµ)(

1− x2
) 1

2
µ

2F1

(
ν−µ+1

2 , −ν−µ2

1− µ
; 1− x2

)

+
Γ(−µ)Γ(ν + µ+ 1)

(
1− x2

) 1
2
µ

21+µΓ(ν − µ+ 1)
2F1

(
ν+µ+1

2 , µ−ν2

1 + µ
; 1− x2

)
.

Proof. Use the Gauss hypergeometric representation of the associated Legendre function of the
second kind [9, Entry 25, p. 161],

e−iπµQµν (z) = 2µ−1Γ(µ)(z2 − 1)−
1
2
µ

2F1

(
ν−µ+1

2 , −ν−µ2

1− µ
; 1− z2

)

+
Γ(ν + µ+ 1)Γ(−µ)

21+µΓ(ν − µ+ 1)
(z2 − 1)

1
2
µ

2F1

(
ν+µ+1

2 , µ−ν2

1 + µ
; 1− z2

)
,

valid for z ∈ D2 with Re z > 0. Now (2.8) gives the desired representation for x ∈ (0, 1). Since
both sides of the equation are analytic for x ∈ D1, Rex > 0. The full statement follows. �

Theorem 4.2. Let ν, µ ∈ C such that ν + µ /∈ −N and ν + 1
2 /∈ Z. If ± Imx > 0 then

Qµν (x) =
√
π 2−ν−1e±

1
2

iπ(−ν+µ−1)

(
cos(πµ)∓ i

sin(π(µ− ν))

2 cos(πν)

)
Γ(ν + µ+ 1)

Γ
(
ν + 3

2

)
×
(
1− x2

)− 1
2
ν− 1

2
2F1

(
ν−µ+1

2 , ν+µ+1
2

ν + 3
2

;
1

1− x2

)

+ π
3
2 2ν−1 e±

1
2

iπ(ν+µ+1) sec(πν)

Γ(ν − µ+ 1)Γ
(

1
2 − ν

)(1− x2
) 1

2
ν

2F1

(
−ν+µ

2 , µ−ν2
1
2 − ν

;
1

1− x2

)
.

Proof. We represent Qµν (x) by (2.11) if Imx > 0 and by (2.14) if Imx < 0. Then we use [9,
Entry 26, p. 161]

e−iπµQµν (z) =
√
π 2−ν−1 Γ(ν + µ+ 1)

Γ
(
ν + 3

2

) (z2 − 1)
1
2 (ν+1)

2F1

(
ν−µ+1

2 , ν+µ+1
2

ν + 3
2

;
1

1− z2

)
,

for z ∈ D2 and the desired result follows. �
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Theorem 4.3 (equation (14.3.12) in [11]). Let x ∈ D1 and ν, µ ∈ C, such that ν + µ /∈ −N.
Then

Qµν (x) =

√
π 2µ−1

(1− x2)
1
2
µ

[
− sin

(
π
2 (ν + µ)

)
Γ
(ν+µ+1

2

)
Γ
(ν−µ+2

2

) 2F1

(
−ν+µ

2 , ν−µ+1
2

1
2

;x2

)

+
2 cos

(
π
2 (ν + µ)

)
Γ
(ν+µ+2

2

)
x

Γ
(ν−µ+1

2

) 2F1

(
−ν−µ+1

2 , ν−µ+2
2

3
2

;x2

)]
.

Proof. By [9, Entry 27, p. 161], the associated Legendre function of the second kind satisfies

e−iπµQµν (z) =
π

1
2 2µΓ

(ν+µ+2
2

)
z

Γ
(ν−µ+1

2

)
(z2 − 1)

1
2
µ

e±
1
2

iπ(µ−ν)
2F1

(
−ν−µ+1

2 , ν−µ+2
2

3
2

; z2

)

+
π

1
2 2µ−1Γ

(ν+µ+1
2

)
Γ
(ν−µ+1

2

)
(z2 − 1)

1
2
µ

e±
1
2

iπ(µ−ν−1)
2F1

(
−ν−µ

2 , ν−µ+1
2

1
2

; z2

)
,

where the upper and lower sign holds according to ± Im z > 0. Using this equation with (2.8),
one derives

Qµν (x) =
π

1
2 2µ−2

(1− x2)
1
2
µ

[
2x
(
e

1
2

iπ(ν+µ) + e−
1
2

iπ(ν+µ)
)Γ
(ν+µ+2

2

)
Γ
(ν−µ+1

2

)2F1

(
−ν−µ+1

2 , ν−µ+2
2

3
2

;x2

)

+
(
e−

1
2

iπ(ν+µ+1) + e
1
2

iπ(ν+µ+1)
)Γ
(ν+µ+1

2

)
Γ
(ν−µ+2

2

)2F1

(
−ν−µ

2 , ν−µ+1
2

1
2

;x2

)]
.

Since this is equivalent to the claimed result, we have completed the proof. �

Theorem 4.4. Let ν, µ ∈ C such that ν + µ /∈ −N and ν + 1
2 /∈ Z. If ± Imx > 0 then

Qµν (x) =
√
π 2−ν−1e±iπµ

(
cos(πµ)∓ i

sin(π(µ− ν))

2 cos(πν)

)
Γ(ν + µ+ 1)

Γ
(
ν + 3

2

)
× x−ν−µ−1

(
1− x2

) 1
2
µ

2F1

(
ν+µ+1

2 , ν+µ+2
2

ν + 3
2

;
1

x2

)

+ π
3
2 2ν−1 e±πi( 1

2
+µ) sec(πν)

Γ(ν − µ+ 1)Γ
(

1
2 − ν

)xν−µ(1− x2
) 1

2
µ

2F1

(
µ−ν

2 , µ−ν+1
2

1
2 − ν

;
1

x2

)
.

Proof. We represent Qµν (x) by (2.11) if Imx > 0 and by (2.14) if Imx < 0. Then we use [9,
Entry 28, p. 162] which agrees with (2.6), and the desired result follows. �

Theorem 4.5. Let x ∈ D+
1 , ν ∈ C, µ ∈ C \ Z such that ν + µ /∈ −N. Then

Qµν (x) =
2µ−1 cos(πµ)Γ(µ)(

1− x2
) 1

2
µ

xν+µ
2F1

(
−ν−µ

2 , −ν−µ+1
2

1− µ
;
x2 − 1

x2

)

+
Γ(ν + µ+ 1)Γ(−µ)

2µ+1Γ(ν − µ+ 1)

(
1− x2

) 1
2
µ
xν−µ2F1

(
µ−ν

2 , µ−ν+1
2

1 + µ
;
x2 − 1

x2

)
.
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Proof. The hypergeometric representation [9, Entry 29, p. 162],

e−iπµQµν (z) =
2µ−1Γ(µ)zν+µ

(z2 − 1)
1
2
µ

2F1

(
−ν−µ

2 , 1−ν−µ
2

1− µ
; 1− 1

z2

)

+
Γ(ν + µ+ 1)Γ(−µ)zν−µ(z2 − 1)

1
2
µ

2µ+1Γ(ν − µ+ 1)
2F1

(
µ−ν

2 , µ−ν+1
2

1 + µ
; 1− 1

z2

)
,

is valid for Re z>0, z 6∈ (0, 1]
(
then 1− 1

z2
/∈ [1,∞)

)
. Using (2.8), the result follows. �

Theorem 4.6. Let x ∈ D1, µ, ν ∈ C such that ν + µ /∈ N. Then

Qµν (x) =
√
π 2µ

[
−Γ
(ν+µ+1

2

)
sin
(
π
2 (ν + µ)

)
2Γ
(ν−µ+2

2

)(
1− x2

)1
2 (ν+1)

2F1

(
ν−µ+1

2 , ν+µ+1
2

1
2

;
x2

x2 − 1

)

+
Γ
(ν+µ+2

2

)
cos
(
π
2 (ν + µ)

)
x
(
1− x2

) 1
2

(ν−1)

Γ
(ν−µ+1

2

) 2F1

(
µ−ν+1

2 , −ν−µ+1
2

3
2

;
x2

x2 − 1

)]
.

Proof. The hypergeometric representation of the associated Legendre function of the second
kind [9, Entry 30, p. 162],

e−iπµQµν (z) =

√
π 2µΓ

(ν+µ+2
2

)
Γ
(ν−µ+1

2

) e∓
1
2

iπ(ν− 1
2)z(z2 − 1)

1
2

(ν−1)
2F1

(
−ν−µ+1

2 , µ−ν+1
2

3
2

;
z2

z2 − 1

)

+

√
π 2µ−1Γ

(ν+µ+1
2

)
Γ
(ν−µ+1

2

) e∓
1
2

iπ(ν+ 1
2)(z2 − 1)

1
2
ν

2F1

(
−ν−µ

2 , µ−ν2
1
2

;
z2

z2 − 1

)
,

holds with the upper and lower sign chosen according to ± Im z > 0. Then (2.8) yields the
desired result. �

Remark 4.7. Theorem 4.3 (or 4.6) writes Qµν (x) as a sum of an even and an odd solution of the
associated Legendre equation.

Remark 4.8. The hypergeometric representations of Qµν (x) given in the previous six theorems
can be written in slightly different forms by applying Euler’s transformation (2.3). For instance,
the result of Theorem 4.3 can be written as

Qµν (x) =
√
π 2µ−1

(
1− x2

) 1
2
µ

[
− sin

(
π
2 (ν + µ)

)
Γ
(ν+µ+1

2

)
Γ
(ν−µ+2

2

) 2F1

(
ν+µ+1

2 , µ−ν2
1
2

;x2

)

+
2 cos

(
π
2 (ν + µ)

)
Γ
(ν+µ+2

2

)
Γ
(ν−µ+1

2

) x2F1

(
ν+µ+2

2 , µ−ν+1
2

3
2

;x2

)]
.

Remark 4.9. We observe that by applying Pfaff’s transformation (2.4) and (2.5), the results
of Theorems 4.5, 4.4 and 4.6 follow immediately from those of Theorems 4.1, 4.2 and 4.3,
respectively. The hypergeometric representation of Qµν (x) stated in Theorem 4.1 (or 4.5) is
of the form (3.1) with the Ferrers function Pµν (x) replaced by the hypergeometric representation

Pµν (x) =
2µ

Γ(1− µ)

(
1− x2

)− 1
2
µ

2F1

(
−1

2µ−
1
2ν,

1
2 −

1
2µ+ 1

2ν

1− µ
; 1− x2

)
.
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Remark 4.10. Theorem 4.2 expresses Qµν (x) in terms of the associated Legendre functions
Qµν (x) and Qµ−ν−1(x). The argument of the hypergeometric function is w8 = 1/

(
1− x2

)
. If one

considers x ∈ (−1, 1), then this function maps to (1,∞), where the Gauss hypergeometric func-
tion takes two values depending on whether the value is approached from above or below the ray
[1,∞). Hence, to compute these values, one must use Theorems B.1–B.4. Then the arguments
of the hypergeometric functions are transformed to 1 − x2, x2/

(
x2 − 1

)
, x2,

(
x2 − 1

)
/x2, and

we obtain the results that are already contained in Theorems 4.1, 4.6, 4.3 and 4.5, respectively.
Similar remarks apply to Theorem 4.4.

5 Group III hypergeometric representations for Qµ
ν(x)

In this section we focus on hypergeometric functions listed in Section 1, with arguments wj ,
j = 13, . . . , 18. Since we want to represent the Ferrers functions (defined on D1), we replace√
x2 − 1 by i

√
1− x2. The latter is an analytic function on D1. We note that i

√
1− x2 =

±
√
x2 − 1 if ± Imx > 0.

The following result in terms of trigonometric functions appears in [9, p. 168] in a different
form.

Theorem 5.1. Let x ∈ D1, ν, µ ∈ C, ν + µ /∈ −N, ν + 1
2 /∈ Z. Then for the upper sign chosen

everywhere as well as with the lower sign chosen everywhere,

Qµν (x) =

√
π

2
3
2

(
1− x2

) 1
4

×

[
e±

iπ
2 (µ+ 1

2) Γ
(
ν + 1

2

)
Γ(ν − µ+ 1)

(
x± i

√
1− x2

)ν+ 1
2

2F1

(
1
2 + µ, 1

2− µ
1
2 − ν

;
∓x+ i

√
1− x2

2i
√

1− x2

)

+ e∓
iπ
2 (µ+ 1

2) Γ(ν + µ+ 1)

Γ
(
ν + 3

2

) (
1 + e±iπ(ν+µ) cos(πµ)

cos(πν)

)(
x∓ i

√
1− x2

)ν+ 1
2

× 2F1

(
1
2 + µ, 1

2 − µ
ν + 3

2

;
∓x+ i

√
1− x2

2i
√

1− x2

)]
,

or equivalently with Re θ ∈ (0, π),

Qµν (cos θ) =

√
π

2
3
2

√
sin θ

[
e±

iπ
2 (µ+ 1

2) Γ
(
ν + 1

2

)
Γ(ν − µ+ 1)

e±i(ν+ 1
2)θ

2F1

(
1
2 + µ, 1

2 − µ
1
2 − ν

;
1

2
± i

2
cot θ

)

+ e∓
iπ
2 (µ+ 1

2) Γ(ν + µ+ 1)

Γ
(
ν + 3

2

) (
1 + e∓iπ(ν+µ) cos(πµ)

cos(πν)

)
× e∓i(ν+ 1

2)θ
2F1

(
1
2 + µ, 1

2 − µ
ν + 3

2

;
1

2
± i

2
cot θ

)]
.

Proof. We first prove the result with the upper sign. We claim that

w13 =
−x+ i

√
1− x2

2i
√

1− x2

is a conformal map from D1 to the complex plane cut along the rays (−∞, 0] and [1,∞). To see
this let x = cos θ. This is a conformal map from the strip S = {θ : Re θ < π} onto D1. Then

w13 =
1

2
+

i

2
cot θ.
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Now cot θ is a conformal map from S to C \ ((−i∞,−i] ∪ [i, i∞)) which establishes the claim.
Hence, using the principal value of the hypergeometric function, the composition of the hyper-
geometric function with w13 is an analytic function on D1. Further, we note that x± i

√
1− x2 /∈

(−∞, 0] for x ∈ D1. Therefore, the right-hand side of the stated identity is an analytic func-
tion on D1, so it is sufficient to prove this identity for Imx > 0. For Im z > 0, we insert the
hypergeometric representation of the associated Legendre function [9, Entry 31, p. 162]

e−iπµQµν (z) =

√
π Γ(ν+ µ+ 1)

(
z−
√
z2− 1

)ν+ 1
2

√
2Γ
(
ν + 3

2

)
(z2− 1)

1
4

2F1

(
1
2 + µ, 1

2− µ
ν + 3

2

;
−z +

√
z2 − 1

2
√
z2 − 1

)
, (5.1)

in (2.11), We obtain the desired result by using (2.1) and the identity

2eiπµ

(
sin(πν)− i

sin(π(µ− ν))

2 cos(πν)

)
= 1 + eiπ(ν+µ) cos(πµ)

cos(πν)
.

The proof of the result with the lower sign is similar. The function

w17 =
x+ i

√
1− x2

2i
√

1− x2
,

is also a conformal map from D1 to the complex plane cut along the rays (−∞, 0] and [1,∞).
Hence the right-hand side of the claimed identity is again an analytic function on D1, so it is
sufficient to prove it for Imx > 0 or Imx < 0. The desired result follows from (2.11) and the
hypergeometric representation of the associated Legendre function cf. [9, Entry 35, p. 162] in
the half-plane Imx > 0. However, it is easier to use (2.14) and (5.1) in the half-plane Imx < 0.
In this half-plane

√
x2 − 1 = −i

√
1− x2 and the desired representation follows. In order to

obtain the trigonometric form of the representation set x = cos θ with Re θ ∈ (0, π) and note
that i

√
1− x2 = sin θ. This completes the proof. �

The following result in terms of trigonometric functions appears in [9, p. 168] in a different
form.

Theorem 5.2. Let x ∈ D1, ν, µ ∈ C, ν + µ /∈ −N, ν + 1
2 /∈ Z. Then for the upper sign chosen

everywhere as well as with the lower sign chosen everywhere,

Qµν (x) =
√
π 2µ−1

(
1− x2

) 1
2
µ

×

[
e±iπ(µ+ 1

2) Γ
(
ν + 1

2

)
Γ(ν − µ+ 1)

(
x± i

√
1− x2

)ν−µ
2F1

(
1
2 + µ, µ− ν

1
2 − ν

;
x∓ i

√
1− x2

x± i
√

1− x2

)

+
Γ(ν + µ+ 1)

Γ
(
ν + 3

2

) (
1 + e±iπ(ν+µ) cos(πµ)

cos(πν)

)(
x∓ i

√
1− x2

)ν+µ+1

× 2F1

(
1
2 + µ, ν + µ+ 1

ν + 3
2

;
x∓ i

√
1− x2

x± i
√

1− x2

)]
,

or equivalently with Re θ ∈ (0, π),

Qµν (cos θ) =
√
π 2µ−1(sin θ)µ

[
e±iπ(µ+ 1

2) Γ
(
ν + 1

2

)
Γ(ν − µ+ 1)

e±i(ν−µ)θ
2F1

(
1
2 + µ, µ− ν

1
2 − ν

; e∓2iθ

)

+
Γ(ν+µ+1)

Γ
(
ν + 3

2

) (
1+e±iπ(ν+µ) cos(πµ)

cos(πν)

)
e∓i(ν+µ+1)θ

2F1

(
1
2 +µ, ν+µ+1

ν + 3
2

; e∓2iθ

)]
.
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Proof. We first prove the result with the upper sign. We note that the function

w14 =
x− i

√
1− x2

x+ i
√

1− x2
=

w13

w13 − 1

is a conformal map from D1 to the complex plane cut along the ray [0,∞). Hence the right-hand
side of the stated identity is an analytic function on D1, so it is sufficient to prove it for Imx > 0.
Now we insert the hypergeometric representation [9, Entry 32, p. 162]

e−iπµQµν (z) =
√
π 2µ

Γ(ν + µ+ 1)

Γ
(
µ+ 3

2

) (z2 − 1)
1
2
µ
(
z +

√
z2 − 1

)ν+µ+1

× 2F1

(
1
2 + µ, ν + µ+ 1

ν + 3
2

;
z −
√
z2 − 1

z +
√
z2 − 1

)
(5.2)

in (2.11), and obtain the desired result. To prove the result with the lower sign we can either
use the hypergeometric representation [9, Entry 36, p. 163] of Qµν (z) in the half-plane Im z > 0
or (5.2) in the half-plane Im z < 0. This completes the proof. �

Theorem 5.3. Let x ∈ D+
1 , ν, µ ∈ C, 2µ 6∈ Z, ν + µ /∈ −N. Then for the upper sign chosen

everywhere as well as with the lower sign chosen everywhere,

Qµν (x) =
Γ(−µ)

2µ+1

Γ(ν+µ+1)

Γ(ν−µ+1)

(
1− x2

) 1
2
µ(
x± i

√
1−x2

)ν−µ
2F1

(
1
2 +µ, µ−ν

1 + 2µ
;

2i
√

1− x2

±x+i
√

1−x2

)

+ 2µ−1Γ(µ)
cos(πµ)

(
x± i

√
1− x2

)ν+µ(
1− x2

) 1
2
µ

2F1

(
1
2 − µ,−ν − µ

1− 2µ
;

2i
√

1− x2

±x+ i
√

1− x2

)
,

or equivalently with Re θ ∈ (0, π),

Qµν (cos θ) =
Γ(−µ)

2µ+1

Γ(ν + µ+ 1)

Γ(ν − µ+ 1)
(sin θ)µe±i(ν−µ)θ

2F1

( 1
2 + µ, µ− ν

1 + 2µ
; 1− e∓2iθ

)
+ 2µ−1Γ(µ)

cos(πµ)e±i(ν+µ)θ

(sin θ)µ
2F1

( 1
2 − µ,−ν − µ

1− 2µ
; 1− e∓2iθ

)
.

Proof. We first prove the result with the upper sign. We observe that the function

w15 =
2i
√

1− x2

x+ i
√

1− x2
=

1

w17
,

maps the imaginary axis to the branch cut [1,∞) of the hypergeometric function. Then w15 is
a conformal map from D+

1 to the upper half-plane. Therefore, the right-hand side of the stated
identity is analytic on D+

1 so it is sufficient to prove it for x ∈ (0, 1). We obtain the desired result
by using (2.8) and the hypergeometric representation of Qµν (x) given in [9, Entry 33, p. 163].
However, it is much simpler to use (2.10) and the hypergeometric representation [9, Entry 15,
p. 158]

Pµν (z) =
2µ
(
z +
√
z2 − 1

)ν+µ

Γ(1− µ)(z2 − 1)
1
2
µ

2F1

(
−ν − µ, 1

2 − µ
1− 2µ

;
2
√
z2 − 1

z +
√
z2 − 1

)
.

In order to derive the result with the lower sign, use [9, Entry 34, p. 163] or (2.13) and (5.2)
in Rex > 0, Imx < 0, respectively. This completes the proof. �
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Remark 5.4. The hypergeometric representations of Qµν (x) given in the previous three theorems
can be written in slightly different forms by using Euler’s transformation (2.3). We observe that
by applying Pfaff’s transformations (2.4) and (2.5), Theorem 5.2 follows from Theorem 5.1.
Moreover, the result of Theorem 5.3 with the lower sign follows from the same theorem with the
upper sign.

Remark 5.5. Theorem 5.1 with the upper sign represents Qµν (x) in the upper half-plane as a li-
near combination of Qµν (x) and Qµ−ν−1(x) (cf. (2.11)). In particular, if x ∈ (−1, 1), Qµν (x) is
given by a linear combination of Qµν (x+ i0) and Qµ−ν−1(x+ i0). The argument w13, x ∈ (−1, 1),
of the hypergeometric functions lies on the line Rew = 1

2 . Theorem 5.1 with the lower sign
represents Qµν (x) in the lower half-plane as a linear combination of Qµν (x) and Qµ−ν−1(x). In par-
ticular, if x ∈ (−1, 1), Qµν (x) is given by a linear combination of Qµν (x− i0) and Qµ−ν−1(x− i0).
Again the argument w17, x ∈ (−1, 1), of the hypergeometric functions lies on the line Rew = 1

2 .
Similar results hold regarding Theorem 5.2. In this case the argument w14, x ∈ (−1, 1), of the
hypergeometric functions lies on the unit circle |w| = 1 excluding w = 1. Theorem 5.3 represents
Qµν (x) as a linear combination (3.1) of P−µν (x) and Pµν (x) for x ∈ D+

1 , using an appropriate hyper-
geometric representation of the Ferrers functions of the first kind. The argument w15, x ∈ (0, 1),
lies on the circle |w − 1| = 1 excluding w = 2. The range of values of wj , j = 13, . . . , 18,
x ∈ (−1, 1), is depicted in Figure 1.

Figure 1. This figure represents a plot in the complex plane of the complex arguments which appear

in Theorems 5.1, 5.2 and 5.3 when x ∈ (−1, 1). The symbol O represents the origin of the complex

w-plane, with the dashed horizontal and vertical lines emanating from it being the real and imaginary

axes respectively. The symbol A represents the line parallel to the imaginary axis w = 1
2 ±

i
2 cot θ

in Theorem 5.1, where θ ∈ (0, π). The symbol B represents the unit circle centered at the origin excluding

the point located at w = 1 in Theorem 5.2. The symbol C represents the unit circle centered at the

point w = 1 excluding the point located at w = 0 in Theorem 5.3. The point w = 2 (D) corresponding

to x = 0 is excluded in Theorem 5.3. The symbol E represents the branch cut of the hypergeometric

function located at w ∈ [1,∞). The symbols F and G represent the two points where all three curves

intersect each other at w = 1
2 ±

√
3
2 i respectively.
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6 A Fourier series representation

A Fourier series for a function f(x) is given by the infinite sum

f(x) =

∞∑
n=−∞

aneinθ,

where the coefficients an must satisfy certain specific conditions to guarantee convergence, see
below. In this section we perform analysis for a Fourier series representation of the Ferrers
function of the second kind.

Theorem 6.1. Let x ∈ D1 and ν, µ ∈ C such that ν + µ 6∈ −N. Then

Qµν (x) =
√
π 2µ−1

(
1− x2

) 1
2
µΓ(ν + µ+ 1)

Γ
(
ν + 3

2

)
×

[
uν+µ+1

2F1

(
µ+ 1

2 , ν + µ+ 1

ν + 3
2

;
u

v

)
+ vν+µ+1

2F1

(
µ+ 1

2 , ν + µ+ 1

ν + 3
2

;
v

u

)]
,

where

u := x+ i
√

1− x2, v := x− i
√

1− x2 =
1

u
.

Proof. Both sides of the stated identity are analytic functions on D1, so it is sufficient to prove
it for x ∈ (−1, 1). If x ∈ (−1, 1) we use (2.8) with Qµν (x + i0) and Qµν (x − i0) both expressed
through (5.2). Then the desired identity follows noting that

√
(x± i0)2 − 1 = ±i

√
1− x2. �

If we set x = cos θ, Re θ ∈ (0, π), then Theorem 6.1 gives

Qµν (cos θ) =
√
π 2µ−1(sin θ)µ

Γ(ν + µ+ 1)

Γ
(
ν + 3

2

)
×

[
ei(ν+µ+1)θ

2F1

(
µ+ 1

2 , ν+ µ+ 1

ν + 3
2

; e2iθ

)
+ e−i(ν+µ+1)θ

2F1

(
µ+ 1

2 , ν + µ+ 1

ν + 3
2

; e−2iθ

)]
.

If θ ∈ (0, π) then the arguments w = e±2iθ of the hypergeometric function lie on the unit circle
|w| = 1. Provided the hypergeometric series converges at e±2iθ we obtain (using Abel’s theorem
on power series) [11, equation (14.13.2)]

Qµν (cos θ) =
√
π 2µ(sin θ)µ

∞∑
k=0

Γ(ν + µ+ k + 1)

Γ
(
ν + k + 3

2

) (
µ+ 1

2

)
k

k!
cos((ν + µ+ 2k + 1)θ). (6.1)

Regarding the convergence of the series in (6.1) we have the following result. Statement (b)
of Theorem 6.2 is more precise than the corresponding statement in [11, Section 14.13].

Theorem 6.2. Let θ ∈ (0, π), ν, µ ∈ C such that ν + µ ∈ C \ −N.

(a) If Reµ < 0 then the series in (6.1) converges absolutely.

(b) If 0 ≤ Reµ < 1
2 then the series in (6.1) converges, but, if θ 6= 1

2π, it does not converge
absolutely.

(c) If Reµ ≥ 1
2 and θ 6= 1

2π, then the series in (6.1) diverges.
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Proof. (a) It is known [11, Section 15.2(i)] that the Gauss hypergeometric series 2F1

(
a,b
c ;w

)
converges absolutely on the unit circle |w| = 1 if Re(c − a − b) > 0. In our case a = µ + 1

2 ,
b = ν + µ+ 1, c = ν + 3

2 so c− a− b = −2µ. If Reµ < 0 it follows that the series in (6.1) is the
sum of two absolutely convergent series and so is itself absolutely convergent.

(b) Suppose that 0 ≤ Reµ < 1
2 . If −1 < Re(c−a−b) ≤ 0 then the Gauss hypergeometric series

converges conditionally at |w| = 1, w 6= 1 [11, Section 15.2(i)]. It follows that the series in (6.1)
is the sum of two convergent series and so is itself convergent. However, it is not true that the
sum of two conditionally convergent series is conditionally convergent. We still have to show that
the series in (6.1) does not converge absolutely if θ 6= 1

2π. According to [11, equation (5.11.12)],

Γ(a+ z)

Γ(b+ z)
∼ za−b

as z → +∞. Therefore, as k →∞,

Γ(ν+ µ+ k+ 1)

Γ
(
ν + k + 3

2

) (
µ+ 1

2

)
k

k!
=

Γ(ν+ µ+ k+1)

Γ
(
ν + k + 3

2

) Γ
(
µ+ 1

2 + k
)

Γ(k + 1)Γ
(
µ+ 1

2

) ∼ k µ−
1
2k µ−

1
2

Γ
(
µ+ 1

2

) =
k2µ−1

Γ
(
µ+ 1

2

) .
Since 1/Γ

(
µ+ 1

2

)
6= 0, there are positive constants κ and K such that∣∣∣∣∣Γ(ν + µ+ k + 1)

Γ
(
ν + k + 3

2

) (
µ+ 1

2

)
k

k!

∣∣∣∣∣ ≥ κ

k
,

for k ≥ K. The second part of statement (b) now follows from Lemma 6.3.
(c) Suppose that Reµ ≥ 1

2 and the series in (6.1) converges. Then the terms of the series
must converge to 0. It follows that cos((ν + µ + 2k + 1)θ) → 0 as k → ∞. By Lemma 6.4 this
is impossible unless θ = 1

2π. Therefore, the series in (6.1) will diverge for θ 6= 1
2π. �

Lemma 6.3. Let a ∈ C and θ ∈ (0, π). Then
∞∑
k=1

1

k
| cos((a+ 2k)θ)| =∞

unless cos a = 0 and θ = 1
2π.

Proof. If θ = 1
2π then | cos((a + 2k)θ)| is independent of k and the assertion follows. Now

suppose that θ 6= 1
2π. Since | cos z| ≥ | cos(Re z)| for all z ∈ C it is enough to consider a ∈ R.

Then | cos((a+ 2k)θ)| ≥ cos2((a+ 2k)θ). Therefore, it is enough to show that
∞∑
k=1

1

k
cos2((a+ 2k)θ) =∞.

Now
1

k
cos2((a+ 2k)θ) =

1

2k
+

1

2k
cos(2(a+ 2k)θ).

The series
∑∞

k=1 1/(2k) diverges. The series
∑∞

k=1 cos(2(a+2k)θ)/(2k) converges by the Dirichlet
test provided the partial sums

∑n
k=1 cos(2(a + 2k)θ) form a bounded sequence. This is true

for θ ∈ (0, π), θ 6= 1
2π. �

Lemma 6.4. Let a, b ∈ C and sin b 6= 0. Then the sequence cos(a+ bn) does not converge to 0
as n→∞.

Proof. Suppose that cos(a+ bn)→ 0 as n→∞. We have

cos(a+ b(n+ 1)) = cos(a+ bn) cos b− sin(a+ bn) sin b.

If we let n→∞ and use sin b 6= 0 we obtain that sin(a+ bn)→ 0. Since cos2 x+ sin2 x = 1 this
is a contradiction. �
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7 Convergence regions of the Gauss hypergeometric series

In the hypergeometric representations of Qµν (x) derived in Sections 3–5 we worked with the
principal value of the hypergeometric function defined on C \ [1,∞). If we wish to use the
hypergeometric series (2.2) we have to add the condition |wj | < 1. Therefore, it is of interest
to determine the regions in the x-plane on which |wj | < 1. In most cases these regions are
obvious but not in all of them.

7.1 Group I

� The hypergeometric functions in Theorem 3.1 have the argument w1 = (1 − x)/2. Now
|w1| < 1 gives the condition |1− x| < 2 describing a disk centered at x = 1 with radius 2.

� The hypergeometric functions in Theorem 3.2 have the argument w2 = (1 + x)/2. Then
|w2| < 1 is satisfied if and only if |1 + x| < 2.

� The hypergeometric functions in Theorem 3.3 have the argument w3 = (x − 1)/(x + 1).
Then |w3| < 1 is satisfied if and only if Rex > 0.

� The hypergeometric functions in Theorem 3.4 have the argument w4 = (x + 1)/(x − 1).
Then |w4| < 1 is satisfied if and only if Rex < 0.

� The hypergeometric functions in Theorem 3.5 have the argument w5 = 2/(1 + x). Then
|w5| < 1 is satisfied if and only if |1 + x| > 2.

� The hypergeometric function in Theorem 3.6 have the argument w6 = 2/(1 − x). Then
|w6| < 1 is satisfied if and only if |1− x| > 2.

7.2 Group II

� The hypergeometric functions in Theorem 4.1 have the argument w7 = 1 − x2. Then
|w7| < 1 is satisfied if and only if |1− x||1 + x| < 1. This is the shaded region in Figure 2
bounded by a lemniscate.

Figure 2. The region |w7| < 1.

� The hypergeometric functions in Theorem 4.2 have the argument w8 = 1/
(
1− x2

)
. Then

|w8| < 1 is satisfied if and only if |1 +x||1−x| > 1, that is, if x lies in the unshaded region
in Figure 2.

� The hypergeometric functions in Theorem 4.3 have the argument w9 = x2. Then |w9| < 1
is satisfied if and only if |x| < 1.

� The hypergeometric functions in Theorem 4.4 have the argument w10 = 1/x2. Then
|w10| < 1 is satisfied if and only if |x| > 1.
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� The hypergeometric functions in Theorem 4.5 have the argument w11 =
(
x2−1

)
/x2. Then

|w11| < 1 is equivalent to Rex2 > 1
2 or (Rex)2− (Imx)2 > 1

2 . This determines the shaded
region bounded by a hyperbola depicted in Figure 3.

Figure 3. The region |w11| < 1.

� The hypergeometric functions in Theorem 4.6 have the argument w12 = x2/
(
x2−1

)
. Then

|w12| < 1 is satisfied if and only if (Rex)2 − (Imx)2 < 1
2 . This determines the unshaded

region in the x-plane in Figure 3.

7.3 Group III

For abbreviation, let

y = i
√

1− x2

for x ∈ D1.

� The hypergeometric functions in Theorem 5.1 (upper sign) have the argument

w13 =
−x+ y

2y
=

w14

w14 − 1
, where w14 =

x− y
x+ y

.

Therefore, |w13| < 1 is equivalent to Rew14 <
1
2 . Let x ∈ D1. Then x = cos θ, θ = α+ iβ,

where α ∈ (0, π) and β ∈ R, so

w14 =
cos θ − i sin θ

cos θ + i sin θ
= e−2iθ = e−2iαe2β.

Hence, |w13|<1 is equivalent to e2β cos(2α)<1
2 . Then 1

4π ≤ α ≤
3
4π or β<− 1

2 ln(2 cos(2α)).
In the x-plane the curve β = −1

2 ln(2 cos(2α)), for 0 < α < 1
4π is given by

x = cos(α+ iβ) =
1

2

(
t+ t−1

)
cosα+

1

2
i
(
t− t−1

)
sinα, (7.1)

where t =
√

2 cos(2α). This curve and the corresponding curve for 3
4π < α < π are shown

in Figure 4. Therefore, for x ∈ D1, |w13| < 1 is satisfied if and only if x lies in the unshaded
region in Figure 4.
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Figure 4. The region |w16| < 1 (|w13| > 1).

� The hypergeometric functions in Theorem 5.1 (lower sign) have the argument

w17 =
x+ y

2y
.

The condition |w17|<1 is satisfied if and only if x lies in the unshaded region of Figure 5.

Figure 5. The region |w15| < 1 (|w17| > 1).

� The hypergeometric functions in Theorem 5.2 (upper sign) have the argument

w14 =
x− y
x+ y

.

We take
√
x2 − 1 = i

√
1− x2 for x ∈ D1. Then using x = cos θ, Re θ ∈ (0, π) gives

w14 = e−2iθ so |w14| = e2 Im θ. Then |w14| < 1 means Im θ < 0 which therefore implies that
Imx > 0. Then |w14| = e2β so |w14| < 1 is satisfied if and only if Imx > 0.

� The hypergeometric functions in Theorem 5.2 (lower sign) have the argument

w18 =
x+ y

x− y
.

Since w18 = 1/w14, then |w18| < 1 if and only if Imx < 0. Of course, these results depend
on the choice of the sign of the root

√
x2 − 1.
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� The hypergeometric functions in Theorem 5.3 (upper sign) have the argument

w15 =
2y

x+ y
=

1

w17
.

Then |w15| < 1 is equivalent to |w17| > 1 and this means that x lies in the shaded region
of Figure 5.

� The hypergeometric functions in Theorem 5.3 (lower sign) have the argument

w16 =
2y

−x+ y
=

1

w13
.

Then |w16| < 1 is equivalent to |w13| > 1 and this means that x lies in the shaded region
of Figure 5.

We close this paper with the following interesting observations. In the arguments wj , j =
13, . . . , 18, we replaced

√
x2 − 1 by i

√
1− x2 because Ferrers functions are naturally defined

on the domain D1. However, if we are interested in hypergeometric representations of the
associated Legendre function Qµν (x) we will use

√
x2 − 1 :=

√
x− 1

√
x+ 1 which changes

the domains on which |wj | < 1. Let us denote these modifications of wj by w∗j . Since
w13(x) = w∗13(x) for Imx > 0 the part of the curve |w∗13| = 1 lying in the region Rex > 0,
Imx > 0 is given by (7.1) for 0 < α < 1

6π. The parts of the curve in the other quadrants are
reflections of this arc at the real and imaginary axis. The curve surrounding 1 is shown
in Figure 6. This means that the hypergeometric representation (5.1) with the Gauss
hypergeometric series in place of 2F1 holds for all z that lie outside these curves. Moreover,
we obtain that |w∗14| < 1 for all x ∈ D2. Therefore, the hypergeometric representation (5.2)
with the Gauss hypergeometric series in place of 2F1 holds for all z ∈ D2. This appears
to be the only representation of Qµν valid on D2 by the Gauss hypergeometric series.

Figure 6. The curve |w∗13| = 1. Note that by analyzing the equation of the curve one can see that

the innermost points occur at x = ±
√
3
2 ≈ ±0.866025 and the outermost points occur at x = ± 3

√
2

4 ≈
±1.06066. Also, the points with the largest absolute value of their imaginary parts on the curve occur

at Rex = ±
√

15
32 + 7

√
5

32 ≈ ±0.978718 and Imx = ±
√
− 11

32 + 5
√
5

32 ≈ ±0.0750708.

A Olbricht’s 72 solutions of the associated Legendre equation

Richard Olbricht [10, pp. 17–20] gave a list of 72 solutions of the associated Legendre equa-
tion (1.1) in terms of the Gauss hypergeometric function 2F1(a, b; c; z). He does not state the
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domains of definition of these solutions and does not identify them in terms of known solutions.
Therefore, it might be useful to go through the list and add a few remarks to each entry.

We will regularly use Euler’s and Pfaff’s transformations (2.3)–(2.5) and the domains (1.2)–
(1.6). Olbricht’s solutions will be denoted by LI

j , L
II
j , LIII

j , j = 1, 2, . . . , 24.

A.1 The Group I arguments

Consider

LI
1(x) :=

(
1− x

2

) 1
2
µ(1 + x

2

) 1
2
µ

2F1

(
µ− ν, ν + µ+ 1; 1 + µ;

1− x
2

)
. (A.1)

If we use principal values of the powers and also of the hypergeometric function 2F1 then LI
1 is

analytic on the domain D1. Using (2.3) and [11, equation (14.3.1)] Olbricht has

LI
1(x) = Γ(1 + µ)P−µν (x)

for x ∈ D1. If LI1 denotes the right-hand side of (A.1) with 2F1 replaced by Olver’s F(a, b; c; z) :=
1

Γ(c) 2F1(a, b; c; z) [11, equation (15.2.2)] then

LI1(x) = P−µν (x)

and this equation is true for all ν, µ ∈ C. The function

LI
2(x) :=

(
1− x

2

)− 1
2
µ(1 + x

2

) 1
2
µ

2F1

(
−ν, ν + 1; 1− µ;

1− x
2

)
is analytic on D1. By applying (2.3) to LI

1 and changing µ to −µ,

LI
2(x) = Γ(1− µ)Pµν (x),

for x ∈ D1. Olbricht has

LI
3(x) :=

(
1− x

2

) 1
2
µ(1 + x

2

)− 1
2
µ

2F1

(
−ν, ν + 1; 1 + µ;

1− x
2

)
,

and by (2.3), LI
1 = LI

3. Also,

LI
4(x) :=

(
1− x

2

)− 1
2
µ(1 + x

2

)− 1
2
µ

2F1

(
−ν − µ, ν − µ+ 1; 1− µ;

1− x
2

)
,

and by (2.3), LI
2 = LI

4. One also has

LI
5(x) := LI

1(−x),

LI
6(x) := LI

2(−x),

LI
7(x) := LI

3(−x),

LI
8(x) := LI

4(−x),

LI
9(x) :=

(
2

1− x

)−ν (x+ 1

x− 1

) 1
2
µ

2F1

(
−ν, µ− ν;−2ν;

2

1− x

)
.
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Using principal values, LI
9 is analytic on D3. Using [9, Entry 24, p. 161] and (2.3) with [11,

equation (14.9.14)]

Qµ
ν (x) = Q−µν (x)

and [11, equation (14.3.10)]

Qµ
ν (x) := e−µπi Qµν (x)

Γ(ν + µ+ 1)
,

we find

LI
9(x) =

4−ν√
π

Γ

(
1

2
− ν
)
Qµ
−ν−1(−x)

for x ∈ D3. We also have

LI
10(x) :=

(
2

1− x

)ν+1(x+ 1

x− 1

) 1
2
µ

2F1

(
ν + µ+ 1, ν + 1; 2ν + 2;

2

1− x

)
,

and LI
10 is obtained from LI

9 by replacing ν 7→ −ν − 1. Hence

LI
10(x) =

4ν+1

√
π

Γ

(
ν +

3

2

)
Qµ
ν (−x)

for x ∈ D3. Also,

LI
11(x) :=

(
2

1− x

)−ν (x+ 1

x− 1

)− 1
2
µ

2F1

(
−ν,−ν − µ;−2ν;

2

1− x

)
,

and LI
11 is obtained from LI

9 by replacing µ 7→ −µ. Hence LI
11 = LI

9. One also has

LI
12(x) :=

(
2

1− x

)ν+1(x+ 1

x− 1

)− 1
2
µ

2F1

(
ν + 1, ν − µ+ 1; 2ν + 2;

2

1− x

)
,

where LI
12 is obtained from LI

10 by replacing µ 7→ −µ, so LI
12 = LI

10. Also,

LI
13(x) := LI

9(−x),

and using principal values, LI
13(x) is analytic on D2, and therefore

LI
13(x) =

4−ν√
π

Γ

(
1

2
− ν
)
Qµ
−ν−1(x)

for x ∈ D2. For x ∈ D2, we also have

LI
14(x) := LI

10(−x),

LI
15(x) := LI

11(−x),

LI
16(x) := LI

12(−x),

LI
17(x) :=

(
x− 1

x+ 1

) 1
2
µ( 2

1 + x

)−ν
2F1

(
−ν, µ− ν; 1 + µ;

x− 1

x+ 1

)
.

This function is analytic on D2. By [9, Section 4.1.2, Entry 3]

LI
17(x) = Γ(1 + µ)P−µν (x)
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for x ∈ D2. One also has

LI
18(x) :=

(
x− 1

x+ 1

)− 1
2
µ( 2

1 + x

)−ν
2F1

(
−ν,−µ− ν; 1− µ;

x− 1

x+ 1

)
,

where LI
18 is obtained from LI

17 by replacing µ 7→ −µ. Hence

LI
18(x) := Γ(1− µ)Pµν (x)

for x ∈ D2. Also,

LI
19(x) :=

(
x− 1

x+ 1

) 1
2
µ( 2

1− x

)ν+1

2F1

(
ν + µ+ 1, ν + 1; 1 + µ;

x− 1

x+ 1

)
,

and by (2.3), LI
19 = LI

17. Also,

LI
20(x) :=

(
x− 1

x+ 1

)− 1
2
µ( 2

1 + x

)ν+1

2F1

(
ν + 1, ν − µ+ 1; 1− µ;

x− 1

x+ 1

)
,

and by (2.3), LI
20 = LI

18. Also,

LI
21(x) := LI

17(−x),

LI
22(x) := LI

18(−x),

LI
23(x) := LI

19(−x),

LI
24(x) := LI

21(−x).

A.2 The Group II arguments

The first function in Group II of Olbricht’s list is

LII
1 (x) :=

(
1− x2

) 1
2
µ

2F1

(
1

2
µ− 1

2
ν,

1

2
ν +

1

2
µ+

1

2
;
1

2
;x2

)
.

It is an even solution of (1.1) on D1 uniquely determined by the initial conditions y(0) = 1,
y′(0) = 0. By [11, equation (14.5.1)],

LII
1 (x) = 2−µ−1π−

1
2 Γ

(
1

2
ν − 1

2
µ+ 1

)
Γ

(
−1

2
ν − 1

2
µ+

1

2

)(
Pµν (x) + Pµν (−x)

)
for x ∈ D1. We also have

LII
2 (x) := x

(
1− x2

) 1
2
µ

2F1

(
1

2
µ− 1

2
ν +

1

2
,
1

2
ν +

1

2
µ+ 1;

3

2
;x2

)
.

This function is analytic on D1. It is an odd solution of (1.1) on D1 uniquely determined by
the initial conditions y(0) = 0, y′(0) = 1. Using [11, equation (14.5.2)],

LII
2 (x) := 2−µ−2π−

1
2 Γ

(
1

2
ν − 1

2
µ+

1

2

)
Γ

(
−1

2
ν − 1

2
µ

)(
Pµν (−x)− Pµν (x)

)
,

for x ∈ D1. Also,

LII
3 (x) :=

(
1− x2

)− 1
2
µ

2F1

(
−1

2
ν − 1

2
µ,

1

2
ν − 1

2
µ+

1

2
;
1

2
;x2

)
,
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and by (2.3), LII
3 = LII

1 . Furthermore,

LII
4 (x) := x

(
1− x2

)− 1
2
µ

2F1

(
−1

2
ν − 1

2
µ+

1

2
,
1

2
ν − 1

2
µ+ 1;

3

2
;x2

)
,

and by (2.3), LII
4 = LII

2 . Also,

LII
5 (x) :=

(
1− x2

) 1
2
µ

2F1

(
1

2
µ− 1

2
ν,

1

2
ν +

1

2
µ+

1

2
; 1 + µ; 1− x2

)
.

This function is analytic on D1 \ iR. By [9, Section 4.1.2, Entry 5],

LII
5 (x) = 2µΓ(1 + µ)P−µν (x),

for x ∈ D+
1 . One also has

LII
6 (x) := x

(
1− x2

) 1
2
µ

2F1

(
1

2
µ− 1

2
ν +

1

2
,
1

2
ν +

1

2
µ+ 1; 1 + µ; 1− x2

)
,

and by (2.3), LII
6 = LII

5 for x ∈ D+
1 . Also,

LII
7 (x) :=

(
1− x2

)− 1
2
µ

2F1

(
−1

2
ν − 1

2
µ,

1

2
ν − 1

2
µ+

1

2
; 1− µ; 1− x2

)
,

and LII
7 is obtained from LII

5 by replacing µ 7→ −µ. Therefore,

LII
7 (x) = 2−µΓ(1− µ)Pµν (x)

for x ∈ D+
1 . Also,

LII
8 (x) := x

(
1− x2

)− 1
2
µ

2F1

(
1

2
ν − 1

2
µ+ 1,−1

2
ν − 1

2
µ+

1

2
; 1− µ; 1− x2

)
,

and by (2.3), LII
8 (x) = LII

7 (x) for x ∈ D+
1 . Also,

LII
9 (x) := xν−µ

(
x2 − 1

) 1
2
µ

2F1

(
1

2
µ− 1

2
ν,

1

2
µ− 1

2
ν +

1

2
;
1

2
− ν;

1

x2

)
.

We use
(
x2−1

)α
as an abbreviation for (x−1)α(x+1)α, so

(
x2−1

)α
is analytic on D2. Olbricht

has
(
1 − x2

) 1
2
µ

in place of
(
x2 − 1

) 1
2
µ

but this has the disadvantage that when using principal
values the function is not analytic for any real x. LII

9 is analytic on D2. By [9, Section 4.1.2,
Entry 28],

LII
9 (x) = 2−νπ−

1
2 Γ

(
1

2
− ν
)
Qµ
−ν−1(x)

for x ∈ D2. Also,

LII
10(x) :=

(
1

x

)ν+µ+1 (
x2 − 1

) 1
2
µ

2F1

(
1

2
ν +

1

2
µ+

1

2
,
1

2
ν +

1

2
µ+ 1; ν +

3

2
;

1

x2

)
.

Olbricht has
(
1 − x2

) 1
2
µ

in place of
(
x2 − 1

) 1
2
µ
, and LII

10 is obtained from LII
9 by replacing

ν 7→ −ν − 1. Hence

LII
10(x) = 2ν+1π−

1
2 Γ

(
ν +

3

2

)
Qµ
ν (x)
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for x ∈ D2. Also,

LII
11(x) := xµ−ν−1

(
x2 − 1

)− 1
2
µ

2F1

(
1

2
ν − 1

2
µ+

1

2
,
1

2
ν − 1

2
µ+ 1; ν +

3

2
;

1

x2

)
.

Olbricht has
(
1−x2

) 1
2
µ

in place of
(
x2−1

) 1
2
µ
, and LII

11 is obtained from LII
10 by replacing µ 7→ −µ.

Hence LII
11 = LII

10. Also,

LII
12(x) := xν+µ

(
x2 − 1

)− 1
2
µ

2F1

(
−1

2
ν − 1

2
µ,−1

2
ν − 1

2
µ+

1

2
;
1

2
− ν;

1

x2

)
.

Olbricht has
(
1−x2

) 1
2
µ

in place of
(
x2−1

) 1
2
µ
, and LII

12 is obtained from LII
9 by replacing µ 7→ −µ.

Hence LII
12 = LII

9 . Also,

LII
13(x) :=

(
x2 − 1

) 1
2
ν

2F1

(
1

2
µ− 1

2
ν,−1

2
µ− 1

2
ν;

1

2
− ν;

1

1− x2

)
.

Olbricht has
(
1− x2

) 1
2
ν

in place of
(
x2 − 1

) 1
2
ν
, and LII

13 is analytic on D2. By (2.4), LII
13 = LII

9 .
More precisely, we use (2.4) for x > 1 and then apply the identity theorem for analytic functions.
Also,

LII
14(x) :=

(
x2 − 1

)− 1
2
ν− 1

2
2F1

(
1

2
ν +

1

2
µ+

1

2
,
1

2
ν − 1

2
µ+

1

2
; ν +

3

2
;

1

1− x2

)
.

Olbricht has
(
1− x2

)− 1
2
ν− 1

2 in place of
(
x2 − 1

)− 1
2
ν− 1

2 , and by (2.4), LII
14 = LII

10. Also,

LII
15(x) := x

(
x2 − 1

) 1
2
ν− 1

2
2F1

(
1

2
µ− 1

2
ν +

1

2
,−1

2
ν − 1

2
µ+

1

2
;
1

2
− ν;

1

1− x2

)
.

Olbricht has
(
1− x2

) 1
2
ν− 1

2 in place of
(
x2 − 1

) 1
2
ν− 1

2 , and by (2.4), LII
15 = LII

12. Also,

LII
16(x) := x

(
x2 − 1

) 1
2
ν−1

2F1

(
1

2
ν +

1

2
µ+ 1,

1

2
ν − 1

2
µ+ 1; ν +

3

2
;

1

1− x2

)
.

Olbricht has
(
1− x2

) 1
2
ν−1

in place of
(
x2 − 1

) 1
2
ν−1

, and by (2.4), LII
16 = LII

11. Also,

LII
17(x) :=

(
1− x2

) 1
2
ν

2F1

(
1

2
µ− 1

2
ν,−1

2
µ− 1

2
ν;

1

2
;

x2

x2 − 1

)
,

and by (2.4), LII
17 = LII

1 . Also,

LII
18(x) :=

(
1− x2

)− 1
2
ν− 1

2
2F1

(
1

2
ν +

1

2
µ+

1

2
,
1

2
ν − 1

2
µ+

1

2
;
1

2
;

x2

x2 − 1

)
,

and by (2.4), LII
18 = LII

3 . Also,

LII
19(x) := x

(
1− x2

) 1
2
ν− 1

2
2F1

(
1

2
µ− 1

2
ν +

1

2
,−1

2
ν − 1

2
µ+

1

2
;
3

2
;

x2

x2 − 1

)
,

and by (2.4), LII
19 = LII

2 . Also,

LII
20(x) := x

(
1− x2

)− 1
2
ν−1

2F1

(
1

2
ν +

1

2
µ+ 1,

1

2
ν − 1

2
µ+ 1;

3

2
;

x2

x2 − 1

)
,
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and by (2.4), LII
20 = LII

4 . Also,

LII
21(x) := xν−µ

(
1− x2

) 1
2
µ

2F1

(
1

2
µ− 1

2
ν,

1

2
µ− 1

2
ν +

1

2
; 1 + µ;

x2 − 1

x2

)
,

and by (2.4), LII
21 = LII

5 . Also,

LII
22(x) := x−ν−µ−1

(
1− x2

) 1
2
µ

2F1

(
1

2
ν +

1

2
µ+

1

2
,
1

2
ν +

1

2
µ+ 1; 1 + µ;

x2 − 1

x2

)
,

and by (2.4), LII
22 = LII

6 . Also,

LII
23(x) := xµ−ν−1

(
1− x2

)− 1
2
µ

2F1

(
1

2
ν − 1

2
µ+ 1,

1

2
ν − 1

2
µ+

1

2
; 1− µ;

x2 − 1

x2

)
,

and by (2.4), LII
23 = LII

7 . Also,

LII
24(x) := xµ+ν

(
1− x2

)− 1
2
µ

2F1

(
−1

2
ν − 1

2
µ+

1

2
,−1

2
µ− 1

2
ν; 1− µ;

x2 − 1

x2

)
,

and by (2.4), LII
24 = LII

8 .

A.3 The Group III arguments

In this section there appears the function
√
x2 − 1. There are two versions of this function:

y1 := i
√

1− x2, for x ∈ D1,

y2 := x
√

1− x−2, for x ∈ C \ [−1, 1],

where the root denotes its principal value. If ± Imx > 0 then y1 = ±y2. Each entry in Olbricht’s
list has two versions depending on whether

√
x2 − 1 has the meaning yk, k = 1, 2. We will denote

these functions by LIII
j,k, where 1 ≤ j ≤ 24, 1 ≤ k ≤ 2.

In Entries 1, 2, 3, 4 of Olbricht’s list the hypergeometric function has the argument

w17 =

√
x2 − 1 + x

2
√
x2 − 1

.

If we use y1 for
√
x2 − 1 then the function

w17,1 =
y1 + x

2y1

is a conformal map from D1 to the complex plane cut along the rays (−∞, 0] and [1,∞). To see
this let x = cos θ. This is a conformal map from the strip S = {θ : Re θ ∈ (0, π)} onto D1. Then

y1 + x

2y1
=

1

2
− i

2
cot θ.

Now cot θ is a conformal map from S to C \ ((−i∞,−i]∪ [i, i∞)). Therefore, using the principal
value of the hypergeometric function, the function 2F1(a, b; c;w17,1) the function is analytic
on D1. On the other hand, if we use y2 for

√
x2 − 1 then the values of

w17,2 =
y2 + x

2y2
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lie on the ray [1,∞) for x > 1, so 2F1(a, b; c;w17,2) cannot be defined for x > 1 when using the
principal value of the hypergeometric function. Therefore we will not allow y2 in Entries 1, 2, 3, 4
of Olbrichts’s list.

In Entries 5, 6, 7, 8 the hypergeometric function has argument

w13 =

√
x2 − 1− x
2
√
x2 − 1

.

Since y1 is an even function of x (y2 is odd) we have

w13,1(x) =
y1 − x

2y1
= w17,1(−x)

so we can define 2F1(a, b; c;w13,1) again on D1. However, the situation is now different for y2.
If we use y2 for

√
x2 − 1 then the function

w13,2 =
y2 − x

2y2

is analytic on D2 and its range is
{
z ∈ C : Re z < 1

2

}
\
(
−∞,−1

2

)
. Therefore, 2F1(a, b; c;w13,2)

is analytic on D2. This follows as in the proof of Theorem 5.1.
In the following list of 24 solutions of Olbricht the factors in front of the hypergeometric

function are rewritten. This is necessary in order to obtain reasonable branch cuts. For example,
solution 7 of Olbricht is(√

x2 − 1− x
2
√
x2 − 1

) 1
2
ν+ 1

2
(√

x2 − 1 + x

2
√
x2 − 1

)− 1
2
ν

2F1

(
1

2
− µ, µ+

1

2
; ν +

3

2
;

√
x2 − 1− x
2
√
x2 − 1

)
.

If we choose y2 for
√
x2 − 1 then, up to a constant factor, this solution should agree with the

associated Legendre function Qµν (x). However, the basis of the first power is a negative number
for x > 1. Using that(

x−
√
x2 − 1

)(
x+

√
x2 − 1

)
= 1,

we rewrite the solution as

(2y2)−
1
2 (x+ y2)−ν−

1
2 2F1

(
1

2
− µ, µ+

1

2
; ν +

3

2
;
y2 − x

2y2

)
.

This function is now analytic on D2 as it should be.
The first entry in Olbricht’s list is

LIII
1,1(x) := (2y1)ν2F1

(
µ− ν,−µ− ν;

1

2
− ν;

y1 + x

2y1

)
= LIII

5,1(−x).

The function LIII
5,1 will be identified below. Also,

LIII
2,1(x) := (2y1)−

1
2 (y1 − x)ν+ 1

2 2F1

(
1

2
− µ, µ+

1

2
;
1

2
− ν;

y1 + x

2y1

)
,

and by (2.3), LIII
2,1 = LIII

1,1. Also,

LIII
3,1(x) := (2y1)−

1
2 (y1 − x)−ν−

1
2 2F1

(
1

2
− µ, µ+

1

2
; ν +

3

2
;
y1 + x

2y1

)
,
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and LIII
3,1 is obtained from LIII

2,1 by replacing ν 7→ −ν − 1. Also,

LIII
4,1(x) := (2y1)−ν−1

2F1

(
ν − µ+ 1, ν + µ+ 1; ν +

3

2
;
y1 + x

2y1

)
,

and by (2.3), LIII
4,1 = LIII

3,1.
The fifth entry in Olbricht’s list is

LIII
5,k(x) := (2yk)

ν
2F1

(
µ− ν,−µ− ν;

1

2
− ν;

yk − x
2yk

)
,

and this function is analytic on Dk for k = 1, 2. By [9, Section 4.1.2, Entry 31] and (2.3),

LIII
5,2(x) = π−1/2Γ

(
1

2
− ν
)
Qµ
−ν−1(x) for x ∈ D2.

Since y1 = y2 for Imx > 0,

LIII
5,1(x) = π−1/2Γ

(
1

2
− ν
)
Qµ
−ν−1(x) if Imx > 0.

We know from [12, p. 147, equation (21)] that

Qµ
−ν−1

(
1 + (x− 1)e2πi

)
= e−πiµQµ

−ν−1(x)− πi

Γ(−ν − µ)
P−µ−ν−1(x).

Therefore,

LIII
5,1(x) = π−1/2Γ

(
1

2
− ν
)(

e−πiµQµ
−ν−1(x)− πi

Γ(−ν − µ)
P−µν (x)

)
if Imx < 0.

Entries 6, 7, 8 in Olbricht’s list are

LIII
6,k(x) := (2yk)

− 1
2 (x+ yk)

ν+ 1
2 2F1

(
1

2
− µ, µ+

1

2
;
1

2
− ν;

yk − x
2yk

)
,

LIII
7,k(x) := (2yk)

− 1
2 (x+ yk)

−ν− 1
2 2F1

(
1

2
− µ, µ+

1

2
; ν +

3

2
;
yk − x

2yk

)
,

LIII
8,k(x) := (2yk)

−ν−1
2F1

(
ν − µ+ 1, ν + µ+ 1; ν +

3

2
;
yk − x

2yk

)
.

By (2.3), LIII
6,k = LIII

5,k and LIII
8,k = LIII

7,k. L
III
7,k is obtained from LIII

6,k by replacing ν 7→ −ν − 1.
In Entries 9, 10, 11, 12 the hypergeometric function has the argument

w15 =
2
√
x2 − 1√

x2 − 1 + x
.

If
√
x2 − 1 is replaced by y1 or y2 then purely imaginary x are mapped to the branch cut [1,∞)

of the hypergeometric function. Therefore, we will work on D+
k . The function

LIII
9,k(x) := (2yk)

µ(x+ yk)
ν−µ

2F1

(
µ− ν, µ+

1

2
; 1 + 2µ;

2yk
yk + x

)
is analytic on D+

k for k = 1, 2. By [9, Section 4.1.2, Entry 15],

LIII
9,2(x) = 4µΓ(1 + µ)P−µν (x) for x ∈ D+

2 .
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This implies

LIII
9,1(x) = e

1
2

iπµ4µΓ(1 + µ)P−µν (x) for x ∈ D+
1 .

Also,

LIII
10,k(x) := (2yk)

−µ(x+ yk)
µ+ν

2F1

(
−ν − µ, 1

2
− µ; 1− 2µ;

2yk
yk + x

)
so LIII

10,k is obtained from LIII
9,k by replacing µ 7→ −µ. Hence

LIII
10,2(x) = 4−µΓ(1− µ)Pµν (x) for x ∈ D+

2 .

Also,

LIII
11,k(x) := (2yk)

−µ(yk + x)−1+µ−ν
2F1

(
ν − µ+ 1,

1

2
− µ; 1− 2µ;

2yk
yk + x

)
,

and LIII
11,k is obtained from LIII

10,k by replacing ν 7→ −ν − 1. By (2.3), LIII
11,k = LIII

10,k on D+
k . Also,

LIII
12,k(x) := (2yk)

µ(yk + x)−1−µ−ν
2F1

(
ν + µ+ 1, µ+

1

2
; 1 + 2µ;

2yk
yk + x

)
.

LIII
12,k is obtained from LIII

9,k by replacing ν 7→ −ν − 1. By (2.3), LIII
12,k = LIII

9,k on D+
k .

Entries 13, 14, 15, 16 in Olbricht’s list use the argument

w16 =
2
√
x2 − 1√

x2 − 1− x
.

Again purely imaginary x are mapped to the branch cut [1,∞) of the hypergeometric function.
Olbricht has

LIII
13,k(x) := (2yk)

µ(x− yk)ν−µ2F1

(
µ− ν, µ+

1

2
; 1 + 2µ;

2yk
yk − x

)
,

LIII
14,k(x) := (2yk)

−µ(x− yk)µ+ν
2F1

(
−ν − µ, 1

2
− µ; 1− 2µ;

2yk
yk − x

)
,

LIII
15 (x) := (2yk)

−µ(x− yk)−1+µ−ν
2F1

(
ν − µ+ 1,

1

2
− µ; 1− 2µ;

2yk
yk − x

)
,

LIII
16 (x) := (2yk)

µ(x− yk)−1−µ−ν
2F1

(
ν + µ+ 1, µ+

1

2
; 1 + 2µ;

2yk
yk − x

)
.

Using (2.4) these functions can be reduced to Entries 9, 10, 11, 12 as follows

LIII
j,k = LIII

j−4,k for j = 13, 14, 15, 16.

Entries 17 to 24 in Olbricht’s list are

LIII
17,k(x) := (2yk)

µ(yk − x)ν−µ2F1

(
µ− ν, µ+

1

2
;
1

2
− ν;

x+ yk
x− yk

)
,
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LIII
18,k(x) := (2yk)

−µ(yk − x)µ+ν
2F1

(
−ν − µ, 1

2
− µ;

1

2
− ν;

x+ yk
x− yk

)
,

LIII
19,k(x) := (2yk)

µ(yk − x)−ν−µ−1
2F1

(
1

2
+ µ, ν + µ+ 1; ν +

3

2
;
x+ yk
x− yk

)
,

LIII
20,k(x) := (2yk)

−µ(yk − x)µ−ν−1
2F1

(
1

2
− µ, ν − µ+ 1; ν +

3

2
;
x+ yk
x− yk

)
,

LIII
21,k(x) := (2yk)

µ(x+ yk)
ν−µ

2F1

(
µ− ν, µ+

1

2
;
1

2
− ν;

x− yk
x+ yk

)
,

LIII
22,k(x) := (2yk)

−µ(x+ yk)
µ+ν

2F1

(
−ν − µ, 1

2
− µ;

1

2
− ν;

x− yk
x+ yk

)
,

LIII
23,k(x) := (2yk)

µ(x+ yk)
−1−µ−ν

2F1

(
1

2
+ µ, ν + µ+ 1; ν +

3

2
;
x− yk
x+ yk

)
,

LIII
24,k(x) := (2yk)

−µ(x+ yk)
−1+µ−ν

2F1

(
1

2
− µ, ν − µ+ 1; ν +

3

2
;
x− yk
x+ yk

)
.

Using (2.4), these functions can be reduced to Entries 1 to 8 as follows

LIII
j,k = LIII

j−16,k for j = 17, 18, . . . , 24.

B Values on the cut [1,∞) of the Gauss
hypergeometric function

The hypergeometric function has a branch cut along the ray [1,∞). Along this branch cut it

has limiting values 2F1

(
a,b
c ;x± i0

)
, x > 1, that are usually different when we approach the

branch cut from above or below. Since these limiting values play a role in this paper, we note
the following results.

Theorem B.1. Let a, b ∈ C, c ∈ C \ −N0, x ∈ (1,∞). Then

2F1

(
a, b

c
;x± i0

)
=

Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
e±iπax−a2F1

(
a, a− c+ 1

a− b+ 1
;

1

x

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

e±iπbx−b2F1

(
b, b− c+ 1

b− a+ 1
;

1

x

)
.

Proof. The connection relation [11, equation (15.8.2)] and (2.1) give

2F1

(
a, b

c
; z

)
=

Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1

(
a, a− c+ 1

a− b+ 1
;

1

z

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b2F1

(
b, b− c+ 1

b− a+ 1
;

1

z

)
.

This identity holds for all z ∈ C \ [0,∞). Setting z = x + iε, x > 1, ε ∈ R \ {0}, and letting
ε→ 0+ and ε→ 0−, we obtain the stated result. �

We note that the limiting values of the generalized hypergeometric function on the branch
cut have recently been investigated by Karp and Prilepkina [7]. Using [11, equations (15.8.3),
(15.8.4) and (15.8.5)], one may also obtain alternative representations of the limiting values
of the hypergeometric function on the branch cut.



Gauss Hypergeometric Representations of the Ferrers Function of the Second Kind 33

Theorem B.2. Let a, b ∈ C, c ∈ C \ −N0, x ∈ (1,∞). Then

2F1

(
a, b

c
;x± i0

)
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

x1−c
2F1

(
a− c+ 1, b− c+ 1

a+ b− c+ 1
; 1− x

)
+ e±iπ(a+b−c) Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(x− 1)c−a−b2F1

(
c− a, c− b
c− a− b+ 1

; 1− x
)
.

Theorem B.3. Let x ∈ (1,∞). Then

2F1

(
a, b

c
;x± i0

)
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

x−a2F1

(
a, a− c+ 1

a+ b− c+ 1
; 1− 1

x

)
+ e±iπ(a+b−c) Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(x− 1)c−a−bxa−c

× 2F1

(
1− a, c− a
c− a− b+ 1

; 1− 1

x

)
.

Theorem B.4. Let x ∈ (1,∞). Then

2F1

(
a, b

c
;x± i0

)
= e±iπaΓ(c)Γ(b− a)

Γ(b)Γ(c− a)
(x− 1)−a2F1

(
a, c− b
a− b+ 1

;
1

1− x

)
+ e±iπbΓ(c)Γ(a− b)

Γ(a)Γ(c− b)
(x− 1)b2F1

(
b, c− a
b− a+ 1

;
1

1− x

)
.
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