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Abstract. Recently Sarah Bockting-Conrad introduced the double lowering operator ψ for
a tridiagonal pair. Motivated by ψ we consider the following problem about polynomials.
Let F denote an algebraically closed field. Let x denote an indeterminate, and let F[x]
denote the algebra consisting of the polynomials in x that have all coefficients in F. Let
N denote a positive integer or ∞. Let {ai}N−1

i=0 , {bi}N−1
i=0 denote scalars in F such that∑i−1

h=0 ah 6=
∑i−1

h=0 bh for 1 ≤ i ≤ N . For 0 ≤ i ≤ N define polynomials τi, ηi ∈ F[x] by

τi =
∏i−1

h=0(x − ah) and ηi =
∏i−1

h=0(x − bh). Let V denote the subspace of F[x] spanned
by {xi}Ni=0. An element ψ ∈ End(V ) is called double lowering whenever ψτi ∈ Fτi−1 and
ψηi ∈ Fηi−1 for 0 ≤ i ≤ N , where τ−1 = 0 and η−1 = 0. We give necessary and sufficient
conditions on {ai}N−1

i=0 , {bi}N−1
i=0 for there to exist a nonzero double lowering map. There

are four families of solutions, which we describe in detail.

Key words: tridiagonal pair; q-exponential function; basic hypergeometric series; q-binomial
theorem
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1 Introduction

This paper is mainly about polynomials and special functions, but in order to motivate things
we first discuss a topic in linear algebra. The topic has to do with tridiagonal pairs [17] and
their associated double lowering operator [7, 8, 9, 10]. A reader unfamiliar with tridiagonal
pairs can safely skip to Section 2. Let V denote a vector space with finite positive dimension.
A tridiagonal pair on V is an ordered pair of linear maps A : V → V and A∗ : V → V that
satisfy the following conditions:

(i) each of A, A∗ is diagonalizable;

(ii) there exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1, 0 ≤ i ≤ d,

where V−1 = 0 and Vd+1 = 0;

(iii) there exists an ordering {V ∗i }δi=0 of the eigenspaces of A∗ such that

AV ∗i ⊆ V ∗i−1 + V ∗i + V ∗i+1, 0 ≤ i ≤ δ,

where V ∗−1 = 0 and V ∗δ+1 = 0;

(iv) there does not exist a subspace W ⊆ V such that AW ⊆ W and A∗W ⊆ W and W 6= 0
and W 6= V .

The tridiagonal pair concept originated in the theory of Q-polynomial distance-regular graphs [4,
11] where it is used to describe how the adjacency matrix is related to each dual adjacency
matrix [17, Example 1.4], [29, Section 3]. Since that origin, the tridiagonal pair concept has

mailto:terwilli@math.wisc.edu
https://doi.org/10.3842/SIGMA.2021.009


2 P. Terwilliger

found applications to all sorts of topics in special functions (orthogonal polynomials of the Askey-
scheme [3, 25, 27, 32, 33], the Askey–Wilson algebra [14, 35, 40, 42]), Lie theory (the sl2 loop
algebra [19], the tetrahedron algebra [15, 21]), statistical mechanics (the Onsager algebra [12, 16]
and q-Onsager algebra [5, 6, 23, 31, 37, 38]), and quantum groups (the equitable presentation
[1, 24, 36], the quantum affine sl2 algebra [2, 18, 20, 22], L-operators [26, 39]). For more
information about the above topics, see [28, 34] and the references therein.

Let A, A∗ denote a tridiagonal pair on V , as in the above definition. By [17, Lemma 4.5]
the integers d and δ from (ii), (iii) are equal; this common value is called the diameter of the
pair. For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote the eigenvalue of A (resp. A∗) for the eigenspace Vi
(resp. V ∗i ). By [17, Theorem 11.1] the scalars

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
are equal and independent of i for 2 ≤ i ≤ d− 1. For this constraint the solutions can be given
in closed form [17, Theorem 11.2]. The “most general” solution is called q-Racah, and will be
described shortly.

By construction the vector space V has a direct sum decomposition into the eigenspaces
{Vi}di=0 of A and the eigenspaces {V ∗i }di=0 of A∗. The vector space V has two other direct
sum decompositions of interest, called the first split decomposition {Ui}di=0 and second split

decomposition
{
U⇓i
}d
i=0

. By [17, Theorem 4.6] the first split decomposition satisfies

U0 + U1 + · · ·+ Ui = V ∗0 + V ∗1 + · · ·+ V ∗i ,

Ui + Ui+1 + · · ·+ Ud = Vi + Vi+1 + · · ·+ Vd

for 0 ≤ i ≤ d. By [17, Theorem 4.6] the second split decomposition satisfies

U⇓0 + U⇓1 + · · ·+ U⇓i = V ∗0 + V ∗1 + · · ·+ V ∗i ,

U⇓i + U⇓i+1 + · · ·+ U⇓d = V0 + V1 + · · ·+ Vd−i

for 0 ≤ i ≤ d. By [17, Theorem 4.6],

(A− θiI)Ui ⊆ Ui+1, (A∗ − θ∗i I)Ui ⊆ Ui−1,

(A− θd−iI)U⇓i ⊆ U
⇓
i+1, (A∗ − θ∗i I)U⇓i ⊆ U

⇓
i−1

for 0 ≤ i ≤ d, where U−1 = 0, Ud+1 = 0 and U⇓−1 = 0, U⇓d+1 = 0.
In [7, Sections 11 and 15] Sarah Bockting-Conrad introduces a linear map Ψ: V → V such

that

ΨUi ⊆ Ui−1, ΨU⇓i ⊆ U
⇓
i−1, 0 ≤ i ≤ d.

This map is called the double lowering operator or Bockting operator. In [7, Sections 9 and 15]
Bockting-Conrad introduces an invertible linear map ∆: V → V that commutes with Ψ and
sends Ui onto U⇓i for 0 ≤ i ≤ d. The maps Ψ and ∆ are related in the following way. For
0 ≤ i ≤ d define two polynomials

τi = (x− θ0)(x− θ1) · · · (x− θi−1), (1.1)

ηi = (x− θd)(x− θd−1) · · · (x− θd−i+1) (1.2)

in a variable x. Define the scalars

ϑi =

i−1∑
h=0

θh − θd−h
θ0 − θd

, 1 ≤ i ≤ d.
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By [7, Theorem 17.1],

∆ =
d∑
i=0

ηi(θ0)

ϑ1ϑ2 · · ·ϑi
Ψi, ∆−1 =

d∑
i=0

τi(θd)

ϑ1ϑ2 · · ·ϑi
Ψi (1.3)

provided that each of ϑ1, ϑ2, . . . , ϑd is nonzero.

Shortly we will describe Ψ and ∆ in more detail, but first we restrict to the q-Racah case. In
this case there exist nonzero scalars a, b, q such that q4 6= 1 and

θi = aqd−2i + a−1q2i−d, θ∗i = bqd−2i + b−1q2i−d

for 0 ≤ i ≤ d. Define a linear map K : V → V such that for 0 ≤ i ≤ d, Ui is an eigenspace of K
with eigenvalue qd−2i. Define a linear mapB : V → V such that for 0 ≤ i ≤ d, U⇓i is an eigenspace
of B with eigenvalue qd−2i. For notational convenience define ψ =

(
q− q−1

)(
qd− q−d

)
Ψ. By [9,

Lemma 5.3] and [8, Lemma 5.4],

B∆ = ∆K, Kψ = q2ψK, Bψ = q2ψB.

By [8, Theorem 9.8] the map ψ is equal to each of the following:

I −BK−1

q
(
aI − a−1BK−1

) , I −KB−1

q
(
a−1I − aKB−1

) ,
q
(
I −K−1B

)
aI − a−1K−1B

,
q
(
I −B−1K

)
a−1I − aB−1K

.

This result is used in [8, Theorem 9.9] to obtain

aK2 − a−1q − aq−1

q − q−1
KB − aq − a−1q−1

q − q−1
BK + a−1B2 = 0.

By (1.3) and [9, Theorem 7.2],

∆ = expq

(
a

q − q−1
ψ

)
expq−1

(
− a−1

q − q−1
ψ

)
.

Motivated by this factorization, in [9, Sections 6,7] Bockting-Conrad introduces an invertible
linear map M : V → V such that

K expq

(
a−1

q − q−1
ψ

)
= expq

(
a−1

q − q−1
ψ

)
M,

B expq

(
a

q − q−1
ψ

)
= expq

(
a

q − q−1
ψ

)
M.

By [9, Section 6],

M =
aK − a−1B
a− a−1

, Mψ = q2ψM.

By [9, Lemma 6.2], M is equal to each of(
I − a−1qψ

)−1
K, K

(
I − a−1q−1ψ

)−1
,

(I − aqψ)−1B, B
(
I − aq−1ψ

)−1
.
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By [9, Lemma 6.7],

qM−1K − q−1KM−1

q − q−1
= I,

qM−1B − q−1BM−1

q − q−1
= I.

We just listed many results about ψ, ∆, K, B, M . In the present paper, we interpret these
results in terms of polynomials. The polynomials in question are essentially (1.1), (1.2) although
we adopt a more general point of view. In the next section we will describe a problem about
polynomials, and for the rest of the paper we will describe the solution. In this description we
will encounter analogs of the above results. We hope that the above results are illuminated by
our description.

2 Definitions and first steps

We now begin our formal argument. The following assumptions and notational conventions
apply throughout the paper. Recall the natural numbers N = {0, 1, 2, . . .} and integers Z =
{0,±1,±2, . . .}. Let F denote an algebraically closed field. Every vector space discussed in
this paper is over F. Every algebra discussed in this paper is associative, over F, and has
a multiplicative identity. Let x denote an indeterminate. Let F[x] denote the algebra consisting
of the polynomials in x that have all coefficients in F. Throughout the paper we use the following
convention: the symbols N , n refer to an integer or ∞; the symbols i, j, k refer to an integer.

We now describe a problem about polynomials. Let N denote a positive integer or ∞. We
consider an ordered pair of sequences

{ai}N−1i=0 , {bi}N−1i=0 (2.1)

such that ai, bi ∈ F for 0 ≤ i ≤ N − 1. To avoid degenerate situations, we assume that

a0 + a1 + · · ·+ ai−1 6= b0 + b1 + · · ·+ bi−1, 1 ≤ i ≤ N. (2.2)

We call the ordered pair (2.1) the data. For 0 ≤ i ≤ N define polynomials τi, ηi ∈ F[x] by

τi = (x− a0)(x− a1) · · · (x− ai−1), (2.3)

ηi = (x− b0)(x− b1) · · · (x− bi−1). (2.4)

The polynomials τi, ηi are monic of degree i. For notational convenience define τ−1 = 0 and
η−1 = 0. Let V denote the subspace of F[x] spanned by {xi}Ni=0. Each of {τi}Ni=0, {ηi}Ni=0 is
a basis for V . Let End(V ) denote the algebra consisting of the F-linear maps from V to V .
Define ∆ ∈ End(V ) such that

∆τi = ηi, 0 ≤ i ≤ N. (2.5)

Note that ∆ is invertible.

Definition 2.1. An element ψ ∈ End(V ) is called double lowering (with respect to the given
data) whenever both

ψτi ∈ Fτi−1, ψηi ∈ Fηi−1

for 0 ≤ i ≤ N .

Definition 2.2. Define

L = {ψ ∈ End(V ) |ψ is double lowering}.

Note that L is a subspace of the vector space End(V ). We call L the double lowering space for
the given data.
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Definition 2.3. The data (2.1) is called double lowering whenever the double lowering space
L 6= 0.

Problem 2.4. Find necessary and sufficient conditions for the data (2.1) to be double lowering.
In this case describe L and ∆.

The above problem is solved in the present paper. The necessary and sufficient conditions
are given in Theorem 12.1. By that theorem, there are four cases. For the first three cases, L
and ∆ are described in Section 6. For the fourth case, L and ∆ are described in Section 13. We
would like to acknowledge that the above problem was previously solved by R. Vidunas under
the assumption that ai = θi and bi = θN−i for 0 ≤ i ≤ N−1, with {θi}Ni=0 mutually distinct [41].

We have some remarks. The polynomials (2.3), (2.4) satisfy

τ0 = 1, τ1 = x− a0, η0 = 1, η1 = x− b0. (2.6)

Moreover

(x− ai)τi = τi+1, (x− bi)ηi = ηi+1, 0 ≤ i ≤ N − 1. (2.7)

Lemma 2.5. Assume that ψ ∈ End(V ) is double lowering. Then ψ1 = 0. Moreover

ψτ1 = ψx = ψη1, (2.8)

and this common value is contained in F.

Proof. Apply ψ to each side of the equations in (2.6), and use Definition 2.1. �

For 0 ≤ n ≤ N define

Vn = Span
{
xi
}n
i=0
. (2.9)

We have VN = V . We have dim(Vi) = i + 1 for 0 ≤ i ≤ N , and Vi−1 ⊆ Vi for 1 ≤ i ≤ N . For
notational convenience define V−1 = 0.

Lemma 2.6. For 0 ≤ n ≤ N , each of

{τi}ni=0, {ηi}ni=0

is a basis for Vn.

Proof. Each of τi, ηi has degree i for 0 ≤ i ≤ N . �

Lemma 2.7. For ψ ∈ L and 0 ≤ i ≤ N ,

ψVi ⊆ Vi−1.

Moreover ψi+1Vi = 0.

Proof. By Definition 2.1 and Lemma 2.6. �

For T ∈ End(V ), T is called nilpotent whenever there exists a positive integer j such that
T j = 0. The map T is called locally nilpotent whenever for all v ∈ V there exists a positive
integer j such that T jv = 0. If T is nilpotent then T is locally nilpotent. For N 6= ∞, if T is
locally nilpotent then T is nilpotent.

Lemma 2.8. Each element of L is locally nilpotent. If N 6= ∞ then each element of L is
nilpotent.
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Proof. By Lemma 2.7 and the comments below it. �

Lemma 2.9. For 1 ≤ i ≤ N ,

(i) in τi the coefficient of xi−1 is

−a0 − a1 − · · · − ai−1;

(ii) in ηi the coefficient of xi−1 is

−b0 − b1 − · · · − bi−1.

Proof. Use (2.3), (2.4). �

Lemma 2.10. For 1 ≤ i ≤ N ,

(i) ηi − τi ∈ Vi−1;

(ii) in ηi − τi the coefficient of xi−1 is

a0 + a1 + · · ·+ ai−1 − b0 − b1 − · · · − bi−1.

Proof. (i) Each of τi, ηi is monic with degree i. (ii) Use Lemma 2.9. �

Definition 2.11. Define a map A : VN−1 → VN , v 7→ xv. Note that A is F-linear.

Lemma 2.12. We have

AVn−1 ⊆ Vn, 1 ≤ n ≤ N.

Proof. By (2.9). �

Lemma 2.13. For 0 ≤ i ≤ N − 1,

Aτi = aiτi + τi+1, Aηi = biηi + ηi+1.

Proof. By (2.7) and Definition 2.11. �

We mention an elementary result for later use.

Lemma 2.14. Assume that T ∈ End(V ) is locally nilpotent. Then I − T is invertible, and
(I − T )−1 =

∑N
i=0 T

i.

3 Adjusting the data

In this section we describe how the double lowering space is affected when we adjust the data
in an affine way.

Let GL2(F) denote the group of invertible 2× 2 matrices that have all entries in F.

Definition 3.1. Let G denote the subgroup of GL2(F) consisting of the matrices(
1 t
0 s

)
, 0 6= s ∈ F, t ∈ F.

The above matrix is denoted g(s, t).

Lemma 3.2. With reference to Definition 3.1,
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(i) g(s, t)g(S, T ) = g(sS, T + tS);

(ii) the inverse of g(s, t) is g
(
s−1,−s−1t

)
.

Proof. Routine matrix multiplication. �

For an algebra A, an automorphism of A is an algebra isomorphism A → A.

Lemma 3.3. The group G acts on the algebra F[x] as a group of automorphisms in the following
way: each element g(s, t) ∈ G sends x 7→ sx+ t.

Proof. This is routinely checked using Lemma 3.2. �

Recall from Definition 2.2 the double lowering space L for the data (2.1). Pick 0 6= s ∈ F and
t ∈ F. Let L′ denote the double lowering space for the data

{sai + t}N−1i=0 , {sbi + t}N−1i=0 .

Proposition 3.4. The following (i)–(iii) hold for the above scalars s, t and g = g(s, t):

(i) there exists an F-linear map L → L′, ψ 7→ g−1ψg;

(ii) there exists an F-linear map L′ → L, ζ 7→ gζg−1;

(iii) the maps in (i), (ii) above are inverses, and hence bijections.

Proof. (i) For ψ ∈ L we show that g−1ψg ∈ L′. For α ∈ F define α′ = sα + t. For 0 ≤ i ≤ N
define

τ ′i = (x− a′0)(x− a′1) · · · (x− a′i−1),
η′i = (x− b′0)(x− b′1) · · · (x− b′i−1).

For notational convenience define τ ′−1 = 0 and η′−1 = 0. Pick an integer i, 0 ≤ i ≤ N . One
checks that g sends

τ ′i 7→ siτi, η′i 7→ siηi.

By Definition 2.1, ψ sends τi (resp. ηi) to a scalar multiple of τi−1 (resp. ηi−1). By these com-
ments g−1ψg sends τ ′i (resp. η′i) to a scalar multiple of τ ′i−1 (resp. η′i−1). Therefore g−1ψg ∈ L′.
We have shown that there exists a map L → L′, ψ 7→ g−1ψg. By construction this map is
F-linear.

(ii) Similar to the proof of (i) above. (iii) By construction. �

Corollary 3.5. Pick 0 6= s ∈ F and t ∈ F. Then the data (2.1) is double lowering if and only
if the data

{sai + t}N−1i=0 , {sbi + t}N−1i=0

is double lowering.

Proof. By Definition 2.3 and Proposition 3.4. �

We have a comment.

Lemma 3.6. Referring to the data (2.1), for distinct a′0, b
′
0 ∈ F define

s =
a′0 − b′0
a0 − b0

, t =
a0b
′
0 − a′0b0
a0 − b0

.

Then s 6= 0 and

sa0 + t = a′0, sb0 + t = b′0.

Proof. Routine. �

Corollary 3.5 and Lemma 3.6 show that for double lowering data (2.1), the scalars a0 and b0
are “free”, with a0 6= b0 being the only constraint.
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4 The parameters ϑi

We continue to discuss the double lowering space L for the data (2.1). In this section we use L
to define some scalars {ϑi}Ni=0 that will play a role in our theory.

Definition 4.1. For 0 ≤ i ≤ N define

ϑi =
a0 + a1 + · · ·+ ai−1 − b0 − b1 − · · · − bi−1

a0 − b0
.

Referring to Definition 4.1, we have ϑ0 = 0 and ϑ1 = 1. By (2.2) we have

ϑi 6= 0, 1 ≤ i ≤ N.

Proposition 4.2. The following (i)–(iii) hold for ψ ∈ L and 1 ≤ i ≤ N :

(i) for the polynomial ψxi the coefficient of xi−1 is ϑiψx;

(ii) ψτi = (ϑiψx)τi−1;

(iii) ψηi = (ϑiψx)ηi−1.

Proof. We use induction on i. First assume that i = 1, and recall ϑ1 = 1. Assertion (i) is
vacuously true. Assertions (ii), (iii) hold by (2.8) and since τ0 = 1 = η0. Next assume that
i ≥ 2. By Lemma 2.7, ψxi ∈ Vi−1. Let the scalar αi be the coefficient of xi−1 in ψxi. Since
ψ ∈ L, ψτi ∈ Fτi−1. Since each of τi, τi−1 is monic,

ψτi = αiτi−1. (4.1)

Similarly,

ψηi = αiηi−1. (4.2)

We show that αi = ϑiψx. Using (4.1), (4.2) we see that

(a0 − b0)ϑi−1xi−2 (4.3)

times

αi − ϑiψx (4.4)

is equal to

ψ(ηi − τi)− (a0 − b0)ϑiψxi−1 (4.5)

minus αi times

ηi−1 − τi−1 − (a0 − b0)ϑi−1xi−2 (4.6)

plus (a0 − b0)ϑi times

ψxi−1 − (ψx)ϑi−1x
i−2. (4.7)

By Lemma 2.10 and Definition 4.1,

ηi − τi − (a0 − b0)ϑixi−1 ∈ Vi−2. (4.8)

In this inclusion, we apply ψ to each side and use Lemma 2.7 to find that (4.5) is contained
in Vi−3. In (4.8) we replace i by i− 1, to find that (4.6) is contained in Vi−3. By induction (4.7)
is contained in Vi−3. By these comments the polynomial (4.3) times the scalar (4.4) is contained
in Vi−3. Consider the factors in the polynomial (4.3). We have a0 − b0 6= 0 and ϑi−1 6= 0 and
xi−2 6∈ Vi−3. So the polynomial (4.3) is not contained in Vi−3. Consequently the scalar (4.4) is
zero, so αi = ϑiψx. The result follows from this and (4.1), (4.2). �
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Corollary 4.3. The map L → F, ψ 7→ ψx is injective.

Proof. For ψ ∈ L such that ψx = 0, we show that ψ = 0. The vector space V has a basis {τi}Ni=0.
By Definition 2.1, ψτ0 = 0. By Proposition 4.2(ii), ψτi = 0 for 1 ≤ i ≤ N . By these comments
ψ = 0. �

Corollary 4.4. Assume that L 6= 0. Then the map in Corollary 4.3 is a bijection. Moreover L
has dimension 1.

Proof. By Corollary 4.3. �

Definition 4.5. An element ψ ∈ L is called normalized whenever ψx = 1.

Lemma 4.6. The double lowering space L contains a normalized element if and only if L 6= 0;
in this case the normalized element is unique.

Proof. By Corollary 4.4 and Definition 4.5. �

Lemma 4.7. Assume that L 6= 0. Then the vector space L has a basis consisting of its normal-
ized element.

Proof. The vector space L has dimension 1, and its normalized element is nonzero. �

Lemma 4.8. For ψ ∈ End(V ) the following are equivalent:

(i) ψ ∈ L and ψ is normalized;

(ii) for 0 ≤ i ≤ N both

ψτi = ϑiτi−1, ψηi = ϑiηi−1. (4.9)

Proof. (i) ⇒ (ii) Set ψx = 1 in Proposition 4.2(ii), (iii). (ii) ⇒ (i) We have ψ ∈ L by
Definition 2.2 and (4.9). To see that ψ is normalized, set i = 1 in (4.9) and use Lemma 2.5 to
obtain ψx = 1. �

5 Describing L using ∆

We continue to discuss the double lowering space L for the data (2.1). In this section we
describe L using the map ∆ from (2.5).

Proposition 5.1. For ψ ∈ End(V ) the following (i)–(iii) are equivalent:

(i) ∆ψ = ψ∆ and

ψτi ∈ Fτi−1, 0 ≤ i ≤ N ; (5.1)

(ii) ∆ψ = ψ∆ and

ψηi ∈ Fηi−1, 0 ≤ i ≤ N ; (5.2)

(iii) ψ ∈ L.
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Proof. (i) ⇒ (ii) We show (5.2). Using (2.5),

ψηi = ψ∆τi = ∆ψτi ∈ F∆τi−1 = Fηi−1.

(ii) ⇒ (i) Similar to the proof of (i) ⇒ (ii). (i), (ii) ⇒ (iii) By Definitions 2.1, 2.2. (iii) ⇒ (i)
We have (5.1) by Definition 2.2. We show ∆ψ = ψ∆. By Lemma 4.7 we may assume that ψ is
normalized. The vector space V has a basis {τi}Ni=0. By Lemma 4.8 we have

ψτi = ϑiτi−1, ψηi = ϑiηi−1, 0 ≤ i ≤ N.

So for 0 ≤ i ≤ N ,

∆ψτi = ϑi∆τi−1 = ϑiηi−1 = ψηi = ψ∆τi.

By these comments ∆ψ = ψ∆. �

We introduce some notation. For 0 ≤ i ≤ j ≤ N define[
j
i

]
ϑ

=
ϑjϑj−1 · · ·ϑj−i+1

ϑ1ϑ2 · · ·ϑi
. (5.3)

Note that[
j
i

]
ϑ

=

[
j

j − i

]
ϑ

, 0 ≤ i ≤ j ≤ N.

Proposition 5.2. The following (i)–(iii) are equivalent:

(i) L 6= 0;

(ii) for 0 ≤ j ≤ N ,

ηj =

j∑
i=0

ηj−i(a0)

[
j
i

]
ϑ

τi; (5.4)

(iii) for 0 ≤ j ≤ N ,

τj =

j∑
i=0

τj−i(b0)

[
j
i

]
ϑ

ηi.

Assume that (i)–(iii) hold, and let ψ ∈ L be normalized. Then

∆ =
N∑
i=0

ηi(a0)

ϑ1ϑ2 · · ·ϑi
ψi, (5.5)

∆−1 =

N∑
i=0

τi(b0)

ϑ1ϑ2 · · ·ϑi
ψi. (5.6)

Proof. (i) ⇒ (ii) Let j be given. There exist scalars {αi}ji=0 in F such that

ηj =

j∑
i=0

αiτi. (5.7)
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For 0 ≤ i ≤ j we show

αi = ηj−i(a0)

[
j
i

]
ϑ

. (5.8)

Let ψ ∈ L be normalized. In (5.7) we apply ψi to each side, and evaluate the result using
Lemma 4.8. We then set x = a0, and use the fact that τ0 = 1 and τk(a0) = 0 for 1 ≤ k ≤ N .
By these comments

ηj−i(a0)ϑjϑj−1 · · ·ϑj−i+1 = αiϑ1ϑ2 · · ·ϑi.

From this equation we obtain (5.8). By (5.7), (5.8) we obtain (5.4), so (ii) holds.

(ii) ⇒ (i) Define ψ ∈ End(V ) such that ψτi = ϑiτi−1 for 0 ≤ i ≤ N . We have ψ 6= 0 since
N ≥ 1 and ϑ1 = 1, τ0 = 1. We show ψ ∈ L. To do this, it is convenient to first show that ψ
satisfies (5.5). To obtain (5.5), for 0 ≤ j ≤ N we apply each side of (5.5) to τj . Concerning the
left-hand side of (5.5), we have ∆τj = ηj by (2.5). Concerning the right-hand side of (5.5),

j∑
i=0

ηi(a0)

ϑ1ϑ2 · · ·ϑi
ψiτj =

j∑
i=0

ηi(a0)ϑjϑj−1 · · ·ϑj−i+1

ϑ1ϑ2 · · ·ϑi
τj−i =

j∑
i=0

ηi(a0)

[
j
i

]
ϑ

τj−i

=

j∑
i=0

ηj−i(a0)

[
j
i

]
ϑ

τi = ηj .

We have shown that each side of (5.5) sends τj 7→ ηj for 0 ≤ j ≤ N . Therefore (5.5) holds.
By (5.5), ∆ is a polynomial in ψ. Consequently ψ∆ = ∆ψ. The map ψ satisfies Proposi-
tion 5.1(i), so ψ ∈ L by Proposition 5.1(i), (iii). Therefore L 6= 0.

(i) ⇔ (iii) Interchange the roles of {ai}N−1i=0 , {bi}N−1i=0 in the proof of (i) ⇔ (ii).

Now assume that (i)–(iii) hold. We saw in the proof of (ii) ⇒ (i) that (5.5) holds. Inter-
changing the roles of {ai}N−1i=0 , {bi}N−1i=0 in that proof, we see that (5.6) holds. �

Later in the paper, we will obtain necessary and sufficient conditions for the data (2.1) to
satisfy conditions (i)–(iii) in Proposition 5.2; our result is Theorem 12.1. In order to motivate
this result, we look at some examples of double lowering data. This will be done in the next
section.

6 First examples of double lowering data

We continue to discuss the double lowering space L for the data (2.1). In this section we give
three assumptions under which this data is double lowering. Under each assumption we describe
the polynomials {τi}N−1i=0 , {ηi}N−1i=0 from (2.3), (2.4), the parameters {ϑi}Ni=0 from Definition 4.1,
and the map ∆ from (2.5).

As a warmup, we examine the condition (5.4) for some small values of j.

Lemma 6.1. The following (i)–(iv) hold.

(i) η0 = τ0.

(ii) η1 = η1(a0)τ0 + τ1.

(iii) For N ≥ 2,

η2 = η2(a0)τ0 + ϑ2η1(a0)τ1 + τ2.
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(iv) For N ≥ 3,

η3 = η3(a0)τ0 + ϑ3η2(a0)τ1 + ϑ3η1(a0)τ2 + τ3 + (x− a0)ε,

where

ε = (b0 − a1)(b2 − a1)− (a0 − b1)(a2 − b1).

Proof. To verify these equations, evaluate the terms using (2.3), (2.4) and Definition 4.1. �

Lemma 6.2. Assume that N ≤ 2. Then L 6= 0.

Proof. By Proposition 5.2(i), (ii) and Lemma 6.1. �

Lemma 6.3. Assume that N = 3. Then L 6= 0 if and only if

(a0 − b1)(a2 − b1) = (b0 − a1)(b2 − a1).

Proof. By Proposition 5.2(i),(ii) and Lemma 6.1. �

Lemma 6.4. Assume that ai−1 = bi for 1 ≤ i ≤ N − 1. Then the following (i)–(v) hold:

(i) L 6= 0;

(ii) ηi = (x− b0)τi−1 for 1 ≤ i ≤ N ;

(iii) ηi(a0) = 0 for 2 ≤ i ≤ N ;

(iv) ϑi = ai−1−b0
a0−b0 for 1 ≤ i ≤ N ;

(v) ∆ = I + (a0 − b0)ψ, where ψ ∈ L is normalized.

Proof. (ii) By (2.3), (2.4). (iii) By (ii) and since τj(a0) = 0 for 1 ≤ j ≤ N . (iv) Use
Definition 4.1. (i) Apply Proposition 5.2(i), (ii). (v) By (5.5) and (iii) above. �

Lemma 6.5. Assume that ai = bi−1 for 1 ≤ i ≤ N − 1. Then the following (i)–(v) hold:

(i) L 6= 0;

(ii) τi = (x− a0)ηi−1 for 1 ≤ i ≤ N ;

(iii) τi(b0) = 0 for 2 ≤ i ≤ N ;

(iv) ϑi =
a0 − bi−1
a0 − b0

for 1 ≤ i ≤ N ;

(v) ∆−1 = I + (b0 − a0)ψ, where ψ ∈ L is normalized.

Proof. Interchange the roles of {ai}N−1i=0 , {bi}N−1i=0 in Lemma 6.4. �

For the rest of this section, assume that N ≥ 2. Also for the rest of this section, fix θ ∈ F
and assume

a0 6= θ, b0 6= θ; (6.1)

ai = θ, bi = θ, 1 ≤ i ≤ N − 2; (6.2)

θ − aN−1
θ − b0

=
θ − bN−1
θ − a0

if N 6=∞. (6.3)

Using Definition 4.1,

ϑi = 1, 1 ≤ i ≤ N − 1
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and for N 6=∞,

aN−1 = b0 + ϑN (θ − b0), bN−1 = a0 + ϑN (θ − a0).

Using (5.3),[
j
i

]
ϑ

= 1, 0 ≤ i ≤ j ≤ N − 1

and for N 6=∞,[
N
i

]
ϑ

= ϑN , 1 ≤ i ≤ N − 1.

For 0 ≤ i ≤ N the polynomials τi, ηi are described in the table below:

i τi ηi
0 1 1

1 ≤ i ≤ N − 1 (x− a0)(x− θ)i−1 (x− b0)(x− θ)i−1
N (x− a0)(x− θ)N−2(x− aN−1) (x− b0)(x− θ)N−2(x− bN−1)

For 1 ≤ i ≤ N the values of ηi − τi and ηi(a0) are described in the table below:

i ηi − τi ηi(a0)

1 ≤ i ≤ N − 1 (a0 − b0)(x− θ)i−1 (a0 − b0)(a0 − θ)i−1
N ϑN (a0 − b0)(x− θ)N−1 ϑN (a0 − b0)(a0 − θ)N−1

Lemma 6.6. Under assumptions (6.1)–(6.3) the following (i)–(iii) hold:

(i) L 6= 0;

(ii) ∆ = I+(θ−b0)ψ
I+(θ−a0)ψ ;

(iii) ∆−1 = I+(θ−a0)ψ
I+(θ−b0)ψ .

In the above lines ψ ∈ L is normalized.

Proof. (i) We invoke Proposition 5.2(i), (ii). For 0 ≤ j ≤ N we verify (5.4). We may assume
that 2 ≤ j ≤ N ; otherwise we are done by Lemma 6.1. For N 6= ∞ we separate the cases
2 ≤ j ≤ N − 1 and j = N . It suffices to show that

ηj = τj + ηj(a0) +

j−1∑
i=1

ηj−i(a0)τi, 2 ≤ j ≤ N − 1, (6.4)

ηN = τN + ηN (a0) + ϑN

N−1∑
i=1

ηN−i(a0)τi, if N 6=∞. (6.5)

For 2 ≤ j ≤ N the values of ηj−τj and ηj(a0) are given in the table above the lemma statement.
Also for 2 ≤ j ≤ N ,

j−1∑
i=1

ηj−i(a0)τi = (a0 − b0)(x− a0)
j−1∑
i=1

(a0 − θ)j−i−1(x− θ)i−1

= (a0 − b0)(x− a0)(a0 − θ)j−2
j−2∑
k=0

(
x− θ
a0 − θ

)k
= (a0 − b0)(x− θ)j−1 − (a0 − b0)(a0 − θ)j−1.

Using the above comments we routinely verify (6.4), (6.5).
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(ii) We will verify the equation by showing that the two sides agree on Vj for 2 ≤ j ≤ N .
Using (5.5) and ψj+1Vj = 0 we see that on Vj ,

∆− I =

j∑
i=1

ηi(a0)

ϑ1ϑ2 · · ·ϑi
ψi =

ηj(a0)

ϑj
ψj +

j−1∑
i=1

ηi(a0)ψ
i = (a0 − b0)ψ

j−1∑
k=0

(a0 − θ)kψk

= (a0 − b0)ψ
I − (a0 − θ)jψj

I − (a0 − θ)ψ
=

(a0 − b0)ψ
I − (a0 − θ)ψ

.

The result follows. (iii) By (ii) above. �

We just gave some examples of double lowering data. There is another example that is
somewhat more involved; it will be described later in the paper.

7 Extending the data

Throughout this section, we assume that N is an integer at least 2. Recall the data {ai}N−1i=0 ,
{bi}N−1i=0 from (2.1), and assume that this data is double lowering. Let aN , bN ∈ F satisfy

a0 + a1 + · · ·+ aN 6= b0 + b1 + · · ·+ bN ,

giving data

{ai}Ni=0, {bi}Ni=0. (7.1)

In this section we obtain necessary and sufficient conditions on aN , bN for the data (7.1) to be
double lowering. By (2.7),

τN+1 = (x− aN )τN , ηN+1 = (x− bN )ηN .

Lemma 7.1. The following (i)–(iii) are equivalent:

(i) the data (7.1) is double lowering;

(ii) we have

ηN+1 =

N+1∑
i=0

ηN−i+1(a0)

[
N + 1
i

]
ϑ

τi; (7.2)

(iii) we have

τN+1 =
N+1∑
i=0

τN−i+1(b0)

[
N + 1
i

]
ϑ

ηi.

Proof. By Proposition 5.2. �

Lemma 7.2. We have

ηN+1 =

N∑
i=0

ηN−i(a0)

[
N
i

]
ϑ

(ai − bN )τi +

N+1∑
i=1

ηN−i+1(a0)

[
N
i− 1

]
ϑ

τi, (7.3)

τN+1 =

N∑
i=0

τN−i(b0)

[
N
i

]
ϑ

(bi − aN )ηi +

N+1∑
i=1

τN−i+1(b0)

[
N
i− 1

]
ϑ

ηi. (7.4)
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Proof. We show (7.3). Using Proposition 5.2,

ηN+1 = (x− bN )ηN = (x− bN )
N∑
i=0

ηN−i(a0)

[
N
i

]
ϑ

τi

=

N∑
i=0

ηN−i(a0)

[
N
i

]
ϑ

(
(ai − bN )τi + τi+1

)
=

N∑
i=0

ηN−i(a0)

[
N
i

]
ϑ

(ai − bN )τi +

N+1∑
i=1

ηN−i+1(a0)

[
N
i− 1

]
ϑ

τi.

Line (7.4) is similarly obtained. �

Proposition 7.3. The following (i)–(iii) are equivalent:

(i) the data (7.1) is double lowering;

(ii) for 0 ≤ i ≤ N − 1 such that ηi(a0) 6= 0,

(a0 + · · ·+ ai − b0 − · · · − bi)(aN−i − bN )

= (a0 − bi)(aN−i + · · ·+ aN − bN−i − · · · − bN );

(iii) for 0 ≤ i ≤ N − 1 such that τi(b0) 6= 0,

(b0 + · · ·+ bi − a0 − · · · − ai)(bN−i − aN )

= (b0 − ai)(bN−i + · · ·+ bN − aN−i − · · · − aN ).

Proof. (i)⇔ (ii) We invoke Lemma 7.1(i), (ii). Subtract (7.2) from (7.3) to obtain an equation
0 =

∑N
i=1 diτi where

di = ηN−i(a0)

[
N
i

]
ϑ

(ai − bN ) + ηN−i+1(a0)

[
N
i− 1

]
ϑ

− ηN−i+1(a0)

[
N + 1
i

]
ϑ

(7.5)

for 1 ≤ i ≤ N . Note that (7.2) holds iff 0 =
∑N

i=1 diτi iff di = 0 for 1 ≤ i ≤ N . For 1 ≤ i ≤ N
we simplify (7.5) using

ηN−i+1(a0) = ηN−i(a0)(a0 − bN−i)

and [
N
i− 1

]
ϑ

=

[
N
i

]
ϑ

ϑi
ϑN−i+1

,

[
N + 1
i

]
ϑ

=

[
N
i

]
ϑ

ϑN+1

ϑN−i+1
.

We find that di is equal to

ηN−i(a0)

ϑN−i+1

[
N
i

]
ϑ

times

(ai − bN )ϑN−i+1 + (a0 − bN−i)(ϑi − ϑN+1)

for 1 ≤ i ≤ N . Therefore, (7.2) holds if and only if

ηN−i(a0) = 0 or (ai − bN )ϑN−i+1 = (a0 − bN−i)(ϑN+1 − ϑi)

for 1 ≤ i ≤ N . Replacing i by N − i, we see that (7.2) holds if and only if

ηi(a0) = 0 or (aN−i − bN )ϑi+1 = (a0 − bi)(ϑN+1 − ϑN−i)

for 0 ≤ i ≤ N − 1. The result follows in view of Definition 4.1.
(i) ⇔ (iii) Similar to the proof of (i) ⇔ (ii). �
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Our next general goal is to solve the equations in Proposition 7.3(ii), (iii). The main solution
will involve a type of sequence, said to be recurrent.

8 Recurrent sequences

Throughout this section let n denote an integer at least 2, or∞. let {ai}ni=0 denote scalars in F.

Definition 8.1 (see [30, Definition 8.2]). Let β, γ, % denote scalars in F.

(i) The sequence {ai}ni=0 is said to be (β, γ, %)-recurrent whenever

a2i−1 − βai−1ai + a2i − γ(ai−1 + ai) = % (8.1)

for 1 ≤ i ≤ n.

(ii) The sequence {ai}ni=0 is said to be (β, γ)-recurrent whenever

ai−1 − βai + ai+1 = γ (8.2)

for 1 ≤ i ≤ n− 1.

(iii) The sequence {ai}ni=0 is said to be β-recurrent whenever

ai−2 − (β + 1)ai−1 + (β + 1)ai − ai+1 (8.3)

is zero for 2 ≤ i ≤ n− 1.

(iv) The sequence {ai}ni=0 is said to be recurrent whenever there exists β ∈ F such that {ai}ni=0

is β-recurrent.

Lemma 8.2. The following are equivalent:

(i) the sequence {ai}ni=0 is recurrent;

(ii) there exists β ∈ F such that {ai}ni=0 is β-recurrent.

Proof. By Definition 8.1. �

Lemma 8.3. For β ∈ F the following are equivalent:

(i) the sequence {ai}ni=0 is β-recurrent;

(ii) there exists γ ∈ F such that {ai}ni=0 is (β, γ)-recurrent.

Proof. (i) ⇒ (ii) For 2 ≤ i ≤ n− 1, the expression (8.3) is zero by assumption, so

ai−2 − βai−1 + ai = ai−1 − βai + ai+1.

The left-hand side of (8.2) is independent of i, and the result follows.
(ii)⇒ (i) For 2 ≤ i ≤ n−1, subtract the equation (8.2) at i from the corresponding equation

obtained by replacing i by i− 1, to find (8.3) is zero. �

Lemma 8.4. The following (i), (ii) hold for all β, γ ∈ F.

(i) Suppose {ai}ni=0 is (β, γ)-recurrent. Then there exists % ∈ F such that {ai}ni=0 is (β, γ, %)-
recurrent.

(ii) Suppose {ai}ni=0 is (β, γ, %)-recurrent, and that ai−1 6= ai+1 for 1 ≤ i ≤ n−1. Then {ai}ni=0

is (β, γ)-recurrent.
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Proof. Let pi denote the expression on the left in (8.1), and observe

pi − pi+1 = (ai−1 − ai+1)(ai−1 − βai + ai+1 − γ)

for 1 ≤ i ≤ n− 1. Assertions (i), (ii) are both routine consequences of this. �

Definition 8.5. Assume that {ai}ni=0 is recurrent. By a parameter triple for {ai}ni=0 we mean
a 3-tuple β, γ, % of scalars in F such that {ai}ni=0 is (β, γ)-recurrent and (β, γ, %)-recurrent.

Note that a recurrent sequence has at least one parameter triple.

9 Recurrent sequences in closed form

In this section, we describe the recurrent sequences in closed form. Let n denote an integer at
least 2, or ∞.

Lemma 9.1 (see [30, Lemma 9.2]). The recurrent sequences {ai}ni=0 are described in the table
below:

case ai comments

I α1 + α2q
i + α3q

−i q 6∈ {0, 1,−1}
II α1 + α2i+ α3

(
i
2

)
III α1 + α2(−1)i + α3i(−1)i char(F) 6= 2

In the above table q, α1, α2, α3 are scalars in F.

Lemma 9.2. The following scalars β, γ, % give a parameter triple for the recurrent sequence
{ai}ni=0 in Lemma 9.1.

Case I:

β = q + q−1, γ = −α1(q − 1)2q−1, % = α2
1(q − 1)2q−1 − α2α3

(
q − q−1

)2
.

Case II:

β = 2, γ = α3, % = α2
2 − α2α3 − 2α1α3.

Case III:

β = −2, γ = 4α1, % = α2
3 − 4α2

1.

Proof. This is routinely checked using Definition 8.5. �

Lemma 9.3. Referring to Lemma 9.1, for 0 ≤ i ≤ n+ 1 the sum a0 + a1 + · · ·+ ai−1 is given
in the table below:

case a0 + a1 + · · ·+ ai−1

I α1i+ α2
1−qi
1−q + α3

1−q−i

1−q−1

II α1i+ α2

(
i
2

)
+ α3

(
i
3

)
III, i even α1i− α3i/2
III, i odd α1i+ α2 + α3(i− 1)/2

Proof. Use induction on i. �

Note 9.4. Referring to Case III of the above table, the subcases i even and i odd can be handled
in the following uniform way. For 0 ≤ i ≤ n+ 1,

a0 + a1 + · · ·+ ai−1 =
2α2 − α3 + 4α1i+ (α3 − 2α2)(−1)i − 2α3i(−1)i

4
.
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10 Twin recurrent sequences

Let n denote an integer at least 2, or ∞. Let {ai}ni=0, {bi}ni=0 denote scalars in F.

Definition 10.1. Assume that the sequences {ai}ni=0, {bi}ni=0 are recurrent. These sequences
are called twins whenever they have a parameter triple in common.

Lemma 10.2. Assume that the sequences {ai}ni=0, {bi}ni=0 are recurrent. These sequences are
twins if and only if they are related in the following way:

Case I:

ai = α1 + α2q
i + α3q

−i, bi = α1 + α′2q
i + α′3q

−i, α′2α
′
3 = α2α3.

Case II:

ai = α1 + α2i+ α3

(
i

2

)
, bi = α′1 + α′2i+ α3

(
i

2

)
,

(α2 − α′2)(α2 + α′2 − α3) = 2(α1 − α′1)α3.

Case III:

ai = α1 + α2(−1)i + α3i(−1)i, bi = α1 + α′2(−1)i + α′3i(−1)i,

α′3 = α3 or α′3 = −α3.

Proof. First assume that the sequences {ai}ni=0, {bi}ni=0 are related in the specified way. Then
these sequences share the parameter triple β, γ, % from Lemma 9.2. Therefore these sequences are
twins. Next assume that the sequences {ai}ni=0, {bi}ni=0 are twins. It follows from Definition 8.1
and Lemma 9.1 that they are related in the specified way. �

11 A characterization of twin recurrent sequences

In this section we explain what twin recurrent sequences have to do with the equations in
Proposition 7.3. Let n denote an integer at least 2, or ∞. Let {ai}ni=0, {bi}ni=0 denote scalars
in F.

Definition 11.1. For 0 ≤ i ≤ j ≤ n let E(i, j) denote the equation

(a0 + · · ·+ ai − b0 − · · · − bi)(aj−i − bj) = (a0 − bi)(aj−i + · · ·+ aj − bj−i − · · · − bj).

Lemma 11.2. The equations E(0, j) and E(j, j) hold for 0 ≤ j ≤ n.

Proof. This is routinely checked. �

Proposition 11.3. Assume that the sequences {ai}ni=0, {bi}ni=0 are recurrent and twins. Then
E(i, j) holds for 0 ≤ i ≤ j ≤ n.

Proof. This is routinely verified for each Case I–III in Lemma 10.2. To carry out the verifica-
tion, use the formulas in Lemma 9.3. �

In the next two lemmas, we give some additional solutions for the equations E(i, j) in Defi-
nition 11.1.

Lemma 11.4. Assume that ai = bi−1 for 1 ≤ i ≤ n. Then E(i, j) holds for 0 ≤ i ≤ j ≤ n.

Proof. For 0 ≤ i ≤ j ≤ n, each side of E(i, j) is equal to (a0 − bi)(aj−i − bj). �
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Lemma 11.5. Pick θ ∈ F and assume

ai = θ, bi = θ, 1 ≤ i ≤ n− 1,

(θ − a0)(θ − an) = (θ − b0)(θ − bn) if n 6=∞. (11.1)

Then E(i, j) holds for 0 ≤ i ≤ j ≤ n.

Proof. By Lemma 11.2 it suffices to verify E(i, j) for 1 ≤ i < j ≤ n. Let i, j be given. For
j < n, each side of E(i, j) is zero. For n 6=∞ and j = n, the equation E(i, j) becomes

(a0 − b0)(θ − bn) = (a0 − θ)(an − bn)

which is a reformulation of (11.1). �

Proposition 11.6. Assume that a1 6= b0 and a1 6= b1. Further assume that E(i, j) holds for
1 ≤ i ≤ 2 and i+ 1 ≤ j ≤ n. Then the sequences {ai}ni=0, {bi}ni=0 are recurrent and twins.

Proof. Using E(1, 2),

(a0 − b1)(a2 − b1) = (b0 − a1)(b2 − a1). (11.2)

Since a1 6= b1, there exists a unique pair β, γ of scalars in F such that

a0 − βa1 + a2 = γ, b0 − βb1 + b2 = γ.

Using these equations we eliminate a2, b2 in (11.2):

(a0 − b1)(γ + βa1 − a0 − b1) = (b0 − a1)(γ + βb1 − b0 − a1).

In this equation we rearrange terms to get

a20 − βa0a1 + a21 − γ(a0 + a1) = b20 − βb0b1 + b21 − γ(b0 + b1).

Let % denote this common value. We show that each of {ai}ni=0, {bi}ni=0 is (β, γ)-recurrent

and (β, γ, %)-recurrent. To do this, we show that for 2 ≤ j ≤ n, each of {ai}ji=0, {bi}
j
i=0 is

(β, γ)-recurrent and (β, γ, %)-recurrent. We will use induction on j. First assume that j = 2.
By construction {ai}2i=0 is (β, γ)-recurrent. By construction and Lemma 8.4(i), the sequence
{ai}2i=0 is (β, γ, %)-recurrent. Similarly {bi}2i=0 is (β, γ)-recurrent and (β, γ, %)-recurrent. We are
done for j = 2. Next assume that j ≥ 3. By E(1, j),

(a0 + a1 − b0 − b1)(aj−1 − bj) = (a0 − b1)(aj−1 + aj − bj−1 − bj). (11.3)

By E(2, j),

(a0 + a1 + a2 − b0 − b1 − b2)(aj−2 − bj)
= (a0 − b2)(aj−2 + aj−1 + aj − bj−2 − bj−1 − bj). (11.4)

The equations (11.3), (11.4) give a linear system in the unknowns aj , bj . For this system the
coefficient matrix is

C =

(
a0 − b1 a1 − b0
a0 − b2 a1 + a2 − b0 − b1

)
.

We have

det(C) = (a0 − b1)(a1 + a2 − b0 − b1)− (a0 − b2)(a1 − b0).
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In the above equation we simplify the right-hand side using (11.2), to obtain

det(C) = (a1 − b0)(a1 − b1).

Therefore det(C) 6= 0, so the system (11.3), (11.4) has a unique solution for aj , bj . We now

describe the solution. By induction the sequences {ai}j−1i=0 , {bi}j−1i=0 are (β, γ)-recurrent and
(β, γ, %)-recurrent. Define a′j , b

′
j such that

aj−2 − βaj−1 + a′j = γ, bj−2 − βbj−1 + b′j = γ.

Consider the two sequences

a0, a1, . . . , aj−1, a
′
j ; (11.5)

b0, b1, . . . , bj−1, b
′
j . (11.6)

By construction, each of (11.5), (11.6) is (β, γ)-recurrent. By construction and Lemma 8.4(i),
each of (11.5), (11.6) is (β, γ, %)-recurrent. We show that aj = a′j and bj = b′j . The se-
quences (11.5), (11.6) are recurrent and twins, so by Proposition 11.3 they satisfy E(1, j)
and E(2, j). Therefore, the equations (11.3), (11.4) still hold if we replace aj , bj by a′j , b

′
j .

We mentioned earlier that the system (11.3), (11.4) has a unique solution for aj , bj . By these

comments aj = a′j and bj = b′j . Consequently each of {ai}ji=0, {bi}
j
i=0 is (β, γ)-recurrent and

(β, γ, %)-recurrent. The above argument shows that each of {ai}ni=0, {bi}ni=0 is (β, γ)-recurrent
and (β, γ, %)-recurrent. �

Lemma 11.7. Assume that ai−1 = bi for 1 ≤ i ≤ n. Then the equation E(1, j) holds for
1 ≤ j ≤ n. However, in general it is not the case that E(i, j) holds for 0 ≤ i ≤ j ≤ n.

Proof. For 0 ≤ i ≤ j ≤ n the equation E(i, j) becomes

(ai − b0)(aj−i − bj) = (a0 − bi)(aj − bj−i). (11.7)

If i = 1 then each side of (11.7) is zero, so E(1, j) holds. Assume that n = 3 and

a0 = 0 = b1, a1 = 1 = b2, a2 = 0 = b3, a3 = 1, b0 = 0.

Then (11.7) fails for i = 2 and j = 3. �

12 The classification of the double lowering data

Recall the data {ai}N−1i=0 , {bi}N−1i=0 from (2.1). In this section we obtain necessary and sufficient
conditions for this data to be double lowering. In view of Lemma 6.2 we assume N ≥ 3.

Theorem 12.1. Let N denote an integer at least 3, or ∞. Let

{ai}N−1i=0 , {bi}N−1i=0 (12.1)

denote scalars in F such that

a0 + a1 + · · ·+ ai−1 6= b0 + b1 + · · ·+ bi−1, 1 ≤ i ≤ N. (12.2)

Then the data (12.1) is double lowering if and only if at least one of the following (i)–(iv) holds:

(i) ai−1 = bi for 1 ≤ i ≤ N − 1;

(ii) ai = bi−1 for 1 ≤ i ≤ N − 1;
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(iii) there exists θ ∈ F such that

a0 6= θ, b0 6= θ, ai = θ, bi = θ, 1 ≤ i ≤ N − 2,

θ − aN−1
θ − b0

=
θ − bN−1
θ − a0

if N 6=∞.

(iv) the sequences (12.1) are recurrent and twins.

Proof. First assume that at least one of (i)–(iii) holds. Then (12.1) is double lowering, by
Lemmas 6.4, 6.5, 6.6. Next assume that (iv) holds and N 6= ∞. By Proposition 11.3 (with
n = N − 1) the equations E(i, j) hold for 0 ≤ i ≤ j ≤ N − 1. We delete aN−1, bN−1 from (12.1)
and consider the data

{ai}N−2i=0 , {bi}N−2i=0 . (12.3)

By Lemma 6.2 and induction onN , we may assume that the sequences (12.3) are double lowering.
By Proposition 7.3(i), (ii) (with N replaced by N − 1) we find that (12.1) is double lowering.
Next assume that (iv) holds and N = ∞. Then for all integers j ≥ 2 the sequences {ai}ji=0,

{bi}ji=0 are recurrent and twins. Consequently the data {ai}ji=0, {bi}
j
i=0 is double lowering.

Therefore the data {ai}∞i=0, {bi}∞i=0 is double lowering. We are done in one direction.
We now reverse the direction. Next assume that (12.1) is double lowering. We break the

argument into cases.
Case a0 = b1. We show that (i) holds. We have ηi(a0) 6= 0 for 0 ≤ i ≤ 1. By assumption the

data (12.1) is double lowering, so the data {ai}ji=0, {bi}
j
i=0 is double lowering for 1 ≤ j ≤ N −1.

Applying Proposition 7.3(i), (ii) repeatedly (with N replaced by 2, 3, . . . , N − 1) we find that
E(1, j) holds for 2 ≤ j ≤ N − 1. Using these equations and (12.2) we routinely obtain aj−1 = bj
for 2 ≤ j ≤ N − 1. This and a0 = b1 implies (i).

Case a1 = b0. Interchanging the roles of {ai}N−1i=0 , {bi}N−1i=0 in the previous case, we find that
(ii) holds.

Case a0 6= b1, a1 6= b0, a1 = b1. We show that (iii) holds. Define θ = a1 = b1, and note
that a0 6= θ, b0 6= θ. We have ηi(a0) 6= 0 for 0 ≤ i ≤ 2. By assumption the data (12.1) is
double lowering, so the data {ai}ji=0, {bi}

j
i=0 is double lowering for 1 ≤ j ≤ N − 1. Applying

Proposition 7.3(i), (ii) repeatedly (with N replaced by 2, 3, . . . , N −1) we find that E(i, j) holds
for 1 ≤ i ≤ 2 and i+ 1 ≤ j ≤ N − 1. Next we show that ak = bk = θ for 2 ≤ k ≤ N − 2. We will
use induction on k. Assume N ≥ 4; otherwise there is nothing to prove. Using E(1, 2), E(1, 3)
and a0 6= b1 we obtain

a2 = b2ζ + θ(1− ζ), (12.4)

a3 = b3ζ + b2
(
1− ζ2

)
− θζ(1− ζ), (12.5)

where

ζ =
b0 − θ
a0 − θ

. (12.6)

In the equation E(2, 3) we eliminate a2, a3 using (12.4), (12.5). We evaluate the result us-
ing (12.2) (with i = 3), to obtain b2 = θ. In (12.4) we set b2 = θ to obtain a2 = θ. Next assume
that 3 ≤ k ≤ N − 2. By induction each of a2, a3, . . . , ak−1, b2, b3, . . . , bk−1 is equal to θ. Using
this we evaluate E(1, k), E(1, k + 1) to obtain

ak = bkζ + θ(1− ζ), (12.7)

ak+1 = bk+1ζ + bk
(
1− ζ2

)
− θζ(1− ζ). (12.8)
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Using (12.7), (12.8) we evaluate E(2, k + 1) to obtain bk = θ. In (12.7) we set bk = θ to obtain
ak = θ. We have shown that ak = bk = θ for 2 ≤ k ≤ N −2. Now for N 6=∞ we use E(1, N −1)
to obtain

aN−1 = bN−1ζ + θ(1− ζ).

Evaluating this using (12.6) we obtain

θ − aN−1
θ − b0

=
θ − bN−1
θ − a0

.

We have shown that (iii) holds.
Case a0 6= b1, a1 6= b0, a1 6= b1. We show that (iv) holds. Using Proposition 7.3(i), (ii) as

in the previous case, we find that E(i, j) holds for 1 ≤ i ≤ 2 and i + 1 ≤ j ≤ N − 1. Now
by Proposition 11.6 (with n = N − 1), the sequences (12.1) are recurrent and twins. We have
shown that (iv) holds. �

13 L and ∆ for twin recurrent data

Our goal for the rest of the paper is to give a comprehensive description of L and ∆ for twin
recurrent data. We will focus on Case I in Lemma 10.2, or more precisely, an adjusted version
of this case as described in Section 3.

For the rest of this paper we assume that N is an integer at least 2, or ∞. Recall the double
lowering space L for the data (2.1). For the rest of this paper, fix nonzero a, b, q ∈ F and assume

ai = aqi + a−1q−i, bi = bqi + b−1q−i (13.1)

for 0 ≤ i ≤ N − 1. By (2.2) we have a 6= b and

qi 6= 1, abqi−1 6= 1, 1 ≤ i ≤ N.

Note 13.1. The data {ai}N−1i=0 , {bi}N−1i=0 is unchanged if we replace

q 7→ q−1, a 7→ a−1, b 7→ b−1.

Lemma 13.2. The sequences (2.1) are recurrent and twins.

Proof. By Lemmas 9.1 and 10.2. �

Corollary 13.3. The data (2.1) is double lowering.

Proof. By Lemma 13.2 along with Lemma 6.2 and Theorem 12.1(iv). �

Our next general goal is to describe the polynomials {τi}N−1i=0 , {ηi}N−1i=0 from (2.3), (2.4), the
parameters {ϑi}Ni=0 from Definition 4.1, and the map ∆ from (2.5).

We mention some formulas for later use.

Lemma 13.4. For 1 ≤ i ≤ N − 1,

qai − ai−1 =
(
q − q−1

)
aqi, qbi − bi−1 =

(
q − q−1

)
bqi,

ai − ai−1 = (q − 1)
(
aqi−1 − a−1q−i

)
, bi − bi−1 = (q − 1)

(
bqi−1 − b−1q−i

)
,

ai − qai−1 =
(
1− q2

)
a−1q−i, bi − qbi−1 =

(
1− q2

)
b−1q−i.

Proof. Use (13.1). �
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Lemma 13.5. For 0 ≤ i ≤ N ,

a0 + a1 + · · ·+ ai−1 =
1− qi

1− q
(
a+ a−1q1−i

)
,

b0 + b1 + · · ·+ bi−1 =
1− qi

1− q
(
b+ b−1q1−i

)
.

Proof. Use (13.1). �

Next we describe {ϑi}Ni=0. We give two versions.

Lemma 13.6. For 0 ≤ i ≤ N ,

(i) ϑi =
1− qi

1− q
1− abqi−1

1− ab
q1−i;

(ii) ϑi =
1− q−i

1− q−1
1− a−1b−1q1−i

1− a−1b−1
qi−1.

Proof. (i) By Definition 4.1 and Lemma 13.5. (ii) By Note 13.1 and (i) above. �

We mention some formulas for later use.

Lemma 13.7. For 0 ≤ i ≤ N − 1,

qϑi+1 − ϑi =
q + ab− (q + 1)abqi

1− ab
,

ϑi+1 − ϑi =
q−i − abqi

1− ab
,

ϑi+1 − qϑi =
(1 + q)q−i − q − ab

1− ab
.

Proof. Use Lemma 13.6. �

We recall some notation. For an element α in any algebra, define

(α; q)i = (1− α)(1− αq) · · ·
(
1− αqi−1

)
, i ∈ N.

We interpret (α; q)0 = 1. We remark that for j ≥ i ≥ 0,(
q−j ; q

)
i
(q; q)j−i = (−1)i(q; q)jq

(i
2)q−ij . (13.2)

Lemma 13.8. For 0 ≤ i ≤ N ,

ϑ1ϑ2 · · ·ϑi =
(q; q)i(ab; q)iq

−(i
2)

(1− q)i(1− ab)i
. (13.3)

For 0 ≤ i ≤ j ≤ N ,

ϑjϑj−1 · · ·ϑj−i+1 =

(
q−j ; q

)
i

(
a−1b−1q1−j ; q

)
i
qi(j−i)q(

i
2)(

1− q−1
)i(

1− a−1b−1
)i . (13.4)

Proof. To obtain (13.3), use Lemma 13.6(i). To obtain (13.4), use Lemma 13.6(ii). �

Lemma 13.9. For 0 ≤ i ≤ j ≤ N ,[
j
i

]
ϑ

=

(
q−j ; q

)
i

(
a−1b−1q1−j ; q

)
i
qijaibi

(q; q)i(ab; q)i
.
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Proof. Evaluate (5.3) using Lemma 13.8. �

We comment on the notation. Let y denote an indeterminate. Let F
[
y, y−1

]
denote the

algebra consisting of the Laurent polynomials in y that have all coefficients in F. This algebra has
an automorphism that sends y 7→ y−1. An element of F

[
y, y−1

]
that is fixed by the automorphism

is called symmetric. The symmetric elements form a subalgebra of F
[
y, y−1

]
called its symmetric

part. There exists an injective algebra homomorphism ι : F[x] → F
[
y, y−1

]
that sends x 7→

y + y−1. The image of F[x] under ι is the symmetric part of F[y, y−1]. Via ι we identify F[x]
with the symmetric part of F[y, y−1].

Lemma 13.10. For 0 ≤ i ≤ N ,

(i) τi = (−1)ia−iq−(i
2)(ay; q)i

(
ay−1; q

)
i
;

(ii) ηi = (−1)ib−iq−(i
2)(by; q)i

(
by−1; q

)
i
.

In the above lines x = y + y−1.

Proof. (i) We use (2.3) and (13.1). For 0 ≤ j ≤ i− 1,

x− aj = y + y−1 − aqj − a−1q−j = −a−1q−j
(
1− ayqj

)(
1− ay−1qj

)
.

The result follows. (ii) Similar to the proof of (i) above. �

Lemma 13.11. For 0 ≤ i ≤ N ,

(i) τi(b0) = (−1)ia−iq−(i
2)(ab; q)i

(
ab−1; q

)
i
;

(ii) ηi(a0) = (−1)ib−iq−(i
2)(ab; q)i

(
a−1b; q

)
i
.

Proof. (i) Set y = b in Lemma 13.10(i), and use b0 = b + b−1. (ii) Similar to the proof of (i)
above. �

Our data is double lowering, so L 6= 0. For the rest of the paper, let ψ ∈ L be normalized.
The maps ∆, ψ are related by (5.5), (5.6). Our next goal is to interpret (5.5), (5.6) using the
q-exponential function. This function is defined as follows. For locally nilpotent T ∈ End(V ),

expq(T ) =
N∑
i=0

q(
i
2)(1− q)iT i

(q; q)i
. (13.5)

The map expq(T ) is invertible; its inverse is

expq−1(−T ) =

N∑
i=0

(−1)i(1− q)iT i

(q; q)i
. (13.6)

Lemma 13.12. For locally nilpotent T ∈ End(V ),(
1− (q − 1)T

)
expq(qT ) = expq(T ).

Proof. To verify this equation, for 0 ≤ i ≤ N compare the coefficient of T i on each side. �

Proposition 13.13. We have

∆ = expq
(
a−1ξψ

)
expq−1

(
−b−1ξψ

)
, (13.7)

where ξ = 1− ab.
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Proof. For 0 ≤ j ≤ N we compare the coefficient of ψj on each side of (13.7). For the left-hand
side these coefficients are obtained from (5.5). We require

ηj(a0)

ϑ1ϑ2 · · ·ϑj
=

j∑
i=0

q(
i
2)a−i(1− q)iξi

(q; q)i

(−1)j−ibi−j(1− q)j−iξj−i

(q; q)j−i
. (13.8)

By (13.3) and the construction,

ϑ1ϑ2 · · ·ϑj = (q; q)j(ab; q)jq
−(j2)(1− q)−jξ−j .

By Lemma 13.11(ii),

ηj(a0) = (−1)jb−jq−(j2)(ab; q)j
(
a−1b; q

)
j
.

Using these comments and (13.2), the equation (13.8) becomes

(
zq−j ; q

)
j

=

j∑
i=0

(
q−j ; q

)
i
zi

(q; q)i
, (13.9)

where z = a−1bqj . Basic hypergeometric series are discussed in [13, 25]. In (13.9) the sum on
the right is the basic hypergeometric series

1φ0

(
q−j

−

∣∣∣∣ q; z) .
This observation reveals that (13.9) is an instance of the q-binomial theorem [13, Section 1.3].
The result follows. �

Proposition 13.13 gives a factorization of ∆. We now investigate the factors.

Lemma 13.14. For 0 ≤ i ≤ N ,

expq−1

(
−a−1ξψ

)
ηi = expq−1

(
−b−1ξψ

)
τi, (13.10)

expq
(
b−1ξψ

)
ηi = expq

(
a−1ξψ

)
τi, (13.11)

where ξ = 1− ab.

Proof. By (13.7) and the comments above Lemma 13.12,

expq−1

(
−a−1ξψ

)
∆ = expq−1

(
−b−1ξψ

)
. (13.12)

To obtain (13.10), apply each side of (13.12) to τi and evaluate the result using (2.5). For the
equation (13.7), the two factors on the right commute; swapping these factors and proceeding
as above,

expq
(
b−1ξψ

)
∆ = expq

(
a−1ξψ

)
. (13.13)

To obtain (13.11), apply each side of (13.13) to τi and evaluate the result using (2.5). �

Definition 13.15. For 0 ≤ i ≤ N let wi (resp. w′i) denote the common value of (13.10)
(resp. (13.11)). For notational convenience define w−1 = 0 and w′−1 = 0.
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Lemma 13.16. For 0 ≤ i ≤ N ,

τi = expq
(
b−1ξψ

)
wi, wi = expq−1

(
−b−1ξψ

)
τi,

ηi = expq
(
a−1ξψ

)
wi, wi = expq−1

(
−a−1ξψ

)
ηi

and

τi = expq−1

(
−a−1ξψ

)
w′i, w′i = expq

(
a−1ξψ

)
τi,

ηi = expq−1

(
−b−1ξψ

)
w′i w′i = expq

(
b−1ξψ

)
ηi.

In the above lines ξ = 1− ab.

Proof. By Definition 13.15 and the comments above Lemma 13.12. �

Note 13.17. Referring to Definition 13.15, the polynomials {w′i}Ni=0 are obtained from the
polynomials {wi}Ni=0 by replacing q 7→ q−1, a 7→ a−1, b 7→ b−1.

Example 13.18. The following (i)–(iii) hold:

(i) w0 = 1;

(ii) w1 is equal to each of

τ1 − (1− ab)b−1τ0, η1 − (1− ab)a−1η0, x− a−1 − b−1;

(iii) w2 is equal to each of

τ2 −
(
q−1 + 1

)
(1− abq)b−1τ1 + q−1(1− ab)(1− abq)b−2τ0,

η2 −
(
q−1 + 1

)
(1− abq)a−1η1 + q−1(1− ab)(1− abq)a−2η0,(

x− a−1 − b−1
)(
x− q−1a−1 − q−1b−1

)
+
(
q−1 − 1

)(
1− a−1b−1

)
.

To get w′0, w
′
1, w

′
2 replace q 7→ q−1, a 7→ a−1, b 7→ b−1 in (i)–(iii) above.

Lemma 13.19. The following (i)–(iii) hold:

(i) for 0 ≤ i ≤ N the polynomials wi, w
′
i are monic with degree i;

(ii) for 0 ≤ n ≤ N , each of {wi}ni=0, {w′i}ni=0 is a basis for the vector space Vn;

(iii) each of {wi}Ni=0, {w′i}Ni=0 is a basis for the vector space V .

Proof. (i) By (4.9) and Definition 13.15. (ii), (iii) By (i) above. �

Lemma 13.20. For 0 ≤ j ≤ N ,

w′j = a−j(ab; q)j

j∑
i=0

(
q−j ; q

)
i
(ay; q)i

(
ay−1; q

)
i
qi

(ab; q)i(q; q)i

= a−j(ab; q)j 3φ2

(
q−j , ay, ay−1

ab, 0

∣∣∣∣ q; q) ,
where x = y + y−1. To get wj from w′j, replace q 7→ q−1, a 7→ a−1, b 7→ b−1.
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Proof. In the equation w′j = expq
(
a−1ξψ

)
τj , expand the q-exponential using (13.5), and eval-

uate the result using the equation on the left in (4.9). This yields w′j =
∑j

i=0 αiτi where for
0 ≤ i ≤ j,

αi =
q(

j−i
2 )(1− q)j−iai−jξj−iϑjϑj−1 · · ·ϑi+1

(q; q)j−i
.

Evaluating this using

ϑjϑj−1 · · ·ϑi+1 =
ϑ1ϑ2 · · ·ϑj
ϑ1ϑ2 · · ·ϑi

and (13.2), (13.3) we obtain

αi =
(−1)iai−j(ab; q)j

(
q−j ; q

)
i
q(

i
2)qi

(ab; q)i(q; q)i
.

The polynomial τi is given in Lemma 13.10(i). The result follows. �

Note 13.21. The polynomials {wi}Ni=0 and {w′i}Ni=0 are in the Al-Salam/Chihara family [25,
Section 14.8] if N = ∞, and the dual q-Krawtchouk family [25, Section 14.17] if N 6= ∞. The
Al-Salam/Chihara and dual q-Krawtchouk polynomials satisfy a 3-term recurrence; the details
will be given in Lemmas 13.67 and 13.68 below.

Going forward we focus on {wi}Ni=0; similar results hold for {w′i}Ni=0.

Lemma 13.22. We have

ψwi = ϑiwi−1, 0 ≤ i ≤ N.

Proof. By Definition 13.15 and since ψτi = ϑiτi−1. �

Our next general goal is to describe in more detail how the bases {τi}Ni=0, {ηi}Ni=0, {wi}Ni=0

are related. To this end, we introduce some maps K,B,M ∈ End(V ).

Definition 13.23. Define K,B,M ∈ End(V ) such that for 0 ≤ i ≤ N ,

Kτi = q−iτi, Bηi = q−iηi, Mwi = q−iwi.

Each of K, B, M is invertible.

Lemma 13.24. The following (i)–(iii) hold:

(i) Kψ = qψK;

(ii) Bψ = qψB;

(iii) Mψ = qψM .

Proof. (i) The vectors {τi}Ni=0 form a basis for V . For 0 ≤ i ≤ N ,

Kψτi = ϑiKτi−1 = ϑiq
1−iτi−1, qψKτi = q1−iψτi = ϑiq

1−iτi−1.

Therefore Kψ = qψK. (ii), (iii) Similar to the proof of (i) above. �

Lemma 13.25. The following (i)–(iii) hold:

(i) B∆ = ∆K;
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(ii) K expq
(
b−1ξψ

)
= expq

(
b−1ξψ

)
M ;

(iii) B expq
(
a−1ξψ

)
= expq

(
a−1ξψ

)
M .

Proof. (i) For 0 ≤ i ≤ N , apply each side to τi and use (2.5) along with Definition 13.23.

(ii), (iii) For 0 ≤ i ≤ N , apply each side to wi and use Lemma 13.16 along with Defini-
tion 13.23. �

Proposition 13.26. The following (i)–(iv) hold:

(i) KM−1 = I + (q − 1)
(
a− b−1

)
ψ;

(ii) M−1K = I + (q−1 − 1)
(
b−1 − a

)
ψ;

(iii) BM−1 = I + (q − 1)
(
b− a−1

)
ψ;

(iv) M−1B = I +
(
q−1 − 1

)(
a−1 − b

)
ψ.

Proof. (i) The map T = b−1ξψ is locally nilpotent. We have KTK−1 = qT by Lemma 13.24(i),
and K expq(T ) = expq(T )M by Lemma 13.25(ii). By these comments and Lemma 13.12,

expq(T ) =
(
I − (q − 1)T

)
expq(qT ) =

(
I − (q − 1)T

)
expq

(
KTK−1

)
=
(
I − (q − 1)T

)
K expq(T )K−1 =

(
I − (q − 1)T

)
expq(T )MK−1

= expq(T )
(
I − (q − 1)T

)
MK−1.

By this and since expq(T ) is invertible,

I =
(
I − (q − 1)T

)
MK−1.

The result follows from this and ξ = 1− ab.
(ii) By (i) above and Mψ = qψM . (iii), (iv) Similar to the proof of (i), (ii) above. �

Corollary 13.27. We have

ψ =
bq

1− ab
M−1K −KM−1

(q − 1)2
, (13.14)

ψ =
aq

1− ab
M−1B −BM−1

(q − 1)2
. (13.15)

Proof. To get (13.14) use Proposition 13.26(i), (ii).

To get (13.15) use Proposition 13.26(iii), (iv). �

Proposition 13.28. We have

M =
bK − aB
b− a

.

Proof. Compute b times Proposition 13.26(i) minus a times Proposition 13.26(iii). �

Lemma 13.29. Each of the following is invertible:

aI − bB−1K, bI − aK−1B, a−1I − b−1BK−1, b−1I − a−1KB−1.

Proof. By Proposition 13.28 and since M is invertible. �

Our next goal is to describe how K, B are related. We will use the following result.
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Lemma 13.30. We have

ψM =
1

1− q
ab

1− ab
K −B
a− b

, (13.16)

Mψ =
q

1− q
ab

1− ab
K −B
a− b

. (13.17)

Proof. To get (13.16), subtract Proposition 13.26(iii) from Proposition 13.26(i). To get (13.17)
from (13.16), use Mψ = qψM . �

Proposition 13.31. We have

(bK − aB)(K −B) = q(K −B)(bK − aB).

Proof. We have Mψ = qψM so M(ψM) = q(ψM)M . Evaluate this using Proposition 13.28
and (13.16). �

We mention some reformulations of Proposition 13.31.

Corollary 13.32. We have

0 = aB2 − bq − a
q − 1

BK − aq − b
q − 1

KB + bK2

and (
bI − aK−1B

)(
I −KB−1

)
= q
(
I −K−1B

)(
aI − bKB−1

)
,(

aI − bB−1K
)(
I −KB−1

)
= q
(
I −B−1K

)(
aI − bKB−1

)
,(

aI − bB−1K
)(
I −BK−1

)
= q
(
I −B−1K

)(
bI − aBK−1

)
,(

bI − aK−1B
)(
I −BK−1

)
= q
(
I −K−1B

)(
bI − aBK−1

)
.

Proposition 13.33. We have

KB−1 =
I + (q − 1)

(
a− b−1

)
ψ

I + (q − 1)
(
b− a−1

)
ψ
, (13.18)

BK−1 =
I + (q − 1)

(
b− a−1

)
ψ

I + (q − 1)
(
a− b−1

)
ψ
, (13.19)

K−1B =
I +

(
q−1 − 1

)(
a−1 − b

)
ψ

I +
(
q−1 − 1

)(
b−1 − a

)
ψ
, (13.20)

B−1K =
I +

(
q−1 − 1

)(
b−1 − a

)
ψ

I +
(
q−1 − 1

)(
a−1 − b

)
ψ
. (13.21)

In the above fractions the denominator is invertible since ψ is locally nilpotent.

Proof. To get (13.18), equate the two expressions for M−1 obtained from Proposition 13.26(i)
and (iii). To get (13.19) from (13.18), compute the inverse of each side. To get (13.20), equate
the two expressions for M−1 obtained from Proposition 13.26(ii) and (iv). To get (13.21)
from (13.20), compute the inverse of each side. �

Lemma 13.34. The following mutually commute:

ψ, KB−1, BK−1, K−1B, B−1K.



30 P. Terwilliger

Proof. By Proposition 13.33. �

Proposition 13.35. We have

ψ =
1

q − 1

1

1− ab
I −KB−1

b−1I − a−1KB−1
,

ψ =
1

q − 1

1

1− ab
I −BK−1

a−1I − b−1BK−1
,

ψ =
1

q−1 − 1

1

1− a−1b−1
I −K−1B
bI − aK−1B

,

ψ =
1

q−1 − 1

1

1− a−1b−1
I −B−1K
aI − bB−1K

.

In the above fractions the denominator is invertible by Lemma 13.29.

Proof. In Proposition 13.33 solve for ψ. �

Proposition 13.36. We have

qM−1K −KM−1

q − 1
= I, (13.22)

qM−1B −BM−1

q − 1
= I. (13.23)

Proof. To get (13.22) use Proposition 13.26(i) and (ii). To get (13.23) use Proposition 13.26(iii)
and (iv). �

We have a comment.

Lemma 13.37. The relations in Proposition 13.31 and Corollary 13.32 still hold if we replace

q 7→ q−1, a 7→ a−1, b 7→ b−1, K 7→ K−1, B 7→ B−1.

Proof. Use Proposition 13.31 and Lemma 13.34. �

We recall some notation. Let MatN+1(F) denote the set of N + 1 by N + 1 matrices that
have all entries in F. We index the rows and columns by 0, 1, . . . , N . Let {vi}Ni=0 denote a basis
for V . For M ∈ MatN+1(F) and T ∈ End(V ), we say that M represents T with respect to
{vi}Ni=0 whenever Tvj =

∑N
i=0Mi,jvi for 0 ≤ j ≤ N .

Our next goal is to display the matrices that represent ψ, K±1, M±1, B±1 with respect to
the bases {τi}Ni=0, {wi}Ni=0, {ηi}Ni=0 of V .

Definition 13.38. Let ψ̂ denote the matrix in MatN+1(F) that has (i − 1, i)-entry ϑi for 1 ≤
i ≤ N , and all other entries 0. Thus

ψ̂ =



0 ϑ1 0
0 ϑ2

0 ·
· ·
· ϑN

0 0

 .

Lemma 13.39. The matrix ψ̂ represents ψ with respect to {τi}Ni=0 and {wi}Ni=0 and {ηi}Ni=0.
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Proof. By (4.9) and Lemma 13.22. �

Lemma 13.40. The matrix diag
(
1, q−1, q−2, . . . , q−N

)
represents K (resp. M) (resp. B) with

respect to {τi}Ni=0 (resp. {wi}Ni=0) (resp. {ηi}Ni=0).

Proof. By Definition 13.23. �

Lemma 13.41. We give the matrix in MatN+1(F) that represents K with respect to {wi}Ni=0.
The (i, i)-entry is q−i for 0 ≤ i ≤ N . The (i−1, i)-entry is

(
1−q−i

)(
a−b−1q1−i

)
for 1 ≤ i ≤ N .

All other entries are 0.

Proof. Use KM−1 = I + (q − 1)
(
a− b−1

)
ψ and Lemmas 13.6(ii), 13.39, 13.40. �

Lemma 13.42. We give the matrix in MatN+1(F) that represents B with respect to {wi}Ni=0.
The (i, i)-entry is q−i for 0 ≤ i ≤ N . The (i−1, i)-entry is

(
1−q−i

)(
b−a−1q1−i

)
for 1 ≤ i ≤ N .

All other entries are 0.

Proof. Use BM−1 = I + (q − 1)
(
b− a−1

)
ψ and Lemmas 13.6(ii), 13.39, 13.40. �

Lemma 13.43. We give the matrix in MatN+1(F) that represents M−1 with respect to {τi}Ni=0.
The (i, i)-entry is qi for 0 ≤ i ≤ N . The (i− 1, i)-entry is

(
qi − 1

)(
aqi−1 − b−1

)
for 1 ≤ i ≤ N .

All other entries are 0.

Proof. Use M−1K = I +
(
q−1 − 1

)(
b−1 − a

)
ψ and Lemmas 13.6(i), 13.39, 13.40. �

Lemma 13.44. We give the matrix in MatN+1(F) that represents M−1 with respect to {ηi}Ni=0.
The (i, i)-entry is qi for 0 ≤ i ≤ N . The (i− 1, i)-entry is

(
qi − 1

)(
bqi−1 − a−1

)
for 1 ≤ i ≤ N .

All other entries are 0.

Proof. Use M−1B = I +
(
q−1 − 1

)(
a−1 − b

)
ψ and Lemmas 13.6(i), 13.39, 13.40. �

We give a variation on Proposition 13.26.

Lemma 13.45. We have

MK−1 =

N∑
i=0

(−1)i(1− q)i(1− ab)ib−iψi, (13.24)

K−1M =
N∑
i=0

(−1)i(1− q)iq−i(1− ab)ib−iψi, (13.25)

MB−1 =
N∑
i=0

(−1)i(1− q)i(1− ab)ia−iψi, (13.26)

B−1M =

N∑
i=0

(−1)i(1− q)iq−i(1− ab)ia−iψi. (13.27)

Proof. For each equation in Proposition 13.26, take the inverse of each side and evaluate the
result using Lemma 2.14. �

Lemma 13.46. We give the matrix in MatN+1(F) that represents M with respect to {τi}Ni=0.
The (i, j)-entry is

(−1)j−ibi−j(ab; q)j(q; q)jq
(i
2)−(j2)−j

(ab; q)i(q; q)i

for 0 ≤ i ≤ j ≤ N . All other entries are 0.
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Proof. Use (13.3), (13.24) and Lemmas 13.39, 13.40. �

Lemma 13.47. We give the matrix in MatN+1(F) that represents K−1 with respect to {wi}Ni=0.
The (i, j)-entry is

(−1)j−ibi−j(ab; q)j(q; q)jq
(i
2)−(j2)+i

(ab; q)i(q; q)i

for 0 ≤ i ≤ j ≤ N . All other entries are 0.

Proof. Use (13.3), (13.25) and Lemmas 13.39, 13.40. �

Lemma 13.48. We give the matrix in MatN+1(F) that represents M with respect to {ηi}Ni=0.
The (i, j)-entry is

(−1)j−iai−j(ab; q)j(q; q)jq
(i
2)−(j2)−j

(ab; q)i(q; q)i

for 0 ≤ i ≤ j ≤ N . All other entries are 0.

Proof. Use (13.3), (13.26) and Lemmas 13.39, 13.40. �

Lemma 13.49. We give the matrix in MatN+1(F) that represents B−1 with respect to {wi}Ni=0.
The (i, j)-entry is

(−1)j−iai−j(ab; q)j(q; q)jq
(i
2)−(j2)+i

(ab; q)i(q; q)i

for 0 ≤ i ≤ j ≤ N . All other entries are 0.

Proof. Use (13.3), (13.27) and Lemmas 13.39, 13.40. �

We give a variation on Proposition 13.33.

Lemma 13.50. We have

KB−1 = I +
b− a
b

N∑
i=1

(−1)i(1− q)i(1− ab)ia−iψi, (13.28)

BK−1 = I +
a− b
a

N∑
i=1

(−1)i(1− q)i(1− ab)ib−iψi, (13.29)

K−1B = I +
a− b
a

N∑
i=1

(−1)i(1− q)iq−i(1− ab)ib−iψi, (13.30)

B−1K = I +
b− a
b

N∑
i=1

(−1)i(1− q)iq−i(1− ab)ia−iψi. (13.31)

Proof. Evaluate each equation in Proposition 13.33 using Lemma 2.14. �

Lemma 13.51. We give the matrix in MatN+1(F) that represents K with respect to {ηi}Ni=0.
The (i, i)-entry is q−i for 0 ≤ i ≤ N . The (i, j)-entry is

b− a
b

(−1)j−iai−j(ab; q)j(q; q)jq
(i
2)−(j2)−j

(ab; q)i(q; q)i

for 0 ≤ i < j ≤ N . All other entries are 0.
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Proof. Use (13.3), (13.28) and Lemmas 13.39, 13.40. �

Lemma 13.52. We give the matrix in MatN+1(F) that represents B with respect to {τi}Ni=0.
The (i, i)-entry is q−i for 0 ≤ i ≤ N . The (i, j)-entry is

a− b
a

(−1)j−ibi−j(ab; q)j(q; q)jq
(i
2)−(j2)−j

(ab; q)i(q; q)i

for 0 ≤ i < j ≤ N . All other entries are 0.

Proof. Use (13.3), (13.29) and Lemmas 13.39, 13.40. �

Lemma 13.53. We give the matrix in MatN+1(F) that represents K−1 with respect to {ηi}Ni=0.
The (i, i)-entry is qi for 0 ≤ i ≤ N . The (i, j)-entry is

a− b
a

(−1)j−ibi−j(ab; q)j(q; q)jq
(i
2)−(j2)+i

(ab; q)i(q; q)i

for 0 ≤ i < j ≤ N . All other entries are 0.

Proof. Use (13.3), (13.30) and Lemmas 13.39, 13.40. �

Lemma 13.54. We give the matrix in MatN+1(F) that represents B−1 with respect to {τi}Ni=0.
The (i, i)-entry is qi for 0 ≤ i ≤ N . The (i, j)-entry is

b− a
b

(−1)j−iai−j(ab; q)j(q; q)jq
(i
2)−(j2)+i

(ab; q)i(q; q)i

for 0 ≤ i < j ≤ N . All other entries are 0.

Proof. Use (13.3), (13.31) and Lemmas 13.39, 13.40. �

We recall some notation. Let {ui}Ni=0 and {vi}Ni=0 denote bases for V . By the transition
matrix from {ui}Ni=0 to {vi}Ni=0 we mean the matrix T ∈ MatN+1(F) such that vj =

∑N
i=0 Ti,jui

for 0 ≤ j ≤ N .
Our next goal is to display the transition matrices between the bases {τi}Ni=0, {wi}Ni=0, {ηi}Ni=0.

Recall the notation ξ = 1− ab.
Consider the following matrices:

expq
(
a−1ξψ̂

)
, expq

(
b−1ξψ̂

)
. (13.32)

Their inverses are

expq−1

(
−a−1ξψ̂

)
, expq−1

(
−b−1ξψ̂

)
. (13.33)

The matrices (13.32), (13.33) are upper triangular. We now give their entries.

Lemma 13.55. For 0 6= z ∈ F the matrix expq
(
zξψ̂

)
is upper triangular. Its (i, j)-entry is

(−1)izj−i(ab; q)j(q
−j ; q)iq

i+(i
2)

(ab; q)i(q; q)i

for 0 ≤ i ≤ j ≤ N . The matrix expq−1

(
−zξψ̂

)
is upper triangular. Its (i, j)-entry is

(−1)jzj−i(ab; q)j(q
−j ; q)iq

ij−(j2)

(ab; q)i(q; q)i

for 0 ≤ i ≤ j ≤ N .
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Proof. Use (13.2), (13.3), (13.5), (13.6) and Definition 13.38. �

Lemma 13.56. The transition matrices between the basis {wi}Ni=0 and the bases {τi}Ni=0, {ηi}Ni=0

are given in the table below:

from to transition matrix

{τi}Ni=0 {wi}Ni=0 expq−1

(
−b−1ξψ̂

)
{wi}Ni=0 {τi}Ni=0 expq

(
b−1ξψ̂

)
{ηi}Ni=0 {wi}Ni=0 expq−1

(
− a−1ξψ̂

)
{wi}Ni=0 {ηi}Ni=0 expq

(
a−1ξψ̂

)
Proof. By Lemmas 13.16, 13.39. �

Next we consider the product

expq
(
a−1ξψ̂

)
expq−1

(
− b−1ξψ̂

)
. (13.34)

The inverse of (13.34) is

expq
(
b−1ξψ̂

)
expq−1

(
−a−1ξψ̂

)
. (13.35)

The matrices (13.34), (13.35) are upper triangular. Shortly we will give their entries.

Lemma 13.57. The matrix (13.34) is the transition matrix from the basis {τi}Ni=0 to the basis
{ηi}Ni=0. The matrix (13.35) is the transition matrix from the basis {ηi}Ni=0 to the basis {τi}Ni=0.

Proof. By Lemma 13.56. �

Lemma 13.58. The matrix (13.34) represents ∆ with respect to {τi}Ni=0 and {wi}Ni=0 and
{ηi}Ni=0. The matrix (13.35) represents ∆−1 with respect to {τi}Ni=0 and {wi}Ni=0 and {ηi}Ni=0.

Proof. By Proposition 13.13 and Lemma 13.39. �

Lemma 13.59. The matrix (13.34) is upper triangular, with (i, j)-entry

ηj−i(a0)

[
j
i

]
ϑ

(13.36)

for 0 ≤ i ≤ j ≤ N . The matrix (13.35) is upper triangular, with (i, j)-entry

τj−i(b0)

[
j
i

]
ϑ

(13.37)

for 0 ≤ i ≤ j ≤ N . To express (13.36), (13.37) in terms of a, b, q use Lemmas 13.9, 13.11.

Proof. By Lemma 13.57, the matrix (13.34) is the transition matrix from the basis {τi}Ni=0 to
the basis {ηi}Ni=0. The entries of this matrix are obtained from Proposition 5.2(ii). The entries
of the matrix (13.35) are similarly obtained. �

Our next goal is to show how the map A from Definition 2.11 is related to ψ, K, B, M .

Lemma 13.60. On VN−1,

qKA−AK
q − 1

= a−1K2 + aI, (13.38)

qBA−AB
q − 1

= b−1B2 + bI. (13.39)
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Proof. We first show (13.38). For 0 ≤ i ≤ N − 1 apply each side of (13.38) to τi, and evaluate
the result using Lemma 2.13 along with (13.1) and Definition 13.23. We have

KAτi = K(aiτi + τi+1) = q−iaiτi + q−i−1τi+1,

AKτi = q−iAτi = q−i(aiτi + τi+1),(
a−1K2 + aI

)
τi =

(
a−1q−2i + a

)
τi = q−iaiτi.

By these comments we obtain (13.38). Equation (13.39) is similarly obtained. �

Lemma 13.61. On VN−1,

qψA−Aψ =
(q + 1)abM−1 − (q + ab)I

ab− 1
. (13.40)

Proof. For 0 ≤ i ≤ N − 1 apply each side of (13.40) to τi. Using Lemma 2.13 and (4.9),

ψAτi = ψ(aiτi + τi+1) = aiϑiτi−1 + ϑi+1τi,

Aψτi = ϑiAτi−1 = ϑi(ai−1τi−1 + τi).

Using Lemma 13.6(i) and Lemma 13.43,

M−1τi = qiτi + (q − 1)
(
a− b−1

)
qi−1ϑiτi−1.

By the above comments and Lemmas 13.4, 13.7 we get the result. �

Lemma 13.62. On VN−1,

qAM−1 −M−1A
q − 1

=
(
a−1 + b−1

)
I +

(
q − q−1

)(
1− a−1b−1

)
ψ. (13.41)

Proof. For 0 ≤ i ≤ N − 1 apply each side of (13.41) to τi. Evaluate the result using (4.9) and
Lemmas 2.13, 13.43 along with Lemmas 13.4, 13.7. �

Proposition 13.63. On VN−2,

A2ψ −
(
q + q−1

)
AψA+ ψA2 +

(
q − q−1

)2
ψ =

(1− q)
(
1 + q−1ab

)
1− ab

A+

(
q − q−1

)
(a+ b)

1− ab
I.

Proof. Let X denote the expression on either side of (13.40). Compute

qAX −XA
q − 1

and evaluate the result using Lemma 13.62. �

Proposition 13.64. On VN−1,

ψ2A−
(
q + q−1

)
ψAψ +Aψ2 =

(1− q)
(
1 + q−1ab

)
1− ab

ψ.

Proof. Let X denote the expression on either side of (13.40). Compute qXψ−ψX and evaluate
the result using qM−1ψ = ψM−1. �

Proposition 13.65. On VN−2,

A2M−1 −
(
q + q−1

)
AM−1A+M−1A2 +

(
q − q−1

)2
M−1

= (q − 1)
(
q − q−1

)(
q−1 + a−1b−1

)
I − q−1(q − 1)2

(
a−1 + b−1

)
A.
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Proof. Let Y denote the expression on either side of (13.41). Compute qY A−AY and evaluate
the result using Lemma 13.61. �

Proposition 13.66. On VN−1,

M−2A−
(
q + q−1

)
M−1AM−1 +AM−2 = (q − 1)

(
q−1 − 1

)(
a−1 + b−1

)
M−1.

Proof. Let Y denote the expression on either side of (13.41). Compute qM−1Y − YM−1 and
evaluate the result using qM−1ψ = ψM−1. �

In Note 13.21 we mentioned a 3-term recurrence satisfied by the polynomials {wi}Ni=0 and
{w′i}Ni=0. Our next goal is to describe this recurrence.

Lemma 13.67. We have

xwi = wi+1 + q−i
(
a−1 + b−1

)
wi +

(
1− q−i

)(
1− q1−ia−1b−1

)
wi−1

for 0 ≤ i ≤ N − 1, where w0 = 1 and w−1 = 0.

Proof. The result holds for i = 0, since w1 = x − a−1 − b−1 by Example 13.18(ii). Assume
that i ≥ 1. By Lemma 13.19(i) there exist scalars {αk}i+1

k=0 in F such that xwi =
∑i+1

k=0 αkwk
and αk+1 = 1. To obtain {αk}ik=0, apply each side of (13.41) to wi and evaluate the result using
Lemma 13.22 along with M−1wj = qjwj for 0 ≤ j ≤ i. After a brief calculation this yields
αi = q−i

(
a−1 + b−1

)
and αi−1 =

(
1− q−i

)(
1− q1−ia−1b−1

)
and αk = 0 for 0 ≤ k ≤ i− 2. The

result follows. �

Lemma 13.68. We have

xw′i = w′i+1 + qi(a+ b)w′i +
(
1− qi

)(
1− qi−1ab

)
w′i−1

0 ≤ i ≤ N − 1, where w′0 = 1 and w′−1 = 0.

Proof. In Proposition 13.67 replace q 7→ q−1, a 7→ a−1, b 7→ b−1 and use Note 13.17. �

This completes our description of L and ∆ for the twin recurrent data from Case I of
Lemma 10.2. In this description we encountered analogs of the results from Section 1 about the
double lowering operator of a tridiagonal pair. This connection suggests that double lowering
operators on polynomials can be used to further develop the theory of tridiagonal pairs; we hope
to pursue this in the future.
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