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Abstract. In this paper we will formulate 4 × 4 Riemann–Hilbert problems for Toep-
litz+Hankel determinants and the associated system of orthogonal polynomials, when the
Hankel symbol is supported on the unit circle and also when it is supported on an inter-
val [a, b], 0 < a < b < 1. The distinguishing feature of this work is that in the formulation
of the Riemann–Hilbert problem no specific relationship is assumed between the Toeplitz
and Hankel symbols. We will develop nonlinear steepest descent methods for analysing these
problems in the case where the symbols are smooth (i.e., in the absence of Fisher–Hartwig
singularities) and admit an analytic continuation in a neighborhood of the unit circle (if the
symbol’s support is the unit circle). We will finally introduce a model problem and will
present its solution requiring certain conditions on the ratio of Hankel and Toeplitz sym-
bols. This in turn will allow us to find the asymptotics of the norms hn of the corresponding
orthogonal polynomials and, in fact, the large n asymptotics of the polynomials themselves.
We will explain how this solvable case is related to the recent operator-theoretic approach
in [Basor E., Ehrhardt T., in Large Truncated Toeplitz Matrices, Toeplitz Operators, and
Related Topics, Oper. Theory Adv. Appl., Vol. 259, Birkhäuser/Springer, Cham, 2017, 125–
154, arXiv:1603.00506] to Toeplitz+Hankel determinants. At the end we will discuss the
prospects of future work and outline several technical, as well as conceptual, issues which
we are going to address next within the 4 × 4 Riemann–Hilbert framework introduced in
this paper.

Key words: Toeplitz+Hankel determinants; Riemann–Hilbert problem; asymptotic analysis

2020 Mathematics Subject Classification: 15B05; 30E15; 35Q15

1 Introduction and preliminaries

The n × n Toeplitz and Hankel matrices associated respectively to the symbols φ and w, sup-
ported on the unit circle T are respectively defined as

Tn[φ; r] := {φj−k+r}, j, k = 0, . . . , n− 1, φk =

∫
T
z−kφ(z)

dz

2πiz
,

and

Hn[w; s] := {wj+k+s}, j, k = 0, . . . , n− 1, wk =

∫
T
z−kw(z)

dz

2πiz
, (1.1)
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for fixed offset values r, s ∈ Z. If the Hankel symbol w is supported on a subset I of the real
line, then wk in (1.1) are instead given by

wk =

∫
I
xkw(x) dx. (1.2)

The Toeplitz and Hankel determinants characterize important objects particularly in random
matrix theory, statistical mechanics, theory of orthogonal polynomials, theory of Fredhom deter-
minants, etc. For more on the history of the development of the theory of Toeplitz and Hankel
determinants and their numerous applications we refer the reader to the review articles [15]
and [21]. We also refer to the monographs [8] and [9] as the main sources for general facts
concerning the theory of Toeplitz matrices and operators. The asymptotic results concerning
the Hankel determinants and their applications – both recent and classical, are featured in the
papers [10, 11, 15, 19, 20] and in the references therein.

There has been a growing interest in the asymptotics of Toeplitz+Hankel determinants in re-
cent years. A Toeplitz+Hankel matrix is naturally the sum Tn[φ; r] +Hn[w; s], and thus it has
a determinant of the form

Dn(φ,w; r, s) := det


φr + ws φr−1 + ws+1 · · · φr−n+1 + ws+n−1

φr+1 + ws+1 φr + ws+2 · · · φr−n+2 + ws+n
...

...
. . .

...
φr+n−1 + ws+n−1 φr+n−2 + ws+n · · · φr + ws+2n−2

, (1.3)

r, s ∈ Z, where, naturally, φ and w respectively denote the Toeplitz and Hankel symbols. Al-
though there are no results in the literature for the Toeplitz+Hankel determinants where w is
supported on the line, the case where w is supported on the unit circle has been considered
under specific assumptions. E. Basor and T. Ehrhardt have studied different aspects of these
determinants in a series of papers [2, 3, 4, 5, 6] via operator-theoretic tools over the last 20
years or so. In [13], the Riemann–Hilbert technique which has already been proven very effec-
tive to study the asymptotics of Toeplitz and Hankel determinants was extended for the first
time to the determinants of Toeplitz+Hankel matrices generated by the same symbol w = φ,
where the Hankel weight is supported on T. In that work the symbol was assumed to be of
Fisher–Hartwig type and it was further required that the symbol be even, i.e., w = w̃.1 In [2],
by employing the relevant results in [13], the authors managed for the first time to find the
asymptotics of Toeplitz+Hankel determinants for certain non-coinciding symbols. Indeed, they
considered

φ(z) = c(z)φ0(z), and w(z) = c(z)d(z)w0(z), (1.4)

where the functions c and d are assumed to be smooth and nonvanishing on the unit circle with
zero winding number. Neither c nor d are assumed to be even functions but it is further required
that d satisfies the conditions dd̃ = 1 (on the unit circle) and d(±1) = 1. Furthermore, φ0 is
assumed to be an even function of FH type and w0 is related to φ0 in one of the following four
ways: a) w0(z) = ±φ0(z), b) w0(z) = zφ0(z) and c) w0(z) = −z−1φ0(z).

Since the Riemann–Hilbert analysis carried out in [13] does not allow for different symbols,
the primary goal of this paper is to develop a Riemann–Hilbert framework for asymptotic analysis
of Toeplitz+Hankel determinants Dn(φ,w; r, s) where φ and w are not a priori related, at least
at the level of formulation of the problem. Indeed, asymptotics of Toeplitz+Hankel determinants
with different symbols are interesting for several reasons that prompts this research project.
For example, the type (1.4) of Toeplitz+Hankel determinants has appeared in the very recent

1Notation. Throughout the paper we will frequently use the notation f̃(z), to denote f
(
z−1

)
.
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work [12] in connection with the analysis of Ising model on the 45◦ rotated half-plane, or the
so-called zig-zag half-plane.

Perhaps, our most important motivation behind studying Toeplitz+Hankel determinants
is to study the large n asymptotics of the eigenvalues of the Hankel matrix Hn[w] associated
to the symbol w. Specifically, we want to extend the recent results [14] concerning the spec-
tral asymptotics of the Toeplitz matrices2 to the Hankel case. The key feature which allows
an effective asymptotic spectral analysis of Toeplitz matrices and, in particular, the use of the
Riemann–Hilbert method, is that the characteristic polynomial of a Toeplitz matrix is again
a Toeplitz determinant with a symbol of general Fisher–Hartwig type (i.e., no conditions on
the β-parameters). The asymptotics of such Toeplitz determinants is given by the Basor–Tracy
formula (first conjectured by E. Basor and C. Tracy and then proved in [13]). However, in the
case of Hankel matrices, and this is the crux of the matter, their characteristic polynomials are
not Hankel determinants. Indeed, the characteristic polynomial det(Hn[w]− λI) of the Hankel
matrix Hn[w] is a particular Toeplitz+Hankel determinant, with φ(z) ≡ −λ. Clearly in the
case of characteristic polynomial of a Hankel determinant, there is no relationship between φ
and w, so to study the asymptotics of this determinant, one can not refer to the works [13]
or [2] mentioned above. Here again we are directed to a methodological issue which has to be
addressed at a fundamental level by formulation of a suitable Riemann–Hilbert problem.

In this paper, we are proposing a version of the Riemann–Hilbert formalism for the asymptotic
analysis of Toeplitz+Hankel determinants based on a certain 4 × 4 Riemann–Hilbert problem.
When the Hankel symbol is supported on the unit circle, we introduce the following system
of monic orthogonal polynomials {Pn(z)}, degPn(z) = n, associated to Dn(φ,w; r, s):∫

T
Pn(z)z−k−rφ(z)

dz

2πiz
+

∫
T
Pn(z)zk+sw̃(z)

dz

2πiz
= hnδn,k, k = 0, 1, . . . , n.

We also show that for r = s = 1, if the symbols are analytic in a neighborhood of the unit circle,
one can proceed with a 4×4 analogue of the Deift–Zhou non-linear steepest descent method and
arrive at a 4× 4 model Riemann–Hilbert problem on the unit circle which does not contain the
parameter n. It is significant to note that one arrives at the same model Riemann–Hilbert in
the fundamentally different case where w is supported on the interval [a, b], with 0 < a < b < 1.
In this situation we consider the following system of monic orthogonal polynomials {Pn(z)},
degPn(z) = n, associated to Dn(φ,w; r, s):∫

T
Pn(z)z−k−rφ(z)

dz

2πiz
+

∫ b

a
Pn(x)xk+sw(x) dx = hnδn,k, k = 0, 1, . . . , n.

In this case, we can proceed with the Riemann–Hilbert analysis with r = 1 and an arbitrary
value for s ∈ Z.

We have been able to solve the model problem for the class of symbols (1.4) considered
in [2], in the absence of Fisher–Hartwig singularities. It is important to discuss the relevancy
of the two conditions assumed to be satisfied by the function d in [2], in our Riemann–Hilbert
framework (see (1.4) and below). Unlike the condition d

(
eiθ
)
d
(
e−iθ

)
= 1 which is, remarkably,

a simplifying condition for the factorization of the model Riemann–Hilbert problem, it should
be noticed that the condition d(±1) = 1 is not required in the entirety of our Riemann–Hilbert
approach. Solving the model problem allows us to find the asymptotics for the norm hn of
the associated orthogonal polynomials. We provide the details of this calculation for the case
where w is supported on the unit circle.

In what follows we formulate our main asymptotic result. To do so we need to introduce
some notations. Throughout the paper, we will occasionally refer to a symbol f as a Szegő-type

2The large n behavior of the individual eigenvalues of Toeplitz matrices has been also addressed in a number
of works – see [7] and references therein.
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symbol, if a) it is smooth and nonzero on the unit circle, b) has no winding number, and c) admits
an analytic continuation in a neighborhood of the unit circle. Also for a given function f , and
an oriented contour Γ, we write f+(z) (resp. f−(z)) to denote the limiting value of f(ζ), as ζ
approaches z ∈ Γ from the left (resp. right) hand side of the oriented contour Γ with respect
to its orientation. We also note that the expressions like f̃±(z), should be understood as the
boundary values of the function f̃ at z and should not be confused with the boundary value
of the function f at the point 1

z , in other words, the operation of z 7→ 1
z precedes that of taking

the boundary values. Given the Szegő-type symbols φ(z) and w(z) = d(z)φ(z), we define

α(z) = exp

[
1

2πi

∫
T

ln(φ(τ))

τ − z
dτ

]
, β(z) = exp

[
1

2πi

∫
T

ln(d(τ))

τ − z
dτ

]
,

Cρ(z) = − 1

2πi

∫
T

1

β−(τ)β+(τ)α̃−(τ)α+(τ)(τ − z)
dτ,

g23(z) = −α(0)d̃(z)β(z)

α̃(z)
, g43(z) = −α2(0)β(z)

(
α(z)

φ̃(z)
+
d̃(z)Cρ(z)

α̃(z)

)
,

R1,23(z;n) =
1

2πi

∫
Γ′i

µng23(µ)

µ− z
dµ, R1,43(z;n) =

1

2πi

∫
Γ′i

µng43(µ)

µ− z
dµ, (1.5)

and finally

E(n) =
2

α(0)
R1,43(0;n)− Cρ(0)R1,23(0;n). (1.6)

In (1.5), the contour Γ′i is a circle, oriented counter-clockwise, with radius r′ < 1 so that the
functions φ and d are analytic in the annulus {z : r′ ≤ |z| < 1}.

Theorem 1.1. Suppose that φ(eiθ) is smooth and nonzero on the unit circle with zero winding
number, which admits an analytic continuation in a neighborhood of the unit circle. Let w = dφ,
where d satisfies all the properties of φ in addition to d

(
eiθ
)
d
(
e−iθ

)
= 1, for all θ ∈ [0, 2π). Let

also

U0 := {z : ri < |z| < ro : 0 < ri < 1 < ro} , (1.7)

be the neighborhood of the unit circle where both functions, φ(z) and d(z) are analytic. Denote

r0 := max
{
ri, r

−1
o

}
, (1.8)

and suppose now that there exists such C > 0 that for sufficiently large n,

|E(n)| ≥ Crn (1.9)

for some r ∈ [r0, 1), where E(n) is the functional of the weights φ and w defined in (1.6). Then,
for sufficiently large n the determinant Dn(φ,w; 1, 1) 6= 0 and the asymptotics of

hn−1 ≡
Dn(φ,w; 1, 1)

Dn−1(φ,w; 1, 1)
,

is given by

hn−1 = −α(0)
E(n)

E(n− 1)

(
1 +O

(
e−c1n

))
, n→∞, (1.10)

where c1 = − log
( r21
r

)
> 0, and r1 is any number satisfying the conditions: r < r1 < 1 and

r2
1 < r.
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Remark 1.2. As a slight generalization of Theorem 1.1, one could replace the condition (1.9) by

|E(n)| ≥ Crnκ(n) (1.11)

for some r ∈ [r0, 1), where κ(n) > 0 for all sufficiently large n and is such that e−εn = o(κ(n))
for all ε > 0 as n→∞. So as a result, (1.10) should be replaced by

hn−1 = −α(0)
E(n)

E(n− 1)

(
1 +O

(
e−c1n

κ(n)

))
, n→∞,

where the constant c1 above is the same as the one in (1.10).

Remark 1.3. The analyticity of φ in the neighborhood of the unit circle is a technical condition.
It can be lifted and replaced by certain smoothness conditions using the approximation type
arguments similar to the ones used in [13, Section 6.2]. However, because of the condition (1.9),
the corresponding analysis becomes more subtle. We shall address this issue together with
several other technical points in the forthcoming publications.

1.1 Outline

In Section 2 we will analyze the case where Hankel symbol w is supported on the unit circle.
We will propose a 2×2 Riemann–Hilbert problem with a shift for the associated orthogonal poly-
nomials. For an effective Riemann–Hilbert analysis, we will then propose a 2×4 Riemann–Hilbert
problem whose jump conditions could be written in the usual form of matrix multiplications.
We will then formulate a 4 × 4 Riemann–Hilbert problem which is the suitable framework for
our analysis. In the formulation of the 4 × 4 Riemann–Hilbert problem, for technical reasons,
we will restrict to the particular offset values r = s = 1. Following the natural steps of steepest
descent analysis we will arrive at a model problem in Section 2.6, which we will refer to as the
model Riemann–Hilbert problem for the pair (φ,w).

Section 3 is devoted to analysis of the case where the Hankel symbol is supported on the
interval [a, b], with 0 < a < b < 1. Similar to Section 2, we will propose a 2×2 Riemann–Hilbert
problem with a shift for the associated system of orthogonal polynomials and for the same
reasons mentioned above we pass through a 2× 4 to arrive at a suitable 4× 4 Riemann–Hilbert
problem. In this case, our methods allow for considering an arbitrary offset for the Hankel part,
more precisely, we can pursue the steepest descent analysis for r = 1 and an arbitrary s ∈ Z.
This steepest descent analysis leads us to a model problem, which is the same as the model
problem of Section 2, except that it is for the pair (φ,−ũ), where

u(z) = z

∫ b

a

xs−1w(x)

x− z
dx.

Although there are similarities between the steepest descent analysis of Section 2 and Section 3,
we feel obliged to lay out a thorough exposition to illustrate the remarkable fact that the same
model RH problem emerges in both cases.

In Section 4, we present the factorization of the model RH problem for the pair (φ, dφ), where
the functions φ and d are of Szegő-type. The function d further satisfies dd̃ = 1 on the unit
circle. We will then use this solution to construct the solutions to the global parametrix and the
small-norm Riemann–Hilbert problems, which finally enables us to find the asymptotics of the
norms hn of the associated monic orthogonal polynomials. Although we do not formulate our
main asymptotic result for the symbol pairs discussed in Section 3, in Remark 4.2 we justify
that the analysis of Section 4 is completely relevant for the symbol pairs of Section 3 as well.

Finally, in Section 5 we summarize the still open technical and conceptual questions which
we are going to address in our future work.
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2 Toeplitz+Hankel determinants: Hankel weight
supported on T

In this section we assume that w is supported on the unit circle and that both symbols φ and w,
admit analytic continuations to a neighborhood of the unit circle. A key observation is that
the determinant (1.3) is related to the system of monic polynomials {Pn(z)}, degPn(z) = n,
determined by the orthogonality relations∫

T
Pn(z)z−k−rφ(z)

dz

2πiz
+

∫
T
Pn(z)zk+sw̃(z)

dz

2πiz
= hnδn,k, k = 0, 1, . . . , n. (2.1)

These polynomials exist and are unique if the Toeplitz+Hankel determinants (1.3) are non-zero.
This can be seen as follows. Expectedly, if Dn ≡ Dn(φ,w; r, s) 6= 0, the polynomials Pn can be
written as the following determinants

Pn(z) :=
1

Dn
det


φr + ws φr−1 + ws+1 · · · φr−n + ws+n

φr+1 + ws+1 φr + ws+2 · · · φr−n+1 + ws+n+1
...

...
. . .

...
φr+n−1 + ws+n−1 φr+n−2 + ws+n · · · φr−1 + ws+2n−1

1 z · · · zn

. (2.2)

Indeed, for the polynomials defined by (2.2) we have that∫
T
Pn(z)zk+sw̃(z)

dz

2πiz

=
1

Dn
det


φr + ws φr−1 + ws+1 · · · φr−n + ws+n

φr+1 + ws+1 φr + ws+2 · · · φr−n+1 + ws+n+1
...

...
. . .

...
φr+n−1 + ws+n−1 φr+n−2 + ws+n · · · φr−1 + ws+2n−1

wk+s wk+s+1 · · · wk+s+n

,

and ∫
T
Pn(z)z−k−rφ(z)

dz

2πiz

=
1

Dn
det


φr + ws φr−1 + ws+1 · · · φr−n + ws+n

φr+1 + ws+1 φr + ws+2 · · · φr−n+1 + ws+n+1
...

...
. . .

...
φr+n−1 + ws+n−1 φr+n−2 + ws+n · · · φr−1 + ws+2n−1

φk+r φk+r−1 · · · φk+r−n

,

hence∫
T
Pn(z)z−k−rφ(z)

dz

2πiz
+

∫
T
Pn(z)zk+sw̃(z)

dz

2πiz

=
1

Dn
det


φr + ws φr−1 + ws+1 · · · φr−n + ws+n

φr+1 + ws+1 φr + ws+2 · · · φr−n+1 + ws+n+1
...

...
. . .

...
φr+n−1 + ws+n−1 φr+n−2 + ws+n · · · φr−1 + ws+2n−1

φk+r + wk+s φk+r−1 + wk+s+1 · · · φk+r−n + wk+s+n

=
Dn+1

Dn
δn,k.
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The uniqueness of the polynomial Pn(z) = zn+an−1z
n−1+· · ·+a0 satisfying (2.1), simply follows

from the fact that one has the following linear system for the coefficients aj , 0 ≤ j ≤ n− 1:

(Tn[φ; r] +Hn[w; s])


a0

a1
...

an−1

 =


−φ−n+r − wn+s

−φ1−n+r − w1+n+s
...

−φ−1+r − w2n−1+s

. (2.3)

So if Dn 6= 0, the coefficients aj and hence Pn, can be uniquely determined by inverting the
Toeplitz+Hankel matrix in (2.3). So the polynomials defined by (2.2) are the unique polynomials
satisfying (2.1), and

hn =
Dn+1(φ,w; r, s)

Dn(φ,w; r, s)
. (2.4)

We consider the function Y defined as

Y(z;n) =


Pn(z)

∫
T

ξsw̃(ξ)Pn(ξ) + ξrφ̃(ξ)P̃n(ξ)

ξ − z
dξ

2πiξ

− 1

hn−1
Pn−1(z) − 1

hn−1

∫
T

ξsw̃(ξ)Pn−1(ξ) + ξrφ̃(ξ)P̃n−1(ξ)

ξ − z
dξ

2πiξ

, (2.5)

assuming that Dn, Dn−1 6= 0, which ensures that a) hn−1 = Dn/Dn−1 is well-defined and nonzero
and b) that Pn and Pn−1 exist and are unique. Now consider the following Riemann–Hilbert
problem for finding the 2× 2 matrix Y satisfying:

� RH-Y1 Y is holomorphic in C \ T.
� RH-Y2 For z ∈ T we have

Y(1)
+ (z;n) = Y(1)

− (z;n), z ∈ T, (2.6)

and

Y(2)
+ (z;n) = Y(2)

− (z;n)+z−1+sw̃(z)Y(1)
− (z;n)+z−1+rφ̃(z)Y(1)

−
(
z−1;n

)
, z ∈ T, (2.7)

where T is positively oriented in the counter-clockwise direction.

� RH-Y3 As z →∞, Y satisfies

Y(z;n) =
(
I +O

(
z−1
))
znσ3 =

(
zn +O

(
zn−1

)
O
(
z−n−1

)
O
(
zn−1

)
z−n +O

(
z−n−1

)), (2.8)

where Y(1) and Y(2) are the first and second columns of Y respectively and

σ3 =

(
1 0
0 −1

)
is the third Pauli matrix. Notice that the jump conditions for the Y-RHP can not be written
in the usual form of matrix multiplications. Expectedly, this feature of the Y-RHP (which will
be addressed in more detail in Section 2.1) significantly affects the progression of the Riemann–
Hilbert analysis as it necessitates studying larger size Riemann–Hilbert problems.

The next theorem establishes the association of the function (2.5) with the Y-RHP.
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Theorem 2.1. The following statements are true.

1. Suppose that Dn, Dn−1 6= 0. Then, the Riemann–Hilbert problem RH-Y1 through RH-Y3
is uniquely solvable and its solution Y is defined by (2.5). Moreover,

hn−1 = − lim
z→∞

zn−1/Y21(z;n). (2.9)

2. Suppose that the Riemann–Hilbert problem RH-Y1 through RH-Y3 has a unique solution.
Then Dn 6= 0, rank(Tn−1[φ; r] +Hn−1[w; s]) ≥ n− 2, and Pn(z) = Y11(z;n).

3. Suppose that the Riemann–Hilbert problem RH-Y1 through RH-Y3 has a unique solution.
Suppose also that

lim
z→∞

Y21(z;n)z−n+1 6= 0.

Then, as before, Dn 6= 0, Pn(z) = Y11(z;n), and, in addition,

Dn−1 6= 0, hn−1 = − lim
z→∞

Y−1
21 (z;n)zn−1, Pn−1(z) = −hn−1Y21(z;n).

Proof. Assume that Dn, Dn−1 6= 0, and thus the function Y is uniquely defined by (2.5), being
identified with the unique orthogonal polynomials satisfying the orthogonality conditions (2.1).
We now show that Y given by (2.5) is a unique solution of RH-Y1 through RH-Y3. It is
clear that RH-Y1 is satisfied due to general properties of Cauchy integrals. From (2.6) we
see that Y11 and Y21 are entire functions, and from (2.8) we know that Y11 has to be a monic
polynomial of degree n and Y21 has to be a polynomial of degree n− 1 or less,

Y11(z;n) = zn +

n−1∑
k=0

αkz
k, Y21(z;n) =

n−1∑
k=0

βkz
k.

From (2.7) and what we just mentioned about Y11 we would have

Y12,+(z;n)− Y12,−(z;n) = z−1+sw̃(z)Y11(z;n) + z−1+rφ̃(z)Ỹ11(z;n).

So by Plemelj–Sokhotskii formula we have

Y12(z;n) =
1

2πi

∫
T

ξ−1+sw̃(ξ)Y11(ξ;n) + ξ−1+rφ̃(ξ)Ỹ11(ξ;n)

ξ − z
dξ.

Using the identity

1

ξ − z
= −

n∑
k=0

ξk

zk+1
+

ξn+1

(ξ − z)zn+1
,

we get

Y12(z;n) = −
n∑
k=0

1

zk+1

∫
T

[
ξ−1+sw̃(ξ)Y11(ξ;n)ξk + ξ−1+rφ̃(ξ)Ỹ11(ξ;n)ξk

] dξ

2πi

+
1

zn+1

∫
T

ξn+1

(ξ − z)
[
ξ−1+sw̃(ξ)Y11(ξ;n) + ξ−1+rφ̃(ξ)Ỹ11(ξ;n)

] dξ

2πi
.

Note that since Y12(z;n) = O(z−n−1), we must have:∫
T
w̃(ξ)Y11(ξ;n)ξk+s dξ

2πiξ
+

∫
T
φ̃(ξ)Ỹ11(ξ;n)ξk+r dξ

2πiξ
= 0, 0 ≤ k ≤ n− 1.
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In the second integral we make the change of variable ξ 7→ τ := ξ−1 and as a result we will
arrive at∫

T
Y11(ξ;n)ξk+sw̃(ξ)

dξ

2πiξ
+

∫
T
Y11(τ ;n)τ−k−rφ(τ)

dτ

2πiτ
= 0, 0 ≤ k ≤ n− 1.

Since Y11 satisfies the orthogonality relations (2.1) we necessarily have

Y11(z;n) = Pn(z).

In a similar fashion one can show that

Y22(z;n) =
1

2πi

∫
T

ξ−1+sw̃(ξ)Y21(ξ;n) + ξ−1+rφ̃(ξ)Ỹ21(ξ;n)

ξ − z
dξ.

The asymptotic condition, Y22(z;n) = z−n + O
(
z−n−1

)
, would then yield the orthogonality

relations,∫
T
Y21(ξ;n)ξk+sw̃(ξ)

dξ

2πiξ
+

∫
T
Y21(τ ;n)τ−k−rφ(τ)

dτ

2πiτ
= −δk,n−1, 0 ≤ k ≤ n− 1.

These relations in turn are equivalent to the following linear system for the coefficients βj ,

(Tn[φ; r] +Hn[w; s])


β0

β1
...

βn−1

 =


0
0
...
−1

.
From this it follows that βn−1 is necessarily not zero. Indeed, using Cramer’s rule, we arrive
at the formula,

βn−1 = −Dn−1

Dn
6= 0.

This would also mean that βn−1 = − 1
hn−1

and

Y21(z;n) = − 1

hn−1
Pn−1(z). (2.10)

This finishes the argument why (2.5) uniquely satisfies both RH-Y2 and RH-Y3 as well. Also,
equation (2.10) implies equation (2.9).

To prove the second statement, now assume that the Riemann–Hilbert problem RH-Y1
through RH-Y3 has a unique solution. Because of similar considerations mentioned above,
it can be written as

Y(z;n) =

 Qn(z)

∫
T

ξsw̃(ξ)Qn(ξ) + ξrφ̃(ξ)Q̃n(ξ)

ξ − z
dξ

2πiξ

Rn−1(z)

∫
T

ξsw̃(ξ)Rn−1(ξ) + ξrφ̃(ξ)R̃n−1(ξ)

ξ − z
dξ

2πiξ

, (2.11)

where Qn(z) and Rm(z) are polynomials,

Qn(z) = zn +
n−1∑
k=0

αkz
k, Rn−1(z) =

n−1∑
k=0

βkz
k,



10 R. Gharakhloo and A. Its

satisfying the orthogonality conditions,∫
T
Qn(z)z−k−rφ(z)

dz

2πiz
+

∫
T
Qn(z)zk+sw̃(z)

dz

2πiz
= 0, k = 0, 1, . . . , n− 1, (2.12)

and ∫
T
Rn−1(z)z−k−rφ(z)

dz

2πiz
+

∫
T
Rn−1(z)zk+sw̃(z)

dz

2πiz
= −δk,n−1, (2.13)

k = 0, 1, . . . , n− 1.

Note that the above equations can be written as the following linear systems on the coefficients αj
and βj :

(Tn[φ; r] +Hn[w; s])


α0

α1
...

αn−1

 =


−φ−n+r − wn+s

−φ1−n+r − w1+n+s
...

−φ−1+r − w2n−1+s

, (2.14)

and

(Tn[φ; r] +Hn[w; s])


β0

β1
...

βn−1

 =


0
0
...
−1

. (2.15)

Note that since we have assumed that the solution of Y-RHP exists, both linear systems (2.14)
and (2.15) must have solutions; and since the solution of Y-RHP is unique, it follows that
the determinant of the systems (2.14) and (2.15), which is nothing but Dn, is nonzero. Thus,
we certainly have that

Qn(z) = Pn(z).

It is now obvious that rank (Tn−1[φ; r] +Hn−1[w; s]) ≥ n− 2. Because if Dn−1 = 0 and Dn 6= 0,
one can easily show that rank (Tn−1[φ; r]+Hn−1[w; s]) = n−2. Although the proof of the second
statement is complete, it is worthwhile to say more about Y21 when Dn−1 = 0, because then the
objects Pn−1(z) and hn−1 do not exist. Indeed the homogenous system,

(Tn−1[φ; r] +Hn−1[w; s])


c0

c1
...

cn−2

 = 0, (2.16)

has infinitely many nontrivial solutions. Let us take one of them and define the following
polynomial of degree n− 2

R̂n−2(z) =

n−2∑
j=0

cjz
j ,

which automatically satisfies∫
T
R̂n−2(z)z−k−rφ(z)

dz

2πiz
+

∫
T
R̂n−2(z)zk+sw̃(z)

dz

2πiz
= 0, k = 0, 1, . . . , n− 2.
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Put

δn−1 :=

∫
T
R̂n−2(z)z−n+1−rφ(z)

dz

2πiz
+

∫
T
R̂n−2(z)zn−1+sw̃(z)

dz

2πiz
.

Note that δn−1 6= 0. Otherwise, we could redefine Rn−1(z) as

Rn−1(z)→ Rn−1(z) + R̂n−2(z),

which, on the contrary, means that the solution of the Y-RHP is not unique. Hence, we can find
a unique normalization of the nontrivial solution of (2.16), to assure that

δn−1 = −1.

This, together with the uniqueness of the solution of the Y-RHP implies that Rn−1(z) =
R̂n−2(z).

To prove the third statement, we notice that, due to the additional condition at z =∞, the
unique solution of the Riemann–Hilbert problem RH-Y1 through RH-Y3 can be written in the
same form (2.11) with polynomial Rn−1(z) replaced by

Rn−1(z) = qnQn−1(z), q 6= 0,

where both Qn(z) and Qn−1(z) are monic polynomials,

Qn(z) = zn +
n−1∑
k=0

αkz
k, Qn−1(z) = zn−1 +

n−2∑
k=0

βkz
k,

satisfying the orthogonality conditions,∫
T
Qn(z)z−k−rφ(z)

dz

2πiz
+

∫
T
Qn(z)zk+sw̃(z)

dz

2πiz
= 0, k = 0, 1, . . . , n− 1,

and

qn

(∫
T
Qn−1(z)z−k−rφ(z)

dz

2πiz
+

∫
T
Qn−1(z)zk+sw̃(z)

dz

2πiz

)
= −δk,n−1, (2.17)

k = 0, 1, . . . , n− 1.

As before with equations (2.12) and (2.13), the above equations can be written as the following
linear systems on the coefficients αj and βj :

(Tn[φ; r] +Hn[w; s])


α0

α1
...

αn−1

 =


−φ−n+r − wn+s

−φ1−n+r − w1+n+s
...

−φ−1+r − w2n−1+s

,
and

(Tn−1[φ; r] +Hn−1[w; s])


β0

β1
...

βn−2

 =


−φ−n+1+r − wn−1+s

−φ1−n+1+r − w1+n−1+s
...

−φ−1+r − w2n−3+s

.
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We now argue, that both Dn and Dn−1 are nonzero and thus Qn = Pn and Qn−1 = Pn−1

are given by (2.2). Otherwise, we shall have more than one solution for one or both of the
above linear systems, which means that we could find distinct polynomials Qn(z) (if Dn = 0),
or distinct polynomials Qn−1(z) (if Dn−1 = 0), or both (if Dn, Dn−1 = 0). Either way, using
these distinct polynomials, we could construct distinct solutions of the Y-RHP which contradicts
our assumption. This finishes the proof of the theorem. Note that from (2.17) we necessarily
have qn 6= 0, and since Qn−1 = Pn−1 we conclude that hn−1 = −1/qn 6= 0, which could also
be seen from hn−1 = Dn/Dn−1. �

Corollary 2.2. Suppose that the Y-RH problem has a unique solution for n and n− 1. Then

Dn 6= 0, Dn−1 6= 0, and hn−1 6= 0,

where hn−1 can be reconstructed form the RHP data as

hn−1 = − lim
z→∞

zn−1/Y21(z;n). (2.18)

Equation (2.18), as in the pure Toeplitz or Hankel cases, in conjunction with (2.4) reduces
the asymptotic analysis of the Toeplitz+Hankel determinants to the asymptotic analysis of the
Riemann–Hilbert problem for Y.

2.1 The associated 2× 4 and 4× 4 Riemann–Hilbert problems

In the rest of this section we will develop a 4× 4 analogue of the Deift/Zhou non-linear steepest
descent method for the Toeplitz+Hankel determinants (1.3). The Y-RHP is a particular case of
the matrix Riemann–Hilbert problem with a shift, or the matrix analytical boundary problem of
the Carleman type. Indeed, the matrix form of the equations (2.6)–(2.7) reads as follows

Y+(z;n) = Y−(z;n)G1(z) + Y−(κ(z);n)G2(z),

where

G1(z) =

(
1 zs−1w̃(z)
0 1

)
, G2(z) =

(
0 zr−1φ̃(z)
0 0

)
,

and the “shift” κ is the mapping

κ(z) =
1

z
.

The presence of the shift makes it impossible to directly apply the usual 2 × 2 version of the
Deift–Zhou nonlinear steepest descent method to the Y-RHP. However, the mapping κ satisfies
the Carleman condition, κ(κ(z)) = z, and hence we can translate the 2 × 2 Y-RHP to the
usual matrix form by doubling the relevant matrix sizes. More precisely, we first propose the
associated 2 × 4 and then the associated 4 × 4 Riemann–Hilbert problems. Although more
complicated, the analysis of the proposed 4 × 4 Riemann–Hilbert problem follows in the same
spirit as the lower dimensional RHPs until we get to the model Riemann–Hilbert problem for
Toeplitz+Hankel determinants introduced in Section 2.6.

Let us define the 2× 4 matrix
◦
X out of the columns of Y as follows

◦
X (z;n) :=

(
Y(1)(z;n), Ỹ(1)(z;n),Y(2)(z;n), Ỹ(2)(z;n)

)
. (2.19)
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From (2.6), (2.7) and (2.8) we obtain the following Riemann–Hilbert problem for
◦
X :

� RH-
◦
X1

◦
X is holomorphic in C \ (T ∪ {0}).

� RH-
◦
X2 For z ∈ T,

◦
X satisfies

◦
X+(z;n) =

◦
X−(z;n)


1 0 zs−1w̃(z) −z−r+1φ(z)

0 1 zr−1φ̃(z) −z−s+1w(z)
0 0 1 0
0 0 0 1

. (2.20)

� RH-
◦
X3 As z →∞ we have

◦
X (z;n) =

(
1 +O

(
z−1
)

C1(n) +O
(
z−1
)

O
(
z−1
)

C3(n) +O
(
z−1
)

O
(
z−1
)

C2(n) +O
(
z−1
)

1 +O
(
z−1
)

C4(n) +O
(
z−1
))

×


zn 0 0 0
0 1 0 0
0 0 z−n 0
0 0 0 1

. (2.21)

� RH-
◦
X4 As z → 0 we have

◦
X (z;n) =

(
C1(n) +O(z) 1 +O(z) C3(n) +O(z) O(z)
C2(n) +O(z) O(z) C4(n) +O(z) 1 +O(z)

)

×


1 0 0 0
0 z−n 0 0
0 0 1 0
0 0 0 zn

, (2.22)

where

C1(n) = Y11(0;n), C3(n) = Y12(0;n), C2(n) = Y21(0;n), C4(n) = Y22(0;n).

Remark 2.3. It is well-known that for construction of the global parametrix in the Riemann–
Hilbert analysis, one has to construct the so-called Szegő functions of the following type:

Sf (z) := exp

[
1

2πi

∫
T

ln(f(τ))

τ − z
dτ

]
,

where one assumes that f is non-zero and continuous on the unit circle with zero winding number.
The natural progression of the Riemann–Hilbert analysis with general offset values r, s ∈ Z, leads
us to constructing Szegő functions for f1(z) = z1−rφ(z) and f2(z) = z1−sw(z) (or, equivalently,
for f1 and f2/f1). Although there are ways to “peel off” the winding generating parts of f1

and f2 (see Section 5.2). The first natural case to consider is when f1 and f2 have zero winding
numbers. To that end, in this work we shall only consider the case r = s = 1 and the symbols φ
and w which are of Szegő type and analytic in a neighborhood of the unit circle. We also discuss
prospects of extension of our method to symbols with Fisher–Hartwig singularities in Section 5.4.
Also it is worth mentioning that our method in the present work trivially extends to the case
where we consider general, but fixed, r, s ∈ Z with symbols φ and w respectively with winding
numbers r− 1 and s− 1 (so that the overall winding number of f1 and f2 are zero, which is the
main condition to be considered). It should be also mentioned that in the pure Toeplitz case
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there is another, and historically the first, way to put the analysis of Toeplitz determinants in
the framework of the Riemann–Hilbert scheme. This approach was suggested by Jinho Baik,
Percy Deift, and Kurt Johansson in [1]. The Riemann–Hilbert problem that appear there yields
to the Szegő function for f(z) coinciding with the original Toeplitz symbol φ(z). Therefore, the
Riemann–Hilbert method of [1] is applied directly to the symbols with zero winding numbers.
The crux of the matter is that the construction of [1] can not be extended to the mixed, T+H,
situation. The Y-RHP we are introducing in this paper seems to be the only way to put the
mixed problem into the Riemann–Hilbert setting; hence the inevitability of the choice r = s = 1,
or equivalently, starting with symbols that have nonzero winding numbers.

In view of this remark, in the rest of the paper we assume that r = s = 1. In a natural
way we now consider the following 4× 4 Riemann–Hilbert problem which we will refer to as the
X -RHP.

� RH-X1 X is holomorphic in C \ (T ∪ {0}).
� RH-X2 For z ∈ T, X satisfies

X+(z;n) = X−(z;n)


1 0 w̃(z) −φ(z)

0 1 φ̃(z) −w(z)
0 0 1 0
0 0 0 1

. (2.23)

� RH-X3 As z →∞ we have

X (z;n) =
(
I +O

(
z−1
))

zn 0 0 0
0 1 0 0
0 0 z−n 0
0 0 0 1

. (2.24)

� RH-X4 As z → 0 we have

X (z;n) = P (n)(I +O(z))


1 0 0 0
0 z−n 0 0
0 0 1 0
0 0 0 zn

. (2.25)

Remark 2.4. The uniqueness of the solution of X -RHP is established using the standard
Liouville theorem-based arguments. We also note that the matrix factor P (n) in (2.25) is not
a priori prescribed.

Remark 2.5. It is easy to see that the solution X of the X -RHP satisfies the symmetry relation,

WP−1(n)X
(
z−1;n

)
W = X (z;n), (2.26)

where

W =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

. (2.27)

Equation (2.26) in turn yields the following symmetry equation for P (n),

P (n) = WP−1(n)W, (2.28)

or (taking into account that W−1 = W ),(
WP (n)

)2
=
(
P (n)W

)2
= I4.
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Remark 2.6. The matrix P (n)W − I4 has rank 2. Here is the proof of this statement which is
motivated by some of the referee’s remarks.3

If we take the limit z → 1, with |z| > 1 in (2.26) it follows that

WP−1(n)X+(1;n)W = X−(1;n),

or

X+(1;n)WX−1
− (1;n) = P (n)W.

Using (2.23), the last equation reads,

X−(1;n)GX (1)WX−1
− (1;n) = P (n)W,

where GX (z) is the jump matrix in (2.23). Hence the matrices P (n)W and GX (1)W are similar,
and thus the claim is true if the matrix GX (1)W has rank 2. We have,

GX (1)W − I4 =


−1 1 −φ w
1 −1 −w φ
0 0 −1 1
0 0 1 −1

,
where φ ≡ φ(1) = φ̃(1), and w ≡ w(1) = w̃(1). The row echelon form of this matrix is

−1 1 −φ w
0 0 −1 1
0 0 0 0
0 0 0 0

,
and the statement about the rank of matrix GX (1)W − I4 (and hence the rank of matrix
P (n)W − I4) follows.

2.2 Relation of the 2× 4 and the 4× 4 Riemann–Hilbert problems

Put

R(z;n) :=
◦
X (z;n)X−1(z;n). (2.29)

From (2.20) and (2.23) it is clear that R has no jumps. From (2.22) and (2.25) we can obtain
the behavior of R near zero:

R(z;n) =

(
C1(n) +O(z) 1 +O(z) C3(n) +O(z) O(z)
C2(n) +O(z) O(z) C4(n) +O(z) 1 +O(z)

)
P−1(n).

Therefore R is an entire function. Also note that from (2.21) and (2.24) we have

R(z;n) =

(
1 +O

(
z−1
)

C1(n) +O
(
z−1
)

O
(
z−1
)

C3(n) +O
(
z−1
)

O
(
z−1
)

C2(n) +O
(
z−1
)

1 +O
(
z−1
)

C4(n) +O
(
z−1
)), z →∞.

Therefore by Liouville’s theorem we conclude that

R(z;n) =

(
1 C1(n) 0 C3(n)
0 C2(n) 1 C4(n)

)
. (2.30)

3These valuable remarks also led us to formulate and prove Lemmas 2.7 and 2.8, and their analogues in
Section 3.



16 R. Gharakhloo and A. Its

And therefore we have(
1 C1(n) 0 C3(n)
0 C2(n) 1 C4(n)

)
=

(
C1(n) 1 C3(n) 0
C2(n) 0 C4(n) 1

)
P−1(n). (2.31)

We argue that this system, under certain generic assumptions, is a well-defined linear system
on Cj(n) which is uniquely solvable. To see this, let us first double the system, that is consider
instead of (2.31), the system(

1 C1(n) 0 C3(n)
0 C2(n) 1 C4(n)

)
=

(
C ′1(n) 1 C ′3(n) 0
C ′2(n) 0 C ′4(n) 1

)
P−1(n). (2.32)

This is an 8×8 system of linear equations for eight unknowns – Cj(n) and C ′j(n). By a straight-
forward and, in fact, rather simple calculations one finds that the determinant of this 8 × 8
system is(

P22(n)P44(n)− P42(n)P24(n)
)2
,

where Pjk(n), j, k = 1, ..., 4 denote the entries of matrix P (n). Hence, assuming that

P22(n)P44(n)− P42(n)P24(n) 6= 0, (2.33)

we would have the unique solvability of system (2.32). That is, there is only one 8-vector,

~C(n) :=
(
C1(n), C2(n), C3(n), C4(n), C ′1(n), C ′2(n), C ′3(n), C ′4(n)

)
, (2.34)

which solves (2.32). At the same time, the symmetry relation (2.28) would imply that(
1 C1(n) 0 C3(n)
0 C2(n) 1 C4(n)

)
W =

(
C ′1(n) 1 C ′3(n) 0
C ′2(n) 0 C ′4(n) 1

)
WP (n),

or (
1 C ′1(n) 0 C ′3(n)
0 C ′2(n) 1 C ′4(n)

)
=

(
C1(n) 1 C3(n) 0
C2(n) 0 C4(n) 1

)
P−1(n).

In other words, together with (2.34), the system (2.32) will be also solved by the vector

~C ′(n) :=
(
C ′1(n), C ′2(n), C ′3(n), C ′4(n), C1(n), C2(n), C3(n), C4(n)

)
.

Because of the uniqueness, we conclude that the vectors ~C ′(n) and ~C(n) must coincide and
hence we must have,

Cj(n) = C ′j(n), j = 1, 2, 3, 4.

Therefore we have the unique solvability of the original system (2.31) under the generic condi-
tion (2.33).

Indeed, we can make the solvability condition of the system (2.31) more flexible. This is
shown in the next lemma.

Lemma 2.7. Assume that at least one of the following six inequalities is true,

P22(n)P44(n)− P42(n)P24(n) 6= 0, (2.35)

(1− P21(n))P42(n) + P22(n)P41(n) 6= 0, (2.36)

(1− P43(n))P22(n) + P23(n)P42(n) 6= 0, (2.37)

(1− P21(n))P44(n) + P41(n)P24(n) 6= 0, (2.38)

(1− P21(n))(P43(n)− 1) + P41(n)P23(n) 6= 0, (2.39)

(1− P43(n))P24(n) + P23(n)P44(n) 6= 0. (2.40)

Then, the system (2.31) is a well-defined linear system on Cj(n) which is uniquely solvable.



A Riemann–Hilbert Approach to Asymptotic Analysis of Toeplitz+Hankel Determinants 17

Proof. We first notice that system (2.31) can be rewritten as(
1 C1(n) 0 C3(n)
0 C2(n) 1 C4(n)

)
P (n)W =

(
C1(n) 1 C3(n) 0
C2(n) 0 C4(n) 1

)
W =

(
1 C1(n) 0 C3(n)
0 C2(n) 1 C4(n)

)
,

or (
1 C1(n) 0 C3(n)
0 C2(n) 1 C4(n)

)
(P (n)W − I4) = 0. (2.41)

Notice that

P (n)W − I4 =


P12(n)− 1 P11(n) P14(n) P13(n)
P22(n) P21(n)− 1 P24(n) P23(n)
P32(n) P31(n) P34(n)− 1 P33(n)
P42(n) P41(n) P44(n) P43(n)− 1

.
Therefore, the conditions of this lemma mean that the second and the forth rows of P (n)W − I4

are linearly independent. This, in conjunction with Remark 2.6, implies that the other two rows
are linear combinations of the second and the fourth rows. In other words, there exists a unique
collection of four numbers, C1(n), C2(n), C3(n), C4(n) such that(

P12(n)− 1, P11(n), P14(n), P13(n)
)

= −C1(n)
(
P22(n), P21(n)− 1, P24(n), P23(n)

)
− C3(n)

(
P42(n), P41(n), P44(n), P43(n)− 1

)
, (2.42)

and (
P32(n), P31(n), P34(n)− 1, P33(n)

)
= −C2(n)

(
P22(n), P21(n)− 1, P24(n), P23(n)

)
− C4(n)

(
P42(n), P41(n), P44(n), P43(n)− 1

)
. (2.43)

Vector equations (2.42), (2.43) are just the rows of matrix equation (2.41). �

Investigation of the possibility of linear independence of other rows of the matrix P (n)W−I4,
leads us to the following observation about the uniqueness of a solution to (2.31), if one exists.

Lemma 2.8. If the system (2.31) has a solution, it has to be unique.

Proof. For simplicity of notation let us drop the dependence on n in Cj(n) and P (n), and
respectively write Cj and P instead. Denote the rows of the matrix PW − I4 by Rj , 1 ≤ j ≤ 4,
and thus the system of equations (2.41) can be written as the following vector equations

R1 + C1R2 + C3R4 = 0, (2.44)

and

R3 + C2R2 + C4R4 = 0. (2.45)

Since PW − I4 is of rank 2, necessarily, at least one of the six pairs of vectors has to be linearly
independent. We consider each possibility separately.

First, let us assume that R1 and R3 are linearly independent. Note that C1C4 − C2C3 6= 0,
because otherwise, multiplying (2.44) by −C2 and (2.45) by C1 and adding the results yields
that R1 and R3 are linearly dependent to the contrary. There exist unique constants a1, a2, b1,
and b2 such that

R2 = a1R1 + a2R3, and R4 = b1R1 + b2R3. (2.46)
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Also observe that, a1b2−a2b1 = 0 contradicts our assumption that R1 and R3 are linearly inde-
pendent. Indeed, multiplying the first member and second member of (2.46) respectively by b2
and −a2 and adding the results yields that R2 and R4 are linearly dependent, and consequently
the equations (2.44) and (2.45) imply that R1 and R3 are linearly dependent, a contradiction.

Solving the system (2.44)–(2.45) for R2 and R4 and comparing with (2.46) yields

a1 = − C4

C1C4 − C2C3
, a2 =

C3

C1C4 − C2C3
,

b1 =
C2

C1C4 − C2C3
, b2 = − C1

C1C4 − C2C3
.

Using these equalities we find a1b2−a2b1 = 1/(C1C4−C2C3), and since a1b2−a2b1 6= 0, C1C4−
C2C3 is uniquely expressed in terms of a1b2−a2b1 and hence we can write the unique solution as

C1 = − b2
a1b2 − a2b1

, C2 =
b1

a1b2 − a2b1
,

C3 =
a2

a1b2 − a2b1
, C4 = − a1

a1b2 − a2b1
.

Next, assume that R1 and R2 are linearly independent and thus from (2.44) we necessarily
have

C3 6= 0.

So there exist unique constants a1, a2, b1, and b2 such that

R3 = a1R1 + a2R2, and R4 = b1R1 + b2R2. (2.47)

Note that b1 = 0 contradicts our assumption that R1 and R2 are linearly independent, because
then R4 = b2R2 and substitution into (2.44) yields R1 = −(C1 + b2C3)R2, contrary to our
assumption. Solving the system (2.44)–(2.45) for R3 and R4 and comparing with (2.47) yields
the equalities:

a1 =
C4

C3
, a2 =

C4C1 − C2C3

C3
,

b1 = − 1

C3
, b2 = −C1

C3
.

These relationships yield the unique solution for the system (2.44)–(2.45), because C3 is uniquely
determined from b1 (since b1 6= 0), then C1 is uniquely determined from C3 and b2, and simulta-
neously C4 is uniquely determined from C3 and a1, and finally C2 is uniquely determined from
C3, C1, C4 and a2. Thus, we can write the unique solution as

C1 =
b2
b1
, C2 =

a1b2 − b1a2

b1
,

C3 = − 1

b1
, C4 = −a1

b1
.

Among the four remaining cases,the argument for each of the following three:

� R1 and R4 are linearly independent,

� R2 and R3 are linearly independent, or

� R3 and R4 are linearly independent,
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is similar to the one presented above for linear independence of R1 and R2 and thus we do not
provide the details here. Finally, for the case where R2 and R4 are linearly independent, we
refer to Lemma 2.7 where we prove the stronger assertion that the system (2.31) is uniquely
solvable. �

Lemma 2.9. Suppose that the solution of the X -RHP exists. Then, if at least one of the
conditions (2.35) through (2.40) holds, one can uniquely reconstruct the solution of the Y-RHP.

Proof. If the solution of the X -RHP exists, then the expression for P (n) can be found from

P (n) = X (z;n)


1 0 0 0
0 zn 0 0
0 0 1 0
0 0 0 z−n


∣∣∣∣∣∣∣∣
z=0

, (2.48)

and due to our assumption, the constants Cj(n) can be uniquely found according to Lemma 2.7.

Then, according to (2.29) and (2.30) we find the solution to the
◦
X -RHP as

◦
X (z;n) =

(
1 C1(n) 0 C3(n)
0 C2(n) 1 C4(n)

)
X (z;n). (2.49)

Because, if it exists, the solution of the X -RHP is unique (recall Remark 2.4), we note that (2.49)

is the unique solution of the
◦
X -RHP. Indeed, suppose that

◦
X
′

is another solution of the same
◦
X -RHP. Put

R′(z;n) :=
◦
X ′(z;n)X−1(z;n).

Then, as with R(z;n) before, we will arrive to the conclusion that

R′(z;n) ≡
(

1 C ′1(n) 0 C ′3(n)
0 C ′2(n) 1 C ′4(n)

)
,

where the constants C ′j(n) satisfy the system (2.31). Since the solution of this system is unique
according to Lemma 2.8, we conclude that R′(z;n) = R(z;n) and, hence,

◦
X
′
(z;n) =

◦
X (z;n).

Now, observe that the symmetry relation (2.26) implies

◦
X
(
z−1;n

)
=
◦
X (z;n)W. (2.50)

Indeed, we have

◦
X
(
z−1;n

)
= R(n)X (z−1;n) = R(n)P (n)WX (z;n)W.

But, by (2.41), R(n)P (n)W = R(n), therefore

◦
X
(
z−1;n

)
= R(n)X (z;n)W =

◦
X (z;n)W.

Now, by
◦
X (j), j = 1, 2, 3, 4 denote the columns of the 2 × 4 matrix

◦
X . Equation (2.50) means

that

◦
X

(2)

(z;n) =
◦
X

(1)(
z−1;n

)
, and

◦
X

(4)

(z;n) =
◦
X

(3)(
z−1;n

)
.
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In other words, the matrix valued function
◦
X can be written in the form (2.19), i.e.,

◦
X (z;n) =

(
Y(1)(z;n), Ỹ(1)(z;n),Y(2)(z;n), Ỹ(2)(z;n)

)
,

with

Y(1)(z;n) :=
◦
X

(1)

(z;n), and Y(2)(z;n) :=
◦
X

(3)

(z;n).

Furthermore, the 2× 2 matrix valued function

Y(z;n) :=
(
Y(1)(z;n),Y(2)(z;n)

)
,

will be a solution of the 2× 2 Y-RHP. From the unique solvability of the
◦
X -RHP, it follows that

this solution of the Y-RHP is unique. Because otherwise, if Y ′ is another solution of the Y-RHP,

via (2.19) we can construct another solution of the
◦
X -RHP on the contrary. �

The following corollary is the direct consequence of Corollary 2.2 and Lemma 2.9.

Corollary 2.10. Suppose that the solution of the X -RHP exists for n and n−1, then if at least
one of the conditions (2.35) through (2.40) holds also for n and n− 1, then we have

Dn 6= 0, Dn−1 6= 0, and hn−1 6= 0.

Moreover,

hn−1 = − lim
z→∞

zn−1/Y21(z;n). (2.51)

2.3 The primary opening of the lenses

Let us consider the contour Γ := Γi ∪ T ∪ Γo shown in Fig. 1. Define the function Z as

Z(z;n) := X (z;n)


J−1
X ,i(z), z ∈ Ω1,

JX ,o(z), z ∈ Ω2,

I, z ∈ Ω0 ∪ Ω∞,

where JX ,i and JX ,o are defined in the following factorization for the jump matrix of the X -RHP,
which we denote by JX :

JX (z) :=


1 0 w̃(z) −φ(z)

0 1 φ̃(z) −w(z)
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 −w(z)
0 0 1 0
0 0 0 1




1 0 0 −φ(z)

0 1 φ̃(z) 0
0 0 1 0
0 0 0 1



×


1 0 w̃(z) 0
0 1 0 0
0 0 1 0
0 0 0 1

 ≡ JX ,o(z)JX ,T(z)JX ,i(z). (2.52)

We remind that the symbol w, and hence w̃, are analytic in the neighborhood U0 (cf. (1.7)) of T
which is supposed to include the domains Ω1 and Ω2.

The function Z satisfies the following Riemann–Hilbert problem:

� RH-Z1 Z is holomorphic in C \ (Γ ∪ {0}).
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0

Ω1

Ω2

Γo T Γi

Ω0

Ω∞

Figure 1. The jump contour Γ for the Z, T and the global parametrix Riemann–Hilbert problems.

� RH-Z2 Z+(z;n) = Z−(z;n)JZ(z), where

JZ(z) =


JX ,T(z), z ∈ T,
JX ,i(z), z ∈ Γi,

JX ,o(z), z ∈ Γo.

� RH-Z3 As z →∞ we have

Z(z;n) =
(
I +O

(
z−1
))

zn 0 0 0
0 1 0 0
0 0 z−n 0
0 0 0 1

.

� RH-Z4 As z → 0 we have

Z(z;n) = P (n)(I +O(z))


1 0 0 0
0 z−n 0 0
0 0 1 0
0 0 0 zn

.

Remark 2.11. The term “opening of the lenses” is usually used to describe situations where the
jump matrix on the added contours is exponentially close to the identity matrix for large values
of the parameter n. The passage T 7→ Γ, corresponding to the RH transformation X 7→ Z,
is clearly not of this type. However, our secondary opening of the lenses (the passage Γ 7→ ΓS
which corresponds to the RH transformation T 7→ S) in Section 2.5 is an example of a usual
opening of the lenses.

Remark 2.12. The primary opening of the lenses is essential for the progression of the RH
analysis in the following sections. This is due to a technical reason that will be elaborated
at the end of next section. Since the structure of jump matrices is different in Section 3, we do
not have an analogous step when the Hankel symbol is supported on [a, b], 0 < a < b < 1.
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2.4 Normalization of behaviours at 0 and ∞

Following the natural steps of Riemann–Hilbert analysis, we will normalize the behavior of Z
at 0 and ∞; to this end let us define

T (z;n) := Z(z;n)




z−n 0 0 0

0 1 0 0

0 0 zn 0

0 0 0 1

, |z| > 1,


1 0 0 0

0 zn 0 0

0 0 1 0

0 0 0 z−n

, |z| < 1.

(2.53)

It is very important to note that in order to have a suitable Riemann–Hilbert analysis, the
normalization of behaviors at 0 and∞ can only be carried out only after the undressing X 7→ Z;
this is due to technical reasons that will be further commented about at the end of this section.
We have the following RHP for T :

� RH-T1 T is holomorphic in C \ (T ∪ Γi ∪ Γo).

� RH-T2 T+(z;n) = T−(z;n)JT (z;n), where

JT (z;n) =


Ĵ(z;n), z ∈ T,
JX ,i(z), z ∈ Γi,

JX ,o(z), z ∈ Γo,

where Ĵ(z;n) =


zn 0 0 −φ(z)

0 zn φ̃(z) 0
0 0 z−n 0
0 0 0 z−n

, (2.54)

and the matrices JX ,i and JX ,o are defined by (2.52).

� RH-T3 As z →∞, we have T (z;n) =
(
I +O

(
z−1
))

.

We observe that for z ∈ T, JT can be factorized as follows

Ĵ(z;n) =

(
I2 02

z−nΦ−1(z) I2

)(
02 Φ(z)

−Φ−1(z) 02

)(
I2 02

znΦ−1(z) I2

)
≡ JT,o(z;n)

◦
J(z)JT,i(z;n), (2.55)

where 02 and I2 are respectively 2× 2 zero and identity matrices and

Φ(z) =

(
0 −φ(z)

φ̃(z) 0

)
.

Note that JT,i is exponentially close to the identity matrix for z inside of the unit circle and JT,o
is exponentially close to the identity matrix for z outside of the unit circle.

Now we are in a position to address Remark 2.12 in the previous section. Indeed, if one
normalizes the behaviors at 0 and ∞ without the undressing transformation X 7→ Z; i.e.,
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by directly defining the function T as

T (z;n) := X (z;n)




z−n 0 0 0

0 1 0 0

0 0 zn 0

0 0 0 1

, |z| > 1,


1 0 0 0

0 zn 0 0

0 0 1 0

0 0 0 z−n

, |z| < 1.

Then the jump matrix JT := T −1
− T+ on the unit circle would be

JT (z;n) =


zn 0 znw̃(z) −φ(z)

0 zn φ̃(z) −z−nw(z)
0 0 z−n 0
0 0 0 z−n

,
for which finding a factorization like (2.55) remains a challenge, mainly due to presence of the
large parameter n in the 13 and 24 elements of JT . This fact justifies the necessity of the
undressing step X 7→ Z. Indeed, due to the specific matrix structure of the jump matrices JX ,i
and JX ,o they do not change under the transformation (2.53).

2.5 The secondary opening of the lenses

The next Riemann–Hilbert transformation T 7→ S, provides us with a problem with jump
conditions on five contours where three jump matrices do not depend on n and the other two
converge exponentially fast to the identity matrix as n → ∞. Let us define the function S,
suggested by (2.55), as

S(z;n) := T (z;n)×


J−1
T,i (z;n), z ∈ Ω′1,

JT,o(z;n), z ∈ Ω′2,

I, z ∈ Ω′′1 ∪ Ω′′2 ∪ Ω0 ∪ Ω∞,

where the regions Ω′1, Ω′2, Ω′′1 and Ω′′2 are shown in Fig. 2. We have the following Riemann–Hilbert
problem for S

� RH-S1 S is holomorphic in C \ (T ∪ Γi ∪ Γo ∪ Γ′i ∪ Γ′o).

� RH-S2 S+(z;n) = S−(z;n)JS(z;n), where

JS(z;n) =



◦
J(z), z ∈ T,
JT,i(z;n), z ∈ Γ′i,

JT,o(z;n), z ∈ Γ′o,

JX ,i(z), z ∈ Γi,

JX ,o(z), z ∈ Γo.

� RH-S3 As z →∞, we have S(z;n) = I +O
(
z−1
)
.
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0

Ω′1

Ω′′1

Ω′′2
Ω′2

Γo Γ′o T ΓiΓ′i

Ω0

Ω∞

Figure 2. The jump contour ΓS of the S-RHP.

In the usual way, we will first try to solve this Riemann–Hilbert problem by disregarding

the jump matrices which depend on n, this solution is denoted by
◦
S and will be referred to as

the global parametrix. Once we construct the global parametrix, we will consider the small-

norm Riemann–Hilbert problem for the ratio R := S(
◦
S)−1 and discuss its solvability in the

forthcoming sections.

2.6 The global parametrix and the model Riemann–Hilbert problem
for the pair (φ,w)

The S-RHP reduces to the following Riemann–Hilbert problem for the global parametrix
◦
S,

when we ignore the jump matrices which are exponentially close to the identity matrix:

� RH-
◦
S1

◦
S is holomorphic in C \ (T ∪ Γi ∪ Γo).

� RH-
◦
S2

◦
S+(z) =

◦
S−(z)J◦

S
(z), where

J◦
S

(z) =


◦
J(z), z ∈ T,
JX ,i(z), z ∈ Γi,

JX ,o(z), z ∈ Γo.

� RH-
◦
S3 As z →∞, we have

◦
S(z) = I +O

(
z−1
)
.

And we finally dress the
◦
S-RHP to obtain a model problem for the global parametrix having

jumps only on the unit circle. We define the function Λ as

Λ(z) :=
◦
S(z)×


JX ,i(z), z ∈ Ω1,

J−1
X ,o(z), z ∈ Ω2,

I, z ∈ Ω0 ∪ Ω∞.

(2.56)
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Now we arrive at the following Riemann–Hilbert problem for Λ that from now on we will refer
to as the model Riemann–Hilbert problem for the pair (φ,w):

� RH-Λ1 Λ is holomorphic in C \ T.

� RH-Λ2 Λ+(z) = Λ−(z)JΛ(z), for z ∈ T, where

JΛ(z) =



0 0 0 −φ(z)

−w(z)

φ(z)
0 φ̃(z)− w(z)w̃(z)

φ(z)
0

0 − 1

φ̃(z)
0 0

1

φ(z)
0

w̃(z)

φ(z)
0


.

� RH-Λ3 As z →∞, we have Λ(z) = I +O
(
z−1
)
.

The conditions on w and φ which ensure the solvability of this model problem are not com-
pletely known and categorized at this point. We also want to stress that the appearance of
the 4 × 4 model Λ-problem in the asymptotic analysis of the original X -RHP is the crucial
difference of the Toeplitz+Hankel case we consider in this work comparing to the pure Toeplitz
or pure Hankel or Toeplitz+Hankel with the same symbols cases. Indeed, even if the pair
(φ,w) is such that the Λ-RHP is solvable it does not mean that it is explicitly solvable. Hence,
one should not expect the closed form of the asymptotic answer in the case of the generic
pair (φ,w).4 However, in Section 4 we will present a detailed analysis of this model problem
for a specific family of pairs (φ,w) within the broader class of Toeplitz and Hankel weights
considered by E. Basor and T. Ehrhardt in [2] for which the model Λ-problem is explicitly
solvable.

Remarkably, we arrive at the same model Λ-Riemann–Hilbert problem, if we start with
a Hankel weight supported on the interval [a, b], 0 < a < b < 1. This will be shown in the next
section.

3 Toeplitz+Hankel determinants: Hankel weight supported
on the interval [a, b], 0 < a < b < 1

In this section we consider the determinant (1.3) where wk exist and are given by (1.2), with
I = [a, b], 0 < a < b < 1. We further assume that w does not have Fisher–Hartwig singularities
(see [10, 11, 19], or [20] for instances of Fisher–Hartwig singularities on the real line). Let us
again assume that the symbol φ is of Szegő-type. The Riemann–Hilbert approach outlined in
this section can be naturally extended to the three other cases: i) −1 < a < b < 0, ii) −∞ <
a < b < −1, and iii) 1 < a < b < ∞. We consider the system of orthogonal polynomials
{Pn(z)}, degPn(z) = n, satisfying the following orthogonality conditions∫ b

a
Pn(x)xk+sw(x) dx+

∫
T
Pn(z)z−k−rφ(z)

dz

2πiz
= hnδn,k, k = 0, 1, . . . , n. (3.1)

One can write a determinantal formula for Pn like in (2.2), which yields

hn =
Dn+1(φ,w; r, s)

Dn(φ,w; r, s)
.

4In this respect the Toeplitz+Hankel determinants with generic symbols are similar to the block Toeplitz
determinants, where the explicit answers can be obtained only in two cases: (a) the Fourier expansion of the
corresponding matrix symbol is one side truncated or (b) one can produce an explicit Wiener–Hopf factorization
of the symbol.
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By similar considerations as those mentioned in Section 2, the orthogonal polynomials Pn exist
and are unique if Dn 6= 0. Now, assuming that Dn, Dn−1 6= 0, we consider the function Y
defined as

Y (z;n)=


Pn(z)

∫ b

a

Pn(x)xsw(x)

x− z
dx+

∫
T

φ̃(ξ)ξrP̃n(ξ)

ξ − z
dξ

2πiξ

−Pn−1(z)

hn−1
− 1

hn−1

{∫ b

a

Pn−1(x)xsw(x)

x− z
dx+

∫
T

φ̃(ξ)ξrP̃n−1(ξ)

ξ − z
dξ

2πiξ

}
, (3.2)

built from the orthogonal polynomials Pn satisfying (3.1). Consider the following Riemann–
Hilbert problem for finding the 2× 2 matrix Y satisfying

� RH-Y1 Y is holomorphic in C \ (T ∪ [a, b]).

� RH-Y2 For z ∈ T we have

Y
(1)

+ (z;n) = Y
(1)
− (z;n),

and

Y
(2)

+ (z;n) = Y
(2)
− (z;n) + zr−1φ̃(z)Y

(1)
−
(
z−1;n

)
.

� RH-Y3 For x ∈ (a, b) we have

Y
(1)

+ (x;n) = Y
(1)
− (x;n),

and

Y
(2)

+ (x;n) = Y
(2)
− (x;n) + 2πixsw(x)Y

(1)
− (x;n).

� RH-Y4 As z →∞

Y (z;n) =

(
I +O

(
1

z

))
znσ3 =

(
zn +O

(
zn−1

)
O
(
z−n−1

)
O
(
zn−1

)
z−n +O

(
z−n−1

)),
where Y (1) and Y (2) are the first and second columns of Y , respectively. We have the analogue
of Theorem 2.1 here as well.

Theorem 3.1. The following statements are true.

1. Suppose that Dn, Dn−1 6= 0. Then, the Riemann–Hilbert problem RH-Y 1 through RH-Y 4
is uniquely solvable and its solution Y is defined by (3.2). Moreover,

hn−1 = − lim
z→∞

zn−1/Y21(z;n).

2. Suppose that the Riemann–Hilbert problem RH-Y 1 through RH-Y 4 has a unique solution.
Then Dn 6= 0, rank(Tn−1[φ; r] +Hn−1[w; s]) ≥ n− 2, and Pn(z) = Y11(z;n).

3. Suppose that the Riemann–Hilbert problem RH-Y 1 through RH-Y 4 has a unique solution.
Suppose also that

lim
z→∞

Y21(z;n)z−n+1 6= 0.

Then, as before, Dn 6= 0, Pn(z) = Y11(z;n), and, in addition,

Dn−1 6= 0, hn−1 = − lim
z→∞

Y−1
21 (z;n)zn−1, Pn−1(z) = −hn−1Y21(z;n).
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0 a b b−1 a−1
T

Figure 3. The jump contour Σ.

We omit the proof here as it is similar to the proof of Theorem 2.1.

Corollary 3.2. Suppose that the Y -RH problem has a unique solution for n and n− 1. Then

Dn 6= 0, Dn−1 6= 0, and hn−1 6= 0.

Moreover,

hn−1 = − lim
z→∞

zn−1/Y21(z;n).

3.1 The associated 2× 4 and 4× 4 Riemann–Hilbert problems

The formulation of the 2 × 4 and 4 × 4 Riemann–Hilbert problems are very similar to those
of Section 2.1, however there are minor differences that convinces us to practice clarity in our
exposition. Let us consider the following 2 × 4 matrix function, constructed from the columns
of Y given by (3.2):

◦
X(z;n) :=

(
Y (1)(z;n), Ỹ (1)(z;n), Y (2)(z;n), Ỹ (2)(z;n)

)
. (3.3)

Let us define Σ := T ∪ [a, b] ∪
[
b−1, a−1

]
, and Σ′ := Σ \

{
a, b, b−1, a−1

}
.
◦
X(z;n) satisfies the

following Riemann–Hilbert problem

� RH-
◦
X1

◦
X is analytic in C \ (Σ ∪ {0}),

� RH-
◦
X2 For z ∈ Σ′, we have

◦
X+(z;n) =

◦
X−(z;n)J ◦

X
(z), where

J ◦
X

(z) =




1 0 0 −z−r+1φ(z)

0 1 zr−1φ̃(z) 0

0 0 1 0

0 0 0 1

, z ∈ T,


1 0 2πixsw(x) 0

0 1 0 0

0 0 1 0

0 0 0 1

, z ≡ x ∈ (a, b),


1 0 0 0

0 1 0 −2πix−sw̃(x)

0 0 1 0

0 0 0 1

, z ≡ x ∈
(
b−1, a−1

)
.
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� RH-
◦
X3 As z →∞

◦
X(z;n) =

(
1 +O

(
z−1
)

E1(n) +O
(
z−1
)

O
(
z−1
)

E3(n) +O
(
z−1
)

O
(
z−1
)

E2(n) +O
(
z−1
)

1 +O
(
z−1
)

E4(n) +O
(
z−1
))

×


zn 0 0 0
0 1 0 0
0 0 z−n 0
0 0 0 1

.

� RH-
◦
X4 As z → 0

◦
X(z;n)=

(
E1(n) +O(z) 1 +O(z) E3(n) +O(z) O(z)
E2(n) +O(z) O(z) E4(n) +O(z) 1 +O(z)

)
1 0 0 0
0 z−n 0 0
0 0 1 0
0 0 0 zn

,

where

E1(n) = Y11(0;n), E3(n) = Y12(0;n),

E2(n) = Y21(0;n), E4(n) = Y22(0;n).

It is straightforward to check that
◦
X given by (3.3) and (3.2) satisfies the Riemann–Hilbert

problem RH-
◦
X1 through RH-

◦
X4.

One of the differences between the case when the Hankel symbol is supported on the unit
circle versus the case when it is supported on the interval [a, b], is discussed in the follow-
ing remark about the values of offsets that can be handled without much difficulty in each
case.

Remark 3.3. Let u be defined by

u(z) := z

∫ b

a

ts−1w(t)

t− z
dt. (3.4)

When the Hankel symbol is supported on the interval, the natural progression of the Riemann–
Hilbert analysis with general offset values r, s ∈ Z, finally requires us to construct Szegő functions
for the functions f1(z) = zr−1φ(z) and f2(z) = ũ(z) (Compare with Remark 2.3). Note that the
function u given by (3.4) (and ũ) has no winding number for all s ∈ Z. Therefore, in this work
it seems natural for us to focus on the determinants of the type Dn(φ,w; 1, s), in view of the
points mentioned above and in Remark 2.3.

Similar to our approach in Section 2.1, we introduce the following Riemann–Hilbert problem
of finding the 4× 4 matrix function X satisfying:

� RH-X1 X is analytic in C \ (Σ ∪ {0}).
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� RH-X2 For z ∈ Σ′, we have X+(z;n) = X−(z;n)JX(z), where

JX(z) =




1 0 0 −φ(z)

0 1 φ̃(z) 0

0 0 1 0

0 0 0 1

, z ∈ T,


1 0 2πixsw(x) 0

0 1 0 0

0 0 1 0

0 0 0 1

, z ≡ x ∈ (a, b),


1 0 0 0

0 1 0 −2πix−sw̃(x)

0 0 1 0

0 0 0 1

, z ≡ x ∈
(
b−1, a−1

)
,

(3.5)

that is, JX is exactly equal to J ◦
X

when r = 1.

� RH-X3 As z →∞

X(z;n) =
(
I +O

(
z−1
))

zn 0 0 0
0 1 0 0
0 0 z−n 0
0 0 0 1

.
� RH-X4 As z → 0

X(z;n) = Q(n)(I +O(z))


1 0 0 0
0 z−n 0 0
0 0 1 0
0 0 0 zn

, (3.6)

where we emphasize that the matrix factor Q(n) in (3.6) is not a priori prescribed. Now we are
going to briefly mention some facts about this Riemann–Hilbert problem which are similar to
those of the X -RHP. Using the usual Liouville theorem-based arguments one can easily show
that the solution of X-RHP is unique, if it exists. Also, without much difficulty one can show
that the function WP−1(n)X

(
z−1;n

)
W is also a solution of the X-RHP, and thus due to the

uniqueness of the solution, we get the symmetry relation

WP−1(n)X
(
z−1;n

)
W = X (z;n), (3.7)

where W is given by (2.27). Equation (3.7) yields the following symmetry equation for Q(n),

Q(n) = WQ−1(n)W,

or,

(WQ(n))2 = (Q(n)W )2 = I4.

Exact similar argument used in Remark 2.6 proves that the matrix Q(n)W − I4 has rank 2.

Here we also have the relationship between
◦
X and X given by

◦
X(z;n) =

(
1 E1(n) 0 E3(n)
0 E2(n) 1 E4(n)

)
X(z;n),
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and moreover,(
1 E1(n) 0 E3(n)
0 E2(n) 1 E4(n)

)
=

(
E1(n) 1 E3(n) 0
E2(n) 0 E4(n) 1

)
Q−1(n). (3.8)

Since this is exactly the system (2.31), where Cj(n) and P (n) are respectively replaced by Ej(n)
and Q(n), 1 ≤ j ≤ 4, and because P (n) and Q(n) enjoy the same symmetry and rank properties,
we readily have the following statements, whose counterparts are already proven in Section 2.

Lemma 3.4. Let Qjk(n), 1 ≤ j, k ≤ 4, be the entries of the matrix Q(n). Assume that at least
one of the following six inequalities is true,

Q22(n)Q44(n)−Q42(n)Q24(n) 6= 0, (3.9)

(1−Q21(n))Q42(n) +Q22(n)Q41(n) 6= 0, (3.10)

(1−Q43(n))Q22(n) +Q23(n)Q42(n) 6= 0, (3.11)

(1−Q21(n))Q44(n) +Q41(n)Q24(n) 6= 0, (3.12)

(1−Q21(n))(Q43(n)− 1) +Q41(n)Q23(n) 6= 0, (3.13)

(1−Q43(n))Q24(n) +Q23(n)Q44(n) 6= 0. (3.14)

Then, the system (3.8) is a well-defined linear system on Ej(n) which is uniquely solvable.

Lemma 3.5. If the system (3.8) has a solution, it has to be unique.

Lemma 3.6. Suppose that the solution of the X-RHP exists. Then, if at least one of the
conditions (3.9) through (3.14) holds, one can uniquely reconstruct the solution of the Y -RHP.

Corollary 3.7. Suppose that the solution of the X-RHP exists for n and n− 1, then if at least
one of the conditions (3.9) through (3.14) also holds for n and n− 1, then we have

Dn 6= 0, Dn−1 6= 0, and hn−1 6= 0,

where hn−1 can be reconstructed form the RHP data as

hn−1 = − lim
z→∞

zn−1/Y21(z;n).

3.2 Normalization of behaviors at 0 and ∞

Unlike the situation in Section 2 where we had to make the transformation X 7→ Z before
normalization of behaviors at zero and infinity, when the Hankel symbol is supported on the
interval [a, b] we can immediately normalize the asymptotic behaviors at 0 and infinity, due to
the desired structure of jump matrices. Indeed, it is natural to define

T (z;n) := X(z;n)




z−n 0 0 0

0 1 0 0

0 0 zn 0

0 0 0 1

, |z| > 1,


1 0 0 0

0 zn 0 0

0 0 1 0

0 0 0 z−n

, |z| < 1.

(3.15)

The function T satisfies the following Riemann–Hilbert problem:
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0 a b b−1 a−1
TΣo Σi

Ω0

Ω1

Ω2

Ω∞

Figure 4. The jump contour ΣS ≡ Σ ∪ Σo ∪ Σi of the S-RHP.

� RH-T1 T is holomorphic in C \ Σ.

� RH-T2 For z ∈ Σ′, we have T+(z;n) = T−(z;n)JT (z;n), where

JT (z;n) =

{
Ĵ(z;n), z ∈ T,
JX(z), z ∈ (a, b) ∪

(
b−1, a−1

)
.

We recall that Ĵ is given by (2.54) and the matrices JX for z ∈ (a, b) and z ∈
(
b−1, a−1

)
are given by (3.5).

� RH-T3 As z →∞, we have T (z;n) =
(
I +O

(
z−1
))

.

We bring the reader’s attention to the fact that the transformation (3.15) does not change the
jump matrices JX .

3.3 Opening of the lenses

Using (2.55), we open the lenses off the unit circle as shown in the Fig. 4 and we define

S(z;n) := T (z;n)×


J−1
T,i (z;n), z ∈ Ω1,

JT,o(z;n), z ∈ Ω2,

I, z ∈ C \
(
Ω1 ∪ Ω2 ∪ [a, b] ∪

[
b−1, a−1

])
,

where JT,i and JT,o are defined in (2.55). Let ΣS ≡ Σ ∪ Σo ∪ Σi and Σ′S ≡ Σ′ ∪ Σo ∪ Σi (see
Fig. 4). It is straightforward to check that S satisfies the following Riemann–Hilbert problem

� RH-S1 S is holomorphic in C \ ΣS ,

� RH-S2 For z ∈ Σ′S we have S+(z;n) = S−(z;n)JS(z;n), where

JS(z;n) =



◦
J(z), z ∈ T,
JT,i(z;n), z ∈ Σi,

JT,o(z;n), z ∈ Σo,

JX(z), z ∈ (a, b) ∪
(
b−1, a−1

)
,

where these matrices are defined in (2.55) and (3.5).

� RH-S3 As z →∞, we have S(z;n) = I +O
(
z−1
)
.
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3.4 The global parametrix and a model Riemann–Hilbert problem

Let us consider the following Riemann–Hilbert for
◦
S, or the global parametrix, which is expected

to be a good approximation to S for large parameter n. This RHP is simply obtained from the
S-RHP by ignoring the jumps on Σi and Σo:

� RH-
◦
S1

◦
S is holomorphic in C \ Σ (see Fig. 3).

� RH-
◦
S2 For z ∈ Σ′, we have

◦
S+(z) =

◦
S−(z)J◦

S
(z), where

J◦
S

(z) =

{ ◦
J(z), z ∈ T,
JX(z), z ∈ (a, b) ∪

(
b−1, a−1

)
.

� RH-
◦
S3 As z →∞, we have

◦
S(z) = I +O

(
z−1
)
.

Let us recall the function u defined in Remark 3.3:

u(z) = z

∫ b

a

ts−1w(t)

t− z
dt.

The Plemelj–Sokhotskii formula implies that

u+(x)− u−(x) = 2πixsw(x), x ∈ (a, b),

ũ+(x)− ũ−(x) = −2πix−sw̃(x), x ∈
(
b−1, a−1

)
.

Put

Θ(z) :=
◦
S(z)




1 0 −u(z) 0

0 1 0 0

0 0 1 0

0 0 0 1

, |z| < 1,


1 0 0 0

0 1 0 −ũ(z)

0 0 1 0

0 0 0 1

, |z| > 1.

It can be checked that Θ does not have jumps on the intervals (a, b) and
(
b−1, a−1

)
. We have

arrived at the following model Riemann–Hilbert problem on the unit circle:

� RH-Θ1 Θ is holomorphic in C \ T.

� RH-Θ2 Θ+(z) = Θ−(z)JΘ(z), for z ∈ T, where

JΘ(z) =



0 0 0 −φ(z)
ũ(z)

φ(z)
0 φ̃(z)− u(z)ũ(z)

φ(z)
0

0 − 1

φ̃(z)
0 0

1

φ(z)
0 −u(z)

φ(z)
0


.
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� RH-Θ3 As z →∞, we have Θ(z) = I +O
(
z−1
)
,

where, in RH-Θ3 we have used the fact that ũ(∞) = u(0) = 0.

Remark 3.8. Recalling Section 2.6, we note that this is exactly the model Riemann–Hilbert
problem for the pair (φ,−ũ). Hence, it can be concluded that the study of the Toeplitz+Hankel
determinants both when the Hankel symbol is supported on the unit circle and also when it is
supported on the interval [a, b], reduces to the study of the model Riemann–Hilbert problem
RH-Λ1 through RH-Λ3.

For a specific class of symbols φ and w, we will present the solution to the model Riemann–
Hilbert problem RH-Λ1 through RH-Λ3 for the pair (φ,w) in the next section.

4 Analysis of the model problem and a solvable pair

As mentioned before, it is an ambitious task to classify all the pairs (φ,w) for which the Λ-model
Riemann–Hilbert problem is solvable. However, it is reasonable to start our analysis with the
class of symbols (1.4) considered in [2]. Since in our work the symbols are not assumed to be
of the Fisher–Hartwig type (which needs a more delicate treatment, see Section 5.4), we should
still expect that the model Riemann–Hilbert problem be solvable for the class of symbols (1.4)
when there is no Fisher–Hartwig singularity(a0(z) = b0(z) ≡ 1). Indeed this is the case as will
be elaborated in this section. As commented in the beginning of Section 2.1, asymptotics of
Dn(φ, dφ; r, s), for general r and s requires a more delicate approach (see Section 5.2) and we
do not discuss the details here. So let us consider Dn(φ, dφ; 1, 1), where d is of Szegő-type and
further satisfies the condition d(z)d̃(z) = 1 on the unit circle. For instance, a class of functions
satisfying these conditions is given by

d(z) =
m∏
j=1

dj(z), dj(z) = ±
(
z − bj
z − aj

)αj
(
ajz − 1

bjz − 1

)αj

, (4.1)

where αj ∈ C, all factors are defined by their principal branch, and

0 < a1 < b1 < a2 < b2 < · · · < am < bm < 1.

Note that a similar construction can be found for −1 < bm < am < · · · < b1 < a1 < 0,
and thus a larger class of functions can be found from multiplying functions of the first class
with those of the second class. Although we have a class of functions satisfying the required
properties, a complete categorization of functions satisfying the four required properties for d
is yet to be found. We emphasize that the conditions d(±1) = 1 required in [2] do not play
a role in the Riemann–Hilbert analysis. Indeed, for d as defined in (4.1) one can check that
d(±1) = (−1)ε0 , where ε0 is the number of the dj-factors in whose definition the sign “−” is
taken. So in this sense we are considering functions d which are slightly more general than those
considered in [2]. At the same time, we have our technical assumption of analyticity of the
symbols in a neighborhood of the unit circle which is not needed in the analysis of [2].

Note that the condition dd̃ = 1 on the unit circle renders the 23-element of the jump matrix JΛ

zero; indeed

JΛ,23(z) = φ̃(z)− w(z)w̃(z)

φ(z)
= φ̃(z)

(
1− d(z)d̃(z)

)
= 0.
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Hence, for the particular choices made above, the jump matrix GΛ reduces to

JΛ(z) =


0 0 0 −φ(z)

−d(z) 0 0 0

0 − 1

φ̃(z)
0 0

1

φ(z)
0

w̃(z)

φ(z)
0

. (4.2)

In order to factorize JΛ, let us first consider the following Szegő functions

α(z) = exp

[
1

2πi

∫
T

ln(φ(τ))

τ − z
dτ

]
, β(z) = exp

[
1

2πi

∫
T

ln(d(τ))

τ − z
dτ

]
. (4.3)

By Plemelj–Sokhotskii formula α, β, α̃ and β̃ satisfy the following jump conditions on the unit
circle:

α+(z) = α−(z)φ(z), β+(z) = β−(z)d(z),

α̃−(z) = α̃+(z)φ̃(z), β̃−(z) = β̃+(z)d̃(z).
(4.4)

It turns out that knowing the value of β(0) is crucial for finding an asymptotic expression for hn
(see Section 4.2) and the condition dd̃ = 1 on the unit circle allows us to evaluate β(0) easily.
Indeed∫

T
ln(d(τ))

dτ

τ
=

∫
T

ln
(
d̃(τ)

) dτ

τ
=

∫
T

ln
(
d−1(τ)

) dτ

τ
= −

∫
T

ln(d(τ))
dτ

τ
.

Thus ∫
T

ln(d(τ))
dτ

τ
= 0, and therefore, β(0) = 1. (4.5)

Next, we show that β = β̃. Note that

β̃(z) = exp

[
1

2πi

∫
T

ln(d(τ))

τ − z−1
dτ

]
= exp

[
− z

2πi

∫
T

ln(d(τ))

τ−1 − z
dτ

τ

]
= exp

[
− z

2πi

∫
T

ln
(
d̃(τ)

)
τ − z

dτ

τ

]
= exp

[
z

2πi

∫
T

ln(d(τ))

τ − z
dτ

τ

]
,

where we have again used the fact that dd̃ ≡ 1 on the unit circle. Using

1

(τ − z)τ
=

z−1

τ − z
− z−1

τ
,

we can write the last expression for β̃ as

β̃(z) = exp

[
1

2πi

∫
T

ln(d(τ))

τ − z
dτ − 1

2πi

∫
T

ln(d(τ))

τ
dτ

]
=
β(z)

β(0)
= β(z),

by (4.5). To show that β = β̃ one could also argue that they both solve the same scalar
RHP which has a unique solution. We also note that α(z), β(z) = 1 + O(z−1), and α̃(z) =
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α(0)(1 +O(z−1)) as z → ∞. Now we can write the solution of the Λ-RHP (in the case dd̃ ≡ 1
on T) as

Λ(z) = Λ−1
∞


1 0 0 0
Cρ(z) 1 0 0

0 0 1 0
0 0 0 1

×




−β(z) 0 0 0

0 0
1

α̃(z)β(z)α(z)
0

0 −α̃(z) 0 0

0 0 0 −α(z)

, |z| < 1,


0 β(z) 0 0

0 0 0
1

β(z)α̃(z)α(z)

0 0 α̃(z) 0

α(z) 0 0 0

, |z| > 1,

(4.6)

where Cf (z) is the Cauchy-transform of f(z):

Cf (z) =
1

2πi

∫
T

f(τ)

τ − z
dτ,

and

Λ−1
∞ =


0 0 0 1
1 0 0 0

0 0
1

α(0)
0

0 α(0) 0 0

, ρ(z) = − 1

β−(z)β+(z)α̃−(z)α+(z)
. (4.7)

Using (4.4), the Plemelj–Sokhotskii formula and general properties of the Cauchy integral, it can
be checked that Λ given by (4.6) satisfies the Λ-RHP.

4.1 The small-norm Riemann–Hilbert problem associated to Dn(φ, dφ, 1, 1)

Let us consider

R(z;n) := S(z;n)
◦
S(z)−1.

This function clearly has no jumps on Γi, Γo and T, since S and
◦
S have the same jumps on

these contours. Thus, R satisfies the following small-norm Riemann–Hilbert problem

� RH-R1 R is holomorphic in C \ ΓR.

� RH-R2 R+(z;n) = R−(z;n)JR(z;n), for z ∈ ΓR.

� RH-R3 As z →∞, R(z;n) = I +O
(
z−1
)
,

where ΓR := Γ′i ∪ Γ′o, and JR is given by

JR(z;n) =
◦
S(z)JS(z;n)

◦
S(z)−1 =


◦
S(z)JT,i(z;n)

◦
S(z)−1, z ∈ Γ′i,

◦
S(z)JT,o(z;n)

◦
S(z)−1, z ∈ Γ′o.
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Using (4.6), (4.7), (2.56), (2.55) and (2.52) we find

JR(z;n)− I =



zn


0 g12(z) 0 g14(z)

0 0 g23(z) 0

0 0 0 0

0 0 g43(z) 0

, z ∈ Γ′i,

z−n


0 0 0 0

g21(z) 0 0 0

0 g32(z) 0 g34(z)

g41(z) 0 0 0

, z ∈ Γ′o,

(4.8)

where

g12(z) = − α(z)

φ(z)β(z)
− w̃(z)Cρ(z)

φ(z)β(z)α̃(z)
, g14(z) =

w̃(z)

φ(z)β(z)α̃(z)α(0)
,

g23(z) = −α(0)w̃(z)β(z)

φ̃(z)α̃(z)
, g43(z) = −α2(0)

(
α(z)β(z)

φ̃(z)
+
β(z)w̃(z)Cρ(z)

α̃(z)φ̃(z)

)
,

g21(z) =
w(z)β(z)

φ(z)α(z)
, g32(z) = − 1

α(0)φ̃(z)

(
α̃(z)

β(z)
− w(z)α̃2(z)β(z)α(z)Cρ(z)

)
,

g34(z) =
w(z)α̃2(z)β(z)α(z)

φ̃(z)α2(0)
, g41(z) = −α(0)

φ(z)

(
1

α̃(z)β(z)α2(z)
− w(z)β(z)Cρ(z)

α(z)

)
.

From (4.8) it follows that the jump matrix JR satisfies on ΓR the small-norm estimate,

||JR − I||L2∩L∞ ≤ Ce−cn, (4.9)

for some positive C and c = − log r1, where r1 is any number satisfying the condition r0 < r1 < 1
(see (1.7) and (1.8) for the definition and meaning of the number r0). Therefore, by standard
theory of small-norm Riemann–Hilbert problems [16, 17], there exists n∗ such that for all n > n∗
the R-RH problem is solvable and

R(z) = I +R1(z) +R2(z) +R3(z) + · · · , z ∈ C \ ΓR, n ≥ n∗,

where each Rk is of order O
(
e−kcn

)
and they can be found recursively from

Rk(z) =
1

2πi

∫
ΓR

[Rk−1(µ)]−(JR(µ)− I)

µ− z
dµ, z ∈ C \ ΓR, k ≥ 1. (4.10)

Note that this recurrence also means that

Rk+1(n) = o(Rk(n)), n→∞.

In particular,

R1(z;n) =
1

2πi

∫
ΓR

JR(µ;n)− I
µ− z

dµ

=


0 R1,12(z;n) 0 R1,14(z;n)

R1,21(z;n) 0 R1,23(z;n) 0
0 R1,32(z;n) 0 R1,34(z;n)

R1,41(z;n) 0 R1,43(z;n) 0

, (4.11)
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where

R1,jk(z;n) =
1

2πi

∫
Γ′i

µngjk(µ)

µ− z
dµ, jk = 12, 14, 23, 43,

R1,jk(z;n) =
1

2πi

∫
Γ′o

µ−ngjk(µ)

µ− z
dµ, jk = 21, 32, 34, 41.

(4.12)

Also from (4.10) we can write an expression for R2:

R2(z;n) =
1

2πi

∫
ΓR

[R1(µ;n)]−(JR(µ;n)− I)

µ− z
dµ

=


R2,11(z;n) 0 R2,13(z;n) 0

0 R2,22(z;n) 0 R2,24(z;n)
R2,31(z;n) 0 R2,33(z;n) 0

0 R2,42(z;n) 0 R2,44(z;n)

,
where

R2,kj(z;n) =



∑
`∈{2,4}

1

2πi

∫
Γ′o

µ−n[R1,k`(µ;n)]−g`j(µ)

µ− z
dµ, j = 1, k = 1, 3,

∑
`∈{2,4}

1

2πi

∫
Γ′i

µn[R1,k`(µ;n)]−g`j(µ)

µ− z
dµ, j = 3, k = 1, 3,

1

2πi

∫
Γ′i

µn[R1,k1(µ;n)]−g1j(µ)

µ− z
dµ

+
1

2πi

∫
Γ′o

µ−n[R1,k3(µ;n)]−g3j(µ)

µ− z
dµ, k, j = 2, 4.

Moreover, using (4.10) and a straightforward calculation one can justify that the matrix structure
(i.e., the location of zero and nonzero elements) of R2k+1 and R2k, k ≥ 1, are similar to that
of R1 and R2, respectively. It is also straightforward to show that

Rk,ij(z;n) =
O
(
e−kcn

)
|z|+ 1

, n→∞, k ≥ 1,

uniformly for z ∈ C \ ΓR, and the positive constant c is the same as in (4.9).

4.2 Asymptotics of hn

The analysis of the previous section shows that the X -RH problem has unique solution for all

n > n∗. We now proceed to the reconstruction of the corresponding functions
◦
X (z;n), Y(z;n),

and to the asymptotics of hn. To this end we need the asymptotic information about the
matrix P (n) which is needed to determine constants Cj that participate in equation (2.49).

Tracing back the Riemann–Hilbert transformations, we find that for z ∈ Ω0 we have

X (z;n) = R(z;n)Λ(z)


1 0 0 0
0 z−n 0 0
0 0 1 0
0 0 0 zn

. (4.13)

From (2.48) and (4.13) we conclude that

P (n) = R(0;n)Λ(0). (4.14)
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From (4.11) we arrive at the estimate

R(0;n) = I +R1(0;n) +O
(
e−2cn

)
=


1 R1,12(0;n) 0 R1,14(0;n)

R1,21(0;n) 1 R1,23(0;n) 0
0 R1,32(0;n) 1 R1,34(0;n)

R1,41(0;n) 0 R1,43(0;n) 1

+O
(
e−2cn

)
. (4.15)

Simultaneously, from (4.6) and (4.7) we have

Λ(0) =


0 0 0 −α(0)
−1 0 0 0

0 − 1

α(0)
0 0

−Cρ(0)α(0) 0 1 0

. (4.16)

Equations (4.14), (4.15) and (4.16) yield the following asymptotic formula for P (n),

P (n)=



−Cρ(0)α(0)R1,14(0;n)−R1,12(0;n) 0 R1,14(0;n) −α(0)

−1 −R1,23(0;n)

α(0)
0 −α(0)R1,21(0;n)

−Cρ(0)α(0)R1,34(0;n)−R1,32(0;n) − 1

α(0)
R1,34(0;n) 0

−Cρ(0)α(0) −R1,43(0;n)

α(0)
1 −α(0)R1,41(0;n)


+O

(
e−2cn

)
, (4.17)

as n→∞.
It is time now for the conditions of Lemma 2.7. We are not going to study each and every

condition of this lemma, rather as a case study we consider in particular the condition (2.36):

(1− P21(n))P42(n) + P22(n)P41(n) 6= 0. (4.18)

From (4.17) we have that

(1− P21(n))P42(n) + P22(n)P41(n) = −E(n) +O
(
e−2cn

)
, n→∞, (4.19)

where (cf. (1.6))

E(n) :=
2

α(0)
R1,43(0;n)− Cρ(0)R1,23(0;n). (4.20)

This is when we arrive at condition (1.9) of Theorem 1.1. Indeed, let us suppose that there exist
such C > 0 and n0 ≥ n∗ that

|E(n)| ≥ Crn, for some r : r0 ≤ r < 1, and n > n0,

and choose r1 in the definition of the constant c so that r < r1 < 1 and r2
1 < r. Then, estimate

(4.19) can be rewritten as

(1− P21(n))P42(n) + P22(n)P41(n) = −E(n)
(
1 +O

(
e−c1n

))
, n→∞, (4.21)

where c1 = − log
( r21
r

)
> 0. The last estimate in turn means that there exists such n1 ≥ n0

that for all n > n1 + 1 we should have that condition (4.18) holds for n and n − 1 and hence
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by Lemma 2.9 and Corollary (2.10), we can uniquely reconstruct the solution of the Y-RHP, hav-
ing already the unique solution of the X -RHP, and, moreover, we could use equation (cf. (2.51)),

− 1

hn−1
= lim

z→0
zn−1Y21

(
z−1;n

)
. (4.22)

for evaluation of the large n behavior of hn. Let us denote

A(z;n) := P−1(n)X (z;n)


1 0 0 0
0 zn 0 0
0 0 1 0
0 0 0 z−n

, (4.23)

and also let us define the matrix B(n) in the following expansion for A(z;n), which is equivalent
to RH-X4:

A(z;n) = I + B(n)z +O
(
z2
)
, z → 0. (4.24)

Therefore by (2.29), (2.30), (2.31) and (4.23) we can write

◦
X (z, n) =

(
C1(n) 1 C3(n) 0
C2(n) 0 C4(n) 1

)
A(z;n)


1 0 0 0
0 z−n 0 0
0 0 1 0
0 0 0 zn

. (4.25)

Using (2.19) and (4.25) we can write

Y21

(
z−1;n

)
=
◦
X 22(z;n) = C2(n)A12(z;n)z−n+ C4(n)A32(z;n)z−n+A42(z;n)z−n. (4.26)

From (4.24) we have

z−nA(z;n) = z−nI + z−n+1B(n) +O
(
z−n+2

)
, z → 0.

Therefore, as z → 0

z−nAij(z;n) =

{
z−n+1Bij(n) +O

(
z−n+2

)
, i 6= j,

z−n + z−n+1Bii(n) +O
(
z−n+2

)
, i = j.

(4.27)

Therefore by (4.22), (4.26) and (4.27) we have

− 1

hn−1
= C2(n)B12(n) + C4(n)B32(n) + B42(n). (4.28)

Let us denote the coefficients in the expansions of R(z;n) and Λ(z), as z → 0, by

R(z;n) = R(0;n) +R(1)(n)z +R(2)(n)z2 +O
(
z3
)
,

Λ(z) = Λ(0) + Λ(1)z + Λ(2)z2 +O
(
z3
)
.

From (4.24), (4.13), and (4.14) we have

B(n) = Λ−1(0)R−1(0;n)R(1)(n)Λ(0) + Λ−1(0)Λ(1). (4.29)

Note that

R(1)(n) =
1

2πi

∫
ΓR

(JR(µ;n)− I)
dµ

µ2
+O

(
e−2cn

)
, R−1(0;n) = I −R1(0;n) +O

(
e−2cn

)
,
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as n→∞. More precisely, we have

R(1)(n) =


0 R

(1)
12 (n) 0 R

(1)
14 (n)

R
(1)
21 (n) 0 R

(1)
23 (n) 0

0 R
(1)
32 (n) 0 R

(1)
34 (n)

R
(1)
41 (n) 0 R

(1)
43 (n) 0

+O
(
e−2cn

)
, (4.30)

as n→∞, where

R
(1)
jk (n) =

1

2πi

∫
Γ′i

µn−2gjk(µ) dµ, jk = 12, 14, 23, 43,

R
(1)
jk (n) =

1

2πi

∫
Γ′o

µ−n−2gjk(µ) dµ, jk = 21, 32, 34, 41,

(4.31)

and

R−1(0;n)=


1 −R1,12(0;n) 0 −R1,14(0;n)

−R1,21(0;n) 1 −R1,23(0;n) 0
0 −R1,32(0;n) 1 −R1,34(0;n)

−R1,41(0;n) 0 −R1,43(0;n) 1

+O
(
e−2cn

)
,

(4.32)

n→∞.

Regarding the coefficients of Λ(z), we will actually only need the zero-term, Λ(0), which has
already been presented in (4.16).

From (4.29), (4.30), (4.32) and (4.16) we find that

B12(n) =
R

(1)
23 (n)

α(0)
+O

(
e−2cn

)
, B32(n) = Cρ(0)R

(1)
23 (n)− R

(1)
43 (n)

α(0)
+O

(
e−2cn

)
,

B42(n) = − 1

α2(0)

(
R1,12(0;n)R

(1)
23 (n) +R1,14(0;n)R

(1)
43 (n)

)
+O

(
e−3cn

)
. (4.33)

Note that B12(n), B32(n) are of order O
(
e−cn

)
, while B42(n) is of order O

(
e−2cn

)
.

Revisiting (2.31) we have(
1 C1(n) 0 C3(n)
0 C2(n) 1 C4(n)

)
P (n) =

(
C1(n) 1 C3(n) 0
C2(n) 0 C4(n) 1

)
.

In particular, in view of (4.18), we can write the following two equations for the constants C2

and C4

C2(n)P21(n) + P31(n) + C4(n)P41(n) = C2(n),

C2(n)P22(n) + P32(n) + C4(n)P42(n) = 0.

Solving for C2 and C4 we find

C2(n) =
P42(n)P31(n)− P41(n)P32(n)

(1− P21(n))P42(n) + P41(n)P22(n)
,

C4(n) = − P22(n)P31(n) + [1− P21(n)]P32(n)

(1− P21(n))P42(n) + P41(n)P22(n)
.
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From (4.17) and (4.21) we have

C2(n) =
Cρ(0)

E(n)

(
1 +O

(
e−c1n

))
, (4.34)

and

C4(n) = − 2

α(0)E(n)

(
1 +O

(
e−c1n

))
. (4.35)

Combining (4.28), (4.33), (4.34) and (4.35) we obtain

hn−1 = −α(0)
E(n)

2
α(0)R

(1)
43 (n)− Cρ(0)R

(1)
23 (n)

(
1 +O

(
e−c1n

))
, n→∞. (4.36)

Note that from (4.12) and (4.31) we have

R1,jk(0;n) = R
(1)
jk (n+ 1), for jk = 12, 14, 23, 43,

R1,jk(0;n) = R
(1)
jk (n− 1), for jk = 21, 32, 34, 41.

This allows us to rewrite (4.36) as

hn−1 = −α(0)
E(n)

E(n− 1)

(
1 +O

(
e−c1n

))
, n→∞. (4.37)

This concludes the proof of Theorem 1.1.
Let C denote the class of symbol pairs (φ, dφ), where φ and d satisfy the properties mentioned

in Theorem 1.1, for which the corresponding matrix P (n) satisfies the condition (4.18) for suf-
ficiently large n. Now, consider the subclass C0 ⊂ C, which includes symbol pairs (φ, dφ) for
which E(n) satisfies inequality (1.9), or rather its generalization (1.11) for sufficiently large n (see
also Section 5.5). For the purposes of this paper, it is worthwhile to prove that the subclass C0

is not empty by providing an explicit example. To this end, let us consider the symbol pairs
(φ, dφ), where

φ(z) =

(
z − b
z − a

)α
, (4.38)

and

d(z) =

(
z − b1
z − a1

)α1
(
a1z − 1

b1z − 1

)α1

. (4.39)

We assume that 0 < a < b < a1 < b1 < 1, and |<α1| < 1. Then, for E(n) defined in (4.20),
by standard Watson lemma type asymptotic analysis of integrals we will arrive at

E(n) = κbn−α1
1 nα1−1

(
1 +O

(
1

n

))
, n→∞, (4.40)

where

κ = − i

π
e−iπα1Γ(1− α1)(b1 − a1)α1

(
1− bb1
1− ab1

)α(a1

b1

)−α1

×
[
e−iπα1

i

π

∫ 1/a1

1/b1

(
z − b1
z − a1

)α1
(

1/a1 − z
z − 1/b1

)−α1 z + b1
z − b1

dz

z
− 1

]
, (4.41)
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and

arg

(
z − b1
z − a1

)
= arg

(
1/a1 − z
z − 1/b1

)
= 0, z ∈ [1/b1, 1/a1].

We argue, that for generic values of a, b, a1, b1, α and α1 the number κ 6= 0. Indeed, let us take,
for instance, α1 real, i.e.,

−1 < α1 < 1.

Then, the integrand in (4.41) is strictly positive and hence, except for α1 = ±1/2, the first
term in the brackets of (4.41) has nonzero imaginary part and thus can not cancel the second
term. It is only needed now to notice that in the case under consideration r0 = b1 and hence
inequality κ 6= 0 implies that E(n) corresponding to the weights (4.38) and (4.39) satisfies the
condition (1.11) indicated in Remark 1.2 with κ(n) = nα1−1.

We conclude the discussion of this example by indicating the asymptotic behavior of the
corresponding norm parameter hn−1 and the determinant Dn. To this end we notice that,
in fact, the estimate (4.40) can be extended to the full asymptotic series,

E(n) ∼ κbn−α1
1 nα1−1

(
1 +

∞∑
k=1

dkn
−k

)
, n→∞.

Therefore, from (4.37) we should have that

hn−1 = −b1
(

n

n− 1

)α1−1(
1 +O

(
1

n2

))
, n→∞,

and hence

Dn = C(−b1)nnα1−1

(
1 +O

(
1

n

))
, n→∞,

for some constant C which is yet to be determined. It is interesting that this formula indicates
an oscillatory behavior of the determinant Dn for large n. This fact is confirmed numerically.

Remark 4.1. From (2.5), (2.19), (2.29), and (2.30) we have the following representation for the
orthogonal polynomials Pn(z) in terms of the solution X (z;n) of the X -RHP,

Pn(z) = X11(z;n) + C1(n)X21(z;n) + C3(n)X41(z;n).

The asymptotic results concerning the function X (z;n) obtained in this section can be translated
to the large n asymptotic formulae for the polynomials Pn(z). Indeed, skipping the rather tedious
though straightforward calculations, we arrive at the following asymptotics for Pn(z) on the unit
circle:

Pn(z) =
β+(z)(2α(0)Cρ,+(z)− Cρ(0)α(0))

E(n)

+ α−(z)zn
(

1 +
Cρ(0)α(0)R1,21(z;n)− 2R1,41(z;n)

E(n)

)
+O

(
e−c1n

)
, (4.42)

as n→∞. While in the interior and exterior of the unit circle we have the following asymptotic
formulae for Pn(z):

Pn(z) =
β(z)(2α(0)Cρ(z)− Cρ(0)α(0))

E(n)
+O

(
e−c1n

)
, |z| < 1,

Pn(z) = α(z)zn
(

1 +
Cρ(0)α(0)R1,21(z;n)− 2R1,41(z;n)

E(n)
+O

(
e−2c1n

))
, |z| > 1,

as n→∞ (compare with (4.42)).
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Remark 4.2. In a similar fashion, we could have obtained the large n asymptotic expression
for the norm hn of orthogonal polynomials (3.1). In that case, the methods of this section would
work analogously if the function

d := −φ−1(z)ũ(z) ≡ φ−1(z)

∫ b

a

ts−1w(t)

1− tz
dt,

satisfies dd̃ ≡ 1 on the unit circle, or

φ(z)φ̃(z) =

∫ b

a

ts−1w(t)

1− tz
dt

∫ b

a

ts−1w(t)

1− tz−1
dt, z ∈ T. (4.43)

5 Remaining open questions

We consider this work as a starting point of a long term research project. There are many challen-
ging technical as well as conceptual open questions related to the Riemann–Hilbert formalism
we are suggesting in this paper. Here we highlight some of them that we consider the most
pressing.

5.1 Derivation of the relevant Christoffel–Darboux formulae
and differential identities

Our main objective in this paper has been to develop a 4×4 steepest descent analysis for certain
Toeplitz+Hankel determinants and we have achieved that. However, to obtain the asymptotics
ofDn(φ, dφ, 1, 1) one has to derive suitable differential identities. We propose that the differential
identity has to be with respect to the parameters αi in the function d given by (4.1). Thus,
one has to perform m integrations in the parameters αi, 1 ≤ i ≤ m. Note that for α1 = α2 =
· · · = αm = 0, we have d ≡ 1 and hence φ = w. Hence the starting point of the integration
in α1 could be taken from the results of [2].5 Integration of the differential identity in α1 will
provide us with an asymptotic expression for Dn(φ, d1φ, 1, 1), which also serves as the starting
point of integration in α2. Thus we can find asymptotics of Dn(φ, d1d2φ, 1, 1) which also serves
as the starting point of integration in α3, and so on. Repeating this procedure will finally lead
us to the asymptotics of Dn(φ, dφ, 1, 1).

In order to derive the differential identities mentioned above, one has to find recurrence
relations and prove a Christoffel–Darboux formula for the polynomials (2.1) and follow a path
similar to that introduced by I. Krasovsky in [20]. Note that the recurrence relations can be
found by analyzing the functionM(z;n) := X (z;n+1)X−1(z;n), which is holomorphic in C\{0}
and can be globally determined by its singular parts at zero and infinity.

5.2 Extension of the analysis to general offset values r, s 6= 1

If we lift the restriction r = s = 1 then in the jump matrix of the X -RHP the functions φ(z)
and w(z) should be replaced by z1−rφ(z) and z1−sw(z), respectively. This, in turn would raise
a serious question about solvabilty of the Λ-RHP. Indeed, for instance, we would not be able to
define the function α in (4.3) and hence to factorize the jump matrix (4.2). The way out of this
difficulty could be the use of the relation between the determinants Dn(φ,w; r, s) with different
values of r, s or both. Such relations are well known in the pure Toeplitz case (for example see
[13, Lemma 2.4]). However, for general Toeplitz+Hankel determinants they are yet to be found.

5Although the authors in [2] do not particularly study the asymptotics of Dn(φ, φ, 1, 1), this asymptotics is
achievable by their methods.
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Another way to approach the problem could be to develop the so-called Bäklund–Schlesinger
transformations of the X -RHP itself. That is, the transformations of the form,

X (z) 7→ R(z)X (z),

where R(z) is a properly chosen rational function for which the above transformation results
in the desired shifting of the parameters r and s. Also, one can try to allow the matrix P (n)
in the setting of the X -RHP to depend on z.

It is worth to point out that the problem with the extension of our scheme to the general
values of r and s is not actually a problem of the setting of the relevant Riemann–Hilbert
problem. Indeed, it is rather the question of the correct way to approach to its asymptotic
solution. Let us demonstrate this point by considering the pure Toeplitz case.

Assume that Dn(φ, 0; r, 0) 6= 0 for all n, so that Pn(z) and, correspondingly, the solution
Y(z;n) of the Y-RHP exist for all n. Put,

X (z;n) := P−1
∞ (n)


Y11(z;n) 0 0 Ỹ12(z;n)

0 Ỹ11(z;n) Y12(z;n) 0

0 Ỹ21(z;n) Y22(z;n) 0

Y21(z;n) 0 0 Ỹ22(z;n)

,
where the normalizing matrix P∞(n) is given by

P∞(n) =


1 0 0 Y12(0;n)
0 Y11(0;n) 0 0
0 Y21(0;n) 1 0
0 0 0 Y22(0;n)

,
which is invertible for generic φ. It is straightforward to check that the so defined 4 × 4
matrix-valued function X solves the X -Riemann–Hilbert problem, RH-X1–RH-X4 with w ≡ 0,
and φ(z) replaced by z1−rφ(z). Take now r = 0. That is, let us consider the standard orthog-
onal polynomials on the circle with the weight φ(z) having zero winding number. Then, from
the standard 2 × 2 Riemann–Hilbert formalism [1], we know everything about the asymptotic
behavior of the corresponding orthogonal polynomials Pn(z) and hence we know asymptotic
solution of the X -Riemann–Hilbert problem corresponding to Dn(φ, 0; 0, 0). And, we know
this in spite of the fact that the approach developed in the body of this work can not be
satisfactorily used for the case r = s = 0. We believe that this observation might entail a
useful hint on how to modify our Riemann–Hilbert approach to deal with general values of r
and s.

5.3 Extension of the Riemann–Hilbert analysis of Section 3
for more general choices of I

We recall that our Riemann–Hilbert analysis of Section 3, with minimal modifications, naturally
extends to the following three cases as well: i) −1 < a < b < 0, ii) −∞ < a < b < −1,
and iii) 1 < a < b < ∞. A natural first step in generalizing the results of Section 3 beyond
the above cases is considering the case where I has 0 as an end point. This would slightly affect
the analysis as one has to take into account the behavior of w at 0 in the set up of the 2 × 4
and the subsequent Riemann–Hilbert problems.

The other interesting case to be studied is when I intersects the unit circle. Clearly, in
this case one has to perform local analysis in a neighborhood of the intersection point(s) of I
and the unit circle. Although these local constructions are reminiscent of what one does near
the Fisher–Hartwig singularities or the endpoints of the support of the symbol, here even if the
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possible intersection points ±1, are regular points for non-FH symbols φ and w, one has to still
perform local analysis due to collision of the supports of φ and w.

Another possible generalization would be to consider I to be the union of two symmetric
intervals with respect to the unit circle, i.e., I = [a, b]∪

[
b−1, a−1

]
. This generalization should be

accessible by slight modification of our approach explained in Section 3. However, generalization
to the case where I is a union of two non-symmetrical intervals with respect to the unit circle
needs a more special treatment.

5.4 Extension to Fisher–Hartwig symbols

One can study the large-n asymptotics of determinant Dn(φ, dφ, 1, 1) (and with increasing effort
Dn(φ, dφ, r, s) for fixed r, s ∈ Z) assuming that φ possesses Fisher–Hartwig singularities {zi}mi=1

on the unit circle. It is in fact in this level of generality that E. Basor and T. Ehrhardt have
been able to compute the asymptotics of Dn(φ, dφ, 0, 1), Dn(−φ, dφ, 0, 1), Dn(φ, dzφ, 0, 1), and
Dn(−zφ, dφ, 0, 1) via the operator-theoretic methods in [2]. However, the authors in [2] further
require that the Fisher–Hartwig part of φ be even. In fact they used some results of the work [13]
to prove their asymptotic formulas for Toeplitz+Hankel determinants, and for this reason they
inherited the evenness assumption from the work [13] where the authors needed evenness of φ in
their 2×2 setting to relate Hankel and Toeplitz+Hankel determinants to a Toeplitz determinant
with symbol φ.

From a Riemann–Hilbert perspective, in the presence of Fisher–Hartwig singularities, one has
to construct the 4×4 local parametrices near the points zi. Expectedly, these local parametrices
must be expressed in terms of confluent hypergeometric functions as suggested by [13]. We have
not yet worked out the details of this construction but we believe that it should be well within
reach. It would be methodologically important to achieve the results obtained from operator-
theoretic tools via the Riemann–Hilbert approach as well. Moreover, we expect that the evenness
of the Fisher–Hartwig part of φ would not play a role in our 4 × 4 setting, and in that sense
there are reasonable prospects of generalizing the results of [2] to symbols φ with non-even
Fisher–Hartwig part.

5.5 Characterization of generic classes of Szegő-type symbol pairs (φ, dφ),

with dd̃ ≡ 1 on the unit circle

Take one of the six conditions of Lemma 2.7. Denote by P(n) and E(n), respectively, the cor-
responding nonzero quantity and its leading order term in the large n asymptotic expansion.
Consider the class of symbol pairs (φ, dφ), where φ and d satisfy the properties mentioned
in Theorem 1.1. Within this class, take the subclass C of symbol pairs for which the elements
of the corresponding matrix P (n) satisfy P(n) 6= 0 for sufficiently large n. Also consider the
subclass C0 ⊆ C of symbols pairs for which E(n) satisfies (1.11) for sufficiently large n. One
should be able to find the asymptotics of the norm hn of orthogonal polynomials in a similar
fashion as presented in Section 4.2 in terms of E(n), assuming that (φ, dφ) ∈ C0. It would be
very interesting to completely or partially characterize the classes of symbol pairs C and C0,
corresponding to each one of the six conditions of Lemma 2.7.

Moreover, although we have provided explicit examples for a class of Szegő-type functions d
which further satisfy dd̃ ≡ 1 on the unit circle (see the beginning of Section 4), a complete
characterization of such functions is currently unknown to the authors. Also, regarding what
we discussed in Section 3, for a given Szegő-type symbol φ, we are very interested to find
the associated class of weights w, supported on the interval, for which the equality (4.43)
holds.
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5.6 Characteristic polynomial of a Hankel matrix

As mentioned in the Introduction, arguably the most important motivation behind studying
the asymptotics of Toeplitz+Hankel determinants is to study the large n asymptotics of the
eigenvalues of the matrix Hn[w]. We recall that the characteristic polynomial det(Hn[w]− λI)
is indeed the Toeplitz+Hankel determinant Dn(−λ,w, 0, 0). In this case the associated Λ-model
Riemann–Hilbert problem needs a special treatment. In a sense it is a simpler problem as the
symbol φ is identically equal to a constant, but more complicated – compared to the situation
in Section 4 – as it does not enjoy JΛ,23(z) = 0. In any case, the solution to this model
problem provides us with the constant term in the asymptotics of Dn(−λ,w, 0, 0), and in the
case of Fisher–Hartwig weight w, one can hope to obtain the leading terms of this asymptotic
expansion (up to the constant term, viz. the solution of the Λ-model problem) from the local
analysis near the Fisher–Hartwig singularities.6 This last point is yet another motivation to
pursue the goals of Section 5.4.
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[8] Böttcher A., Silbermann B., Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag,
New York, 1999.
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