|
SIGMA 16 (2020), 078, 16 pages arXiv:2006.00745
https://doi.org/10.3842/SIGMA.2020.078
Contribution to the Special Issue on Scalar and Ricci Curvature in honor of Misha Gromov on his 75th Birthday
The Fundamental Groups of Open Manifolds with Nonnegative Ricci Curvature
Jiayin Pan
Department of Mathematics, University of California-Santa Barbara, Santa Barbara CA 93106, USA
Received June 02, 2020, in final form August 04, 2020; Published online August 17, 2020
Abstract
We survey the results on fundamental groups of open manifolds with nonnegative Ricci curvature. We also present some open questions on this topic.
Key words: Ricci curvature; fundamental groups.
pdf (398 kb)
tex (24 kb)
References
- Abresch U., Gromoll D., On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), 355-374.
- Anderson M.T., On the topology of complete manifolds of nonnegative Ricci curvature, Topology 29 (1990), 41-55.
- Anderson M.T., Kronheimer P.B., LeBrun C., Complete Ricci-flat Kähler manifolds of infinite topological type, Comm. Math. Phys. 125 (1989), 637-642.
- Bérard-Bergery L., Quelques exemples de variétés riemanniennes complètes non compactes à courbure de Ricci positive, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), 159-161.
- Bishop R.L., A relation between volume, mean curvature and diameter, Amer. Math. Soc. Not. 10 (1963), 364-364.
- Cheeger J., Colding T.H., Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996), 189-237.
- Cheeger J., Colding T.H., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), 406-480.
- Cheeger J., Colding T.H., On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), 13-35.
- Cheeger J., Colding T.H., On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54 (2000), 37-74.
- Cheeger J., Gromoll D., The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971), 119-128.
- Cheeger J., Gromoll D., On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413-443.
- Cheeger J., Naber A., Lower bounds on Ricci curvature and quantitative behavior of singular sets, Invent. Math. 191 (2013), 321-339, arXiv:1103.1819.
- Cheeger J., Naber A., Regularity of Einstein manifolds and the codimension 4 conjecture, Ann. of Math. 182 (2015), 1093-1165, arXiv:1406.6534.
- Colding T.H., Ricci curvature and volume convergence, Ann. of Math. 145 (1997), 477-501.
- Colding T.H., Naber A., Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. 176 (2012), 1173-1229, arXiv:1102.5003.
- Evans B., Moser L., Solvable fundamental groups of compact $3$-manifolds, Trans. Amer. Math. Soc. 168 (1972), 189-210.
- Fukaya K., Theory of convergence for Riemannian orbifolds, Japan. J. Math. (N.S.) 12 (1986), 121-160.
- Fukaya K., Yamaguchi T., The fundamental groups of almost non-negatively curved manifolds, Ann. of Math. 136 (1992), 253-333.
- Gromov M., Almost flat manifolds, J. Differential Geometry 13 (1978), 231-241.
- Gromov M., Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981), 53-73.
- Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007.
- Honda S., On low-dimensional Ricci limit spaces, Nagoya Math. J. 209 (2013), 1-22.
- Kapovitch V., Wilking B., Structure of fundamental groups of manifolds of Ricci curvature bounded below, arXiv:1105.5955.
- Li P., Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. of Math. 124 (1986), 1-21.
- Liu G., 3-manifolds with nonnegative Ricci curvature, Invent. Math. 193 (2013), 367-375, arXiv:1108.1888.
- Menguy X., Noncollapsing examples with positive Ricci curvature and infinite topological type, Geom. Funct. Anal. 10 (2000), 600-627.
- Milnor J., A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1-7.
- Nabonnand P., Sur les variétés riemanniennes complètes à courbure de Ricci positive, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), A591-A593.
- Pan J., Nonnegative Ricci curvature, stability at infinity and finite generation of fundamental groups, Geom. Topol. 23 (2019), 3203-3231, arXiv:1710.05498.
- Pan J., A proof of Milnor conjecture in dimension 3, J. Reine Angew. Math. 758 (2020), 253-260, arXiv:1703.08143.
- Pan J., Nonnegative Ricci curvature, almost stability at infinity, and structure of fundamental groups, arXiv:1809.10220.
- Pan J., On the escape rate of geodesic loops in an open manifold with nonnegative Ricci curvature, Geom. Topol., to appear, arXiv:2003.01326.
- Pan J., Nonnegative Ricci curvature and escape rate gap, in preparation.
- Pan J., Rong X., Ricci curvature and isometric actions with scaling nonvanishing property, arXiv:1808.02329.
- Perelman G., Manifolds of positive Ricci curvature with almost maximal volume, J. Amer. Math. Soc. 7 (1994), 299-305.
- Perelman G., Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, in Comparison Geometry (Berkeley, CA, 1993-94), Math. Sci. Res. Inst. Publ., Vol. 30, Cambridge University Press, Cambridge, 1997, 157-163.
- Schoen R., Yau S.T., Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature, in Seminar on Differential Geometry, Ann. of Math. Stud., Vol. 102, Princeton University Press, Princeton, N.J., 1982, 209-228.
- Sha J.-P., Yang D., Examples of manifolds of positive Ricci curvature, J. Differential Geometry 29 (1989), 95-103.
- Sha J.P., Yang D., Positive Ricci curvature on the connected sums of $S^n\times S^m$, J. Differential Geom. 33 (1991), 127-137.
- Sharafutdinov V.A., Convex sets in a manifold of nonnegative curvature, Math. Notes 26 (1979), 556-560.
- Shen Z., Sormani C., The topology of open manifolds with nonnegative Ricci curvature, Commun. Math. Anal. (2008), 20-34, arXiv:math.DG/0606774.
- Sormani C., The almost rigidity of manifolds with lower bounds on Ricci curvature and minimal volume growth, Comm. Anal. Geom. 8 (2000), 159-212, arXiv:math.DG/9903171.
- Sormani C., Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups, J. Differential Geom. 54 (2000), 547-559, arXiv:math.DG/9809133.
- Sormani C., On loops representing elements of the fundamental group of a complete manifold with nonnegative Ricci curvature, Indiana Univ. Math. J. 50 (2001), 1867-1883, arXiv:math.DG/9904096.
- Sormani C., Wei G., Various covering spectra for complete metric spaces, Asian J. Math. 19 (2015), 171-202, arXiv:1211.7123.
- Wan J., On the fundamental group of complete manifolds with almost Euclidean volume growth, Proc. Amer. Math. Soc. 147 (2019), 4493-4498, arXiv:1902.05292.
- Wei G., Examples of complete manifolds of positive Ricci curvature with nilpotent isometry groups, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 311-313.
- Wilking B., On fundamental groups of manifolds of nonnegative curvature, Differential Geom. Appl. 13 (2000), 129-165.
- Wraith D., Surgery on Ricci positive manifolds, J. Reine Angew. Math. 501 (1998), 99-113.
- Wraith D., New connected sums with positive Ricci curvature, Ann. Global Anal. Geom. 32 (2007), 343-360.
- Wu B.Y., On the fundamental group of Riemannian manifolds with nonnegative Ricci curvature, Geom. Dedicata 162 (2013), 337-344.
- Wylie W.C., Noncompact manifolds with nonnegative Ricci curvature, J. Geom. Anal. 16 (2006), 535-550, arXiv:math.DG/0510139.
|
|