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1 Introduction

In this paper, which is a continuation of [21, 22], we study the possibilities to construct explicit
solutions for nonlinear lattices with non-square geometry. Our aim is twofold. First, we want to
present an application of some of the ideas and methods elaborated for models on such lattices
and even on arbitrary graphs (see, for example, [2, 3, 4, 5, 6, 7, 8, 11]). On the other hand,
we want to demonstrate that some of the results obtained for the rectangular lattices can be
modified to provide solutions for the models defined on the triangular ones.

We consider a nonlinear vector model defined on the triangular lattice with interaction be-
tween the nearest neighbours,

S=> " L(ii, i) (1.1)

described by

L(7t1, ) = Ja, 7, 0|1+ Kz, 7,(q(71) — qii2), 7(7i1) — 7(72))| (1.2)
and the restriction

(q(n), (7)) =1 (1.3)

(for all 77) where the brackets ( , ) stand for the standard scalar product.
From the physical viewpoint, the model (1.1) with the Lagrangian (1.2), which can be rewrit-
ten, due to the restriction (1.3), as

L(it1,7i9) = Jiy iy |1+ K 5 (G(701), 7(7t2)) + Kj, 7, (q(72), 7(71))| + const,
is one of the classical versions of the famous anisotropic Heisenberg spin model of the quantum
mechanics [12, 14, 16].

Comparing this work with the previous one, [22], it should be noted that here we study
the anisotropic interaction (in [22] the interaction was with Ky 7, = 1) on the triangular
lattice (instead of the honeycomb one) and take into account the restriction (1.3), which is very
important for possible physical applications.
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In the next section we discuss in more detail the Lagrangian (1.2) and the equations which are
the main subject of our study. In Section 3, we introduce some auxiliary system and demonstrate
how it can used to derive solutions for our equations. These results are used in Section 4 to
present three families of the explicit solutions: two types of the N-soliton solutions and ones
constructed of the determinants of the Toeplitz matrices. Finally, in the conclusion we discuss
the limitations of the method we use in this paper and possible continuations of the presented
studies.

2 The model

It should be noted that, although we study a two-dimensional lattice, we introduce, instead of

3 —
a pair of basis vectors, three coplanar vectors €1, & and €3 related by Y & = 0 and consider
i=1

3
the lattice vectors 7 as a linear combinations 77 = ) n;é; (see Fig. 1).
i=1
In terms of {€;}, the set of the nearest neighbours of a lattice point 7 is given by {7i+€;}i=1 23
and the discrete action (1.1) can be rewritten as

3
§=3 30 3 i+ e (2.1)

i i=1e=+1
We cannot solve the most general variant of this model and hereafter impose some restrictions

on the coefficients Jz, 7, and Ky, 7, in (1.2). First we assume that our model is homogeneous:
the interaction depends only on the direction of 11 — s,

Jiiiite, = Ji K e, = K.

Secondly, we assume that constants .J; are related by

and that

3
1
D ki =0. (2.3)
=1

L 4sinh? k;’
Alternatively, we can formulate these restrictions as
- 1
; Ki=——0—r (2.4)
4sinh*(K, &)

with arbitrary vectors J and K. The restriction (2.2) is common for various integrable models.
Considering the second restriction, (2.3), we admit that is has no clear physical explanation and
is introduced to make equations (2.5) and (2.6) solvable by the method discussed in what follows
rather than to ensure appearance of some additional symmetry of the model or its integrability.
Finally, the big part of the calculations presented below is valid for vectors ¢,7 € R"™ or

q, 7 € C"™ with arbitrary n. However, as it will be shown below, there arise some problems that,

at present, we can solve only in the n = 2 case. So, we state from the beginning that we consider
only two-dimensional real vectors ¢ and 7,

7,7 € R2
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Figure 1. The triangular lattice (left), the constants (center) and the base vectors €; (right).

3

Looking for the extremals of the action (2.1) under the constraints (1.3) one arrives at the
field equations of our model,

(2.6)

Namely these equations are the main subject of this work. In the following sections we present
three families of explicit solutions for the system (2.5) and (2.6).

3 The ansatz

The ansatz that we use in what follows is closely related to the already known ideas that may
be termed ‘star-triangle’ (or ‘star-polygon’) transformation or, using the language of, e.g., [7],
the ‘three-leg’ representation.

We do not start with the form of solutions, which is usual way to introduce an ansatz. Instead,
we demonstrate that a wide range of solutions for (2.5) and (2.6) can be obtained from a more
simple system of equations.

3.1 Auxiliary system

The main steps of the proposed ansatz can be described as follows. First, we consider the original
lattice {71} together with its dual, {7 & g;}, where new vectors g; are related to é; by

€ = Gi+1 — Gi—1- (3.1)
In this equation, as well as in the rest of the paper, we use the following convention: all arithmetic

operations with the indices of the vectors €; and §; and the constants J;, K; and other are
understood modulo 3,

€it3 = €, Gi+3 = Gi, Jixs = Ji, Kits = K, etc, i1 =1,2,3.
In other words, we write ¢ + 1 bearing in mind the following:
2 i=1, 3 i=1,
1+1:=<¢3 i=2, t—1:=<1 i=2
1 =3, 2 i=3
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Figure 2. The base vectors g; (left), and the new constants (right). Each rhombus in the right figure
represents the set of nodes involved in the system (3.5).

Then, we introduce a rather simple system of four-point equations relating the values of ¢
and 7" at the points 7, 7 + g; and 7 + g; + gi and demonstrate that each solution of the latter is
at the same time a solution of the field equations (2.5) and (2.6). This system can be written as

1 O, .
jFi (1) ¢ (7 + Gi—1 + Git+1) ,
1

Lo s
B (@) 7 () (32)

H; 1§ (7 + Gi-1) — Hi1q (7 + gig1) =

Hi 17 (7 + Giv1) — Hipa7 (7 + Gi—1) =
with constant H; (i = 1,2,3) and

Fi (i) = [; (q(7+ git1) — q(7+ gim1), 7 (7 + Git1) — 7 (7 + gio1))

(note that structure of F; () is that of the denominators of the summands in (2.5) and (2.6)).
It turns out that the consistency of the system (3.2) implies the following restrictions on the
constants J;:

Ji =1Ly — i, (3.3)
where I; are arbitrary constants and the following relations between K; and H;:

H;_1H;11
(Hi—1 — Hit1)?

K; = (3.4)

(see Appendix A). Finally, we arrive at the main result of this paper which can be formulated
as follows.

Proposition 3.1. Fach solution of the system

e I 1 N, .
Hi 1§+ gi—1) — Hip1d (T + Giy1) = ———F; (M) (7 + Gi—1 + Gi+1) ,
Liy1 — 14
T, I, 1 o
H;,_ 7 (n + gi+1) — Hi+17‘ (TL + gifl) =——F; (n) T (TL) (35)
Iivn— 1
with
o H, 1 —H; 1) R, R, L IRUT
=T ) gy G — @i+ G), P+ i) — T+ Gn) (36)

H; 1H;1

solves equations (2.5) and (2.6) with the constants J;, K; and the vectors €; given by (3.3), (3.4)
and (3.1).
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We would like to repeat that this proposition describes an ansatz (or reduction): each solution
for (3.5) with (3.6) satisfies equations (2.5) and (2.6) but the reverse statement is surely not true,
only a part of solutions for (2.5) and (2.6) can be obtained from the system (3.5) with (3.6).

The proof of Proposition 3.1 is rather simple except of one non-trivial fact following from the
consistency of the system (3.5): the scalar products (¢(7i + g;), 7 (7)) do not depend on 7 (we
prove this statement in Appendix A).

After this fact is established, the rest of calculations is easy. To compute the summand
in (2.5),

ui (7) = 2 G+ &) — (G + &), 7))}
f+i (n)
where
i () = 5+ {0(0) — (£ ), 7(7) ~ 7 (% 3)

we express ¢ (7 £ €) = §(7i £ git1 F Gi—1) and (¢ (7 £ &), ¥(7)) from the first equation from
(3.5) (translated by —g;+1), note that fi; (77) = F (7 — giz1), impose the restriction

(@7 +gi), 7(R) = Hil; (3.7)

and arrive at

Now, one can easily obtain

3

3 3 3
MGy ==>_qQi), > Qi)=Y i),
i=1 =1

i=1 i=1

which means that the right-hand side of (2.5) vanishes automatically,

3
rhs. (25) =Y [Gi () + Qi (@) ] = 0.

=1

Equation (2.6) can be treated in the similar way.

3.2 Auxiliary vectors and constants

One of the ingredients of the proposed method to derive solutions for the field equations (2.5)
and (2.6) is to use, instead the vectors €;, the vectors g;. It is natural to think of the latter as
pointing to the centers of the (three of six) triangular plaquettes adjacent to the point 7 = 0.
However, it is not necessary to endow the vectors g; with this geometrical meaning. One can
consider them just as three vectors satisfying (3.1) for given set of ¢€;. It is easy to show that
equation (3.1) admits one-parametric family of solutions,

Gi = g« + 5(€im1 — €i41) (3.8)
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with arbitrary g.. The fact that the system (3.1) does not determine g; uniquely is not important
for our purposes: in the worst case we may have different solutions for different choices of g.
However, as we see in what follows, this arbitrariness does not affect the final formulae for
solutions.

In a similar way, relations (3.3) and (3.4) considered as equations from which one has to
find I; and H; lead to

I = L+ 3(Ji-1 — Jiv1) (3.9)
and
Hi == H* exp [%(Iﬂ,l — /{iJrl)], (310)

where I, and H, are arbitrary constants or, if one uses (2.4),

= —

L=I+(J,G), H=H.exp[2(K,g)]

with arbitrary I, and H.

It should be noted that when we use the three vectors €; to describe the triangular lattice,
3
instead of a two-vector basis, we bear in mind the restriction ) € = 0. This restriction leads to
i=1
some technical problems when constructing the explicit solutions. Now, if we do not introduce
the vectors g; as pointing to the centers of the plaquettes, but use (3.8) as the definition, we

3
do not have the ‘geometric’ restriction: > g; # 0. Thus, one of advantages of the proposed
i=1
3
construction is that it solves the question of the ) € = 0 constraint.
i=1

4 Explicit solutions

Here, we derive explicit solutions for the ansatz equations (3.5) and (3.6). To simplify the
following formulae and to make the correspondence with the previous works we change the
notation. First, we introduce the shifts T to indicate the translations:

Ty, q (1) = q(7 + i) -

Then, we rewrite the system of the three equations (3.5) as difference/functional equations
relating ¢ and 7 with T¢q, T¢r, T,,¢ and T, where { and 7 belong to the set of parameters
{91, 92,93} that correspond to the translations by the vectors {§i, g2,g3}. This can be done
by redefinition of the constants: I; — I,,, H; — H,,. In new terms, equations (3.5) and (3.6)
become

e 1 .
HeTeq— HyT,q = j FenTend,

n
. . 1
HT,7 — HyTei = ——— F¢ (4.1)
In - IE
and
H: H . .
Fep= == + =2 — (T¢q, T,i) — (T, Tei), (4.2)

Hn H&
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and can be easily bilinearized by the substitution

PR
q y -
and
B TT e,
Fon = B () (1,7)

with arbitrary constants Bg,, symmetric in { and 7 (B¢, = B, ¢), which leads to the bilinear
system

Hg (T,ﬂ‘) TSO_" — Hn (TgT) TTIO_" = AngTgno_",

H£ (TU) Typo — Hn (TUT)Tiﬁ: Aen (T&ﬂ')ﬁ (4.3)
and
BeyTent + Ce (TU) (TUT) = (T¢a, Typ) + (Ty0, Tep), (4.4)
where
B H: H
Agp = Cep=-2 + =21, (4.5)
I, — I H, H

It should be noted that equation (4.4) turns out to be the direct consequence of the equa-
tions (4.3), the definitions (3.3) and (3.4) together with (1.3) and (3.7) which can be rewritten

as

(&, p) =12, (TeG, p) = Helem (Ter).

These equations are, in some sense, an alternative to (4.4) and in the next sections, we will
derive solutions for (4.1)—(4.2), and hence for (3.5)—(3.6), using the following

Proposition 4.1. Any solution for the system
He (Ty7)Te — Hy (Ter) Ty6 = Ay mTen0, (4
He (Ter) Ty — Hy (Ty7) Tep = Agn(Teq) ) (4
(¢, p) = 7—27 (4.
(T¢d, p) = Heler (Ter), (4

with arbitrary skew-symmetric constants A¢, (Agp —A, ¢) provides solution for the sys-

tem (4.1)~(4.2) with constants B, and Cg¢, given by (4.5) by means of

) r=

S QL
RER-T

q=

Equations (4.6) and (4.7) are known for many years. In this form, or similar ones, they
have appeared in the studies of various integrable systems. For example, the compatibility of,
say, equations (4.6) implies that 7 should solve the famous Hirota bilinear difference equation
(HBDE) [13], also known as the discrete KP equation,

AgnHe (Teyr) (Ter) — Ag cHy (Teer) (Ty7) + Ay He (Tyer) (Ter) = 0. (4.10)
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Thus, equations (4.6) (or (4.7)) can be viewed as the Lax representation of the HBDE (see, e.g.,
[9, 10, 15, 17, 23]). Moreover, it turns out that all components of & and § also solve (4.10),
thus equations (4.6) and (4.7) can be interpreted as describing the Bécklund transformations
for the HBDE. Also, system (4.6) and (4.7) is closely related to another integrable model: it de-
scribes the so-called functional representation of the Ablowitz—Ladik hierarchy [1] (compare (4.6)
and (4.7) with equation (6.10) of [18]).

Considering the remaining equations of the auxiliary system, (4.8) and (4.9) (or equa-
tion (4.4)), they can be viewed, in the framework of the theory of the HBDE, as a nonlinear
restriction, which is compatible with (4.6) and (4.7). And namely this is the point that makes
presented work different from, say, [22]: there we used another way to ‘close’ equations (4.6)
and (4.7), i.e., to relate & and p’ with the tau-function 7.

Returning to our current task, we would like to repeat that equations (4.6)—(4.9) are not new
and one does not need to derive some special methods to find their solutions. In what follows we
present three families of explicit solutions for (4.6)—(4.9), and, hence, for (4.1) and (4.2). In all
the cases our approach is to establish the relations between equations we want to solve and the
already known equations like the Jacobi identities for the Toeplitz matrices or various identities
for the Cauchy-type matrices which gives us a possibility to obtain solutions by means of rather
simple calculations.

One of the differences between these cases is different dependence of the constants fg and H, ¢
on £. To return from the solutions for (4.6)—(4.9) to solutions for the field equations (2.5)
and (2.6) we have to invert this dependence: we have to express £ in terms of fg and H£7 ie.,
to obtain the dependence of g; on fgl. and Hgi- Then, recalling that Hgi = H; and jgi =1
are functions of J; and K; given by (3.9), (3.10) and (2.3), we establish how the parameters g;
depend on J; and K;.

4.1 Toeplitz solutions

The solutions we discuss in this section are built of the determinants of the Toeplitz matrices

apn QM+1 ceo OM4N-1
ap—1 apg -o OQM4N-2
AN = det , , . , (4.11)
OM—-N+1 OM-N42 .- ap

and the shifts defined by
']I‘glam =y — EQmy-

The action of the shifts can be ‘translated’ to the level of determinants AAN/[ as

&N gN-1 1
_ QN AN+1 oo OM4N
Te'AN = (=)" det : : - A
OM-N+1 OM-N+4+2 ... QM1
N+l &N ... 1
N+1 N
. vt n . 1
’]I‘EnlA% =_—— det| am QM+1 - QMANHL|,
£—1 : : . :
OM-N+1 OM—-N+2 .- QN +2

etc.
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Application of the Jacobi identities to the determinants in the above formulae leads to various
bilinear identities: the ‘basic’ one,

(A)? = ANTANT LAY AN, (412)
the one-shift,

0= ANTAN — AYTAN  + EAY T TeAY] (4.13)
or

0 =AY TAY — ANTAN ™ — €AY AR, (4.14)
the two-shift,

0= (6~ MANTG AN, — E(TeAl.,) (T,AY) + n(TeAl) (T, A ), (115)

0= (& —mANT, ANTL — e(TeAMTY) (T, AN) + n(TeAN) (T, AN, (4.16)

etc. These identities are the simplest ones, from which one can deduce an infinite set of bilinear
identities for the Toeplitz determinants.

Using equations (4.12)—(4.16) and their direct consequences it is easy to demonstrate that
functions

AM AM
e aep(in) e (G0
(AN+ Ay

where E is the discrete exponential function defined by
TeE = Hele E
satisfy equations (4.6) and (4.7) with
§—n
A= e i,
EHntedn

as well as equations (4.8) and (4.9) provided
¢ =HZI,

which means that functions ¢ = &/7 and ¥ = j/7 are solutions for (4.1) and (4.2). Thus,
to finish the derivation of the solutions for the field equation the only thing we have to do is
to rewrite the above formulae in terms of 7 bearing in mind that for any function f, f (@) =

3 —,
I (Tgi+1’ﬂ‘£ji£1)nif(0) and that in our case g; = H?Ii with constants I; and H; being defined
i=1
in (3.9) and (3.10).

The 7i-dependence of the elements of the determinant (4.11) can be then presented by means

of an analogue of the discrete Fourier transform as

L
am () = D dy (i)
/=1
with

3
Gy (1) = Gy H(l — gihg)"HrTY
-1

where &y and hy (¢ = 1,..., L) are arbitrary constants.
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To make the following formulae more clear, we rewrite functions similar to E () or &(h, )
in the exponential form using the following observation: if some function f satisfies

Ty f = Cif

with positive constants C; then its n-dependence can be written as

-

f (i) = Hj:l (Tng;il)nif(ﬁ) = Hj:1 (Cix1/Ciz1)™ f(0) = £(0)el™

3
- 2 Ciy1) -
¢ = 3 Z <ln Ci—l) €;.

Gathering the above formulae and making some trivial calculations we can formulate the
main result of this section as follows.

Proposition 4.2. The N order Toeplitz solutions for the field equations can be presented as

el A[Z)V+1 (7) e~ (A} (77)
qg(n)=C — - , 7(n) =t — L
) =50 ) ( AL () M=%\ ayt @)

where AN (77) (M = 0,+1) is the determinant of the Toeplitz matriz

M /= o\ |V
Ay (71) = det ‘aM_j+k () ‘j,k:l’

the vector g is given by
2~ [ Hipl,
> 2 1 i+14741 >
Y73 Zz; < YHoL, )

and the function oy, (7)) is defined as

L
O () = Y ghifel®™
=1
with
3 2
L9 1— H? \I;_1hy
B == <ln R S -4
3 ; 1— H2  Livihe)
Here, &y and hy (0 =1,...,L), C as well as H, and I, in the definitions (3.10) and (3.9) of H;
and I; (i = 1,2,3) are arbitrary constants.

4.2 ‘Dark’ solitons

Here we use some of the results of [19] where we have studied the determinants of the so-called
‘dark-soliton’ matrices

T =det|1+A|
defined by

LA — AL~ = |1){al,
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where L = diag(Ly,...,Ly), |1) is the N-column with all components equal to 1, (a| is a N-
component row that depends on the coordinates describing the model, and their transformation
properties with respect to the shifts defined as T¢Q = det |1 4 T¢A| with

TeA = AT
and the matrices T given by
Te=(E-L)(-L)

For our current purposes we need the two facts. First, the determinants 7 satisfy the Fay-like
identity

(& =) (Tey7) (Ter) + (1 = ) (Tie) (Te) + (¢ = &) (Teer) (Ty7) = 0 (4.17)

see [19]) and, secondly, the superposition of T¢ and T,/ is again the shift, corresponding to
3 /€
zero value of the parameter,

-1

T¢Ty /e = To, (4.18)

which follows from the corresponding property of the matrices T¢, T¢Tq/e = To, that can be
verified straightforwardly.

Using only (4.17) and (4.18), without additional referring to the structure of the matrices A,
one can demonstrate that vector-functions

5 qlElT;llT 7= TlEl_lTVIT
qugT;QlT ’ TgEngV2T ’
where v1 2, g12 and 712 are constants related by

vivg = 1, GaTa = %, a=1,2, (4.19)

a

and Ep 2 are two discrete exponential functions, defined by

T¢E, = #
He(§ = va)

satisfy equations (4.6) and (4.7) with
Aep = (n— 5)H£H77

as well as equations (4.8) and (4.9) provided

E,, a=1,2,

1
E+ET - -

t 9

Thus, to obtain solutions for the equations we are to solve, we have just to return to the
ni-dependence knowing the action of T¢. To this end, we have to take £ € {g1, g2, g3} where g;
(parameters that, recall, correspond to the vectors g;) should be determined from

1
—1
gt = vt (4.20)

with constants H; and I; (i = 1,2,3) (we write H; and I; instead of H,, and I,,) defined in (3.10)
and (3.9).
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Proposition 4.3. The ‘dark-soliton’ solutions for the field equations can be presented as

7(7) = 1 g1 det |1 + A (7) T
T det |1+ A (7) T,

T = et 114+ A ()] \gee'?
and
7 () = 1 rie” P07 det |14 A (7) Ty, |
“det [1+A(R) | \roe P2 det |1+ A () T, )

where q, and r, are defined in (4.19), the vectors G, are given by

. 2 i—1—Vg) Hi—1\ _
%Z:;Z(ln(gl — ”)ei, a=12,

—\ (9i+1 = va) Hipa

while the matriz A (i) is given by

A (77) = Ao diag (exp(dy, ﬁ>)éV:1’

where

3 _
(;Z:gz In gi+1 — Ly 91—1—L£1 .
3 i=1 gi+1 — Lg_l 9i—1 — Lf

and

ag N
Ag=—"2 .
0 <1—Lij)j7k1

Here, the parameters g1, g2 and gs should be determined from (4.20), while Ly, a (k=1,...,N),
Vi, q1, q2 as well as Hy and I, in (3.10) and (3.9) are arbitrary constants.

4.3 ‘Bright’ solitons

To derive the second type of soliton solutions one can use the soliton Fay identities from [20]
which were obtained for the tau-functions

T=det|]1+AB|, o=7{a/(1+BA)B), p=r7(b|(1+AB) a), (4.21)
where (N x N)-matrices A and B are solutions of
LA — AR = |«)(al, RB — BL = |5)(b].

Here, like in the previous section, L and R are constant diagonal (N x N)-matrices, L = diag(Ly,
.,Ly) and R = diag(Ry,...,Rn), |a) and |5) are constant N-columns, (a| and (b| are N-
component rows that depend on the coordinates describing the model.
The shifts T¢ are defined, in this case, by

Tefal = (a|(R—€)~,  Te(b| = (bl(L - ¢€)
or, as a consequence, by

TA=AR-&!,  TB=B(L-).
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The simplest soliton identities from [20] are

(€ =) Teno = (Tgo) (Ty7) — (Ter) (Tyo), (4.22)

(€ = mpTeyr = (Te) (Typ) — (Tep) (Ty) (4.23)
and

(Té”]’) (TnT) = 7Tey7 + pTeyo. (4.24)

The fact that 7, o and p are solutions of (4.22)—(4.24) is enough to demonstrate that the
vectors ¢ and p given by

. BT . El_lT,iT
g = ) p= —1m—1 ’
E5T,.o E, T, p

where E7 and FE5 are defined by

TeEy = Hel By, TeFy = (k— ) Hel¢ By
with arbitrary s satisfy equations (4.6) and (4.7) with

Agy = (n— &) HH,
as well as equations (4.8) and (4.9) provided

!
A2

E—k

To simplify the final formulae, we introduce the diagonal matrices X (1) and Y (77), describing

—

the 7i-dependence of the rows (a (77) | and (b (1) |,

{a (@) ] = (alX (@),  (b(@)] =Gy (),

~

as well as the new rows (a (77) | and (b (77) | defined as

(a(
{b(7) |

After some simple transformations of the matrix formulae (4.21) and elimination of some
‘redundant’ constants (which includes setting x = 0) we arrive at the following result.

)| = (al[X71(7) + BY (@) A] ",

BI[Y ™" (7) + AX (7)) B] .

Q>
S

S

(4.25)

Proposition 4.4. The ‘bright-soliton’ solutions for the field equations can be presented as

7
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the rows (a (i) | and (b ()| are defined in (4.25) with

. . > _\N - ) - _\N
X (i) = diag (eXp<<Z>g, n>)e:1’ Y (7i) = diag (exp(W, n>)£:1
and
2 < Ry — gi_1 2 & Lo — gi 1
by = 2 In 97l & I 1n_1+1>gi7 = ———,
ve 3 ; ( Ry — gi+1> ve 3 ; ( Ly—gi1 g H?I,

[1) is the N-column with all elements equal to 1, (a| and (b| are constant N-rows, (a| =
(a1,...,an), (b| = (b1,...,bn) and constant matrices A and B are given by

() o ()]
Lj— Ry Gok=1 ’ Rj — Ly Gyk=1

Here, Cy, Co, Ly, Ry, ap, by (. =1,...,N) as well as H, and I, in (3.10) and (3.9) are arbitrary
constant parameters of the solution.

5 Conclusion

In this paper we have considered the vector model on the triangular lattice. It should be noted
that we have not elaborated some special methods to take into account the vector character of
the model or the fact that the lattice is not a rectangular one. Instead, we have used simple
algebraic calculations to demonstrate that this somewhat non-standard model can be reduced
to the already known equations which are usually associated with the rectangular lattices. Of
course, this is a reduction. But this reduction is not a trivial one, in the sense that it leads to
a rather wide range of solutions, which includes not only solutions presented above but also the
so-called finite-gap quasiperiodic and many other solutions (not discussed here). Thus, one of
the ideas behind this work is that there are much more soliton models than in the ‘standard’
set of the integrable ones.

However, in doing this we have met the manifestations of the peculiarities of the triangular
geometry. First of all, one should mention the rather intricate relations between the constants
and the special role of the anisotropy: note that (2.4) implies that one cannot take J; = Jo = J3
or K1 = K9 = K3, which can be viewed as some kind of frustration already known to occur in
the triangular lattices. Although the question of whether the restrictions (2.4), which are crucial
for our calculations, are necessary for existence of solitons is an open one, one cannot deny the
importance of the anisotropy in this model. Comparing the soliton solutions of this paper with
ones derived in [22] for the 3D vectors (instead of 2D) with interaction similar to (1.2), but
isotropic, and without the restriction (1.3) one can conclude that it is interesting to study the
interplay between the dimensionality of the vectors, anisotropy and the length restrictions.

Finally, we would like to mention the following limitations of the ansatz used in this paper.
The case is that the model (1.1) with (1.2) possesses some reductions that are rather interes-
ting from the viewpoint of applications. The simplest one is ¢ = 7, which after resolving the
restriction (1.3), ||> = 1, by presenting ¢ as ¢ = (cos,sin )" leads to

23: J;K;sin[f (7)) — 0 (7 + &;)]
—1- K; cos[d (71) — 0 (7 + &;)]
where K; = K;/(K; + 1/2). Unfortunately, all solutions presented in this paper become trivial
under this reduction. The problem is that introducing the auxiliary system (3.2) we break the
symmetry between ¢ and 7 inherent in the system (2.5) and (2.6). In other words, our ansatz is
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incompatible with the reduction ¥ — ¢. In a similar way, our ansatz is also incompatible with
another reduction of physical interest, ¥ — ¢ where the star indicates the complex conjugation.
Thus, a natural continuation of this work is to replace the ‘triangular’ system (3.2) with another
one, say, a system of quad-equations having the symmetries discussed above.

However, these questions are out of the scope of the present paper and may be addressed in
future studies.

A Consistency of (3.2) and proof of (3.7)
Here, we derive the restrictions (3.3) and (3.4) and prove the fact that the quantity
Ui (1) = (q(1i + Gi) , 7(17))

is constant or, that U; (7 + g;) = U; (7i) for all 4 and j (4,5 = 1,2,3).
Subtracting the first equation of (3.2) multiplied by 7 (7 + g;—1) from the second equation
of (3.5) multiplied by ¢'(7 + g;+1) one obtains

Uis1 (T4 Gi—1) = U1 (7).
Repeating this procedure for different values of the indices, one can obtain
Ui(@+g;)=U(A), i#]. (A1)

Next, after multiplying the second equation of (3.2) by 7 (77 + ¢g;—1) and 7 (7 + ¢;+1) one can
obtain

e R 1 . .
Hi (@ (7 + Gi—1), 7(A + Giv1)) — Hit1 = AL (17) Ui—1 (77) (A.2)
and
I, I, 1 - -
Hiy — Hip 1 (G + Giv1) , T(A+ Gi1)) = - Fi (1) Uiy (1) - (A.3)

Substitution of the scalar products from (A.2) and (A.3) into the definition of Fj (i7), which can
be written as

Fi () = = +2 =@+ gi-1), 7 (7 + Gir1)) = (T (T + Gigr) , 7 (7 + Gim1)),

(A.4)

and

1 H,;,_ H;
Bi _ 9 _ 1—1 1+1 )
K; Hiy1  Hig

Noting that A; (7 + §;) = A; (7)), because of (A.4) and (A.1), one can conclude that either
F; (i + g;) = F; (7i) (we do not consider this possibility as leading to rather trivial solutions) or

A; (/) = B; = 0.
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The second of these equalities,

1 Hia | Hipn 5
Ki Hiyn Hion

is nothing but (3.4). The first one, A; = 0, leads, after the translations 7 — 7 + Gi+1, to
Ui (i + g;) = U; (1) which, together with (A.1), means that

i.e., that U; () are constants with respect to i,

U; (i7) = U; = const, 1=1,2,3.

Introducing the new constants, I; = U;/H;, one can obtain from (A.4) the constraint (3.3).
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