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José Luis CARDOSO

Mathematics Department, University of Trás-os-Montes e Alto Douro (UTAD),
Vila Real, Portugal

E-mail: jluis@utad.pt

Received September 27, 2017, in final form April 11, 2018; Published online April 17, 2018

https://doi.org/10.3842/SIGMA.2018.035

Abstract. When dealing with Fourier expansions using the third Jackson (also known
as Hahn–Exton) q-Bessel function, the corresponding positive zeros jkν and the “shifted”
zeros, qjkν , among others, play an essential role. Mixing classical analysis with q-analysis
we were able to prove asymptotic relations between those zeros and the “shifted” ones, as
well as the asymptotic behavior of the third Jackson q-Bessel function when computed on
the “shifted” zeros. A version of a q-analogue of the Riemann–Lebesgue theorem within the
scope of basic Fourier–Bessel expansions is also exhibited.
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1 Introduction

When dealing with basic Fourier–Bessel expansions, due to convergence issues, it is crucial to
know the asymptotic behavior of the third Jackson q-Bessel function when computed in its
own shifted zeros. For this purpose, in the sequel of Rahman, as pointed out by Koelink and
Swarttouw [22, p. 696], “the intermingling of (ordinary) analysis and q-analysis may be fruitful”.

In the literature, the function J
(3)
ν (z; q) ≡ Jν(z; q), where ν and q are parameters satisfying

ν > −1 and 0 < q < 1, is usually identified by the third Jackson q-Bessel function or by the
Hahn–Exton q-Bessel function:

J (3)
ν (z; q) ≡ Jν(z; q) := zν

(
qν+1; q

)
∞

(q; q)∞

+∞∑
k=0

(−1)k
q
k(k+1)

2(
qν+1; q

)
k
(q; q)k

z2k. (1.1)

Using the basic hypergeometric representation [19, p. 4] for rφs, it is very well known that (1.1)
can be written as

Jν(z; q) := zν
(
qν+1; q

)
∞

(q; q)∞
1φ1
(
0; qν+1; q, qz2

)
. (1.2)

In [2] it was shown, under some restrictions, that these functions are the only ones that satisfy
a q-analogue of the Hardy result [20] about functions orthogonal with respect to their own zeros.

We have the following limit

lim
q→1

Jν

(
1− q

2
x; q

)
= Jν(x),
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where Jν(x) is the (classical) Bessel function of the first kind [30] of order ν,

Jν(x) :=
(x

2

)ν +∞∑
k=0

(−1)k
(
x
2

)2k
k!Γ(ν + k + 1)

,

which shows that Jν(z; q) is a q-analogue of the Bessel function Jν(z).
Exton originally in [17, 18] and later Koelink and Swarttouw in [22, Proposition 3.5, p. 696],

proved that the function (1.1) satisfies an orthogonality of the form∫ 1

0
xJν

(
qjnνx; q2

)
Jν
(
qjmνx; q2

)
dqx = ηn,νδn,m, (1.3)

ηn,ν ≡ ηn,ν(q) =

∫ 1

0
tJ2
ν

(
qjkνt; q

2
)
dqt,

where jnν ≡ jnν
(
q2
)
, with j1ν(q2) < j2ν(q2) < · · · , represent the (ordered) positive zeros of

Jν
(
z; q2

)
and the q-integral in the interval [0, 1] is the one introduced by Thomae (in 1869 and

in 1870)∫ 1

0
f(t)dqt := (1− q)

+∞∑
k=0

f
(
qk
)
qk, (1.4)

which was later generalized by Jackson to any interval [a, b] (see [19, p. 19]).
Using the definition (1.4) we may consider an inner product by setting

〈f, g〉 :=

∫ 1

0
f(t)g(t)dqt. (1.5)

The resulting Hilbert space is commonly denoted by L2
q [0, 1], being this space a separable Hilbert

space [6, 14], consisting of the (quotient) set of functions f such that∫ 1

0
|f(t)|2dqt < +∞.

Abreu and Bustoz showed in [3] that the sequence {uk}k, where

uk(x) =
x

1
2Jν
(
jkνqx; q2

)∥∥x 1
2Jν
(
jkνqx; q2

)∥∥ ,
define a complete system in L2

q [0, 1], meaning that, whenever a function f is in L2
q [0, 1], if∫ 1

0
f(x)uk(x)dqx = 0, k = 1, 2, 3, . . . ,

then f
(
qk
)

= 0, k = 0, 1, 2, . . ..
Regarding criteria for completeness in Lq[0, 1] see [1], with an interesting application to a q-

version of the uncertainty principle via the q-Hankel transform and a completeness property of
the third Jackson q-Bessel function.

Basic Fourier expansions were studied in [9, 10], with respect to quadratic grids and to linear
grids, respectively. For an overview over basic Fourier expansions see [26]. In [11, 12] were
presented results regarding convergence issues concerning basic Fourier expansions involving
the basic sine and cosine functions considered by Suslov [25], which are equivalent to the ones
introduced by Exton [18]. With properties connected to this or related functions we refer
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to [28]. For new definitions of q-exponential and q-trigonometric functions see [15]. Since we are
using and proving some asymptotic results, we highlight [24] on this subject, where a complete
asymptotic expansion for the q-Pochhammer symbol (or, the infinite q-shifted factorial (z; q)∞)
was exhibited. We also point out [29] with an appendix where, among others, asymptotic results
for the theta function, for the 1φ1(0;ω; q, z) function and for its derivative were presented. This
last two ones, with an useful separation of the terms that increase from the terms that decrease,
were crucial to establish our results of the third Jackson q-Bessel function.

Other publications also show estimates or inequalities involving the third Jackson q-Bessel
function: for instance, equation (3.2.14) of [27] when ν = n, equation (2.4) of Proposition 2.1
from [23], Lemma 1 from [8] and [16] for the particular case of third Jackson q-Bessel function
of order zero.

In our judgement the main results of this work are Theorems 3.5, 3.6, 3.9 and 4.1. We also
emphasize Theorem 3.1 since it was decisive for the proof of Theorem 3.6 and mostly because
of its important Corollaries 3.3 and 3.4. We believe that all the results stated in Section 3 and
Theorem 4.1 of Section 4 are original.

To know the asymptotic behaviors given by Theorems 3.5 and 3.9, are decisive to study
convergence properties of the basic Fourier–Bessel expansions. This is an important issue and,
in our opinion, it is the most relevant contribution of the present work.

Many questions concerning basic Fourier or basic Fourier–Bessel expansions can be raised:
analogues of Dirichlet’s kernel, Riemann–Lebesgue theorem, Dini’s condition or summability
(Fejér’s theorem) and many other topics are open problems since some of the nice properties
used in the corresponding proofs are no longer valid in the context of basic expansions. Regarding
this, we approach these difficulties and push a little further towards a q-analogue of the Riemann–
Lebesgue theorem.

The paper is organized as follows: in Section 2 we collect the main definitions and prelimi-
nary results that were taken from other publications; in Section 3 we present some asymptotic
behavior of the third Jackson q-Bessel function and of its derivative when computed at certain
points. We also study the asymptotic behavior of the zeros jmν and their relations with the
“shifted” zeros qjmν or jmν

q , for large values of m = 1, 2, 3, . . . and explore its consequences
to obtain other results; we finish with Section 4 where an analogue of the Riemann–Lebesgue
theorem concerning basic Fourier–Bessel expansion is proved.

2 Definitions and preliminary results

Fixing 0 < q < 1 and following the standard notations of [5, 19], the q-shifted factorial for
a finite positive integer n is defined by

(a; q)n = (1− q)(1− aq) · · ·
(
1− aqn−1

)
and the zero and infinite cases as

(a; q)0 = 1, (a; q)∞ = lim
n→∞

(a; q)n.

The third Jackson q-Bessel function has a countable infinite number of real and simple zeros, as
it was shown in [22]. In [4, Theorem 2.3] it was proved the following theorem:

Theorem 2.1. For every q ∈ ]0, 1[, k0 ∈ N exists such that, if k ≥ k0 then

jkν = q−k+ε
(ν)
k (q2),

with

0 < ε
(ν)
k

(
q2
)
< α

(ν)
k

(
q2
)
, where α

(ν)
k

(
q2
)

=
log
(
1− q2(k+ν)/

(
1− q2k

))
2 log q

.
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On this subject see [7] and [29]. The latter one improved the accuracy of the asymptotic
expression for the zeros of the basic hypergeometric function 1φ1

(
0;ω; q, z

)
, which appears in

the definition (1.2) of the Hahn–Exton q-Bessel function. See also [21] where Hayman obtained
an expression for the asymptotic behavior of the zeros of a certain class of entire functions,
which perhaps may be extended to the third Jackson q-Bessel function.

Using Taylor expansion it can be shown that, as k →∞,

α
(ν)
k

(
q2
)

= O
(
q2k
)
. (2.1)

Formally, the q-Fourier Bessel series associated with a function f , by the orthogonal rela-
tion (1.3), is defined by

Sνq [f ](x) :=

∞∑
k=1

b
(ν)
k (f)x

1
2Jν
(
qjkνx; q2

)
,

with the coefficients b
(ν)
k given by

b
(ν)
k (f) =

1

ηk,ν

∫ 1

0
t
1
2 f(t)Jν

(
qjkνt; q

2
)
dqt,

or, which we rather prefer,

S(ν)
q [f ](x) :=

+∞∑
k=1

a
(ν)
k (f)Jν

(
qjkνx; q2

)
, (2.2)

with the coefficients a
(ν)
k given by

a
(ν)
k (f) =

1

ηk,ν

∫ 1

0
tf(t)Jν

(
qjkνt; q

2
)
dqt (2.3)

and ηk,ν by∫ 1

0
tJ2
ν

(
qjkνt; q

2
)
dqt =

q − 1

2
qν−1Jν+1

(
qjkν ; q2

)
J ′ν
(
jkν ; q2

)
=
q − 1

2jkν
qν−2Jν

(
qjkν ; q2

)
J ′ν
(
jkν ; q2

)
, (2.4)

where the last equality can be derived from [22, Proposition 3.5] or [13, Proposition 5].
The asymptotic behavior of the q-integral that appears in the Fourier coefficient (2.3), as well

as the asymptotic behavior (as k → ∞) of the factors Jν
(
qjkν ; q2

)
and J ′ν

(
jkν ; q2

)
appearing

in ηk,ν , are crucial for further developments related with convergence issues of the Fourier–Bessel
expansion (2.2). To study those behaviors will be the main purpose in this work.

Using the expansion obtained by Olde Daalhuis [24, equation (3.13), p. 905] for the (infinite)
q-shifted factorial (or q-Pochhammer symbol), Štampach and Šťov́ıček [29] rewrote it in the
following clearer form: considering the notation

q̃ = e
4π2

ln (q) , β(z) =
π ln (z)

ln (q)
(2.5)

and

A(z) = 2q−
1
12
√
ze
− ln2 (z)

2 ln (q)
+ π2

3 ln (q)
∣∣(q̃e2iβ(z); q̃)∞∣∣2 (2.6)
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then

(z; q)∞ =
A(z)( q
z ; q
)
∞

sin (β(z)),

where z > 0. Using a symmetric relation [23, equation (2.3), p. 448] satisfied by the basic function

1φ1(0;ω; q, z), Olde Daalhuis [24, pp. 907–908] describes briefly how to obtain an asymptotic
expansion for the function

Jν
(
z; q2

)
= zν

(qν+1; q)∞
(q; q)∞

1φ1
(
0; q2(ν+1); q, qz2

)
.

Later, Štampach and Šťov́ıček [29], proved the following theorem which displays an asymptotic
behavior for the function 1φ1(0;ω; q, z) and for its derivative, as z →∞.

Theorem 2.2. Let K(z) :=
[
1
2 −

ln (z)
ln (q)

]
where [x] represents the integer part of x ∈ R. With the

notation (2.5), (2.6) and assuming that 0 ≤ ω < 1, there exist functions B(ω, z) and C(ω, z)
such that

1φ1(0;ω; q, z) =
B(ω, z)

(ω; q)∞

×

(
A(z) sin (β(z)) + (−1)K(z)+1q

(K(z)+1)K(z)
2 ωK(z)+1

(
qK(z)+1z; q

)
∞

(q; q)∞
C(ω, z)

)
,

where, for ω fixed, B(ω, z) = 1 +O
(
z−1
)
, C(ω, z) = 1 +O

(
z−1
)

as z → +∞.

Theorem 2.3. Under the same assumptions of the previous theorem,

∂1φ1(0;ω; q, z)

∂z
=

A(z)

(ω; q)∞z

((
−β(z)

π
+

1

2

)
sin (β(z)) +

π

ln (q)
cos (β(z))

+
8π

ln (q)

∞∑
k=1

q̃k∣∣1− q̃ke−2iβ(z)∣∣2 sin2 (β(z)) cos (β(z)) +O

(
ln (z)

z

))
,

as z → +∞.

3 Asymptotic properties of the function Jν
(
z; q2

)
and its derivative

Theorem 2 of [13, p. 12],∣∣Jν(qjkν ; q
)∣∣ ≤ Aν(q)q−

(
k+ ν−2

2
−ε(ν)k

)2
, where Aν(q) > 0,

establishes a superior bound for the asymptotic behavior of Jν
(
qjkν ; q2

)
as k →∞.

We notice that this bound can be enlarged for the cases

∣∣Jµ(qjkν ; q
)∣∣ ≤ Bµ(q)q−

(
k+µ−3

2
−ε(ν)k

)2
, where Bµ(q) =

q
µ
2

(
µ
2
−1
)

(
1− q2

)(
q2; q2

)2
∞

.

Its prove is essentially coincident with the corresponding one of the [13] so we omit it.
However, at least when µ = ν or µ = ν + 1, the above estimate for Jµ

(
qjkν ; q

)
does not

seem accurate. As a matter of fact, by Theorem 2.1 and (2.1), as k → ∞, the product qjkν is
“closed” to the positive zero jk−1,ν of the function Jν

(
z; q2

)
and, as a consequence, we expect

Jν
(
qjkν ; q2

)
to approach zero. So we look for a better bound when µ = ν or µ = ν + 1.

Because of the basic hypergeometric representation (1.2), in order to keep the results more
general and applicable to other situations, at the final of this section we present a subsection
with the corresponding main results for the function 1φ1(0;ω; q, z).
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3.1 Asymptotic properties of J ′
ν

(
z; q2

)
During this subsection and to avoid any confusion, most of the times we prefer to use ∂Jν(z;q2)

∂z
rather than J ′ν

(
z; q2

)
.

Theorem 3.1. Let {θm}m be a sequence such that 0 ≤ θm < 1 for m = 1, 2, 3, . . .:

(i) if lim
m→∞

mθm = 0 then sgn
(
∂Jν(z;q2)

∂z
∣∣z=q−m+θm

)
= (−1)m;

(ii) if lim
m→∞

mθm = ∞ then sgn
(
∂Jν(z;q2)

∂z
∣∣z=q−m+θm

)
= (−1)m−1, being both signs valid for

large values of m.

Proof. By the definition of the Hahn–Exton q-Bessel function (1.1) we may write

Jν(z; q2) =

(
q2(ν+1); q2

)
∞(

q2; q2
)
∞

zν1φ1
(
0; q2(ν+1); q2, q2z2

)
.

Computing its derivative one gets

∂Jν
(
z; q2

)
∂z

=

(
q2(ν+1); q2

)
∞(

q2; q2
)
∞

×

(
νzν−11φ1

(
0; q2(ν+1); q2, q2z2

)
+ 2q2zν+1∂1φ1

(
0; q2(ν+1); q2, y

)
∂y

∣∣y=q2z2
)
.

Now, by Theorems 2.2 and 2.3, with the notation ω = q2(ν+1) and (2.5), (2.6) with q shifted
to q2, as z → +∞, we have

∂Jν
(
z; q2

)
∂z

≡ J ′ν
(
z; q2

)
=

zν−1

(q2; q2)∞

{
A
(
q2z2

){(
νB
(
ω, q2z2

)
− 2

π
β
(
q2z2

)
+ 1

)
× sin

(
β
(
q2z2

))
+

π

ln q
cos
(
β
(
q2z2

))
+

8π

ln q

∞∑
k=1

q̃k∣∣1− q̃ke−2iβ(q2z2)∣∣2 sin2
(
β
(
q2z2

))
cos
(
β
(
q2z2

))
+O

(
ln
(
q2z2

)
q2z2

)}

+ (−1)K
(
q2z2
)
+1q

(
K
(
q2z2
)
+1
)
K
(
q2z2
)
ωK
(
q2z2
)
+1νB

(
ω, q2z2

)
×
(
q2K(q2z2)+4z2; q2

)
∞(

q2; q2
)
∞

C
(
ω, q2z2

)}
. (3.1)

Taking into account that, shifting q to q2 and putting z = q−m+θm for m ∈ N, β
(
q2z2

)
=

(−m+ 1 + θm)π, K
(
q2z2

)
=
[
m− 1

2 − θm
]
, identity (3.1) gives, as m→∞,

∂Jν
(
z; q2

)
∂z

∣∣z=q−m+θm
=
q(−m+θm)(ν−1)(

q2; q2
)
∞

{
A
(
q2−2m+2θm

)
(−1)m−1

×

{(
νB
(
ω, q2−2m+2θm

)
+ 2m− 1− 2θm

)
sin (πθm) +

π

ln q
cos (πθm)

+
8π

ln q

∞∑
k=1

q̃k∣∣1− q̃ke−2iθmπ∣∣2 sin2 (πθm) cos (πθm) +O

(
ln
(
q2−2m+2θm

)
q2−2m+2θm

)}
+ (−1)[m−

1
2
−θm]+1q([m−

1
2
−θm]+1)[m− 1

2
−θm]ω[m− 1

2
−θm]+1

× νB
(
ω, q2−2m+2θm

)(q2[m− 1
2
−θm]+4−2m+2θm ; q2

)
∞(

q2; q2
)
∞

C
(
ω, q2−2m+2θm

)}
. (3.2)
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We notice that, for large values of m,

A
(
q−m+θm

)
= 2q

− (m+1)m
2

+mθm+
θm(1−θm)

2
+ π2

3 ln (q)
− 1

12
∣∣(e2iπθme 4π2

ln (q) ; e
4π2

ln (q)
)
∞
∣∣2,

hence

A
(
q2−2m+2θm

)
= 2q

−m(m−1)+2(m−1)θm+θm(1−θm)+ 2π2

3 ln (q)
− 1

6
∣∣(e2iπθme 2π2

ln (q) ; e
2π2

ln (q)
)
∞
∣∣2 > 0(3.3)

and, by Theorem 2.2, B(ω, z) = 1 + O
(
z−1
)
, C(ω, z) = 1 + O

(
z−1
)

as z → +∞. We also note
that

[
m− 1

2 − θm
]

equals m− 1 or m− 2.
Now, from (3.2), we conclude the following:
On one hand, if lim

m→∞
mθm = 0 then, as m → ∞, the dominant term of the sign of (3.2) is

(−1)m−1 π
ln (q) cos (πθm), with π

ln (q) < 0. This proves part (i) of the theorem.
On the other hand, if lim

m→∞
mθm =∞ then, as m→∞, the dominant term for the sign turns

to be (−1)m−1(2m− 1− 2θm) sin (πθm), which proves part (ii). �

Remark 3.2. The assumption of Theorem 3.1 requiring that 0 ≤ θm < 1 for m = 1, 2, 3, . . .,
can be weakened (with minor changes in the corresponding proof) to 0 ≤ θm < 1 for sufficient
large values of m.

Also, when the sequence {mθm}m converges to a strictly positive real number, or when it is
a bounded but not convergent sequence, then it is also possible to state conditions in order to
obtain conclusions.

We notice that if {θ∗m}m is any sequence which satisfies 0 < θ∗m < 1 for all m = 1, 2, 3, . . .
and lim

m→∞
mθ∗m = 0 then, by (3.2), we conclude that part (i) of the Theorem 3.1 remains true

for every other sequence {γm}m such that 0 < γm ≤ θ∗m. This implies the next result.

Corollary 3.3. Let {θ∗m}m, with 0 < θ∗m < 1, be a sequence such that lim
m→∞

mθ∗m = 0. Then,

for large values of m, the sign of ∂Jν(z;q2)
∂z remains constant in each interval

]
q−m+θ∗m , q−m

[
.

In particular, because of (2.1), it follows immediately the following corollary.

Corollary 3.4. Considering θ∗m = α
(ν)
m , for m = 1, 2, 3, . . ., of Theorem 2.1 then, for large

values of m, the sign of ∂Jν(z;q2)
∂z remains constant in each interval

]
q−m+α

(ν)
m , q−m

[
.

We end this subsection with the following theorem.

Theorem 3.5. For large values of m,

∂Jν
(
z; q2

)
∂z

∣∣z=jmν ≡ J ′ν(jmν ; q2
)

= O
(
q−m(m+ν−2)), as m→∞.

Proof. By Theorem 2.1, consider jmν = q−m+ε
(ν)
m , where 0 < ε

(ν)
m < α

(ν)
m , and replace θm by ε

(ν)
m

in (3.2) and (3.3).

By (2.1) we have lim
m→∞

mα
(ν)
m = 0 hence, by Theorem 2.1, we also have lim

m→∞
mε

(ν)
m = 0.

Furthermore, taking into consideration that

A
(
q2−2m+2ε

(ν)
m
)

= 2q
−m(m−1)+2(m−1)ε(ν)m +ε

(ν)
m (1−ε(ν)m )+ 2π2

3 ln (q)
− 1

6
∣∣(e2iπε(ν)m e

2π2

ln (q) ; e
2π2

ln (q)
)
∞
∣∣2 (3.4)

then, for large values of m, the resulting dominant term of J ′ν
(
jmν ; q2

)
from (3.2) is

q(−m+ε
(ν)
m )(ν−1)(

q2; q2
)
∞

A
(
q2−2m+2ε

(ν)
m
)
(−1)m−1

π

ln q
cos
(
πε(ν)m

)
. (3.5)
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Introducing (3.4) into (3.5) and, again, using limm→∞mα
(ν)
m = 0, then we immediately conclude

that

∂Jν
(
z; q2

)
∂z

∣∣z=jmν ≡ J ′ν(jmν ; q2
)

= O
(
q−m(m+ν−2)), as m→∞. �

3.2 Behavior of Jν
(
qjkν; q

2
)

We begin this subsection by quoting the following theorem, where jkν , ε
(ν)
k ≡ ε

(ν)
k

(
q2
)

and

α
(ν)
k ≡ α

(ν)
k

(
q2
)

respects the notations of (1.3) and Theorem 2.1.

Theorem 3.6. For large values of k,

qjkν ∈
]
jk−1,ν , q

−k+1
[
.

Proof. From (1.3) with m = n = k and by (vii) of Proposition 5 [13, p. 330], we get

Jν
(
qjkν ; q2

)
J ′ν
(
jkν ; q2

)
< 0. (3.6)

However, by (2.1), lim
k→∞

kα
(ν)
k = 0, hence one may conclude, by Theorem 3.1 and Corollary 3.4,

that the sign of

∂Jν
(
z; q2

)
∂z

= J ′ν
(
z; q2

)
in the interval

]
q−k+α

(ν)
k , q−k

[
is the opposite to the sign in

]
q−k+1+α

(ν)
k−1 , q−k+1

[
, for large values

of k.
Thus, for large values of k, by Theorem 2.1,

J ′ν
(
jkν ; q2

)
J ′ν
(
jk−1,ν ; q2

)
< 0. (3.7)

Using, now, (3.6) and (3.7) we may write, for large values of k,

Jν
(
qjkν ; q2

)
J ′ν
(
jk−1,ν ; q2

)
> 0.

This guarantees that, for large values of k,

qjk,ν > jk−1,ν ,

which proves the theorem since, trivially by Theorem 2.1, qjk,ν = q1−k+ε
(ν)
k < q1−k. �

The following corollaries are immediate consequences of the previous theorem.

Corollary 3.7. For large values of k, the sequence
{
ε
(ν)
k

}
k

that appears in Theorem 2.1 is

strictly decreasing, i.e., there exists a positive integer k0 such that ε
(ν)
k+1 < ε

(ν)
k whenever k ≥ k0.

Proof. The previous theorem guarantees that, for large values of k, qjkν > jk−1,ν , which is

equivalent to q1−k+ε
(ν)
k > q1−k+ε

(ν)
k−1 , hence ε

(ν)
k < ε

(ν)
k−1 for large values of k. �

Corollary 3.8. For large values of k,

jkν
q
∈
]
q−k−1+α

(ν)
k+1 , jk+1,ν

[
.



On Basic Fourier–Bessel Expansions 9

Proof. According to Theorem 2.1 we have both jkν = q−k+ε
(ν)
k and jk+1,ν = q−k−1+ε

(ν)
k+1 . There-

fore, jkν
q = q−k−1+ε

(ν)
k . However, since by the previous corollary, there exists a positive integer

k0 such that ε
(ν)
k+1 < ε

(ν)
k whenever k ≥ k0, then qε

(ν)
k < qε

(ν)
k+1 whenever k ≥ k0, hence it follows

that jkν
q < jk+1,ν and, by Theorem 2.1, jkν

q > q−k−1+α
(ν)
k , both for large values of k. �

We now prove the following theorem.

Theorem 3.9. For large values of k,

∣∣Jν(qjkν ; q2
)∣∣ ≤ (−q2,−q2(ν+1); q2

)
∞(

q2; q2
)
∞

q(k+ν)(k−1).

Proof. On one hand, being jkν , for k = 1, 2, 3, . . ., the positive zeros of the Hahn–Exton q-Bessel
function, we have

Jν
(
jk−1,ν ; q2

)
= 0, k = 2, 3, 4, . . . . (3.8)

On the other hand, by [8, equation (12), p. 1205],

∣∣Jν(q−k+1; q2
)∣∣ ≤ (−q2,−q2(ν+1); q2

)
∞(

q2; q2
)
∞

q(k+ν)(k−1). (3.9)

This last result was first presented in [23] and it can also be obtained in an equivalent form
using directly Theorem 2.2.

Notice that, by Theorem 2.1, jk−1,ν = q−k+1+ε
(ν)
k−1 where, as a consequence of (2.1), lim

k→∞
(k−

1)ε
(ν)
k−1 = 0. Thus, by Corollary 3.3, Jν

(
z; q2

)
is strictly monotone in each interval ]jk−1,ν , q

−k+1[,

for large values of k. Now, since by Theorem 3.6, qjk,ν ∈ ]jk−1,ν , q
−k+1[, then, using (3.8)

and (3.9), the theorem follows. �

3.3 Corresponding properties for the function 1φ1(0;ω; q, z)

Theorem 3.10. Let ω be fixed in [0, 1[ and {τm}m be a sequence such that 0 ≤ τm < 1 for
m = 1, 2, 3, . . .:

(i) if lim
m→∞

mτm = 0 then sgn
(
∂1φ1(0;ω;q,z)

∂z
∣∣z=q−m+τm

)
= (−1)m+1;

(ii) if lim
m→∞

mτm = ∞ then sgn
(
∂1φ1(0;ω;q,z)

∂z
∣∣z=q−m+τm

)
= (−1)m, being both signs valid for

large values of m.

Proof. Considering z = q−m+τm in (2.5) and (2.6) one obtains, respectively,

β
(
q−m+τm

)
= (−m+ τm)π

and

A
(
q−m+τm

)
= 2q

− (m+1)m
2

+mτm+
τm(1−τm)

2
+ π2

3 ln (q)
− 1

12
∣∣(e2iπτme 4π2

ln (q) ; e
4π2

ln (q)
)
∞
∣∣2.
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Then, Theorem 2.3 enables one to write

∂1φ1(0;ω; q, z)

∂z
∣∣z=q−m+τm

= Cq(ω)q−
m(m−1)

2
+(m−1)τm+

(τm+1)τm
2

×

{(
m− τm +

1

2

)
sin (π(−m+ τm)) +

π

ln (q)
cos (π(−m+ τm))

+
8π

ln (q)

∞∑
k=1

q̃k∣∣1− q̃ke−2i(π(−m+τm))
∣∣2 sin2 (π(−m+ τm)) cos (π(−m+ τm))

+O

(
ln (q−m+τm)

q−m+τm

)}

as m→ +∞, or equivalently,

∂1φ1(0;ω; q, z)

∂z
∣∣z=q−m+τm

= Cq(ω)q−
m(m−1)

2
+(m−1)τm+

(τm+1)τm
2 (−1)m

×

{(
m− τm +

1

2

)
sin (πτm) +

π

ln (q)
cos (πτm)

+
8π

ln (q)

∞∑
k=1

q̃k∣∣1− q̃ke−2iπτm∣∣2 sin2 (πτm) cos (πτm)

+O

(
ln
(
q−m+τm

)
q−m+τm

)}
(3.10)

as m→ +∞, where Cq(ω) > 0.

On one hand we have that, if lim
m→∞

mτm = 0 then, as m→∞, the dominant term of the sign

of (3.10) is (−1)m π
ln (q) cos (πτm), with π

ln (q) negative. This proves part (i) of the theorem.

On the other hand, if lim
m→∞

mτm = ∞ then, as m → ∞, the dominant term turns to be

(−1)m
(
m− τm + 1

2

)
sin (πτm). This proves part (ii) of the theorem. �

We notice that if {τm}m is any sequence satisfying the condition (i) of the previous theorem
then, by (3.10), the same conclusion of part (i) remains true for any other sequence {γm}m such
that 0 ≤ γm ≤ τm. This implies the next result.

Corollary 3.11. Let {τm}m be a sequence such that lim
m→∞

mτm = 0. Then, for large values

of m, the sign of

∂1φ1(0;ω; q, z)

∂z

remains constant in each interval ]q−m+τm , q−m[.

4 q-analogue of the Riemann–Lebesgue theorem

Following the framework of [14], we rewrite the system {um}m mentioned in the introduction as

um(x) =
x

1
2Jν
(
jmνqx; q2

)∥∥x 1
2Jν
(
jmνqx; q2

)∥∥
L2
q [0,1]

,
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where, by (2.4),

ηm,ν =
∥∥x 1

2Jν
(
jmνqx; q2

)∥∥2
L2
q [0,1]

=

∫ 1

0
xJ2

ν

(
qjmνx; q2

)
dqx

=
q − 1

2jmν
qν−2Jν

(
qjmν ; q2

)
J ′ν
(
jmν ; q2

)
.

The sequence {um}m defines a system of functions which is orthonormal with respect to the
inner product defined in the L2

q [0, 1] space by (1.5) and with the norm ‖ · ‖L2
q [0,1]

induced by it.
In this context, we are able to state the following analogue of the Riemann–Lebesgue theorem,

based on a indirect proof within the scope of the inner product spaces: if f ∈ L2
q [0, 1] then

lim
m→∞

∫ 1

0
tf(t)Jν

(
qjmνt; q

2
)
dqt = 0.

This is true since the sequence {um}m is orthonormal with respect to the inner product space
L2
q [0, 1], thus the corresponding proof can be carried out like in the classical case [31, Corol-

lary 36.4, p. 118]), being a consequence of the Bessel’s inequality.
Alternatively, with a direct approach, we can extend the set of functions which satisfy the

above property and state the following q-analogue of the Riemann–Lebesgue theorem.

Theorem 4.1. If t
1
2 f(t) ∈ L2

q [0, 1] then

lim
m→∞

∫ 1

0
tf(t)Jν

(
qjmνt; q

2
)
dqt = 0.

Proof. Starting from the inner product (1.5) and then using the q-type Hölder inequality of
[14, Theorem 3.4, p. 346] with p = 2, i.e., a q-type Cauchy–Schwartz inequality, we may write∣∣∣∣∫ 1

0
tf(t)Jν

(
qjmνt; q

2
)
dqt

∣∣∣∣ ≤ (∫ 1

0
t|f(t)|2dqt

) 1
2
(∫ 1

0
tJ2
ν

(
qjmνt; q

2
)
dqt

) 1
2

=

(∫ 1

0
t|f(t)|2dqt

) 1
2

η
1
2
mν , (4.1)

where, by (2.4), ηmν = q−1
2jmν

qν−2Jν
(
qjmν ; q2

)
J ′ν
(
jmν ; q2

)
.

In the expression for ηmν , we already control the asymptotic behavior, as m→∞, of all its
factors.

Thus, joining Theorem 2.1 and (2.1), together with Theorems 3.9 and 3.5, we obtain

ηmν = O
(
q2m

)
, as m→∞. (4.2)

Finally, using in (4.1) the hypothesis t
1
2 f(t) ∈ L2

q [0, 1] and the asymptotic relation (4.2), it
follows∫ 1

0
tf(t)Jν

(
qjmνt; q

2
)
dqt = O

(
qm
)
, as m→∞,

which proves this version of the Riemann–Lebesgue theorem. �

Remark 4.2. We emphasize that (4.2) implies that∥∥x 1
2Jν
(
jmνqx; q2

)∥∥
L2
q [0,1]

=
√
ηmν = O

(
qm
)
, as m→∞,

hence

lim
m→∞

∥∥x 1
2Jν
(
jmνqx; q2

)∥∥
L2
q [0,1]

= 0.
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However, for the following version of the classical Riemann–Lebesgue theorem: if f is Rie-
mann or Lebesgue integrable in [a, b] then

lim
µ→∞

∫ b

a
f(t) sin (µt)dt = 0, lim

µ→∞

∫ b

a
f(t) cos (µt)dt = 0,

we do not expect to prove a similar version for the case of the basic Fourier–Bessel expansions
since we do not have, in this context, the nice properties and the formulary that the classical
trigonometric functions satisfy, i.e., we do not expect to prove that

lim
µ→∞

∫ 1

0
tf(t)Jν

(
µt; q2

)
dqt = 0,

when f ∈ Lq[0, 1] or t
1
2 f(t) ∈ Lq[0, 1].

Some of the main reasons for that possible failure rely on the fact that, in the proof of the
classical Riemann–Lebesgue theorem, involving the classical trigonometric functions, it is used
the fact that these functions are bounded as well as some other known properties of the sine
and cosine functions.

In this last direction, for the classical Bessel function Jν(x), since it fails to satisfy the
properties of the trigonometric function, an analogue of the Riemann–Lebesgue theorem [30,
p. 589] was proved, not for the Bessel function Jν(x) itself but for the function

Tn(t, x) =

n∑
m=1

2Jν (jmx) Jν(jmt)

J2
ν+1(jm)

,

where jm, m = 1, 2, 3, . . . , denote the positive zeros of the Bessel function Jν(x) arranged in

ascendent order of magnitude and 0 < x ≤ 1, 0 ≤ t ≤ 1, ν ≥ −1
2 : if

∫ b
a t

1
2 f(t)dt exists and is

absolutely convergent then

lim
n→∞

∫ b

a
tf(t)Tn(t, x)dt = 0, 0 < x ≤ 1 with a < b and a, b ∈ (0, 1).

With this regard see also [13, Remark 4, p. 13].
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