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Extended abstract

We introduce and study a certain class of quadratic algebras, which are nonhomogeneous in
general, together with the distinguish set of mutually commuting elements inside of each, the
so-called Dunkl elements. We describe relations among the Dunkl elements in the case of a family
of quadratic algebras corresponding to a certain splitting of the universal classical Yang—Baxter
relations into two three term relations. This result is a further extension and generalization of
analogous results obtained in [45, 117] and [76]. As an application we describe explicitly the
set of relations among the Gaudin elements in the group ring of the symmetric group, cf. [108].
We also study relations among the Dunkl elements in the case of (nonhomogeneous) quadratic
algebras related with the universal dynamical classical Yang—Baxter relations. Some relations
of results obtained in papers [45, 72, 75] with those obtained in [54] are pointed out. We
also identify a subalgebra generated by the generators corresponding to the simple roots in the
extended Fomin—Kirillov algebra with the DAHA, see Section 4.3.

The set of generators of algebras in question, naturally corresponds to the set of edges of the
complete graph K, (to the set of edges and loops of the complete graph with (simple) loops IN(n in
dynamical and equivariant cases). More generally, starting from any subgraph I" of the complete
graph with simple loops K, we define a (graded) subalgebra 3T7§0)(F) of the (graded) algebra
3T,SO) (kn) [70]. In the case of loop-less graphs I' C K, we state conjecture, Conjecture 4.15
in the main text, which relates the Hilbert polynomial of the abelian quotient 37, éo)(F)ab of the

algebra 37, 7(10) (T') and the chromatic polynomial of the graph I' we are started with'2. We check

We expect that a similar conjecture is true for any finite (oriented) matroid M. Namely, one (A.K.) can
define an analogue of the three term relations algebra 37 (M) for any (oriented) matroid M. We ezpect that
the abelian quotient 37® (M)®® of the algebra 37(%) (M) is isomorphic to the Orlik—Terao algebra [114], denoted
by OT(M) (known also as even version of the Orlik-Solomon algebra, denoted by OS*(M) ) associated with
matroid M [28]. Moreover, the anticommutative quotient of the odd version of the algebra 37 (M), as we
expect, is isomorphic to the Orlik—Solomon algebra OS(M) associated with matroid M, see, e.g., [11, 49]. In
particular,

Hilb(3T (M)™, ) = t" ™ Tutte(M; 1 4 ¢, 0).

We ezpect that the Tutte polynomial of a matroid, Tutte(M, x, y), is related with the Betti polynomial of a matroid
M. Replacing relations ufj = 0, Vi,j, in the definition of the algebra 3T(0)(F) by relations ufj = qij, Vi,J,
(t,4) € E(T), where {qij}@ jyemm), ¢ij = Qji, is a collection of central elements, give rise to a quantization of
the Orlik—Terao algebra OT(I"). It seems an interesting task to clarify combinatorial/geometric significance of
noncommutative versions of Orlik—Terao algebras (as well as Orlik—Solomon ones) defined as follows: OT (T") :=
37T, its “quantization” 3T(?(T)** and K-theoretic analogue 37?9 (T, 8)°*, cf. Definition 3.1, in the theory
of hyperplane arrangements. Note that a small modification of arguments in [89] as were used for the proof of our
Conjecture 4.15, gives rise to a theorem that the algebra 375, (I')*® is isomorphic to the Orlik-Terao algebra OT(T')
studied in [126].
2In the case of simple graphs our Conjecture 4.15 has been proved in [89].
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our conjecture for the complete graphs K, and the complete bipartite graphs K, ,,,. Besides, in
the case of complete multipartite graph K, ... n,., we identify the commutative subalgebra in the

algebra 3T](VO)(Knh,_’m)7 N =n1 + -+ +n,, generated by the elements

(N) . _ (N) (N)
00 = e, (08 1 O0)).
1<j<r, 1<kj<nj, Nj:=ni+--+n; No=0,

with the cohomology ring H*(Fl,, ... n,,Z) of the partial flag variety Fl,, . n,. In other words,

the set of (additive) Dunkl elements {HJ(V]\]-[L—H’ ce 9](\,]\]_[)} plays a role of the Chern roots of the tau-
tological vector bundles &;, j = 1,...,r, over the partial flag variety Fl,, . n,, see Section 4.1.2

for details. In a similar fashion, the set of multiplicative Dunkl elements {@S\],j)_l IRTRRS ,@S\J,\;)}
plays a role of the K-theoretic version of Chern roots of the tautological vector bundle {; over

the partial flag variety Fl,, . n,. As a byproduct for a given set of weights £ = {{;; }1<i<j<r we

compute the Tutte polynomial T(Kg),...,nk,:v,y) of the £-weighted complete multipartite graph

K,(f;),_“,nk, see Section 4, Definition 4.4 and Theorem 4.3. More generally, we introduce universal
Tutte polynomial

Tn({Qij}7 z, y) € Z[{Ql]}”xa y]

in such a way that for any collection of non-negative integers m = {m;;}1<i<j<n and a subgraph

T c K™ of the weighted complete graph on n labeled vertices with each edge (i,7) € K™
appears with multiplicity m;;, the specialization

y™i -1

if edge (i,j) €Tl
of the universal Tutte polynomial is equal to the Tutte polynomial of graph I' multiplied by
(x — 1)”(”, see Section 4.1.2, Theorem 4.24, and comments and examples, for details.

We also introduce and study a family of (super) 6-term relations algebras, and suggest
a definition of “multiparameter quantum deformation” of the algebra of the curvature of 2-forms
of the Hermitian linear bundles over the complete flag variety Fl,. This algebra can be treated
as a natural generalization of the (multiparameter) quantum cohomology ring QH*(Fl,), see
Section 4.2. In a similar fashion as in the case of three term relations algebras, for any sub-
graph T’ C K,,, one (A.K.) can also define an algebra 67 (I') and projection®

Ch: 67°/(I) —s 370O)().

Note that subalgebra A(T') := Q[f1, .. .,6,] C 6T (I")® generated by additive Dunkl elements

0; = Z U5
(iHEr)
is closely related with problems have been studied in [118, 129], ..., and [137] in the case I' = K,

see Section 4.2.2. We want to draw attention of the reader to the following problems related
with arithmetic Schubert* and Grothendieck calculi:

(i) Describe (natural) quotient 671(T") of the algebra 67(°)(I") such that the natural epi-
morphism pr: A(T') — A(T") turns out to be isomorphism, where we denote by A(T)
a subalgebra of 677(T") generated over Q by additive Dunkl elements.

3We treat this map as an algebraic version of the homomorphism which sends the curvature of a Hermitian
vector bundle over a smooth algebraic variety to its conomology class, as well as a splitting of classical Yang—Baxter
relations (that is six term relations) in a couple of three term relations.

4See for example [137] and the literature quoted therein.
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(ii) It is not difficult to see [72] that multiplicative Dunkl elements {©;}1<i<, also mutu-
ally commute in the algebra 67?0, cf. Section 3.2. Problem we are interested in is to
describe commutative subalgebras generated by multiplicative Dunkl elements in the alge-
bras 677(T") and 67°)(T")%. In the latter case one will come to the K-theoretic version of
algebras studied in [118], ....

Yet another objective of our paper® is to describe several combinatorial properties of some
special elements in the associative quasi-classical Yang-Baxter algebras [72], including among
others, the so-called Cozeter element and the longest element. In the case of Coxeter element
we relate the corresponding reduced polynomials introduced in [133, Exercise 6.C5(c)], and
independently in [72], cf. [70], with the S-Grothendieck polynomials [42] for some special per-

mutations W]E;n). More generally, we identify the [-Grothendieck polynomial (’5(/621) (X,) with

k
a certain weighted sum running over the set of k-dissections of a convex (n + k + 1)-gon. In
particular we show that the specialization &) (1) of the S-Grothendieck polynomial &%) (Xn)

—() ()
counts the number of k-dissections of a conve;C( (n+k+1)-gon according to the number of diago-
nals involved. When the number of diagonals in a k-dissection is the maximal possible (equals
ton(2k—1)—1), we recover the well-known fact that the number of k-triangulations of a convex
(n+k+1)-gon is equal to the value of a certain Catalan—Hankel determinant, see, e.g., [129]. In
Section 5.4.2 we study multiparameter generalizations of reduced polynomials associated with
Coxeter elements.

We also show that for a certain 5-parameters family of vexillary permutations, the speciali-
zation x; = 1, Vi > 1, of the corresponding 3-Schubert polynomials 61(1,6) (X,) turns out to be
coincide either with the Fuss—Narayana polynomials and their generalizations, or with a (g, 8)-
deformation of VSASM or that of CSTCPP numbers, see Corollary 5.33B. As examples we show
that

(a) the reduced polynomial corresponding to a monomial z7yahs counts the number of (n,m)-
Delannoy paths according to the number of N E-steps, see Lemma 5.81;

(b) if g = 0, the reduced polynomial corresponding to monomial (xlgxgg)"x§4, n > k, counts
the number of n up, n down permutations in the symmetric group So,+x+1, see Proposi-
tion 5.82; see also Conjecture 5.83.

We also point out on a conjectural connection between the sets of mazimal compatible se-
quences for the permutation oy, 25, 2 0 and that o, 2,,41,2,0 from one side, and the set of VSASM(n)
and that of CSTCPP(n) correspondingly, from the other, see Comments 5.48 for details. Finally,
in Sections 5.1.1 and 5.4.1 we introduce and study a multiparameter generalization of reduced
polynomials considered in [133, Exercise 6.C5(c)], as well as that of the Catalan, Narayana and
(small) Schréder numbers.

In the case of the longest element we relate the corresponding reduced polynomial with the
Ehrhart polynomial of the Chan—-Robbins—Yuen polytope, see Section 5.3. More generally, we
relate the (¢, §)-reduced polynomial corresponding to monomial

n—1 n—2 n

a; .
| Il wn | ai€Ze0, Vi
j=1 7=2 \k=j+2

5This part of our paper had its origin in the study/computation of relations among the additive and multiplica-
tive Dunkl elements in the quadratic algebras we are interested in, as well as the author’s attempts to construct
a monomial basis in the algebra 37T; 7(10) and find its Hilbert series for n > 6. As far as I'm aware these problems
are still widely open.
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with positive t-deformations of the Kostant partition function and that of the Ehrhart polynomial
of some flow polytopes, see Section 5.3.

In Secti/o\n5.4 we investigate reduced polynomials associated with certain monomials in the
algebra (ACYB)2 (), known also as Gelfand-Varchenko algebra [67, 72], and study its combina-
torial properties. Our main objective in Section 5.4.2 is to study reduced polynomials for Coxeter
element treated in a certain multiparameter deformation of the (noncommutative) quadratic al-
gebra mn(a, B). Namely, to each dissection of a convex (n 4 2)-gon we associate a certain
weight and consider the generating function of all dissections of (n + 2)-gon selected taken with
that weight. One can show that the reduced polynomial corresponding to the Coxeter element
in the deformed algebra is equal to that generating function. We show that certain specializa-
tions of that reduced polynomial coincide, among others, with the Grothendieck polynomials
corresponding to the permutation 1 X w(()nfl) € S,, the Lagrange inversion formula, as well as
give rise to combinatorial (i.e., positive expressions) multiparameters deformations of Catalan
and Fuss—Catalan, Motzkin, Riordan and Fine numbers, Schroder numbers and Schrider trees.
We expect (work in progress) a similar connections between Schubert and Grothendieck poly-
nomials associated with the Richardson permutations 1F x w(()n_k), k-dissections of a convex
(n + k + 1)-gon investigated in the present paper, and k-dimensional Lagrange-Good inversion

formula studied from combinatorial point of view, e.g., in [22, 50].

1 Introduction

The Dunkl operators have been introduced in the later part of 80’s of the last century by Charles
Dunkl [35, 36] as a powerful mean to study of harmonic and orthogonal polynomials related with
finite Coxeter groups. In the present paper we don’t need the definition of Dunkl operators for
arbitrary (finite) Coxeter groups, see, e.g., [35], but only for the special case of the symmetric
group S,.

Definition 1.1. Let P, = Clzy,...,zy,] be the ring of polynomials in variables z1,...,z,.
The type A,—1 (additive) rational Dunkl operators D, ..., D, are the differential-difference
operators of the following form
0 1-— Sij

+ )
ox; T; — T
JFi J

D; =\ (1.1)

Here s, 1 <i < j <n, denotes the exchange (or permutation) operator, namely,

si(f) (@1, @y, ) = f(T, 0,2, Ty ),

il

5, stands for the derivative w.r.t. the variable z;, A € C is a parameter.

The key property of the Dunkl operators is the following result.

Theorem 1.2 (C. Dunkl [35]). For any finite Coxeter group (W,S), where S = {s1,...,s}
denotes the set of simple reflections, the Dunkl operators D; := Ds; and D; := Ds, pairwise
commute: D;Dj = D;D;, 1 <1,j <.

Another fundamental property of the Dunkl operators which finds a wide variety of applica-
tions in the theory of integrable systems, see, e.g., [56], is the following statement: the operator

“essentially” coincides with the Hamiltonian of the rational Calogero—Moser model related to
the finite Coxeter group (W, 5).
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Definition 1.3. Truncated (additive) Dunkl operator (or the Dunkl operator at critical level),
denoted by D;, i = 1,...,1, is an operator of the form (1.1) with parameter A = 0.

For example, the type A, _1 rational truncated Dunkl operator has the following form
1-— Siq
D; = —
’ Z T — T
J#i

Clearly the truncated Dunkl operators generate a commutative algebra. The important
property of the truncated Dunkl operators is the following result discovered and proved by
C. Dunkl [36]; see also [8] for a more recent proof.

Theorem 1.4 (C. Dunkl [36], Yu. Bazlov [8]). For any finite Cozxeter group (W, S) the algebra
over Q generated by the truncated Dunkl operators D1, ..., Dy is canonically isomorphic to the
coinvariant algebra Ay of the Coxeter group (W, S).

Recall that for a finite crystallographic Coxeter group (W, S) the coinvariant algebra Ay is
isomorphic to the cohomology ring H*(G/B, Q) of the flag variety G/B, where G stands for the
Lie group corresponding to the crystallographic Coxeter group (W, S) we started with.

Example 1.5. In the case when W = §,, is the symmetric group, Theorem 1.4 states that
the algebra over QQ generated by the truncated Dunkl operators D; = > L2 R - 1,...,n,is

CTi—Tj)

J
canonically isomorphic to the cohomology ring of the full flag variety Fl, of type A,—_1

Q[Dy,..., Dy = Qlx1,. .., zn]/In, (1.2)
where J,, denotes the ideal generated by the elementary symmetric polynomials {ex(X,), 1 <
k<n}.

Recall that the elementary symmetric polynomials e;(Xy), ¢ = 1,...,n, are defined through

the generating function

n

1+ zn: ei(Xa)tt = [ (1 + ta),
i=1

i=1
where we set X, := (z1,...,%y,). It is well-known that in the case W = S,,, the isomorphism (1.2)
can be defined over the ring of integers Z.
Theorem 1.4 by C. Dunkl has raised a number of natural questions:

(A) What is the algebra generated by the truncated

e trigonometric,
e elliptic,
e super, matrix, ...,
(a) additive Dunkl operators?

(b) Ruijsenaars—Schneider-Macdonald operators?
(c) Gaudin operators?

(B) Describe commutative subalgebra generated by the Jucys—Murphy elements in

e the group ring of the symmetric group;
e the Hecke algebra;
e the Brauer algebra, BMV algebra, ....
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(C) Does there exist an analogue of Theorem 1.4 for

e classical and quantum equivariant cohomology and equivariant K-theory rings of the
partial flag varieties?

e chomology and K-theory rings of affine flag varieties?
e diagonal coinvariant algebras of finite Coxeter groups?

e complex reflection groups?

The present paper is an extended introduction to a few items from Section 5 of [72].

The main purpose of my paper “On some quadratic algebras, II” is to give some partial
answers on the above questions basically in the case of the symmetric group S,,.

The purpose of the present paper is to draw attention to an interesting class of nonho-
mogeneous quadratic algebras closely connected (still mysteriously!) with different branches of
Mathematics such as classical and quantum Schubert and Grothendieck calculi, low-dimensional
topology, classical, basic and elliptic hypergeometric functions, algebraic combinatorics and
graph theory, integrable systems, etc.

What we try to explain in [72] is that upon passing to a suitable representation of the quadratic
algebra in question, the subjects mentioned above, are a manifestation of certain general prop-
erties of that quadratic algebra.

From this point of view, we treat the commutative subalgebra generated (over a universal
Lazard ring L, [88]) by the additive (resp. multiplicative) truncated Dunkl elements in the
algebra 37, (8), see Definition 3.1, as universal cohomology (resp. universal K -theory) ring of
the complete flag variety Fl,. The classical or quantum cohomology (resp. the classical or
quantum K-theory) rings of the flag variety Fl,, are certain quotients of that universal ring.

For example, in [74] we have computed relations among the (truncated) Dunkl elements
{0;,1 =1,...,n} in the elliptic representation of the algebra 3T, (5 = 0). We ezpect that the
commutative subalgebra obtained is isomorphic to elliptic cohomology ring (not defined yet, but
see [48, 52]) of the flag variety Fli,.

Another example from [72]. Consider the algebra 3T,,(8 = 0). One can prove [72] the
following identities in the algebra 37, (8 = 0):

(A) summation formula

n—1 Jj—1 n—1
H Upb+1 | Uln H Upb+1 | = H Uq,a+15
b=1 a=1

1 \b=j+1

n—1

J

(B) duality transformation formula, let m < n, then

n—1 n—1 m—1 j—1
§ H Up b+1 H Ug,a4+n—1Ua,a+n | Um,m+n—1 H Up,b+1
j=m \b=j+1 a=1 b=m

m

m—1 n—1
+ Z H Ug,a+n—1Ua,a+n | Umnt+m—1 (H ub,b—l—l) Ul n
ji=2 | a=j b=m
m [m—j n—1 j—1
= Z [H ua,a—i—nua—l—l,a—‘rn] (H ub,bJrl) [H ua,a+n—1ua,a+n] .
j b=m

j=1 La=1 a=1

One can check that upon passing to the elliptic representation of the algebra 3T, (5 = 0),
see Section 3.1 or [74], for the definition of elliptic representation, the above identities (A)
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and (B) finally end up correspondingly, to be the summation formula and the N = 1 case of
the duality transformation formula for multiple elliptic hypergeometric series (of type A,_1),
see, e.g., [63] or Appendix A.6 for the explicit forms of the latter. After passing to the so-called
Fay representation [72], the identities (A) and (B) become correspondingly to be the summation
formula and duality transformation formula for the Riemann theta functions of genus g > 0 [72].
These formulas in the case g > 2 seems to be new.

Worthy to mention that the relation (A) above can be treated as a “non-commutative ana-
logue” of the well-known recurrence relation among the Catalan numbers. The study of “de-
scendent relations” in the quadratic algebras in question was originally motivated by the author
attempts to construct a monomial basis in the algebra 3T,§0), and compute Hilb(ST,gO),t) for
n > 6. These problems are still widely open, but gives rise the author to discovery of several
interesting connections with

classical and quantum Schubert and Grothendieck calculi,

e combinatorics of reduced decomposition of some special elements in the symmetric group,
e combinatorics of generalized Chan—Robbins—Yuen polytopes,

e relations among the Dunkl and Gaudin elements,

e computation of Tutte and chromatic polynomials of the weighted complete multipartite
graphs, etc.

A few words about the content of the present paper. Example 1.5 can be viewed as an
illustration of the main problems we are treated in Sections 2 and 3 of the present paper,
namely the following ones.

o Let {u;j, 1 < 4,5 < n} be a set of generators of a certain algebra over a commutative
ring K. The first problem we are interested in is to describe “a natural set of relations”
among the generators {u;; }1<i j<n which implies the pair-wise commutativity of dynamical
Dunkl elements

n
91:01(71) ::Zuij, 1§z§n
j=1

e Should this be the case then we are interested in to describe the algebra generated by
“the integrals of motions”, i.e., to describe the quotient of the algebra of polynomials
Kly1,...,yn) by the two-sided ideal J,, generated by non-zero polynomials F(y1,...,yn)
such that F(601,...,0,) = 0 in the algebra over ring K generated by the elements
{uijbi<ij<n-

e We are looking for a set of additional relations which imply that the elementary symmetric
polynomials ex(Y;), 1 < k < n, belong to the set of integrals of motions. In other words,

the value of elementary symmetric polynomials eg(y1,...,yn), 1 < k < n, on the Dunkl
elements Hgn), ... ,9,(;7’) do not depend on the variables {u;;, 1 < i # j < n}. If so, one

can defined deformation of elementary symmetric polynomials, and make use of it and the
Jacobi—Trudi formula, to define deformed Schur functions, for example. We try to realize
this program in Sections 2 and 3.

In Section 2, see Definition 2.3, we introduce the so-called dynamical classical Yang—Baxter
algebra as “a natural quadratic algebra” in which the Dunkl elements form a pair-wise commuting
family. It is the study of the algebra generated by the (truncated) Dunkl elements that is the
main objective of our investigation in [72] and the present paper. In Section 2.1 we describe few
representations of the dynamical classical Yang-Baxter algebra DCYB,, related with
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e quantum cohomology QH*(Fl,) of the complete flag variety Fl,, cf. [41];

e quantum equivariant cohomology QH7n o« (T Fl,,) of the cotangent bundle T* F1,, to the
complete flag variety, cf. [54];

e Dunkl-Gaudin and Dunkl-Uglov representations, cf. [108, 138].

In Section 3, see Definition 3.1, we introduce the algebra 3HT, (/3), which seems to be the
most general (noncommutative) deformation of the (even) Orlik—Solomon algebra of type A, _1,
such that it’s still possible to describe relations among the Dunkl elements, see Theorem 3.8. As
an application we describe explicitly a set of relations among the (additive) Gaudin/Dunkl ele-
ments, cf. [108]. It should be stressed at this place that we treat the Gaudin elements/operators
(either additive or multiplicative) as images of the universal Dunkl elements/operators (addi-
tive or multiplicative) in the Gaudin representation of the algebra 3HT,(0). There are seve-
ral other important representations of that algebra, for example, the Calogero-Moser, Bruhat,
Buchstaber—Felder—Veselov (elliptic), Fay trisecant (7-functions), adjoint, and so on, considered
(among others) in [72]. Specific properties of a representation chosen® (e.g., Gaudin representa-
tion) imply some additional relations among the images of the universal Dunkl elements (e.g.,
Gaudin elements) should to be unveiled.

We start Section 3 with definition of algebra 3T,,(/3) and its “Hecke” 3HT,,(/3) and “elliptic”
3MT, () quotients. In particular we define an elliptic representation of the algebra 37, (0) [74],
and show how the well-known elliptic solutions of the quantum Yang—Baxter equation due to
A. Belavin and V. Drinfeld, see, e.g., [9], S. Shibukawa and K. Ueno [130], and G. Felder and
V. Pasquier [40], can be plug in to our construction, see Section 3.1. At the end of Section 3.1.1
we point out on a mysterious (at least for the author) appearance of the Euler numbers and
“traces” of the Brauer algebra in the equivariant Pieri rules hold for the algebra 3T'M,, (3, q, )
stated in Theorem 3.8.

In Section 3.2 we introduce a multiplicative analogue of the Dunkl elements {©; € 3T,,(5),
1 < j < n} and describe the commutative subalgebra in the algebra 37,,(3) generated by mul-
tiplicative Dunkl elements [76]. The latter commutative subalgebra turns out to be isomorphic
to the quantum equivariant K-theory of the complete flag variety Fl,, [76].

In Section 3.3 we describe relations among the truncated Dunkl-Gaudin elements. In this
case the quantum parameters ¢;; = p?j, where parameters {pij = (z; — zj)_l, 1<i<j<n}
satisfy the both Arnold and Pliicker relations. This observation has made it possible to describe
a set of additional rational relations among the Dunkl-Gaudin elements, cf. [108].

In Section 3.4 we introduce an equivariant version of multiplicative Dunkl elements, called
shifted Dunkl elements in our paper, and describe (some) relations among the latter. This result
is a generalization of that obtained in Section 3.1 and [76]. However we don’t know any geometric
interpretation of the commutative subalgebra generated by shifted Dunkl elements.

In Section 4.1 for any subgraph I' C K,, of the complete graph K, we introduce’ [70, 72],

algebras 37, (T") and 37" (T') which can be seen as analogues of algebras 37,, and 37 corre-
spondingly?®.

SFor example, in the cases of either Calogero—Moser or Bruhat representations one has an additional constraint,
namely, uZ;, = 0 for all i # j. In the case of Gaudin representation one has an additional constraint u?j = p?j,

ij
where the (quantum) parameters {p;; = , 1 # j}, satisfy simultaneously the Arnold and Pliicker relations, see

1
Section 2, IT. Therefore, the (small) quantumjcohomology ring of the type A,_1 full flag variety Fl,, and the Bethe
subalgebra(s) (i.e., the subalgebra generated by Gaudin elements in the algebra 3HT, (0)) correspond to different
specializations of “quantum parameters’ {qi; := u?j} of the universal cohomology ring (i.e., the subalgebra/ring
in 3HT,(0) generated by (universal) Dunkl elements). For more details and examples, see Section 2.1 and [72].

"Independently the algebra 3T,(LO>(F) has been studied in [16], where the reader can find some examples and
conjectures.

8To avoid confusions, it must be emphasized that the defining relations for algebras 3T}, (") and 3T, (I)(¥) may
have more then three terms.
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We want to point out in the Introduction, cf. footnote 1, that an analog of the algebras 3T,

and 3T7§ﬁ ), 3HT,, etc. treated in the present paper, can be defined for any (oriented or not)
matroid M. We denote these algebras as 3T(M) and 379 (M). One can show (A.K.) that the

abelianization of the algebra 37 (M), denoted by 379 (M)ab, is isomorphic to the Gelfand-

Varchenko algebra corresponding to a matroid M, whereas the algebra 37(5=0) (M)ab is isomor-
phic to the (even) Orlik—Solomon algebra OS™ (M) of a matroid M.? We consider and treat the
algebras 3T'(M), 3HT (M), ..., as equivariant noncommutative (or quantum) versions of the
(even) Orlik—Solomon algebras associated with matroid (including hyperplane, graphic, ... ar-
rangements). However a meaning of a quantum deformation of the (even or odd) Orlik—Solomon
algebra suggested in the present paper, is missing, even for the braid arrangement of type A,.
Generalizations of the Gelfand—Varchenko algebra has been suggested and studied in [67, 72]
and in the present paper under the name quasi-associative Yang-Baxter algebra, see Section 5.

In the present paper we basically study the abelian quotient of the algebra 3T7(L0) (T"), where
graph I' has no loops and multiple edges, since we expect some applications of our approach to
the theory of chromatic polynomials of planar graphs, in particular to the complete multipartite
graphs K, ., and the grid graphs Gm,n.10 Our main results hold for the complete multipartite,
cyclic and line graphs. In particular we compute their chromatic and Tutte polynomials, see
Proposition 4.19 and Theorem 4.24. As a byproduct we compute the Tutte polynomial of the £-
weighted complete multipartite graph Kg)m where € = {/;; }1<i<j<r, is a collection of weights,
i.e., a set of non-negative integers.

More generally, for a set of variables {{qi; }1<i<j<n,,y} we define universal Tutte polynomial
Tn({aij},2,y) € Z]gi;l[z,y] such that for any collection of non-negative integers {m;;}ti<i<j<n
and a subgraph I' C K}(Lm) of the complete graph K,, with each edge (i, j) comes with multiplic-
ity m;;, the specialization
y™i -1

gij — 0 ifedge (i,7) €T, qij — [mijly = y—1

if edge (i,j) €T
of the universal Tutte polynomial T,({g;;},z,y) is equal to the Tutte polynomial of graph I'
multiplied by the factor (¢ — 1)*(I):

(z — 1)*DTutte(T, z,y) := Tn({qij }, =, y)
q;;=0if (i,5) ¢T"
Qij:[mij]yif(i7j)er

Here and after (I') demotes the number of connected components of a graph I'. In other words,
one can treat the universal Tutte polynomial T}, ({gi;},z,y) as a “reproducing kernel” for the
Tutte polynomials of all (loop-less) graphs with the number of vertices not exceeded n.

We also state Conjecture 4.15 that for any loopless graph I' (possibly with multiple edges)

ab
the algebra 3T‘(F0‘) (T')  is isomorphic to the even Orlik—Solomon algebra OS™ (Ar) of the graphic

arrangement associated with graph I' in question'’.

At the end we emphasize that the case of the complete graph I' = K, reproduces the results
of the present paper and those of [72], i.e., the case of the full flag variety Fl,. The case of
the complete multipartite graph I' = K, ., reproduces the analogue of results stated in the
present paper for the case of full flag variety F1,, to the case of the partial flag variety Fy, . n.,
see [72] for details.

9For a definition and basic properties of the Orlik-Solomon algebra corresponding to a matroid, see, e.g.,
[49, 65].

10See http://reference.wolfram.com/language/ref/GridGraph.html for a definition of grid graph Gm n.

UEor simple graphs, i.e., without loops and multiple edges, this conjecture has been proved in [89].
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In Section 4.1.4 we sketch how to generalize our constructions and some of our results to the
case of the Lie algebras of classical types'?.

In Section 4.2 we briefly overview our results concerning yet another interesting family of
quadratic algebras, namely the siz-term relations algebras 675, 6T,§0) and related ones. These
algebras also contain a distinguished set of mutually commuting elements called Dunkl elements
{0;,i=1,...,n} given by 6; = > 14, see Definition 4.48.

J#

In Section 4.2.2 we introduce and study the algebra 67, X in greater detail. In particular we
introduce a “quantum deformation” of the algebra generated by the curvature of 2-forms of of
the Hermitian linear bundles over the flag variety Fi,, cf. [118].

In Section 4.2.3 we state our results concerning the classical Yang—Baxter algebra CYB,, and
the 6-term relation algebra 67),. In particular we give formulas for the Hilbert series of these
algebras. These formulas have been obtained independently in [7] The paper just mentioned,
contains a description of a basis in the algebra 67,,, and much more.

In Section 4.2.4 we introduce a super analog of the algebra 67, denoted by 67, ,,, and
compute its Hilbert series.

Finally, in Section 4.3 we introduce extended nil-three term relations algebra 3%, and describe
a subalgebra inside of it which is isomorphic to the double affine Hecke algebra of type A,_1,
cf. [24].

In Section 5 we describe several combinatorial properties of _some special elements in the
associative quasi-classical Yang-Baxter algebra!®, denoted by ACYB,. The main results in
that direction were motivated and obtained as a by-product, in the process of the study of the
the structure of the algebra 3HT, (). More specifically, the main results of Section 5 were
obtained in the course of “hunting for descendant relations” in the algebra mentioned, which is
an important problem to be solved to construct a basis in the nil-quotient algebra 37, ,(LO). This
problem is still widely-open.

The results of Section 5.1, see Proposition 5.4, items (1)-(5), are more or less well-known
among the specialists in the subject, while those of the item (6) seem to be new. Namely,
we show that the polynomial @, (z;; = t;) from [133, Exercise 6.C8(c)], essentially coincides
with the g-deformation [42] of the Lascoux—Schiitzenberger Grothendieck polynomial [86] for
some particular permutation. The results of Proposition 5.4(6), point out on a deep connection
between reduced forms of monomials in the algebra A/CY\Bn and the Schubert and Grothendieck
calculi. This observation was the starting point for the study of some combinatorial properties of
certain specializations of the Schubert, the 8-Grothendieck [43] and the double S-Grothendieck
polynomials in Section 5.2. One of the main results of Section 5.2 can be stated as follows.

Theorem 1.6.

(1) Let w € S, be a permutation, consider the specialization x1 := q, ©; = 1, Vi > 2, of the
B-Grothendieck polynomial ﬁg)(Xn). Then

Ruw(q,B+1):= 05%3)(951 =q,x;=1,Vi>2) e Nlq,1+ j].

In other words, the polynomial R (q, ) has non-negative integer coefficients'.

For late use we define polynomials

Ru(g, B) := ¢" "W R (g, B).

20ne can define an analogue of the algebra 37 for the root system of BC,, and C,, C,,-types as well, but we
are omitted these cases in the present paper.

13The algebra mn can be treated as “one-half” of the algebra 37, (3). It appears that the basic relations
among the Dunkl elements, which do not mutually commute anymore, are still valid, see Lemma 5.3.

For a more general result see Appendix A.1, Corollary A.7.
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(2) Let w € S,, be a permutation, consider the specialization z; := q, y; = t, Yi > 1, of the
double B-Grothendieck polynomial (’51(5)()(”, Y,). Then

051(5_1)(331- =q, yi:=t,Vi>1) € Nq,t,pjl]

(3) Let w be a permutation, then

mw(17ﬂ) - %lxw(&ﬂ)-
Note that Ry(1,8) = Ry-1(1, 8), but Ry(t, 8) # Ryp-1(t, 5), in general.

For the reader convenience we collect some basic definitions and results concerning the S-
Grothendieck polynomials in Appendix A.1.

Let us observe that R, (1,1) = &,(1), where &,,(1) denotes the specialization x; := 1, Vi > 1,
of the Schubert polynomial &,,(X,) corresponding to permutation w. Therefore, R, (1,1) is
equal to the number of compatible sequences [13] (or pipe dreams, see, e.g., [129]) corresponding
to permutation w.

Problem 1.7. Let w € S,, be a permutation and l := {(w) be its length. Denote by CS(w) = {a =
(a1 < ag < --- < a;) € N'} the set of compatible sequences [13] corresponding to permutation w.

e Define statistics r(a) on the set of all compatible sequences CS,, := [][ CS(w) in a such
wEeS,,
way that

> "B =Ru(q, B).

acCS(w)

e Find a geometric interpretation, and investigate combinatorial and algebra-geometric pro-
perties of polynomials GSUﬂ) (X,), where for a permutation w € S,, we denoted by 61(5) (Xn)

the B-Schubert polynomial defined as follows

I:=0(w)
61(1/}3)()(”) = Z Br(@) H La,-
acCS(w) i=1
We ezpect that polynomial 6%3 )(1) coincides with the Hilbert polynomial of a certain graded
commutative ring naturally associated to permutation w.

Remark 1.8. It should be mentioned that, in general, the principal specialization

(’5(5_1)(% =g Vi> 1)

w
of the (8 — 1)-Grothendieck polynomial may have negative coefficients.

Our main objective in Section 5.2 is to study the polynomials 2R, (g, 3) for a special class of
permutations in the symmetric group Ss. Namely, in Section 5.2 we study some combinatorial
properties of polynomials Ry, ,(g,3) for the five parameters family of vezillary permutations
{wx ¢} which have the shape A := A\, 5 = (P(n—i+1)+b,i=1,...,n+1) and flag ¢ := ¢, =
(k+r(i—1),i=1,....,n+1).

This class of permutations is notable for many reasons, including that the specialized value of
the Schubert polynomial &, , (1) admits a nice product formula'®, see Theorem 5.29. Moreover,

'50One can prove a product formula for the principal specialization &, N ¢(xi :=¢""1, Vi > 1) of the correspon-
ding Schubert polynomial. We don’t need a such formula in the present paper.
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we describe also some interesting connections of polynomials R, , (g, 3) with plane partitions,
the Fuss—Catalan numbers'® and Fuss-Narayana polynomials, k-triangulations and k-dissections
of a convex polygon, as well as a connection with two families of ASM. For example, let A = (b")
and ¢ = (k™) be rectangular shape partitions, then the polynomial R, (g, 8) defines a (g, 3)-
deformation of the number of (ordinary) plane partitions!” sitting in the box b x k x n. It seems
an interesting problem to find an algebra-geometric interpretation of polynomials 2R, (g, 5) in
the general case.

Question 1.9. Let a and b be mutually prime positive integers. Does there exist a family of
permutations wqp € Sgyatp) Such thal the specialization x; = 1, Vi of the Schubert polyno-
mial &y, , is equal to the rational Catalan number C,;,? That is

1 a+b
S =5 (7"

Many of the computations in Section 5.2 are based on the following determinantal formula
for S-Grothendieck polynomials corresponding to grassmannian permutations, cf. [84].

Theorem 1.10 (see Comments 5.37(b)). If w = o is the grassmannian permutation with shape
A= (XA ..., \n) and a unique descent at position n, then!®

Aj+n—j i
DET |2, "7 (1 + Ba;)? Yicii<n

_ (8) _
(A) 6¥)(X,)=DET ‘h/\j+i,j(X”)‘1§i,j§n = I ’

(@i — aj)
1<i<j<n
where X, = (x4, x1,...,2,), and for any set of variables X,
L A
WA =3 (M) hecsa0
a=0

and hi(X) denotes the complete symmetric polynomial of degree k in the variables from the
set X.

Aj+n—j
DET| T[] ](wi + Yo + Briya) (1 + B!
B) OnX¥) = ——=— g oy

1<i<j<n

1<i,j<n

16We define the (generalized) Fuss-Catalan numbers to be FC¥(b) := ﬁ("’:’b). Connection of

the Fuss—Catalan numbers with the p-ballot numbers Bal,(m,n) = Z=Z2EL ("+7+1) and the Rothe numbers

n+m-+1 m
Rn(a,b) == (“J;b") can be described as follows

FC(b) = Ra(b+1,p) = Baly—1(n, (n — 1)p + ).

"Let A be a partition. An ordinary plane partition (plane partition for short)bounded by d and shape X is
a filling of the shape A by the numbers from the set {0,1,...,d} in such a way that the numbers along columns
and rows are weakly decreasing. A reverse plane partition bounded by d and shape A is a filling of the shape A
by the numbers from the set {0,1,...,d} in such a way that the numbers along columns and rows are weakly
mncreasing.

8The equality

Aj+n—j i—
DET|‘7"€J+ "(1+ Bri)! 1|1Si,j§n

[1 (@—x) ’

1<i<j<n

(B)
60')\ (X”)

has been proved independently in [107].
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In Sections 5.2.2 and 5.4.2 we study connections of Grothendieck polynomial associated with

the Richardson permutation w,(ﬁn) = 1% x w(()n_k), k-dissections of a convex (n + k + 1)-gon,

generalized reduced polynomial corresponding to a certain monomial in the algebra mn
and the Lagrange inversion formula. In the case of generalized Richardson permutation wg?,
corresponding to the k-shifted dominant permutations w®™ associated with the Young diagram
Apn i=p(n—1,n—2,...,1), namely, w,ﬁ’f} = 1" xw®™  we treat only the case k = 1, see also [39].
In the case k > 2 one comes to a task to count and find a lattice path type interpretation for
the number of k-pgulations of a convex n-gon that is the number of partitioning of a convex
n-gon on parts which are all equal to a convex (p + 2)-gon, by a (maximal) family of diagonals
such that each diagonal has at most k internal intersections with the members of a family of
diagonals selected.

In Section 5.3 we give a partial answer on Question 6.C8(d) by R. Stanley [133]. In particular,

we relate the reduced polynomial corresponding to monomial

n—2 n
a n .
@3 zn1n™) [T TI 260 @5 €220, V5,
=2 k=j+2

with the Ehrhart polynomial of the generalized Chan—Robbins—Yuen polytope, if as = -+ =
ap, =m+ 1, cf. [101], with a ¢t-deformation of the Kostant partition function of type A,_; and
the Ehrhart polynomials of some flow polytopes, cf. [103].

In Section 5.4 we investigate certain specializations of the reduced polynomials corresponding
to monomials of the form

m

ml ... n
) xn—l,n’

m; € Zzo, W j

First of all we observe that the corresponding specialized reduced polynomial appears to be
a piece-wise polynomial function of parameters m = (my,...,my) € (R>0)", denoted by Pp,.
It is an interesting problem to compute the Laplace transform of that piece-wise polynomial
function. In the present paper we compute the value of the function P,, in the dominant
chamber C,, = (m1 > mg > -+ > m, > 0), and give a combinatorial interpretation of the values
of that function in points (n,m) and (n,m, k), n > m > k.

For the reader convenience, in Appendices A.1-A.6 we collect some useful auxiliary informa-
tion about the subjects we are treated in the present paper.

Almost all results in Section 5 state that some two specific sets have the same number of
elements. Our proofs of these results are pure algebraic. It is an interesting problem to find
bijective proofs of results from Section 5 which generalize and extend remarkable bijective proofs
presented in [103, 129, 135, 142] to the cases of

e the -Grothendieck polynomials,
e the (small) Schroder numbers,
e k-dissections of a convex (n + k + 1)-gon,

e special values of reduced polynomials.

We are planning to treat and present these bijections in separate publication(s).

We expect that the reduced polynomials corresponding to the higher-order powers of the
Coxeter elements also admit an interesting combinatorial interpretation(s). Some preliminary
results in this direction are discussed in Comments 5.67.

At the end of introduction I want to add a few remarks.

(a) After a suitable modification of the algebra 3HT,, see [75], and the case 5 # 0 in [72],
one can compute the set of relations among the (additive) Dunkl elements (defined in Section 2,
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equation (2.1)). In the case § =0 and ¢;; = ¢;0j—;1, 1 <i < j <n, where J, is the Kronecker
delta symbol, the commutative algebra generated by additive Dunkl elements (2.3) appears to
be “almost” isomorphic to the equivariant quantum cohomology ring of the flag variety Fl,,
see [75] for details. Using the multiplicative version of Dunkl elements, see Section 3.2, one can
extend the results from [75] to the case of equivariant quantum K-theory of the flag variety Fl,,,
see [72].

(b) As it was pointed out previously, one can define an analogue of the algebra 3qu0) for any
(oriented) matroid M,,, and state a conjecture which connects the Hilbert polynomial of the
algebra 37, ,(LO)((Mn)“b, t) and the chromatic polynomial of matroid M,,. We ezpect that algebra
3Tq§6 :1)(Mn)“b is isomorphic to the Gelfand—Varchenko algebra associated with matroid M. It
is an interesting problem to find a combinatorial meaning of the algebra 3T7§ﬂ ) (M,,) for B =0

and £ # 0.

(c) Let R be a (graded) ring (to be specified later) and §,2 be the free associative algebra
over R with the set of generators {u;j, 1 <i,7 < n}. In the subsequent text we will distinguish
the set of generators {u;; }1<i<pn from that {u;;}1<ixj<n, and set

T; 1= U, 1=1,...,n.

A guiding idea to choose definitions and perform constructions in the present paper is to
impose a set of relations R, among the generators {z;}1<;<n, and that {u;;}i<ixj<n, which
ensure the mutual commutativity of the following elements

n
GZ(") 3:0i:xi+zuij7 i1=1,...,n,
J#i

in the algebra F,2/R,, as well as to have a good chance to describe/compute

e “Integral of motions”, that is finding a big enough set of algebraically independent polyno-
mials (quite possibly that polynomials are trigonometric or elliptic ones) I,(;” (Y1,---,Yn) € R[Y,]
such that

M6, ... 60" e RIX,], Va,

in other words, the latter specialization of any integral of motion has to be independent of the
all generators {u;;}i<ij<n.

e Give a presentation of the algebra Z,, generated by the integral of motions that is to find
a set of defining relations among the elements 61, ...,0,, and describe a R-basis {m&n)} in the
algebra Z,,.

e Generalized Littlewood—Richardson and Murnaghan—Nakayama problems. Given an inte-
gral of motion I ém)(Ym) and an integer n > m, find an explicit positive (if possible) expression
in the quotient algebra F,2 /R, of the element

IV (67,00,

For example in the case of the 3-term relations algebra 37, éo) (as well as its equivariant, quantum,
etc. versions) the generalized Littlewood—Richardson problem is to find a positive expression in

the algebra 3T,(LO) for the element &, (ng), . ,9%1)), where &,,(Y;,) stands for the Schubert
polynomial corresponding to a permutation w € S,,.

Generalized Murnaghan—Nakayama problem consists in finding a combinatorial expression

m

in the algebra 37, 19 for the element > (92(11))]’C .

i=1
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Partial results concerning these problems have been obtained as far as we aware in [45, 70,
72,73, 104, 117].

e “Partition functions”. Assume that the (graded) algebra Z, generated over R by the
elements 61, ..., 60, has finite dimension/rank, and the (non zero) maximal degree component
II(IQX of that algebra has dimension/rank one and generated by an element w. For any element
g € F,2 let us denote by Res, (g) an element in R such that

g = Resw (g)(U,
where we denote by g the image of element g in the component L(IIQX.
We define partition function associated with the algebra Z, as follows

Z(Z,) = Resy <exp (Za:qam&”)»,

where {q,} is a set of parameters which is consistent in one-to-one correspondence with a basis
{m&n)} chosen.

We are interesting in to find a closed formula for the partition function Z(Z,) as well as that
for a small partition function

ZON(Z,) := Res,, <exp < > Aijuz‘]))a

1<i,j<n

where {\;;}1<i j<n stands for a set of parameters. One can show [68] that the partition func-
tion Z(Z,,) associated with algebra 37T, satisfies the famous Witten-Dijkraaf-Verlinde—Verlinde
equations.

As a preliminary steps to perform our guiding idea we

(i) investigate properties of the abelianization of the algebra F,2/R,. Some unexpected
connections with the theory of hyperplane arrangements and graph theory are discovered;

(ii) investigate a variety of descendent relations coming from the defining relations. Some
polynomials with interesting combinatorial properties are naturally appear.

To keep the size of the present paper reasonable, several new results are presented as exercises.

We conclude Introduction by a short historical remark. As far as we aware, the commu-
tative version of 3-term relations which provided the framework for a definition of the FK
algebra &, [45] and a plethora of its generalizations, have been frequently used implicitly in
the theory of elliptic functions and related topics, starting at least from the middle of the 19th
century, see, e.g., [141] for references, and up to now, and for sure will be used for ever. The
key point is that the Kronecker sigma function

o(z —w)d(0)
o(z)o(—w)

o(w) = ,
where o(z) denotes the Weierstrass sigma function, satisfies the quadratic three terms addition
formula or functional equation discovered, as far as we aware, by K. Weierstrass. In fact this
functional equation is really equivalent'” to the famous Jacobi-Riemann three term relation of
degree four between the Riemann theta functions 6(z). In the rational degeneration of theta
functions, the three term relation between Kronecker sigma functions turns to the famous three
term Jacobi identity which can be treated as an associative analogue of the Jacobi identity in
the theory of Lie algebras.

19VWe refer the reader to a nice written paper by Tom H. Koornwinder [79] for more historical information.
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To our best knowledge, in an abstract form that is as a set of defining relations in a certain
algebra, an anticommutative version of three term relations had been appeared in a remarkable
paper by V.I. Arnold [3]. Nowadays these relations are known as Arnold relations. These
relations and its various generalizations play fundamental role in the theory of arrangements,
see, e.g., [113], in topology, combinatorics and many other branches of Mathematics.

In commutative set up abstract form of 3-term relations has been invented by O. Mathieu [96].
In the context of the braided Hopf algebras (of type A) 3-term relations like algebras (as some
examples of the Nichols algebras) have appeared in papers by A. Milinski and H.-J. Schneider
(2000), N. Andruskiewitsch (2002), S. Madjid (2004), I. Heckenberger (2005) and many others?’.

It is well-known that the Nichols algebra associated with the symmetric group S,, and trivial
conjugacy class is a quotient of the algebra F'K,,. It is still an open problem to prove (or disprove)
that these two algebras are isomorphic.

2 Dunkl elements

Having in mind to fulfill conditions suggested by our guiding line mentioned in Introduction as
far as it could be done till now, we are led to introduce the following algebras?'.

Definition 2.1 (additive Dunkl elements). The (additive) Dunkl elements 6;, i = 1,...,n, in
the algebra F,, are defined to be

n
Gi:xi—i—Zuij. (2.1)
j=1

J#i

We are interested in to find “natural relations” among the generators {u;;}1<;i j<n such that
the Dunkl elements (2.1) are pair-wise commute. One of the natural conditions which is the
commonly accepted in the theory of integrable systems, is

e locality conditions:

(@) [zi,zj] =0 if i},
(b)  wijur = upiij if i#j, k#1 and {i,j}N{k,l} = 2. (2.2)

Lemma 2.2. Assume that elements {u;;} satisfy the locality condition (2.1). If i # j, then

n
[0:,0;] = |:377, O Uik, i +’U«jz] + [Uz‘j,zﬂfk] + > wijk,
ki, k=1 ki,
where

Wijk = [Wij, Wik + wjk) + [Wik, wjk) + [, wik] + [wik, 5] + [Tk, wij]. (2.3)

Therefore in order to ensure that the Dunkl elements form a pair-wise commuting family, it’s
natural to assume that the following conditions hold

20YWe refer the reader to the site https://en.wikipedia.org/wiki/Nichols_algebra for basic definitions and
results concerning Nichols’ algebras and references on vast literature treated different aspects of the theory of
Nichols’ algebras and braided Hopf algebras.

21Surprisingly enough, in many cases to find relations among the elements 61, ..., 6, there is no need to require
that the elements {0;}1<;<n» are pairwise commute.


https://en.wikipedia.org/wiki/Nichols_algebra

On Some Quadratic Algebras 19

e unitarity:
[wij + wji, up] = 0 = [wij + wji, xg] for all distinct 1, 7, k, [, (2.4)
i.e., the elements u;; + uj; are central.
e “conservation laws”:

n
E Tk, Uij
k=1

=0 for all 1, j, (2.5)

n
i.e., the element F := > xy is central,
k=1

e unitary dynamical classical Yang-Baxter relations:
[wij, wire + wjk] + [wir, wik] + [, win] + [wik, 25] + [z, wij] = 0, (2.6)
if 4, 7, k are pair-wise distinct.

Definition 2.3 (dynamical six term relations algebra 6DT,). We denote by 6DT,, (and fre-
quently will use also notation DCYB,,) the quotient of the algebra F,, by the two-sided ideal
generated by relations (2.2)—(2.6).

Clearly, the Dunkl elements (2.1) generate a commutative subalgebra inside of the alge-

n n

bra 6T, and the sum ) 0; = >  x; belongs to the center of the algebra 6DT,.
i=1 i=1

Remark 2.4. Occasionally we will call the Dunkl elements of the form (2.1) by dynamical

Dunkl elements to distinguish the latter from truncated Dunkl elements, corresponding to the

case x; = 0, V1.

2.1 Some representations of the algebra 6 DT,
2.1.1 Dynamical Dunkl elements and equivariant quantum cohomology

(I) ( cf. [41]). Given a set qi,...,¢n—1 of mutually commuting parameters, define
7—1
gj=[]a it i<y
a=1

and set g;; = ¢j; in the case ¢ > j. Clearly, that if i < j <k, then g¢;;q;1r = -

Let z1,...,2, be a set of (mutually commuting) variables. Denote by P, := Z|z1, ..., 2z,] the
corresponding ring of polynomials. We consider the variable z;, ¢ = 1,...,n, also as the operator
acting on the ring of polynomials P, by multiplication on the variable z;.

Let s;; € S;, be the transposition that swaps the letters ¢ and j and fixes the all other letters
k # i,j. We consider the transposition s;; also as the operator which acts on the ring P, by
interchanging z; and z;, and fixes all other variables. We denote by

1— s
615 — () ’ 3@ = 8i,i+1,
2 — Zj
the divided difference operators corresponding to the transposition s;; and the simple transpo-
sition s; := s; 41 correspondingly. Finally we define operator (cf. [41])
6(”) =0; - 8j_16j8j_1 -0 if 7<j.

The operators 95, 1 < i < j < n, satisfy (among other things) the following set of relations
(cf. [41])
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J

® [zj,ﬁ(m)] =0 lf] ¢ [’L,k‘], |:a(w), Z_: Zai| = O,

® [04ij), O] = jklzj, Oany) + 0ulOwjy, 2] if i < g, k < 1.

Therefore, if we set u;; = q;;0;5) if i < j, and w;; = —uy; if i > j, then for a triple i < j <k
we will have

[Wig, Wik + Wjk] + Wik, wik] + (25, win] + (Wi, 2] + (28, Wik
= ¢i9k[00i5), Ojmy] + Qik[Opiny» 5] = 0.

Thus the elements {z;, i = 1,...,n} and {u;5, 1 < i < j < n} define a representation of the
algebra DCYB,,, and therefore the Dunkl elements

0= 2+ D wij = 2= > 4iidyin + Y 4i505)
i j<i J>i
form a pairwise commuting family of operators acting on the ring of polynomials
Z[Ql? A ’qn—l][z17 R zn]?

cf. [41]. This representation has been used in [41] to construct the small quantum cohomology
ring of the complete flag variety of type A,—1.

(IT) Consider degenerate affine Hecke algebra $),, generated by the central element h, the
elements of the symmetric group S,, and the mutually commuting elements y1, ..., y,, subject
to relations

SiYi — Yi+15i = h, 1<i<mn, Siyj = Yjsi, J# L1+ 1,

where s; stand for the simple transposition that swaps only indices ¢ and ¢ + 1. For i < j, let
8ij = 8;--+5j_18j8j_1---5; denotes the permutation that swaps only indices ¢ and j. It is an
easy exercise to show that

° [yj,sik] = h[Sij,S]’k] if ¢ <j < k,

® UiSik — Sikyk = h+hsy, Y s if i < k.
i<j<k

Finally, consider a set of mutually commuting parameters {p;;, 1 < i # j < n, p;; + pji = 0},
subject to the constraints

DijPjk = PikPij + PjkDik + hDik, i <j<k.
Comments 2.5. If parameters {p;;} are invertible, and satisfy relations
DijPjk = PikDij + PjkPik + BPik, i< j<k,
then one can rewrite the above displayed relations in the following form
1+ﬁ:<1+ﬁ><1+5>, 1<i<j<k<n.
Dik Dij Pjk
Therefore there exist parameters {qi, ..., gy} such that 14+5/p;; = ¢;/qj, 1 <i < j < n. In other

words, p;j = qjﬂ fjéj, 1 <1 < j <n. However in general, there are many other types of solutions,
for example, solutions related to the Heaviside function?? H(z), namely, p;; = H(x; — z;),

x; € R, Vi, and its discrete analogue, see Example (III) below. In the both cases 5 = —1; see
also Comments 2.12 for other examples.

?28ce https://en.wikipedia.org/wiki/Heaviside_step_function.
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To continue presentation of Example (II), define elements u;; = p;jsij, 1 <i # j < n.

Lemma 2.6 (dynamical classical Yang—Baxter relations).

[uij,uik + ujk] + [uik,ujk} + [uik,yj] =0, 1<i<ji<k<n. (2.7)
Indeed,
Uij Uik = UikUij + UjkUik + NDikSij Sk, Uikl = UijUik + Uik + DDk Sk Sij,

and moreover, [y;, uik] = hpik[sij, Sjk)-
Therefore, the elements

Qi:yi_hzuij+hzuz‘j, 1=1,...,n,
j<i i<j
form a mutually commuting set of elements in the algebra Z[{p;;}] ®z $n.

Theorem 2.7. Define matriz M, = (m; j)i<i j<n as follows

u— 2z ifi =7,
mi (U 21, 2n) = —h —pi; ifi <7,
Pij ifi> 3.
Then
n
DET‘Mn(u;Gl,..., H (u—yj).

Moreover, let us set q;j := h*(p;; —|—p?j) = h2q;q;(¢i — qj) "2, i < j, then

ek(glu'ﬂvgn):e]E;q)(y17"‘7yn)7 1§k§n7
where ex(x1,...,x,) and e(Q)(xl, ..., Ty) denote correspondingly the classical and multiparameter

quantum [45] elementary polynorm'als23

Let’s stress that the elements y; and 6; do not commute in the algebra §,,, but the symmetric
functions of y1, ..., yn, i.e., the center of the algebra $),,, do.

A few remarks in order. First of all, u?j = p?j are central elements. Secondly, in the case
h =0 and y; = 0, V1, the equality

DET | My (u; x1, ..., 2n)| = u”

describes the set of polynomial relations among the Dunkl-Gaudin elements (with the following
choice of parameters p;; = (¢; —g;) ' are taken). And our final remark is that according to [54,
Section 8], the quotient ring

W= Qo Q0] QAL (Wit 0) = T ) )
j=1

23For the reader convenience we remind [45] a definition of the quantum elementary polynomial el (x1,. .., Zn).
Let q := {qij }1<i<j<n be a collection of “quantum parameters”, then

£

en(zr, ... ) § > ex—2e(X7o7) | [ dia.das

1<iy<---<iy<n a=1
J1>01,-1 Je>ig

where I = (i1,...,4¢), J = (j1,...,7¢) should be distinct elements of the set {1,...,n}, and X757 denotes set of
variables x, for which the subscript a is neither one of i,, nor one of the j,.
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is isomorphic to the quantum equivariant cohomology ring of the cotangent bundle 7™ Fl, of
the complete flag variety of type A,,_1, namely,

HE = QH nyo (T Fly)

with the following choice of quantum parameters: Q; := hq;+1/q;, i =1,...,n — 1.
On the other hand, in [75] we computed the so-called multiparameter deformation of the
equivariant cohomology ring of the complete flag variety of type A,_1.

A deformation defined in [75] depends on parameters {g;;, 1 < i < j < n} without any

constraints are imposed. For the special choice of parameters
2 4 g5

Qi ‘= h"————

Y (¢ — ¢;)*

the multiparameter deformation of the equivariant cohomology ring of the type A,_1 com-
plete flag variety Fl, constructed in [75], is isomorphic to the ring Hj.

Comments 2.8. Let us fix a set of independent parameters {qi,...,¢,} and define new pa-
rameters
{qij = hpij(pij + h) = hQQiqu} , 1<i<j<mn, where p;; = 4 , 1<
(¢ — ¢5) % —

We set deg(qij) = 2, deg(pi;) = 1, deg(h) = 1.

The new parameters {g;; }1<i<j<n, do not free anymore, but satisfy rather complicated alge-
braic relations. We display some of these relations soon, having in mind a question: is there
some intrinsic meaning of the algebraic variety defined by the set of defining relations among
the “quantum parameters” {g;;}?

Let us denote by A, ;, the quotient ring of the ring of polynomials Q[h][z;;, 1 < i < j < n]
modulo the ideal generating by polynomials f(x;;) such that the specialization z;; = ¢;; of
a polynomial f(x;;), namely f(gi;), is equal to zero. The algebra A, , has a natural filtration,
and we denote by A, = gr A, the corresponding associated graded algebra.

To describe (a part of) relations among the parameters {g;;} let us observe that parame-
ters {p;;} and {g;;} are related by the following identity

G5k — ik (qij + @) + WGk = 2pipikpin(pir +h)  if i <j <k
Using this identity we can find the following relations among parameters in question
G + G0 + M G — 20500k (@5 + aik + Gk)
— 212 ik (Qi5 5k + Gij ik + QjkGix) = ShQijQikjkDik (2.8)
fl<i<j<k<n.
Finally, we come to a relation of degree 8 among the “quantum parameters” {g¢;;}

(Lhus. of (2.8))% = 64h°2 gl  1<i<j<k<n.

There are also higher degree relations among the parameters {¢;;} some of whose in degree 16
follow from the deformed Pliicker relation between parameters {p;;}:

1 1 1 h
= + + ,
DikDji PijPki  PiPjk  PijPjikPkl

1< j< k<l
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However, we don’t know how to describe the algebra A, ; generated by quantum parameters
{qij}1§i<j§n even for n = 4.

The algebra A,, = gr(.A, ) is isomorphic to the quotient algebra of Q[z;;, 1 < i < j < n]
modulo the ideal generated by the set of relations between “quantum parameters”

i (25)
Y P 1<i<j<n ,

which correspond to the Dunkl-Gaudin elements {6;}1<i<n, see Section 3.2 below for details. In
this case the parameters {g;;} satisfy the following relations

2.2 | 22 | 2 _2 (= .
@i %5k + Ci%n + Grar = 2055%955(@5 + i + D)
which correspond to the relations (2.8) in the special case h = 0. One can find a set of relations

in degrees 6, 7 and 8, namely for a given pair-wise distinct integers 1 < 1, 7, k,l < n, one has

e one relation in degree 6

—2 -2 =2 -2 =2 =2 =2 =2 =2 —2-2 -2
%59k T 9595651 t+ Gk Tk + Q519K
q.. el . q 7. q

—2G,,91:919%9;19K < = = = —
R k. 455 95 ik 45k d;]

+ 8G9k 0019519k = 05
e three relations in degree 7

_ — _ _ _ _ _ 2
Qik (Qiqu‘Zle — 4ij %k + 959k — Qilqj‘ka;l)
29 _ _ 2.9 (92 | 2
= 87 Gn 0101 (@x + T + Q) — 4730045 (q]‘k + i)

e one relation in degree 8

However we don’t know does the list of relations displayed above, contains the all independent
relations among the elements {@j}lgiq‘gn in degrees 6, 7 and 8, even for n = 4. In degrees > 9
and n > 5 some independent relations sh(’)1u1d appear.

45

Notice that the parameters {pij = H,i < jJ } satisfy the so-called Gelfand—Varchenko

relations, see, e.g., [67]

DijPjk = PikPij + PjkPik + hpik, 1< g <k,

whereas parameters {ﬁij = Q'L%Qj’ 1< j} satisfy the so-called Arnold relations

PijPjk = PikPij T PjkPik> i<j<k.

Project 2.9. Find Hilbert series Hilb(A,,t) for n > 4.%4

24This is a particular case of more general problem we are interested in. Namely, let {fo € R[z1,...,Zn]}1<a<n
be a collection of linear forms, and k > 2 be an integer. Denote by I({fa}) the ideal in the ring of polynomials
R[z1,..., 2n] generated by polynomials ®(z1,...,2zn) such that

o(fi* . ) =0

Compute the Hilbert series (polynomial?) of the quotient algebra R[z1,...,2n]|/I({fa})-
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For example, Hilb(As,t) = %

as a result we obtain the

2.4,
Finally, if we set ¢; := exp(hz;) and take the limit lim h__%q? =,
h—0 (4i=45)

Dunkl-Gaudin parameter g;; = Gy
(III) Consider the following representation of the degenerate affine Hecke algebra $,, on the
ring of polynomials P, = Q[z1,...,x,):
e the symmetric group S,, acts on P,, by means of operators

Ei:1+(xi+1—xi—h)8i, i=1,...,n—1,

e y; acts on the ring P, by multiplication on the variable x;: y;(f(x)) = x;f(x), f € Py.
Clearly,

Yi5i — Yi+15, = h and vi(5i — 1) = (5 — Dyiy1 + ®ip1 — zi — h.

In the subsequent discussion we will identify the operator of multiplication by the variable z;,
namely the operator y;, with x;.

This time define u;; = p;;(5; — 1), if ¢ < j and set u;; = —uj; if i > j, where parameters {p;;}
satisfy the same conditions as in the previous example.

Lemma 2.10. The elements {u;;, 1 < i < j < n}, satisfy the dynamical classical Yang-Bazter
relations displayed in Lemma 2.6, equation (2.7).

Therefore, the Dunkl elements

Gi::xi—i—g Uij, 1=1,...,n,
J#i
form a commutative set of elements.

Theorem 2.11 ([54]). Define matriz M,, = (Mi;)1<i j<n as follows

u—z+ ) hpy ifi=j,
. J#i
mij(u; 21, ..., 2n) = —h - py ifi < j,
Dij ZfZ>]
Then

DET ‘Mn(u;gl, 0| = H(u — ;).
j=1

Comments 2.12. Let us list a few more representations of the dynamical classical Yang—Baxter
relations.

e Trigonometric Calogero—Moser representation. Let ¢ < j, define

2
Ujj = %(sij —€), e=0or1,

xT; j
sij (i) = x5, sij(z) = x4, sij(zr) = xg, Vk#1i,j.
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e Mixed representation:

A T
Ujj = <)\i_]>\j xi—jxj>(sij€)’ e=0or1, sij(Ak) = Ak, Vk.
We set w;; = —uji, if i > j. In all cases we define Dunkl elements to be 6; = > u;;.
J#i

Note that operators

- )\i—i-)\j _.I‘i—i-l‘j ..
K )\i_)\j 1‘Z‘—.%'j K

satisfy the three term relations: rj7jx = riprij + 77k, and rjpri; = ry7k + rigrjE, and thus
satisfy the classical Yang—Baxter relations.

2.1.2 Step functions and the Dunkl-Uglov representations
of the degenerate affine Hecke algebras [138]

Consider step functions n*: R — {0, 1}

1 fz>0 1 ifz>0
Heaviside function + = ) @)= 7
(Heaviside function) 5" (z) {o ire<o, T {0 if e <0.

For any two real numbers z; and x; set 771?5 = nE(x; — ;).

Lemma 2.13. The functions n;; satisfy the following relations

+ + +\2 +
Mij T Mji = 1+ 06z;2; (mj) = Mij5>

+ + + 4+ + + +

MMk = Mik"ij + MMk — Miks
where 0,4 denotes the Kronecker delta function.

To introduce the Dunkl-Uglov operators [138] we need a few more definitions and notation.
To start with, denote by AF the finite difference operators: AF(f)(z1,...,2n) = f(..., 2 +
1,...). Let as before, {s;;,1 < i # j < n, s;j = s;;}, denotes the set of transpositions in
the symmetric group S,. Recall that s;;(z;) = xj, sij(zx) = xg, Yk # i,j. Finally define
Dunkl-Uglov operators dii: R™ — R"™ to be

df = A+ Oniey = D Misia + s

j<i j<i J>i
To simplify notation, set v := nts;; if i < j, and AF = AF + 376
plity s ij - ;54 Js i i Z 4,35
<t

+

Lemma 2.14. The operators {ulj, 1 <i < j<n} satisfy the following relations

[uf;,ui —i—u]ik,] + [ufk,ujtk] + [uiikvzém,x]} =0 if 1<) <k.
i<t

From now on we assume that x; € Z, V1, that is, we will work with the restriction of the all
operators defined at beginning of Example 2.28(c), to the subset Z™ C R™. It is easy to see that
under the assumptions x; € Z, Vi, we will have

A;Eni? = (77?][ + 6%',96]')A1i' (2.9)

Moreover, using relations (2.12), (2.13) one can prove that
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Lemma 2.15.

o [uj, A +A7] =0,

° [ui,ﬁji] = [ui, g.dwi,xj]: i<ij<k.
<<t

Corollary 2.16.
e The operators {uli], 1<i<j<k<mn}, and K,Li, i = 1,...,n satisfy the dynamical

classical Yang—Bazter relations

[, ufy + uh] + [ub wh] + [uf, Aj] =0 if i<j<h

e The operators {s; := S; 41, 1 <i<mn, and Aji, 1 < j < n} give rise to two representations
of the degenerate affine Hecke algebra $y,. In particular, the Dunkl-Uglov operators are
mutually commute: [d, dji] =0 [138].

2.1.3 Extended Kohno—Drinfeld algebra and Yangian Dunkl-Gaudin elements

Definition 2.17. Extended Kohno-Drinfeld algebra is an associative algebra over Q[f] gene-

rated by the elements {z1,...,2,} and {y;j}1<izj<n subject to the set of relations

(i) The elements {y;;j{1<izj<n satisfy the Kohno-Drinfeld relations
® Yij = Yji, [Yij, yr) = 0 if 4, j, k, | are distinct,
® [Yijs Yik + Yjkl = 0= [yij + i, yji] if 0 <j <.
(ii) The elements z1,..., 2z, generate the free associative algebra F,.
(iii) Crossing relations:
o [zi,yn] = 0if i # j, k, [z, 2] = Blyij, 2] if 0 # J.
To define the (Yangian) Dunkl-Gaudin elements, cf. [54], let us consider a set of elements
{pij }1<ij<n subject to relations
® pij +pji = B, [pijs yw] = 0 = [pij, 2] for all 4, j, k,
® pijpji = Pik(pjr — pji) if i <j <k.
Let us set wi; = pijyij, @ # j, and define the (Yangian) Dunkl-Gaudin elements as follows

Qi:zi—l—Zuij, 1=1,...,n.
J#
Proposition 2.18 (cf. [54, Lemma 3.5]). The elements 01, ... ,0, form a mutually commuting
family.
Indeed, let 7 < j, then
[0:, 0] = [2i, 23] + Blzi, viz] + pij[Yij, 2i + 2]
+ Z (pikpjk [yij + Yiks yjk] + DikPji [yij7 Yik + yjk]) = 0.
ki,
A representation of the extended Kohno-Drinfeld algebra has been constructed in [54], namely

one can take

O ) @ _ By p) _
yij =Ty Ty = T557 = yii zi i= BT 2Tn' (Tu' —1),
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Dij = , i 7,
qi — 45

where ¢1, . .., q, stands for a set of mutually commuting quantum parameters, and {Tl-(js)} 1<i,j<n
SEZZO

denotes the set of generators of the Yangian Y (gl,,), see, e.g., [106].
A proof that the elements {2;}1<i<n and {yij}1<izj<n satisfy the extended Kohno-Drinfeld
algebra relations is based on the following relations, see, e.g., [54, Section 3],

ij il > i,j,k},lzl,...,’]% SGZZ(].

2.2 “Compatible” Dunkl elements, Manin matrices and algebras
related with weighted complete graphs r K,

Let us consider a collection of generators {uz(?), 1 <i4,j <n,a=1,...,r}, subject to the
following relations
e cither the unitarity (the case of sign “+”) or the symmetry relations (the case of sign “—7)%
uPEu? =0, Va,ij, (2.10)
e local 3-term relations:
u,f;l)u%) + ugz)uzz) + u,(;)ugf) =0, i,7,k are distinct, 1<a <. (2.11)

()

We define global 3-term relations algebra 37}, as “compatible product” of the local 3-term
relations algebras. Namely, we require that the elements

Z)\aum , 1<4,j<n,

satisfy the global 3-term relations
v MUY +uYuN + uNuy = o

for all values of parameters {\; € R, 1 < a <r}.
It is easy to check that our request is equivalent to a validity of the following sets of relations

among the generators {ufj‘)}

(a), (@)

(a) local 3-term relations: ugjé)u;x,z +uguy, + Wl =0,

ki ’L]
(b) 6-term crossing relations:

ugja) ;k)+u(5) (a )+u](cal) z(f)ul(m)+u§z)ul(fj)+u§k)ul(m) -0,

i, j, k are distinct, a # 3.

25More generally one can impose the g-symmetry conditions
Uij + quz; = 0, 1<i<j<n

and ask about relations among the local Dunkl elements to ensure the commutativity of the global ones. As
one might expect, the matrix @ := (Gj(-a)) 1Sasr composed from the local Dunkl elements should be a g-Manin

matrix. See, e.g., [25], or https://en. w1k1ped1a org/wiki/Manin.matrix for a definition and basic properties
of the latter.
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Now let us consider local Dunkl elements

QEQ);:ZU(Q) j=1,....n, a=1,...,r

ij

J#i
It follows from the local 3-term relations (2.11) that for a fixed a € [1, r] the local Dunkl elements
{92@)} 1<i<n either mutually commute (the sign “4”), or pairwise anticommute (the sign “—").
1<a<lr

Similarly, the global 3-term relations imply that the global Dunkl elements

o =0+ a0 =S"U, i=1,n,
J#i

also either mutually commute (the case “4”) or pairwise anticommute (the case “—").

Now we are looking for a set of relations among the local Dunkl elements which is a conse-
quence of the commutativity (anticommutativity) of the global Dunkl elements. It is quite clear
that if ¢ < j, then

a b - a a a b b a
0,60, =S R0+ 3 Al 40, + (0,01,
a=1

1<a<b<r

and the commutativity (or anticommutativity) of the global Dunkl elements for all (A\q,..., ;) €
R" is equivalent to the following set of relations

° [Gl(a), Hj(a)]i =0,

. [GEQ), Gj(b)]i + [ng), 9§a)]i =0, a < band i < j, where by definition we set [a, b+ := abTF ba.

In other words, the matrix ©,, := (91@) 1<a<r should be either a Manin matriz (the case “+7),
1<i<n

or its super analogue (the case “—"). Clearly enough that a similar construction can be applied
to the algebras studied in Section 2, I-III, and thus it produces some interesting examples
of the Manin matrices. It is an interesting problem to describe the algebra generated by the
local Dunkl elements {92@ } 1<a<r and a commutative subalgebra generated by the global Dunkl

1<i<n
elements inside the former. It is also an interesting question whether or not the coefficients

n
C1,...,C, of the column characteristic polynomial Det®! |6, — tI,| = > Cit"* of the Manin

matrix 6, generate a commutative subalgebra? For a definition of théC ‘column determinant of
a matrix, see, e.g., [25].

However a close look at this problem and the question posed needs an additional treatment
and has been omitted from the content of the present paper.

Here we are looking for a “natural conditions” to be imposed on the set of generators

{u%} 1<a<r in order to ensure that the local Dunkl elements satisfy the commutativity (or
1<i,j<n

anticommutativity) relations:

[9(06) 9(/3)

b ,J}izo, forall 1<i<j<n, 1<a,6<r.

The “natural conditions” we have in mind are

o locality relations:

[wi u], =0, (2.12)
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o twisted classical Yang—Baxter relations:

[“z(?)’“%)h + [uly), Ef)] + [UE?)M%)L =0, (2.13)

if 4, 7, k, [ are distinct and 1 < o, 8 < r.

Finally we define a multiple analogue of the three term relations algebra, denoted by
3T*(rK,), to be the quotient of the global 3-term relations algebra 37, nr modulo the two-
sided ideal generated by the left hand sides of relations (2.12), (2.13) and that of the following
relations

. (u('?‘)) 0, [()u( )] =0, for all i # j, a # B.

v 1y g

The outputs of this construction are

e commutative (or anticommutative) quadratic algebra 37)(rK,) generated by the ele-

o
ments {’LL,S] )} 1<z<J<n 5
=1

.....

=1,...,

We expect that the subalgebra generated by local Dunkl elements in the algebra 37" (rK,,) is
closely related (isomorphic for r» = 2) with the coinvariant algebra of the diagonal action of the

symmetric group S, on the ring of polynomials Q [X,gl), e ,XT(LT)], where XT(Lj ) stands for the set

of variables {xgj), e 2 }. The algebra 3T~ (2K,)*" has been studied in [72] and [12]. In the
present paper we state only our old conjecture.

Conjecture 2.19 (A.N. Kirillov, 2000).
Hilb (37~ (3K,)™",t) = (1 +¢)"(1 + nt)" 2,

where for any algebra A we denote by A the quotient of algebra A by the two-sided ideal
generated by the set of anticommutators {ab+ ba | (a,b) € A x A}.

According to observation of M. Haiman [55], the number 2"(n + 1)"~2 is thought of as being
equal to the dimension of the space of triple coinvariants of the symmetric group S,.

2.3 Miscellany
2.3.1 Non-unitary dynamical classical Yang—Baxter algebra DCYB,

Let .Zl; be the quotient of the algebra §,, by the two-sided ideal generated by the relations (2.2),
(2.5) and (2.6). Consider elements

Gi:a:i—i—Zuia and éj:—xj+2ubj, 1<i<j<n.
ai btj

Clearly, if 7 < j, then

[eiaéj] xl')x] [Z Tk, Ujj

where the elements wji, i < j, have been defined in Lemma 2.2, equation (2.3).

+ Z Wik,

k#i,j

Therefore the elements 6; and éj commute in the algebra Xn.
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In the case when x; =0 for all = 1,...,n, the relations
Wik = [Wij, Wik + k) + [k, ujk] =0 if i, 7, k are all distinct,

are well-known as the non-unitary classical Yang—Baxter relations. Note that for a given triple
of pair-wise distinct (¢, j, k) one has in fact 6 relations. These six relations imply that [0;,0;] = 0.
However, in general,

[Gi, 9]'] = |:Z Uik, Uij + Uji:| 75 0.
k#i,5

Dynamical classical Yang—Baxter algebra DCYB,. In order to ensure the commuta-
tivity relations among the Dunkl elements (2.1), i.e., [#;,0;] = 0 for all 7, j, let us remark that
if i # 7, then

[0.0;] = [wi + wij, x5 + wj] + [ + 25, ui5] +

n
Usyj, Z Tk
k=1

n
+ Z [wij + Wik, wik] + (Wi, wjs) + (@i, win] + [wik, 5] + [T, wijl.
k=1
k#i,j

Definition 2.20. Define dynamical non-unitary classical Yang—Baxter algebra DNUCYB,, to
be the quotient of the free associative algebra Q({z;, 1 <1i < n}, {ui;}i<izj<n) by the two-sided
ideal generated by the following set of relations

e zero curvature conditions:
[J:i—i—uij,xj—i—uj,;} =0, 1 SZ#] <n, (2.14)

e conservation laws conditions:
n
[uij,zxk] =0 forall i#j k.
k=1

e crossing relations:
[z + x5, ui] =0, i#J.
e twisted dynamical classical Yang-Baxter relations:
[wij + ik, wik] + [wik, wjs) + (@i, win] + [wik, 5] + [2g, ui] =0,
i, 7, k are distinct.
It is easy to see that the twisted classical Yang—Baxter relations
[wij + wik, win) + [wik, ujs) =0, 1,J,k are distinct, (2.15)

for a fixed triple of distinct indices ¢, j, k contain in fact 3 different relations whereas the
non-unitary classical Yang—Baxter relations

[wij + ik, wjk] + [wij, wik), i,J,k are distinct,

contain 6 different relations for a fixed triple of distinct indices i, j, k.
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Definition 2.21.

e Define dynamical classical Yang—Baxter algebra DCYB,, to be the quotient of the algebra
DNUCYB,, by the two-sided ideal generated by the elements

Z [Wik, wij + wjs) for all 7 # j.
kg

e Define classical Yang—Bazter algebra CYB,, to be the quotient of the dynamical classical
Yang-Baxter algebra DCYB,, by the set of relations

;=0 for i =1,...,n.

Example 2.22. Define

ifl1<i<j<n,
pz-j(zl,...,zn) = Zj

zj—zi

ifn>i>j>1

Clearly, p;j+pji = 1. Now define operators u;; = p;;s;;j, and the truncated Dunkl operators to be

0; = > uij, i =1,...,n. All these operators act on the field of rational functions Q(z1, ..., 2p);
J#

the operator s;; = s;; acts as the exchange operator, namely, s;;(2;) = 2;, Sij(2k) = 2k, VE # 1, ],

sij(2j) = -

Note that this time one has

P12P23 = P13P12 + P23P13 — P13-

It is easy to see that the operators {u;;, 1 <1 # j < n} satisfy relations (3.1), and therefore,
satisfy the twisted classical Yang—Baxter relations (2.13). As a corollary we obtain that the
truncated Dunkl operators {6;, i = 1,...,n} are pair-wise commute. Now consider the Dunkl
operator D; = 0, + h#);, i = 1,...,n, where h is a parameter. Clearly that [0, + 0.,,ui;] = 0,
and therefore [D;, D;] =0, Vi, j. It easy to see that

8ii+1Di — Dijy18ii41 = h, [Di,sjj]l =0 if j#ii+1

In such a manner we come to the well-known representation of the degenerate affine Hecke
algebra $,,.

2.3.2 Dunkl and Knizhnik—Zamolodchikov elements

Assume that Vi, z; = 0, and generators {u;;, 1 <1 < j < n} satisfy the locality conditions (2.2)
and the classical Yang—Baxter relations

[wij, wik, + Wjk] + Wik, wjr] =0 if 1<i<j<k<n.

Let y, z,t1,...,t, be parameters, consider the rational function

(i — tj)uij
Foys(z;t) := Foys(z;t1, .- tn) = Z /T AY RS
L Gt 1)

Then

[Foys(z;t), Foys(y; )] =0 and Res,=¢, Foys(z;t) = 0;.
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Now assume that a set of generators {c;j, 1 < i # j < n} satisfy the locality and symmetry
(i.e., ¢ij = ¢j;) conditions, and the Kohno-Drinfeld relations:

[Cij,Ckl]:O if {Z7j}m{k7l}:®)

[cijs cjk + cik] = 0 = [eij + cik, ¢kl 1< j<k.
Let y, 2,t1,...,t, be parameters, consider the rational function
Cij Cij
Fxp(zit) := Fkp(zits, ... tn) = Y e
Then

[Fxp(z;t), Fkp(y;t)] =0 and Res,=t, Fxp(z;t) = KZ;,

where
n

- Cij
iUy

j=1
JF#i

denotes the truncated Knizhnik—Zamolodchikov element.

2.3.3 Dunkl and Gaudin operators

(a) Rational Dunkl operators. Consider the quotient of the algebra DCYB,,, see Defini-
tion 2.3, by the two-sided ideal generated by elements

{[wi +2j,u5]}  and  {[og, wigl, k #4, 5}

Clearly the Dunkl elements (2.1) mutually commute. Now let us consider the so-called Calogero—

Moser representation of the algebra DCYB,, on the ring of polynomials R,, := R[z1,. .., z,] given
by
1
n(p(e) <AL () = (= sp(e), ) € B

The symmetric group S, acts on the ring R,, by means of transpositions s;; € S,: s45(2) = 2;,
sij(25) = 2y sij(zr) = 2 i b # 4, .

In the Calogero-Moser representation the Dunkl elements 6; becomes the rational Dunkl
operators [35], see Definition 1.1. Moreover, one has [z, u;;] = 0 ifk # 4, j, and

1
(T —xj —wij),  Tjuwij = wijTi —

Zi—Zj Zi—Zj (xi_xj _Uij).

TiUis = Uij T4 +

(b) Gaudin operators. The Dunkl-Gaudin representation of the algebra DCYB,, is defined
on the field of rational functions K,, := R(qi,...,q,) and given by

, 91 i
zi(f(q)) = A g Uij Gi—q

f(q) € Kn,

but this time we assume that w(q;) = ¢i, Vi € [1,n] and for all w € S,,. In the Dunkl-Gaudin

representation the Dunkl elements becomes the rational Gaudin operators, see, e.g., [108]. More-
over, one has [z, u;;] = 0, if £ # 4, j, and

TiUis = Ui T5 — Yij Tili; = UijTq +

iUij igdj qi_qja g Uiy igLi % — qj

uij
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Comments 2.23. It is easy to check that if f € R[z,..., 2], and z; := 8 , then the following
commutation relations are true

0
vif = fa; + ?(f)v wij f = 845 (f)uij + Oz 2; (f)-

Using these relations it easy to check that in the both cases (a) and (b) the elementary symmetric
polynomials eg(z1, ..., 2,) commute with the all generators {u;;}1<; j<n, and therefore commute
with the all Dunkl elements {6;}1<ij<n. Let us stress that [0;, x;] # 0 for all 1 <i,k < n.

Project 2.24. Describe a commutative algebra generated by the Dunkl elements {6;}1<i<n and
the elementary symmetric polynomials {ex(z1,...,2n) <k<n-

2.3.4 Representation of the algebra 3T,, on the free algebra Z(t1,...,t,)

Let F,, = Z({t1, ..., t,) be free associative algebra over the ring of integers Z, equipped with the
action of the symmetric group S,: s;;(t;) = t;, sij(tx) = th, VK # 0, 5.
Define the action of u;; € 3T}, on the set of generators of the algebra F,, as follows

uij(tk) = 5i,ktitj - 5j,ktjti-

The action of generator u;; on the whole algebra F,, is defined by linearity and the twisted
Leibniz rule:

ui; (1) =0, uij(a + b) = uij(a) + ui(b), uij(ab) = uij(a)b + sij(a)uij(b).
It is easy to see from (2.14) that

SijUjk = WikSij, SijUkl = UklSij it {i,7}N{k,l} =2, u;j + uj; = 0.
Now let us consider operator

Uijk 7= UjjUjk — UjpUik — UikUij, 1<i<ji<k<n.
Lemma 2.25.

wiji(ab) = wijr(a)b + sijsjx(a)uijr(b), a,be F,.
Lemma 2.26.

uijr(a) =0 Vae Fy.

Indeed,

wijn(ti) = —ugk(wij(ti)) — win(uij(t:) = —tiuge(te) — wir(ti)t; = ti(tet;) — (Lite)t; = 0,
wijr(te) = i (wjn(t)) — win(wi(tr)) = —wij(tety) + wjn(tets) = te(uij(t;) + win(te)ts = 0,
wijn(ty) = wig(uge(ty)) — win(uii(t)) = —wij(¢)te — tjuir(ts) = (Liti)te — (i) = 0.

Therefore Lemma, 2.26 follows from Lemma 2.25.
Let .7-" * be the quotient of the free algebra F,, by the two-sided ideal generated by elements

t?tj t] 2,1 <4 # j <n. Since ufj(t ) = tﬁ? — t?ti, one can define a representation of the

algebra 37, ,5 ) on that F. One can also define a representation of the algebra STT(LO) on that F,(LO),
where .7-"720) denotes the quotient of the algebra F,, by the two-sided ideal generated by elements
{t%, 1 <1 < n} Note that (ui’kujkum)(tk) = [tit]’ti, tk] # 0 in the algebra ./T';SO), but the
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elements w; ju; pujpuij, 1 <1 < j <k < n, which belong to the kernel of the Calogero-Moser
representation [72], act trivially both on the algebras f,ﬁ”) and that F.

Note finally that the algebra ]-}(LO) is Koszul and has Hilbert series Hilb (]:7(10),25) = 1= (1;_t1) 7
whereas the algebra F, is not Koszul for n > 3, and

1
1=t = (-1t —2)»~1

Hilb(F?, ) =

In Appendix A.5 we apply the representation introduced in this section to the study of
relations in the subalgebra Z7(LO) of the algebra 37, T(LO) generated by the elements w1y, ..., Up—1n.

To distinguish the generators {u;;} of the algebra 3T7$O) from the introduced in this section
operators u;; acting on it, in Appendix A.5 we will use for the latter notation V;; := u;;.

2.3.5 Kernel of Bruhat representation

Bruhat representations, classical and quantum, of algebras 3T,(LO) and 3QT, can be seen as a con-
necting link between commutative subalgebras generating by either additive or multiplicative
Dunkl elements in these algebras, and classical and quantum Schubert and Grothendieck calculi.

(Ia) Bruhat representation of algebra 37, ,(LO), cf. [45]. Define action of u;; € 37" on
the group ring of the symmetric group Z[S,] as follows: let w € S,,, then

wigw = | W i Hwsig) = 1(w) +1,
0 otherwise.

Let us remind that s;; € S,, denotes the transposition that interchanges ¢ and j and fixes each
k # i, j; for each permutation u € S,,, [(u) denotes its length.

(Ib) Quantum Bruhat representation of algebra 3QT,, cf. [45]. Let us remind that
algebra 3QT, is the quotient of the 3-term relations algebra 3T}, by the two-sided ideal generated
by the elements

Define the Z[g]—linear action of u; ; € 3QT,, i < j, on the extended group ring of the symmetric
group Z[q|[Sy] as follows: let w € S,,, and ¢;; = ¢igi+1- - ¢j—1, i < j, then

ws;; if l(ws;) = l(w) +1,
uijw = ¢ gijws;; if Lws;;) = H(w) — U(sq5),

0 otherwise.

Let us remind, see, e.g., [92], that in general one has

sy = {10 =265 =1 (i) > w(y)
ij l(w)+2€ij+1 if w(z) <w<j).

Here e;;j(w) denotes the number of k such that i < k < j and w(k) lies between w(i) and w(j).
In particular, I(ws;;) = l(w) + 1 iff e;;(w) = 0 and w(i) < w(j); H(wsij) = H(w) — (si5) =
lw) —2(j —i) + 1 iff w(i) > w(j) and e;; = j —i — 1 is the maximal possible.

(IT) Kernel of the Bruhat representation. It is not difficult to see that the following
elements of degree three and four belong to the kernel of the Bruhat representation:

(ITa)  u; jui ki and Ui U5, kUi if 1<i<j<k<n
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(ITb)  w; jus g and U1 Ui U
(Ilc)  wyuipujug, Ui Ui Uk U Uik Uil Uk Uik
Ui Uik Ui Ui Uk Uz Wi Wik if 1<4 <j<k<l<n.

This observation motivates the following definition.

Definition 2.27. The reduced 3-term relation algebra 3T:? is defined to be the quotient of the
algebra 37, 750) by the two-sided ideal generated by the elements displayed in ITa-IIc above.

Example 2.28.

Hilb(3735°4,¢) = (1,3,4,1),  dim (373°!) =9,
Hilb (3754, ¢) = (1,6,19,32,19,6,1),  dim (375°!) = 84,
Hilb(37%°,¢) = (1,10, 55,190, 383, 370, 227, 102, 34,8, 1), dim (37%°%) = 1374.

We ezpect that dim(BTged)(n)il =2(n—1)ifn>3.

2

Theorem 2.29.

1. The algebra 3Tt is finite-dimensional, and its Hilbert polynomial has degree (Z)

2. The maximal degree (g) component of the algebra 3T has dimension one and generated
by any element which is equal to the product (in any order) of all generators of the algebra
37red,

3. The subalgebra in 3T generated by the elements {uiiy1,7=1,...,n—1} is canonically

isomorphic to the nil-Coxeter algebra NC,,. In particular, its Hilbert polynomial is equal
n ; n—1 1

to [n]i! = 'H1 (11__'5;), and the element [] ][ vaa+1 of degree (3) generates the mazimal
]:

j=1a=j
degree component of the algebra 3T,

4. The subalgebra over 7 generated by the Dunkl elements {61, ...,0,} in the algebra 3T is
canonically isomorphic to the cohomology ring H*(Fl,,Z) of the type A flag variety Fl,.

A definition of the nil-Coxeter algebra NC,, one can find in Section 4.1.1. It is known, see [8]
or Section 4.1.1, that the subalgebra generated by the elements {u; ;11,7 =1,...,n — 1} in the
whole algebra 3T7(,,0) is canonically isomorphic to the nil-Coxeter algebra NC,, as well.

We expect that the kernel of the Bruhat representation of the algebra 3T7§0) is generated by
all monomials of the form w;, j, - - - u;, j, such that the sequence of transpositions ;, j,, ..., %, j.
does not correspond to a path in the Bruhat graph of the symmetric group S,,. For example if
1 <i<j<k<l<n, the elements w; pu;uj; and uju;u; i, do belong to the kernel of the
Bruhat representation.

Problem 2.30.
1. The image of the Bruhat representation of the algebra 3T,§0) defines a subalgebra
Im (37" C Endg(Q]S,]).
Does this image isomorphic to the algebra BT;ed 2 Compute Hilbert polynomials of algebras
Im (373") and 3T,

2. Describe the image(s) of the affine nil-Cozxeter algebra NAén, see Section 4.1.1, in the
algebras 3T and Endg(Q[S,]).
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2.3.6 The Fulton universal ring [47], multiparameter quantum cohomology
of flag varieties [45] and the full Kostant—Toda lattice [29, 80]

Let X,, = (x1,...,2,) be be a set of variables, and
g:=9" ={galb][a>1,b>1,a+b<n}

be a set of parameters; we put deg(z;) = 1 and deg(g.[b]) = b+ 1, and set gx[0] := =y,
k=1,...,n. For a subset S C [1,n] we denote by Xg the set of variables {z;|i € S}.

Let ¢ be an auxiliary variable, denote by M = (m;j)1<; j<n the matrix of size n by n with
the following elements:

zi+t  if i=j,
1 if i =1,
0 if i—j> 1.
Let P, (X,,t) = det |M]|.

Definition 2.31. The Fulton universal ring R,_; is defined to be the quotient?®

Rt =Z[g™][z1, ..., xn)/(Pa(Xps t) — 7).

n

Lemma 2.32. Let Py(X,,t) = S cp(n)t" %, co(n) = 1. Then

k=0
S

= : X, g™) = jaler—m (X ; 2.16
) Ck(n "9 ) 1<i <'z<;<v < Uglaba]ek m( Ln\ U [ia,iﬁja})’ ( )

<ip<ig is<n a=1 a=1

2T5ds 21
mi=%(ja+1)<n

where in the summation we assume additionally that the sets [iq, iq+Jja] := {iasia+1, .- ia+Ja},

a=1,...,s, are pair-wise disjoint.

It is clear that R,_1 = Z[g"™][z1,...,24]/{ca(1),...,ca(n)). One can easily see that the
coefficients ck(n) and gy, [k] satisfy the following recurrence relations [47]:

k—1
ck(n) =cxn—1)+ Zgn_a[a]ck,a,l(n —a—1), co(n) =1,
a=0 o
gmlk] = crpi(m + k) —cppa(m+k—1) - ng—l—k—a[a]ck—a(m +k—a),
a=0

9m|0] := .

On the other hand, let {¢;j}1<i<j<n be a set of (quantum) parameters, and e,gq) (X,) be the
multiparameter quantum elementary polynomial introduced in [45]. We are interested in to
describe a set of relations between the parameters {g;[j]}i>1,>1 and the quantum parameters

i+i<n

{qij}ngjgn which implies that

ck(n) = e,(fq)(Xn) for k=1,...,n.

B P(t, Xn) = 3 fe(Xn)tF, fu(X,) € Q[Xn] is a polynomial, we denote by (P(t, X)) the ideal in the
E>1
polynomial ring Q[X,] generated by the coefficients { fi, f2,...}.
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To start with, let us recall the recurrence relations among the quantum elementary polynomials,
cf. [117]. To do so, consider the generating function

En(Xni {gij h<i<j<n) = Z el(cq) (Xn)t" ",
k=0

Lemma 2.33 ([41, 117]). One has
By (Xn; {aij hi<icj<n) = (t + 2n) En1 (Xn-1; {¢ij hi<icj<n—1)

n—1
+ ) inEn-2 (X n-1\ i {dab} 12aco<n1).
=1

at bt

Proposition 2.34. Parameters {gq[b]} can be expressed polynomially in terms of quantum pa-
rameters {q;;} and variables x1,...,x,, in a such way that

ck(n) = e,(fq) (Xn), VEk,n.

Moreover,
a a+b—1
e golbl = > Gratv [ (xj —xk)+ lower degree polynomials in x1, ..., Ty,
k=1 j=a+1
o the quantum parameters {q;;} can be presented as rational functions in terms of variables
Z1,...,Zn and polynomially in terms of parameters {gq[b]} such that the equality cx(n) =

e,iq)(Xn) holds for all k, n.

In other words, the transformation
{aijh1<ici<n < {galb]} ato<n
a>1,b>1
defines a “birational transformation” between the algebra Z[g(™][X,]/(P,(Xp,t) —t") and mul-
tiparameter quantum deformation of the algebra H*(Fl,,,Z).

Example 2.35. Clearly,
n—1 n—2
gnfl[l] = ZQj,ny n=2 and gn72[2] = Z%’n(l‘nfl - -Tj)7 n > 3.
j=1 j=1

Moreover

g1[3] = qua((z2 — 1) (w3 — 21) + 23 — q12) + @ea(q13 — Qr12),
92[3) = @15 ((z3 — 1) (24 — 1) + o4 + @34 — 12 — 13)
+ q25 (23 — 22) (w4 — 22) + qua + q34 — Q12 — @23) + ¢35 (q14 + G24 — Q13 — @23).-

Comments 2.36. The full Kostant—Toda lattice (FKTL for short) has been introduced in the
end of 70's of the last century by B. Kostant and since that time has been extensively studied
both in Mathematical and Physical literature. We refer the reader to the original paper by
B. Kostant [29, 80] for the definition of the FKTL and its basic properties. In the present
paper we just want to point out on a connection of the Fulton universal ring and hence the
multiparameter deformation of the cohomology ring of complete flag varieties, and polynomial
integral of motion of the FKTL. Namely,

Polynomials ¢y (n; X,,,g™) defined by (2.16) coincide with
the polynomial integrals of motion of the FKTL.

It seems an interesting task to clarify a meaning of the FKTL rational integrals of motion
in the context of the universal Schubert calculus [47] and the algebra 3HT,(0), as well as any
meaning of universal Schubert or Grothendieck polynomials in the context of the Toda or full
Kostant—Toda lattices.
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3 Algebra 3HT,

Consider the twisted classical Yang—Baxter relation
[wij + Wik, wjr] + [wik, uje] = 0,

where ¢, j, k are distinct. Having in mind applications of the Dunkl elements to combinatorics
and algebraic geometry, we split the above relation into two relations

UijUjk = UjkUsk — UikUsi and WjkUij = UikUjk — UjiUik (3.1)
and impose the following unitarity constraints
Ui+ uj; = f,
where f is a central element. Summarizing, we come to the following definition.
Definition 3.1. Define algebra 37, () to be the quotient of the free associative algebra
Z1Bluij, 1 <i<j<n)
by the set of relations

o locality: wijup = ugui; if {i,j} N{k, 1} = @,

o 3-term relations: u;jjujr = Ukl + Uik — B, and wjpli; = Ui + Uikje — B
fl<i<j<k<n.

It is clear that the elements {w;;, uji, uik, 1 < ¢ < j < k < n} satisfy the classical Yang—-
Baxter relations, and therefore, the elements {01' =y uy, 1 =1,... ,n} form a mutually
i

commuting set of elements in the algebra 37,,(5).

Definition 3.2. We will call 6y,...,0, by the (universal) additive Dunkl elements.
For each pair of indices 7 < j, we define element g¢;; := uizj — Buy; € 3T,(5).

Lemma 3.3.

1. The elements {¢;j, 1 <i < j < n} satisfy the Kohno-Drinfeld relations (known also as the
horizontal four term relations)

Qi Qe = Qi) if {i,5yN{k,1} =9,
35, qi. + qjk) = 0, [@ij + Qik> qjx) = 0 if 1<j<k.

2. For a triple (i < j < k) define uji, := wij — us, + ujr. Then
2 _
Ui = Buijk + ¢ij + Gik + qjk-
3. Deviation from the Yang—Baxter and Cozxeter relations:

Ui Uikl — UjkUikUij = [Wik, Q5] = (@K, Wik,

i iy ] = ij Uik — Uik4jk-
Ui jUjk Ui — UjkUi Uk Qij Wik — Uikqjk
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Comments 3.4. It is easy to see that the horizontal 4-term relations listed in Lemma 3.3(1),
are consequences of the locality conditions among the generators {g¢;;}, together with the com-
mutativity conditions among the Jucys—Murphy elements

n
diZ: E Gij» i:2,...,n,
Jj=i+1

namely, [d;,d;] = 0. In [72] we describe some properties of a commutative subalgebra generated
by the Jucys-Murphy elements in the (nil?”) Kohno-Drinfeld algebra. It is well-known that the
Jucys—Murphy elements generate a maximal commutative subalgebra in the group ring of the
symmetric group S,. It is an open problem

describe defining relations among the Jucys—Murphy ele-
ments in the group ring Z[S,].

Finally we introduce the “Hecke quotient” of the algebra 37},(f3), denoted by 3HT,(5).

Definition 3.5. Define algebra 3HT,, () to be the quotient of the algebra 3T,,(/3) by the set of
relations

Qi = QriQij for all ¢, j, k, L.

In other words we assume that the all elements {g;;, 1 <i < j < n} are central in the algebra
3T, (B). From Lemma 3.3 follows immediately that in the algebra 3HT,, () the elements {u;;}
satisfy the multiplicative (or quantum) Yang-Baxter relations

Uij Uik Uik = UjkUikUij if 1<j<Ek. (32)

To underline the dependence of the algebra 3HT,, () on the central elements g := {g;;}, we will

use for the former the notation 37, é‘”(ﬁ) as well.
Exercises 3.6 (some relations in the algebra 379 (B8)).

1. Noncommutative analogue of recurrence relation among the Catalan numbers [70, 72], cf.
Section 5.1. Let k, n be positive integers, k < n and 41,...,1, 1 < i < n, be a collection
of pairwise distinct integers. Prove the following identity in the algebra 37, ,&") (B)%®

k k+1 n r—2
H uia,ia+l + § H B(uia7ia+1)uiak+1 77;0,1 H uiayia+1
a=1 r=2 \a=r a=1

k
=p H Uigiass = B Uiy R\ (iry = B\ finga) Winins )
a=1

where R; denotes the r.h.s. of the above identity. For example,

1223 + 2331 + 3112 = 5(12 — 13 + 23),
122334 + 233441 + 344112 + 411223
= (1223 — 14(12 — 13 + 23) + (12 — 13 + 23)34),

2"That is the quotient of the Kohno-Drinfeld algebra generated by the elements {qi;} by the two-sided ideal
generated by the elements {q?j}lgi,jgn.
28 Hint: denote the r.h.s. of of the identity stated in item (1) by R;. One possible proof is based on induction

and examination of the element Rrui, .} = i, ., Br— Rzuiaﬂ,iaiﬁ.

a+2
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where we use short notation ¢j := w;;. See Introduction, summation formula, A, for an
interpretation of the above formula in the case 3 = 0, ¢;; = 0, Vi, j. Note that the above
formula does not depend on deformation (or quantum) parameters {g;;}, in particular it
also true for the algebras 3T'(I") associated with a simple graph I', and gives rise to quantum
as well as K-theoretic deformations of the Orlik—Terao algebra of a simple graph, cf. [89].

2. Cyclic relations, cf. [45]. Let i1,i9,...,ig, 1 < i, < n be a collection of pairwise distinct
integers. Show that

k—1 k r k k a—1
Z H uilaia H uilaia uir+17il = - Z qjlyia H uiaﬂ;b H uiuvib °
r=1 \a=r+1 a=2 a=2 b=a+1 b=2

For example, 12131421 413141231 + 14121341 = —q122324 — q1334 32 — q14 4243.

Note that the r.h.s. does not depend on parameter 3.

3.1 Modified three term relations algebra 3MT,, (3, 1)
Let 3, {gij = gji, ¥ij = Vi, 1 < 1,5 < n}, be a set of mutually commuting elements.

Definition 3.7. Modified 3-term relation algebra 3MT, (8, q,1) is an associative algebra over
the ring of polynomials Z[53, ¢;;, 1i;] with the set of generators {u;;, 1 <i,j < n} subject to the
set of relations

o uij +uj; = B, ujjup = uug; if {4,5} N {k,1} = 2,

e three term relations:

Wik + UkiUij + Uikt = B(wij + Wik + wj) if 4, j, k are distinct,

o uf; = Buy; + qij + iy if i #

o uithp = Yy if {i,5} N {k, 1} = @,

e cxchange relations: u;jj, = Yipusj; if 4, j, k are distinct,

e elements 3, {gij, 1 <14,j < n} are central.

It is easy to see that in the algebra 3MT, (5, q,v) the generators {u;;} satisfy the modified
Cozeter and modified quantum Yang—Baxter relations, namely

o modified Coxzeter relations: u;jujrui; — Wjptijuir = (¢ij — Qjk) Wik,

e modified quantum Yang—Bazter relations:
Uik Uik — UikUikti; = (Yjk — Vij) Uik
if 4, 7, k are distinct.

Clearly the additive Dunkl elements {Gi = > uj, 1 = 1,... ,n} generate a commutative
J#i
subalgebra in 3MT,(5,).

It is still possible to describe relations among the additive Dunkl elements [72], cf. [74].
However we don’t know any geometric interpretation of the commutative algebra obtained. It is
not unlikely that this commutative subalgebra is a common generalization of the small quantum
cohomology and elliptic cohomology (remains to be defined!) of complete flag varieties.

The algebra 3MT,, (8 = 0,q = 0,%) has an elliptic representation [72, 74]. Namely,

wij = o (20 — 2j) 544, ¢ij = p(Ni — Aj), Vi = —p(2i — zj),
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where {\;, i = 1,...,n} is a set of parameters (e.g., complex numbers), and {z1,...,2,} is a set
of variables; s;;, i < j, denotes the transposition that swaps i on j and fixes all other variables;

0(z — X\)0'(0)

&) = TG0

denotes the Kronecker sigma function; p(z) denotes the Weierstrass P-function.

“Multiplicative” version of the elliptic representation. Let ¢ be parameter. In this
place we will use the same symbol 6(x) to denote the “multiplicative” version of the Riemann
theta function

0(z) :==0(x;q) = (23 0)o0(q/7; ) o

where by definition (2;¢)ee = (2)oo = [] (1 — 2 ¢*). Let us state some well-known properties
k>0
of the Riemann theta function:

o 0(qz;q) = 0(1/x59) = —a~'0(z3 q),
e functional equation:
x/y@(uxil)e(yvil) + H(UUil)G(xyil) = 0(uyi1)9(mvi1),
where by definition (zy*!) := 0(xy)0(xy~1).

e Jacobi triple product identity:

(q; Q)ooe(l‘; q) = Z(—J;)nq(g) .

ne’

One can easily check that after the change of variables

22\ /2 wh 1/2 w \ /2 1
([ _(w (v o /2
T (Aw) , Y ()\) , U <)\M2> , v = (W)=,

the functional equation for the Riemann theta function §(z) takes the following form

ox(2) op(w) = oau(2)ou(w/z) + oru(w)or(z/w),
where

oa(2) = 2L
6(z)0(\1)

denotes the (multiplicative) Kronecker sigma function. Therefore, the operators

uij (f) = o (2i/2)si5(f),

where s;; denotes the exchange operator which swaps the variables z; and z;, namely s;;(2;) = z;,
sij(25) = zi, sij(zk) = 2k, Vk # 1,7, and s;; acts trivially on dynamical parameters \;, namely,
5ij(Ak) = Ak, Yk, give rise to a representation of the algebra 3MT, (8 =0,q = 0,1).

The 3-term relations among the elements {u;;} are consequence (in fact equivalent) to the
famous Jacobi—Riemann 3-term relation of degree 4 among the theta function 6(z), see, e.g., [141,
p. 451, Example 5]. In several cases, see Introduction, relations (A) and (B), identities among
the Riemann theta functions can be rewritten in terms of the elliptic Kronecker sigma functions
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and turn out to be a consequence of certain relations in the algebra 3MT,, (5 = 0,q = 0,v) for
some integer n, and vice versa®’.

The algebra 3HT,, (/) is the quotient of algebra 3MT, (3, q,v) by the two-sided ideal gene-
rated by the elements {1);;}. Therefore the elements {u;;} of the algebra 3HT,(3) satisfy the
quantum Yang-Baxter relations u;ju;pujr = ujpuikuij, 1 < j < k, and as a consequence, the
multiplicative Dunkl elements

1 n
91‘ = H (1 + hum)_l H (1 + huw), 7= 1, ey, Uo; = Ujpt+1 = 0
a=1—1 a=1+1

generate a commutative subalgebra in the algebra 3HT,, (), see Section 3.1. We emphasize that
the Dunkl elements ©;, j = 1,...,n, do not pairwise commute in the algebra 3MT, (5, g, ), if
;; # 0 for some 7 # j. One way to construct a multiplicative analog of additive Dunkl elements

6; :== > u;j is to add a new set of mutually commuting generators denoted by {psj, pi; +pji = 0,
J#
1 < # j < n} subject to the crossing relations

e p;j commutes with 3, gy and vy for all 4, j, k, [,
o pijur = ugppij if {1, 5} NV {k, 1} = 3, pijuji = ujepir if i, j, k are distinct,
o pfj — Bpij + ij = p?k — Bpjk + ¥k, for all triples 1 <i < j <k < n.
Under these assumptions one can check that elements
R;j = pij + wj, 1<i<j<n
satisfy the quantum Yang—Baxter relations
RinikRjk = Rj}ch‘kRij7 1< <k.
In the case of elliptic representation defined above, one can take

pij = oulzi = ),

where u € C* is a parameter. This solution to the quantum Yang—Baxter equation has been
discovered in [130]. It can be seen as an operator form of the famous (finite-dimensional) solution
to QYBE due to A. Belavin and V. Drinfeld [9]. One can go to one step more and add to the
algebra in question a new set of generators corresponding to the shift operators 7; 4: z; — q;,
cf. [40]. In this case one can define multiplicative Dunkl elements which are closely related with
the elliptic Ruijsenaars—Schneider—-Macdonald operators.

3.1.1 Equivariant modified three term relations algebra

Let h = (hg, ..., h,) be a set of parameters. We define equivariant modified 3-term relations al-
gebra 3BEMT, (B, h, q, 1) to be the extension of the algebra 3T'M,, (8, g, 1) by the set of mutually
commuting generators {y1,...,y,} subject to the crossing relations

o yiujr = wjry if i # J k, yivig = wijy; + by, yiuig = wigyi — hy, 0 < g,

® [Yk, Gij] = 0 = [yg, sj] for all 4, j, k.

29Tt is commonly believed that any identity between the Riemann theta functions is a consequence of the Jacobi—
Riemann three term relations among the former. However we do not expect that the all hypergeometric type
identities among the Riemann theta functions can be obtained from certain relations in the algebra 3MT, (8 = 0,
q = 0,¢) after applying the elliptic representation of the latter.
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It is clear that the additive Dunkl elements 6; = y; + > w;;, ¢ = 1,...,n, are pair-wise
J#i
commute. For simplicity’s sake, we shall restrict our consideration to the case 5 = 0.

Theorem 3.8 (generalized Pieri’s rule, cf. [72, 74, 117]). Let 1 < m < n, then

e V(0,00 = > Hy (A)Mp({gij })er—2r—25(O11,m)\ (auB))

AC[1,m], |A|=2r
BC[1,m]\A,|B|=2s

= X Va3 (CUMs({ugd) Y I s

AC[lym]  BClLm)\A IC[L,n\A, INB=8 (iaja)ElXI
|B|=2s |A|+|B|+|I|=k 1<ia<m<ja<n,Va
D] yeens i are distinct

where for any subset C C [1,n] we put Yo := [ ye, and e)(O¢) = em({0c}ecc) stands for the
ceC
degree  elementary symmetric polynomial of the elements {0.}ccc, ex({8c}cec) = ook if k < 0;

if B C [1,n], |B| = 2s, we set

Mp({¥ij) = [ Via o
LCB,|L|=s
(i1seis)CL
(41++-2d8)CB\L,ia<ja,ja €B\L,ia<nV«a

in a similar manner one can define Mp({qi;}); finally we set

r—1
H.(A) = hq,, ( > [ mex(a; — 25 +1,0) ha]) .

(at,...,ar—1)CA\{az,} j=1

It is not difficult to show that

Hr = (27“ - 1)”,

(A) |ha:1,a€A

as well as the number of different monomials which appear in H,([1,2r]) is equal to the Catalan
number Cat,. For example,

H3<[1, 6]) = hﬁ(h24 + 2hos + 2hs4 + 4hgs + 6h45),
Hy([1,8]) = hg(haas + 2hoa7 + 2hase + 4hast + 6hagr + 2haas + 4haar + 4hsse
+ 8hgs7 + 12h3e7 + 6hase + 12has7 + 18hagr + 24hse7).

Exercise 3.9. Write

H,([1,2r]) = ha,, ( > cg;)hA),

A:=(ay,..., a,_1)C[1,2r—1]
a;>2j

r—1
where cg) = ][ max(a; —2j +1,0) and ha := [] hq. Show that
j=1 acA

> () = B, (3.3)

A:=(ay,..., ap_1)C[1,2r—1]

a;>2j

where E, denotes the r-th Euler number, see, e.g., [131, A000364].
Find representation theoretic interpretation of numbers {cg)} and the identity (3.3).
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Clearly,

3 D = (2r — 1.

Ai=(ay,..., a,_1)C[1,2r—1]
a;>2j

Question 3.10. Does there exist a semisimple algebra 2A(r), dim(2A(r)) = E, such that the all
irreducible representations 7rj(4r) of the algebra A(r) are in one-to-one correspondence with the set
P(r):={A=(a1,...,ar—1) C [1,2r — 1], a; > 24, Vj} and dim(7) = cg), VAeP(r)?

It is worth noting that the Dunkl element 6;, 1 < ¢ < n, doesn’t commute either with y;,
j # i or any ¢y. On the other hand one can check easily that [ex(y1,...,yn),0i] =0, Vk,i.

3.2 Multiplicative Dunkl elements

Since the elements w;;, w;; and wuji, 1 < j < k, satisfy the classical and quantum Yang-Baxter
relations (3.1) and (3.2), one can define a multiplicative analogue denoted by ©;, 1 < i <n, of
the Dunkl elements 6;. Namely, to start with, we define elements

hij = hij(t) =14 tuij, /) 75 7-
We consider h;j(t) as an element of the algebra ?Tf_l\flfn =3HT, () ® Z[[qil,t,x,y, ...]], where
we assume that the all parameters {g¢;j,t,x,y,...} are central in the algebra ?T.F_I\T/n
Lemma 3.11.
(1a) hij(@)hij(y) = hij(z +y + Bay) + gijzy,
(16) hij(@)hji(y) = hij(x —y) + By — qijwy if i < j.
It follows from (1b) that h;;(t)h;i(t) = 1 + Bt — t2q;; if i < j, and therefore the elements {h;;}

L~

are invertible in the algebra 3HT,.
(2) hij(@)hjk(y) = hjr(Y)hie(@) + hie(y)hij () — hie(z + y + Bay),

(3) multiplicative Yang—Baxzter relations:

hijhikhjk; = hjkhikhij if 1 <j <k,

(4) define multiplicative Dunkl elements (in the algebra ﬁ) as follows

1 J+1
0;:=0;) = | ] na) <tha>, 1<j<n.

a=j—1

Then the multiplicative Dunkl elements pair-wise commute.

Clearly

[Iei=1 ©j=1+t0;+£(---) and Or [[ (1+t8-1tq;) € 3HT.(B).
j=1 iﬂgvel
i<j

Here for a subset I C [1,n] we use notation O; = [[ ©,. Note, that the element Oy is
acl
a product of (exactly!) k(n — k) terms of a form h;_;,, where k := |I].

Our main result of this section is a description of relations among the multiplicative Dunkl
elements.
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Theorem 3.12 (A.N. Kirillov and T. Maeno [76]). In the algebra 3HT, (B3) the following rela-
tions hold true

n
E Or H 1 +t8 — thij) = I:k:| .
1C[1,n] i¢l,jed 1+t8
m k i<j

Here [Z]q denotes the q-Gaussian polynomial.

Corollary 3.13. Assume that q;j # 0 for all 1 < i < j < n. Then the all elements {u;;} are
invertible and ui_jl = qigl(uij — B). Now define elements ®; € 3HT,, as follows

1 i+1
@Z:{Huail}{num}, i=1,...,n.
a=1—1 a=n

Then we have
(1) relationship among ©; and ®;:
(2) the elements {®;, 1 <1i <mn,} generate a commutative subalgebra in the algebra 3/H\7/}L,

(3) for each k =1,...,n, the following relation in the algebra 3HT,, among the elements {®;}
holds

Z H qW - 5k(nfk)’

IC([1,n] i¢I,j€I
|I| ki<

where @1 := [] ®,.
acl
In fact the element ®; admits the following “reduced expression” (i.e., one with the minimal
number of terms involved) which is useful for proofs and applications

R T

i<j

Let us explain notations. For any (totally) ordered set I = (i < i2 < -+ < ix) we denote by I
the set I with the opposite order, i.e., Iy = (i > i1 > -+ > i1); if I C [1,n], then we set
I¢ :=[1,n]\I. For any (totally) ordered set I we denote by the ordered product according
to the order of the set I. !

Note that the total number of terms in the r.h.s. of (3.4) is equal to i(n — i).

Finally, from the “reduced expression” (3.4) for the element ®; one can see that

1T an®r = {ﬁ{ﬁ(ﬂ - uj)}}{ﬁ{ﬁu]}} = ®; € 3HT,.

igljel jer lierg jelg \iel
i<j i<j i<j

Therefore the identity

Z (PI Bk(n—k)

IC[1,n]
\I\ k

is true in the algebra 3HT;, for any set of parameters {g;;}.
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Comments 3.14. In fact from our proof of Theorem 3.8 we can deduce more general statement,
namely, consider integers m and k such that 1 < k < m <n. Then

1+t58 AC[1,n], BC[1,n]

IC[1,m] i€[l,m]\I,j€J
|I]=k i<j |A|=|B|=r

where, by definition, for two sets A = (41,...,4,) and B = (j1,...,J,) the symbol uy p is equal
T
to the (ordered) product [] u, j,. Moreover, the elements of the sets A and B have to satisfy
a=1
the following conditions:

e foreacha=1,...,ronehas 1 <i, <m < j, <n,and k <r < k(n—k).
Even more, if r = k, then sets A and B have to satisfy the following additional conditions:
e B=(j1 <jo<---<ji), and the elements of the set A are pair-wise distinct.

In the case f = 0 and r = k, i.e., in the case of additive (truncated) Dunkl elements, the
above statement, also known as the quantum Pieri formula, has been stated as conjecture in [45],
and has been proved later in [117].

Corollary 3.15 ([76]). In the case when 3 = 0 and ¢;; = q;0j—;1, the algebra over Z[qi, . . . , ¢n—1]
generated by the multiplicative Dunkl elements {©; and@;l, 1 <i < n} is canonically isomor-
phic to the quantum K-theory of the complete flag variety Fl,, of type An_1.

It is still an open problem to describe explicitly the set of monomials {u4 g} which appear in
the r.h.s. of (3.5) when r > k.

3.3 Truncated Gaudin operators

Let {pij, 1 <i# j <n} be a set of mutually commuting parameters. We assume that parame-
ters {pi; }1<i<j<n are invertible and satisfy the Arnold relations
1 1 1

—_— =4 — 1< 7, k.
Dik Dij Djk

For example one can take p;; = (2; — 2;) "1, where z = (21,...,2,) € (C\0)™

Definition 3.16. Truncated (rational) Gaudin operator corresponding to the set of parame-
ters {p;;} is defined to be

Gi=) pj'sy, 1<i<n,
JF#i
where s;; denotes the exchange operator which switches variables z; and z;, and fixes parame-
ters {p;;}.
We consider the Gaudin operator G; as an element of the group ring Z[{pf;.l}][Sn], call this
element G; € Z[{pz?;l}][Sn], i=1,...,n, by Gaudin element and denoted it by 0§n).

It is easy to see that the elements u;; := pi_jlsij, 1 <4 # j < n, define a representation of the
algebra 3HT, () with parameters § =0 and ¢;; = u%j = p?j.

Therefore one can consider the (truncated) Gaudin elements as a special case of the (trun-
cated) Dunkl elements. Now one can rewrite the relations among the Dunkl elements, as well
as the quantum Pieri formula [45, 117], in terms of the Gaudin elements.
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The key observation which allows to rewrite the quantum Pieri formula as a certain relation
among the Gaudin elements, is the following one: parameters { pi_jl} satisfy the Pliicker relations

1 1 1 e
= + if i<j<k<l
PikPji DPijPkl  PilPjk
To describe relations among the Gaudin elements (91(”), 1=1,...,n, we need a bit of notation.
Let {p;j} be a set of invertible parameters as before, i, < jq, @ = 1,...,7. Define polynomials

in the variables h = (h1,..., hy)

—[TUJ|\+
¢ = 3 3 <n | )hJ, (3.6)
IC[l,n—1] Hpm JC1,m] n—m— |
|I|—7‘ el [I|4+m=|J|+k

T 2
hy = > [T » II 2
KcJ,LCJ :
o Rerbes jeI\(KUL)  ka€K L€l

and summation runs over subsets K = {k; < ks < --- <k }and L={l1 <la<--- <.} C J},
such that k, < lg,a=1,...,r

Theorem 3.17 (relations among the Gaudin elements [72], cf. [108]).

(1) Under the assumption that elements {p;j, 1 <1i < j < n} are invertible, mutually commute
and satisfy the Arnold relations, one has

Gfg)kT(H:(ln),..., 0, ,{pm}) =0 if m>k,

G (0,60 {pis}) = en(das .., dy), (3.7)
where da, ..., d, denote the Jucys—Murphy elements in the group ring Z[S,] of the sym-
metric group S, see Comments 3.4 for a definition of the Jucys—Murphy elements.

(2) Let J = {j1 <j2 <---<jr} C[1,n], define matriz My := (mgp)1<ap<r, where
h;, if a=b,
Map = map(Ri{pij}) = { Pjagy,  if a<b,
—DPjpja 4 a>b.
Then
hy = DET |Mj]|.

Examples 3.18.

(1) Let us display the polynomials Gq(g)k’r(

N I S | I ( 5 h>

IC[l,n—1] ¢&] JC[1,n]
[I|=r |J|=m+r, ICJ

6ol (osh) = ("7 el )

&= Y Tl ( S emerii Y h)

IC[1,n—1] ¢€] JC[1,n] JC[1,n]
|T|=r 1cJ,|J|l=m+r |J|=m+r—1, | IUJ|=m+r

h,{pi;j}) a few cases
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(2) Let us list the relations (3.7) among the Gaudin elements in the case n = 3. First of all,
the Gaudin elements satisfy the “standard” relations among the Dunkl elements 61 462 +63 = 0,
0105 + 0103 + 0203 + q12 + q13 + qog = 0, 010203 + q1203 + q1302 + g23601 = 0. Moreover, we have
additional relations which are specific for the Gaudin elements

1 1
G%J = 1?3(0192 + 60103 + q12 + q13) + ];3(9192 + 60203 + q12 + q23) = 0,

the elements po3fi + p13fo and 6105 are central.

It is well-known that the elementary symmetric polynomials e,(da,...,d,) = Cp, 7 =
1,...,n — 1, generate the center of the group ring Z[piijl][Sn], whereas the Gaudin elements
{Hl(n), i = 1,...,n}, generate a maximal commutative subalgebra B(p;;), the so-called Bethe

subalgebra, in Z[p#][Sn]. It is well-known, see, e.g., [108], that B(p;;) = @,.,, Br(pij), where
By (pij) is the A-isotypic component of B(p;;). On each A-isotypic component the value of the
central element C}, is the explicitly known constant cg(\).

It follows from [108] that the relations (3.7) together with relations

Goor (07, ...,6% {pi;}) = cr(N)

are the defining relations for the algebra By (p;;).

Let us remark that in the definition of the Gaudin elements we can use any set of mutually
commuting, invertible elements {p;;} which satisfies the Arnold conditions. For example, we
can take

(1 —q)

Pij 1= 1_qj—i , 1<i<y <n.

It is not difficult to see that in this case

e(n) j—1
; J g = .
By~ %= 2w
2

where as before, d; denotes the Jucys-Murphy element in the group ring Z[S,] of the symmetric
group S,. Basically from relations (3.7) one can deduce the relations among the Jucys—Murphy
elements da, ..., d, after plugging in (3.6) the values p;; := w
q — 0. However the real computations are rather involved.

Finally we note that the multiplicative Dunkl/Gaudin elements {©;, 1,...,n} also generate
a maximal commutative subalgebra in the group ring Z[pl??l][Sn]. Some relations among the
elements {©;} follow from Theorem 3.12, but we don’t know an analogue of relations (3.7) for
the multiplicative Gaudin elements, but see [108].

and passing to the limit

Exercises 3.19. Let A = (a; ;) be a 2m x2m skew-symmetric matrix. The Pfaffian and Hafnian
of A are defined correspondingly by the equations

1 m
Pf(A) = omml Z Sgn(U)Haa(%—l),a(%)v
’ c€Sam =1
1 m
Bf(4) = oo > [T aoei-noe)
T 0€Sam i=1

where Sy, is the symmetric group and sgn(o) is the signature of a permutation o € Sg,,.3"

308ee, e.g., https://en.wikipedia.org/wiki/Pfaffian.
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Now let n be a positive integer, and {p;;, 1 < i # j < n, p;; + pjs = 0} be a set of skew-
symmetric, invertible and mutually commuting elements. We set p; = 0 for all ¢, and q :=
2
{pij}1§i<j§n'
Now let us assume that the elements {pij}1§i<j§n satisfy the Pliiker relations for the elements

1
{pij }1§i<j§n’ namely,

1 1 1
= + forall 1<i<j<k<lI<n.
DikPji DPijPklt  PilPjk

(a) Let n be an even positive integer. Let us define A, (pi;) := (pij)i<ij<n to be the n x n
skew-symmetric matrix corresponding to the family {p;; }1<i<j<n. Show that

DET | A, (pij)| = HE (An (p2))-

(b) Let n be a positive integer, and z1, ..., z, be a set of mutually commuting variables, define
polynomials H;(z1,..., 2 [{pij}), i =1,...,n from the equation

n
DET ’ diag(t + z1,...,t + 2zp) + An(pm)‘ =t"+ Z Hi(z1,...,2n ] {pl‘j})tnfi,
=1

where diag(t + z1,...,t + z,) means the diagonal matrix.

Show that for k = 1,...,n the polynomial Hy(z1,..., 2z, | {pi;}) is equal to the multiparameter
(@)

quantum elementary polynomial e, (z1,. .., z,), see, e.g., [45], or Theorem 2.7.
For example, take n = 4, then

DET |A(pi;)| = (p12p34 — p13p24 + p14p23)2 = p%2p§4 + p%gp%z; + pﬁp%g

1 1 1
— 2p12P13P23P14D24D34 ( - + )
P12P34  P13P24  P14P23

= piaPs + PlsP3s + Piupss = HE (A4 ({pgj }))

The last equality follows from the Pliicker relations for parameters {pl_Jl}
On the other hand, if one assumes that a set of skew symmetric parameters {r;;}i<i<j<n,
rij + 15 = 0, satisfies the “standard” Pliicker relations, namely

TikTjl = TijThi + TaTjk, 1< j<k<lI,

then DET |A,,(r4;)| = 0.

3.4 Shifted Dunkl elements 0; and ®;

As it was stated in Corollary 3.15, the truncated additive and multiplicative Dunkl elements
in the algebra 3HT, (0) generate over the ring of polynomials Z[qi,...,q,—1] correspondingly
the quantum cohomology and quantum K-theory rings of the full flag variety Fl,. In order
to describe the corresponding equivariant theories, we will introduce the shifted additive and
multiplicative Dunkl elements. To start with we need at first to introduce an extension of the
algebra 3HT,(3).

Let {#1,..., z,} be aset of mutually commuting elements and {3, h = (ha, ..., hn),t, ¢ij = ¢ji,
1 <i,5 <n} be a set of parameters. We set h,, := 0.

Definition 3.20 (cf. Definition 3.1). Define algebra 3T'H, (3, h) to be the semi-direct product
of the algebra 3T H,,(3) and the ring of polynomials Z[h, t|[z1, . . ., z,] with respect to the crossing
relations
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(1) zjug = ugz; if i ¢ {k, 1},
(2) ZiUi; = Uij2j + Bz + hj, ZjUi5 = W52 — Bz — hj fl1<i< J<k<n.

Now we set as before h;; := hyj(t) = 1 + tuy;.
Definition 3.21.

e Define shifted additive Dunkl elements to be

0; :zi—i—Zuij —Zuj,-.

1<J 1>

e Define shifted multiplicative Dunkl elements to be

1 i+1
91, = ( H hai1> (1 +Zi) <H hia) .
a=1—1 a=n

Lemma 3.22.
[DZ’,OJ'} = 0, [@i,Qj] =0 f07” all i, j

Now we stated an analogue of Theorem 3.8 for shifted multiplicative Dunkl elements.

As a preliminary step, for any subset I C [1,n] let us set D7 = [[ D,. It is clear that
acl

D; [[ (1+t8-tq;) € 3HT,(B,h).

igl, jel
i<j

Theorem 3.23. In the algebra 3HT, (3, h) the following relations hold true

Z D7 H 1+t5—t2q¢j)

IC[1,n] igl,jed
\I\ k i<j

k
= > [Ja +tpyrFiata (zia(l +tB)e"% 41+ hy,

IC[1,n] a=1
I={1<i1<...<ip<n}

(L+tB)= — 1)
5 .

In particular, if 5 = 0, we will have

Corollary 3.24. In the algebra 3HT, (0, h) the following relations hold

oo I (0 -#g) = > H %y + 1+ thi, (i — a)). (3.8)

IC[1,n] igl,jed IC[1,n]
\I\ k i<j I={1<iq,.. zk<n}
Conjecture 3.25. If hy =---=hp,—1 =1,t =1 and ¢;j = 0; j+1, then the subalgebra generated

by multiplicative Dunkl elements ©;, i = 1,...,n, in the algebra 3HT,(0,h =1) (and t = 1), is
isomorphic to the equivariant quantum K-theory of the complete flag variety Fl,.

Our proof is based on induction on k and the following relations in the algebra 3HT, (5, h)

hji . (1 + a:j) = hj + (1 + ﬁ)x] —x; + (1 + xi)hji, hjihjk = hjkhkz' + hikhﬂ —1-2,
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if i < j <k, and we set h;j := h;j(1). These relations allow to reduce the left hand side of the
relations listed in Theorem 3.23 to the case when z; = 0, h; = 0, Vi. Under these assumptions
one needs to proof the following relations in the algebra 3HT,,(3), see Theorem 3.12,

S o ] (l—i—tﬁ—thij):[Z]Htﬁ.

1C[1,n] i¢l,jeJ
|I|=k i<j

In the case § = 0 the identity (3.8) has been proved in [76].
One of the main steps in our proof of Theorem 3.8 is the following explicit formula for the
elements ;.

Lemma 3.26. One has

Or:=2; [[ 1+t ) :ﬁ(ﬁhba> ﬁ <(1+za)ﬁhab>.

igl,jel bel \ o¢I acl b1
1<J a<b a<b
Note that if a < b, then hy, = 1 4+ 5t — uyp. Here we have used the symbol
SN
H H hba
bel \ ogI
a<b
to denote the following product. At first, for a given element b € I let us define the set

I(b) .= {a € [1,n)\I, a < b} := (agb) << az(,b)) for some p (depending on b). If I = (b <
by < -+ < bg),ie., b= al(-b), then we set

A" k
H ( H hba) = H (ubj,asubj,asl o 'ubj,m)‘
i=1

bel \ agr
a<b
For example, let us take n = 6 and I = (1,3,5), then
D = hashsahsa(1 + 21)highiahia(1 + 23)haghss(1 + 25) hsg.

Let us stress that the element D; € 3HT, n(B) is a linear combination of square free monomials
and therefore, a computation of the left hand side of the equality stated in Theorem 3.17 can be
performed in the “classical case” that is in the case ¢;; = 0, Vi < j. This case corresponds to the
computation of the classical equivariant cohomology of the type A,_1 complete flag variety Fl,
if h=1.

A proof of the 5 = 0 case given in [76, Theorem 1], can be immediately extended to the case

B # 0.

Exercises 3.27.

(1) Show that

k
Y. [Ja+prtiete= m s

1<i1 << <na=1
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(2) (B, h)-Stirling polynomials of the second type. Define polynomials Sy, (5, h) as follows

IBn k—ig+a __

Sn,k:(BJl) — Z H </6n k— la+a+h B 1> '

IC[1,n]
I={1<iq,.. 1k<n}

Show that
n+1 n
Sn,k( 3 ) {k)—l—l}’ Sn,k(670) |:k:|ﬁ

4 Algebra 3T7§0)(I‘) and Tutte polynomial of graphs

4.1 Graph and nil-graph subalgebras, and partial flag varieties

Let’s consider the set R, := {(i,j) € Zx Z|1 <i < j < n} as the set of edges of the complete
graph K, on n labeled vertices v1,...,v,. Any subset S C R, is the set of edges of a unique
subgraph I' := I'g of the complete graph K,.

Definition 4.1 (graph and nil-graph subalgebras). The graph subalgebra 37,,(I") (resp. nil-
graph subalgebra 37, T(ZO) (I')) corresponding to a subgraph I' C K,, of the complete graph K,
is defined to be the subalgebra in the algebra 37, (resp. 3T,(LO) ) generated by the elements

{uij | (2,7) € T}

In subsequent Sections 4.1.1 and 4.1.2 we will study some examples of graph subalgebras
corresponding to the complete multipartite graphs, cycle graphs and linear graphs.
4.1.1 Nil-Coxeter and affine nil-Coxeter subalgebras in 3T7(10)

Our first example is concerned with the case when the graph I' corresponds to either the set
S:={(i,i+1)]i=1,...,n— 1} of simple roots of type A, 1, or the set S := S U {(1,n)} of
affine simple roots of type Aglll

Definition 4.2.

(a) Denote by ﬁén subalgebra in the algebra 3T7(L0) generated by the elements u; 41, 1 <47 <
n— 1.

(b) Denote by A/I\\TEn subalgebra in the algebra 3T7§0) generated by the elements u;;41, 1 <
it <n—1and —uyy.

Theorem 4.3.

(A) The subalgebra ﬁén s canonically isomorphic to the nil-Cozeter algebra NC,. In partic-
ular, Hilb(NC,,,t) = [n]:! (c¢f. [8]).

(B) The subalgebra mn has finite dimension and its Hilbert polynomial is equal to

Hilb(ANC,,t) = [y [] Ln—-Dle=Mld [ i

1<j<n—1 1<j<n—1

In particular, diim ANC,, = (n—1)!n!, deg, Hilb(mmt) = ("f{l)
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(C) The kernel of the map 7: X\/NCn — ﬁén, T(urn) =0, T(Uiig1) = Uijs1, 1 <P <n—1,
is generated by the following elements:

1 n—ktj—1
fék):H H Uq,a+1), 1<k<n-1
j=k a=j

Note that deg f}bk) =k(n—k).

The statement (C) of Theorem 4.3 means that the element f,gk) which does not contain the
generator uj,, can be written as a linear combination of degree k(n — k) monomials in the
algebra mn, each contains the generator ui, at least once. By this means we obtain a set

of all extra relations (i.e., additional to those in the algebra N\én) in the algebra mn More-
over, each monomial M in all linear combinations mentioned above, appears with coefficient
(—1)#ln €M1 For example,

1),
4 = U12U23U3 4 = U23U34UL 4 T U3 4UL 4UL 2 + UL 4U1 2U2 3,

(2) .
fa7 = u2,3u3 4u1 2U2 3 = UL 2U3 4U2,3UT 4 + UL 2U2 3UT 4UT 2 + U2 3UT 4UT 2U3 4

+ U3 4U2 3UL 4U3 4 — UL 4U1 2U3 4UT 4.

Worthy of mention is that dim(mn) = (n—1)!n! is equal to the number of (directed) Hamil-
tonian cycles in the complete bipartite graph K, ,, see, e.g., [131, A010790] for additional
information.

Remark 4.4. More generally, let (W,S) be a finite crystallographic Coxeter group of rank I
with the set of exponents 1 =m; < mg < --- < my.

Let By be the corresponding Nichols-Woronowicz algebra, see, e.g., [8]. Follow [8], denote
by ﬁéw the subalgebra in By generated by the elements [as] € By corresponding to simple
roots s € S. Denote by A/N\WCW the subalgebra in By generated by NCyy and the element [ag],
where [ag] stands for the element in By corresponding to the highest root 6 for W. In other

words, ANWCyy is the image of the algebra mw under the natural map BE(W) — By,

— l
see, e.g., [8, 73]. It follows from [8, Section 6], that Hilb(NCy,t) = [] [mi + 1.
i=1

Conjecture 4.5 (Yu. Bazlov and A.N. Kirillov, 2002).

e~ ! 1 — gmatl ! 1 — @ ! ‘
Hilb(ANWCw, ) =[] o 11 — = W (Wi t) [T — ),
=1

=1 1= =1

where

l )
w 1+t4+---
Paff(llvt) = § : tl( ): | | ( 1 — ¢mi )

weWass =1

denotes the Poincaré polynomial corresponding to the affine Weyl group Wy, see [17, p. 245];
a; == (2p,a), 1 < i <1, denote the coefficients of the decomposition of the sum of positive
roots 2p in terms of the simple roots «;.

In particular,

!
- [T a o !
dim ANWCyy = |[W|-= and  degHilb(ANWCw,t) =) a;.
1=1

l

[T mi
=1
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! ,
It is well-known that the product H tmll is a symmetric (and unimodal?) polynomial with

non-negative integer coefficients.

Example 4.6.

(a) Hilb(ANCs,¢) = [212[3];,  Hilb(ANC4,t) = [3)2[4)2,
Hilb (ANCs, t) = [4]?]5],[6]7,
(b) Hilb(BEy,t) = (1+1)*(1+12)?,
Hilb(ANCp,, 1) = (14 )3 (1 + 12)® = Pagr(Ba, t) (1 — £3) (1 — ).
(¢) Hilb(ANCp,,t) = (1+6)>(1+2)* (1 + ) (1 + ) (1 +t + %) (1 + 3 + 1)
= Pos(Bs, 1) (1 —¢°) (1 — %) (1 — ¢9).

Indeed, mp, = (1,3,5), ap, = (5,8,9).

Definition 4.7. Let (Kl\\fjn) denote the two-sided ideal in 37} generated by the elements
{41}, 1 <i<n—1, and u; 5. Denote by U, the quotient U,, = 3T°/(ANC,,).

Proposition 4.8.

Uy = (u1,3,u24) = Zo X Lo, Us = (u1,4,uz4,u25,u35,ur,3) = ANCs.
In particular, Hilb (3T5(0),t) = [Hﬂb(A/\/NCg,,t)]Q.

4.1.2 Parabolic 3-term relations algebras and partial flag varieties

In fact one can construct an analogue of the algebra 3HT,, and a commutative subalgebra inside
it, for any graph I' = (V, E) on n vertices, possibly with loops and multiple edges [72]. We
denote this algebra by 37, (I"), and denote by 37, {0 (T) its nil-quotient, which may be considered
as a “classical limit of the algebra 37,,(I")”.

The case of the complete graph I' = K, reproduces the results of the present paper and those
of [72], i.e., the case of the full flag variety Fl,. The case of the complete multipartite graph
I' = K, ... n,. reproduces the analogue of results stated in the present paper for the full flag
variety Fl,, to the case of the partial flag variety F, .. n,, see [72] for details.

We expect that in the case of the complete graph with all edges having the same multiplic-
ity m, denoted by either I' = K" (m) , or mK,, in the present paper, the commutative subalgebra
generated by the Dunkl elements in the algebra ST,gO) (T) is related to the algebra of coinvariants
of the diagonal action of the symmetric group S,, on the ring of polynomials Q[XS), R X,(lm)],

where we set X {xl . a:n }

Example 4.9. Take I' = Ky5. The algebra 3TO)(T) is generated by four elements {a = w3,
b = u14, ¢ = ug3,d = uzq} subject to the following set of (defining) relations

e d’=0=c2=d>=0, cb = bc, ad = da,

e aba + bab =0 = aca + cac, bdb + dbd = 0 = cdc + ded,
abd — bdc — cab + dca = 0 = acd — bac — cdb + dba,

e abca + adbc + badb + bead + cadce + dbed = 0.
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It is not difficult to see that3!
Hilb (37 (Ks),t) = [317[4)7,  Hilb(3T0) (K22)%,t) = (1,4,6,3).
Here for any algebra A we denote by A% its abelianization®?

The commutative subalgebra in 37(°) (K5 5), which corresponds to the intersection 37 (Ky o)
NZ[61,02,03,04], is generated by the elements ¢; := 61 + 02 = (a + b+ ¢+ d) and ¢y := 0105 =
(ac+ ca+bd+ db+ ad+be). The elements ¢; and co commute and satisfy the following relations

c:f — 2c1c0 = 0, cg — C%CQ =0.

The ring of polynomials Z[cy, o] is isomorphic to the cohomology ring H*(Gr(2,4),Z) of the
Grassmannian variety Gr(2,4).

To continue exposition, let us take m < n, and consider the complete multipartite graph
K, m which corresponds to the Grassmannian variety Gr(n, m + n). One can show

n—1

Hilb (3737, (K m)™ 1) = > (=1)* (1 + (n — k)t)™ ! H +t) {nik}

k=0
= """ I Tutte( Ky m, L+t 0)

where {}} := S(n,k) denotes the Stirling numbers of the second kind, that is the number of
ways to partition a set of n labeled objects into & nonempty unlabeled subsets, and for any
graph I, Tutte(T', z,y) denotes the Tutte polynomial®® corresponding to graph T.

It is well-known that the Stirling numbers S(n, k) satisfy the following identities

n—1 i n—=k . . n) " (ex_l)k
ST =1k S(nn—k) [[(+5) = A+, Z{k}n!:k!'

k=0 j=1 n>k
Let us observe that

n—1
dim (37 (Kp)®) =Y (=) (n+1-k)" ' (n+1- k:)!{ " }

k=0 n—k
n+1 2

S (-t
Sk

see, e.g., [131, A048163].
Moreover, if m > 0, then

k4+m—1(1. _ 1\14k
Zdlm 3T nn+m) )tn :Zk — (k 1)t :

n>1 k=1 TT (1 + kjt)
j=1
. z(1+ jt)
(0) ab m—1
> Hilb (37O (K )™, ) 2" = > (1 + kt) H T
n>1 k>0
31Hereinafter we shell use notation (ag,a1,...,aK)t :==ao +ait+---+ aktk.

328ee http://groupprops.subwiki.org/wiki/Abelianization.
33See, e.g., https://en.wikipedia.org/wiki/Tutte_polynomial. It is well-known that

Tutte(T', 1+ ¢,0) = (—1)" ¢~ Chrom(T, —t),

where for any graph I', |I'| is equal to the number of vertices and x(I') is equal to the number of connected
components of I'. Finally Chrom(T", ¢) denotes the chromatic polynomial corresponding to graph I, see, e.g., [140],
or https://en.wikipedia.org/wiki/Chromatic_polynomial.


http://groupprops.subwiki.org/wiki/Abelianization
https://en.wikipedia.org/wiki/Tutte_polynomial
https://en.wikipedia.org/wiki/Chromatic_polynomial

56 A.N. Kirillov

Comments 4.10 (poly-Bernoulli numbers). Based on listed above identities involving the Stir-
ling numbers S(n, k), one can prove the following combinatorial formula

min(n,m)
1 1
dim (37O(, Z {?L}{TL } _ ptm) — glom), (4.1)

Q

where ng) denotes the poly-Bernoulli number introduced by M. Kaneko [64].

On the other hand, it is well-known, see, e.g., footnote 33, that for any graph I' the spe-
cialization Tutte(I';2,0) of the Tutte polynomial associated with graph I', counts the number
of acyclic orientations of I'. Therefore, the poly-Bernulli number B,(l_m)
acyclic orientatations of the complete bipartite graph K, ,.

For example, dim (37 (K33)%) = 230 = 1 + 72 + (2!)262 + (3!)2, cf. Example 4.16(3).

For the reader’s convenient, we recall below a definition of poly-Bernoulli numbers. To start
with, let k£ be an integer, consider the formal power series

counts the number of

If k£ > 1, Lig(z) is the k-th polylogarithm, and if k < 0, then Lig(z) is a rational function. Clearly
Lii(z) = —In(1 — 2). Now define poly-Bernoulli numbers through the generating function

lel—ez
l_ez ZB n'
n=0

(=)

Note that a combinatorial formula for the numbers By,
following identity [64]

stated in (4.1) is a consequence of the

Ttz

;; T1-(1—en)(l—e)

Note that the poly-Bernoulli numbers B{™ (= B, n)) have the following combinatorial inter-

pretation*, namely, the number B,(fm) , and therefore the dimension of the algebra 37T (0)(Kn7m)
is equal to

BU™ = T(n—1,m)+T(n,m—1),

n

where [26]
min(n,m) 1 1
0 n m
= J+ J+
is equal to the number of permutations w € S, 1, having the ezcedance set {1,2,...,m}.

Exercise 4.11. Show that polynomial Hilb(37() (K, ,,),t) has degree n +m — 1, and
Coeffnim-1 (Hilb (37 (K ), t)) = T(n — 1,m — 1).

Problem 4.12. To find a bijective proof of the identity (4.1).

34See for example, [131, A136126], [131, A099594] or [26, Theorem 3.1], and the literature quoted therein.
Recall, that the ezcedance set of a permutation m € S,, is the set of indices ¢, 1 < i < n, such that w(¢) > 1.



On Some Quadratic Algebras 57

Final remark, the explicit expression for the chromatic polynomial of the complete tripartite
graph K, , , can be found in [131, A212220].

Now let GEner > uij, 1 <i < n+m, be the Dunkl elements in the algebra 37 (K,,,,,),
JF#i
define the following elements the in the algebra 37 (K, ,,)

cp = ek(9§n+m), . ,Hﬁf”rm)), 1<k<n,
c i=e (9£Lz—qm),...,9£ﬁ;;n)), 1<r<m.
Clearly,
n m n+m
(1 + Zcmﬁk> (1 + Zcrtr> =JJ] a+ 0§”+m)) = 1.
k=1 r=1 j=1

Moreover, there exist the natural isomorphisms of algebras

H*(Gr(n,n+m), Z) %Z[Cl,...,cn]/<<1+§:cktk> (Hicqﬂ,) - 1>’
k=1 r=1

QH*(Gr(n,n +m)) = Z[q][c1, - . ., cn]/ < (1 + Zn:cktk> (1 + i@ﬂ) —1- Qtn+m> :
k=1

r=1
Let us recall, see Section 2, footnote 26, that for a commutative ring R and a polynomial

S .
p(t) = Y gt/ € RJt], we denote by (p(t)) the ideal in the ring R generated by the coefficients
j=1

g1,---,9s-
These examples are illustrative of the similar results valid for the general complete multipartite

graphs Ky, . n., i.e., for the partial flag varieties [72].

To state our results for partial flag varieties we need a bit of notation. Let N :=nj+---+n,,
n; > 0,V j, be a composition of size N. Weset N; :=nj+---+n;,j=1,...,r,and Ny = 0. Now,
consider the commutative subalgebra in the algebra 3T(0) (Kn) generated by the set of Dunkl
elements {G(N H(N)} and define elements {c ) e 37 )(Kn n,)} to be the degree k;

-----

elementary symmetric polynomials of the Dunkl elements 9( )1 IRTEEE ,95\,]_), namely,
c(j) .—cgN)—ek(9%31+1,...,9%)), 1 <k; <nj, j=1,...,m
(J) —1, V.
Clearly
n; N
H(Zc3>t“> H (1+6M) =1.
Jj=1 Jj=1

Theorem 4.13. The commutative subalgebra generated by the elements {ck) 1<k;j<nj, 1<

j <r—1}, in the algebra 3T](V)(Kn
of the partial flag variety Fly, .. n,

) is isomorphic to the cohomology ring H*(Fly, ... n.,Z)

1yeeeyTlp

In other words, we treat the Dunkl elements {0N P LS nj}, j=1,...,r, as the

Chern roots of the vector bundles {¢; := F;/Fj_1}, j = 1,...,r, over the partial flag variety
flnlv---vnr‘
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Recall that a point F' of the partial flag variety Fl,, . n,., n1 +---+n, = N, is a sequence
of embedded subspaces

F={0=RCcFHRCcFkhc-CF=Cc"}
such that
dlm(Fz/Fz_l) = Ny, 1= 1,...,7".

By definition, the fiber of the vector bundle &; over a point F' € Fl,,, .. »
vector space F;/F;_q.

is the n;-dimensional

T

To conclude, let us describe the set of (defining) relations among the elements {c((lj )}, 1<
a <mnj, 1 <j<r—1. To proceed, let us introduce the set of variables {x((lj) |11<a<mn;1<
j<r-— 1}, and define polynomials by = 1,b; := bk({x(gj)}), k > 1 by the use of generating
function

1
r—1 nj . = Zbktk
T (raye =

j=la=1

Now let us introduce matrix Mm({ﬁgj)}) := (m;;), where
biyj—1 if j >4,
mij =< 1 if j=i—1,i>2,
0 if j<i—1.

Claim 4.14. det Mm({cg)}) =0, No_1 <m < N. Moreover,
H*(./—"lnl7._.7nr,Z) = Z[{xé}]/<MNr—1+17 SRR MN>'

A meaning of the algebra 3T, T(LO) (") and the corresponding commutative subalgebra inside it
for a general graph I is still unclear.

Conjecture 4.15. %

(1) Let T'= (V, E) be a connected subgraph of the complete graph K, on n vertices. Then
Hilb (37"/(0), t) = ¢/VI" Tutte(T; 1 + ¢ 71, 0).

(2) LetT' = (V,E,{myj, (ij) € E}) be a connected subgraph of the complete graph K™ with
multiple edges such that an edge (ij) € K, has the multiplicity m;;. Let 3T£0) (T',m) de-

notes the subalgebra in the algebra 3T,§0)(m) generated by elements {ugf(ij)), (ij)e B, 1<
ajy < mqj}, see Section 2.2. Let A(T', {my;}) denotes the graphic arrangement correspon-
ding to the graph (I',{my;}), that is the set of hyperplanes {H;j) , = (z; — xj = a), 0 <

a <m;; — 1, (ij) € E}. Then
370D, m)® = OSH(A(T, {my;})),

where for any arrangements of hyperplanes A, OST(A) denotes the even Orlik—Solomon
algebra of the arrangement A [113]. In the case when m;; = 1, V1 < i < j < n,

370 (T)anti = OS(A(D)).
35Part (1) of this conjecture has been proved in [89]. In [89] the author has used notation OT(T") for the Orlik—

Terao algebra associated with (simple) graph I'. In our paper we prefer to denote the corresponding Orlik—Terao
algebra by OS™(I").
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Examples 4.16.
(1) Let G = K32 be complete bipartite graph of type (2,2). Then
Hilb(37)(2,2)%,¢) = (1,4,6,3) = t*(1 + t) + t(1L +t)* + (1 + t)3,

and the Tutte polynomial for the graph K> s is equal to x + 22+ 2% .
(2) Let G = K32 be complete bipartite graph of type (3,2). Then

Hilb(379(3,2),¢) = (1,6,15,17,7)
=31 +t)+3t2 (1 +t)> +2t(1+1)> + 1+ )4,

and the Tutte polynomial for the graph K3 is equal to

z+ 3%+ 22° 4+ 2t + y + 32y + 2.

(3) Let G = K33 be complete bipartite graph of type (3,3). Then

Hilb (379 (3,3),¢) = (1,9,36,75,78,31) = (1 +t)° + 4¢t(1 + t)*
+1062(1 4 )3 + 1163 (1 + )% 4 5641 + 1),

and the Tutte polynomial of the bipartite graph K33 is equal to

52 + 1122 + 1023 + 42t + 25 + 152y + 922y + 629> + 5y + 99> + 5y° + .
(4) Consider complete multipartite graph K52 2. One can show that

Hilb (37" (K3.2.2)®, ) = (1,12, 58,137, 154,64) = 11t4(1 + £) + 25¢3(1 + t)?
+ 2062 (1 + )3 + Tt(1 + 1) + (1 + )5,

and

Tutte( K229, 7, y) = (11, 25,20,7,1), + y(11,46, 39,8), + y*(32,52,12),.
+1°(40,24), + y*(29,6), + 15y° + 5y° + ¢/,

The above examples show that the Hilbert polynomial Hilb(37(G)%,t) appears to be a cer-
tain specialization of the Tutte polynomial of the corresponding graph G.
Instead of using the Hilbert polynomial of the algebra 370(G)? one can consider the graded
Betti numbers (over a field k) polynomial Bettiz(372(G)%, z,y). For example,
Bettig (375 (K3), z,y) = 1 + 2y(4,2)s + 2%y*(3,2),,
Bettig (37} (K22)"", 2, y) = 1 + 4oy + 2y*(1,9,3), + 2%y°(1,6,3),,
Bettig (379 (K32)", z,y) = 1 + 6zy + 2y*(3,25,9) + 2%y (6,45, 34, 7) + 2y*(3, 25,25, 7),
Bettig (3T (K1), z,y) = 1 + 2y(10, 10) + 2%y*(25,46,26,6) + 2°y*(15, 36, 25, 6),
Bettiz oz (375 (K4)™, x,y) = 1+ 2y(10,10, 1), + 2%y*(25, 46,26, 6) + 2°y*(16, 36, 25,6),
Bettig (379 (K5)", 2, y) = 1 + 2y(20,30) + 2%y*(109, 342, 315, 72) + 23y3(195, 852, 1470,
1232, 639,190, 24) 4+ z*y*(105, 540, 1155, 1160, 639, 190, 24),
Bettig (375 (K5), 1,1) = 9304,
Bettizaz (375 (K5)™, 2,y) = 1 + 2y(20,30) + 2y*(109, 342, 315,72,1)



60 A.N. Kirillov

+ 239%(195, 852, 1471, 1232, 640, 190, 24)
+ 24y%(105, 540, 1156, 1160, 639, 190, 24),
Bettiz sz (375 (K5)™, 1,1) = 9308,
Bettiz oz (375 (K5)™, 2,y) = 1 + 2y(20,30,5) + 2°y*(114, 342,340,131, 10)
+ 2%43(220, 911, 1500, 1291, 649, 190, 24)
+ 2%44(125,599,1165, 1160, 639, 190, 24),
Bettiz oz, (375 (K5)™, 1,1) = 9680,
Bettiz oz (378 (K33)™, 2,y) = 1 + 9zy + 23°(9, 69, 27) + 2y*(40, 285,257, 52)
+ 23y*(59, 526, 866, 563, 201, 31)
+ 2%y°(28, 311, 636, 520, 201, 31),
Bettiz oz (37¢ (K3,3)™, 1,1) = 4740,
Bettig (375 (K33), z,y) = 1 + 92y + xy*(9, 69, 27) + x%y>(40, 285, 257, 43)
+ 2%y*(59, 526, 866, 563, 201, 31)
+ 2%5(28, 302, 636, 520, 201, 31),
Bettig (37 (K33)"",1,1) = 4704.

Let us observe that in all examples displayed above, the Betti polynomials are divisible by 1+xy.

It should be emphasize that in the literatute one can find definitions of big variety of (graded)
Betti’s numbers associated with a given simple graph I', depending on choosing an algebra/ideal
has been attached to graph I'. For example, to define Betti’s numbers, one can start with edge
graph ideal/algebra associated with a graph in question, the Stanley—Reisnerideal /ring and so on
and so far. We refer the reader to carefully written book by E. Miller and B. Sturmfels [105] for
definitions and results concerning combinatorial commutative algebra graded Betti’s numbers.
As far as I'm aware, the graded Betti numbers we are looking for in the present paper, are
different from those treated in [105], and more close to those studied in [11].

It is not difficult to see (A.K.) that for a simple connected graph I' the coefficient just before
the (unique!) monomial of the maximal degree in Betti, (37°(I')*°, z,y) is equal to Tutte(I; 1,0).
It is known [10] that the number Tutte(I';1,0) counts that of acyclic orientations of the edges
of I' with a unique source at a vertex v € I, or equivalently [10], the number of maximum
I'-parking functions relative to vertex v.

Claim 4.17. Let G = (V, E) be a connected graph without loops. Then over any field k
Bettix,(375(G)®, —z,2) = (1 — z)°Hilb(3T(G)*, z),

where n = |V (G)| = number of vertices, e = |E(G)| = number of edges.

Question 4.18.

o Let G be a connected subgraph of the complete graph K,,. Does the graded Betti polynomial
Bettig(370(G)®, x,y) is a certain specialization of the Tutte polynomial T(G,z,y)? If
not, give example of two (simple) graphs such that their Orlik—Terao algebras have the
same Tutte polynomial, but different Betti polynomials over Q , and vice versa.

e [t is clear that for any graph T' (or matroid) one has Tutte(T,z,y) = a(T')(z + y) +
(higher degree terms) for some integer a(I') € N. Does the number a(I') have a simple
combinatorial interpretation?
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Proposition 4.19. Let n = (n1,...,n,) be a composition of n € Z>1, then
Lo k| —1
i ©) ab 4\ — _\Inl—k| j ,
Hilb (37O (K, ) t) = > (=) H{k]} H (1+ jt),
k=(k1,....kr) 7j=1 J=1
O<kj<n]-

where we set |k| =k + -+ k.

Remark 4.20. This proposition is a consequence of Conjecture 4.15(1), which has been proved
in [89].

Corollary 4.21. One has

ni Ny
1+t(t—1 Hilb (37 (K R et B
(a’) + ( ) Z 1 ( ( nlw--a”r) ) )n1| nr!
(n1,...,nr ) EZL 4 \O
1—t
r
= |1+t (e —1) ,
j=1
ny ny r
i (0) a\t P _ —;
(b) Z dim (3T (Kny....c,) )m! nel log { 1 T+Ze A
(nl,ng,...,nr)ezzo\(]’" j=1

(¢) Hilb(BTO(K,, )" t) = (~t)" Chrom (Kp, . 5, —t ),
(d) dim (3T(0)(F)ab) s equal to the number of acyclic orientations of T',

where I' stands for a simple graph.

Recall that for any graph I" we denote by Chrom(T',z) the chromatic polynomial of that
graph.
Indeed, one can show>°

Proposition 4.22. Ifr € Z>1, then

Chrom(Kp,, ., t) = Y ﬁ{Zj}(tm

k=(k1,....kr) j=1

m—1
where by definition (t),, :== [[ (t—17), (t)o=1, (t)m =0 if m <O0.
j=1

Finally we describe explicitly the exponential generating function for the Tutte polynomials
of the weighted complete multipartite graphs. We refer the reader to [98] for a definition and
a list of basic properties of the Tutte polynomial of a graph.

36If » = 1, the complete unipartite graph K () consists of n distinct points, and

(]

n—1
Chrom(K (), z) = 2" = {n}(x)k

k=0

Let us stress that to abuse of notation the complete unipartite graph K(,) consists of n disjoint points with the
Tutte polynomial equals to 1 for all n > 1, whereas the complete graph K, is equal to the complete multipartite
graph K(in).
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Definition 4.23. Let r > 2 be a positive integer and {Si,...,5;} be a collection of sets of
cardinalities #[S5;| = nj, j = 1,...,r. Let £ := {{;;}1<i<j<n be a collection of non-negative
integers.

[ARR)

The £-weighted complete multipartite graph K}(f;) n, 18 a graph with the set of vertices equals
T

to the disjoint union [] S; of the sets Si,...,S,, and the set of edges {(c,;), a; € S;, B; €
j=1

Sjti<i<j<r of multiplicity £;; each edge (o, ;).

Theorem 4.24. Let us fix an integer v > 2 and a collection of non-negative integers £ :=

{tij}1<i<j<r. Then

' tnr
1+ S @ ) Turte(K©, . y) Lot
n=(ny,..., nr)ezgo 1- re
n#0 -
(z—1)(y—1)
Z_ e” mqm; tml tmr
= Z y1§z<3§r (y . 1)—\m|17 L
mq! m,! ’

m:(ml,...,mr)EZTZO

where k(€, ) denotes the number of connected components of the graph Kr(f),,m
Comments 4.25.

(a) Clearly the condition £;; = 0 means that there are no edges between vertices from the
sets S; and Sj. Therefore Theorem 4.24 allows to compute the Tutte polynomial of any
(finite) graph. For example,

Tutte(KQ};)m, z,y) = {(0,362,927,911,451, 121,17, 1),,
(362, 2154, 2928, 1584, 374, 32)., (1589, 4731, 3744, 1072, 96),,
(3376, 6096, 2028, 448, 16),,, (4828, 5736, 1764, 152),,
(5404, 4464, 900, 32),, (5140, 3040, 380),,, (4340, 1840, 124),
(3325, 984, 24),, (2331, 448),,, (1492, 168),, (868, 48),, (454, 8),,
210,84, 28,7, 1}y.

(b) One can show that a formula for the chromatic polynomials from Proposition 4.19 cor-
responds to the specialization y = 0 (but not direct substitution!) of the formula for
generating function for the Tutte polynomials stated in Theorem 4.24.

(¢) The Tutte polynomial Tutte (K,(f;)m, x, y) does not symmetric with respect to parameters
{eij}1§i<j§,«. For example, let us write £ = (ﬁlg, lo3, 013,014, log, 634), then

Tutte(Ky 555 ", 1,1) = 2% 3.5 113 - 241 = 1231760640.
On the other hand,

Tutte(Kyy 55 >, 1,1) =22 .3.7. 112 61 = 1269768192.

4.1.3 Universal Tutte polynomials

Let m = (m;j, 1 <i < j < n) be a collection of non-negative integers. Define generalized
Tutte polynomial T,,(m,x,y) as follows

(z — 1) ™IT, (m, 2, y)
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(z—1)(y—1)
> malil;
= Coeffy, ... Z yi<i<i<n J J(y B 1)_(2j eﬂ')tfl s |
PRETR

where as before, k(n, m) denotes the number of connected components of the graph KT(Lm).

Clearly that if I' C K,g )is a subgraph of the weighted complete graph K, (€) def fﬁ), then the

Tutte polynomial of graph I'" multiplied by (z 1)”(F) is equal to the following specialization
mi; =0 if edge (i,5) ¢ T, mi; = {;; if edge (i,5) €T

of the generalized Tutte polynomial

(x — 1)”(F)Tutte(1“, x,y) = Tn(m,aj,y) mig=0 it ()T

myj=L;; if (i,j)€T
For example,

(a) Take n =6 and I' = Kg\{15, 16, 24,25,34,36}, then

Tutte(T, z,y) = {(0,4,9,8,4,1),, (4,13,9)s, (8,7)2, 5, 1},.

(b) Take n =6 and I' = K¢\ {15, 26,34}, then

Tutte(T, z,y) = {(0,11,25,20,7,1),, (11,46, 39, 8), (32, 52, 12),,
(40,24),, (29,6),15,5,1},.

(c) Take n = 6 and I' = K\ {12.34.56} = K322. As a result one obtains an expression for
the Tutte polynomial of the graph Kj 5 o displayed in Example 4.16(4).

Now set us set

ymi —1
G == Ty

Lemma 4.26. The generalized Tutte polynomial Tvn(m,x,y) is a polynomial in the variables
{gij}1<icj<n, © and y.

Definition 4.27. The universal Tutte polynomial 7},({g;; }, z,y) is defined to be the polynomial
in the variables {g;;}, , and y defined in Lemma 4.26.

Explicitly,
(z = DT ({4}, 7, y)

(z=1)(y—1)
= Coeff[tl...tn] ( Z H sz — 1 + 1) ( 1)7(2:] ej)t{l v tf;n)

,,,,, Lo 1<i<j<n
£; 6{0 1},Vi

Corollary 4.28. Let {mij}1§i<j§n be a collection of positive integers. Then the specialization
y™i =1
ﬁ

of the universal Tutte polynomial T,,({qij}, x,y) is equal to the Tutte polynomial of the complete
graph K, with each edge (i,j) of the multiplicity m;;.

Gij — [mijly ==
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Further specialization ¢;; — 0 if edge (i, j) ¢ I" allows to compute the Tutte polynomial for
any graph

Tuttes({q12, q13, q23}, z,y) = (1 — ¢[12])(1 — q[13])(1 — ¢[23]) + yq[12]¢[13]¢[23])
+ 2(q[12] + q[13] + ¢[23] — 2) + 2%

It is not difficult to see that the Tutte, ({¢;;},,y) is a symmetric polynomial with respect
to parameters {g;j }1<i<j<n-

For more compact expression, it is more convenient to rewrite the universal chromatic poly-
nomial in terms of parameters p;; := 1 —¢;;, 1 <i < j < n, and denote it by Ch,({p;;},z). For
example,

Cha({pi;}, ®) = —p12p13p14p2sp24p3s + (2 — P12 — P13 — P14 — P2z — P24 — P3a
+ p12p34 + P14p23 + P13P24 + P12P13P23 + P12P14P24 + P13P14D34
+ p23p24p34) + 2 (3 — D12 — P13 — P14 — P23 — P24 — p34) + 2°.
Note that piopss + p1apes + p13pe4 is a symmetric polynomial of the variables pi2, p34, P13, P24,

P14, p23. It is important to keep in mind that parameters {m;;} and {p;;} are connected by
relations

_ Mg
_y-v- 1<i<j<n.

Dij y—1 < <

Therefore, p;; = 1if (4, ) ¢ Edge(I"), p;; = 0 if m;; = 1. We emphasize that the latter equalities
are valid for arbitrary y. It is not difficult to see that

Ch,,({gi; =0, V1i,5} = Tutte(K,;z,0), Chy,({gij =1, Vi,j} = (x — 1) 1.

Define universal chromatic polynomial to be Chy,({p;;},z) = Tutte,({pi;},x,0), where we
treat {pi;}1<i<j<n as a collection of a free parameters.

To state our result concerning the universal chromatic polynomial Chy,({p;;},z), first we
introduce a bit of notation. Let m > 2 be an integer, consider a partition B = {Bi =

(bgi), e ’b’(”?)}lgigk of the set [1,n] := [1,2,...,n]. In other words one has that [1,n] = U¥_, B;

and B; N B = @ if i # j. We assume that bgl) < bgz) < < bgk). We define k(B) := k. To
k
a given partition B we associate a monomial pg := [[ pp,, where pg, = 1 if k(B) = 1, and
a=1
PB, = H Pij-
i,JEBq

i<j

For a given partition A = n denote by E&B)({pij}) the sum of all monomials pgB"H)~2 such

that A = A\(B) def (IB1l,...,|Bymyl)*t, where for any composition a = n, a™ denotes a unique

partition obtained from « by the reordering of its parts.
Define S-universal chromatic polynomial to be

b ({pij} ) = B Ly + Y Tutte(Kony-1:2,0)L3,
AFn
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where summation runs over all partitions A of n; we set Ky := @ and Tutte(;x,y) = 0. For
the reader convenience we are reminded that for the complete graph K,, n > 0, one has

n—1 n—1
Tutte(K,,z,0) = H(m +i=1)=) s(kn—1)z"
j=1 k=0

where s(k,n) denotes the Stirling number of the first kind3.

Theorem 4.29 (formula for universal chromatic polynomials).

Chy ({pi},x) = ChP="V ({p;;}, ).

For a given partition A - n denote by L£)({pi;}) the sum of all monomials pg such that

A = A(B) o (IB1l,...,|Byml)*, where for any composition a = n, a® denotes a unique

partition obtained from « by the reordering of its parts.

It is clear that for a graph I' C K,, and partition B the value of monomial pg under the
specialization p;; = 0 if (ij) € Edge(I') and p;; = 1 if (ij) ¢ Edge(I"), is equal to 1 iff the
complementary graph K, \I' contains a subgraph which is isomorphic to the disjoint union of

k
complete graphs K () := [] K),, where (A1,...,A\x) = A(B). Therefore the specialization
=1

)

L

p;;=0, (ij)€r,
pij=1, (ij)¢r

is equal to the number of non isomorphic subgraphs of the complementary graph K,,\I' which
are isomorphic to the graph K ().

Example 4.30. Take n = 6, then
Chy? = 871 Lig) + a(x + 1)(z + 2)(2 + 3)(z + 4)L 10y
+x(x+1)(z+2)(x+ 3)E(2714)ﬁ3 +x(x+1)(z+2) (£(22712) + [,(3,13)),32
+x(z+1)(Lesy + L) + Laa2) B+ L2y + Loy + L -

Since p;; is equal to either 1 or 0, one can see that L,) = 0 unless graph I is a collection of n
distinct points and therefore £ = 1.

The chromatic polynomial of any graph is a Z-linear combination of the chromatic polyno-
mials corresponding to a set of complete graphs.

Corollary 4.31 (formula for universal S-Tutte polynomials®®).

(1 —y)"*Tuttel? ({pi; }; 2, y)
= H pij + Z Tutte(Kyn)—1; 7 +y + By, 0)£§5)({pzj})-

1<i<j<n Arn

The polynomial (1 — y)V®I=1Tutte(T; z,7) is a Z[y]-linear combination of the chromatic
polynomials Tutte(K,,; x +y — zy,0) corresponding to a family of complete graphs { K, }.

Here V(I') denotes the set of vertices of graph I'.

37See, e.g., [131, A008275] or https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind.
381t should be remembered that Tutte(K1;xz,y) = 1 and Tutte(Ko;x,y) = 0, since the graph K; := {pt} and
graph Ko = &.
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Comments 4.32.

(1) Let us write

hnﬁ)({pij}v ) *‘C(n B ! + Za {pm

It follows from Theorem 4.29 that

a® =37 s(en) - 1,k)L5),

AFn

where as before, s(k,n) denote the Stirling numbers of the first kind, see, e.g., footnote 37.
For example,

o(T) = aw({pzj})' ) - WG (D)2

pi;=0, (ij)€L,
pij=1, (ij)¢T

where N, (T") denotes the number non isomorphic subgraphs in the complementary graph
K,\I', which are isomorphic to the graph K, ()).
(74) It is clear that for a general set of parameters {pm} the number of different monomials

which appear in E {pw} where partition A = Z gmj, A n, is equal to
j=1

n!

Jj=1

(7i1) For general set of parameters {pw} one can show that the number of different monomials

which appear in polynomial al} ({pw}) is equal to Bell(n) — 1, where Bell(n) denotes the
n-th Bell number, see, e.g., [131, A000110].

(tv) In the limit y — 1 one has ¢;; = m;; and p;; = 1 — m;;.

(v) Let us introduce a modified universal Tutte polynomial, namely,

Tutte({gi;}; 2, v, 2) == (—1)”_lCoeff[t1...tn}

Yy
Z H (2qijy + 1 (Zj 5]’)75{1 . tﬁ") z_ll '

,,,,, In 1<1<]<n
2 e{o 1}, v

We set deg(gij) = 1,

Proposition 4.33.

(a) Tutte({gi;}; x,v, 2) € N[{qj][z, v, 2].

(b) Degree n—1 monomials of the polynomial Tutte({g;;};0,y, z) are in one-to-one correspon-
dence with the set of spanning trees of the complete graph K,. Moreover, the polynomial
Tutte({g;; =1, Vi,5};2,0,1) is equal to the generating function of forests on n labeled ver-
tices, counting according to the number of connected components, whereas the polynomial
Tutte({g;; =1, Vi,5}: 1,0, 2) is equal to the Hilbert polynomial of the even Orlik-Solomon
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algebra®® OST(T,,) associated to the type A, 1 generic hyperplane arrangement Ty, see
[119, Section 5] or [72], namely,

Tutte({q;; = 1, V4,5};1,0,2) = Hilb(OS*(T' Z 71,

where the sum runs over all forests on the vertices {1,...,n}, and |F| denotes the number

of edges of F.
More generally, denote by F,(x,t) = Zm|]:|tinv(]:) the generating function of statistics

_F
|F| and inv(F) on the set F(n) of forests on n labeled vertices. Recall that the symbol |F|
denotes the number of edges in a forest F € F(n) and that inv(F) its inversion indez™

Lemma 4.34. One can show that

Fo(z,t) = (xt)" ' Tutte(Kp,; 1+ (xt) "1t — 1),
Coeff -1 [Fn(x,1)] = L(2),

where I,(t) := Z;eﬂee(n) tv(F) denotes the tree inversion polynomial, see, e.g., [51, 134].

(d)

(9)

Set
DU, (x) := (zt)"_lHilb(Kn; L+ (2t) L2 — |, , =Fu(-2,-1)
One (A.K.) can show that (n > 2)
DU, (x) € N[z], DU, (1) =UDp41, Coeff n—1[DUy(z)] = UD,—1,

where UD,, denote the Euler or up/down numbers associated with the exponential genera-
ting function sec(x) + tan(z), see'!, e.g., [131, A000111].

One has
(s )Tutte({qzj 1, Vi, jlio,a”" —1,1) = Hilb(A,, z),

where A,, denotes the algebra generated by the curvature of 2-forms of the standard Her-
mitian linear bundles over the flag variety Fl,,, see [72, 118, 129] or Section 4.2.2, Theo-
rem 4.56(B).

Write Tutte({¢;;};0,y,2) = Z an ( y,2), then monomials which appear in polynomial
aglk)(y,z) are in one-to-one correspondence with the set of labeled graphs with n nodes

having exactly k connected components.
One has Tutte(({qgi;}; x,—1,1) = Tutte({g;;}, = + 1,0).

39Known also as Orlik-Terao algebra.

“OFor the readers convenience we recall definitions of statistics inv(F) and the major index maj(F). Given
a forest F on n labeled nodes, one can construct a tree 7 by adding a new vertex (root) connected with the
maximal vertices in the connected components of F.

The inversion index inv(F) is equal to the number of pairs (i, 7) such that 1 <4 < j < n, and the vertex labeled
by j lies on the shortest path in 7 from the vertex labeled by i to the root.

The major index maj(F) is equal to >,  h(x); here for any vertex x € F, h(z) is the size of the subtree

z€Des(F)

rooted at z; the descent set Des(F) of F consists of the vertices z € F which have the labeling strictly greater
than the labeling of its child’s.
“'The fact that I,(—1) = UDn_1 is due to G. Kreweras [82].
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(h) Recurrence relations for polynomials Fy(z,t), cf. [82],

n

Rat) = Bt =L Funle.) =3 (1)@ ROF- (o)

k=0
Example 4.35. Take n = 5, then

Tutte(Ks; z,y) = (0,6,11,6,1) + (6,20, 10)y + 15(1, 1)y* + 5(3, 1)y* + 10y* + 4y° + 3/°,
Fs(—z,—1) = (1,10, 25,20, 5).

Write F,(z,t) = Fn(u,t)‘u:m, then

Fy(u,t) = 1+ 10u 4 v (35 + 10t) 4 u(50, 40, 15, 5); + u*(24, 36, 30, 20, 10, 4, 1);,
n—1

Fo(u,0) = [J(1+7 w),

j=1
Hilb(As,t) = (1,4,10,20, 35, 51, 64,60, 35,10, 1),
Hilb(OS™(T'5),t) = (1,10,45,110, 125);.

Exercises 4.36.

(1) Assume that ¢;; = ¢ for all 1 <1i < j < r. Based on the above formula for the exponential
generating function for the Tutte polynomials of the complete multipartite graphs K, .. ».,
deduce the following well-known formula

T
Tutte(KY _, ,1,1) = (NIN"2 H(N gy,
j=1

where N :=nj + -+ 4+ n,. It is well-known that the number Tutte(T", 1,1) is equal to the
number of spanning trees of a connected graph I

(2) Take r = 3 and let ny, ng, n3 and f19, {13, {23 be positive integers. Set N := (121301 +
l19023n9 + £13023n3. Show that

Tutte(Kle’ZQ’é3 1, 1) = N(flgng—f— flgng)m_l(glznl-l- flgng)nz_l(flgnl—l- Eggng)ng’_l.

ni,n2,n3’

5.

(3) Let r > 2, consider weighted complete multipartite graph Kf,(f ) .., n» Where £ = ({;;) such
—_———
that 1, =/, j=1,...,7and {;; =k, 2 <7 < j <r. Show that

Tutte(Kyy. . 5o 1,1) = K"(r — )" ((r — D)0+ k) 2((r — 2)¢ + k)T~ Dpnr=L,
N——

r

Let T',,(%) be a spanning star subgraph of the complete graph K,. For example, one can
take for a graph I'j,(x) the subgraph K ,_; with the set of vertices V := {1,2,...,n} and
that of edges E := {(i,n),i = 1,...,n — 1}. The algebra 3T,(10)(K17n_1) can be treated as
a “noncommutative analog” of the projective space P*~1. We have 0 = w12 + w13 + - - - + Uin.
It is not difficult to see that Hilb(3T,§0)(K17n_1)“b,t) = (1+t)"1, and 07 = 0. Let us observe
that Chrom(Ty,(%),t) = t(t — 1)~ 1.

Problem 4.37. Compute the Hilbert series of the algebra 37\ (Kni,my)-
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The first non-trivial case is that of projective space, i.e., the case r =2, ny =1, ny = 5.

On the other hand, if I, = {(1,2) — (2,3) — -+ — (n — 1,n)} is the Dynkin graph of
type A,_1, then the algebra 3T,§0)(Fn) is isomorphic to the nil-Coxeter algebra of type A,_1,
and if T = {(1,2) = (2,3) » --- = (n—1,n) - —(1,n)} is the Dynkin graph of type Afl)l,

i.e., a cycle, then the algebra 3T,(10) (I‘%aff)) is isomorphic to a certain quotient of the affine

nil-Coxeter algebra of type Afllzl by the two-sided ideal which can be described explicitly [72].
Moreover [72],

Hilb (379 (1) H n—j)]

see Theorem 4.3. Therefore, the dimension dim (37 (I'*)) is equal to n!(n — 1)! and is equal
also, as it was pointed out in Section 4.1.1, to the number of (directed) Hamiltonian cycles in
the complete bipartite graph Ky ,, see [131, A010790].

It is not difficult to see that

Hilb(370(1,) ™, ) = (¢t +1)"Y,  Hilb(3TO (T2 ¢) = ¢ ((t + 1)" —t — 1),
whereas
Chrom(T,,t) = ¢(t —1)""',  Chrom(I'3",¢) = (t — 1) + (—1)"(t — 1).
Exercise 4.38. Let K,,, . . be complete multipartite graph, N :=nq + - -- 4+ n,. Show that*?
rong—
IT 11 (1 —at)

Hilb(3Tn (Kny,...n, )5 t) = J:;H:
H (1 —jt)

4.1.4 Quasi-classical and associative classical Yang—Baxter algebras of type B,,
In this section we introduce an analogue of the algebra 3T,,(/3) for the classical root systems.

Definition 4.39.

(A) The quasi-classical Yang—Baxter algebra AC?BTBTL) of type B, is an associative algebra
with the set of generators {z;j, yij, zi, 1 < i@ # j < n} subject to the set of defining
relations

(1)

(2) ZZ'Zj = ZjZZ',

(3) TijTr = ThTij, TijYrl = YriTij, Yij¥u = YuYij if 4, j, k, | are distinct,

(4) zizp = Trizi, 2iYl = Yz if 0 F k1

(5) three term relations:
TijTjk = TikTij + TjkTik — BTk, TijYjk = YikTij + YikYik — BYik,
TikYik = YjkYij + YiiTik + BYij, YikTjk = TjkYij + YijYik + BYij

fl1<i<j<k<n,

421t should be remembered that to abuse of notation, the complete graph K, , by definition, is equal to the
complete multipartite graph K((1,...,1)), whereas the graph K, is a collection of n distinct points.
——
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(6) four term relations:
Tij2j = %iTij + Yijzi + 25 — Bz
ifi < j.
(B) The associative classical/Ya\nngaxter algebra ACYB(B,,) of type By, is the special case
B = 0 of the algebra ACYB(B,,).
Comments 4.40.
e In the case § = 0 the algebra ACYB(B,,) has a rational representation

zi; — (v —25) 7 yij — (2 + ;)7 zi — x;

e In the case § =1 the algebra ACYB( ) has a “trigonometric” representation
a1 a1 . -1
zij — (1—¢" )", yi; — (L —¢"t%) ", zi— (1+¢")(1—¢") .
Definition 4.41. The bracket algebra E(B,,) of type B, is an associative algebra with the set
of generators {x;j, yij, zi, 1 < i # j < n} subject to the set of relations (1)-(6) listed in
Definition 4.39, and the additional relations
(ba)  xjpTij = TijTik + TipTik — BTk, YikTij = TijYik + YikYik — BYik,
YikTik = YijYik + TikYij + BYij, TikYik = YijTik + YikYi; + BYij
ifl1<i<j<k<n,
(6a) Zj%ij = Tij2; + 2iYij + Yij25 — Bz;
if 7 < j.
Definition 4.42. The quasi-classical Yang—Baxter algebra ACYB( n) of type D,,, as well as the

algebras ACYB(D,,) and £(D,,) are defined by putting z; = 0,7 = 1,...,n, in the corresponding
B,,-versions of algebras in question.

Conjecture 4.43. The both algebras E(By,) and E(D,,) are Koszul, and

-1

Hilb(E(By),t) = ﬁ (25 —=1t) | ;

ifn>4
n—1 -1
Hilb(£(Dy), ) = | [](1 - 24t)
j=1

Example 4.44.

1—4t+22) 7",

1— 9t + 166> — 46%) 1,

1 — 16t + 64t — 60¢> + 9¢4) ",
1— 12t + 1862 — 4¢%) 7

(
(
(
(

However,

Hilb(ACYB(Bs), t) = (1 — 25¢ + 180¢% — 400¢> + 221t — 31¢%)
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Let us introduce the following Coxeter type elements

n—1 n—1
hp, = H Zaa+12n € E(By) and hp, = H Za,a+1Yn—1,n € E(Dp). (4.2)

a=1 a=1

Let us bring the element hp, (resp. hp,) to the reduced form in the algebra £(B,) that is, let
us consecutively apply the defining relations (1)—(6), (5a), (6a) to the element hp, (resp. apply
to hp, the defining relations for algebra £(D,,)) in any order until unable to do so. Denote the
resulting (noncommutative) polynomial by Pp, (2ij, yij, 2) (resp. Pp, (zij,yij)). In principal, this
polynomial itself can depend on the order in which the relations (1)—(6), (5a), (6a) are applied.

Conjecture 4.45 (cf. [133, Exercise 8.C5(c)]).

(1) Apart from applying the commutativity relations (1)—(4), the polynomial Pg,(z:j,Yij, 2)
(resp. Pp, (xij,vij)) does not depend on the order in which the defining relations have been
applied.

(2) Define polynomial Pp,(s,r,t) (resp. Pp,(s,r)) to be the the image of that Pp, (s}, Yij, 2)
(resp. Pp, (zi;,yi;)) under the specialization

Tij — S, Yij — T, zi —> T.
Then Pg,(1,1,1) = £(*") = LCatp,.
Note that Pp,(1,0,1) = Catg4, _,.

Problem 4.46. Investigate the B,, and D,, types reduced polynomials corresponding to the Co-
zeter elements (4.2), and the reduced polynomials corresponding to the longest elements

n
wg, = H Zj H LijYij | » wp,, = H LijYij-
J=1 1<i<j<n 1<i<j<n
4.2 Super analogue of 6-term relations and classical Yang—Baxter algebras

4.2.1 Six term relations algebra 6T, its quadratic dual (6T},)', and algebra 6 HT;,

Definition 4.47. The 6 term relations algebra 671, is an associative algebra (say over Q) with
the set of generators {r; ;,1 < i # j < n}, subject to the following relations:

1) 7; and r; commute if {z,5} N {k,l} = @,
2) unitarity condition: 1;; + 15 = 0,
3) classical Yang-Baxter relations: [ry, i + rjx] + [rak, rju] = 0 if 4, j, k are distinct.

We denote by CYB,,, named by classical Yang—Bazter algebra, an associative algebra over Q
generated by elements {r;;, 1 <i# j < n} subject to relations 1) and 3).
Note that the algebra 675, is given by () generators and (3) + 3(’}) quadratic relations.

Definition 4.48. Define Dunkl elements in the algebra 67}, to be
Qi:Zrij, Z':l,...,n.
J#

It easy to see that the Dunkl elements {6;}1<i<, generate a commutative subalgebra in the
algebra 67),.
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Example 4.49 (some “rational and trigonometric” representations of the algebra 67),). Let

A = U(sl(2)) be the universal enveloping algebra of the Lie algebra sl(2). Recall that the

algebra s[(2) is spanned by the elements e, f, h, such that [h,e] = 2e, [h, f] = —=2f, [e, f] = h.
Let’s search for solutions to the CYBE in the form

i = a(ug, uj)h @ b+ b(u;, uj)e @ f + c(ug, uj) f @ e,

where a(u,v),b(u,v) # 0,c(u,v) # 0 are meromorphic functions of the variables (u,v) € C?,
defined in a neighborhood of (0,0), taking values in A ® A. Let a;; := a(u;, u;) (resp. b;; :=
b(ui, ug), cij = c(ui, ug))-

Lemma 4.50. The elements 1;; := a;jh @ h + bjje @ f + ¢;j f ® e satisfy CYBE iff
bijbjkcik = cijcjrbik and  4air = bijbjk/bit, — bikcjr/bij — bikcij/bjk
for1<i<j<k<n.
It is not hard to see that

e there are three rational solutions:

_12h@h+e@ f+ f®e

T‘l(U,U) v —v )
u—+v U v
ra(u,v) = ——=h®@h+ e®f+—Ff®e,
4(u —v) u—v u—v
and r3(u,v) := —ro(v, u),

e there is a trigonometric solution

unrv

1 2u_|_ 2v
*q a h®h+m(€®f‘|‘f®€)

Ttrig(ua U) = 4 un — q2v

Notice that the Dunkl element 0 := 3 riig(ta, uj) corresponds to the truncated (or level 0)
a7
trigonometric Knizhnik—Zamolodchikov operator.

In fact, the “sl,-Casimir element”
AL
Q= 3 (; E; ® Ezz) + 1§Z;§n E;; ® Ej;
satisfies the 4-term relations

[Q12, Q13 + Q23] = 0 = [Q12 + N3, Qa3
and the elements 7;; := uZQ_”u = 1 <i < j < n, satisfy the classical Yang—Baxter relations.

Recall that the set {Ej; := (0ix0j1)1<k,i<n, 1 < 4,7 < n}, stands for the standard basis of the
algebra Mat(n, R).

Definition 4.51. Denote by 6TT(LO) the quotient of the algebra 67,, by the (two-sided) ideal
generated by the set of elements {7‘2-2’]-, 1<i<j<n}
More generally, let {3, ¢;j, 1 <i < j <n} be a set of parameters. Let R := Q[f] [qu]ﬂ]

Definition 4.52. Denote by 6 HT,, the quotient of the algebra 67}, ® R by the (two-sided) ideal
generated by the set of elements {Tz?,j —Brij —aqij, 1 <i<j<n}.
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All these algebras are naturally graded, with deg(r; ;) = 1, deg(8) = 1, deg(g;;) = 2. It is

clear that the algebra 6T,(LO) can be considered as the infinitesimal deformation R; ; := 1+ er; j,
e — 0, of the Yang—Baxter group YB,,.
For the reader convenience we recall the definition of the Yang—Baxter group.

Definition 4.53. The Yang-Baxter group YB,, is a group generated by elements {Riijl, 1<
i < j <n}, subject to the set of defining relations
o R;jRy = Ry R;j; if ¢, j, k, | are distinct,

o quantum Yang—Baxter relations:
Rz’jRikRjk = RijikRij if 1< <g< k <n.

Corollary 4.54. Define h;j = 1+4r;; € 6HT,. Then the following relations in the algebra 6 HT,
are satisfied:

(1) ryjrigrje = rjprari for all pairwise distinct i, j and k;
(2) Yang-Baxter relations: hijhiphjr = hjghighi if 1 <i<j <k <n.
Note, the item (1) includes three relations in fact.

Proposition 4.55.

(1) The quadratic dual (6Tn)! of the algebra 6T, is a quadratic algebra generated by the elements
{tij, 1 <i < j<n} subject to the set of relations

(i) t7; =0 for all i # j;
1) anticommutativity: tiitg; + tet; s =0 for alli # j and k # 1;
JUk, Al
(lZZ) ti,jti,k = ti,ktj,k = t@jtj,k ifi, j, k are distinct.

(2) The quadratic dual (GTTQO))! of the algebra 6TT(LO) is a quadratic algebra with generators
{tij, 1 <1< j < n} subject to the relations (ii)—(iii) above only.

4.2.2 Algebras 6T720) and GTJ

We are reminded that the algebra 6T,g0) is the quotient of the six term relation algebra 67,
by the two-sided ideal generated by the elements {r;;}i<i<j<n. Important consequence of the
classical Yang-Baxter relations and relations r?j =0, Vi # j, is that the both additive Dunkl
elements {6; }1<i<, and multiplicative ones

1 n
©ir= II ra' 1] hia
a=i—1

a=1i+1 1§i§n

generate commutative subalgebras in the algebra 67, T(LO) (and in the algebra 67, as well), see
Corollary 4.54. The problem we are interested in, is to describe commutative subalgebras gen-
erated by additive (resp. multiplicative) Dunkl elements in the algebra 67, ,(10) . Notice that the
subalgebra generated by additive Dunkl elements in the abelianization*® of the algebra 67},(0)
has been studied in [118, 129]. In order to state the result from [118] we need, let us introduce
a bit of notation. As before, let Fl, denotes the complete flag variety, and denote by A,, the
algebra generated by the curvature of 2-forms of the standard Hermitian linear bundles over

43Gee, e.g., http://mathworld.wolfram.com/Abelianization.html.
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the flag variety Fl,, see, e.g., [118]. Finally, denote by I, the ideal in the ring of polynomials
Z[t1,...,t,] generated by the set of elements

(ti1 4t tik)k(nfk)Jrl
for all sequences of indices 1 < i1 <ig <---<ipz <n, k=1,....n
Theorem 4.56 ([118, 129]).

(A) There ezists a natural isomorphism

Ap — Zlty, ..., tn]/In,
(B)
Hilb(Ay, t) = t() Tutte(K,, 1 +t,t7).

Therefore the dimension of A, (as a Z-vector space) is equal to the number F(n) of forests
on n labeled vertices. It is well-known that

> Fn 2~ (a1 | -
n>1 n>1
For example,
Hilb(As,t) = (1,2,3,1), Hilb(A4,t) = (1,3,6,10,11,6, 1),

Hilb(As, t) = (1,4,10,20,35,51, 64, 60, 35, 10, 1),
Hilb(As, t) = (1,5, 15,35, 70,126, 204, 300, 405,490, 511,424, 245, 85,15, 1).

Problem 4.57. Describe subalgebra in (6T,§0))“b generated by the multiplicative Dunkl elements
{©ihi<i<n.

On the other hand, the commutative subalgebra B,, generated by the additive Dunkl elements
in the algebra 67, ,(LO), n > 3, has infinite dimension. For example,

and the Dunkl elements 93(.3), j =1,2,3, have infinite order.

Definition 4.58. Define algebra 67, n* to be the quotient of that 6T7§0) by the two-sided ideal
generated by the set of “cyclic relations”

E H rllﬂa H Tllula -

Jj=2a=j
for all sequences {1 < iy,19,...,4, < n} of pairwise distinct integers, and all integers 2 < m < n.
For example,
o Hilb(6TF,t) = (1,3,5,4,1) = (1 +1)(1,2,3,1),

e subalgebra (over Z) in the algebra GT; generated by Dunkl elements #; and 6y has the
Hilbert polynomial equal to (1,2,3,1), and the following presentation: Z[z,y|/I3, where
I3 denotes the ideal in Z[z, y] generated by 3, y3, and (z + )3,
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o Hilb(6TX,t) = (1,6,23,65,134,164,111,43,11,1),.

As a consequence of the cyclic relations, one can check that for any integer n > 2 the n-th
power of the additive Dunkl element 6; is equal to zero in the algebra 67X for all i = 1,...,n.
Therefore, the Dunkl elements generate a finite-dimensional commutative subalgebra in the
algebra 6T.X. There exist natural homomorphisms

6Tx — 3T, B, —"y A, — H*(Fl,,Z) (4.3)

The first and third arrows in (4.3) are epimorphism. We expect that the map 7 is also epimor-
phism**, and looking for a description of the kernel ker (7).

Comments 4.59.

e Let us denote by B™!* and A™!* the subalgebras generated by multiplicative Dunkl ele-

ments in the algebras 67, T(LO) and (6T7g0))ab correspondingly. One can define a sequence of
maps

BTanult SN Agﬂﬂt i> K*(Jrln), (44)

which is a K-theoretic analog of that (4.3). It is an interesting problem to find a geometric
interpretation of the algebra A™!* and the map ¢.

e “Quantization”. Let § and {g;; = ¢;i, 1 <i,j < n} be parameters.

Definition 4.60. Define algebra 6 HT}, to be the quotient of the algebra 67;, by the two sided
ideal generated by the elements {rizj — Brij — qij hi<ij<n-

Lemma 4.61. The both additive {6;}1<i<n and multiplicative {O;}1<i<,, Dunkl elements gen-
erate commutative subalgebras in the algebra 6HT, .

Therefore one can define algebras 6HB,, and 6H.A,, which are a “quantum deformation” of
algebras B, and A, respectively. We expect that in the case 8 = 0 and a special choice of
“arithmetic parameters” {g;;}, the algebra H.A,, is connected with the arithmetic Schubert and
Grothendieck calculi, cf. [129, 137]. Moreover, for a “general” set of parameters {¢;; }1<; j<n and
8 =0, we expect an existence of a natural homomorphism

HAT — QK" (Fln),

where QK*(Fl,,) denotes a multiparameter quantum deformation of the K-theory ring K*(Fl,)
[72, 76]; see also Section 3.1. Thus, we treat the algebra HA™! as the K-theory version of
a multiparameter quantum deformation of the algebra A™!* which is generated by the curvature
of 2-forms of the Hermitian linear bundles over the flag variety Fl,.

e One can define an analogue of the algebras 6T,§0), 6HT,, etc., denoted by 67'(T") etc., for
any subgraph I' C K, of the complete graph K,,, and in fact for any oriented matroid. It
is known that Hilb((6T},(I')%,t) = t*W Tutte(T, 14, 1), see, e.g., [11] and the literature
quoted therein.

“Contrary to the case of the map pr,, : Z[01,...,0,] — (37,(0))*®, where the image Im(pr, ) has dimension
equals to the number of permutations in S, with (n — 1) inversions see [131, A001892].
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4.2.3 Hilbert series of algebras CYB,, and 6T,,*°

Examples 4.62.

(1=3t+¢2)"",  Hilb(6Ty,t) = (1 —6t+ 762 —3) ",

(6T3,1)
Hilb(6T5, ¢) = (1 — 10t 4 25¢2 — 153 + ¢4) 7,
Hilb (675, ) = (1 — 15¢ + 65¢% — 90¢> + 31¢* — ¢5) ",
Hilb (67", ¢) = [2][3](1 — )=,  Hilb(6T.”,¢) = [4)(1 — ) "2(1 = 3t +12) "

Hilb(6T5, ¢

In fact, the following statements are true.
Proposition 4.63 (cf. [7]). Let n > 2, then

o The algebras 61, and CYB,, are Koszul.
e We have

n—1 -1
; _ k) k
Hilb(67),,t) (kzo( 1) {n_k}t ) ,

where {2} stands for the Stirling numbers of the second kind, i.e., the number of ways to
partition a set of n things into k nonempty subsets.

n—1

-1
Hilb(CYB,,, t) = (Z(-N(H 1)!N(k,n)tk> ,

k=0

where N (k,n) = %(2) (kil) denotes the Narayana number, i.e., the number of Dyck n-paths

with exactly k peaks.
Corollary 4.64.
(A) The Hilbert polynomial of the quadratic dual of the algebra 6T, is equal to

n—1
. ! _ n Kk
Hilb(67,,,t) = ;_0 {n B k}t )

It is well-known that
n—1
n -1
S5
70 \k=0 "' T v
Therefore,
dim(67;,)" = Bell,,

where Bell,, denotes the n-th Bell number, i.e., the number of ways to partition n things
into subsets, see [131]. Recall, that

Zn
ZBelln—' = exp(exp(z) — 1)).
= n!

4>Results of this subsection have been obtained independently in [7]. This paper contains, among other things,
a description of a basis in the algebra 67, and much more.
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(B) The Hilbert polynomial of the quadratic dual of the algebra CYB,, is equal to

n—1
Hilb((CYB,)',t) = Y (k + D)IN(k,n)t* = (n — DILTY (471,
k=0
where
(@ 2% d" i nta
Ly (@) = —— o (e7"a™™)

denotes the generalized Laguerre polynomial. The numbers (k + 1)!N(n,k) := L(n,n — k)
are known as Lah numbers, see, e.g., [131, A008297], moreover [131],

dim(CYB,)' = 4000262.

It is well-known that

n—1 n

STk + 1IN (R, n)tt % = exp (2(1 — 2t) 7).

n>0 \ k>0

Comments 4.65. Let &,(u), u # 0,1, be the Yokonuma—Hecke algebra, see, e.g., [124] and the
literature quoted therein. It is known that the dimension of the Yokonuma-Hecke algebra &, (u)
is equal to n!B,,, where B,, denotes as before the n-th Bell number. Therefore, dim(&,(u)) =
dim((6T},)' % S,), where (6T},)' % S,, denotes the semi-direct product of the algebra (67},)" and
the symmetric group S,. It seems an interesting task to check whether or not the algebras
(6T,)" xS, and &,(u) are isomorphic.

Remark 4.66. Denote by MYB,, the group algebra over Q of the monoid corresponding to
the Yang—Baxter group YB,,, see, e.g., Definition 4.48. Let P(MYB,,, s,t) denotes the Poincaré
polynomial of the algebra MYB,,. One can show that

Hilb(6T},, s) = P(MYB,,, —s,1)" .
For example,

P(MYBs,s,t) = 1+ 3st + s%t3,
P(MYBy,s,t) =1+ 6st + 52 (3t + 4t%) + 535,
P(MYBs, s,t) = 1+ 10st + s> (15> + 10t%) + s (10t + 5t°) + s*¢10.

Note that Hilb(MYB,,t) = P(MYB,,—1,t)~! and P(MYB,,1,1) = Bell,,, the n-th Bell

number.

Conjecture 4.67.

P(MYB,, s,t) = Z S#(w)tn(w)’

s

where the sum runs over all partitions m = (I1,...,Ix) of the set [n] :=[1,...,n] into nonempty
k

I,
> (%),

a=1

subsets Iy, ..., I, and we set by definition, #(7) :==n — k, n(n)

Remark 4.68. For any finite Coxeter group (W, S) one can define the algebra CYB(W) :=
CYB(W, S) which is an analog of the algebra CYB,, = CYB(A,,_1) for other root systems.
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Conjecture 4.69 (A.N. Kirillov, Yu. Bazlov). Let (W,S) be a finite Coxeter group with the
root system ®. Then

e the algebra CYB(W) is Koszul;
S|

2. 7"k(fb)(—lﬁ)’“} ,

o Hilb(CYB(W),t) = {
k=0

where 11, (®) is equal to the number of subsets in ® which constitute the positive part of a root
subsystem of rank k. For example, 1 (®) = ||, and r2(®) is equal to the number of defining
relations in a representation of the algebra CYB(W).

Example 4.70.
Hilb(CYB(B)',t) = (1,4,3), Hilb(CYB(Bs)',t) = (1,9,13,2),
Hilb(CYB(By)',t) = (1,16,46,28,5),  Hilb(CYB(Bs)',t) = (1,25,130, 200,101, 12),
Hilb(CYB(D4)',t) = (1,12, 34,24,4), Hilb(CYB(D;5)', ) = (1,20, 110,190,96, 11).
Definition 4.71. The even generic Orlik—Solomon algebra OS™(T,,) is defined to be an associa-

tive algebra (say over Z) generated by the set of mutually commuting elements y; j, 1 <i # j < n,
subject to the set of cyclic relations

Yij = Yjis YiryisYissis " Yig_r,inYiriy =0 for k=2,....n,
and all sequences of pairwise distinct integers 1 < iq,...,1 < n.
Exercises 4.72.
(1) Show that

n

n—1 n—1 k—1 .
ovtit = 5 (105 () o) 5
k=1

n>1 a=0

(2) The even generic Orlik—Solomon algebra. Show that the number of degree k, k > 3,
relations in the definition of the Orlik-Solomon algebra OS™(I',) is equal to & (k — 1)!(})
and also is equal to the maximal number of k-cycles in the complete graph K.

Note that if one replaces the commutativity condition in the above definition on the condi-
tion that y; ;s pairwise anticommute, then the resulting algebra appears to be isomorphic to
the Orlik—Solomon algebra OS(T'),) corresponding to the generic hyperplane arrangement I,
see [119]. It is known [119, Corollary 5.3], that

Hilb(0S(T'y), ) = > _#*1,
F
where the sum runs over all forests F' on the vertices 1,...,n, and |F| denotes the number of
edges in a forest F.
It follows from Corollary 4.64, that

n

3 Hilb(0S(T), t)% =exp | Y a2
n>1 n>1
It is not difficult to see that Hilb(OS™(T',,),t) = Hilb(OS(T},),t). In particular, dim OS™(T,,) =
F(n). Note also that a sequence {Hilb(OS(I'y), —1)},>2 appears in [131, A057817]. The poly-
nomials Hilb(A,,t), F,(x,t) and Hilb(OS*(T,),t) can be expressed, see, e.g., [118], as certain
specializations of the Tutte polynomial T'(G; x,y) corresponding to the complete graph G := K.
Namely,

Hilb(A,, ¢) = tG)T(Ku;1+4,¢671),  Hilb(OS™(T,),t) = " T (Kp; 1+ ¢71,1).

zTL

n!
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4.2.4 Super analogue of 6-term relations algebra
Let n, m be non-negative integers.

Definition 4.73. The super 6-term relations algebra 67}, ,, is an associative algebra over Q
generated by the elements {x;;, 1 <1i# j < n} and {yap, 1 < o # B < m} subject to the set
of relations

(0) ij+25i =0, Yo,s = Yp,a;

(1) ZijTri = Thi%ijs TijYo,8 = Yo, 505, Yo, 8Y7,6 T Yvy.s¥a,8 = 0, if tuples (4,4, k,1), (i, 4, «, B),
as well as (a, 3,7, d) consist of pair-wise distinct integers;

(2) classical Yang-Baxter relations and theirs super analogue: [z, %j; + % k| + [©ij, k] =0
if 1 <4, 4,k < n are distinct, [z %, Y5 + Yk + [T, yj%] = 0if 1 < 4,7,k < min(n, m) are
distinct, (Yo, Y80 + Ysyl+ + Va8, Usyl+ = 0if 1 < o, 5,7 < m are distinct.

Recall that [a,b]+ := ab + ba denotes the anticommutator of elements a and b.
Conjecture 4.74. The algebra 67, ,, s Koszul.
Theorem 4.75. Let n,m € Z>1, one has

min(n,m)—1

Hilb((67;,)",t)Hilb((6T3n)',t) = Y { min(n, m) }Hﬂb((ﬁTnk,mk)’,t)t%,

— min(n,m) — k

where as before {nik} denotes the Stirling numbers of the second kind, see, e.g., [131, A008278].
Corollary 4.76. Let n,m € Z>1. One has

(a) Symmetry: Hilb(6T), 1, t) = Hilb(61, p, ).

(b) Letn < m, then

n—1
Hilb ((6Tpm)' ) = > _ s(n — 1,n — k)Hilb((6T,—¢)", ) Hilb ((6Tr—s)', t)£*",
k=0

where s(n — 1,n — k) denotes the Stirling numbers of the first kind, i.e.,

n—1 n—1
an—ln— )tk:H(l—jt).
k=0 j=1

(¢) dim(6T},,,)" is equal to the number of pairs of partitions of the set {1,2,...,n} whose meet
is the partition {{1},{2},...,{n}}, see, e.g., [131, A059849].

Example 4.77.

Hilb((6T3,2)",t) = Hilb((6T33)",t) = (1,4,3),

Hilb((6T2,4)",t) = Hilb((6T42)",t) = (1,7,12,5),  Hilb((6T33)",t) = (1,6,8),
Hilb((6T»5)",t) = Hilb((6T52)",t) = (1,11,34,34,9),

Hilb((675,4)",t) = Hilb((6T3)",t) = (1,9,23,16),

Hilb((6T4.4)",t) = (1,12,44,50,6),

Hilb((6T35)",t) = Hilb((6T5,3)",t) = (1,13,53,79, 34),

Hilb((6T45)",t) = Hilb((6T54)",t) = (1, 16, 86, 182,131, 12),

Hilb((6T5,5)!, t) = (1,20, 140, 410, 462, 120).
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Now let us define in the algebra 67}, ,, the Dunkl elements 6; := > z;;, 1 < i < n, and
_ J#i
0o = > Yap, 1 <a<m.
B#a

Lemma 4.78. One has
i [017 0]] = O}
i [eivéa] = [xi,a’yLaL
o« Buls)s =22, ifa £ 5.

Remark 4.79 (“odd” six-term relations algebra). In particular, one can define an “odd” analog

6T7(L_) = 610, of the six term relations algebra 67;,. Namely, the algebra 67; 7(1_) is given by the
set of generators {y;;, 1 <i < j < n}, and that of relations:

1) y;; and yi; anticommute if i, j, k, | are pairwise distinct;

2) Wi Yik + Yjl+ + Wik, yjule =0, if 1 < i <j <k <n, where [z,y]4+ = zy + yz denotes
the anticommutator of x and .

The “odd” three term relations algebra 37 can be obtained as the quotient of the alge-
bra 67, by the two-sided ideal generated by the three term relations v;;y;x + Yjryki + Yri¥i; = 0
if 4, j, k are pairwise distinct.

One can show that the Dunkl elements ¢; and 6, i # j, given by formula

Hi:Zyij, izl,...,n,
J#i
form an anticommutative family of elements in the algebra 67, 7(1_).

In a similar fashion one can define an “odd” analogue of the dynamical six term relations
algebra 6 DT, see Definition 2.3 and Section 2.1.1, as well as define an “odd’ analogues of the
algebra 3MT, (5, 0), see Definition 3.7, the Kohno—Drinfeld algebra, the Hecke algebra and few
others considered in the present paper. Details are omitted in the present paper.

More generally, one can ask what are natural g-analogues of the six term and three term
relations algebras? In other words to describe relations which ensure the g-commutativity of
Dunkl elements defined above. First of all it would appear natural that the “g-locality and g¢-
symmetry conditions” hold among the set of generators {y;;, 1 <@ # j < n}, that is y;; + qy;; =
0, ¥ijyr = quryi; if i < j, k <, and {i,j} n{k,l} = @.

Another natural condition is the fulfillment of g-analogue of the classical Yang-Baxter rela-
tions, namely, [yik, Yjklqg + Wik, Yjilq + [¥ij Ujrlg = 0 if i < j < k, where [z, y], := zy — qyz denotes
the g-commutator. However we are not able to find the g-analogue of the classical Yang-Baxter
relation listed above in the mathematical and physical literature yet. Only cases ¢ = 1 and
q = —1 have been extensively studied.

4.3 Four term relations algebras / Kohno—Drinfeld algebras

4.3.1 Kohno—Drinfeld algebra 47T,, and algebra CYB,,

Definition 4.80. The 4-term relations algebra (or the Kohno—Drinfeld algebra, or infinitesimal
pure braids algebra) 47, is an associative algebra (say over Q) with the set of generators y; ;,
1 <7 < j < n, subject to the following relations

1) y;; and yi,; are commute, if 7, j, k, [ are all distinct;

2) Wij vik +yikl =0, [ij +vik, vy =0if 1 <i<j<k<n.
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Note that the algebra 47T}, is given by (}) generators and 2(%) +3(’}) quadratic relations, and
the element

C = Z yi,j

1<i<j<n
belongs to the center of the Kohno—Drinfeld algebra.

Definition 4.81. Denote by AT the quotient of the algebra 47, by the (two-sided) ideal
generated by by the set of elements {yzj, 1<i<j<n}.

More generally, let 3, {gij, 1 < i < j < n} be the set of parameters, denote by 4HT,, the
quotient of the algebra 47, by the two-sided ideal generated by the set of elements {yfj — Byij —
qij, 1§Z<]§n}

These algebras are naturally graded, with deg(y; ;) = 1, deg(8) = 1, deg(g;j) = 2, as well as
each of that algebras has a natural filtration by setting deg(y; ;) = 1, deg(8) = 0, deg(g;;) =0,
Vi j.

It is clear that the algebra 47,, can be considered as the infinitesimal deformation g;; :=
1+ ey; j, € — 0, of the pure braid group P,.

There is a natural action of the symmetric group S, on the algebra 47T}, (and also on 47T7)
which preserves the grading: it is defined by w - y; ; = Yy (i)w(j) for w € S,,. The semi-direct
product QS,, x 4T}, (and also that QS, x4T?) is a Hopf algebra denoted by B, (respectively Bq(zo)).

Remark 4.82. There exists the natural map
CYB, — 4T, given by y; ;= u;; +uj;.
Indeed, one can easily check that
Wij, Vi + Yjk] = Wijk + Wjik — Wrij — Wy,

see Section 2.3.1, Definition 2.21 for a definition of the classical Yang—Baxter algebra C'Y B,
and Section 2, equation (2.3), for a definition of the element wjy.

Remark 4.83.

e Much as the relations in the algebra 67, are chosen in a way to imply (and “essentially”

equivalent) the pair-wise commutativity of the Dunkl elements {6;}1<i<n, the relations in
the Kohno—Drinfeld algebra imply (and “essentially” equivalent) to pair-wise commutati-

vity of the Jucys-Murphy elements (or, equivalently, dual JM-elements) d; := > ya;,
1<a<y

2<j<n(resp.di= Y. Yn—in—a+1, 1 <i<n-—1).
1<a<i

e It follows from the classical 3-term identity (“Jacobi identity”)
1 1 n 1
@—Ba-0 @-Hb-0 @-ab-0

that if elements {y; ;|1 < i < j < n} satisfy the 4-term algebra relations, see Defini-
tion 4.80, and t1,...,t,, a set of (pair-wise) commuting parameters, then the elements

=0,

yi :j

Tiq =
Tt —t

46Together with locality and factorization conditions a set of defining relations in the algebra 6T, is equivalent
to the commutativity property of Dunkl’s elements.
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satisfy the set of defining relations of the 6-term relations algebra 67,,, see Section 4.2.1,
Definition 4.47. In particular, the Knizhnik—Zamolodchikov elements

L e— yZJ s
i#j J

form a pair-wise commuting family (by definition, we put vy; ; = y;; if i > 7).
Example 4.84.

(1) Yang representation of the 4T,,. Let S, be the symmetric group acting identically on the
set of variables {z1,...,2,}. Clearly that the elements {y;; = sij}i<i<j<n, ¥ij = Yj.i
if 4 > j, satisfy the Kohno—Drinfeld relations listed in Definition 4.80. Therefore the
operators u;; defined by

uij = (zi —a7) " sy

give rise to a representation of the algebra 3T}, on the field of rational functions Q(z1, .. .,
Z). The Dunkl-Gaudin elements

Hi:Zyij, izl,...,n

JJ#
correspond to the truncated Gaudin operators acting in the tensor space (C)®". Cf.
Section 3.3.

(2) Let A = U(sl(2)) be the universal enveloping algebra of the Lie algebra sl(2). Recall
that the algebra s[(2) is spanned by the elements e, f, h, so that [h,e] = 2e, [h, f] = =2,
[e, f] = h. Consider the element Q = %h@h—l—e@f—i—f@e. Then the map y; j; — ;; € A®"
defines a representation of the Kohno-Drinfeld algebra 47}, on that A®™. The element
KZ; defined above, corresponds to the truncated (or at critical level) rational Knizhnik-
Zamolodchikov operator. Cf. Section 4.2.1, Example 4.49.

Proposition 4.85 (T. Kohno, V. Drinfeld).

Hilb(4T,,¢) = [J(1—5t) ' =) T

j=1 k>0

where {Z} stands for the Stirling numbers of the second kind, i.e., the number of ways to partition
a set of n things into k nonempty subsets.

Remark 4.86. It follows from [6] that Hilb(47,,,t) is equal to the generating function

14+ ) i

d>1

for the number fu((i") of Vassiliev invariants of order d for n-strand braids. Therefore, one has the

following equality:

(n) n+d-—1
Ya = n—1 |’

i.e., the number of Vassiliev invariants of order d for m-strand braids is equal to the Stirling

number of the second kind {":ﬁ;l .
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We expect that the generating function

1+ Yo

d>1

for the number 6(5") of Vassiliev invariants of order d for n-strand virtual braids is equal to
the Hilbert series Hilb(4NT,,t) of the nonsymmetric Kohno-Drinfeld algebra 4NT,,, see Sec-

tion 4.3.2.

Proposition 4.87 (cf. [7]). The algebra 4NT,,t) is Koszul, and

n—1 -1
Hilb(4NT,,t) = <Z(k + 1)!N(l<:,n)(—t)k> ,
k=0
Hilb ((4NT)' ¢) = (n — DILSY (=41,

where N(k,n) := %(Z) (kil) denotes the Narayana number, i.e., the number of Dyck n-paths

with exactly k peaks,

z%e® d"
n! dz™

(era)

denotes the generalized Laguerre polynomial.

See also Theorem 4.91 below.

It is well-known that the quadratic dual 47 of the Kohno-Drinfeld algebra 4T}, is isomorphic
to the Orlik-Solomon algebra of type A, _1, as well as the algebra 372", However the algebra
479 is failed to be Koszul.

Examples 4.88.
Hilb(47%,¢) = [2]°[3],  Hilb(47},¢) = (1,6,19,42,70,90,87,57,23,6,1),
Hilb ((479)',£)(1 — ) = (1,2,2,1),  Hilb((4T9)',¢)(1 — £)> = (1,4,6,2, -4, —3),
Hilb ((479)',£) (1 — )% = (1,8, 26,40, 24, -3, —6).

We ezpect that Hilb((477)",t) is a rational function with the only pole at t = 1 of order [n/2],
cf. Examples 4.77.

Remark 4.89. One can show that if n > 4, then Hilb(470,t) < Hilb(3TY,t) contrary to the
statement of Conjecture 9.6 from [67].

4.3.2 Nonsymmetric Kohno—Drinfeld algebra 4NT,,,
and McCool algebras PX,, and ’PEi

Definition 4.90. The nonsymmetric 4-term relations algebra (or the nonsymmetric Kohno—
Drinfeld algebra) 4NT,, is an associative algebra (say over Q) with the set of generators y; ;,
1 <17 # j < n, subject to the following relations

1) y;; and yi,; are commute if 4, j, k, [ are all distinct;

2) Wi, Yik +yikl =0if 4, j, k are all distinct.

We denote by 4NT,F the quotient of the algebra 4NT,, by the two-sided ideal generated by
the elements {y;; + y;i =0, 1 <i# j < n}.
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Theorem 4.91. One has
Hilb(4NT,,t) = Hilb(CYB,, t), Hilb(4NT;f,t) = Hilb(6Ty,, t)
for alln > 2.
We expect that the both algebras 4NT,, and 4NT,/ are Koszul.
Definition 4.92.

(1) Define the McCool algebra P, to be the quotient of the nonsymmetric Kohno—Drinfeld
algebra 4NT,, by the two-sided ideal generated by the elements {viry;r — yjryir} for all
pairwise distinct ¢, j and k.

(2) Define the upper triangular McCool algebra PY} to be the quotient of the McCool algebra
P, by the two-sided ideal generated by the elements {y;; + y;i}, 1 <i# j < n.

Theorem 4.93. The quadratic duals of the algebras PX, and PX} have the following Hilbert
polynomials
n—1
Hilb(PX),,¢) = (L+nt)""',  Hib((PS}), ) = [] (1 + o).
j=1
Proposition 4.94.

(1) The quadratic dual PX., of the algebra PY, admits the following description. It is gene-
rated over Z by the set of pairwise anticommuting elements {y;;, 1 < i # j < n}, subject
to the set of relations

(@) ¥, =0, yijyji =0, 1 <i#j <n,
(b) yiryjx =0 for all distinct i, j, k,
(€) yijyjr + YirYij + yrjyir = 0 for all distinct i, j, k.
(2) The quadratic dual (PX})' of the algebra PX} admits the following description. It is

generated over 7 by the set of pairwise anticommuting elements {z;;, 1 < i < j < n},
subject to the set of relations

(a) z?j =0 for alli < 7,
(b) zijzjk = zijzik for all1 <i < j <k <n.

Comments 4.95 (the McCool groups and algebras). The McCool group P, is, by definition,
the group of pure symmetric automorphisms of the free group F;, consisting of all automorphism
that, for a fixed basis {z1,...,%,}, send each x; to a conjugate of itself. This group is generated
by automorphisms «a;;, 1 <1 # j < n, defined by

-1 .

TjTT k=1

i () = {mk . k # i’
) .

McCool have proved that the relations

[, ag) =1, i, 7, k, | are distinct,

[aijvaji] = 1) 17&]7

[, aipoi] =1, 4, j, k are distinct.
form the set of defining relations for the group PX,, The subgroup of PX,, generated by the «;;
for 1 <i < j < n is denoted by PX; and is called by upper triangular McCool group. It is

easy to see that the McCool algebras PY,, and PX; are the “infinitesimal deformations” of the
McCool groups PY,, and PY respectively.
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Theorem 4.96.

(1) There exists a natural isomorphism

!

H*(PY,,7) ~ PX!

n

of the quadratic dual PX}, of the McCool algebra P, and the cohomology ring H*(P%,,,7)
of the McCool group PX,,, see [61].

(2) There exists a natural isomorphism
H*(PE,,Z) ~ (PE;)

of the quadratic dual (PZj{)! of the upper triangular McCool algebra PX} and the coho-

mology ring H*(PXF,Z) of the upper triangular McCool group PX}, see [27].

4.3.3 Algebras 4TT,, and 45T,
Definition 4.97.

(I) Algebra ATT,, is generated over Z by the set of elements {z;;, 1 <1i # j < n}, subject to
the set of relations

(1) wijjap = ey if all 4, 4, k, [ are distinct,
(2) [acij + xjk,xik] =0, [Zvji + xkj,xki] =0ifi<j<k.

(IT) Algebra 45T, is generated over Z by the set of elements {z;;, 1 < i # j
the set of relations

IN

n}, subject to

(1) [xij, ki) = 0, [x45, 2] = 0if 4, 4, k, | are distinct,
(2) [UCz‘j,ﬂﬁik] = [ﬂfik,xjk] = [:Ujk,fcij]y [:Ujiaxki] = [xki,frkj] = [-Tkjaxii]a
= |

(3) [Tijs Thi) = [Trjs xij] = ()i, Tik] = [@ins Tj] = [Trir xjn) = [Tjn, xja] if i < j < k.
Proposition 4.98. One has

n —tz)
t ST Hilb((ATT,) 1) 2 = exp(—tz) 1—tz.

Therefore, dim(4TTn)! is equal to the number of permutations of the set [1,...,n + 1] having
no substring [k, k + 1]; also, for n > 1 equals to the mazximal permanent of a nonsingular n x n
(0, 1)-matriz, see [131, A000255]*". Moreover, one has

Hilb((4ST,)",t) = (1 +)"(1 +nt)" 2,
cf. Conjecture 4.112.
We expect that The both algebras 41T, and 457, are Koszul.

Problem 4.99. Give a combinatorial interpretation of polynomials Hilb((4TTy)',t) and con-
struct a monomial basis in the algebras (4TT,)" and 4ST;,.

47See also a paper by F. Hivert, J.-C. Novelli and J.-Y. Thibon [57, Section 3.8.4] for yet another combinatorial
interpretation of the dimension of the algebra (47T},)".
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4.4 Subalgebra generated by Jucys—Murphy elements in 47°

Definition 4.100. The Jucys-Murphy elements d;, 2 < j < n, in the quadratic algebra 47,, are
defined as follows

di= > yij Jj=2...n

1<i<j

It is clear that Jucys—Murphy’s elements d; are the infinitesimal deformation of the elements
Dl’j e P,.

Theorem 4.101.

(1) The Jucys—Murphy elements d;, 2 < j < mn, commute pairwise in the algebra 4T;,.
(2) In the algebra AT? the Jucys—Murphy elements d;, 2 < j < n, satisfy the following relations

(dy+--+dj)d? =0, 2<j<n

(3) Subalgebra (over Z) in 4T generated by the Jucys—Murphy elements da, ..., d, has the
n—1
following Hilbert polynomial [] [27].
j=1
(4) There exists an (birational) isomorphism Z[x1,...,xn-1]/Jn—1 —> Z[da,...,d,] defined
n—j
bydj = ] =i, 2 < j <n, where J,_1 is a (two-sided) ideal generated by e;(x3, ..., 22 ),
i=1

»¥n—1
7

1<i<n-—1, and ej(z1,...,xn_1) stands for the i-th elementary symmetric polynomial
in the variables x1,...,Tn_1.

Remark 4.102.

(1) Tt is clearly seen that the commutativity of the Jucys—Murphy elements is equivalent to the
validity of the Kohno—Drinfeld relations and the locality relations among the generators
{yijh<i<j<n

(2) Let’s stress that d?j_Z # 0 in the algebra 470 for j = 3,...,n. For example, dj =
Y13Y23Y13Y23 + Y23y13Y23y13 # 0 since dim(479), = 1 and it is generated by the element d3.

(3) The map ¢: yij — Yn+t1—jn+1—i Preserves the relations 1) and 2) in the definition of the
algebra 47T,,, and therefore defines an involution of the Kohno—Drinfeld algebra. Hence
the elements

n
dj = Z Yik = t(dnt1—j), 1<j<n-1
k=j+1

also form a pairwise commuting family.

Problems 4.103.
(a) Compute Hilbert series of the algebra AT and its quadratic dual algebra (4T2)".
(b) Describe subalgebra in the algebra 4HT,, generated by the Jucys-Murphy elements d;, 2 <
Jj<n.

It is well-known that the Kohno—Drinfeld algebra 47;, is Koszul, and its quadratic dual 4T,!1
is isomorphic to the anticommutative quotient 370 of the algebra 3770,

On the other hand, if n > 3 the algebra 4T is not Koszul, and its quadratic dual is isomorphic
to the quotient of the ring of polynomials in the set of anticommutative variables {t; ; |1 < i <
j < n}, where we do not impose conditions t?j = 0, modulo the ideal generated by Arnold’s

relations {t; jt;r + tix(ti; —tjx) = 0} for all pairwise distinct 4, j and k.



On Some Quadratic Algebras 87

4.5 Nonlocal Kohno—Drinfeld algebra N LA4T,,

Definition 4.104. Nonlocal Kohno—Drinfeld algebra N L4T, is an associative algebra over 7Z
with the set of generators {y;;, 1 <i < j < n} subject to the set of relations

(1) yijyr = yryij it (1 —k)(@ =0 — k)G —1) >0,

J
() [yigs X yar] = 0if i < j <k,

k
(3) [wjks O wia] =0 i <j <k

a=j
It’s not difficult to see that relations (1)—(3) imply the following relations

j—1
(4) [ij, > Wia +yay)] =0if i < j.
a=1+1
Let’s introduce in the nonlocal Kohno-Drinfeld algebra N L4T,, the Jucys—Murphy elements
(JM-elements for short) d; and the dual JM-elements d; as follows

j—1 n
dj = Z Yaj, dj = Z Yn—j+1,a, .7 = 27 sy T (45)
a=1 a=n—j+2

It follows from relations (1) and (2) (resp. (1) and (3)) that the Jucys-Murphy elements d, . .., d,,

(resp. da,...,d,) form a commutative subalgebra in the algebra NL4T,,. Moreover, it follows
n

from relations (1)-(3) that the element ¢; := ) dj = > dj belongs to the center of the algebra
j=2 j=2
NLAT,.

Theorem 4.105.

(1) The algebra NLAT, is Koszul, and

2k

n—1
Hilb((NLAT,), t) = Y Gy (” the 1>tk,
k=0

where Cy, = k—il (%f) stands for the k-th Catalan number.

(2) The quadratic dual (NLAT},)" of the nonlocal Kohno-Drinfeld algebra N LAT,, is an associa-
tive algebra generated by the set of mutually anticommuting elements {t;;, 1 <1 < j < n}
subject to the set of relations

o t7=014f1<i<j<n,
e Arnold’s relations: tijtin +tinti; +tiptae = 0 if i < j <k,
o disentanglement relations: tity + tyty, +tuty =0 if i < j <k <.

Therefore the algebra (NLA4T;,)' is the quotient of the Orlik-Solomon algebra OS,, by the
ideal generated by Disentanglement relations, and dim((NL4T,1)') is equal to the number of
Schroder paths, i.e., paths from (0,0) to (2n,0) consisting of steps U = (1,1), D = (1,-1),
H = (2,0) and never going below the z-axis. The Hilbert polynomial Hilb((NL4T},)" t) is the
generating function of such paths with respect to the number of U’s, see [131, A088617].

Remark 4.106. Denote by H,,(q) “the normalized” Hecke algebra of type A, i.e., an associative
algebra generated over Z[q, ¢~ !] by elements T1, ..., T, _1 subject to the set of relations
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(a) Ty = T;T; if |i — j| > 1, TIT, = TyTTy it i — j| = 1,
b) T?=(q—q¢ ) Ti+1fori=1,....,n—1.
If 1 <i<j<n-—1,let’s consider elements T(Z-j) =TT T AT - - Ty T

Lemma 4.107. The elements {T(;;), 1 < i < j < n — 1} satisfy the defining relations of the
non-local Kohno—Drinfeld algebra N LAT, 1, see Definition 4.104.
Therefore the map yi; — H;;) defines a epimorphism v,: NLAT,, — Hpy1(q).

Definition 4.108. Denote by N L£4T,, the quotient of the non-local Kohno-Drinfeld algebra
N LAT,, by the two-sided ideal Z,, generated by the following set of degree three elements:

(1) 2ij = Yij1Yi5Y55+1 — Yjg+1¥ij¥ig+1 i 1<i<j<mn,

-1 -1 -1 i1
(2) wi=Yiin § § Yail¥bit1 | — E E Ybi+1Yai | Yii+1
a=1b=1,b#a a=1b=1, b#a

if 1<i<n-—1,

n n n n
(3) vi =it Z Z Yitl,a¥id | — Z Z Yitl,a¥ip | Yisit1,

a=i+1b=i+1,ba a=i+1b=i+1, b#a
if 1<i<n-—1.

Proposition 4.109.

(1) The ideal T, belongs to the kernel of the epimorphism v,: I, C Ker(ty,),

(2) Let dy, ..., d, (resp. da,...,d,) be the Jucys-Murphy elements (resp. dual JM-elements)
in the algebra N LAT,, given by the formula (4.5).

A

Then the all elementary symmetric polynomials e (dz, ..., dy,) (resp. ek(CZQ, ...ydyp)) of deg-
ree k, 1< k < n, in the Jucys—Murphy elements dso, ... ,d,, (resp. in the dual JM-elements
da,...,dy), commute in the algebra N LAT, with the all elements y;iy1, i =1,...,n— 1.

Therefore, there exists an epimorphism of algebras N £4T,, — H,(q), and images of the ele-
ments eg(da, ..., d,) (resp. ek(czg, . dn), 1 < k < n, belongs to the center of the “normalized”
Hecke algebra H,(q), and in fact generate the center of algebra H,(q).

Few comments in order:

(A) Let N{AT, be an associative algebra over Z with the set of generators {y;;, 1 <i < j < n}
subject to the set of relations

(1) vijym = YiYij if(i—k)@—10)G—k)(F—1) >0,
(2) [wij iyak] =0ifi<j<k.

a=1

Proposition 4.110.
(1) The algebra NVAT,, is Koszul and has the Hilbert series equals to

n—1 -1
Hilb(N (4T}, t) = (Z(—l)kN(k:,n)tk> ,
k=0
where N(k,n) = %(Z) (kil) denotes the Narayana number, i.e., the number of Dyck n-

paths with exactly k peaks, see, e.g., [131, A001263]. Therefore, dim(N/4AT,)' = n%rl(zr?),
the n-th Catalan number.
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(2) Elementary symmetric polynomials ey (da,...,d,) of degree k, 1 < k < n, in the Jucys—
Murphy elements da, . ..,d,, commute in the algebra NI4T, with the all elements y; 11,
1i=1,...,n—1.

(B) The kernel of the epimorphism N £4T,, — H,(q) contains the elements

{Wiir1Yir1ir2iivt — YirliveYiir1Yisiv2, @ = 1,...,n — 2},
(T2 — (0= q ) Tiirr — 1},

as well as the following set of commutators
[Yij» ex(di, - - ., dj)], I1<k<j-—i+1l

It is an interesting task to find defining relations among the Jucys—Murphy elements
{dj,7 =2,...,n} in the algebra N L4T;, or that N¢4T,,. We expect that the Jucys-Murphy
element dj, satisfies the following relation (= minimal polynomial) in the Hecke algebra
Hn(q), n > k,

k—1 2a+1 -1 —2a—1
q—dq q " —4q
dpy — ————— | | d — ] =0.
H<k 1—q2><k+ 1—q )

a=1

4.5.1 On relations among JM-elements in Hecke algebras

Let H,(q) be the “normalized” Hecke algebra of type A,, see Remark 4.106. Let A F n be
a partition of n. For a box x = (i,j) € A define

ex(z3q) = ¢=—— 7z

It is clear that if ¢ = 1, ¢4—1(x) is equal to the content c(z) of a box « € A. Denote by

A((J") = Z[q, qil] [21,. .., zn]S"

the space of symmetric polynomials over the ring Z[q, ¢~!] in variables {21, ..., z,}.

Definition 4.111. Denote by J(gn) the set of symmetric polynomials f € A((In) such that for any
partition A = n one has

flex(@ )z € X) =0.
For example, one can check that symmetric polynomial
= (P+1+q¢%)ea—2(q—q )e1—3
(3)
belongs to the set J;™.
Finally, denote by Jc(ln) the ideal in the ring Z[q, ¢~ '][z1, . . ., 2,] generated by the set Jén).

Conjecture 4.112. The algebra over Z[q,q~ '] generated by the Jucys—Murphy elements d,
..., dy corresponding to the Hecke algebra H,(q) of type An—_1, is isomorphic to the quotient of

the algebra Z[q, q [z1, . ., zn] by the ideal Jgn).

It seems an interesting problem to find a minimal set of generators for the ideal J((Jn).
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Comments 4.113. Denote by JM(n) the algebra over Z generated by the JM-elements da,
...y dp, deg(d;) = 1, Vi, corresponding to the symmetric group S,. In this case one can check
Conjecture 4.112 for n < 8, and compute the Hilbert polynomial(s) of the associated graded
algebra(s) gr(JM(n)). For example*®

Hilb(gr(JM(2),¢) = (1,1),  Hilb(gr(JM(3),¢) = (1,2,1),
Hilb(gr(JM(4),¢) = (1,3,4,2),  Hilb(gr(JM(5),t) = (1,4,8,9,4),
Hilb(gr(JM(6),t) = (1,5,13,21,21,12,3),

Hilb(gr(JM(7),t) = (1,6, 19, 40,59, 60, 37, 10).

It seems an interesting task to find a combinatorial interpretation of the polynomials
Hilb(gr(JM(n)),t) in terms of standard Young tableaux of size n.

Let { A n} be the characters of the irreducible representations of the symmetric group Sy,
which form a basis of the center Z,, of the group ring Z[S,]. The famous result by A. Jucys [62]

states that for any symmetric polynomial f(z1, ..., z,) the character expansion of f(ds, ..., d,,0)
€ Z, is
f(CY) _a
f(d27"°7dn50) = ZT/\X )
AFn

where Hy = [][ hy denotes the product of all hook-lengths of A\, and C) := {c(z)},er denotes
TEA
the set of contents of all boxes of A.

Recall that the Jucys—Murphy elements {df I <j<p i the (normalized) Hecke algebra H,(q)

= T;---Tj_1TjTj—1 --- T;. Finally denote

are defined as follows: df = ; Tij), where T(;;) :
i<j

by Hx(q) and C’iq) the hook polynomial and the set {cxz;q)}, € \. Then for any symmetric
polynomial f(z1,...,z2,) one has

C(Q))
di ... d" 0) = UG o
/(& ) AXH:I H)(q) Xq
where X;‘ denotes the g-character of the algebra H, ).
Therefore, if f € Jén), then f(dg, .. .,dﬁ,o) = 0. It is an open problem to prove/disprove

that if f(dg, o.,dd 0) =0, then f(C’iq)) = 0 for all partitions of size n (even in the case ¢ = 1).

sy Yn oo

4.6 Extended nil-three term relations algebra and DAHA, cf. [24]

Let A :={q,t,a,b,c,h,e, f,...} be a set of parameters.

Definition 4.114. Extended nil-three term relations algebra 3%, is an associative algebra over
Z[g*t,t,a,b,c, h,e,...] with the set of generators {u;;, 1 < i # j < n,x;, 1 < i < n,7}
subject to the set of relations

(0) wij+uji=0,u;; =0,

(1) wizj = zjx;, wijug; = ugu,j if i, j, k, [ are distinct,

(2) yup = upge; if i # k1,

81 would like to thank Dr. S. Tsuchioka for computation the Hilbert polynomials Hilb(JM (n),t), as well as
the sets of defining relations among the Jucys—Murphy elements in the symmetric group S,, for n < 7.
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(3) TilUs 5 = U 55 + 1, TjlUq 5 = Uj jT5 — 1,

(4) wijujp + wp i + ujpug; = 0if i, j, k are distinct,

(5) 7w = vimif 1 <i <n, 7w, =t toym,

(6) muij = uiq1,j+1 1f 1 <i<j<m, Wjun,jH’n = tul,ﬂrj, 2<j<n.

Note that the algebra 3%,, contains also the set of elements {7%u;,, 1 <a <n — j}.
Definition 4.115 (cf. [87]). Let 1 < i < j < n, define
T;; = a+ (bx; + cxj+ h + ex;xj)u; ;.
Lemma 4.116.
(1) Tf] =2a+b—0c)Ti;—ala+b—c) ifa=0, then TZ% = (b—o)Ty;.
(2) Cozeter relations
T T kT = T kT T &,
are valid, if and only if the following relation holds

(a+b)(a—c)+ he=0. (4.6)

(3) Yang-Baaxter relations
TijTinTjke = TjxTinTi;
are valid if and only ifb=c=e =0, i.e., T;; = a+ duy;.
(4) TZQJ =1ifand onlyifa=+1, c=b+2, he = (b+ 1)

(5) Assume that parameters a, b, ¢, h, e satisfy the conditions (4.6) and that bc + 1 = he.
Then

TijziTi; = x5+ (h+ (a + b)(z; + x5) + exizj)Tij.

(6) Quantum Yang—Baxterization. Assume that parameters a, b, ¢, h, e satisfy the condi-
tions (4.6) and that B := 2a + b —c # 0. Then (cf. [59, 85] and the literature quoted
therein) the elements R;j(u,v) := 1+ %sz satisfy the twisted quantum Yang—Baxter
relations

Rij(Nis 1) R (Niy vie) R (15 vi) = Rijk (g, vie) Rig (N vi) B (Nas 1), 1 <G <k,
where { )\, i, Vi }1<i<n are parameters.
Corollary 4.117. If (a + b)(a — ¢) + he = 0, then for any permutation w € S,, the element
Ty :=1T; - T € 3%y,

where w = s;, - - - 84, 18 any reduced decomposition of w, is well-defined.

l
Example 4.118. Each of the set of elements
h
52(' J=1+4 (Tig1 — x5 + h)ug i1
and
tgh) =—-14 (.%Z — ZTi+1 + h(l + xz)(l + xi+1)uij, 1=1,....n—1,

by itself generate the symmetric group S,.
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Comments 4.119. Let A = (a, b, ¢, h, e) be a sequence of integers satisfying the conditions (4.6).
Denote by 6;4 the divided difference operator

8{4: ((I—i—(b:Ei—I—C{L‘iJrl—|—h—|—€l’i$i+1)8i, 1=1,...,n—1.
It follows from Lemma 4.107 that the operators {8{4}1991 satisfy the Coxeter relations

AaA A A aAgA .
0;°0{1107" = 0{1,0; 0i 14, 1=1,...,n—1

(3

Definition 4.120.

(1) Let w € S, be a permutation. Define the generalized Schubert polynomial corresponding
to permutation w as follows

GA(X,) =94, «,

—1 wo
where

20 = x?71x§72 L1,

and wqy denotes the longest element in the symmetric group S,.
(2) Let a be a composition with at most n parts, denote by w, € S,, the permutation such
that w, () = @, where @ denotes a unique partition corresponding to composition «.

Proposition 4.121 ([71]). Let w € S,, be a permutation.

e If A=(0,0,0,1,0), then G:}(X,,) is equal to the Schubert polynomial &, (Xy).

o If A= (—8,0,0,1,0), then GA(X,) is equal to the B-Grothendieck polynomial Qiq(f) (Xn)
introduced in [42].

e IfA=(0,1,0,1,0) then G2(X,) is equal to the dual Grothendieck polynomial [71, 84].
o IfA=(-1,2,0,1,1), then &:(X,,) is equal to the Di Francesco-Zinn-Justin polynomials
and studied in [32, 33, 34] and [71].

In all cases listed above the polynomials 6£(Xn) have mon-negative integer coefficients.

o If A= (1,-1,1,—h,0), then &:(X,,) is equal to the h-Schubert polynomials introduced
in [71].

Define the generalized key or Demazure polynomial corresponding to a composition o as
follows

KX, = 0y, 2%
e IfA=(1,0,1,0,0), then K(X,) is equal to key (or Demazure) polynomial corresponding
to a.
e IfA=(0,0,1,0,0), then K2(X,) is equal to the reduced key polynomial introduced in [71].

o If A= (1,0,1,0,3), then KA(X,) is equal to the key Grothendieck polynomial KGa(X,)
introduced in [71].

e IfA=(0,0,1,0,3), then KN(X,) is equal to the reduced key Grothendieck polynomial [71].

In all cases listed above the polynomials 6£(Xn) have non-negative integer coefficients.
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Exercises 4.122.

(1) Let b, ¢, h, e be a collection of integers, define elements P;; := f;ju;; € 3T, where

fij = bx; + cxj + h + ex;x;. Show that
o B} =(b—c)Py,
o BijPjuPij = fijfixfjruijujrui + (be — eh) Pyj,
P Pij Pik = fij fin fiktijujruig — (be — eh) Py

(
(2) Assume that a = ¢, b= —q, c=q !, h = e = 0, and introduce elements
€ij := (qwi — q_lxj)uij, 1<i<yi<k<n.
(a) Show that if 4, j, k are distinct, then

eijejrei; = i + (qi — q_lfﬂj) (qzi — q_lxk) (qzj — q_113k)uijujkuij>
e?j = (q + qil)eij.

(b) Assume additionally that

Ui UjkUs5 = 0, if i, j, k are distinct.

Show that the elements {e; :=€;;11, ¢ = 1,...,n — 1}, generate a subalgebra in 3£,

which is isomorphic to the Temperley-Lieb algebra T'L,,(q + ¢ 1).
(3) Let us set T; :=Tj 41,1 =1,...,n— 1, and define
Ty = 7TTn_17T71.
Show that if (a +b)(a — ¢) + eh = 0, then
TToTy = ThToT, Tr—1ToTh—1 = ToTh-1To,
Recall that T2 = (2a +b—¢)T; —ala+b—c), 0 <i<n-—1.

In what follows we take a = ¢, b = —q, ¢ = ¢~ ', h = e = 0. Therefore, Tfj = (q

J— q_
We denote by H,,(q) a subalgebra in 3%,, generated by the elements T; := T; i1, = 1,

DT +1.
coo,n—1.

Remark 4.123. Let us stress on a difference between elements T;; as a part of generators of

the algebra 3%,,, and the elements

Ty =Ti- - TjaTiTj1 - T; € Hn(q).

Whereas one has [T;;, Tiy] = 0 if 4, j, k, [ are distinct, the relation [T(;;), T(x;)] = 0 in the algebra
H,(q) holds (for general g and i < k) if and only if either one hasi < j <k <lori <k <l < j.

Lemma 4.124.
(1) 13T = TTij if i, j, k, | are distinct,
(2) TijuiTij =a; if 1 <i<j<m,
(3) 7Tij =Tig1j11 f1 <i<j<n, @Th_jp1, =Tym.

Definition 4.125. Let 1 <17 < j < n, set

_qp-l el i T Py
Vij=T 1T s Tijim™ " Tojrin- TipynTiy,  1<i<j<n,

and Y, =T, - T,

n—1,n"
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For example,

i—1 .
Yij=m""Twjrin - T1j, Jj =2,

-1 _j-2
Yy = 1,3;177] Tojion-Toy, and so on,

—1 -1
Yji15= ij2,j71 . 'T1,2 Tl 1 Tj1.
Proposition 4.126.

zjrjli; = Tijvix,
Yij =T YTy if 1 <i<j<mn,
YijYitkjre = YigrjrrYij f 1 <i<j<n—k,

(1)
(2)
3)
(4) one has mi_lYile = E;lxi_lﬂ{u_l, 2<i<yj<n,
(5) Yijxixo - xy = tx122 - - T, Y 4,

(6)

ENYa Yy = Yy Vo,
where we set Y; :=Y; ;41,1 <i<j<n.

Conjecture 4.127. Subalgebra of 3%, generated by the elements {T; = T;;11,1 < i <
n, Yi,...,Y,, and x1,...,x,}, is isomorphic to the double affine Hecke algebra DAHA,;(n).

Note that the algebra 3%, contains also two additional commutative subalgebras generated

by additive {Oi =y uij}1<z‘<n and multiplicative
J#i -

{@i = 1:[<1 —uai) ] 1 +uw)}

a=1 a=i+1

Dunkl elements correspondingly.
Finally we introduce (cf. [24]) a (projective) representation of the modular group SL(2,Z)
on the extended affine Hecke algebra H,, over the ring Z[g™!, t*1] generated by elements
{T1,....,Th—1}, =, and {z1,...,2,}.

It is well-known that the group SL(2,7Z) can be generated by two matrices

11 (10
+=\o 1) T 7\1 1)

which satisfy the following relations
(R S R s T (T+T:17'+)6:—72x2-
Let us introduce operators 74 and 7_ acting on the extended affine algebra H,. Namely,

7—+(7T) = 1‘17T,7‘+(E) = T’i>7—+(xi) = T, V7'7

1 i
T_(m) =, —(T;) = T;, T_(2;) = ( H Ta> ™ ( Ta> x;.

=i—1
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Lemma 4.128.

In the last formula we set T,, = 1 for convenience.

4.7 Braid, affine braid and virtual braid groups

The main objective of this section is to describe the distinguish abelian subgroup in the braid
group B, see Proposition 4.132 (2(0)), and that in the Yang—Baxter groups YB,, and YB,, see
Proposition 4.132 (5(0)) and (6(0)) correspondingly. As far as I'm aware, these constructions go
back to E. Artin in the case of braid groups, and to C.N. Yang in the case of Yang—Baxter group,
and nowadays are widely use in the representation theory of Hecke’s type algebras and that of
integrable systems. In a few words, by choosing a suitable representation (finite-dimensional
or birational) of either B, or YB,, or @n, one gives rise to a family of mutually commuting
operators acting in the space of a representation selected. In the case of braid groups one
comes to Jucys—-Murphy’s type operators/elements, and in the case of Yang—Baxter groups one
comes to Dunkl’s type operators/elements. See, e.g., [59, 60], where it was used the so-called
R-matrix representation of the affine braid group of type C,Sl) to construct the (two boundary)
quantum Knizhnik—Zamolodchikov connections with values in the affine Birman—Murakami—
Wenzl algebras.
To start with, let n > 2 be an integer.

Definition 4.129.

e Denote by S,, the symmetric group on n letters, and by s; the simple transposition (7,74 1)
for 1 < i < n — 1. The well-known Moore—Coxeter presentation of the symmetric group
has the form

2 ol .
(81,-+ySn—1|57 =1, 8i8i118; = Si418iSiy1, 8isj = s;8;if |i — j| > 2).

Transpositions s;; = 8;8;41---8j—25j—15j—2--*8i+15;, 1 < i < j < j < n, satisfy the
following set of (defining) relations

2 . .o
si; =1, sijskt = smsiy  if {5} 0 {k, 1} =2,
8ijSik = SjkSij = SikSjk; SikSij = SijSjk = SjkSik; i <j<k.

o The Artin braid group on n strands By, is defined by generators o1, ...,0,_1 and relations
0i0i410; = 034100441, 1<i<n—2, 0i0j = 0j0; if |i—j]>2. (4.7)

e The monoid of positive braids on n strands B;" is a monoid generated by the elements
O1,...,0n—1 subject to the set of relations (4.7).
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o A new representation of the braid group [15]. The Birman—Ko-Lee representation of the
braid group B,, has the set of generators {o; ;|1 < i < j < n} subject to the Birman-Ko—
Lee (defining) relations

0ijokl = 0okioiy it (G100 k)i =) —k) >0,

0ij03k = 04 k0ij = 03 k0jk if 1<i<j<k<n.
One can take 0;; == (0j_1- - O’z‘+1)0i(0'2-_+11 . aj__ll), see [14] for details. It would be well
to note that as a corollary of the Birman—Ko—Lee relations one can deduce the 2D Cozeter
relations among the Birman—Ko-Lee generators

0i,j05k04j = 05k0i 05 ks 1<i<ji<k<n.

e The Birman-Ko-Lee monoid BKL,, is a monoid generated by the elements o5 ;, 1 <1 <
Jj < n, subject to the Birman—Ko—Lee relations. We denote by BKL(n) and called it as the
Birman—Ko-Lee algebra, the group algebra Q[BKL,] of the Birman—Ko-Lee monoid. The
Hilbert series of the Birman—Ko—Lee algebra BKL(n) will be computed in Section 4.7.3,
Theorem 4.134.

e The pure braid group PB,, is defined to be the kernel of the natural (non-split) projection
p: B, — S, given by p(0;) = s;. It is well-known that the pure braid group PB, is
generated by the elements

Gij = Ugj = 0j_10j—2"" -O'i+102-20i_+ll . ~-0J7520J7}1 for 1<i<j<n,
subject to the following defining relations

9ijGky = gkgiy  if (i—=k) @ -0 - k)G 1) >0,
9i,j9i k9 k = 9ik9j ki) = 95,k jGik if 1<i<j<k<n,
9ik9i,195,19k,0 = 9i,195,19k,19i,k if 1<i<j<k<i<n.

Comments 4.130. It is easy to see that the defining relations for the pure braid group PB,
listed above are equivalent to the following list of defining relations

Gkl if (1 —=k)i—00G—k)(G—1)>0,
0 gh1gi = gi,lgk,lgi_,ll ifi<k=j<lI,
b,J W I] T — - op - .
" ’ gi,zgj,lgk,lgiyllgjf iti =k <j<l,

9i19519:7 950 k195090095, 91 i<k <j<l,
commonly used in the literature to describe the defining relations among the generators {g;;}
of the pure braid group P,, see, e.g., [14].

o The affine Artin braid group B, cf. [112], is an extension of the Artin braid group on n
strands B, by the element 7 subject to the set of crossing relations

O1TOIT = TO1TO71, 0T = TO; for 2<i<n-—1.

o The virtual braid group VB,, is a group generated by o1,...,0,-1 and s1, ..., s,—1 subject
to the relations:

(1) braid relations o1, . ..,0,—1 generate the Artin braid group By;
(2) Moore—Cozeter relations s1, ..., S,—1 generate the symmetric group Sy;
(3) crossing relations o;sj = sjo; if |i — j| > 2, si8i410; = 03418841 if 1 <i <m—2.

o The virtual pure braid group VP, is defined to be the kernel of the natural map
n: VB, — S,, n(oi) = n(si) = s, i=1,...,n—1.
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4.7.1 Yang—-Baxter groups

Definition 4.131.

o The quasitriangular Yang—Baxter group YB\H, cf. [7], is a group generated by the set of
elements {Q; j, 1 <1 # j < n}, subject to the set of defining relations

(1) [Qij,Qry) =01if 4, 4, k and [ are all distinct,
2) Yang—Baxter relations Q; iQ; 1Qir = Qi1 Q; Qi if 7, j, k are distinct.
7‘7 b j7 j7 b 7]

According to [5, Theorem 1], the quasitriangular Yang—Baxter group fB\n is isomorphic to
the virtual pure braid group VP,.
o The Yang—Baxter monoid ?]\3/” is a monoid generated by the elements @); j, 1 <@ # j
Important particular case corresponds to the case when Q; ;jQ;; =1 for all 1 <7 # j
o The Yang—Baxter group YB, is defined by the set of generators R;;, 1 < i < j
subject to the set of defining relations

IA TN
R

IN

(1) R;jRi; = Ry R;jif 4, j, k and [ are pairwise distinct,
(2) R iR Rjp = Rj R p R if 1 <i<j<k<n.

4.7.2 Some properties of braid and Yang—Baxter groups

For the sake of convenience and future references, below we state some basic properties of the
groups P,, YB,, and Bsz.

Proposition 4.132. Let F,, denotes the free group with m generators.

(10) The elements gi,n,92,ns - - - Gn—1,n generate a free normal subgroup Fy,_1 in Py, and P, =
Po_1 % {91m,92n,---,9n—1,n). Hence P, is an iterated extension of free groups.

(20) Let us consider the following elements in the group B :

=T, Yi = HUjTHUj, 2<3<n.

Then
(a) commutativity, 47; = Y% for all 1 <i,j < n;
(b) the elements Y1, ...,vn generate a free abelian subgroup of rang n in B .49

(30) Let us introduce elements

- 2 _
Di,j =0j-104-2""044+1 0; 041052051 = H Ga,j € Py,

1<a<j
i+1
- 2 _
Fij = 0n—jon—j+1+* On—i—105,_iOn—i—1""" On—j4+10n—j = H Gn—amn—i € Pn,
a=j
where 1 < i < j <n. For example,
D1 = a2 Diiio = 01020 Fo:iq1 =02
ii+1 = Oy, 1,4+2 = Oi+10; 0i41, ii+1 = Op_jgs

2
Fiiyo =0p_i—10,_j0n—i—1

and etc. Then

49We refer the reader to [112] for more details about affine braid groups. Here we only remark that the type A
affine Weyl groups gn, the Hecke algebras H, 4, the affine Hecke algebras ﬁnyq, the Ariki-Koike, or cyclotomic
Hecke, algebras H, i1, the affine and cyclotomic Birman-Murakami-Wenzl algebras Z, 1, all can be obtained
as certain quotients of the group algebra CBf of the affine braid group.
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o [For each j =3,...,n, the element Dy ; commutes with o1,...,0j_2.

o The elements Dy2,D13,...,D1,y (resp. Fi2,F13,...,F1 ) generate a free abelian
subgroup in P,,.
e Ifn >3, the element

H Dy = H Fij=(o1--0p-1)"

2<j<n 2<j<n

generates the center of the braid group B, and that of the pure braid group P,.

® DijDij1Djj11 = DjjaDijaDij if i <.

o Consider the elements s := 010901, t := o109 in the braid group Bs. Then s2 =13
and the element ¢ := s> generates the center of the group Bs. Moreover,

Bs/{c) = PSLy(Z), Bs/(c?) = SLy(7Z).

(40) Let us introduce the following elements in the quasitriangular Yang—Baxter group fB\n

i Jj—1 i+1 Jj—1
Cij= H Qa.;j (H Qj,b) ; Jij = H Qaj | Qij«Qj.i < H Qb,j)
b=i

-1

a=j—1 a=j—1 b=i+1
Then
o The elements C12,C13,...,C1 generate a free abelian subgroup in fB\n

o The elements f; ;, 1 <1 < j < n, generate a subgroup in fB\n, which is isomorphic
to the pure braid group P,.%°

(50) Assume that the following additional relations in fB\n are satisfied
Qi;Qji = Qj,iQi ;) Qk1Qi Qs = Qj,iQij Rkl
if i # j and k # 1. In other words, the elements Q; j and Q;; commute, and the elements
Qi,jQj: = Q}:Q;; are central. Under these assumptions, we have that the elements

i+1

1 n i—1
0;:= ] Qi H Qijy  ©i:= ] @ HlQi,j, 1<i<n,
j=n j=

j=i—1 j=i+1

50Tt is enough to check that the elements {f; ;, 1 < i < j < n} satisfy the defining relations for the pure braid
group P, only in the case n = 4. Let us prove that

frafoafsafiz = fi3fi,af2,4f3.4.

Other relations are simple and can be checked in a similar fashion.
Let

Lhs. = fiafoafzafiz = Q34Q24Q14Q41Q42Q43Q23Q13Q31Q2_317
r.hs. = fiafiafoafsa = Q23Q13Q31Q2_31Q34Q24Q14Q41Q42Q43-

Now we are going to apply the Yang-Baxter relations

Q53 Q31Q21 = Q24Q31Q53 Q33 Q12Qu3 = Qu3Q12Q53 Q31Q34Q14 = Q14Q34Q31.

Therefore,

rhs. = Q23Q13Q51 Q%5 Q34Q24Q11Q11 Q12Q2; = Q23Q24Q34Q11Q13Q31Q41Qa3Q42Q55
= Q34Q24Q14Q23Q13Q43Q41Q42Q31Q;Sl = Q34Q24Q14Q41Q23Q43Q42Q13Q31Q;31
= Q34Q24Q12Q11Q12Q13Q23Q13Q31 Q35 = Lhus.
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satisfy the following relations

[©:,0;] =0=1[6;,06;],

0,0; = [[Qi;Qi =0:0i,  J[0i= ]I Q”Q”—H@

Jj#i =1 1<i#j<n

(60) In the special case Q;;Qj; =1 for all i # j, the following statement holds: the elements

1 J+1
0;=[] RjlI R, 1<i<n-1,
a=j—1 b=n

generate a subgroup in the Yang—Baxter group YB,,, which is isomorphic to the free abelian
group of rang n — 1.
4.7.3 Artin and Birman—Ko—Lee monoids

Let (W,S) be a finite Coxeter group, B(W) and BT (W) be the corresponding braid group

and monoid of positive braids. Denote by Py (s,t) = Z BQ[B+(W)] (i,7)s't) the Poincaré
1>0,7

polynomial of the group algebra over Q of the monoid B*(W).

Conjecture 4.133. Py (s,1) = (s + 1)!5I.

It is known [30, 125] that the Hilbert series of the group algebra of the monoid BT (W) is
a rational function of the form % for a some polynomial P(t) := Py (t) € Z][t].

Theorem 4.134.

(1) Some Betti numbers of the group algebra over Q of the monoid BT (A,—1):
n—k
Boi+(a,-1) (k. k) = < . >,
k+1
Bo(p+(4,-1)] <k< 9 >> =n—k, 1<k<n-1,

n—k
Bog+a,_ )k, k+1) = (k—1) <k: B 1>,

k—2\/n—k

k: k:

(2) The Birman—Ko—Lee algebra BKL(n) is Koszul, and the Hilbert polynomial of its quadratic
dual is equal to

Hilb (BKL(n) Z <” - 1) (” * : - 1)tk.

k=0

Conjecture 4.135 (type A,_1 case). Let I C [1,n — 1] be a subset of vertices in the Dynkin
diagram of type An,_1, and Ry denotes the root system generated by the positive roots {a;; =
€ —€j, (1,7) € I x I}. Assume that

RI%AWH"’HATLM n+--+np=n-—1
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stands for the decomposition of the root system Ry into the disjoint union of irreducible root
subsystems of type A. The numbers ni,...,ny are defined uniquely up to a permutation. Let us

set n(I) = i (). Then

a=1
= 3 sl
I

where the sum runs over the all subsets of vertices I in the Dynkin diagram of type A,_1,
including the empty set, and |I| denotes the cardinality of the set I.

Comments 4.136.

(A) The Hilbert polynomial of the Birman—Ko-Li algebra BKL(n) has been computed also by
M. Albenque and P. Nadeau, see [2].

(B) Let’s consider the truncated theta function 07 (z,t) = S t"("+1/2;7 Then
n>0

> Pa,(s,0)2" =07t 52) /(1 — 2(07 (¢, 52))).

n>1

(C) It is well known that the number

o =) (")

counts the number of Schroder paths (i.e., consisting of steps (1,1), (1,—1) and (2,0) and
never going below z-axis) from (0,0) to (2n,0), having exactly k (1, 1) steps. In particular,

dim(BKL(n)") = Sch(n),

is the n-th (large) Schréder number, see [131, A006318]. It is a classical result that

n—1
ZTnk: (1 —x)" :ZN(n,k)xk
k=0

where N(n, k) := (Z’) (k +1) denotes the Narayana number. Some explicit combinatorial
interpretations of the values of the above polynomials for z = 0,1, 2, 4 can be found in [131,
A088617]. Note that Hilb(BKL',t) = (1 4 t)Ass,_2(t), where

- S ()

denotes the f-vector polynomial corresponding to the associahedron of type A,.

(D) The polynomials F(n,t) := > BQ[BJF(An_I)}(k:,k)tk appear to be equal to the so-called
k>0

Fibonacci polynomials, see, e.g., [131, A011973]. Tt is well-known that

1+¢
S F(n,t)y" __ 1ty
1—y — ty?
n>0

Moreover, the coefficient Bog+(a,,_,)] (k, k) is equal to the number of compositions of n+2
into k + 1 parts, all > 2, see [131, A011973].
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(E) Monoid of positive pure braids. The monoid of positive pure braids PB; (of the type
A,_1) is the monoid generated by the set {g; ;, 1 <i < j < n} of the Artin generators of
the pure braid group PB,,.

Conjecture 4.137. The following list of relations is the defining set of relations in the monoid
PB,:

(@) 93, 9k0] =0, (9 95,k) = 0, if 1<i<j<k<l<n,
k—1

(b) 5+ m e +m H Fatmjrtm | = 0,
a=1

for all sequences of integers 1 < j1 < jo < --- < jr, < n of the lengthk >4 andm =0,...,n—1.
Here we assume that g; j = gj; for all i # j, and for any non-negative integer a we denote by @
a unique integer 1 <a < n such that a =a (modn + 1).

It is worth noting that the defining relations in the pure braid group P, are that listed in (a)
and the part of that listed in (b) corresponding to & = 3, m = 0 and 1, and that for k = 4,
m = 0.

5 Combinatorics of associative Yang—Baxter algebras

Let « and B be parameters.
Definition 5.1 ([66, 70, 72], cf. [1, 115]).

(1) The associative quasi-classical Yang-Baxter algebra of weight («, ), denoted by
ACYB,(«, ), is an associative algebra, over the ring of polynomials Z[«, 5], generated
by the set of elements {x;;, 1 <1i < j < n}, subject to the set of relations

(a) zijrp =z if {i, 5} N {k, 1} = 9,
(b) Tij Xk = TikTij + TjkTik + ﬁl’zk +aifl<l<i< j < n.

(2) Define associative quasi-classical Yang—Baxter algebra of weight /3, denoted by mn (8),
to be ACYB, (0, 3).

Comments 5.2. The algebra 3T,(3), see Definition 3.1, is the quotient of the algebra
ACYB,(—0), by the “dual relations”
TjkTij — TijTik — Tkl + Prie =0, 1 <j <k
The (truncated) Dunkl elements 6; = )  z;;, i = 1,...,n, do not commute in the algebra
J#i
ACYB,,(8). However a certain version of noncommutative elementary polynomial of degree

k > 1, still is equal to zero after the substitution of Dunkl elements instead of variables [72]. We
state here the corresponding result only “in classical case”, i.e., if 8 =0 and ¢;; = 0 for all 4, j.

Lemma 5.3 ([72]). Define noncommutative elementary polynomial Ly(x1,...,x,) as follows

Lig(x1,...,20) = Z Tiy Tiy ** * Tiy,-

I:(i1<i2<~-~<ik)C[17n]
Then Ly (61,02, ...,6,)
Moreover, if 1 < k
polynomial Lk(0§ ™
117].

m < n, then one can show that the value of the moncommutative
)

S
97,? in the algebra mn(ﬁ) is given by the Pieri formula, see [45,
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5.1 Combinatorics of Coxeter element

Consider the “Coxeter element” w € mn(a, B) which is equal to the ordered product of
“simple generators”:

n—1

W = Wy — H Za,a+1-

a=1

Let us bring the element w to the reduced form in the algebra mn(a, B), that is, let us
consecutively apply the defining relations (a) and (b) to the element w in any order until unable
to do so. Denote the resulting (noncommutative) polynomial by P,(x;j; c, §). In principal, the
polynomial itself can depend on the order in which the relations (a) and (b) are applied. We set

Po(wij; B) := Pa(ij; 0, B).
Proposition 5.4 (cf. [133, Exercise 6.C5(c)], [99, 100]).

(1) Apart from applying the relation (a) (commutativity), the polynomial P, (z;;;3) does not
depend on the order in which relations (a) and (b) have been applied, and can be written
in a unique way as a linear combination:

n—1 s
Pu(aigi ) =Y 8" ] @iaie:
s=1 {ia} a=1

where the second summation runs over all sequences of integers {iq}5_y such thatn—1>
i1 >0 >->is=1,andig <n—a fora=1,...,s —1; moreover, the corresponding
sequence {ja}g;ll can be defined uniquely by that {i, Z;ll

e It is clear that the polynomial P(x;j; 5) also can be written in a unique way as a linear
S

combination of monomials ] x;, j, such that j1 > ja--- > js.
a=1

(2) Let us set deg(z;;) = 1, deg(B) = 0. Denote by T,,(k,r) the number of degree k monomials
in the polynomial P(z;j; ) which contain exactly r factors of the form x,,. (Note that
1<r<k<n-—1.) Then

rin+k—r—2\(n-2
T”(k’r)_k;< n—2 ><1<;—1>'

In other words,

Pu(t,8) = > Tu(k,r)tr g '+,

1<r<k<n
where P, (t,3) denotes the following specialization
iy — 1 af j<n, Tip —>t, Vi=1,...,n—1

of the polynomial P, (z;;; 3).
In particular, T, (k, k) = (Zj) and Tp(k,1) =T (n — 2,k — 1), where

=510
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is equal to the number of Schroder paths (i.e., consisting of steps U = (1,1), D = (1,-1),
H = (2,0) and never going below the x-azis) from (0,0) to (2n,0), having k U’s, see [131,
A088617].

Moreover, T,,(n — 1,7) = Tab(n — 2,r — 1), where

k+1/2n—k\  _(2
Tab(n,k).—n+1< " >—F o (k)

is equal to the number of standard Young tableauz of the shape (n,n—k), see [131, A009766].

Recall that Fép)(b) = 1T+b(7;p_+1b) stands for the generalized Fuss—Catalan number.

After the specialization x;; — 1 the polynomial P(x;;) is transformed to the polynomial

n—1
Po(B) =) N(n.k)(1+B)",
k=0
where N(n,k) := % (Z) (k:‘_l), k=0,...,n—1, stand for the Narayana numbers.
n—1
Furthermore, Py(B) = Y 5,(d)p%, where
d=0

w0 =1 () ()

is the number of ways to draw n — 1 — d diagonals in a convezx (n + 2)-gon, such that no

two diagonals intersect their interior.

Therefore, the number of (nonzero) terms in the polynomial P(x;j; 5) is equal to the n-th
little Schroder number s, := nil sn(d), also known as the n-th super-Catalan number, see,
e.g., [131, A001003]. =

Upon the specialization x1; — t, 1 < j < mn, and that x;; — 1 if 2 <1 < j < n, the
polynomial P(z;5; B) is transformed to the polynomial

Pu(Bt) =ty (148" F> ),
k=1 ™

where the second summation runs over the set of Dick paths w of length 2n with exactly k
picks (UD-steps), and p(m) denotes the number of valleys (DU-steps) that touch upon the
line x = 0.

The polynomial P(xi;;B) is invariant under the action of anti-involution ¢ o T, see [72,
Section 5.1.1] for definitions of ¢ and T.

Follow [133, Exercise 6.C8(c)] consider the specialization
l’ij—>ti, 1<i <y <n,

and define Pp(ti,...,th—1;8) = Py(zij = t;; 8).
One can show, cf. [133], that

P’n(tla"' 7tn71;/8) = Zﬂn_ktil o 'tiky

where the sum runs over all pairs {(ai,...,ar), (i1,...,1x) € Z>1 X Z>1} such that 1 <
ar <ag <---<ap, 1 <ip <idg--- < <nandij <aj; forallj.
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Now we are ready to state our main result about polynomials P, (t1,...,ty;3). Let m :=m, €
S, be the permutation
/12 3 ..o
"\ n -1 .. 2)
Then
n—1 '
Po(t1, ... tn_1;8) = (H t?") 6P (. k) =D wi(T), (5.1)
i=1 T
where 051([? ) (z1,...,2p—1) denotes the B-Grothendieck polynomial corresponding to a permuta-

tion w € Sy, see [42] or Appendix A.1; summation in the right hand side of the second equality
runs over the set of all dissections T of a convex (n + 2)-gon, and wt(7) denotes weight of
a dissection 7T, namely,

wi(T) = [ ] zap™ 7],
deT

where the product runs over diagonals in 7, x4 = w;;, if diagonal d connects vertices ¢ and j,
i < j, and |T| denotes the number of diagonals in dissection T .
In particular,

n—1
Qigrﬁ)(xl = 1, ey Tp—1 = 1) = ZN(n7k)(1 +/8)k7
k=0

where N (n, k) denotes the Narayana numbers, see item (3) of Proposition 5.4.
More generally, write P,(t,5) = p (B)t*. Then
k

i
L

67(1'/8)(‘7;1 = tv xi == 17 Vz Z 2) = P(k)l (571)514%71717]@.

n—

0

>
Il

Comments 5.5.

e Note that if 3 = 0, then one has Qiq(fzo)(xl,...,xn_l) = Gy(z1,...,2n—1), that is the
B-Grothendieck polynomial at 8 = 0, is equal to the Schubert polynomial corresponding
to the same permutation w. Therefore, if

(12 3 ..o
™\ n n-1 .. 2)

Sr(x1=1,...,th—1=1)=Cp_1, (5.2)

then

where ), denotes the m-th Catalan number. Using the formula (5.2) it is not difficult to
check that the following formula for the principal specialization of the Schubert polynomial
S, (X,) is true

n—1

Sr(1,q,..q" ) = q("s )i (g), (5.3)
where C),(q) denotes the Carlitz—Riordan g-analogue of the Catalan numbers, see,
e.g., [134]. The formula (5.3) has been proved in [44] using the observation that 7 is a vez-

illary permutation, see [92] for the a definition of the latter. A combinatorial/bijective
proof of the formula (5.2) is due to A. Woo [142].
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e The Grothendieck polynomials, had been defined originally by A. Lascoux and M.-P. Schiit-
zenberger, see, e.g., [86], correspond to the case 5 = —1. In this case P,(—1) =1if n > 0,

and therefore the specialization Qiq(u_l)(:xl =1,...,2p1=1)=1for all w €S,

e In Section 5.2.2, Theorems 5.28 and 5.29, we state a generalization of the second equality in

the formula (5.1) to the case of Richardson’s permutations of the form 1% x w(()n_k) = ﬂ'lgn),
and relate monomials which appear in a combinatorial formula®! for the corresponding 3-
Grothendieck polynomial, and/with the set of k-dissections and k-triangulations of a con-

vex (n+k—+1)-gon, and the Lagrange inversion formula, see Section 5.4.2 for more details.

(0)

Clearly, the Richardson permutations 7, are special subset of permutations of the form

1% x wy = w,(;‘), where w) stands for the dominant permutation of shape A. An analogue and

extension of the first equality in the formula (5.1) for permutations of the form w?) has been
proved in [39, Theorem 5.4]. We state here a particular case of that result related with the Fuss—
Catalan numbers obtained independently by the author of the present paper as a generalization
of [133, Exercise 8C5(c)] and [142] to the case of Fuss-Catalan numbers. Namely, let A =
(Al,..., A = 1) be a Young diagram such that A\; — Aj+1 < 1. Therefore, the boundary 9(\)
of X, that is the set of the last boxes in each row of A, is a disjoint union of vertical intervals.
To the last box of the lowermost interval we attach the generator xo3. To the next box of that
interval, if exists, we attach the generator ues and so on, up to the top box of that interval is
equipped with the generator, say zay,. It is clear that k1 = A} — X, + 2. Now let us consider
the next vertical interval. To the bottom box of that interval we attach the variable xy, 1, 41,
to the next box we attach the variable zy, 1,42 and so on. Let the top of that vertical interval
is equipped with the generator xy, k,; it is clear that ko = A} — A5 + 2. Applying this procedure
successively step by step to each vertical interval, we attach the variable uy to each box b in the
boundary of Young diagram A. Finally we attach the monomial

M/\ = T12 H Tp.
bed(N)

Theorem 5.6 ([39]). Let X\ be a partition such that \j — \iy1 <1, Vi > 1, and set N := \| +2.
Let wy € Sy be a unique dominant partition of shape \, and My € ACYBy(f) be the monomial
associated with the boundary O(\) of partition \. Then

Pag, (wij = ti, Vi, 5: 8) = &), (171 1)),
where t* = ti\l-~-t?VN. In other words, after the specialization x;; — ti_l, Vi,j, the spe-
cialized reduced polynomial corresponding to the monomial My is equal to t— multiplied by the
B-Grothendieck polynomial associated with the permutation 1 X wy.

Let us illustrate the above theorem by example. We take A = 43221. In this case N =7 = 542
and w = wy = [1,6,5,4,7,3,2]. The monomial corresponding to the boundary of A is equal to

—_—
T12023734735756T67 € ACYDBr.

Since the both reduced and S-Grothendieck polynomials appearing in this example are huge, we
display only its specialized values at x;; = 1, V4,7 and t; = 1, Vi. We set also d := 3 — 1. It is
not difficult to check that the reduced polynomial corresponding to monomial x19%23734%35%56
after the specialization x;; = 1, V1 <1 < j <5, and the identification z;6 = 216, 1 <7 <5, is
equal to

(97 20, 14, 3)53716 + (97 15, G)ﬁx%G + (47 4)ﬁx?6 + lel6'

51See [13, 44, 77] for example.
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Finally after multiplication of the above expression by xg7, applying 3-term relations (b) in the

algebra Aﬁﬁ% to the result obtained,and and taking the specialization z;7 = 1, Vi, we will
come to the following expression

(9,20,14,3)5(2 + B) + (9,15,6)5(3 + 28)* + (4,4)5(4 + 33) + (5 + 453)
— (66,144,108, 32, 3) 5.

One can check that the latter polynomial is equal to (’5?0(1).

Corollary 5.7 (monomials and Fuss—Catalan numbers FC,(lp +1)). Let p, n, b be integers, consider

diagram A = (n®,(n — 1)P, (n — 2)P,..., 2P, 1P) and dominant permutation w € Stn—1)p+b+2 of
shape . Let us define monomial

n—2 [/p+2 b+2
My pp = 712 H H Tjp+2,jp+a H Z(n—1)p+2,(n—1)p+a-
7=0 \a=3 a=3

Then
o " 1/n—1\/pn—0b -
PMn,p,b(xijzlvvzaJ)(/B): k<k—1><k_1>(/8+1)k 1.
k=1
Moreover,
g 1 n(p+1)—>b 1/np+1)—>b
PMn»P,b(l‘ij:1°VZ’J)(520):m n ) n—1 ,

where b :=b — w

For b = 0 the right hand side of the above equality is equal to the Fuss—Narayana poly-
nomial, see Theorem 5.46 and Proposition 5.47; a combinatorial interpretation of the value
P, o (ij = 1,Vi,5)(8 = 1) one can find in [110]. Note that reduced expressions for monomial

M, ,p in the (noncommutative) algebra mn(ﬁ) up to applying the commutativity rules (a),
Definition 5.1, is unique.

It seems an interesting problem to construct a natural bijection between the set of monomials
in the (noncommutative) reduced expression associated with monomials M,, , o and the set of
(p + 1)-gulations®® Finally we remark that there are certain connections of the -Grothendieck
polynomials corresponding to shifted dominance permutations (i.e., permutations of the form
1F x wy) and some generating functions for the set of bounded by k plane partitions of shape A,
see, e.g., [44]. In the case of a staircase shape partition A = (n — 1,...,1) one can envision
(cf. [128, 135]) a connection/bijection between the set of k-bounded plane partitions of that
shape and k-dissections of a convex (n + k + 1)-gon. However in the case k > 2 it is not clear
does there exist a monomial M in the algebra mn such that the value of the corresponding
reduced polynomial at x;; =1, Vi, j is equal to the number of k-dissections (k > 2) of a convex
(n+k+ 1)-gon.

Exercises 5.8.

(1)

(a) Let as before,
(12 3 ...
-1 .. 2)

52That is the set of dissections of a convex pk-gon by (maximal) collection of non-crossing diagonals such that
the all regions obtained are a convex (p + 2)-gons of a convex kp-gon.
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Show that

n—2
. n—a—1(n+a-2\ ,
GW(xlzq,szl,Vj%z):Z< >Q-

n—1 a
a=0

Note that the number
n—k+1/n+k
n+1 k
is equal to the dimension of irreducible representation of the symmetric group S, that corre-
sponds to partition (n + k, k).
(b) Big Schroder numbers, paths and polynomials @iﬁ) (1 = ¢ z; =1, Vi > 2). Let
><w0
n > 1 and k > 0 be integers, denote by Sj , the number of big Schréder paths of type (k,n),
that is lattice paths from the point (0,0) and ending at point (2n + k, k), using only the steps
U=(1,1), H=(2,0) and D = (1,—1) and never going below the line x = 0. The numbers

S(n) := Sp,, commonly known as big Schroder numbers, see, e.g., [131, A001003]. It is well-
known that

k+1<~/n\/n+k+a
s =S () (05

a=0

Show that
n—2
O (1 =0 1 = 1Y 22) = 3 Shs a(Ba"

where S, () is the generating functions of the big Schréder paths of type (k,n) according to
the number of horizontal steps H.
(¢) Show that the polynomial (’555) (r1 = ¢, x; = 1,Vi > 2) belongs to the ring

(n—1-1)
><w0
Nlg, B8 + 1]. For example, for n = 8 one has
esiﬁ) (@1 =q, 3 =1,¥i>2) = (0,1,15,50,50,15, 1) 5415 + (0,2, 24, 60, 40, 6) 5., °
><w0

+ (Ov 3,27, 45, 15)/3+1t4 + (07 4,24, 20>ﬁ+1t3 + (Ov 9, 15>,3+1t2 + 6(5 + 1)t + 1.

Show that
s =S () (AT () e ()
(d) Write
O oo (@ =0 7= 1,12 2) = Au(B)0" o 4 Boa(9).
Show that

Apn =1 +B)F60)_(2i=1,¥i>1),  Bra=6{  (zi=1,Vi>1).

—~~——ab —_~—
(2) Consider the commutative quotient ACYBZ (a, B) of the algebra ACYB,(«, 8), i.e., as-
sume that the all generators {x;; | 1 <i < j < n are mutually commute. Denote by P, (z;;; o, )
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— ——~—ab
the image of polynomial the P, (z;;; o, B) € ACYB,,(a, ) in the algebra ACYB[:L (a, 8). Finally,
define polynomials P, (¢, a, 3) to be the specialization

xij — 1 if j<n, Tip —> t if 1<i<n.

Show that
(a) Polynomial P, (t,«, ) does not depend on on order in which relations (a) and (b), see
Definition 5.1, have been applied.

(b)
(2n — 2k)!

Pu(l,a=1,8=0) = Zkln+1— Wl — 20
k>0

see [131, A052709(n)] for combinatorial interpretations of these numbers.
For example,

Pr(t,a,B) =t" +6(1+ B)t® +[(0,5,15) 41 + 6a]t® + (0,4, 24,20) 541 + a(5,29) g1 1]t*
+1(0,3,27,45,15) 5.1 + a(4,45,55) 541 + 14a?]t?
+ (0,2, 24,60, 40,6) 5,1 + «(3,48,115,50) 541 + a*(21,49) 5, 1]t>
+1(0,1,15,50,50,15,1) g1 + (2, 38,130,110, 20) 511 + a*(21,91,56) 511
+ 140®)t + a(1,15,50,50, 15, 1) 11 + *(14,70,70,14) 5,1 + a*(21,21) 54 1.

(¢) Show that in fact

1 [/2n—=2k\ (n+1\ , Toyo(n —k,k+1) 4
Pn 17 ) - = )
(1,,0) Zn+1< n >< k >a T BT

k>0 k>0

see Proposition 5.4(2), for definition of numbers T),(k,r). As for a combinatorial interpretation
of the polynomials P, (1, «,0), see [131, A117434, A085880].
(3) Consider polynomials P,(t,3) as it has been defined in Proposition 5.4(2). Show that

Pa(t, B) = Palt,o = —t"+Ztr(n_Zl_r (kL)("_;‘l)(lw)"-r—k),

cf., e.g., [131, A033877].
A few comments in order. Several combinatorial interpretations of the integer numbers

r n+1\/n—r
Un(r’k)'_n+1<k+r>< k )

are well-known. For example, if » = 1, the numbers U,(1,k) = (kil) (Z) are equal to the
Narayana numbers, see, e.g., [131, A001263]; if » = 2, the number U (2, k) counts the number
of Dyck (n + 1)-paths whose last descent has length 2 and which contain n — k peaks, see [131,
A108838] for details.

Finally, it’s easily seen, that P,(1,8) = A127529(n), and P,(¢,1) = A033184(n), see [131].

(4) Show that

Pu(t, o, B) € N[t, o[ + 1,

that is the polynomial P, (¢, a, 3) is a polynomial of 5+ 1 with coefficients from the ring N[¢, a].
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Show that
P,(0,1,5) € N[B +2].
For example,
P:(0,1,8) = (0,3,8,14,10,1) 42, P3(0,1,8) = (1,3,11,25,35,15,1) 342.
Show that [131]
P,(1,1,0) = A052709(n + 1),

that is the number of underdiagonal lattice paths from (0,0) to (n —1,n —1) and such that each
step is either (1,0), (0,1), or (2,1). For example, P;(1,1,0) = 1697 = A052709(8). Cf. with the
next exercise.

Show that [131]

P,(0,1,0) = A052705(n),

namely, the number of underdiagonal paths from (0,0) to the line x = n — 2, using only steps
(1,0), (0,1) and NE = (2,1). For example,

P7(0,1,0) = 36 4 106 + 120 + 64 + 15 + 1 = 342 = A052705(7).

Show that [131]
;Pn(a,b =1,8=0,a=1,y=2z2=1)= A005775,
a

that is the number number of paths in the half-plane z > 0 from (0,0) to (n—1,2) or (n—1, —3),
and consisting of steps U = (1,1), D = (1,—1) and H = (1,0) that contain at least one UUU
but avoid UUU’s starting above level 0.

5.1.1 Multiparameter deformation of Catalan, Narayana and Schréoder numbers

Let b = (B1,...,Bn-1) be a set of mutually commuting parameters. We define a multiparameter
analogue of the associative quasi-classical Yang—Baxter algebra MACYB,,(b) as follows.

Definition 5.9 (cf. Definition 2.20). The multiparameter associative quasi- classical Yang—

Baxter algebra of weight b, denoted by MﬁBn(b), is an associative algebra, over the ring of
polynomials Z[f1, ..., Bn—1], generated by the set of elements {z;;, 1 < i < j < n}, subject to
the set of relations

(a) zijam = xrwig if {i, 7} N {k, 1} = 2,
(b) Tij Tk = TikTij + TjpTip + Bivg if 1 <1 <i < j <n.

Consider the “Coxeter element” w,, € MmBn(b) which is equal to the ordered product of
“simple generators”:

n—1
Wy, = H La,a+1-
a=1

Now we can use the same method as in [133, Exercise 8.C5(c)], see Section 5.1, to define the
reduced form of the Coxeter element wy,. Namely, let us bring the element wy, to the reduced form
in the algebra MACYB,,(b), that is, let us consecutively apply the defining relations (a) and (b)
to the element w,, in any order until unable to do so. Denote the resulting (noncommutative)
polynomial by P(x;;;b). In principal, the polynomial itself can depend on the order in which
the relations (a) and (b) are applied.
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Proposition 5.10 (cf. [133, Exercise 8.C5(c)], [99, 100]). The specialized polynomial P(z;; = 1,
Vi, 4, b) does not depend on the order in which relations (a) and (b) have been applied.

To state our main result of this subsection, let us define polynomials
Q(ﬁla o 7/871—1) = P(fEU == 17 vzv.ja 61 - 1732 - 17 o 7ﬁn—1 - 1)
Example 5.11.

Q(B1, B2) = 1+ 261 + B + B,

Q(B1, B2, B3) = 1+ 3B1 + 282 + B3 + 367 + 182 + BB + B3 + B,

Q(B1, B2, B3, Ba) = 1 + 41 + 32 + 203 + B4 + B1(681 + 352 + 303 + 2[4)
+ B2(3B2 + B3 + Ba) + B3 + BT (451 + B2 + B3 + Ba)
+B1(B3 + B3) + B3 + B

Theorem 5.12. Polynomial Q(51, ..., Bn—1) has non-negative integer coefficients.

It follows from [133] and Proposition 5.4, that
Q(ﬂl) s 7/8n_1)‘51:17---7ﬁn—1:1: Catn

Polynomials Q(f1, ..., n—1) and Q(S1+1,...,Br—1+1) can be considered as a multiparameter
deformation of the Catalan and (small) Schréder numbers correspondingly, and the homogeneous
degree k part of Q(f1,...,Bnh—1) as a multiparameter analogue of Narayana numbers.

5.2 Grothendieck and g-Schroder polynomials
5.2.1 Schroder paths and polynomials

Definition 5.13. A Schréder path of the length n is an over diagonal path from (0,0) to (n,n)
with steps (1,0), (0,1) and steps D = (1, 1) without steps of type D on the diagonal x = y.

If p is a Schroder path, we denote by d(p) the number of the diagonal steps resting on the
path p, and by a(p) the number of unit squares located between the path p and the diagonal
x = y. For each (unit) diagonal step D of a path p we denote by i(D) the z-coordinate of the
column which contains the diagonal step D. Finally, define the index i(p) of a path p as the
some of the numbers i(D) for all diagonal steps of the path p.

Definition 5.14. Define g-Schréder polynomial Sy, (g; 8) as follows

Sn(q: B) = an(p)-i-i(mﬁd(ﬁ)’ (5.4)
P

where the sum runs over the set of all Schroder paths of length n.

Example 5.15.

Si(q; 8) =1, Sa(q; 8) =1+ q + Bq,
S3(q; 8) = 1+2q+ ¢* + ¢ + B(q + 2¢* + 2¢°) + B°¢°,
Su(g;8) =1+ 3q+3¢* +3¢° + 2¢" + ¢° + ¢° + B(q + 3¢* + 5¢° + 6¢" + 3¢° + 3¢°)

+ B8%(¢* + 2¢" + 3¢° + 3¢°) + B3¢°.
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Comments 5.16. The ¢-Schréder polynomials defined by the formula (5.4) are different from
the g-analogue of Schroder polynomials which has been considered in [19]. It seems that there
are no simple connections between the both.

Proposition 5.17 (recurrence relations for ¢-Schroder polynomials). The g-Schrdder polyno-
mials satisfy the following relations

k=n—1

Su1(6:8) = (L+ "+ B¢")Su(g: ) + D> (¢ + 8" F)Sk(a: 4" B)Sni(g; B),
k=1

and the initial condition S1(q; ) = 1.
Note that P,(8) = S,(1;5) and in particular, the polynomials P, (/) satisfy the following
recurrence relations

1

Pn—i—l(ﬁ) = (2+6) Pn(6)+(1+/3> Pk:(/B) Pnfk(ﬁ) (5'5>

1

3
|

£
Il

Theorem 5.18 (evaluation of the Schréder—Hankel determinant). Consider permutation

m (1 2 ... k k+1 k+2 ... n
T\l 2 ok on om—1 ... k+1)
Let as before
n—1 '
Pu(8) =) _N(nj(1+8), n>1, (5.6)
7=0

be Schrioder polynomials. Then

A+8)E6P (@ =1,... 2y =1) = Det | Pyshi_; (8)|1<is
yee ey bn— n+k—i—j 1<4,5<k-

")
Proof is based on an observation that the permutation ﬂ]in) is a vezillary one and the recur-
rence relations (5.5).

Comments 5.19. (1) In the case 5 = 0, i.e., in the case of Schubert polynomials, Theorem 5.18
has been proved in [44].

(2) In the cases when f =1 and 0 < n — k < 2, the value of the determinant in the r.h.s.
of (5.6) is known®3. One can check that in the all cases mentioned above, the formula (5.6) gives
the same results.

(3) Grothendieck and Narayana polynomials. It follows from the expression (5.5) for the
Narayana—Schréder polynomials that P, (8 — 1) = M, (5), where

n—1
1/n n ;
‘ﬁn = E e . ju
2 il (]) <J + 1)5
7=0
denotes the n-th Narayana polynomial. Therefore, P,(8—1) = M, (/) is a symmetric polynomial

in $ with non-negative integer coefficients. Moreover, the value of the polynomial P,(5 — 1) at

B =1 is equal to the n-th Catalan number C,, := n-li-l (27;1)

53Gee, e.g., [19], or M. Ichikawa talk “Hankel determinants of Catalan, Motzkin and Schréder numbers and its
g-analogue”, http://www.uec.tottori-u.ac.jp/~mi/talks/kyoto07.pdf.
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It is well-known, see, e.g., [136], that the Narayana polynomial 0N, (/) is equal to the gene-
rating function of the statistics m(p) = (number of peaks of a Dick path p) — 1 on the set Dick,,
of Dick paths of the length 2n

Na(B) =D 8P

p
Moreover, using the Lindstrom-Gessel-Viennot lemma®*, one can see that
k
DET [Ny 4-i—j (B)1<ijr = BG) > gt (5.7)
(P155PK)

where the sum runs over k-tuple of non-crossing Dick paths (p1,...,px) such that the path p;
starts from the point (i — 1,0) and has length 2(n —i+1),i=1,... k.
We denote the sum in the r.h.s. of (5.7) by n'k (B). Note that m,ﬁ’“_)l(ﬁ) =1 for all £ > 2.

Thus, ‘ﬁ%k)(ﬁ) is a symmetric polynomial in 8 with non-negative integer coefficients, and

2%k + i +] (2n72a)
me=n=cl= [l 5= 1l (2k+2++1)
1<i<j<n—k 2a<n—k—1 2k

As a corollary we obtain the following statement

Proposition 5.20. Let n > k, then

6 V(@ = 1.z, = 1) =P (B).

(n)
Ty

x1=1,...,2, = 1) is a symmetric polynomial in

Summarizing, the specialization (’5([.(3;)1)(

Tk
with non-negative integer coefficients, and coincides with the generating function of the statistics
k
>~ m(p;) on the set k-Dick,, of k-tuple of non-crossing Dick paths (p1,...,pg).
i=1

Example 5.21. Take n =5, k = 1. Then 77%5) = (15432) and one has

™

6% (1,4,4%¢%) = ¢*(1,3,3,3,2,1,1) + ¢*(1,3,5,6,3,3)8 + ¢"(1,2,3,3) 8% + ¢'°8%.
1

It is easy to compute the Carlitz—Riordan g-analogue of the Catalan number C5, namely,
Cs(q) = (1,3,3,3,2,1,1).

Remark 5.22. The value 91,,(4) of the Narayana polynomial at 8 = 4 has the following com-
binatorial interpretation: 1,,(4) is equal to the number of different lattice paths from the point
(0,0) to that (n,0) using steps from the set ¥ = {(k,k)or (k,—k), k € Z-o}, that never go
below the x-axis, see [131, A059231].

Exercises 5.23.

(a) Show that

oY (2n—2k)1(2k + 1)
T =T Am T = k)(nt k4 D)

n

51See, e.g., https://en.wikipedia.org/wiki/Lindstrom-Gessel-Viennot_lemma.
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b) Show that v, < 1if k <n <3k+1, and v, > 2" 3% Lif n > 3k + 1.
( Y, Yk,

(4) Polynomials §w(B), Hw(B), Huw(q,t;8) and Ry(q; B). Let w € S, be a permutation,
& (X,) and & (Xn,Y,) be the corresponding -Grothendieck and double S-Grothendieck

polynomials. We denote by 65@8)(1) and by 65,;8)(1; 1) the specializations X,, = (x; = 1,...,
xn=1),Y,:=(y1 =1,...,y, = 1) of the S-Grothendieck polynomials introduced above.

Theorem 5.24. Let w € S,, be a permutation. Then

(i) The polynomials §(5) = QSSf_l)(l) and $Hy(B) = 1(1,5_1)(1; 1) have both non-negative
integer coefficients.

(1) One has
H0(B) = (1+B)1F0u(5%).
(iii) Let w € S, be a permutation, define polynomials
(g, 6;8) =8P (@1 =qma =g, xn =qy1 =ty =1,y = 1)

to be the specialization {x; = q,y; = t,Vi} of the double 3-Grothendieck polynomial
6P (X,,Y,). Then

(e t: B) = (q+t + Bat) F((1 + Bq)(1 + Bt)).

In particular, $u(1,1;8) = (2+ 8)")Fu((1 + 5)).
(iv) Let w € S, be a permutation, define polynomial
Ru(q; B) = 05,%3_1)(301 =qxa=1lx3=1,...)
to be the specialization {x1 = q, x; = 1, Vi > 2}, of the (8 — 1)-Grothendieck polynomial
051(1,571)()(”). Then
Ru(q; 8) = ¢V "Ry (q; 8),

where Ry (q; 8) is a polynomial in q and B with non-negative integer coefficients, and
Ry(0;8=0)=1.

(v) Consider permutation wq(ll) = [l,n,n—1,n—2,...,3,2] € S,,. Then ﬁw(l)(l, 1;1) =
3("2 )0, (4).
In particular, if wflk) =(1,2,...,k,n,n—1,...,k+1) €S,, then

Gf%;)l)(l; )=(1+ ﬁ)("?k)gfi;)l)(ﬁz)_

See Remark 5.22 for a combinatorial interpretation of the number 91,,(4).

Example 5.25. Consider permutation v = [2,3,5,6,8,9,1,4,7] € Sg of the length 12, and set
x:= (14 Bq)(1 + Bt). One can check that

90(q, £ 8) = 22 (1 + 22) (1 + 6z + 1927 + 242 + 132%),

and §,(8) = (1 +28)(1 + 68 + 1982 + 2443 + 138%).
Note that §,(8 = 1) = 27 x 7, and 7 = AMS(3), 26 = CSTCTPP(3), cf. Conjecture 5.52,
Section 5.2.4.
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Remark 5.26. One can show, cf. [92, p. 89], that if w € S,, then R, (1,5) = R,-1(1,5).
However, the equality 2R, (q, 8) = R,-1(q, 5) can be violated, and it seems that in general,
there are no simple connections between polynomials Ry, (¢, ) and R,,-1(q, 5), if so.

T .
From this point we shell use the notation (ag,a1,...,a,)s = Y a;3, etc.

7=0
Example 5.27. Let us take w =[1,3,4,6,7,9,10,2,5,8]. Then

R (q,8) = (1,6,21,36,51,48,26) 5 + ¢B(6, 36,126, 216, 306, 288, 156) 5
+ ¢%83(20, 125, 242, 403, 460, 289) 5 + ¢*3°(6, 46, 114, 204, 170) 5.

Moreover, Ry, (g, 1) = (189, 1134, 1539, 540),. On the other hand, w™1=[1,8,2,3,9,4,5, 10,6, 7],
and

Ry-1(q,B) = (1,6,21,36,51,48,26)5 + ¢B(1,6,31, 56,96, 110, 78) 5
+ ¢2B(1,6,27,58,92,122,120, 78)5 + ¢*B(1, 6, 24, 58,92, 126, 132,102, 26) 5
+¢*B(1,6,22,57,92,127,134, 105, 44) 5
+¢°B(1,6,21,56,91,126,133,104, 50) 5
+¢%B(1,6,21,56, 91,126, 133,104, 50) 5.

Moreover, R, -1 (q, 1) = (189, 378,504, 567, 588, 588, 588),.
Notice that w = 1 X u, where u = [2,3,5,6,8,9,1,4,7]. One can show that

Ru(q, B) = (1,6,11,16,11)5 + ¢B7(10,20,35,34) 5 + ¢*8*(5, 14, 26)5.
On the other hand, v=! =[7,1,2,8,3,4,9,5,6] and

R,-1(1, 8) = (1,6,21,36,51,48,26) 5 = Ry (1, B).

T

Recall that by our definition (ag, a1,...,a,)g:= > a;3.

J=0

5.2.2 Grothendieck polynomials and k-dissections

Let k € N and n > k — 1, be a integer, define a k-dissection of a convex (n + k + 1)-gon
to be a collection & of diagonals in (n + k + 1)-gon not containing (k 4 1)-subset of pairwise
crossing diagonals and such that at least 2(k — 1) diagonals are coming from each vertex of the
(n+k+ 1)-gon in question. One can show that the number of diagonals in any k-dissection £ of
a convex (n+ k+1)-gon contains at least (n+k+1)(k—1) and at most n(2k — 1) — 1 diagonals.
We define the index of a k-dissection £ to be i(€) = n(2k — 1) — 1 — #|€|. Denote by

T(6) =3 5
&
the generating function for the number of k-dissections with a fixed index, where the above sum

runs over the set of all k-dissections of a convex (n + k + 1)-gon.

Theorem 5.28.

60 (zy=1,... 2, =1) = TH(B).

(n)
Tk
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Mopre generally, let n > k > 0 be integers, consider a convex (n + k + 1)-gon P ixi1
and a vertex vy € P,yxy1.- Let us label clockwise the vertices of P,1r4+1 by the numbers
1,2,...,n+k+1 starting from the vertex vy. Let Dis(P,4x+1) denotes the set of all k-dissections
of the (n+k+1)-gon P, 1. We denote by Dy := Disg(Pp1x+1) the “minimal” k-dissection of
the (n + k + 1)-gon P,4k+1 in question consisting of the set of diagonals connecting vertices v,
and vz, where 2 < r <k, 1 < a <n+k+1, and for any positive integer a we denote by
@ a unique integer such that 1 <a < n+k+ 1 and a = @(mod (n + k + 1)). For example, if
k =1, then Disg(P,42) = @; if K = 3 and n = 4, in other words, Pg is a octagon, the minimal
3-dissection consists of 16 diagonals connecting vertices with the following labels

153—=5—-7—=9=1, 2 54—356—->8—=10=2,
154575 10=2—-5—->8—>11=3—-6—9=1.

Now let D € Dis(P,+x+1) be a dissection. Consider a diagonal d;; € (D\Dy), ¢ < j which
connects vertex v; with that v;. We attach variable z; to the diagonal d;; in question and
consider the following expression

TPn+k+1 (Xn+k+1) = Z 6#|D\DO‘ Z sz

DEDiS(Pn+k+1) dije.(<D.\D0)
i<j

Theorem 5.29. One has

n
. 1, B
TP (Xnshs1) = ﬁk(n—k) H wgnn(n—a—l—l,n—k)@ﬁz (:El L., mnl).

a=1

Exercises 5.30. It is not difficult to check that

(’5?5432()(5) = BBadadaie, + A (adxdas + 233 wsny + 3udrdadey + 32 adaday)
+ B(xixdrs + 23wy + 20 xdes + 20tadad + 3atadwswy + 3riweniay
+ 3xasxsry + 3ririaiey + 3riwiriny) + pixdes + wivdey + xwoad
+ $:{)l‘2x3$4 + x?az%m + $%ZL‘%$3 + x%x%m + x%m%x% + $%$%J}3$4 + x%mgxgm

3,.2 3 2,2 3,2
+ 212503 + 1250304 + T1T503L4 + ToX3T4.

Describe bijection between dissections of hexagon Py (the case k = 1, n = 4) and the above
listed monomials involved in the -Grothendieck polynomial 6’?5432(331, X9, X3, T4).

A k-dissection of a convex (n+k+1)-gon with the maximal number of diagonals (which is equal
ton(2k—1)—1) is called k-triangulation. It is well-known that the number of k-triangulations of
a convex (n+k+1)-gon is equal to the Catalan—-Hankel number C’T(f_)l. Explicit bijection between
the set of k-triangulations of a convex (n + k + 1)-gon and the set of k-tuple of non-crossing
Dick paths (71, ...,7%) such that the Dick path ; connects points (i — 1,0) and (2n —i — 1,0),
has been constructed in [128, 135].

5.2.3 Grothendieck polynomials and g-Schréder polynomials

Let ngn) =1k x w(()"_k)

that

€ S, be the vexillary permutation as before, see Theorem 5.18. Recall

m (1 2 ... k k+1 k+2 ... n
T “\1 2 ...k n n-1 .. k+1)"
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(A) Principal specialization of the Schubert polynomial & oy Note that 7T]E: ") s
a vexillary permutation of the staircase shape A = (n—k—1,...,2,1) and has the staircase flag
p=(k+1,k+2,...,n—1). Tt is known, see, e.g., [92, 139], that for a vexillary permutation
w € S, of the shape A and flag ¢ = (¢1,...,é,), r = £(\), the corresponding Schubert polynomial
S (Xy) is equal to the multi-Schur polynomial sy(Xy), where X, denotes the flagged set
of variables, namely, Xy = (X4,,...,X4,) and X;, = (21,...,%m). Therefore we can write
the following determinantal formula for the principal specialization of the Schubert polynomial
corresponding to the vexillary permutation wkn

n—t+75—1
w(1,q,¢>...) =DET
67“(9)(7Q7q7 ) <|: ]{?—F’L—l :|q>1<.‘< kv
2,7<n—

where [Z]q denotes the g-binomial coefficient.

Let us observe that the Carlitz—Riordan g-analogue C),(q) of the Catalan number C,, is equal
to the value of the ¢-Schréder polynomial at 8 = 0, namely, Cy,(q) = Sp.(g,0).

Lemma 5.31. Let k, n be integers and n > k, then

n—i+j7—1 ("35) (k)
(1) DET([ . } ) =q' 3 /07 (q),
k+i—1 0/ 1<ij<ni

(2) DET (Copri—j(0)),; o = €"FDE270/6 () (g).

(B) Principal specialization of the Grothendieck polynomial 6(@1)

Theorem 5.32.
R (k-1 1
q( ) ( )( DET |S7‘L+k i— ](gv - B) ‘1§Z,]§]€
k1)4k+1/6H alﬁ@(n(lq,q,..).
Corollary 5.33.
(1) If k=n—1, then
' n—2
DET |Son—1-i—j(¢:¢" ' B) l1<ij<n—1 = gD (n=2)(n=3)/6 H (1+ qa_lﬁ)niaila
a=1
(2) If k =n—2, then
-2 -1
qn DET ‘5277,7271'7]' (Qa qZ B) }1§i7j§n72
n—3
—a—2 [ (1 el
_ =236 TT (14 21 6)" 2{( +5)ﬁ }
a=1

Generalization. Let n = (n1,...,n,) € NP be a composition of n so that n = ny +--- +n,,.
We set nl) =ni+--+n;73=1,...,p, n© = 0.

Now consider the permutation w(™ = wém) X w(()nr") X e X w(()"” ) ¢ S,,, where w[()m) € Sm

denotes the longest permutation in the symmetric group S,,. In other words,

<1 2 .om n2) ..o +1 ... n®-1) ...n )

n)
ng ni—1 ... 1 ny+1 ... n® n onlpmh+L

w™ =
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For the permutation w(™ defined above, one has the following factorization formula for the
Grothendieck polynomial corresponding to w(™) [92]

(/3) _x® 8) 8) B)
6 6 (”Ll 61n1 Xw(()”Q) X ®1n1+n2><w(()"3) X X 6 n1+ Mp— 1><w(()”;0)'
In particular, if
w™ = w(()nl) X w(()m) X e X w(()np) €Sy, (5.8)

then the principal specialization (’5(5()7@ of the Grothendieck polynomial corresponding to the

permutation w, is the product of ¢-Schroder—Hankel polynomials. Finally, we observe that from
discussions in Section 5.2.1(3), Grothendieck and Narayana polynomials, one can deduce that

(B-1) . (J)
G (n (w1 =1,... H m,;m)

B

In particular, the polynomial Q5w(;)l )(ml, ...,Ty) is a symmetric polynomial in # with non-
negative integer coefficients.

Example 5.34.
(1) Let us take (non vexillary) permutation w = 2143 = s;s3. One can check that

6D (1,1,1,1)=3+38+ 82 =1+ B+ 1)+ (B+1)2
and

s)’t4</3) = (176767 l)a m3(6) = (173, 1)7 m2(6) = (17 1)'

It is easy to see that

36((1,1,1,1) = DET

On the other hand,

Py(B) P3(8)
P(B) P(B)

It is more involved to check that

DET

’: (3,6,4,1) = (3+ 38+ A2)(1 + B).

Su(q; 8)  Ss(q;8)
S3(q;qB) S2(q;98)|

(2) Let us illustrate Theorem 5.32 by a few examples. For the sake of simplicity, we consider
the case 5 =0, i.e., the case of Schubert polynomials. In this case P,(q; 8 = 0) = Cy(q) is equal
to the Carlitz—Riordan g-analogue of Catalan numbers. We are reminded that the ¢g-Catalan—
Hankel polynomials are defined as follows

@°1+p8) 6% (1,9,4*,¢°) = DET

CH)(q) = FIPE=D/SDET|C, ki (@) 1<ij<n-

n

In the case f = 0 the Theorem 5.32 states that if n = (n1,...,n,) € N? and the permutation
W) € Sy is defined by the use of (5.7), then

Gw(n>(1,q,q2, _ ) E(s)c(m) ( ) X C(m—i—nz) (q) x Cy(Lnfnp)(q).

n1+no\q n1+na+n3\d

Now let us consider a few examples for n = 6.
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o n=(1,5) = G m(lq...)=q°C"(q) = Cs(q).

o n=(24) = &, m(lg...)=q¢C"(q) =DET

Note that 6,24 (1,q,...) = S,a0.10(1,q,...).

e n=1(222) = S,m(lq...) =CPC" ().
en= (114 = S,m(lgq...)= q4C’§1)(q)C§2) (q) = q4C’£2)(q), the last equality follows

from that C,gi)l( )=1forall k> 1.

o n=(1,23) = 6,m(Lq...) =" (90 (q).
en=(321) = &,m(Lq...) = 0 )C () = 4C(q) = ¢(1,1,1,1). Note that

Cit(a) =[],

Exercises 5.35. Let 1 < k < m < n be integers, n > 2k + 1. Consider permutation

w— 1 2 k kK+1 ... n cs
“\m m—-1 ... m—k+1 n A | v

Show that

Gw“ﬂr‘):quwngggwﬁw,

where for any permutation w, n(D(w)) = >_ (di(;”)) and d;(w) denotes the number of boxes in
the i-th column of the (Rothe) diagram D(w) of the permutation w, see [92, p. §].
(C) A determinantal formula for the Grothendieck polynomials QS( ) Define

polynomials

1 a\’ ™t i . o
b o () g 150552

and
Z

7j—1 . .
1—75—1 . .
A,] KXkyn— 1 Z €n—i— a Xpgk— )( > if 1<j<i<n.

a
Theorem 5.36.

DET |A2]|1<z ji<n — 6( (2) (Xk+n—l)-

k+n

Comments 5.37.
(a) One can compute the Grothendieck polynomials for yet another interesting family of
permutations. namely, grassmannian permutations

U(H)_ 1 2 ... k-1 k kE+1 k+2 ... n+k
k= \1 2 ... k=1 n+k k E+1 ... n+k—1

= SkSk+1° " Sntk—1 € Spyk-
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Then
5 k-1
Q5<(7k)(”> (1,0, Tntk) Z 8(n,19)
7=0

where s(;, 15)(Xk) denotes the Schur polynomial corresponding to the hook shape partition (n, 17)

and the set of variables Xy := (x1,...,2%). In particular,
k—1 k—1 .
8) . n+k—1 ko (k—1\ n+j—1 j
6ak(n) (35] ) \V/]) < Lk JEO n + ] ] 5 ]EO ] ( + /6)

(b) Grothendieck polynomials for grassmannian permutations. In the case of a grassmannian
permutation w := o) € Sy of the shape A = (A; > A9 > -+ > \,,) where n is a unique descent
of w, one can prove the following formulas for the S-Grothendieck polynomial

AjHn—j i
DET |2 ™" (1 + Ba;)? Yicii<n

O (Xn) = 0 ww) .
1<i<j<n
DET ‘hg\ﬁ)ﬂg [d ”])llgi,jgn = DET ]h)\ +zg ">’1§i,j§n7
where X{; ;) = (%i, Tit1, - - -, Tn), and for any set of variables X
k—1
000 =3 (4 oo,
a=0

and hi(X) denotes the complete symmetric polynomial of degree k in the variables from the
set X.
A proof is a straightforward adaptation of the proof of special case § = 0 (the case of Schur
polynomials) given by I. Macdonald [92, Section 2, equation (2.10) and Section 4, equation (4.9)].
Indeed, consider S-divided difference operators 71'(/8 ), j=1,....,n—1, and 771(1}[3 ), w E Sy,

introduced in [42]. For example,

9(f) = #((1 + Bai) F(Xn) — (14 Bx;) f(s;(Xn)).

Lj = LTj+l

(n)

Now let wp := wy; ’ be the longest element in the symmetric group S,,. The same proves of
the Statements 2.10, 2.16 from [92] show that

n—1
T = a5 wo | >0 (=1 [+ pa)" o |,
oES, j=1
where as = [ (2; — ).
1<i<j<n

On the other hand, the same arguments as in the proof of Statement 4.8 from [92] show that

Qﬁ(ﬁ)(Xn) - 7T(ﬁ(%)( /\+5n).

DY

Application of the formula for operator 7r(6(2)> displayed above to the monomial z* %" finishes the

proof of the first equality in (5.8). The statement that the right hand side of the equality (5.9)
coincides with determinants displayed in the identity (5.9) can be checked by means of simple
transformations.
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Problems 5.38.
(1) Give a bijective prove of Theorem 5.28, i.e., construct a bijection between

e the set of k-tuple of mutually non-crossing Schrider paths (pi,...,pr) of lengths
(n,n—1,...,n—k+1) correspondingly, and

e the set of pairs (m,T), where T is a k-dissection of a convex (n+ k+ 1)-gon, and m
is a upper triangle (0,1)-matriz of size (k — 1) x (k — 1), which is compatible with
natural statistics on the both sets.

(2) Let w € S,, be a permutation, and CS(w) be the set of compatible sequences corresponding
to w, see, e.g., [13]. Define statistics c(e) on the set CS(w) such that

6 Ve =lay=1,..)= Y p.
a€CS(w)

(3) Let w be a vexillary permutation. Find a determinantal formula for the (3-Grothendieck
polynomial &) (X).

(4) Let w be a permutation. Find a geometric interpretation of coefficients of the polynomials
61(,?)(502- =1) and 61(,?)(33,- =q,z;=1,Vj#i).

For example, let w € S,, be an involution, i.e., w? = 1, and w’ € S, 41 be the image of w under
the natural embedding S,, < S, 41 given by w € S,, — (w,n+1) € S;,41. It is well-known, see,
e.g., [77, 142], that the multiplicity me,, of the 0-dimensional Schubert cell {pt} = Y (ne1) in

0

the Schubert variety Y, is equal to the specialization &,,(z; = 1) of the Schubert polynomial

S (Xp). Therefore one can consider the polynomial Y (x; = 1) as a (-deformation of the
multiplicity me .

Question 5.39. What is a geometrical meaning of the coefficients of the polynomial
&P (z; = 1) e N[g]?

Conjecture 5.40. The polynomial 61(5) (x; = 1) is a unimodal polynomial for any permuta-
tion w.

5.2.4 Specialization of Schubert polynomials

Let n, k, r be positive integers and p, b be non-negative integers such that » < p+ 1. It is
well-known [92] that in this case there exists a unique vezillary permutation @ = wy 4 € Soo
which has the shape A = (A1,..., A\p+1) and the flag ¢ = (é1, ..., Pnt1), where

Ai=n—i+1)p+b, pi=k+1+r@E—1), 1<i<n+1-0dp.

According to a theorem by M. Wachs [139], the Schubert polynomial & (X) admits the following
determinantal representation

S (X) =DET (h/\i—i+j(X¢i))1gi,jgn+1'

Therefore we have
Gw(l) = 6w($1 = 1,1’2 = 1, .. )

_DET(((n—z—i—l)p—i—b—.z—f-]—i-k—k(z—1)r>) .
k+(@i—1)r 1<i,j<n+1

We denote the above determinant by D(n, k,r,b,p).
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Theorem 5.41.

)

H z’+b'+jp H (k—i+D(p+1)+(i+j—1)r+r(b+np)

D(n,k,r,b,p) =
(n7 Ty 7p) k—l—f—l—'—(l—l—j—l)’f’

(ivj)e-An,k,'r (i’j)GBn,k,r

where
{ €Z>0’]<TL]<Z<I{Z+(T’—1)(TL j)}
By = {(i, eZ>1\z—|—]<n+1 i#k+1+4rs, s€ Lo}
It is convenient to re-write the above formula for D(n, k,r,b,p) in the following form
n+1

H m—j+1p+b+k+({G—10r—-1)(n—7+1)!
k+0G - (n—7+1(+1)+b)!

D(”’ k? r? b p
J=1

X H (k—=i+1)(p+1)+jr+ (np+bd)r).
1<i<j<n

Corollary 5.42 (some special cases). (A) The case r = 1.

We consider below some special cases of Theorem 5.41 in the case r = 1. To simplify no-
tation, we set D(n,k,b,p) := D(n,k,r = 1,b,p). Then we can rewrite the above formula for
D(n,k,r,b,p) as follows

(n+k—7+D+)+d)((n—g+Dp+b+k)(HF—1)!
(n—j+ D+ +b((k+n—j+1p+b+k)l(k+j—1)

D(n,k,b,p) =

.::]+

(1) If k <n+1, then

D(n7k7b7p):H ((n+k+1—])(p—|—1)+b> <(k_])p+b+k>]'(k‘ ]) (’I’L—_]—|—1) )

j=1 n—j+1 J (n+k—j+1)!

In particular,

o ifk=1, then
1+0b p+1)(n+1)+0b (p+1)
1,0 =F b
D Lop) = T i 1p ( n+1 wir (0)
where FL(b) := %(’mﬁb) denotes the generalized Fuss—Catalan number,
o if k=2, then
240)(24+0
D(n,2,b,p) = e A0 ARIO!

(1+0)2+b+ (n+1)p)(2+b+ (n+2)p) "

n particular,

D(n, 2, 0, ].) == Catn+1Catn+2.

(n+3)(n+4)

See [131, A005700] for several combinatorial interpretations of these numbers.
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(2) Consider the Young diagram (see R.A. Proctor [122])
ANi=Xpp ={(0,)) €Z>1 xZ>1|1<i<n+1,1<j<(n+1—i)p+b}
For each boz (i,7) € X define the numbers c(i,j) :=n+1—i+ j, and
k+c(p,g)
i (h) = (pcfigz)g + (i, §)
c(i, j)

if < (n+1—4)(p—1)+b,

if n+1—i)(p—1)<j—b<(n+1—1)p.

Then

D(n,k,bp) =[] laj (k). (5.10)
(4,5)EX
Therefore, D(n, k,b,p) is a polynomial in k with rational coefficients.
(3) If p=10, then

nt+k , . min(j,n+k+1—3)
. (b+k J+b
D(n, k,b,0) = dim V(flil)k) =11 <J>

i

J=1

where for any partition p, () < m, V,f[(m) denotes the irreducible gl(m)-module with the highest
weight . In particular,

1 n+24+b\/n+2+>
D(”’Q’b’o)_n+2+b< b >< b+1)

is equal to the Narayana number N(n+ b+ 2,b),

(b+ENO+E+1)
EWB(k+1)I(b+1)!
and therefore the number D(1,k,b,0) counts the number of pairs of non-crossing lattice paths
inside a rectangular of size (b+1) x (k+1), which go from the point (1,0) (resp. from that (0,1))
to the point (b+ 1,k) (resp. to that (b,k + 1)), consisting of steps U = (1,0) and R = (0,1),
see [131, A001263], for some list of combinatorial interpretations of the Narayana numbers.

(4) If p=b=1, then

D(1,k,b,0) =

=NOb+k+1,k),

2%k +i+j

n+k+1 ° ’L+]

1<i<j<n+1
(5) If p = 1 and b is odd integer, then D(n,k,b,1) is equal to the dimension of the irre-
ducible representation of the symplectic Lie algebra Sp(b+2n+ 1) with the highest weight kwy1
(R.A. Proctor [120, 121]).
(6) If p=1 and b =0, then

D(n,k,1,1) = ¥ I1

2k+i+j )

D(n,k,1,0)=D(n—1,k1,1)= ] - Ll
T ]

1<i<j<n

see section on Grothendieck and Narayana polynomials.
(7) Let wy be a unique dominant permutation of shape X := A, pp and £ := b, pp = %(n +
1)(np + 2b) be its length (cf. [44]). Then

1
Z H(:C +a;) = l!B(n,z,p,b).

acR(wy) i=1

Here for any permutation w of length |, we denote by R(w) the set {a = (a1,...,a;)} of all
reduced decompositions of w.
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Exercises 5.43. Show that

@ ("5
DET[F\Y,; ) 1<ijer = HF"“ ! [I (n+itj)
1<i<k—1
1<j;<k
. I b+i+j—1)
1<’L<]<k}
k,b,1) '
(n, 1:[ +J (n+b+i+j+1)
= 1<z<k 1
1<j<k

Clearly that if b = 0, then FT(LQ) (0) = C,, and D(n,k,0,1) is equal to the Catalan—Hankel
determinant Cf, *)

Finally we recall that the generalized Fuss—Catalan number Fff:; )(b) counts the number of
lattice paths from (0,0) to (b + np,n) that do not go above the line z = py, see, e.g., [81].

Comments 5.44. It is well-known, see, e.g., [122] or [134, Vol. 2, Exercise 7.101.b], that the
number D(n, k,b,p) is equal to the total number pp*»»(k) of plane partitions® bounded by k
and contained in the shape A, 4.

More generally, see, e.g., [44], for any partition A denote by w) € G4 a unique dominant
permutation of shape A, that is a unique permutation with the code ¢(w) = A. Now for any

non-negative integer k consider the so-called shifted dominant permutation wf\k) which has the
shape A and the flag ¢ = (¢p; =k +i—1,i=1,...,4()\)). Then

S (1) =pp (< k),

wx

where pp*(< k) denotes the number of all plane partitions bounded by k& and contained in \.
Moreover,

Z q|7r\ _ qn(A)ng\k)(l,q_l,q_a...),

rePP\(<k)
where PP*(< k) denotes the set of all plane partitions bounded by k& and contained in \.

Exercises 5.45.
(1) Show that

' ) g"W
kl;n;o ngk)(l,q,q o) = RO
where Hy(q) = [] (1 - ¢"®)) denotes the hook polynomial corresponding to a given partition .
(2) Let A = (x(en/\%— 0)¢, ™) be a fat hook. Show that
Ki(q)

lim ¢" n(A )6w(k) (1, qil7 q*Z, L ) — qS(f,n)
A

k—o0

My(2n+ 20— 1;q)’
where a(¢,n) is a certain integer we don’t need to specify in what follows,

N 1 min(j,N+1—73,0)
My(N;q) =] < )

N e

55Let A be a partition. A plane (ordinary) partition bounded by d and shape A is a filling of the shape A
by the numbers from the set {0,1,...,d} in such a way that the numbers along columns and rows are weakly
decreasing. A reverse plane partition bounded by d and shape A is a filling of the shape A by the numbers from
the set {0, 1,...,d} in such a way that the numbers along columns and rows are weakly increasing.
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denotes the MacMahon generating function for the number of plane partitions fit inside the box
N x N x ¢, Kx(q) is a polynomial in ¢ such that K,(0) = 1.
(a) Show that

Ki(q) _ 1

Me(2n + 26— 15q) |, I R(z)”
TEAN

(1— )"

(b) Show that
Ki(q) eN[g]  and  Kjx(1) = M(n,n,{),

where M (a,b,c) denotes the number of plane partitions fit inside the box a x b x ¢. It is
well-known, see, e.g., [93, p. 81], that

itji+k—1 S a+b4+i—1)3i—1) T
M = —_— = JrC.
(a,b,) 1<11ai+j+k—2 1:[1(a+z'—1)!(b+1—1)! dim Ve
1<5<b -
1<k<c

Show that

Z qwtz(ﬂ)’

TI'GBn’mg

where the sum runs over the set of plane partitions m = (m;;)1<; j<n fit inside the box B,, ,, ¢ :=
nxn x £, and

wty(m Z mij + 4 Z Tii.

(¢) Assume as before that X := ((n + £),¢"). Show that

2
n(w)
q
i Kx(a) Z q“'( h(az))) !

ajEM(]‘ - q
1’(#)<€

where the sum runs over the set of partitions g with the number of parts at most ¢, and

n(p) =32 — 1w,
Mi(q) == (1 - ¢/)™".

Jj=1
Therefore the generating function PP%0)(q) := 3 ¢/l is equal to
nepp.0)
2
g
Z q" 1—g@) | >
Z(u)<£ xe,u

where PP(K’k) = {7‘(‘ = (Wij)i,jzl |7Tz'j Z 0,7Tg+17g+1 S k‘}, |7T| = Zﬂ'ij.

(d) Show that

PPt (g) = Z (—q) Mg +n0) (dim,, Vi[(f))Q’

s
L(p)<e

My(q)?
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where 4/ denotes the conjugate partition of i, therefore n(u') = > (%).

i>1
The formula (5.10) is the special case n = m of [109, Theorem 1.2]. In particular, if £ =1
then one come to following identity

oy (Y

(@93 1= = \(@ak

(e) Let & > 0, ¢ > 1 be integers. Show that the (fermionic) generating function for the
number of plane partitions 7 = (7;5) € PPWFR) is equal to

2
qn(u)

2.0 2 Ta e

L,k
TEPPER) pes 1<k =

(B) The case k = 0.

(1) D(n,0,1,p,b) =1 for all nonnegative n, p, b.

(2) D(n,0,2,2,2) = VSASM(n), i.e., the number of alternating sign (2n+1) x (2n+1) matrices
symmetric about the vertical axis, see, e.g., [131, A005156].

(3) D(n,0,2,1,2) = CSTCPP(n), i.e., the number of cyclically symmetric transpose comple-
ment plane partitions, see, e.g., [131, A051255].

Theorem 5.46. Let wy i, be a unique vezillary permutation of the shape \p, = (n,n —
1,...,2,)p and flag ¢pp = (k+1,k+2,....k+n—1,k+n). Then

n+1

G (1) = 3 nJlr : <n;r 1) ((?;tll)p> i1,

j=1

If k> 2, then Gy, 1 5(B) := Qﬁg;,?p(l) s a polynomial of degree nk in B, and
Coeff gnr) (Grkp(8)) = D(n, k,1,p — 1,0).
The polynomial
“1(n pn 1
=) )ET =)
PR LAV VAV 1

is known as the Fuss—Narayana polynomial and can be considered as a t-deformation of the
Fuss—Catalan number FC? (0).

Recall that the number %(’;) (P) counts paths from (0,0) to (np,0) in the first quadrant,

consisting of steps U = (1,1) and D = (1, —p) and have j peaks (i.e., UD’s), cf. [131, A108767].
For example, taken =3, k=2, p=3,r=1,b=0. Then

w323 =[1,2,12,9,6,3,4,5,7,8,10,11] € Sy,
Gs23(8) = (1,18,171,747,1767,1995, 1001).

Therefore,

G3’273(1) = 5700 = D(S, 2, 3, O) and Coeff[ﬁa}(G37273(ﬁ)) = 1001 = D(3, 2, 2, 0)
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Proposition 5.47 ([110]). The value of the Fuss—Catalan polynomial at t = 2, that is the
number

()2

7j=1

is equal to the number of hyperplactic classes of p-parking functions of length n, see [110] for
definition of p-parking functions, its properties and connections with some combinatorial Hopf
algebras.

Therefore, the value of the Grothendieck polynomial 61(5;127(1) at 0 =1 and x; = 1, Vi,
is equal to the number of p-parking functions of length n + 1. It is an open problem to find
combinatorial interpretations of the polynomials 051(582 1, (1) in the case k& > 2. Note finally, that
in the case p = 2, k = 1 the values of the Fuss—Catalan polynomials at ¢ = 2 one can find in
[131, A034015].

Comments 5.48. (=) The case r = 0. It follows from Theorem 5.32 that in the case r = 0
and k > n, one has

winy L ((n—j+1)pfb+k—j+1)
D(n, k,0,p,b) = dim V"D = (1 4+ p) (") T k—j+1

((n—j+1)(p+1)+b)
Jj=1 n—j+1
Now consider the conjugate v := vy, 5 := ((n + 1)°,nP, (n — 1), ..., 1P) of the partition A, ,p,

and a rectangular shape partition ¢» = (k,..., k). If & > np + b, then there exists a unique
~———

np+b
grassmannian permutation o := oy, ., p of the shape v and the flag ¢ [92]. It is easy to see from

the above formula for D(n, k,0, p,b), that

G0, (1) = dim VIED
k+7—2
_a4p® k—i—n—l ﬁ (p+1)(n—j+1) ﬁ M+J1>p+b)
= P n—j+1)p+1)+ nJ+1p+1+b1)
j=1 Jj=1 n—j

After the substitution k£ := np + b+ 1 in the above formula we will have

n (np+b+jfl)

n n—j+1
Gﬂn,np+b+1,p,b(1) =(1 —i—p)(2) H #'
j=1 ( j—1 )

In the case b = 0 some simplifications are happened, namely,

n k-“] 2 )
(n—j3+1)p
GUHJ%P,O(D 1+p H (n— J+1)P+n J

p ey

Finally we observe that if K = np + 1, then

n np+j 1 n np+] 1 -
H (n—j+1)p H p+1 H (n(p+1) —j—1)! — AWP)
M jtf)’fn T p+_1 43 ((n =) p+ D(n—gp+1) -1 "7

(p)

where the numbers Ay’ are integers that generalize the numbers of alternating sign matrices
(ASM) of size n x n, recovered in the case p = 2, see [33, 111] for details.
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Examples 5.49.
(1) Let us consider polynomials &,,(3) := 62&;}3270(1).
If n =2, then

02,420 = 235614 € Sg, Bo(B) = (1,2,3) := 1+ 26 + 332
Moreover,

9%02,4,2,0 (Q§ 5) = (1’ 2)ﬂ + 3Qﬁ2-
If n = 3, then

036,20 = 235689147 € Sy, ®3(6) = (1,6,21,36,51,48,26).
Moreover,

Mg 6000 8) = (1,6,11,16,11) 5 + ¢5°(10, 20, 35, 34) 5 + ¢*8* (5, 14, 26) 5,
9:{0'3,6,2,0 (¢;1) = (45,99, 45)q.

If n =4, then

04820 =(2,3,5,6,8,9,11,12,1,4,7,10] € S;2,
&4(8) = (1,12, 78,308,903, 2016, 3528, 4944, 5886, 5696, 4320, 2280, 646).

Moreover,

R s00(a; 8) = (1,12,57,182,392, 602, 763, 730, 493, 170) 5
+ ¢B%(21,126, 476, 1190, 1925, 2626, 2713, 2026, 804) 5
+ ¢° (35,224,833, 1534, 2446, 2974, 2607, 1254) 5
+¢*8%(7, 54, 234,526,909, 1026, 646) 5,

Ry s00(q; 1) = (3402, 11907, 11907, 3402), = 1701 (2,7,7,2),.

e If n =5, then

05,102 = [2,3,5,6,8,9,11,12,14,15,1,4,7,10, 13] € Sy,
&5(8) = (1,20,210, 1420, 7085, 27636, 87430, 230240, 516375, 997790, 1676587, 2466840,
3204065, 3695650, 3778095, 3371612, 2569795, 1610910, 782175, 262200, 45885).

Moreover,

Ros 10200 B) = (1,20, 174,988, 4025, 12516, 31402, 64760, 111510, 162170,

202957, 220200, 202493, 153106, 89355, 35972, 7429) 5

+ qB%(36, 432, 2934, 13608, 45990, 123516, 269703, 487908, 738927,
956430, 1076265, 1028308, 813177, 499374, 213597, 47538) 5

+ ¢*BY(126, 1512, 9954, 40860, 127359, 314172, 627831, 1029726, 1421253,
1711728, 1753893, 1492974, 991809, 461322, 112860) 5

+ ¢38%(84, 1104, 7794, 33408, 105840, 255492, 486324, 753984, 1019538,
1169520, 1112340, 825930, 428895, 117990) 5

+ ¢*8(9,132,1032, 4992, 17730, 48024, 102132, 173772, 244620, 276120,
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240420, 144210, 45885) 3,
Ros1020(0; 1) = (1299078, 6318243, 10097379, 6318243, 1299078),,
= 59049(22, 107,171,107, 22),.

We are reminded that over the paper we have used the notation

r
(a()aala cee 7(17“),3 = Zajﬁ]7
=0

etc.
One can show that degg &,,(8) = n(n — 1), degiy Ro,, 5, 5,0(¢; 1) = n— 1, and looking on the
numbers 3, 26, 646, 45885 we made

Conjecture 5.50. Let a(n) := Coeff[""~ D] (8,,(8)). Then

a(n) = VSASM(n) = OSASM(n H

(3j +2)(67 + 3)!(2j + 1)!
(47 +2)1(45 +3)! 7

where VSASM(n) is the number of alternating sign (2n+1) x (2n+1) matrices symmetric about
the vertical azis, OSASM(n) is the number of 2n x 2n off-diagonal symmetric alternating sign
matrices. See [131, A005156], [111] and references therein, for details.

Conjecture 5.51. Polynomial R, ,, ,,(q;1) is symmetric and

ERUn,Qn,Q,O (05 1) = A20342(2n — 1),

see [131].
(2) Let us consider polynomials §,(5) := (’5,(,6_2?“,270(1).
If n =1, then

013,20 = 1342 € Sy, S2(8) = (1,2) := 1+ 20.
If n =2, then
025,20 = 1346725 € Sy, §3(8) = (1,6,11,16,11).
Moreover,
Rossz0(58) = (1,2,3)5 +qB(4,8,12)5 + ¢*5°(4,11)5.
If n = 3, then

03720 = [17 37 47 6) 7) 97 105 27 57 8] € S107
34(8) = (1,12, 57,182, 392, 602, 763, 730, 493, 170).

Moreover,

Rosr00(a;8) = (1,6,21,36,51,48, 26) 5 + ¢B3(6, 36, 126, 216, 306, 288, 156) 5
+ ¢*5(20, 125, 242, 403, 460, 289) 5 + ¢°3°(6, 46, 114,204, 170) 5,
Rosr00(q;1) = (189,1134,1539,540), = 27(7,42, 57, 20),.
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If n =4, then

04,92,0 = [1, 3, 4, 6, 7, 9, 10, 12, 13, 2, 5, 8, 11] € 813,
35(8) = (1,20, 174,988, 4025, 12516, 31402, 64760, 111510, 162170, 202957,
220200, 202493, 153106, 89355, 35972, 7429).

Moreover,

Ros00(0: 8) = (1,12, 78,308, 903,2016, 3528, 4944, 5886, 5696, 4320, 2280, 646) 5
+ qf(8,96, 624, 2464, 7224, 16128, 28224, 39552, 47088, 45568,
34560, 18240, 5168) 5
+ ¢*B3(56, 658, 3220, 11018, 27848, 53135, 78902, 100109, 103436,
84201, 47830, 14467)5
+ ¢*B°(56, 728, 3736, 12820, 29788, 50236, 72652, 85444, 78868,
50876, 17204)
+¢*B7(8,117,696, 2724, 7272, 13962, 21240, 24012, 18768, 7429) 5,
Royg00(0; 1) = (30618, 244944, 524880, 402408, 96228), = 4374(7, 56, 120,92, 22),.

One can show that §,(3) is a polynomial in 3 of degree n?, and looking on the numbers 2,
11, 170, 7429 we made

Conjecture 5.52. Let b(n) := Coeffw(n,l)z}(gn(ﬁ)). Then b(n) = CSTCPP(n). In other words,
b(n) is equal to the number of cyclically symmetric transpose complement plane partitions in an
2n x 2n x 2n box. This number is known to be

H (35 +1)(65)!(25)!
; 4]—1—1 45\

see [131, A051255], [18, p. 199].
It ease to see that polynomial Ry, ,,.1.,(¢; 1) has degree n.

Conjecture 5.53.
Coeffign) (Roy anir00(0: 1)) = A20342(2n),
see [131];
R anir0(031) = AQy(4n;3) = 37" D/2ASM(n),
see [83, Theorem 5] or [131, A059491].
Proposition 5.54. One has
Rogoner20(08) = Bn(B) = 60, (1), Ronn0(0.8) = Fn(B) = 870, o (1).

Finally we define (3, ¢)-deformations of the numbers VSASM(n) and CSCTPP(n). To ac-
complish these ends, let us consider permutations
=(2,4,...,2k,2k — 1,2k - 3,...,3,1),
(2,4,...,2k,2k+ 1,2k —1,...,3,1).

k
_l’_
Wy
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Proposition 5.55. One has

&, (1) = VSAM(k),  &,.+(1) = CSTCPP(k).

Therefore the polynomials 6(6__1)@1 =gqxz; =1,Vj > 2) and 6(,6;—1)(:1;1 =q, z; = 1,

w w

k k
Vj > 2) define (8, q)-deformations of the numbers VSAM(k) and CSTCPP(k) respectively.
Note that the inverse permutations

(w,;)*l:(2k,1,...,2k+1—i,i,...,k—{—l,l{:),

(whH) ™t =0Ck+1,1,...,2k+2—4,4,....k+ 2,k k+1)
N—— N—_———— N—_——

also define a (8, q)-deformation of the numbers considered above.

Problem 5.56. It is well-known, see, e.g., [37, p. 43|, that the set VSASM(n) of alternating
sign (2n+1) X (2n+1) matrices symmetric about the vertical axis has the same cardinality as the
set SYT2(A(n), < n) of semistandard Young tableaux of the shape A(n) := (2n—1,2n—-3,...,3,1)
filled by the numbers from the set {1,2,...,n}, and such that the entries are weakly increasing
down the anti-diagonals.

On the other hand, consider the set CS(w, ) of compatible sequences, see, e.g., [13, 42],
corresponding to the permutation w, € Sog.

Challenge 5.57. Construct bijections between the sets CS(w, ), SYT2(A(k),< k) and
VSASM(k).

Remark 5.58. One can compute the principal specialization of the Schubert polynomial cor-
responding to the transposition ¢y, := (k,n — k) € S,, that interchanges k and n — k, and fixes
all other elements of [1,n].

Proposition 5.59.

g VENe,  (Lg g heE )
. n—2 . 2
o [n—1 n—24j fli+k—2
(~1) lq@){ } [ . } = & ([ ] )
k‘—]q k‘—|—]—1q = k—1 g
Exercises 5.60.

(1) Show that if k£ > 1, then

k
=

1

2n —1
Coeff[qkﬁzk](%an,gnyg,o ((L t)) = ’
2k
2n
Coeff[quEkfl] (%Un,2n+1,2,0 (Qa t)) = <2k _ 1> :

(2) Let n > 1 be a positive integer, consider “zig-zag” permutation

_ (1234 L 2k41 2%k42 o 20-1 2 g
Y= 2143 ... 2%+2 2%+1 ... 2n 2m—1 2n-
Show that
n—1
1—p* 2%
%w(q,B)H<1_ﬁ ™).

k=0
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(3) Let 0 ym be grassmannian permutation with shape A = (n™) and flag ¢ = (k+1)™, i.e.,

(1 2 ...k kE+1 k+n k+n+1 ... k+n+m
Tknm=\1 9 .k k+m4+1 ... k4m+n k+1 ... k+m |

Clearly or110,m =1 X Ok nm-

Show that the coefficient Coeffgn (R, ,, . (1, 8)) is equal to the Narayana number N (k+n+
m, k).

(4) Consider permutation w := w(™ = (wy, ..., wan11), where wo_; = 2k+1fork =1,...,n,
Wons1 = 2n, wy = 1 and woy, = 2k — 2 for k = 2,...,n. For example, w® = (3152746). We
set w(®) = 1. Show that the polynomial Y (z; = 1,Vi) has degree n(n — 1) and the coefficient
Coeff gn(n—1) (61(5) (x; =1, Vi)) is equal to the n-th Catalan number C,,.

Note that the specialization S (x; = 1)|g=1 is equal to the 2n-th Euler (or up/down)
number, see [131, A000111].

More generally, consider permutation w,(ﬁn) =1k x w™ e Skront1, and polynomials

Pe(z) =) (-1Y6 ) (zi=1)2""% k>0

>0 e
Show that
ik
Z Pk(z)g = exp(tz) sech(t).
k>0 ’

The polynomials Py (z) are well-known as Swiss—Knife polynomials, see [131, A153641], where
one can find an overview of some properties of the Swiss—Knife polynomials.
(5) Assume that n = 2k + 3, k > 1, and consider permutation v, = (v1,...,v,) € S, where

Vog+1 = 26+ 3,a =0,...,n—1, we =1 and wy, = 2a — 2, a = 2,...,k+ 1. For example,
vg = [31527496, 11, 8,10] and &,,(1) = 50521 = Ej.
Show that

Gu, (g, 2 =1,Yi>2) = (n—2)Ep_3¢* +--- + 2871k — 1)1gF 2,
Gy (25 =1,Vi>1) = E,_,.
Set 5 =d — 1, consider polynomials &,(q,d) = ngﬁ) (r1 =q, ; = 1, Vi > 2). Clearly, see the

latter formula, &,(1,1) = E,_1. Give a combinatorial prove that &,(q,d) € Ng,d], that is to
give combinatorial interpretation(s) of coefficients of the polynomial &,(q, d).

Show that deg; &,(1,d) = n(n + 1) and the leading coefficient is equal to the Catalan num-
ber Cpy1.

(6) Consider permutation u := u,, = (u1,...,U2,) € Son, n > 2, where u; = 2, ugg41 = 2k—1,
k=1,...,n,uo =2k+2,k=1,...,n—1, uy, = 2n — 1. For example, uy = (24163857).

Now consider polynomial
RP(q) = Giryy, (11 = ¢, i = 1, Vi > 2).

n

Show that Rgc)(l) = (2"+kk_1)E2n_1, where Foi_1, k > 1, denotes the Euler number, see [131,

A00111]. In particular, Rq(q,l)(l) = 22"-1@q, . where G,, denotes the unsigned Genocchi number,
see [131, A110501].

Show that deg, R (¢) = n and Coeffn (R%O)(q)) = (2n — 3)IL

(7) Consider permutation w,, € Sgyt2, where we = 1, wyg = 2, and

wop_1 =2k+2, 1<k<n, wop =2k —3, 3<k<n,
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Wop41 = 2n — 3, Wop42 = 2n — 1.

For example, ws = [4,1,6,2,8,3,10,5,12,7,9,11].
Show that

S, (zi =1, Vi) = (2n + 1)1(2*" — 2)|Ba,|,

where By, denotes the Bernoulli numbers®.
(8) Consider permutation wy := (2k + 1,2k —1,...,3,1,2k,2k — 2,...,4,2) € Sgi41. Show
that

&P N1 =g, 2, =1,¥j>2) = ™ (1+ ).

Wk

(9) Consider permutations U,j = (1,3,5,...,2k+ 1,2k +2,2k,...,4,2) and 0, = (1,3,5,...,
2k +1,2k,2k — 2,...,4,2), and define polynomials

Sfct(q) = G%i(xl =q,z;=1,Vj>2).
Show that

S;F(0) = VSASM(k), SiF(1) = VSASM(k + 1),
0
aﬁqs,j(q)yq:o = 2kS,7(0), Coeff (S} (q)) = CSTCPP(k + 1),
S, (0) = CSTCPP(k), S, (1) = CSTCPP(k + 1),
o _ _ _
5oSE @m0 = (b =S (), Coelt (S () = VSASM(b).
Let’s observe that U]:Ct =1x 7',;51, where T]j = (2,4,...,2k,2k + 1,2k — 1,...,3,1) and
T, = (2,4,...,2k,2k — 1,2k — 3,...,3,1). Therefore,

GTki (331 =q,r; = 1,V > 2) = qS]?;t_l(Q)'

Recall that CSTCPP(n) denotes the number of cyclically symmetric transpose compliment plane

partitions in a 2n x 2n box, see, e.g., [131, A051255], and VSASM(n) denotes the number of

alternating sign (2n+1) X (2n+1) matrices symmetric the vertical axis, see, e.g., [131, A005156].
It might be well to point out that

607-:-71(1'1 =T, T; = 1, Vi Z 2) = G2n717n71($,y = 1),
S, (r1=z,2,=1Vi>2)=Fyppn(z,y=1),

where (homogeneous) polynomials G, (z,y) and Fy, ,(x,y) are defined in [123], and related
with integral solutions to Pascal’s hexagon relations

fm—l,nfm—i—l,n + fm,n—lfm,n-‘,—l = fm—l,n—lfm+1,n+1; (m;n) € 72

(10) Consider permutation

w — 1 2 ... n n+1 n+2 n+3 ... 2n
"\2 4 ... 2n 1 3 5 ..o 2n—1)°

56See, e.g., https://en.wikipedia.org/wiki/Bernoulli_number.
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and set u®) = 12k+1 Up. Show that

(n+1)

6 V@i =1,vi>1)=(1+p) )W @ =1, viz),

where wé"ﬂ denotes the permutation (n +1,n,n — ,2,1).

11) Let n > 0 be an integer. Consider permutatlon Uy, = 1™ x 321 € S34,. Show that
+

2n + 2 o+ 2\ 1/2n+2
Gy (w1 =t, 25 =1,¥i>2) = 4<n3 >+Z<n1 >t+2<n1 >t2.

Consider permutation v, := 1" x 4321 € S,,44. Show that

Gvn(ZCl:t .I'Z'Zl V’LZQ)

1 2n+4)\ (2n+2 1/2n+4 n(2n+4\, 1/2n+4)\ 3
= t+ — t°+ — .
() ) ) )

(12) Show that

5 e e (B e

(a,b,0)€(Z30)? (@03 \ =

It is not difficult to see that the left hand side sum of the above identity counts the weighted
number of plane partitions m = (7;;) such that

i > 0, Tij > Max(mit1 4, Tij+1), m; <1 if i>2 and j>2,
and the weight wit(m) := }_ m;;.
(13) Let A = (A1 > )\ng -+ >\, > 0) be a partition of size n. For an integer k such that
1 < k <n — p define a grassmannian permutation
w =1,k A+ kAL A 1+ E+2, Ak ar,. .. Gy,

where we denote by (a1 < as < -+ < ay—k—p) the complement [1,n]\(1,...,k,Ap+k+1,Ap—1 +
k+2,..., M +k+p)
Show that the Grothendieck polynomial

GA(B) == &0 (1)

is a polynomial of § with nonnegative coefficients. Clearly, G»(1) = dim V/\G[(kﬂ(/\) ),
Find a combinatorial interpretations of polynomial G, (53).

()(

Final remark, it follows from the seventh exercise listed above, that the polynomials &

¢, xj =1, Vj > 2) define a (g, §)-deformation of the number VSASM(k) (the case o} 5 and the
number CSTCPP (k) (the case o, ), respectively.

Ty =

5.2.5 Specialization of Grothendieck polynomials

Let p, b, n and 4, 2¢ < n be positive integers. Denote by 7;(2)” the trapezoid, i.e., a convex
quadrangle having vertices at the points

(ip,i), (ip,m—1), (b+ip,i) and (b+ (n—1i)p,n—1i).
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Definition 5.61. Denote by FC,()?M the set of lattice path from the point (ip,7) to that (b +

(n —i)p,n — i) with east steps £ = (0,1) and north steps N = (1,0), which are located inside
:q 7@
of the trapezgld 7;727n.
Ifp e FCI(:; ,, is a path, we denote by p(p) the number of peaks, i.e.,
p(p) = NE(p) + Ein(p) + Nena(p),

where N E(p) is equal to the number of steps N E resting on path p; Ei,(p) is equal to 1, if the
path p starts with step E and 0 otherwise; Nenq(p) is equal to 1, if the path p ends by the step N
and 0 otherwise.

Note that the equality Nenq(p) = 1 may happened only in the case b = 0.

Definition 5.62. Denote by FCgk)n the set of k-tuples P = (p1, ..., pr) of non-crossing lattice

D
L (4)
paths, where for each i =1,...,k, p; € FCbZ’pm.
Let
k
FOn(®) = 3 7
perc

k
denotes the generating function of the statistics p(P) := >_ p(pi) — k.
i=1

7

Theorem 5.63. The following equality holds

6P (er=laz=1,..)=FCH  (8+1),

On,k,p,b P
where oy i pp IS @ unique grassmannian permutation with shape ((n + D, nP, (n—1)P,...,17)
and flag (k,... k).
———
np+b

5.3 The “longest element” and Chan—Robbins—Yuen polytope®”
5.3.1 The Chan—Robbins—Yuen polytope CRY,

Assume additionally, cf. [133, Exercise 6.C8(d)], that the condition (@) in Definition 5.1 is
replaced by that

(a') xij and zg; commute for all ¢, j, k and [.

Consider the element w(()n) := [l @i;. Let us bring the element w(()n) to the reduced form,

1<i<j<n
that is, let us consecutively apply the defining relations (a’) and (b) to the element w(()n) in any
order until unable to do so. Denote the resulting polynomial by @Q,(z;j; a, 5). Note that the
polynomial itself depends on the order in which the relations (a’) and (b) are applied.

We denote by @, () the specialization
iy =1 for all ¢ and j,

of the polynomial @, (z;j;a =0, 3).

5"Some results of this section, e.g., Theorems 5.63 and 5.65, has been proved independently and in greater
generality in [102].
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Example 5.64.

Q3(8) = (2,1) =1+ (B+1),  Qua(B)=(10,13,4) = 1+5(8 + 1) +4(8 + 1),
Qs5(8) = (140, 336,280,92,9) = 1 + 16(8 + 1) + 58(8 + 1) + 56(3 + 1)* + 9(8 + 1)*,
Qoe(B) =1 +42(8+ 1) +448(8 + 1)2 4+ 1674(8 + 1)® + 2364(3 + 1)*
+ 1182(8 + 1)° + 169(8 + 1)°,
Q7(B) = (1,99, 2569, 25587, 114005, 242415, 248817, 118587, 22924, 1156) 5. 1,
Qs(B) = (1,219, 12444, 279616, 2990335, 16804401, 52421688, 93221276, 94803125,
53910939, 16163947, 2255749, 108900) 5.4 1.

What one can say about the polynomial Q,(8) := Qn(Zij; 8)|z;;=1,vi;7
It is known, [133, Exercise 6.C8(d)], that the constant term of the polynomial Q,(3) is

n—1
equal to the product of Catalan numbers [[ C;. It is not difficult to see that if n > 3,

j=1
then Coeffig 1(Qn(B)) = 2" — 1 — ("31), see [131, A002662], for a number of combinatorial
interpretations of the numbers 2" — 1 — (n;rl)

Theorem 5.65. One has

Qu(B=1) = [ 3 UCRY w1, m)p™ | (1= )2+,

m>0

where CRY,, denotes the Chan—Robbins—Yuen polytope [20, 21], i.e., the convex polytope given
by the following conditions:

CRYm = {(aij) S Matmxm(Zzo)}
such that
(1) Xiay =1, a; =1,
(2) Qjj =0147>i+1.

Here for any integral convex polytope P C Z¢, 1(P,n) denotes the number of integer points in
the set nP N Z4.

In particular, the polynomial @, (8) does not depend on the order in which the relations (a’)
and (b) have been applied.
Now let us denote by Q,(q,t; c, 8) the specialization

iy =1, 1i<j<n, and Tin=q if i=2,...,n—-1, Tip =t

of the (reduced) polynomial Q,(z;;;a,3) obtained by applying the relations (a’) and (b) in
a certain order. The polynomial Q(z;j; a, ) itself depends on the order selected. To define
polynomials which are frequently appear in Section 5, we apply the rules (a) and (b) stated in

Definition 5.1 to a given monomial ;, j, - - 4, j, € A/Cﬁ?)n(a, B) consequently according to the
order in which the monomial taken has been written. We set Q, (¢, , 8) := Qn(q = t,t; , 5).

Conjecture 5.66. Let n > 3 and write

Qn(t=1;0,8) = > (14 B)Fepn(a),

k>0
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then cp (o) € Z>ola.
The polynomial Qy(t, B, = 0) has degree d,, := [%] with respect to 3. Write

dn
Qu(t,8) = Qu(t;a=0,8) =" " (1)8*
k=0
Then C% ")(1) = a2 for some non-negative integer a,. Moreover, there erists a polynomial

an(t) € N[t] such that
ngdn)(t) = an(1)an(t), an(0) = an—1.
The all roots of the polynomial Qy(B) belong to the set R._.

For example,

Qu(t =L, ) = (1,5,4) 541 + (5, T)p41 + 302,
Qs(t =1;0, 8) = (1,16,58,56,9) 511 + (16,109, 146,29) 541
+a?(51,125,34) 5,1 + a*(35,17) 11,

A =13(2,3,3,3,2), V() =34(3,5,6,6,6,5,3),

1 (t) = 330(13, 27,37, 43, 45,45, 43, 37,27, 13),

Qu(t,Bya=0)t"" =+ (B+1)(3t + 2t*) + (B + 1)*(¢t + 1)?,

@4((_], t,a=0,05)= (qt2 + 13 4+ 2qt3 + @3 + B3+t + 2t + q2t4)
+ (2qt% + 263 + 3¢t + 2¢%t3 + 2t* + 2qt) B + (2 + %) (¢ + 1) 57,

Qs(q,t;00 =0, 8) = (3¢%t + ¢°t + 5qt% + 6¢*1> + 2¢°¢* + 26> + 10¢t> + 10¢%> + 6¢°¢°
+ 3¢* 3 + 3%t + 2¢5¢3 + 3t* + 11gt* + 11¢%t* + 8¢%t* + 5¢*t* + 3¢°t*
+ 3t° 4+ 9gt° + 9¢°t° + 6¢°t> + 3¢™t° + 2t° + 64t° + 6¢°° + 2¢°t°)
+ (9¢%t + 2¢°t + 17qt* + 18¢°t* + 4¢°t* + Tt* + 31qt® + 29¢°t>
+15¢%t3 + 10¢* 3 + 7¢°t3 + 10t* + 31qt* + 29¢%t* + 18¢°%t*
+10¢*t" + 10t° + 24gt° + 21¢*° + 10¢°t° + 6t° + 12¢t° + 6¢°¢°) 8
+ (9¢%t + ¢°t + 21gt + 18¢*t* + 2¢°t* + 9> + 34qt® + 28¢°t>
+ 1433 + 9¢*% 4+ 12t + 30qt* + 24¢%t* + 12¢3t* + 12t° + 214t°
+12¢*t° + 6t° + 64t°) 8% + (3¢%t + 11¢t* + 6¢°t* + 5t + 15¢¢°
+10¢*t* + 5¢°t* + 6t* + 11qt* + 6¢°t" + 6t° + 6qt° + 2t%) 8>
+ (2qt% + 13 + 2¢t + ¢*¢* + t* + gt* +°) B

Note that polynomials @n (¢,t; = 0,8 = 0) give rise to a two parameters deformation of the
product of Catalan’s numbers C1Cs---Cp_1. Are there combinatorial interpretations of these
polynomials and polynomials Q,(q,t;a =0, 3)?

Comments 5.67. We expect that for each integer n > 2 the set

\I/n—i-l =W E Sop_q | Gw(l) = H Catj
j=1
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is non empty, whereas the set
n
w € Son—2|&y(1) = ] Cat,
j=1

is empty. For example,
v, ={[1,5,3,4,2]}, Us ={[1,5,7,3,2,6,4], [1,5,4,7,2,6,3]},
g = {w:=[1,3,2,8,6,9,4,5,7,w ",...}, Uy = {277},

but one can check that for w = [2358,10,549,12,11] € Sy,

6
&.(1) = 776160 = | ] Cat;.
j=2

More generally, for any positive integer N define
K(N) = min{n|Jw € S,, such that &,,(1) = N}.
It is clear that K(N) < N + 1.

Problem 5.68. Compute the following numbers
k(n!), kK H Cat; |, k(ASM(n)), &((n+1)""1).
j=1

For example, 10 < x(ASM(6) = 7436) < 12. Indeed, take w = [716983254, 10,12, 11] € Sj».
One can show that

Gulry =t, x; =1, Vi >2) = 13t5(t 4+ 10) (15t + 37),
so that G, (1) = ASM(6); x(6*) = 9, namely, one can take w = [157364298].

Question 5.69. Let N be a positive integer. Does there exist a vexillary (grassmannian?)
permutation w € S, such that n < 2k(N) and &,,(1) = N?

For example, w = [1,4,5,6,8,3,5,7] € Sg is a grassmannian permutation such that S,,(1) =
140, and Ry (1, 8) = (1,9, 27, 43,38, 18, 4).

Remark 5.70. We expect that for n > 5 there are no permutations w € S, such that @, (5) =
(8
Gw’(1).

n
The numbers &, := [[ Cat; appear also as the values of the Kostant partition function of
j=1
the type A,,_1 on some special vectors. Namely,

Cn = Kaany(1n), where 7, = (1, 2,3,....,n—1,— (Z)) ,

see, e.g., [133, Exercise 6.C10], and [69, pp. 173-178]. More generally [69, Exercise g, p. 177,

(7.25)], one has
n+d—2 1 n+d-+ j
2j + 1 2% )

K@(l")(/yn,d) = Pp6” (d)etnfl = H
j=d
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where 7, g = (d+1,d+2,...,d+n—1,—n(2d +n —1)/2), pp’*(d) denotes the set of reversed
(weak) plane partitions bounded by d and contained in the shape ¢, = (n—1,n—2,...,1).
Clearly, pp® (1) = T[] zfﬂ = C,, where C,, is the n-th Catalan number®®.

1<i<j<n '’

Conjecture 5.71. For any permutation w € S, there exists a graph Ty, = (V, E), possibly with
multiple edges, such that the reduced volume vol(Fr,) of the flow polytope Fr,, see, e.g., [132]

for a definition of the former, is equal to S, (1).

w?

For a family of vexillary permutations w,,, of the shape A = pd,41 and flag ¢ = (1,2,...,
n — 1,n) the corresponding graphs I';, , have been constructed in [101, Section 6]. In this case
the reduced volume of the flow polytope Fr, , is equal to the Fuss-Catalan number

1 <(n+1)(p+1)
1+ (n+1)p n+1

) = 6,0

cf. Corollary 5.33.
Exercises 5.72.

(a) Show that the polynomial R, (t) := t!~"Q,(;0,0) is symmetric (unimodal?), and R, (0) =
n—2

Caty. For example,
k=1

Ry(t) = (L+t)(2+t+2t7), Rs(t) = 2(5,10,13,14,13, 10, 5);,
Re(t) = 10(2,3,2)4(7,7,10,13,10,13,10,7,7),, Rz (t) = 30(196 + - - - + 196¢°).

n—1
Note that R, (1) = [] Caty.
k=1

(b) More generally, write as before,

Qn(t:0,8) =t"2> P (t)p",

k>0

Show that the polynomials ®) (t) are symmetric (unimodal?) for all k£ and n.

(¢) Consider a reduced polynomial R, ({z;;}) of the element
H Tij € A/Cﬁ?)(oz =f3= O)Qb,

1<i<j<n
(4,5)#(n—1,n)

see Definition 5.1. Here we assume additionally, that all elements {z;;} are mutually
commute. Define polynomial R,,(q,t) to be the following specialization

acij—>1 if 1<j<n-—1, Tin—1 — q, Tin — t, Vi

of the polynomial R,,({x;;}) in question. Show that polynomials R, (g, t) are well-defined,
and

R, (q,t) = R,(t,q).

58For example, if n = 3, there exist 5 reverse (weak) plane partitions of shape d3 = (2,1) bounded by 1, namely

. 0 0 0 0 0 1 0 1 1 1
reverse plane partitions 0 1 o 1 1 .
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Examples 5.73.

Ry(t,B) = (2,3,3,2); + (4,5,4):3 + (2,2):8%,
Rs(t, B) = (10,20, 26, 28,26, 20, 10); + (33, 61, 74, 74,61, 33),3 + (39, 65, 72, 65, 39); 5>
+(19,27,27,19): 6% + (3,3, 3): 3%,
Re(t, B) = (140, 350, 550, 700, 790, 820, 790, 700, 550, 350, 140),
+ (686, 1640, 2478, 3044, 3322, 3322, 3044, 2478, 1640, 686), 3
+ (1370, 3106, 4480, 5280, 5537, 5280, 4480, 3106, 1370), 5>
+ (1420,3017,4113, 4615, 4615, 4113, 3017, 1420),5°
+ (800, 1565, 1987, 2105, 1987, 1565, 800),8* + (230, 403, 465, 465, 403, 230),5°
+ (26,39, 39,39, 26);5°,
Re(1, B) = (5880, 22340, 34009, 26330, 10809, 2196, 169) 5,
Ry (t, B) = (5880, 17640, 32340, 47040, 59790, 69630, 76230, 79530, 79530, 76230, 69630,
59790, 47040, 32340, 17640, 5880), + (39980, 116510, 208196, 295954, 368410,
420850, 452226, 462648, 452226, 420850, 368410, 295954, 208196, 116510,
39980),3 + (118179, 333345, 578812, 802004, 975555, 1090913, 1147982,
1147982, 1090913, 975555, 802004, 578812, 333345, 118179), 5>
+ (198519, 539551, 906940, 1221060, 1447565, 1580835, 1624550, 1580835,
1447565, 1221060, 906940, 539551, 198519), 3>
+ (207712, 540840, 875969, 1141589, 1314942, 1398556, 1398556, 1314942,
1141589, 875969, 540840, 207712), 3
+ (139320, 344910, 535107, 671897, 749338, 773900, 749338, 671897, 535107,
344910, 139320),3° + (59235, 137985, 203527, 244815, 263389, 263389, 244815,
203527, 137985, 59235), 8% + (15119, 32635, 45333, 51865, 53691, 51865, 45333,
32635,15119), 87 + (2034, 3966, 5132, 5532, 5532, 5132, 3966, 2034) 5
+ (102,170,204, 204, 204, 170, 102) 57,
R7(1,8) = (776160, 4266900, 10093580, 13413490, 10959216, 5655044, 1817902,
343595, 33328, 1156) 5.

5.3.2 The Chan—Robbins—Mészaros polytope Py m

Let m > 0 and n > 2 be integers, consider the reduced polynomial @y, (¢, 3) corresponding to
the element
m—+

1
n n—2 n
e U ET I L e
Jj=2

j=2 k=j+2
For example,
Qa.4(t,3) = (4,7,9,10,10,9,7,4); + (10,17,21,22,21,17,10)3
+(8,13,15,15,13,8),6% + (2,3, 3, 3,2):5°,

Q?A(]—a ﬁ) = (607 118) 727 13),87
Q2,5(t, B) = (60,144, 228,298, 348, 378, 388, 378, 348, 298, 228, 144, 60);
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+ (262,614,948, 1208, 1378, 1462, 1462, 1378, 1208, 948, 614, 262);3
+ (458,1042, 1560, 1930, 2142, 2211, 2142, 1930, 1560, 1042, 458), 3>
+ (405,887, 1278, 1526, 1640, 1640, 1526, 1278, 887, 405),3*

+ (187,389, 534, 610, 632, 610, 534, 389, 187), 5

+ (41,79,102,110,110, 102, 79, 41):3° + (3, 5,6,6,6,5,3):3,

Qa5(1, 8) = (3300, 11744, 16475, 11472, 4072, 664, 34) 5,

Qa2.6(1, B) = (660660, 3626584, 8574762, 11407812, 9355194, 4866708, 1589799,
310172, 32182, 1320) 4,

Q27(8) = (1,213,12145, 279189, 3102220, 18400252, 61726264, 120846096, 139463706,

93866194, 5567810, 7053370, 626730, 16290) g 1.

Theorem 5.74. One has

Quan(1,1) = HCatk [ Amtbriviol

Z L(Pn,m; k)ﬁk =

k>0

) —1
1<i<j<n—1 T

Qm,n(la /8 - 1)
01— (T

where P, denotes the generalized Chan—Robbins—Yuen polytope defined in [101], and for any
integral convex polytope P, (P, k) denotes the Ehrhart polynomial of polytope P.

Conjecture 5.75. Let n > 3, m > 0 be integers, , write

an

Z cm ()87, and set b(m,n) := max (k| c,(fj)n(t) #0).
k>0

Denote by ¢y n(t) the polynomial obtained from that c%,ﬁn’n) (t) by dividing the all coefficients of
the latter on their GCD. Then

En,m (t) = Qn+m (t) )

where the polynomials an(t) := con(t) have been defined in Conjecture 5.66.

For example,

ca25(t) = 4ar(t), c2,6(t) = 10ag(t), c35(t) = ag(t),

ca7(t) =

10(34,78,118,148,168,178,181,178,168,148,118,78,34) = 10a9( )

It is known [69, 99, 100] that

n—2
H Caty,
k=1

= Ka,,, <m+1,m+2,...,n+m,—mn— (Z))

m+n—2

1<i<j<n—1 ity j=m+1

1 n+m-+j
25 +1 27

Conjecture 5.76. Let a = (ag,as,...,a,) be a sequence of non-negative integers, consider the
following element

n—1 n

May =[5 ) IT{ II @
j=2

j=2 \k=j+1
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Let Rq(t1,. .. ,th—1,a, ) be the following specialization x;; — tj—q for all1 < i < j <mn
of the reduced polynomial Rg(zi;) of monomial Mg € mn(a,ﬁ). Then the polynomial
Ra(t1, ... th—1,a, ) is well-defined, i.e., does not depend on an order in which relations (a')
and (b), Definition 5.1, have been applied.

n
Qm,(1,8=0)=Ka,,, a2+1,a3+2,...,an—i—n—1,—<n> —Zaj

Write
Qu(t.8) =Y e (1)B".
k>0

(k)

The polynomials cg’ (t) are symmetric (unimodal?) for all k.

Example 5.77. Let’s take n = 5, a = (2,1,1,0). One can show that the value of the Kostant
partition function K 4,(3,3,4,4, —14) is equal to 1967. On the other hand, one has
Q2,1,1,0) (1, B)t_?’ = (50,118, 183,233, 263, 273, 263, 233, 183, 118, 50),
+ (214,491, 738,908,992, 992,908, 738,491, 214),8
+ (365,808, 1167, 1379, 1448, 1379, 1167, 808, 365), 3>
+ (313,661,906, 1020, 1020, 906, 661, 313); 5>
+ (139,275,351, 373, 351,275,139), 34
+ (29, 52, 60, 60, 52,29),3° + (2,3,3,3,2),5°,
Q2,1,1,0)(1, 8) = (1967, 6686, 8886, 5800, 1903, 282, 13) = (1, 34,279, 748, 688,204, 13) 541
It might be well to point out that since we know, see Theorem 5.63, that polynomials
Qum, (1, ) in face are polynomials of 3 + 1 with non-negative integer coefficients, we can treat
the polynomial Qur, (B) := Qu, (1,5 — 1) as a S-analogue of the Kostant partition function in

the dominant chamber. It seems an interesting problem to find an interpretation of polynomials
Qur, (B) in the framework of the representation theory of Lie algebras. For example,

@(2717170)(6) = (1,34, 279,748,688, 204, 13)5,
Q1108 =1) = 1967 = K 4,(3,3,4,4, —14).
Exercises 5.78.

(1) Show that

Ro(t,—1) = *" IR, 4 (71, 1).

(2) Show that the ratio

T+ 52

is a polynomial in (8 + 1) with non-negative coefficients.

(3) Show that polynomial R, (¢,1) has degree ey, := (n+ 1)(n —2)/2, and

Coeff[t™"| Ry (t,1) = [ ] Caty.
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(4)

Show that
0 n+1 n+1 n
Q(”’2’3’°)(ﬁ):<1’3n+2’< 2 >+n< 3 >+<2)>ﬁ’
and
Ka,(n,3,4,—n—17) = (n+2)(n+3)(n+9)
4 y Yy 6 .

Problems 5.79.

(1)

Assume additionally to the conditions (a’) and (b) above that
zgj:ﬁz‘ij—f—l if 1<i<j<n.

What one can say about a reduced form of the element wg in this case?

(2) According to a result by S. Matsumoto and J. Novak [97], if m1 € S,, is a permutation

of the cyclic type A = n, then the total number of primitive factorizations (see definition
in [97]) of m into product of n — £(\) transpositions, denoted by Prim,,_y)(A), is equal to
the product of Catalan numbers:

£\
Primn_g(A)()\) = H Caty,_1.
i=1

Recall that the Catalan number Cat,, := C,, = 1 (2") Now take A = (2,3,...,n+1). Then

“n\n

Qn(l) — H Cata = Prlm(g) ()\)
a=1

Does there exist “a natural” bijection between the primitive factorizations and monomials
which appear in the polynomial Qn(xij; B)?

Compute in the algebra mn(a, B) the specialization
rij — 1, j<n, ri; —t, 1 <0<mn,

denoted by Py, (t,«, ), of the reduced polynomial Ps,; ({7}, 3) corresponding to the
transposition

7—2 %

Sij 1= <H mk’k+1> Tj—1,5 H Thk+1 | € ACYBn(a,B).
k=i k=j—2

For example,

Payy(ti, B) = +3(1+ )t +((3,5,2)p + 30)t> + (2(1 + B)* + a(5 + 48))t°
+ (14 B((1 + 3a) +2°)t + a + o>



On Some Quadratic Algebras 143

5.4 Reduced polynomials of certain monomials

In this subsection we compute the reduced polynomials corresponding to dominant monomials
of the form

Tm = JBTQIQUQ:? et € (m”(ﬁ))ab’

n—1,n

where m = (m3 > mg > -+ > my,_1 > 0) is a partition, and we apply the relations (a') and (b)

in the algebra (ACYB,(53))%, see Definition 5.1 and Section 5.3.1, successively, starting from
my

Lo T23-

Proposition 5.80. The function
Z5t — 7%, m — Pn(t=1;8=1)
can be extended to a piece-wise polynomial function on the space R’;Bl.

We start with the study of powers of Coxeter elements. Namely, for powers of Cozxeter
elements, one has®®
P(x12x23)2(5) = (6,6,1), P(:v1za:23x34)2(5) =(71,142,91,20,1) = (1,16, 37,16, 1) g1,
P(mﬁ%x%)g(ﬁ) = (1301, 3903, 4407, 2309, 555,51, 1) = (1, 45,315,579, 315,45,1) 541,
P(x12x23x34$45)2(ﬁ) = (1266, 3798, 4289, 2248, 541, 50, 1) = (1,44, 306, 564, 306, 44, 1) 541,

Plaiszasss)? (8 =1) = 12527, Playyeaswsa)t (B =0) = 26599,
P(Z‘12$23x34)4(5 = 1) = 539601, P(I12$23x34w45)2(/8 = 1) = 121937
Plarsmsszanzas)? (B = 0) = 50000,  Plyyrosmsinis) (8 = 1) = 1090199.

Lemma 5.81. One has
min(nm) n+m-—=~k\ (m min(nm) n\ (m
Pra@= > ("R = X (D)5 )aren
k=0 k=0
Moreover,

e polynomial P (8 — 1) is a symmetric polynomial in B with non-negative

coefficients.

12223 Ln—1,n)™

e polynomial Pyr om (83) counts the number of (n, m)-Delannoy paths according to the number
of NE steps®.

Proposition 5.82. Let n and k, 0 <k <n, be integers. The number
P($124r23)"(:c34)k (B=0)

is equal to the number of n up, n down permutations in the symmetric group Sonipt1, see [131,
A229892] and Ezercises 5.30(2).

Conjecture 5.83. Let n, m, k be nonnegative integers. Then the number
Pxﬁx%:p& (ﬁ = O)

is equal to the number of n up, m down and k up permutations in the symmetric group Sy m4k+1-

59To simplify notation we set Py, () := Pw(xi; = 1;5).

50Recall that a (n, m)-Delannoy path is a lattice paths from (0,0) to (n,m) with steps E = (1,0), N = (0,1)
and NE = (1,1) only. For the definition and examples of the Delannoy paths and numbers, see [131, A001850,
A008288] and http://mathworld.wolfram.com/DelannoyNumber.html.
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For example,

e Take n =2, k = 0, the six permutations in S5 with 2 up, 2 down are 12543, 13542, 14532,
23541, 24531, 34521.

e Taken = 3, k = 1, the twenty permutations in S7 with 3 up, 3 down are 1237654, 1247653,
1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432, 2347651,
2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421, 4567321, see
[131, A229892).

e Take n = 3, m = 2, k = 1, the number of 3 up, 2 down and 1 up permutations in S7 is
equal to 50 = P321(0): 1237645, 1237546, ..., 4567312.

e Take n =1, m = 3, k = 2, the number of 1 up, 3 down and 2 up permutations in Sy is
equal to 55 = Py32(0), as it can be easily checked.

On the other hand, P 4 > (B =0)="7203 < 7910, where 7910 is the number of 4 up,

17333445
3 down, 2 up and 1 down permutatlons in the symmetric group Sq;.

Conjecture 5.84. Let kq,...,k,_1 be a sequence of non-negative integer numbers, consider
k‘l kz knfl

monomial M := 273193 - - - x," 7. Then reduced polynomial Pyy(8—1) is a unimodal polynomial
in B with non-negative coefficients.
Example 5.85.

P3oi1(B) = (1,14,27,8)p41 = Pi23(B8),  P231(8) = (1,15,30,9)41 = P13,2(8),

Pyaa(B) = (1,11,18,4)511 = Paa3(6),

Py321(8) = (1,74,837,2630, 2708, 885,68) 41, Py321(0) = 7203 =3 - 74,

Ps4321(8) = (1,394,19177, 270210, 1485163, 3638790, 4198361, 2282942,

553828, 51945, 1300) 41,
Ps.432.1(0) = 12502111 = 1019 x 12269.

Exercises 5.86.
(1) Show that if n > m, then

n,.m m+a—1 — m+a
| =) > (0 -
a=0

zij=1=zj =0
(2) Show that if n > m > k, then
k (B) = Px?gwg’% (B)

e OOEI) T e

b,p>0

In particular, if n > m > k, then

0= (") OB E0)

Note that the set of relations from the item (1) allows to give an explicit formula for the
polynomial Py;(B) for any dominant sequence M = (my > mg > --- > my) € (Z=o)¥. Namely,

(B +1) = ZH(’”J*“” )Zﬂ(m”l)ﬁb ,

a j=2 b j=1
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where the first sum runs over the following set A(M) of integer sequences a = (a1, ..., ax_1)
A(M)::{O§aj§mj—|—aj,1,j:1,...,k‘—1}, ag =0,
and the second sum runs over the set B(M) of all integer sequences b = (by,...,bx_1)

B(M) = U {OSI)] Smin(mj+1,mj—aj+aj_1)}, j=1...,k—1.
acA(M)

(3) Show that

_ +1/2k+
A1) | = e (BT g,

where f("*t5k) denotes the number of standard Young tableaux of shape (n+k, k). In particular,
#|A(1")] = Crr.
(4) Let n > m > 1 be integers and set M = (n,m, 1¥). Show that

n

Py(zij=18=0)=>

m+p+1 <m—|—p—1>(m+2k¢—|—p
p=0

, o >::Pan&

In particular, Pj(n,m) = (ntlm) + m(n+7:+1)7

(2k +2)!
kl(k+5)

Pk(n, 1) =

n+1/2k+2+n
k+1 k

>, Py(2,2) = (79K + 341k + 360)

Let us remark that

n+1 <2(k+1)+n>

Py(n,1) = ————

= F?\ (n) = D(k,1,n,2),

where the D(k, 1,n,2) and Flgr)l (n) are defined in Section 5.2.4.
(5) Let T € STY((n + k,k)) be a standard Young tableau of shape (n + k,k). Denote
by r(T') the number of integers j € [1,n + k] such that the integer j belongs to the second row

of tableau 7', whereas the number j + 1 belongs to the first row of 7.

Show that
T
Pz?2$23"'rk+1,k+2 (6 - 1) - Z 5T( )-
TESTY ((n+k,k))
(6) Let M = (my1,ma,...,mg_1) € Zl;f)l be a composition. Denote by M the composition
(mg—1,mg_2,...,ma,mp), and set for short

Py (B) i= Pppe-1,mi (w35 = 15 8).

i=1 Tiit1

Show that Pr(8) = P4;(8). Note that in general,

P4 . (ngaﬁ) # Py my_; (xmaﬁ)

1
Tiit1 Tiit1

i=1 =1
(7) Define polynomial Py (t, 3) to be the following specialization

ri; — 1, 1<j<mn, Tim — t, i=1,...,n—1
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of a polynomial P,_, (xi5; B).
H xz z+1

Show that if n > m, then

_ m m n+m—j—1 k R— ;
Pzﬁm%(tw@) Z j Z m—1 t B

§=0 k=m—1

See Lemma 5.31 for the case t = 1.
(8) Define polynomials R,,(t) as follows

Rn(t) = P(x12x23x34)" (_t_175 = _1)(_t)3n
Show that polynomials fin(t) have non-negative coefficients, and

~ 3n)!
Rul(0) = 6((71!;3.

9) Consider reduced polynomial P, 22() corresponding to monomial 7, (223734 2 and set
~ 1<y 12
Pp22(8) := Pp22(8 —1). Show that

Pop2(B) €N[B]  and  Phoa(l) =T(n+5,3),
where the numbers T'(n, k) are defined in [131, A110952, A001701].

Conjecture 5.87. Let A\ be a partition. The element s,\(HYL), e ,97(7?)) of the algebra 3T7§0) can
be written in this algebra as a sum of

(H h(x)) x dim Vy, @=m)) 5 qim Vv, (810m)
TEA

monomials with all coefficients are equal to 1.
Here s)(z1,...,Tm) denotes the Schur function corresponding to the partition X and the set
of variables {x1,...,xm}; for x € X\, h(x) denotes the hook length corresponding to a box x;

V;g[(n)) denotes the highest weight \ irreducible representation of the Lie algebra gl(n).
Problems 5.88.

S
(1) Define a bijection between monomials of the form [[ xi, ;. involved in the polynomial

a=
P(x;5; 8), and dissections of a convex (n+2)-gon by s diagonals, such that no two diagonals
intersect their intertor.

(2) Describe permutations w € S, such that the Grothendieck polynomial By (t1,. .., t,) is
equal to the “reduced ]ﬁlgtnomial” for a some monomial in the associative quasi-classical
Yang—Bazter algebra ACYB,,(f).

(3) Study “reduced polynomials” corresponding to the monomials
e transposition: Sip 1= (a:lga:gg . "xn_g,n_1)2xn_17n,
e powers of the Coxeter element: (12223 - "ZL‘n_Ln)k,

in the algebra mn(a, B)ab.

(4) Construct a bijection between the set of k-dissections of a conver (n + k + 1)-gon and
“pipe dreams” corresponding to the Grothendieck polynomial (’5(()>(a:1,...,xn). As for

a definition of “pipe dreams” for Grothendieck polynomials, see [78] and [42].
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Comments 5.89. We don’t know any “good” combinatorial interpretation of polynomials which
appear in Problem 5.88(3) for general n and k. For example,

P.Slg(xij = 1,B) = (3,2)5, Psl4($ij = 1,5) = (26,42, 19,2)5,
Py (zi; = 1;8) = (381,988,917,362,55,2)5,  Pss(i; = 1;1) = 2705.

On the other hand,
Pla1smas) 2031 (245)2 (Tij = 15 8) = (252,633, 565,212, 30, 1),

that is in deciding on different reduced decompositions of the transposition si,. one obtains in
general different reduced polynomials.

One can compare these formulas for polynomials P ,(z;; = 1;3) with those for the j-
Grothendieck polynomials corresponding to transpositions (a,b), see Comments 5.37.

5.4.1 Reduced polynomials, Motzkin and Riordan numbers

In this subsection we investigate reduced Mnomials associated with Coxeter element C),, =
U2U23 - - - Up—1 5 N commutative algebra ACYB,,(«, ) in more detail. Recall that this algebra
is generated over the ring Z[z, o, 5] by the set of elements {u; j, 1 <1i < j < n} subject to the
following relations

UjjUjle = UikUij + UjkUik + Buik + a, 1< j<k.
Show that
Pn(lv 17/8 - _1) - Mn7
where M, denotes the n-th Motzkin number that is the number of Motzkin n-paths: paths from
(0,0) to (n,0) in an nxn grid using only steps U = (1,1), (1,0) and (1, —1). It is also the number
of Dyck (n+ 1)-paths with no steps UUU, see [131, A001006] for a wide variety of combinatorial
interpretations, and vast literature concerning the Motzkin numbers. For example,

Pr(0,1,3=—1)=36+37T+24+18+5+6+0+1=127 = My.

Therefore we treat the polynomials P, (t,«, 5 = —1) as the (¢,a)-Motzkin numbers. For
example,

Pr(t,a, B = —1) =t" +6at® + 5at* 4 (0,4,14)4t> + (0,3,21) 4t + (0,2, 21, 14) 4t
+(0,1,14,21), = t" +a(1,2,3,4,5,6); + a?(14,21,21,14); + o3(21, 14);.

Therefore
Pr(t,1,8=—1) =14 2la+ 700> 4+ 3503,  P;(1,1,5 = —1) = 127 = Mj.
Show that
P,(0,1,8 = —1) = A005043(n),

known as the Riordan number, or Motzkin sum [131]. This number, denoted by MS,,, counts
the number of Motzkin paths of length n with no horizontal steps at level zero; it is also equal
to the number of Dyck paths of semilenght n with no peaks at odd level, see [131, A005043] for



148 A N. Kirillov

a bit more combinatorial interpretations, and literature concerning the Motzkin sum or Riordan
numbers. For example,

Pr(t,1,—1) = (36,37,24,18,5,6,0,1), 36 = MSr.

Show that the Riordan number MS,, is equal to the number of underdiagonal paths from
(0,0) to the line x = n — 2, using only steps (1,0), (0,1) and NE = (2,1) and beginning with
the step NE = (2,1). Note that the number of such paths with no steps NE is equal to the
Catalan number Cat,,_.

Let MS = {n € N|n = 2%(2r +1) — 1, k > 1,7 > 0} be a subset of the set of all odd
integers [31]. Show that

(a) MS,, =1 (mod 2), if either n =0 (mod 2) or n € MS,,

(b) MS,, =0 (mod 2), if n is an odd integer and n ¢ MS.

Show that
P, (0, c,
M — nfl(ﬁ + 1)’
« a=0
where as before, N,,(t) denotes the Narayana polynomial.
Let us set
Pn(ov «, 5) = ch(ﬁ + 1)ak

k>0

Show that polynomials ¢x(8 4 1), k > 0 are symmetric (unimodal?) polynomials of the variable
B+ 1.
Show that [131]

P,(1,1,0) = A052709(n + 1).
Show that [131]
P,(0,1,0) = A052705(n)

that is the number of underdiagonal paths from (0,0) to the line x = n — 2, using only steps
R=(1,0),V=(0,1) and NE = (2,1).
For example,
P7(0,10) = 36 + 106 + 120 + 64 + 15 + 1 = 342 = A052705(7).
Show that [131]
0
aiapn <t7 Oé, /8)
that is the number of paths in the half-plane = > 0 from (0,0) to (n — 1,2) or (n — 1, —3), and
consisting of steps U = (1,1), D = (1,—1) and H = (1,0). For example,

Lh.s. =106 + 130 + 99 + 48 + 5 + 6 = 427 = A05775(6).

aco, = AD5775(n — 1),
it

Let us set
P.(t,a,p=1):= Z cénl)tko/.
k>0
Show that
n
(a) Z c,iilgl_ktka”_k =(t+ a)"_l,
k=1
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5.4.2 Reduced polynomials, dissections and Lagrange inversion formula

Let {a;, b;, Bi, i, 1 < i < n — 1} be a set of parameters, consider non commutative algebra
generated over the ring Z[{a;, bi, i, & }1<i<n—1] by the set of generators {u;;, 1 < i < j < n}
subject to the set of relations

UijUjk = QiU U5 + b, + Bug, + 1<i<j<k<n.

Consider reduced expression R, ({uj}1<i<j<n) in the above algebra which corresponds to the
“Coxeter element”

Chn = u12u23 -+ - Up_17-

Note that the reduced expression R, ({u;;}) is a linear combination of noncommutative mono-
mials in the generators {u;;, 1 <i < j < n} with coefficients from the ring

K, = Z[{a;, b;, Bi, i }1<i<n]-

Now to each monomial U which appears in the reduced expression R, ({u;;}) we associate
a dissection D := Dy of a convex (n + 1)-gon as follows. First of all let us label the vertices of
a convex (n+1)-gon selected, by the numbers n+1,n, ..., 1, written consequently and clockwise,
starting from a fixed vertex, from here on named by (n + 1)-vertex.

Next, let us take a monomial U = w;, j, - - - u;, j, which appears in the reduced expression
Ry, ({ui;}) with coefficient ¢(U) € K,,. We draw diagonals in a convex (n + 1)-gon chosen which
connect vertices labeled correspondingly by numbers is and js+1, s =1,...,p. It is clearly seen
from the defining relations in the algebra in question when being applied to the Coxeter element
above, that in fact, the diagonals we have drawn in a convex (n+1)-gon selected, do not meet at
interior points of our convex (n + 1)-gon. Therefore, to each monomial U which appears in the
reduced polynomial associated with the Coxeter element C,, above, one can associate a dissecion
D := Dy of a convex (n + 1)-gon selected. Moreover, it is not difficult to see (e.g., cf. [58])
that there exists a natural bijection U <= Dy between monomials which appear in the reduced
expression R, ({u;;}) and the set of dissections of a convex (n + 1)-gon. As a corollary, to each
dissection D := Dy of a conves (n + 1)-gon one can attache the element ¢(D) := ¢(U) € K,
which is equal to the coefficient in front of monomial U in the reduced expression corresponding
to the Coxeter element C,,.

To continue, let € = (z1,...,2n-1), Yy = (Y1,...,Yn—1) and z = (21,...,2,—1) be three sets
of variables, and D be a dissection of a convex (n + 1)-gon. We associate with dissection D
a monomial m(D) € K, as follows

n—1
k) m(k
m(D) = H ch( )yk( )Zr(k%
k=1

where m(k) := my(D) (resp. r(k) := ri(D) and n(k) := ni(D)) denotes the number of (convex)
(mg + 2)-gons constituent a dissection D taken (resp. the number of diagonals issue out of the
vertex labeled by (n+1); ng(D)) stands for the number of (oriented) diagonals and edges which
issue out of the vertex labeled by k, k = 1,...,n). Therefore we associate with the reduced
polynomial corresponding to the Coxeter element wia, ..., up—1,, the following polynomial

PLn(aa b,B8,a,x,y, Z) = Zm(D)C(D)’
D

where the sum runs over all dissections D of a convex (n + 1)-gon.
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To begin with we set = 1 and consider the following specializations

Bn(aay) = PLn(a’7b = 17ﬁ = 1,0’. = anvz = 1)7
Pn(Z,CL, baﬁ) = PLn(Cl,, b?ﬂ7a = 07y = 1,2),

Show that

By_1(a,y)) = Coeffin (,z — f(ty, - .. ,tyn))[_l],

n—1
where f(y1,...,yn) = Y yxu*T!, and for any formal power series g(u), “Lg(u)ly—0 = 1, we
k=1

denote by g(u)l= the Lagrange Inverse formal power series associated with that g(u) that is
a unique formal power series such that g(gl="(u)) = u = ¢g=Y(g(u)).
Now let us recall the statement of Lagrange’s inversion theorem. Namely, let

flz) =2 — Z%ZEM

k>1

be a formal power series. Then the inverse power series fl1] (u) is given by the following formula

f[il} (y) = anuna

n>1
where
1 n—i—ij D1, P2 D
Wy, 1= W e = Y
=P opn) = o D (n,pl,...,pn sy
D1yeees pn>0
Yipj=n

where if N =mq + -+ 4+ m,, then

< N > N!
M,y My milms! -+ my!

denotes the multinomial coefficient.
Therefore, the coefficient

1 n + j .
bn(pla'--vpn) = < Zp] )7 Z]pj:n
J

’I’l+1 n,P1,--->Pn

is equal to the number of dissections of a convex (n + 2)-gon which contain exactly p; convex
(7 + 2)-gons, see, e.g., [38]. Equivalently, the number b, (p1,...,p,) is equal to the number of
cells of the associahedron K"~! which are isomorphic to the cartesian product (K°)Pt x --- x
(Kn=1)Pe [90, 91]. Based on a natural and well-known bijection between the set of dissections
of a convex (n + 2)-gon and the set of plane trees with (n + 1) ends and such that the all
other vertices have degree at least 2, see, e.g., [134], one can readily seen that the number
wy(p1, - .., pn) defined above under constraint Zj Jjpj = n, is equal to the number of plane trees
with n 4+ 1 ends and having p; vertices of degree j + 1.

Example 5.90. For short we set B,, = PL,(a,b,3, o, x,y).
(1) Quadrangular:

By = y%(alzl + blzlzg) + yz(ﬂlzl -+ al).
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(2) Pentagon:

Bs = yi (a321 + a1bi21 + agbiz122 + arbiz123 + biby212223)
+ y1y2(2a1 8121 + b1 121 + biBaz122 + b1 B1z123 + ararbiag + o z3)
+y3(Bray + Biz1 + blagz).

(3) Hexagon:

By = yi((af + 2aiby + arasbi + a1bibs)z
+ a%blbgzle + agbi’bgzlzg + alagb%zlzg + a%blzlzzl + alb%zlzzl + agbi’b%zlzgzg
+ agh?byzi 2924 + a1b3b3z1 2324 + bi’b%bgz1z22’32’4) + Yy (a%Oq + 2a1b1o + agbia
+ bibacy + (3aTbBy + 4arbi By + agbi By + bT + bafBr + a1biB2)z1 + azbiBazi 2o
+ biboBaz1 22 + abi Bz ze + a1bibszizs + arbiBrzizs + agbizizs + by B2z
+ ayb Br2124 + bibaB3z1 2223 + bbo oz 2224 + bTb3Br212324) + y1ys (a1 Bron
+2b1 Bran + (24181 + 2b1 BFarbias + asbias + biboan)z1 + bibaagzizo + b3 B3 21 20
+ biagzizs + byanzgeszs + azanzy + ajanze + bianzs + Bronza) + 3 (a1 fron
+ b3 Bz + (18182 + a1} + a1fan)z1 + Baaizs + b1 B1Bsz1z3) + yalenas + Bron
+ bionas (b1 Brag + bi faca + B7 + biBras) z1).

Special cases. Generalized Schréoder or Lagrange polynomials:

P,(a,b,B8,y,2z) = Bn‘a:O'
For example,

Py(a,b,y) = yi((a} + 2a3by + arash? + a1bibs)z1 + aibibozizo + asbibozi 2o + arazbiziz
+ a%b1z124 + Cle%ZlZzl + agb?bgzleZg + agb%bgzleQ + alb%b3212324
+ bibsbs 21 z02324) + yiy2 ((3aibBy + 4arbi B1 + agbify + b7 + bafy
+ alb%,ﬁg)zl + agbfﬁgzlzg + b:{’bg,ﬁzzlzg + azb:fﬁgzlzg + alb%bgzlzg
+ aibi Brz123 + agbizizs + b1 Brz1za + a1y Bra1za + biboBszizozs
+ biboBaz1 2024 + bibsPr212324) + y1ys (20185 + 201 8% + b3 B3 2120
+ b1B7z124) + 5 (b3 8182 + a1B7) 21 + b1B1 Bz 23) + ya 33 21

After the specialization a; = b; = 3; = z; =1, 1= 1,2, 3,4, one will obtain
Pya=1,b=1,8=1,y,z = 1) = 1y{ + 21y{ys + 6y1y3 + 3y + vu.
Generalized Narayana polynomials:
P,(a,b,y,z) = Bn{ a=o;

P,(a,b,y,z) = y%((a? + 2a%by + ajash? + alb%bg)zl + a2b1byz1 29 + agb3byzy 2o
+ alagb%Z1Z3 + a%blzlz4 + alb%2124 + agb?bgzleZg, + agb%bgzlzg,a

+ (Ilb%b321Z3Z4 + b?b%bgzlzz,z?,&;) .
Generalized Motzkin—Schréder polynomials:

MS,(a,b,y, z) = Bn‘a:O'
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For example,
MS4(a, b, y, z) = yiys(aiar + 2a1bia1 + asbian + bibsar) + yiys(a1fron + 2b1Bran)
+ y3 (a1B1a1 + biBocs) + ya(aras + biaras + Biar).
Generalized Motzkin polynomials:
M’n(b7 Y, Z) = Bn| a=0 -
B=0
For example,
My(b,y, z) = y1bibibsz1 222324 + Yiyabibacs + y1ys (bibacs + bron 24 + biby2i 23
+ blagz 24 + b30<12’32’4) + Ya (Oé2043 + b%maz)-
Generalized Motzkin—Riordan polynomials:
MR, (a,b,8,a,y) = B”’z:O'
Generalized Riordan polynomials:
RIL, (b, o, y) = By =o0Ta=0.
B=0
For example,
RLy(b, @, y) = yiyabiboar + ya(asas + blaras).
Let us set By (y1,...,yn) = Bp(a =1,b=1,8 = 1,y). Let 8 be a new parameter. Show
that
B(L,B,...,5" ) =6

Ixw,

1,....1),
(()nfl)( )

n

where 051(1,5 ) (X)) denotes the S-Grothendieck polynomial corresponding to a permutation w € S,,.
In particular,
By,(1,...,1) = Schy,
~——
n
where Sch,, denotes the n-th Schréder number, that is the numbers of paths from (0, 0) to (2n,0),
using only steps northeast U = (1,1) or or D = (1,—1)) or double H = (2,0), that never fall
below the x-axis.
Assume that n is devisible by an integer d > 1. Show that if y = (y; = 0;41,4), then
Ba(0,...,0, 1 ,0,...,0) = Fcﬁfj;”,
d—1
where FCP denotes the Fuss—Catalan number, see, e.g., [134], and [131, A001764] for a variety
of combinatorial interpretations the Fuss—Catalan numbers FC7(13).
More generally, let 2 < d; < --- < di be a sequence of integers, and set

Y= (it1,4;, L <j< k).
Show that the specialization By, (y) counts the number of dissections of a convex (n + 2)-gon on

parts which are convex (d + 2)-gons, where each d belongs to the set {dy,...,dr}. We would
like to point out that the polynomials

FSIY) := Coeffyn (Pna(a, b, B,y = (Ji+1.4): 2)).

can be treated as a multi-parameter analogue of the Fuss—Catalan numbers FC%dH).

Colored dissections [127]. A colored dissection of a convex polygon is a dissection where each
(d+1)-gon appearing in the dissection can be colored by one of by possible colors®!, d > 2 [127].

51We assume that if bg = 0, then the dissection in question doesn’t contain parts which are (d 4 1)-gons.
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Show [127] that if by, ..., b, be a sequence of non-negative integers, By, (ba,...,...,b,) is equal
to the number of colored dissections of a convex (n + 2)-gon.
Consider the specialization y; =¢— 1,7 =1,...,n. Show that

B, (y) :=SL(0,1,...,n — 1) = Fine(n + 1),

where Fine(m) denotes the m-th Fine number, that is the number of ordered rooted trees with
m edges having root of even degree [131, A000957]. Therefore, the Fine number Fine(n + 1)
counts the number of dissections of a convex (n + 2)-gon such that each (d + 3)-gon appearing
in the dissection can be colored by d possible colors, d > 1.

Consider the specialization ysp11 = 1, ysgao = 0, ysgr3 = —1, k > 0. Show that

Bn(yb ) yn) = Mna

where M, denotes the n-th Motzkin number [131, A001006].

Recall that it is the number of ways to draw any number of nonintersecting chord joining n
labeled points on a circle. The number M, is also equals to the number of Motzkin paths,
that is paths from (0,0) to (n,n) in the n x n grid using only steps U = (1,1), H = (1,0) and
D = (1,-1), see [131, A001006] for references and a wide variety of combinatorial interpretations
of Motzkin’s numbers.

Consider the specialization ysry1 = 0, y3ps2 = (—1)¥, yars3 = (—=1)¥, k > 0. Show that

Bn(y1s---,yn) = MS,,

where MS,, denotes the Motzkin sum or Riordan number [131, A005043].

Recall that it is the number of Motzkin paths of length n with no horizontal steps H = (1,0)
at level zero, see [131, A005043] for references and a wide variety of combinatorial interpretations
of Riordan’s numbers.

Consider the specialization yary1 = (—1)%, yor, = (=1)*™, k > 0. Show that [131]

Bu(y1, ..., yn) = A052709(n),

that is the number of underdiagonal lattice paths from (0,0) to (n —1,n—1) and such that each
step is either H = (1,0), V = (0,1), or D = (2,1).
Consider specialization y, = (—1)’7“%!!7 k > 1. Show that

Bn(yb SRR yn) = nn—Z,

that is the number of parking functions, see, e.g., [55, 134] and the literature quoted therein.
Consider the specialization y; = %. Show that [131]

where A052894(n) denotes the number of Schréider trees®2.

A Appendixes

A.1 Grothendieck polynomials

Definition A.1. Let 8 be a parameter. The Id-Coxeter algebra IdC,(8) is an associative
algebra over the ring of polynomials Z[3] generated by elements (eq, ..., e,—1) subject to the set
of relations

528chroder trees have been introduced in a paper by W.Y.C. Chen [23]. Namely, these are trees for which the
set of subtrees at any vertex is endowed with the structure of ordered partition. Recall that an ordered partition
of a set in which the blocks are linearly ordered [23].
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o cie; = eje; if |i — j| > 2,
® eiejei = ejeiej if ‘Z —]| = 1,

° e?:ﬁeilgign—l.

It is well-known that the elements {e,, w € S,} form a Z[§]-linear basis of the algebra
1dC,,(B). Here for a permutation w € S,, we denoted by e, the product e; e;, - - - €;, € IdCy,(5),
where (i1, 12, ...,1) is any reduced word for a permutation w, i.e., w = s;, 8, - - - 5, and £ = {(w)
is the length of w.

Let z1,29,...,Zn_1,Zn = Y, Tpnt1 = 2,... be a set of mutually commuting variables. We
assume that z; and e; commute for all values of 7 and j. Let us define

hi(z) = 1+ xe;, Ai(z) = H ha(x), i=1,...,n—1.

a=n—1
Lemma A.2. One has

(1) addition formula:
hi(z)hi(y) = hi(x @ y),

where we set (x @ y) :=x +y+ Pay;
(2) Yang-Baaxter relation:

hi(z)hit1(x © y)hi(y) = hiv1(y)hi(z © y)hiy(v).
Corollary A.3.

(1) [Piv1(@)hi(x), hit1(y)hi(y)] = 0.
2) [Ai(x), Ai(y)] = 0, i = 1,2,....,n — 1.

The second equality follows from the first one by induction using the addition formula,
whereas the fist equality follows directly from the Yang-Baxter relation.

Definition A.4 (Grothendieck expression).
B (x1,. .. 2p-1) = Ar(z1)A(22) - - - A1 (2p—1).

Theorem A.5 ([42]). The following identity

an(xl? cee xn—l) = Z 61(1)6)(Xn—1)€w

’u)GSn
holds in the algebra 1dC,, ® Z[x1,...,Tp_1].

Definition A.6. We will call polynomial (’5%3 )(Xn,l) as the G5-Grothendieck polynomial corre-
sponding to a permutation w.

Corollary A.7.

(1) If B = —1, the polynomials 051(1)71)()(”,1) coincide with the Grothendieck polynomials in-
troduced by Lascoux and M.-P. Schiitzenberger [86].

(2) The B-Grothendieck polynomial Q51(,J’B)(Xn_1) is divisible by a:zlu(l)fl.
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(3) For any integer k € [1,n — 1] the polynomial 6%371)(1‘]@ =q, 1, = 1,Va # k) is a poly-

nomial in the variables q and B with non-negative integer coefficients.

Sketch of proof. It is enough to show that the specialized Grothendieck expression &,,(xx = ¢,
xq =1, Va # k) can be written in the algebra IdC, (8 — 1) ® Z[q, ] as a linear combination of
elements {e, }wes, with coefficients which are polynomials in the variables ¢ and 8 with non-
negative coefficients. Observe that one can rewrite the relation e2 = (8 — 1)ey, in the following
form ej(er + 1) = Ber. Now, all possible negative contributions to the expression &, (x = q,
xq =1, Va # k) can appear only from products of a form c¢,(q) := (1 + gex)(1+ ex)®. But using
the Addition formula one can see that (1+geg)(1+ex) =1+ (14 gB)eg. It follows by induction
on a that ¢,(q) is a polynomial in the variables ¢ and 8 with non-negative coefficients. |

Definition A.S8.

e The double S-Grothendieck expression &,,(X,,Y,) is defined as follows

B (X, Yn) = 6,(X,) 6, (—=Y,) ! € 1dC,(8) ® Z[ Xy, Yyl

e The double S-Grothendieck polynomials {&,,(Xy, Y5)twes, are defined from the decom-
position

n(Xn, Vo) = > 64(Xn, Ve
wWES,,

of the double S-Grothendieck expression in the algebra IdC,,(5).

More details about S-Grothendieck and related polynomials can be found in [71, 84].

A.2 Cohomology of partial flag varieties

Let n =ny + -+ ng, n; € Z>1Vi, be a composition of n, k > 2. For each j =1,...,k define
the numbers N; =ni +---+nj, Ng =0, and M; = n; +--- +ng. Denote by X := X, n, =
{:L'gl) i = 1,...,k,1 < a < n;} (resp. Y, ...) a set of variables of the cardinality n. We

set deg(x((;)) =a,t=1,...,k. Foreachi=1,...,k define quasihomogeneous polynomial of
degree n; in variables X ) {a:(Z |1<a<n}

o, (XD 8) =t 4y " a (D,

a=1
and put

k

Pnq,...ng (Xv t) = Hpni (X(z) ) t)'
=1

We summarize in the theorem below some well-known results about the classical and quantum
cohomology and K-theory rings of type A,_1 partial flag varieties Fl,, . n,. Let qi,...,qx—1,
deg(q;) =n; +nip1,i=1,...,k — 1, be a set of “quantum parameters”.

Theorem A.9. There are canonical isomorphisms

H (Fly,..on, Z)
K*(Fluy....n Z)

12

Z[an, N /<pn1, ,nk X t tn>
ZIY £/ Py (Y1) = (L + 1)),

1
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k n;
H%(‘Flnla--anaZ) = Z[Xv Y]/ <H H(xgl) + t) - pn1,...,nk (Ya t)> )

i=la=1
QH"(Flp,...np,) S L[ X, .. mk,ql,...,qk_l]/<An17._,,nk(X,t)—t"> (cf. [4]),

QH( Fly,.,..n) EZX,Y  qu, ... ,qk,l]/<An1,_.7nk(X,t) —pnl,,_.7nk(Y,t)> (cf. [4]),

Il

where®3
Anl,...,nk(Xat) =
pm(X(l)J) @ 0 0
0 1 N X(3),t 0 0
o ' | p 3(. ) ?3 _
0 . . 0 =1 pu,_ (XD 4 qk—1
0 o o S -1 P (X8 1)

r .
Here for any polynomial P(x,t) = ) bj(x)t" 7 in variables * = (x1,x2,...), we denote by
j=0

(P(x,t)) the ideal in the ring Z[x] geI:erated by the coefficients bo(x),...,b,(x). A similar
meaning have the symbols

k n;
<H H(a:((li) + t) — Pni,.nyg (y’ t)> ) <An17~--’nk (w7 t) - tn>

i=1a=1

and so on.

Note that dim(F,, . n,) = >_ n;n; and the Hilbert polynomial Hilb(F,,, . n,,q) of the partial
1<j

flag variety JFy, . n, is equal to the g-multinomial coefficient [ K

nl,...,nk]q7 and also is equal to
the g-dimension of the weight (ni,...,ny) subspace of the n-th tensor power (C")®" of the

fundamental representation of the Lie algebra gl(n).

Comments A.10. The cohomology and (small) quantum cohomology rings H*(F,, . n,,Z)
and QH*(Fn,.... n,, L), of the partial flag variety F,, ., admit yet another representations we
are going to present. To start with, let as before n = n1—|- +ng, n; € Z>1, Vi, be a composition.

Consider the set of variables X = Xnt,oonpy = {a: [1<i<mng a=1,. — 1}, and set as
(1)

before deg g’ = a. Note that the number of variables X is equal to n — ny. To continue, let’s
define elementary quasihomogeneous polynomials of degree r

Z;U(Zl 517/: , €0 (/X\) = 1’ [ (/X\) = 07 r > 0’
where the sum runs over sequences of integers I = (iy,...,is) and A = (aq,...,as) such that

e 1<ij<--<ig<k-—1,

e 1<a;j<n;,j=1,...,s,and r =aj +--- +as,
and complete homogeneous polynomials of degree p
hp (X) = det ‘ej_i_,_l (X) ‘1Si7j§p'

53We prefer to use quantum parameters {q; | 1 < i < k— 1} instead of the parameters {(—1)"1¢; |1 <i < k—1}
have been used in [4].
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Finally, let’s define the ideal Jy, . n, in the ring of polynomials Z[X,, . n. ,] generated by
polynomials

hnk+1(3(\), e hn(jf\)
Note that the ideal J,, ., is generated by n —ng = #(Xp, .. n,_,) elements.

Proposition A.11. There exists an isomorphism of rings
H* (Fryooinger ) = L Xy i) T

In a similar way one can describe relations in the (small) quantum cohomology ring of the

partial flag variety F,, . n,. To accomplish this let’s introduce quantum quasihomogeneous

(q)

elementary polynomials of degree j e; (Xn,....n,) through the decomposition

z

Aoy Xyon) = DV (X W, (@) =1, D(@)=0, p>0.

<.
Il
o

To exclude redundant variables {xgk), 1<a< nk}, let us define quantum quasihomogeneous

Schur polynomials s((f)(Xm,m,nr) corresponding to a composition & = (o < ag < --- < @) as

follows

«

5@ (Xn1,-.-7nr) = det ‘egci)i-mi (an,---,m)

1<i,j<p’

Proposition A.12. The (small) quantum cohomology ring QH*(Fy,,...n,,Z) is isomorphic to
the quotient of the ring of polynomials Z[qi, . .., qe—1] [Xn,,...n._,] by the ideal I, ., gene-
rated by the elements

gT(anw-’"kfl) = SE({;’I;;:)MA)(Xm,m,nkfl) - Qk—legﬂqfl;;;;qfiz)(anw,nkfz)a

where ng +1 <71 <n.

It is easy to see that the Jacobi matrix

0
— =9 ( Xy, np_y)
(8x5f) ' B ){a—l ,,,,, k—1,1<i<ng

np+1<r<n}

corresponding to the set of polynomials g,(Xp, . n, ,), ne < r < n, has nonzero determi-

nant, and the component of maximal degree nmax := > nyn; in the ring QH*(Fy,, ., Z) is
I<j
a Z[q,.-.,qx—1]-module of rank one with generator
k—1 ng
=TT e
=1 a=1

Therefore, one can define a scalar product (the Grothendieck residue)

<.a .>: HQ*(fnl,...,nk)Z) X HQ*(fnl,...,nkaZ) — Z[Ql’ cee 7%—1}

setting for elements f and g of degrees a and b, (f,h) = 0, if a + b # nmax, and (f, h) = A(q),
if a4+b = nmax and fh = A(g)A. It is well known that the Grothendieck pairing (e,e) is
nondegenerate (for any choice of parameters qi, ..., qr_1)-
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Finally we state “a mirror presentation” of the small quantum cohomology ring of partial
flag varieties. To start with, let n = ny +--- 4+ ng, k € Zgez be a composition of size n, and
consider the set

Y(n)={(i,j) €EZXZ|1 <i< Ny, Moy1 +1<j< Mg, a=1,...,k—1},
where Ny, =nj +---4+nq, No=0,Ny =n My =ng41 + -+ ng, Mg =n, My = 0.
With these data given, let us introduce the set of variables
Zn ={z;|(i,7) € E(n)},
and define “boundary conditions” as follows
© Ziv+1=0,if Ny 1 +2<i<Ng,a=1,....,k—1,
® 2N,41; =00, if M1 +2<j< My, a=1,...,k—1,
® ZN, 1+1,Mu+1 = qa, @ = 1,... Kk, where q1,...,q, are “quantum parameters.
Now we are ready, follow [53], to define superpotential
(p)esn) ~ T L
Conjecture A.13 (cf. [53]). There exists an isomorphism of rings
QHy(Flnyn Z) 2 Z[a - '] [Z51] /T (Wam),
where QH[*Q] (Flny,...ny» Z) denotes the subring of the ring QH*(Fly,,...n,,Z) generated by the

elements from H2(]-'lm,_“7nk,Z).
J(Wym) stands for the ideal generated by the partial derivatives of the superpotential W pn :

I0Wom) = (Go0) . (i) € S)

82’@7]'

Note that variables {z,; € ¥(n), i # N+ 1,a = 0,...,k — 2} are redundant, whereas
the variables {z, ; := ZZQ;HJ’ j=1,...,n4,a =0,...,k — 2} satisfy the system of algebraic
equations.

In the case of complete flag variety Fl,, corresponds to partition n = (1") and the superpo-
tential Wy 1» is equal to

Zij+1 Zij
Woim = Z ( T J )

1<i<j<n—1 Zi,j Zi—1,5+1
where we set z;,, :=¢;, i = 1,...,n. The ideal J(W, in) is generated by elements
Wyan 1 n L zijyit 2o
= 3 .
Zi,j Zij—1 = Zi—1,j+1 2

One can check that the ideal J(W, 1) can be also generated by elements of the form

)
. i1 .
Z Agl) (qlﬂ <oy Qn—itlsZn—1;-- -, Zn*iJrl)Zfl—li = ]-7 AE)Z) =dq1 - dn—i+1,
=0

1

where z; ;= 27,1 =1,...n — 1. For example,

2q1 g =1, NP7 — @2n—a = 1,
qu]z@szg_z — 2q192932n—-12n—22n—3 + QQQ32721_3 + q32p—4 = 1.

Therefore the number of critical points of the superpotential W, is equal to n! = dim H*(Fl,, Z),
as it should be. Note also that QH*(Fl,,Z) = QH[*Q} (Fln, 7).
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A.3 Multiparamater 3-term relations algebras
A.3.1 Equivariant multiparameter 3-term relations algebras

Let ¢ = {gij}1<i#j<n, @j = @ji, be a collection of mutually commuting parameters and 8 =
{Bijhi<izj<n, Bij = Bji and € = {lij}i<izj<n, Lij = {ji, be two sets of mutually commuting
variables each.

Definition A.14. Denote by 3QT,(8,4,q) an associative algebra generated over the ring
Z[8,£,q) by the set of generators {x1,...,2,} and that {u;;}i<ixj<n subject to the set of
relations

(1) locality conditions: [z, z;] = 0, [wij, ur] = 0, [, ui;] = 0if 4, j, k, | are pairwise distinct,

(2) generalized unitarity conditions: w;; + uj; = Bij,

(3) Hecke type conditions: w;ju;; = —gq;; if ¢ # 7,

(4) twisted 3-term relations: wu;ju;r = UjpUix — UikWjs, UjkUij = Uikl — Wik if 4, j, k are
distinct,

(5) crossing relations: xjuj; = —ugjx; — £y if i # j.

As before we define the (additive) Dunkl elements to be

Gi:xi—I—Zuij, 1=1,...,n. (Al)
J#i

It should be pointed out that the Dunkl elements do not commute with variables {x;}, {8i;}
and {/;;}.

It is clearly seen from the defining relations listed in Definition A.14 that for any triple of
distinct indices (3, j, k) the elements {x;, x;, T, uji, wik, uji } satisfy the twisted dynamical Yang—
Baxter relations, and thus the Dunkl elements {6;}1<i<, generate a commutative subalgebra in
the algebra 3QT, (8, £).

On the other hand, one can show that the set of defining relations involve in the definition of
algebra 3QT, (3, £) implies the following set of compatibility relations among the set of generators
{u;;} and the set of variables {f;;} and {¢;;}

Uijuji + uijlp + Bijunti + wijBint; = ujrlin + i + wjkBinti + Bijrivij,

if 4, j, k are distinct.

These relations are satisfied, for example, if either 3;; = 3, and ¢;; = h, Vi,j for some
parameters (i.e., a central elements) 5 and h, or variables {3;;} and {/;;} satisfy the exchange
relations with generators {u;;}, namely, the commutativity relations

[Bijs wkm] = 0, Wijsukm] =0 if {i,j}n{k,m} =02
and the exchange relations
Bijuik = wikBik, Cijujr, = ujrlip if k#1475

It happens that in the first case, if 8 = 0, then the (commutative) algebra generated by additive
Dunkl’s elements and elementary symmetric polynomials {ex(X,)}1<k<n (resp. multiplicative
Dunkl’s elements) is isomorphic to the equivariant quantum cohomology ring (resp. to the equiv-
ariant quantum K-theory ring) of the type A,_1 complete flag variety. In the second case a
geometric interpretation of the algebra generated by Dunkl’s elements is missing.
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Our main objective in this section is to to describe (part of) relations among Dunkl’s element
using defining relations involve in the Definition A.14 of the algebra 3QT,(8,¥%, q), under the
following constraints

bij = hmax(i,j)v hs,...,h, are all central.

Note, that except the case 3; = 8 and h; = h;, Vi,j, our assumption violates the crossing
relations between the elements 3;;, £;; and u;y, but nevertheless allows to compute explicitly
(part of) relations among the Dunkl’s elements. We expect that an abstract algebra generated
over Q[3, h] by a set of mutually commuting elements 61, ...,0, and elementary symmetric
polynomials {ex(X,)}1<k<n subject to the set of relations descending from those for Dunkl’s
elements which were mentioned above, has some interesting combinatorial/geometric interpre-
tations. Below we state some results concerning relations among Dunkl elements in the algebra

3QT, (8,4, q).
Theorem A.15 (cf. Theorem 3.17, Section 3). Let k > 1 be an integer. There exist polynomials

Ri(q, h,21,...,2n) € Z[B,q, {hj — hi}1<i<j<al[Zn],
Tiw(B R, 21, . .., z) € Z[3, h][Z,]

such that
Ri(q,h,z1,...,2,) = e,(chrh)(zl, ..y Zn) + monomials of total degree
<k-2 w.r.t. variables {z}1<i<n,
Te(B Ry 21,y 2n) = ex(21, .-+, 2n) + chkej(Xn), ¢k € Z[B, hl,
i<k

Rk(Gl,. . ,Gn) = Tk(xl, N ,iL'n),

where e
ing to the set of parameters {(q + h)} = {gij + hj}1<i<j<n-

,(:Hh) (21,...,2n) denotes the multiparameter quantum elementary polynomial correspond-

It is not difficult to see that the unitarity and crossing conditions imply the following relations
[2i + 2, up] = 0= [wgxj, up],  [27,um] =0

are valid for all indices i # j, k # [. As a consequence of these relations one can deduce that
the all symmetric polynomials ey (X,,) := egx(z1,...,2,), k = 1,...,n, belong to the center of
the algebra 3QT,(q, h), and therefore one has [0;, ex(X,,)] = 0 for all i and k. Let us denote
by QH (3, h) a commutative subalgebra in the algebra 3QT,, (3, h) generated by the elementary
symmetric polynomials {ey(Xy)}i1<kr<n and the Dunkl elements {6;}1<i<,. It is an interesting
problem to give a geometric/cohomological interpretation of the commutative algebra QH (53, h).
We don’t know any geometric interpretation of that commutative algebra, except the special
case [75]

B =0, hj =1, Vj, Qij = qi0iy1,j- (A.2)

Proposition A.16 ([75]). Under assumptions (A.2), the algebra QH(0,0) isomorphic to the
equivariant quantum cohomology QH7.(Fly) of the complete flag variety Fly,.

Examples A.17. Let us list the relations among the Dunkl elements in the algebra 3QT,, (5, h)
for n = 3,4, and 3; = 8, Vj.

(1) e1(f1s ..., 0n) = e1(Xy) + <g>5,
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n(n—1)(n—2)(3n —1)

(2) ST, .., 60,) = ea(X) + (n— 1)Ber(X,) + 5 8%, n>3,
(3) €T (0,65, 05) = e3(X3) + haB,

€§q+h)(91, 02,03,04) = e3(X4) + Bea(X4) + 28%1(X4) + 68° + B(hs + 3hy),
(4) e T 0y, 04,03, 04) + B(hy — h3)0s = ea(X4) + Bhaer(Xy) + 55%h4.

Note that "("_1)("222)(371_1) =s(n—2,2) =ey3(1,2,...,n— 1) is equal to the Stirling number of

the first kind.

Conjecture A.18. The polynomial Ri(q, h,Z,), see Theorem 2.29, can be written as a poly-
nomial in the variables {hij := hj —h;, 1 <1 < j<n, 21,...,2n, B, ¢ij, 1 < i <j < n} with
nonnegative coefficients.

Exercises A.19 (Pieri formula in the algebra 37,,(0,h), [75]). Assume that § = 0 and he =

-++ = hy, = h, and denote by 01(”), i =1,...,n the Dunkl elements (A.1) in the algebra 37,,(0, h).
Show that

ek(9§”), . ,9,(,’;)) = E (=h)"N(m —k,2r) E Xstiy gy Wiy, (s
>0 scii,m]
I={ia}, J={ja}

where
2%
N(a,2b) = (2b— 1)!!(“ ;b )

Xs = [] xs, and the second summation runs over triples of sets {5, I, J} such that S C [1,m],
SES
IC [17m]\s7 ’I|+|S|+2T:k7 |I‘ = "]|7 1 Sia <m<ja Snandjl S §]|I|

A.3.2 Algebra 3QT,(8, h), generalized unitary case

Let B8 = (B1,...,Pn-1), h = (ha, ..., hy) and {g;; }1<i<j<n be collections of mutually commuting
parameters as in the previous section. As before we define the Dunkl elements 6;, ¢ = 1,...,n,
by the formula (A.1). It is necessary to stress that the Dunkl elements {6 }1<i<,, do not commute
in the algebra 3QT, (8, h) but satisfy a noncommutative analogue of the relations displayed in
Theorem A.15. Namely, one needs to replace the both elementary polynomials ex(Z,) and
the quantum multiparameter elementary polynomials e,gq)(Zn) by its noncommutative versions.

Recall that the noncommutative elementary polynomial e, (Z,,) is equal to

E : Zj1 Rje Tt Ry

1<j1<ga < <jrp<n

and the noncommutative quantum multiparameters elementary polynomial géq)(Zn) is equal to

¢

Z Z Qkfzz(Zm) H Wig,jas
¢

1<i) < <jp<n a=1
11 <J1seee» ip<dp

where I = (i1,...,i¢), J = (j1,...,J¢) should be distinct elements of the set {1,...,n}, and
Z757 denotes set of variables z, for which the subscript a is neither one of i,, nor one of the jy,.
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Example A.20.

n—1
SO0 = eaX) [ Y |aX) Y bbb,
=1 1<a<b<n—1
ST (61,02, 03,00) + (B3 — B1) (861 + qza + ha + B2(61 + 02)) + (85 — B2) (61 + 626
+ qua + qoa + 2ha + B103) = e3(Xyq) + Bsea(Xy) + (B1Bs + B2Bs + B3 — B1B2)er(Xa)
+ (383 — B1B2)(B1 + 2B2) + Bi(hs + ha) + 2B2ha,
T (01,02, 03,04) + (Bsha — Brhs)0s + ha(B2 — )03
= e4(X4) + P2haer(Xa) + B2ha(262 + 303).

Project A.21 (noncommutative universal Schubert polynomials). Let w € S,, be a permutation
and S(Zy) be the corresponding Schubert polynomial.

(1) There exists a (noncommutative) polynomial &b, ({uij }1<i<j<n) with non-negative integer
coefficients such that the following identity

Guw(b,...,0n) = &b, ({uij hr<icj<n)

holds in the algebra 3T7§0), where {Hj}lgjgn are the Dunkl elements in the algebra 3T,(LO).
(2) There exist polynomials R (B3,q,h, Z,) € N[3,q,hj — hi1§i<j§n] [(Zn] and Ty (B, h, Zy,) €

Z[B, h)[Zy,] such that the following identity

Ruw(B,q,h,01,...,0,) =Tyw(B, h, X;) + 6b,, ({uij hi<icj<n)

holds in the algebra 3QT, (B, h).
3) Let v € Z>3 and N = ny + -+ +n,, nj € Z>1, Vj, be a composition of N, and set

Nj=mni1+---+nj, 7 >1, Ng= 0. Eliminate the Dunkl elements 01(\17\:)7&1’ ey HS\J,V) from the set
of relations among the Dunkl elements HgN), e ,9](\][\/) in the algebra 3QT,(5,h), by the use of
the degree 1,...,n, relations among the former. As a result one obtains a set consisting of N,_1

relations among the N,._1 elements

o0 = e (087 1 ON)), 1<ki<m;,  1<j<r—1.

Give a geometric interpretation of the commutative subalgebra QHy, ., (8, h) C 3QT, (B, h)

generated by the set of elements 9;?2, 1<kj<nj,j=1,...,7r—1.

A.4 Koszul dual of quadratic algebras and Betti numbers

Let k be a field of zero characteristic, F"") = k(z1,...,x,) = 69320 Fj(n) be the free associative
algebra generated by {z;, 1 < i < n}. Let A = F" /I be a quadratic algebra, i.e., the ideal
of relations [ is generated by the elements of degree 2, I C FQ(n). Let F(W* = Hom(F,, k) =
D=0 Fj(n)* with a multiplication induced by the rule fg(ab) = f(a)g(b), f € Fi(n)*, g € Fj(”)*,
a € Fi(n)7 b e Fj(n). Let Iy = {f € FQ(n)*,f(Ig) = 0}, and denote by I+ the two-sided ideal
in F(W* generated by the set IQL.

Definition A.22. The Koszul (or quadratic) dual A' of a quadratic algebra A is defined to be
A= PO /7L

The Koszul dual of a quadratic algebra A is a quadratic algebra and (A')' = A.
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Examples A.23.
(1) Let A = F(™ be the free associative algebra, then the quadratic dual

A! = k<yla" . ayn>/(y1y]7 1 S Zv] S n)

(2) If A =k[x1,...,x,] is the ring of polynomials, then

A! = k[ylv e 7yn]/([ylay]]—7 1< Z?] < n)a

where we put by definition [y, y;]- = viy; + yjv; if i # j, and [y;, yi]_ = y2.
(3)Let A= F™/(f1, ..., f), where fi= 3 a;jkT;T, 1 = 1,...,r are linear independent
1<j,k<n

elements of degree 2 in F(™). Then the quadratic dual of A is equal to the quotient algebra
A" = k(y1,...,yn)/J, where the ideal J = (g1,...,9s), s = n? —r, is generated by elements

gm = bmjryjyr. The coefficients by, m =1,...,s,1 < j,k < n, can be defined from the
1<j,k<n
system of linear equations Y  ajjrbmjr =0,i=1,...,r, m=1,...,s (cf. [95, Chapter 5]).
1<j,k<n

Let A= >0 Aj be a graded finitely generated algebra over field &.

Definition A.24. The Hilbert series of a graded algebra A is defined to be the generating
function of dimensions of its homogeneous components: Hilb(A,t) = 5 dim Agt*.
k>0

The Betti—Poincaré numbers B(n,m) of a graded algebra A are defined to be B4(i,j) :=
dim Tor (, k);j. The Poincaré series of algebra A is defined to be the generating function for
the Betti numbers: Pa(s,t) := Y. Ba(i,j)s't).

i>0,j>0

Let B is a k-module and A is a B-module. The Betti number BB(A) of A over B is the
rank of the free module B[—j] the ith module of a minimal resolutlon of A over B that is
ﬁg( ) = dimy, Ext?(A, k);. The graded Betti series of A over B is the generating function

Bettig(A,z,y) Z 5 y € Zly,y "[[x]).
€N, JEZ

Definition A.25. A quadratic algebra A is called Koszul iff the Betti numbers B(i,j) are
equal to zero unless i = j.

It is well-known that Hilb(A,¢)Pa(—1,t) = 1, and a quadratic algebra A is Koszul, if and
only if Ba(i,5) = 0 for all i # j. In this case Hilb(A,t) Hilb(A', —t) = 1.

Example A.26. Let F7(ZO) be a quotient of the free associative algebra F;, over field k with the set

of generators {1, ...,z,} by the two-sided ideal generated by the set of elements {x2,...,22}.
Then the algebra F;O)n is Koszul, and Hilb (F,go),t) = %

We refer the reader to a nice written book by A. Polishchuk and L. Positselski [116] to read
more widely in the theory of quadratic algebras, see also [94].

A.5 On relations in the algebra Z°

Let us define algebra Z0 to be the subalgebra in 37 generated by the elements Uin, 1 <1 <n—1.
It is clear that Z2 is a S,_j-module,and well-known [46] that if one sets Hilb(Z}P,t) := Zj(t),
then

Hilb(3 H Zi(t

There exists a natural action of algebra 3T°_; on that Z2. To define it, it’s convenient to
put z; ;= ujp, 1 <i<n-—1.
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Definition A.27 (cf. [67] and Section 2.3.4). Define operators V;;,1 <1i < j < n — 1, which
act on Z°, by the following rules

o Vij(zp) =0if k #4,7,
o Vij(wi) = wiwj, Vij(zy) = —wjwi,
e twisted Leibniz rule:
Vij(@-y) = Vij(@) -y +sij(x) Vij(y)

for z,y € Z% and all 1 <i < j <n — 1. Here s;j € Sp—1 denotes the transposition that
interchanges 7 and j and fixes each k # 1, j.

Proposition A.28. The operators V;;, 1 < i < j < n — 1, satisfy all defining relations of
algebra 3T?_,

In particular, the operators V; ;, satisfy the Coxeter and Yang-Baxter relations:

e Yang—Baxter relations:
VijVikVik = VjkVikVig,
e Coxeter relations. Let V; =V ;11,1 <j <n— 2, then

V;iVi1V; =V;11V,;Vii, Vi, V] =0 it |i—j[>2.

Therefore, for each w € S,,—1 one can define the operator V,, = V,, ---V,,, where the sequence
(a1,...,a;) is a reduce decomposition of the element w.

Denote by R,, the kernel of the epimorphism ¢: Z,, — F,_1 given by t(uy,) = x, where
Fo—1:=Q(z1,...,x,—1) denotes the free associative algebra generated by the elements 1, ...,
Zn—1. There exists the decomposition R,, = @ ~5 Rn k, where R, ), denotes the degree k part

n—1

of R,. We denote by r,j the dimension of the space Ry, 1/ > (€jnRn k-1 + Rnk—12jn), and
i=1

put rp == (Tn2,Tn3, ... ).

Example A.29.

3 = (271)7 T4 = (37372)7 s = (476787673)7
re = (5, 10, 20, 30, 39, 40, 39, 30, 20, 10, 4).
Remark A.30. The same formulas for the action of V; j on Z9 given in Definition A.27, define

an action of operators V; ; on the free algebra F,_;. In this way we obtain a representation of
the algebra 37,,_1 on that F,,_1, cf. Section 2.3.4.

Let us denote by ﬁn the quotient of the free associative algebra F,, = (z1,...,xy,) by the
two-sided ideal generated by the elements {xfx] — xjx%, 1 <14,5 <n}. It is not difficult to see
that the operators V; ;, 1 <7 < j < n, define a representation of the algebra 3T? on that F,.
Note that

ﬁn = Fn—l ®Z[yl,?/27--->?/n]a
where deg(y1) = 1, deg(y;) = 2, j = 2,...,n. Therefore,

1
(1—1)(1—(n—1)t)(1 —2)n-1"

Hilb(F,,t) =
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Conjecture A.31. The kernel R, coincides with the two-sided ideal in the free algebra F,,_1
S

generated by elements of the form [] Vi, j, (acg) for some positive integers s and 1 < a <n—1.
k=1

In other words, the all relations in the algebra Z0 are consequence of the following relations
uVy(23) = 0 for some u,w € S;,_1.

Challenge A.32.

(1) Compute the numbers ry, .

(2) Prove (or disprove) that there exists a positive integer kmax := k. such that T kmax 7 05

but 7, = 0 for all integers k& > k:r(ggx

(3) These examples suggest that there might be exist a certain symmetry ry, i = 7 koo —k+2:
if 3 <k < Emax, between the numbers 7, j, and moreover, r, ;.= 1,2 — 1. If so, how to
explain these properties of the numbers r,, ;.7

We expect that if n > 4, then kg@x = 2([(71”__2)2/2}).

Example A.33 (cyclic relations in the algebra Z°). The following relation

n—1 n n i—1
H Vijm—j+1(27) = Zﬂﬁz < H Zq H %) x;
i=1

j=1 a=i+1 a=1
holds in the free algebra F,. Therefore in the algebra Z° one has the following cyclic relation
of the degree n and length n — 1:

n—1

n—1 i—1
Zwi ( H xaH$a> x; = 0.
i=1

a=i+1 a=1

n—1
If n > 5, then by applying to monomials of the form [] V,—;,—j+1(z}) the action of either
j=2
operators V-1, 2 < a <n—3, or those Vg3, 1 <a <b—2<n—4, new, more complicated
relations in the algebra Z°, i.e., non-cyclic relations, can appear. These are relations of the
length 2n and degree n + 1 in the algebra Z°. Conjecturally all relations in the algebra Z° can

be obtained by this method.
Proposition A.34.

— 4l
6
n—1 n—1 n—1
= 6! 4 .
n,8 6< . >+ 30< 6 >+39( 5 )

A.5.1 Hilbert series Hilb(3T3,t) and Hilb((3T7g)!,t): Examples®
Examples A.35.
Hilb(379,¢) = [2]%[3],  Hilb(37¢,¢) = [2]*[3]*[4]>,  Hilb(3T¥,¢) = [4]*[5]*[6]",

64All computations in this section were performed by using the computer system Bergman, except computa-
tions of Hilb(37Ty,t) in degrees from twelfth till fifteenth. The last computations were made by J. Backelin,
S. Lundqvist and J.-E. Roos from Stockholm University, using the computer algebra system aalg mainly devel-
oped by S. Lundqvist.
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Hilb (37§, t) = (1,15, 125,765, 3831, 16605, 64432, 228855, 755777, 2347365, 6916867,
19468980, 52632322, 137268120, 346652740, 850296030, . . .)
= Hilb(373,t)(1, 5,20, 70,220, 640, 1751, 4560, 11386, 27425, 64015,
145330, 321843, 696960, 1478887, 3080190, . .. ),
Hilb(37%,t) = Hilb (37T, t)(1,6, 30, 135, 560, 2190, 8181, 29472, 103032,
351192, 1170377,...),
Hilb(37Y,t) = Hilb(37¥,¢)(1,7,42,231,1190, 5845, 27671, 127239, 571299, 2514463,
Hilb((3T: 0) ) (1—t)=(1,2,2,1), Hilb((3T£)’,t)(1 — )2 =(1,4,6,2, -5, -4, 1),
Hilb((379)',£) (1 — )% = (1,8, 26,40, 19, —18, =22, —8,—1),
((3T9)',£)(1 — ) = (1,12, 58,134, 109, —112, —245, —73, 68,50, 12, 1),
((377) 1)1 = 1)

379) 4) (1 — ¢)® = (1,18, 136, 545, 1169, 1022,—624,—1838,—837, 312, 374, 123,18, 1).

Hilb
Hilb

We expect that Hilb((3T0)', ) is a rational function with the only pole at ¢ = 1 of order [n/2],
and the polynomial Hilb((372)",¢)(1 — t)[*/? has degree equals to [5n/2] — 4, if n > 2.

A.6 Summation and Duality transformation formulas [63]

Summation formula. Let a1 + -+ a,,, = b. Then

[x,-—x*—l—a-] [asﬂry—b} [y+xi—ai]

> el [ T1 [x._Jx.]j [z: + 9] =0 11 W+ 2]

i=1 ji ' J iTY 1<i<m Y v
Duality transformation, case N =1. Let a1 +---+a, =b1 4+ -+ -+ b,. Then

i[a,]n[%—xfraj] 11 [z; + yx — O]

= g il g2 vty

_ Zn:[bk] 11 [ye — y1 + bi 11 [yr + x5 — ai
=1 ik [k — wil 1<i<m [k + i
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