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Extended abstract

We introduce and study a certain class of quadratic algebras, which are nonhomogeneous in
general, together with the distinguish set of mutually commuting elements inside of each, the
so-called Dunkl elements. We describe relations among the Dunkl elements in the case of a family
of quadratic algebras corresponding to a certain splitting of the universal classical Yang–Baxter
relations into two three term relations. This result is a further extension and generalization of
analogous results obtained in [45, 117] and [76]. As an application we describe explicitly the
set of relations among the Gaudin elements in the group ring of the symmetric group, cf. [108].
We also study relations among the Dunkl elements in the case of (nonhomogeneous) quadratic
algebras related with the universal dynamical classical Yang–Baxter relations. Some relations
of results obtained in papers [45, 72, 75] with those obtained in [54] are pointed out. We
also identify a subalgebra generated by the generators corresponding to the simple roots in the
extended Fomin–Kirillov algebra with the DAHA, see Section 4.3.

The set of generators of algebras in question, naturally corresponds to the set of edges of the
complete graph Kn (to the set of edges and loops of the complete graph with (simple) loops K̃n in
dynamical and equivariant cases). More generally, starting from any subgraph Γ of the complete

graph with simple loops K̃n we define a (graded) subalgebra 3T
(0)
n (Γ) of the (graded) algebra

3T
(0)
n (K̃n) [70]. In the case of loop-less graphs Γ ⊂ Kn we state conjecture, Conjecture 4.15

in the main text, which relates the Hilbert polynomial of the abelian quotient 3T
(0)
n (Γ)ab of the

algebra 3T
(0)
n (Γ) and the chromatic polynomial of the graph Γ we are started with12. We check

1We expect that a similar conjecture is true for any finite (oriented) matroid M. Namely, one (A.K.) can
define an analogue of the three term relations algebra 3T (0)(M) for any (oriented) matroid M. We expect that
the abelian quotient 3T (0)(M)ab of the algebra 3T (0)(M) is isomorphic to the Orlik–Terao algebra [114], denoted
by OT(M) (known also as even version of the Orlik–Solomon algebra, denoted by OS+(M) ) associated with
matroid M [28]. Moreover, the anticommutative quotient of the odd version of the algebra 3T (0)(M), as we
expect, is isomorphic to the Orlik–Solomon algebra OS(M) associated with matroid M, see, e.g., [11, 49]. In
particular,

Hilb(3T (0)(M)ab, t
)

= tr(M)Tutte
(
M; 1 + t−1, 0

)
.

We expect that the Tutte polynomial of a matroid, Tutte(M, x, y), is related with the Betti polynomial of a matroid
M. Replacing relations u2

ij = 0, ∀ i, j, in the definition of the algebra 3T (0)(Γ) by relations u2
ij = qij , ∀ i, j,

(i, j) ∈ E(Γ), where {qij}(i,j)∈E(Γ), qij = qji, is a collection of central elements, give rise to a quantization of
the Orlik–Terao algebra OT(Γ). It seems an interesting task to clarify combinatorial/geometric significance of
noncommutative versions of Orlik–Terao algebras (as well as Orlik–Solomon ones) defined as follows: OT (Γ) :=
3T (0)(Γ), its “quantization” 3T (q)(Γ)ab and K-theoretic analogue 3T (q)(Γ, β)ab, cf. Definition 3.1, in the theory
of hyperplane arrangements. Note that a small modification of arguments in [89] as were used for the proof of our
Conjecture 4.15, gives rise to a theorem that the algebra 3Tn(Γ)ab is isomorphic to the Orlik–Terao algebra OT(Γ)
studied in [126].

2In the case of simple graphs our Conjecture 4.15 has been proved in [89].
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our conjecture for the complete graphs Kn and the complete bipartite graphs Kn,m. Besides, in
the case of complete multipartite graph Kn1,...,nr , we identify the commutative subalgebra in the

algebra 3T
(0)
N (Kn1,...,nr), N = n1 + · · ·+ nr, generated by the elements

θ
(N)
j,kj

:= ekj
(
θ

(N)
Nj−1+1, . . . , θ

(N)
Nj

)
,

1 ≤ j ≤ r, 1 ≤ kj ≤ nj , Nj := n1 + · · ·+ nj , N0 = 0,

with the cohomology ring H∗(F ln1,...,nr ,Z) of the partial flag variety F ln1,...,nr . In other words,

the set of (additive) Dunkl elements
{
θ

(N)
Nj−1+1, . . . , θ

(N)
Nj

}
plays a role of the Chern roots of the tau-

tological vector bundles ξj , j = 1, . . . , r, over the partial flag variety F ln1,...,nr , see Section 4.1.2

for details. In a similar fashion, the set of multiplicative Dunkl elements
{

Θ
(N)
Nj−1+1, . . . ,Θ

(N)
Nj

}
plays a role of the K-theoretic version of Chern roots of the tautological vector bundle ξj over
the partial flag variety F ln1,...,nr . As a byproduct for a given set of weights ` = {`ij}1≤i<j≤r we

compute the Tutte polynomial T (K
(`)
n1,...,nk , x, y) of the `-weighted complete multipartite graph

K
(`)
n1,...,nk , see Section 4, Definition 4.4 and Theorem 4.3. More generally, we introduce universal

Tutte polynomial

Tn({qij}, x, y) ∈ Z[{qij}][x, y]

in such a way that for any collection of non-negative integers m = {mij}1≤i<j≤n and a subgraph

Γ ⊂ K
(m)
n of the weighted complete graph on n labeled vertices with each edge (i, j) ∈ K(m)

n

appears with multiplicity mij , the specialization

qij −→ 0 if edge (i, j) /∈ Γ, qij −→ [mij ]y :=
ymij − 1

y − 1
if edge (i, j) ∈ Γ

of the universal Tutte polynomial is equal to the Tutte polynomial of graph Γ multiplied by
(x− 1)κ(Γ), see Section 4.1.2, Theorem 4.24, and comments and examples, for details.

We also introduce and study a family of (super) 6-term relations algebras, and suggest
a definition of “multiparameter quantum deformation” of the algebra of the curvature of 2-forms
of the Hermitian linear bundles over the complete flag variety F ln. This algebra can be treated
as a natural generalization of the (multiparameter) quantum cohomology ring QH∗(F ln), see
Section 4.2. In a similar fashion as in the case of three term relations algebras, for any sub-
graph Γ ⊂ Kn, one (A.K.) can also define an algebra 6T (0)(Γ) and projection3

Ch: 6T (0)(Γ) −→ 3T (0)(Γ).

Note that subalgebra A(Γ) := Q[θ1, . . . , θn] ⊂ 6T (0)(Γ)ab generated by additive Dunkl elements

θi =
∑
j

(ij)∈E(Γ)

uij

is closely related with problems have been studied in [118, 129], . . . , and [137] in the case Γ = Kn,
see Section 4.2.2. We want to draw attention of the reader to the following problems related
with arithmetic Schubert4 and Grothendieck calculi:

(i) Describe (natural) quotient 6T †(Γ) of the algebra 6T (0)(Γ) such that the natural epi-
morphism pr: A(Γ) −→ A(Γ) turns out to be isomorphism, where we denote by A(Γ)
a subalgebra of 6T †(Γ) generated over Q by additive Dunkl elements.

3We treat this map as an algebraic version of the homomorphism which sends the curvature of a Hermitian
vector bundle over a smooth algebraic variety to its cohomology class, as well as a splitting of classical Yang–Baxter
relations (that is six term relations) in a couple of three term relations.

4See for example [137] and the literature quoted therein.
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(ii) It is not difficult to see [72] that multiplicative Dunkl elements {Θi}1≤i≤n also mutu-
ally commute in the algebra 6T (0), cf. Section 3.2. Problem we are interested in is to
describe commutative subalgebras generated by multiplicative Dunkl elements in the alge-
bras 6T †(Γ) and 6T (0)(Γ)ab. In the latter case one will come to the K-theoretic version of
algebras studied in [118], . . . .

Yet another objective of our paper5 is to describe several combinatorial properties of some
special elements in the associative quasi-classical Yang–Baxter algebras [72], including among
others, the so-called Coxeter element and the longest element. In the case of Coxeter element
we relate the corresponding reduced polynomials introduced in [133, Exercise 6.C5(c)], and
independently in [72], cf. [70], with the β-Grothendieck polynomials [42] for some special per-

mutations π
(n)
k . More generally, we identify the β-Grothendieck polynomial G

(β)

π
(n)
k

(Xn) with

a certain weighted sum running over the set of k-dissections of a convex (n + k + 1)-gon. In

particular we show that the specialization G
(β)

π
(n)
k

(1) of the β-Grothendieck polynomial G
(β)

π
(n)
k

(Xn)

counts the number of k-dissections of a convex (n+k+1)-gon according to the number of diago-
nals involved. When the number of diagonals in a k-dissection is the maximal possible (equals
to n(2k−1)−1), we recover the well-known fact that the number of k-triangulations of a convex
(n+k+1)-gon is equal to the value of a certain Catalan–Hankel determinant, see, e.g., [129]. In
Section 5.4.2 we study multiparameter generalizations of reduced polynomials associated with
Coxeter elements.

We also show that for a certain 5-parameters family of vexillary permutations, the speciali-

zation xi = 1, ∀ i ≥ 1, of the corresponding β-Schubert polynomials S
(β)
w (Xn) turns out to be

coincide either with the Fuss–Narayana polynomials and their generalizations, or with a (q, β)-
deformation of VSASM or that of CSTCPP numbers, see Corollary 5.33B. As examples we show
that

(a) the reduced polynomial corresponding to a monomial xn12x
m
23 counts the number of (n,m)-

Delannoy paths according to the number of NE-steps, see Lemma 5.81;

(b) if β = 0, the reduced polynomial corresponding to monomial (x12x23)nxk34, n ≥ k, counts
the number of n up, n down permutations in the symmetric group S2n+k+1, see Proposi-
tion 5.82; see also Conjecture 5.83.

We also point out on a conjectural connection between the sets of maximal compatible se-
quences for the permutation σn,2n,2,0 and that σn,2n+1,2,0 from one side, and the set of VSASM(n)
and that of CSTCPP(n) correspondingly, from the other, see Comments 5.48 for details. Finally,
in Sections 5.1.1 and 5.4.1 we introduce and study a multiparameter generalization of reduced
polynomials considered in [133, Exercise 6.C5(c)], as well as that of the Catalan, Narayana and
(small) Schröder numbers.

In the case of the longest element we relate the corresponding reduced polynomial with the
Ehrhart polynomial of the Chan–Robbins–Yuen polytope, see Section 5.3. More generally, we
relate the (t, β)-reduced polynomial corresponding to monomial

n−1∏
j=1

x
aj
j,j+1

n−2∏
j=2

 n∏
k=j+2

xjk

 , aj ∈ Z≥0, ∀ j,

5This part of our paper had its origin in the study/computation of relations among the additive and multiplica-
tive Dunkl elements in the quadratic algebras we are interested in, as well as the author’s attempts to construct
a monomial basis in the algebra 3T

(0)
n and find its Hilbert series for n ≥ 6. As far as I’m aware these problems

are still widely open.
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with positive t-deformations of the Kostant partition function and that of the Ehrhart polynomial
of some flow polytopes, see Section 5.3.

In Section 5.4 we investigate reduced polynomials associated with certain monomials in the
algebra (ÂCYB)abn (β), known also as Gelfand–Varchenko algebra [67, 72], and study its combina-
torial properties. Our main objective in Section 5.4.2 is to study reduced polynomials for Coxeter
element treated in a certain multiparameter deformation of the (noncommutative) quadratic al-

gebra ÂCYBn(α, β). Namely, to each dissection of a convex (n+ 2)-gon we associate a certain
weight and consider the generating function of all dissections of (n+ 2)-gon selected taken with
that weight. One can show that the reduced polynomial corresponding to the Coxeter element
in the deformed algebra is equal to that generating function. We show that certain specializa-
tions of that reduced polynomial coincide, among others, with the Grothendieck polynomials

corresponding to the permutation 1 × w(n−1)
0 ∈ Sn, the Lagrange inversion formula, as well as

give rise to combinatorial (i.e., positive expressions) multiparameters deformations of Catalan
and Fuss–Catalan, Motzkin, Riordan and Fine numbers, Schröder numbers and Schröder trees.
We expect (work in progress) a similar connections between Schubert and Grothendieck poly-

nomials associated with the Richardson permutations 1k × w
(n−k)
0 , k-dissections of a convex

(n+ k + 1)-gon investigated in the present paper, and k-dimensional Lagrange–Good inversion
formula studied from combinatorial point of view, e.g., in [22, 50].

1 Introduction

The Dunkl operators have been introduced in the later part of 80’s of the last century by Charles
Dunkl [35, 36] as a powerful mean to study of harmonic and orthogonal polynomials related with
finite Coxeter groups. In the present paper we don’t need the definition of Dunkl operators for
arbitrary (finite) Coxeter groups, see, e.g., [35], but only for the special case of the symmetric
group Sn.

Definition 1.1. Let Pn = C[x1, . . . , xn] be the ring of polynomials in variables x1, . . . , xn.
The type An−1 (additive) rational Dunkl operators D1, . . . , Dn are the differential-difference
operators of the following form

Di = λ
∂

∂xi
+
∑
j 6=i

1− sij
xi − xj

, (1.1)

Here sij , 1 ≤ i < j ≤ n, denotes the exchange (or permutation) operator, namely,

sij(f)(x1, . . . , xi, . . . , xj , . . . , xn) = f(x1, . . . , xj , . . . , xi, . . . , xn),

∂
∂xi

stands for the derivative w.r.t. the variable xi, λ ∈ C is a parameter.

The key property of the Dunkl operators is the following result.

Theorem 1.2 (C. Dunkl [35]). For any finite Coxeter group (W,S), where S = {s1, . . . , sl}
denotes the set of simple reflections, the Dunkl operators Di := Dsi and Dj := Dsj pairwise
commute: DiDj = DjDi, 1 ≤ i, j ≤ l.

Another fundamental property of the Dunkl operators which finds a wide variety of applica-
tions in the theory of integrable systems, see, e.g., [56], is the following statement: the operator

l∑
i=1

(Di)
2

“essentially” coincides with the Hamiltonian of the rational Calogero–Moser model related to
the finite Coxeter group (W,S).
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Definition 1.3. Truncated (additive) Dunkl operator (or the Dunkl operator at critical level),
denoted by Di, i = 1, . . . , l, is an operator of the form (1.1) with parameter λ = 0.

For example, the type An−1 rational truncated Dunkl operator has the following form

Di =
∑
j 6=i

1− sij
xi − xj

.

Clearly the truncated Dunkl operators generate a commutative algebra. The important
property of the truncated Dunkl operators is the following result discovered and proved by
C. Dunkl [36]; see also [8] for a more recent proof.

Theorem 1.4 (C. Dunkl [36], Yu. Bazlov [8]). For any finite Coxeter group (W,S) the algebra
over Q generated by the truncated Dunkl operators D1, . . . ,Dl is canonically isomorphic to the
coinvariant algebra AW of the Coxeter group (W,S).

Recall that for a finite crystallographic Coxeter group (W,S) the coinvariant algebra AW is
isomorphic to the cohomology ring H∗(G/B,Q) of the flag variety G/B, where G stands for the
Lie group corresponding to the crystallographic Coxeter group (W,S) we started with.

Example 1.5. In the case when W = Sn is the symmetric group, Theorem 1.4 states that
the algebra over Q generated by the truncated Dunkl operators Di =

∑
j 6=i

1−sij
xi−xj , i = 1, . . . , n, is

canonically isomorphic to the cohomology ring of the full flag variety F ln of type An−1

Q[D1, . . . ,Dn] ∼= Q[x1, . . . , xn]/Jn, (1.2)

where Jn denotes the ideal generated by the elementary symmetric polynomials {ek(Xn), 1 ≤
k ≤ n}.

Recall that the elementary symmetric polynomials ei(Xn), i = 1, . . . , n, are defined through
the generating function

1 +

n∑
i=1

ei(Xn)ti =

n∏
i=1

(1 + txi),

where we set Xn := (x1, . . . , xn). It is well-known that in the case W = Sn, the isomorphism (1.2)
can be defined over the ring of integers Z.

Theorem 1.4 by C. Dunkl has raised a number of natural questions:

(A) What is the algebra generated by the truncated

• trigonometric,

• elliptic,

• super, matrix, . . . ,

(a) additive Dunkl operators?
(b) Ruijsenaars–Schneider–Macdonald operators?
(c) Gaudin operators?

(B) Describe commutative subalgebra generated by the Jucys–Murphy elements in

• the group ring of the symmetric group;

• the Hecke algebra;

• the Brauer algebra, BMV algebra, . . . .
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(C) Does there exist an analogue of Theorem 1.4 for

• classical and quantum equivariant cohomology and equivariant K-theory rings of the
partial flag varieties?

• chomology and K-theory rings of affine flag varieties?

• diagonal coinvariant algebras of finite Coxeter groups?

• complex reflection groups?

The present paper is an extended introduction to a few items from Section 5 of [72].
The main purpose of my paper “On some quadratic algebras, II” is to give some partial

answers on the above questions basically in the case of the symmetric group Sn.
The purpose of the present paper is to draw attention to an interesting class of nonho-

mogeneous quadratic algebras closely connected (still mysteriously!) with different branches of
Mathematics such as classical and quantum Schubert and Grothendieck calculi, low-dimensional
topology, classical, basic and elliptic hypergeometric functions, algebraic combinatorics and
graph theory, integrable systems, etc.

What we try to explain in [72] is that upon passing to a suitable representation of the quadratic
algebra in question, the subjects mentioned above, are a manifestation of certain general prop-
erties of that quadratic algebra.

From this point of view, we treat the commutative subalgebra generated (over a universal
Lazard ring Ln [88]) by the additive (resp. multiplicative) truncated Dunkl elements in the
algebra 3Tn(β), see Definition 3.1, as universal cohomology (resp. universal K-theory) ring of
the complete flag variety F ln. The classical or quantum cohomology (resp. the classical or
quantum K-theory) rings of the flag variety F ln are certain quotients of that universal ring.

For example, in [74] we have computed relations among the (truncated) Dunkl elements
{θi, i = 1, . . . , n} in the elliptic representation of the algebra 3Tn(β = 0). We expect that the
commutative subalgebra obtained is isomorphic to elliptic cohomology ring (not defined yet, but
see [48, 52]) of the flag variety F ln.

Another example from [72]. Consider the algebra 3Tn(β = 0). One can prove [72] the
following identities in the algebra 3Tn(β = 0):

(A) summation formula

n−1∑
j=1

 n−1∏
b=j+1

ub,b+1

u1,n

(
j−1∏
b=1

ub,b+1

)
=

n−1∏
a=1

ua,a+1;

(B) duality transformation formula, let m ≤ n, then

n−1∑
j=m

 n−1∏
b=j+1

ub,b+1

[m−1∏
a=1

ua,a+n−1ua,a+n

]
um,m+n−1

(
j−1∏
b=m

ub,b+1

)

+

m∑
j=2

m−1∏
a=j

ua,a+n−1ua,a+n

um,n+m−1

(
n−1∏
b=m

ub,b+1

)
u1,n

=
m∑
j=1

[
m−j∏
a=1

ua,a+nua+1,a+n

](
n−1∏
b=m

ub,b+1

)[
j−1∏
a=1

ua,a+n−1ua,a+n

]
.

One can check that upon passing to the elliptic representation of the algebra 3Tn(β = 0),
see Section 3.1 or [74], for the definition of elliptic representation, the above identities (A)
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and (B) finally end up correspondingly, to be the summation formula and the N = 1 case of
the duality transformation formula for multiple elliptic hypergeometric series (of type An−1),
see, e.g., [63] or Appendix A.6 for the explicit forms of the latter. After passing to the so-called
Fay representation [72], the identities (A) and (B) become correspondingly to be the summation
formula and duality transformation formula for the Riemann theta functions of genus g > 0 [72].
These formulas in the case g ≥ 2 seems to be new.

Worthy to mention that the relation (A) above can be treated as a “non-commutative ana-
logue” of the well-known recurrence relation among the Catalan numbers. The study of “de-
scendent relations” in the quadratic algebras in question was originally motivated by the author

attempts to construct a monomial basis in the algebra 3T
(0)
n , and compute Hilb(3T

(0)
n , t) for

n ≥ 6. These problems are still widely open, but gives rise the author to discovery of several
interesting connections with

• classical and quantum Schubert and Grothendieck calculi,

• combinatorics of reduced decomposition of some special elements in the symmetric group,

• combinatorics of generalized Chan–Robbins–Yuen polytopes,

• relations among the Dunkl and Gaudin elements,

• computation of Tutte and chromatic polynomials of the weighted complete multipartite
graphs, etc.

A few words about the content of the present paper. Example 1.5 can be viewed as an
illustration of the main problems we are treated in Sections 2 and 3 of the present paper,
namely the following ones.

• Let {uij , 1 ≤ i, j ≤ n} be a set of generators of a certain algebra over a commutative
ring K. The first problem we are interested in is to describe “a natural set of relations”
among the generators {uij}1≤i,j≤n which implies the pair-wise commutativity of dynamical
Dunkl elements

θi = θ
(n)
i =:

n∑
j=1

uij , 1 ≤ i ≤ n.

• Should this be the case then we are interested in to describe the algebra generated by
“the integrals of motions”, i.e., to describe the quotient of the algebra of polynomials
K[y1, . . . , yn] by the two-sided ideal Jn generated by non-zero polynomials F (y1, . . . , yn)
such that F (θ1, . . . , θn) = 0 in the algebra over ring K generated by the elements
{uij}1≤i,j≤n.

• We are looking for a set of additional relations which imply that the elementary symmetric
polynomials ek(Yn), 1 ≤ k ≤ n, belong to the set of integrals of motions. In other words,
the value of elementary symmetric polynomials ek(y1, . . . , yn), 1 ≤ k ≤ n, on the Dunkl

elements θ
(n)
1 , . . . , θ

(n)
n do not depend on the variables {uij , 1 ≤ i 6= j ≤ n}. If so, one

can defined deformation of elementary symmetric polynomials, and make use of it and the
Jacobi–Trudi formula, to define deformed Schur functions, for example. We try to realize
this program in Sections 2 and 3.

In Section 2, see Definition 2.3, we introduce the so-called dynamical classical Yang–Baxter
algebra as “a natural quadratic algebra” in which the Dunkl elements form a pair-wise commuting
family. It is the study of the algebra generated by the (truncated) Dunkl elements that is the
main objective of our investigation in [72] and the present paper. In Section 2.1 we describe few
representations of the dynamical classical Yang–Baxter algebra DCYBn related with
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• quantum cohomology QH∗(F ln) of the complete flag variety F ln, cf. [41];

• quantum equivariant cohomology QH∗Tn×C∗(T
∗F ln) of the cotangent bundle T ∗F ln to the

complete flag variety, cf. [54];

• Dunkl–Gaudin and Dunkl–Uglov representations, cf. [108, 138].

In Section 3, see Definition 3.1, we introduce the algebra 3HTn(β), which seems to be the
most general (noncommutative) deformation of the (even) Orlik–Solomon algebra of type An−1,
such that it’s still possible to describe relations among the Dunkl elements, see Theorem 3.8. As
an application we describe explicitly a set of relations among the (additive) Gaudin/Dunkl ele-
ments, cf. [108]. It should be stressed at this place that we treat the Gaudin elements/operators
(either additive or multiplicative) as images of the universal Dunkl elements/operators (addi-
tive or multiplicative) in the Gaudin representation of the algebra 3HTn(0). There are seve-
ral other important representations of that algebra, for example, the Calogero–Moser, Bruhat,
Buchstaber–Felder–Veselov (elliptic), Fay trisecant (τ -functions), adjoint, and so on, considered
(among others) in [72]. Specific properties of a representation chosen6 (e.g., Gaudin representa-
tion) imply some additional relations among the images of the universal Dunkl elements (e.g.,
Gaudin elements) should to be unveiled.

We start Section 3 with definition of algebra 3Tn(β) and its “Hecke” 3HTn(β) and “elliptic”
3MTn(β) quotients. In particular we define an elliptic representation of the algebra 3Tn(0) [74],
and show how the well-known elliptic solutions of the quantum Yang–Baxter equation due to
A. Belavin and V. Drinfeld, see, e.g., [9], S. Shibukawa and K. Ueno [130], and G. Felder and
V. Pasquier [40], can be plug in to our construction, see Section 3.1. At the end of Section 3.1.1
we point out on a mysterious (at least for the author) appearance of the Euler numbers and
“traces” of the Brauer algebra in the equivariant Pieri rules hold for the algebra 3TMn(β, q, ψ)
stated in Theorem 3.8.

In Section 3.2 we introduce a multiplicative analogue of the Dunkl elements {Θj ∈ 3Tn(β),
1 ≤ j ≤ n} and describe the commutative subalgebra in the algebra 3Tn(β) generated by mul-
tiplicative Dunkl elements [76]. The latter commutative subalgebra turns out to be isomorphic
to the quantum equivariant K-theory of the complete flag variety F ln [76].

In Section 3.3 we describe relations among the truncated Dunkl–Gaudin elements. In this
case the quantum parameters qij = p2

ij , where parameters {pij = (zi − zj)−1, 1 ≤ i < j ≤ n}
satisfy the both Arnold and Plücker relations. This observation has made it possible to describe
a set of additional rational relations among the Dunkl–Gaudin elements, cf. [108].

In Section 3.4 we introduce an equivariant version of multiplicative Dunkl elements, called
shifted Dunkl elements in our paper, and describe (some) relations among the latter. This result
is a generalization of that obtained in Section 3.1 and [76]. However we don’t know any geometric
interpretation of the commutative subalgebra generated by shifted Dunkl elements.

In Section 4.1 for any subgraph Γ ⊂ Kn of the complete graph Kn we introduce7 [70, 72],

algebras 3Tn(Γ) and 3T
(0)
n (Γ) which can be seen as analogues of algebras 3Tn and 3T

(0)
n corre-

spondingly8.

6For example, in the cases of either Calogero–Moser or Bruhat representations one has an additional constraint,
namely, u2

ij = 0 for all i 6= j. In the case of Gaudin representation one has an additional constraint u2
ij = p2

ij ,
where the (quantum) parameters {pij = 1

xi−xj
, i 6= j}, satisfy simultaneously the Arnold and Plücker relations, see

Section 2, II. Therefore, the (small) quantum cohomology ring of the type An−1 full flag variety F ln and the Bethe
subalgebra(s) (i.e., the subalgebra generated by Gaudin elements in the algebra 3HTn(0)) correspond to different
specializations of “quantum parameters” {qij := u2

ij} of the universal cohomology ring (i.e., the subalgebra/ring
in 3HTn(0) generated by (universal) Dunkl elements). For more details and examples, see Section 2.1 and [72].

7Independently the algebra 3T
(0)
n (Γ) has been studied in [16], where the reader can find some examples and

conjectures.
8To avoid confusions, it must be emphasized that the defining relations for algebras 3Tn(Γ) and 3Tn(Γ)(0) may

have more then three terms.
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We want to point out in the Introduction, cf. footnote 1, that an analog of the algebras 3Tn
and 3T

(β)
n , 3HTn, etc. treated in the present paper, can be defined for any (oriented or not)

matroidM. We denote these algebras as 3T (M) and 3T (β)(M). One can show (A.K.) that the

abelianization of the algebra 3T (β)(M), denoted by 3T (β)(M)
ab

, is isomorphic to the Gelfand–

Varchenko algebra corresponding to a matroidM, whereas the algebra 3T (β=0)(M)
ab

is isomor-
phic to the (even) Orlik–Solomon algebra OS+(M) of a matroidM.9 We consider and treat the
algebras 3T (M), 3HT (M), . . . , as equivariant noncommutative (or quantum) versions of the
(even) Orlik–Solomon algebras associated with matroid (including hyperplane, graphic, . . . ar-
rangements). However a meaning of a quantum deformation of the (even or odd) Orlik–Solomon
algebra suggested in the present paper, is missing, even for the braid arrangement of type An.
Generalizations of the Gelfand–Varchenko algebra has been suggested and studied in [67, 72]
and in the present paper under the name quasi-associative Yang–Baxter algebra, see Section 5.

In the present paper we basically study the abelian quotient of the algebra 3T
(0)
n (Γ), where

graph Γ has no loops and multiple edges, since we expect some applications of our approach to
the theory of chromatic polynomials of planar graphs, in particular to the complete multipartite
graphs Kn1,...,nr and the grid graphs Gm,n.10 Our main results hold for the complete multipartite,
cyclic and line graphs. In particular we compute their chromatic and Tutte polynomials, see
Proposition 4.19 and Theorem 4.24. As a byproduct we compute the Tutte polynomial of the `-

weighted complete multipartite graph K
(`)
n1,...,nr where ` = {`ij}1≤i<j≤r, is a collection of weights,

i.e., a set of non-negative integers.

More generally, for a set of variables {{qij}1≤i<j≤n, x, y} we define universal Tutte polynomial
Tn({qij}, x, y) ∈ Z[qij ][x, y] such that for any collection of non-negative integers {mij}1≤i<j≤n
and a subgraph Γ ⊂ K(m)

n of the complete graph Kn with each edge (i, j) comes with multiplic-
ity mij , the specialization

qij −→ 0 if edge (i, j) /∈ Γ, qij −→ [mij ]y :=
ymij − 1

y − 1
if edge (i, j) ∈ Γ

of the universal Tutte polynomial Tn({qij}, x, y) is equal to the Tutte polynomial of graph Γ
multiplied by the factor (t− 1)κ(Γ):

(x− 1)κ(Γ)Tutte(Γ, x, y) := Tn({qij}, x, y)

∣∣∣∣ qij=0 if (i,j)/∈Γ

qij=[mij ]
y

if (i,j)∈Γ

.

Here and after κ(Γ) demotes the number of connected components of a graph Γ. In other words,
one can treat the universal Tutte polynomial Tn({qij}, x, y) as a “reproducing kernel” for the
Tutte polynomials of all (loop-less) graphs with the number of vertices not exceeded n.

We also state Conjecture 4.15 that for any loopless graph Γ (possibly with multiple edges)

the algebra 3T
(0)
|Γ| (Γ)

ab
is isomorphic to the even Orlik–Solomon algebra OS+(AΓ) of the graphic

arrangement associated with graph Γ in question11.

At the end we emphasize that the case of the complete graph Γ = Kn reproduces the results
of the present paper and those of [72], i.e., the case of the full flag variety F ln. The case of
the complete multipartite graph Γ = Kn1,...,nr reproduces the analogue of results stated in the
present paper for the case of full flag variety F ln, to the case of the partial flag variety Fn1,...,nr ,
see [72] for details.

9For a definition and basic properties of the Orlik–Solomon algebra corresponding to a matroid, see, e.g.,
[49, 65].

10See http://reference.wolfram.com/language/ref/GridGraph.html for a definition of grid graph Gm,n.
11For simple graphs, i.e., without loops and multiple edges, this conjecture has been proved in [89].

http://reference.wolfram.com/language/ref/GridGraph.html
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In Section 4.1.4 we sketch how to generalize our constructions and some of our results to the
case of the Lie algebras of classical types12.

In Section 4.2 we briefly overview our results concerning yet another interesting family of

quadratic algebras, namely the six-term relations algebras 6Tn, 6T
(0)
n and related ones. These

algebras also contain a distinguished set of mutually commuting elements called Dunkl elements
{θi, i = 1, . . . , n} given by θi =

∑
j 6=i

rij , see Definition 4.48.

In Section 4.2.2 we introduce and study the algebra 6TFn in greater detail. In particular we
introduce a “quantum deformation” of the algebra generated by the curvature of 2-forms of of
the Hermitian linear bundles over the flag variety F ln, cf. [118].

In Section 4.2.3 we state our results concerning the classical Yang–Baxter algebra CYBn and
the 6-term relation algebra 6Tn. In particular we give formulas for the Hilbert series of these
algebras. These formulas have been obtained independently in [7] The paper just mentioned,
contains a description of a basis in the algebra 6Tn, and much more.

In Section 4.2.4 we introduce a super analog of the algebra 6Tn, denoted by 6Tn,m, and
compute its Hilbert series.

Finally, in Section 4.3 we introduce extended nil-three term relations algebra 3Tn and describe
a subalgebra inside of it which is isomorphic to the double affine Hecke algebra of type An−1,
cf. [24].

In Section 5 we describe several combinatorial properties of some special elements in the
associative quasi-classical Yang–Baxter algebra13, denoted by ÂCYBn. The main results in
that direction were motivated and obtained as a by-product, in the process of the study of the
the structure of the algebra 3HTn(β). More specifically, the main results of Section 5 were
obtained in the course of “hunting for descendant relations” in the algebra mentioned, which is

an important problem to be solved to construct a basis in the nil-quotient algebra 3T
(0)
n . This

problem is still widely-open.
The results of Section 5.1, see Proposition 5.4, items (1)–(5), are more or less well-known

among the specialists in the subject, while those of the item (6) seem to be new. Namely,
we show that the polynomial Qn(xij = ti) from [133, Exercise 6.C8(c)], essentially coincides
with the β-deformation [42] of the Lascoux–Schützenberger Grothendieck polynomial [86] for
some particular permutation. The results of Proposition 5.4(6), point out on a deep connection

between reduced forms of monomials in the algebra ÂCYBn and the Schubert and Grothendieck
calculi. This observation was the starting point for the study of some combinatorial properties of
certain specializations of the Schubert, the β-Grothendieck [43] and the double β-Grothendieck
polynomials in Section 5.2. One of the main results of Section 5.2 can be stated as follows.

Theorem 1.6.

(1) Let w ∈ Sn be a permutation, consider the specialization x1 := q, xi = 1, ∀ i ≥ 2, of the

β-Grothendieck polynomial G
(β)
w (Xn). Then

Rw(q, β + 1) := G(β)
w (x1 = q, xi = 1, ∀ i ≥ 2) ∈ N[q, 1 + β].

In other words, the polynomial Rw(q, β) has non-negative integer coefficients14.

For late use we define polynomials

Rw(q, β) := q1−w(1)Rw(q, β).

12One can define an analogue of the algebra 3T
(0)
n for the root system of BCn and C∨nCn-types as well, but we

are omitted these cases in the present paper.
13The algebra ÂCYBn can be treated as “one-half” of the algebra 3Tn(β). It appears that the basic relations

among the Dunkl elements, which do not mutually commute anymore, are still valid, see Lemma 5.3.
14For a more general result see Appendix A.1, Corollary A.7.
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(2) Let w ∈ Sn be a permutation, consider the specialization xi := q, yi = t, ∀ i ≥ 1, of the

double β-Grothendieck polynomial G
(β)
w (Xn, Yn). Then

G(β−1)
w (xi := q, yi := t, ∀ i ≥ 1) ∈ N[q, t, β].

(3) Let w be a permutation, then

Rw(1, β) = R1×w(0, β).

Note that Rw(1, β) = Rw−1(1, β), but Rw(t, β) 6= Rw−1(t, β), in general.

For the reader convenience we collect some basic definitions and results concerning the β-
Grothendieck polynomials in Appendix A.1.

Let us observe that Rw(1, 1) = Sw(1), where Sw(1) denotes the specialization xi := 1, ∀ i ≥ 1,
of the Schubert polynomial Sw(Xn) corresponding to permutation w. Therefore, Rw(1, 1) is
equal to the number of compatible sequences [13] (or pipe dreams, see, e.g., [129]) corresponding
to permutation w.

Problem 1.7. Let w ∈ Sn be a permutation and l := `(w) be its length. Denote by CS(w) = {a =
(a1 ≤ a2 ≤ · · · ≤ al) ∈ Nl} the set of compatible sequences [13] corresponding to permutation w.

• Define statistics r(a) on the set of all compatible sequences CSn :=
∐

w∈Sn
CS(w) in a such

way that∑
a∈CS(w)

qa1βr(a) = Rw(q, β).

• Find a geometric interpretation, and investigate combinatorial and algebra-geometric pro-

perties of polynomials S
(β)
w (Xn), where for a permutation w ∈ Sn we denoted by S

(β)
w (Xn)

the β-Schubert polynomial defined as follows

S(β)
w (Xn) =

∑
a∈CS(w)

βr(a)

l:=`(w)∏
i=1

xai .

We expect that polynomial S
(β)
w (1) coincides with the Hilbert polynomial of a certain graded

commutative ring naturally associated to permutation w.

Remark 1.8. It should be mentioned that, in general, the principal specialization

G(β−1)
w

(
xi := qi−1, ∀ i ≥ 1

)
of the (β − 1)-Grothendieck polynomial may have negative coefficients.

Our main objective in Section 5.2 is to study the polynomials Rw(q, β) for a special class of
permutations in the symmetric group S∞. Namely, in Section 5.2 we study some combinatorial
properties of polynomials R$λ,φ(q, β) for the five parameters family of vexillary permutations
{$λ,φ} which have the shape λ := λn,p,b = (p(n− i+1)+ b, i = 1, . . . , n+1) and flag φ := φk,r =
(k + r(i− 1), i = 1, . . . , n+ 1).

This class of permutations is notable for many reasons, including that the specialized value of
the Schubert polynomial S$λ,φ(1) admits a nice product formula15, see Theorem 5.29. Moreover,

15One can prove a product formula for the principal specialization S$λ,φ(xi := qi−1, ∀ i ≥ 1) of the correspon-
ding Schubert polynomial. We don’t need a such formula in the present paper.
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we describe also some interesting connections of polynomials R$λ,φ(q, β) with plane partitions,
the Fuss–Catalan numbers16 and Fuss–Narayana polynomials, k-triangulations and k-dissections
of a convex polygon, as well as a connection with two families of ASM. For example, let λ = (bn)
and φ = (kn) be rectangular shape partitions, then the polynomial R$λ,φ(q, β) defines a (q, β)-
deformation of the number of (ordinary) plane partitions17 sitting in the box b×k×n. It seems
an interesting problem to find an algebra-geometric interpretation of polynomials Rw(q, β) in
the general case.

Question 1.9. Let a and b be mutually prime positive integers. Does there exist a family of
permutations wa,b ∈ Sab(a+b) such that the specialization xi = 1, ∀ i of the Schubert polyno-
mial Swa,b is equal to the rational Catalan number Ca/b? That is

Swa,b(1) =
1

a+ b

(
a+ b

a

)
.

Many of the computations in Section 5.2 are based on the following determinantal formula
for β-Grothendieck polynomials corresponding to grassmannian permutations, cf. [84].

Theorem 1.10 (see Comments 5.37(b)). If w = σλ is the grassmannian permutation with shape
λ = (λ, . . . , λn) and a unique descent at position n, then18

(A) G(β)
σλ

(Xn) = DET
∣∣h(β)
λj+i,j

(Xn)
∣∣
1≤i,j≤n =

DET
∣∣xλj+n−ji (1 + βxi)

j−1
∣∣
1≤i,j≤n∏

1≤i<j≤n
(xi − xj)

,

where Xn = (xi, x1, . . . , xn), and for any set of variables X,

h
(β)
n,k(X) =

k−1∑
a=0

(
k − 1

a

)
hn−k+a(X)βa,

and hk(X) denotes the complete symmetric polynomial of degree k in the variables from the
set X.

(B) Gσλ(X,Y ) =

DET
∣∣∣ λj+n−j∏

a=1
(xi + ya + βxiya)(1 + βxi)

j−1
∣∣∣
1≤i,j≤n∏

1≤i<j≤n
(xi − xj)

.

16We define the (generalized) Fuss–Catalan numbers to be FC
(p)
n (b) := 1+b

1+b+(n−1)p

(
np+b
n

)
. Connection of

the Fuss–Catalan numbers with the p-ballot numbers Balp(m,n) := n−mp+1
n+m+1

(
n+m+1
m

)
and the Rothe numbers

Rn(a, b) := a
a+bn

(
a+bn
n

)
can be described as follows

FC(p)
n (b) = Rn(b+ 1, p) = Balp−1(n, (n− 1)p+ b).

17Let λ be a partition. An ordinary plane partition (plane partition for short)bounded by d and shape λ is
a filling of the shape λ by the numbers from the set {0, 1, . . . , d} in such a way that the numbers along columns
and rows are weakly decreasing. A reverse plane partition bounded by d and shape λ is a filling of the shape λ
by the numbers from the set {0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly
increasing.

18The equality

G(β)
σλ (Xn) =

DET
∣∣xλj+n−ji (1 + βxi)

j−1
∣∣
1≤i,j≤n∏

1≤i<j≤n
(xi − xj)

,

has been proved independently in [107].
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In Sections 5.2.2 and 5.4.2 we study connections of Grothendieck polynomial associated with

the Richardson permutation w
(n)
k = 1k × w

(n−k)
0 , k-dissections of a convex (n + k + 1)-gon,

generalized reduced polynomial corresponding to a certain monomial in the algebra ÂCYBn

and the Lagrange inversion formula. In the case of generalized Richardson permutation w
(k)
n,p

corresponding to the k-shifted dominant permutations w(p,n) associated with the Young diagram

λp,n := p(n−1, n−2, . . . , 1), namely, w
(k)
n,p = 1k×w(p,n), we treat only the case k = 1, see also [39].

In the case k ≥ 2 one comes to a task to count and find a lattice path type interpretation for
the number of k-pgulations of a convex n-gon that is the number of partitioning of a convex
n-gon on parts which are all equal to a convex (p+ 2)-gon, by a (maximal) family of diagonals
such that each diagonal has at most k internal intersections with the members of a family of
diagonals selected.

In Section 5.3 we give a partial answer on Question 6.C8(d) by R. Stanley [133]. In particular,
we relate the reduced polynomial corresponding to monomial

(
xa2

12 · · ·xn−1,n
an
) n−2∏
j=2

n∏
k=j+2

xjk, aj ∈ Z≥0, ∀ j,

with the Ehrhart polynomial of the generalized Chan–Robbins–Yuen polytope, if a2 = · · · =
an = m+ 1, cf. [101], with a t-deformation of the Kostant partition function of type An−1 and
the Ehrhart polynomials of some flow polytopes, cf. [103].

In Section 5.4 we investigate certain specializations of the reduced polynomials corresponding
to monomials of the form

xm1
12 · · ·x

mn
n−1,n, mj ∈ Z≥0, ∀ j.

First of all we observe that the corresponding specialized reduced polynomial appears to be
a piece-wise polynomial function of parameters m = (m1, . . . ,mn) ∈ (R≥0)n, denoted by Pm.
It is an interesting problem to compute the Laplace transform of that piece-wise polynomial
function. In the present paper we compute the value of the function Pm in the dominant
chamber Cn = (m1 ≥ m2 ≥ · · · ≥ mn ≥ 0), and give a combinatorial interpretation of the values
of that function in points (n,m) and (n,m, k), n ≥ m ≥ k.

For the reader convenience, in Appendices A.1–A.6 we collect some useful auxiliary informa-
tion about the subjects we are treated in the present paper.

Almost all results in Section 5 state that some two specific sets have the same number of
elements. Our proofs of these results are pure algebraic. It is an interesting problem to find
bijective proofs of results from Section 5 which generalize and extend remarkable bijective proofs
presented in [103, 129, 135, 142] to the cases of

• the β-Grothendieck polynomials,

• the (small) Schröder numbers,

• k-dissections of a convex (n+ k + 1)-gon,

• special values of reduced polynomials.

We are planning to treat and present these bijections in separate publication(s).
We expect that the reduced polynomials corresponding to the higher-order powers of the

Coxeter elements also admit an interesting combinatorial interpretation(s). Some preliminary
results in this direction are discussed in Comments 5.67.

At the end of introduction I want to add a few remarks.
(a) After a suitable modification of the algebra 3HTn, see [75], and the case β 6= 0 in [72],

one can compute the set of relations among the (additive) Dunkl elements (defined in Section 2,
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equation (2.1)). In the case β = 0 and qij = qiδj−i,1, 1 ≤ i < j ≤ n, where δa,b is the Kronecker
delta symbol, the commutative algebra generated by additive Dunkl elements (2.3) appears to
be “almost” isomorphic to the equivariant quantum cohomology ring of the flag variety F ln,
see [75] for details. Using the multiplicative version of Dunkl elements, see Section 3.2, one can
extend the results from [75] to the case of equivariant quantum K-theory of the flag variety F ln,
see [72].

(b) As it was pointed out previously, one can define an analogue of the algebra 3T
(0)
n for any

(oriented) matroid Mn, and state a conjecture which connects the Hilbert polynomial of the

algebra 3T
(0)
n ((Mn)ab, t) and the chromatic polynomial of matroidMn. We expect that algebra

3T
(β=1)
n (Mn)ab is isomorphic to the Gelfand–Varchenko algebra associated with matroid M. It

is an interesting problem to find a combinatorial meaning of the algebra 3T
(β)
n (Mn) for β = 0

and β 6= 0.

(c) Let R be a (graded) ring (to be specified later) and Fn2 be the free associative algebra
over R with the set of generators {uij , 1 ≤ i, j ≤ n}. In the subsequent text we will distinguish
the set of generators {uii}1≤i≤n from that {uij}1≤i 6=j≤n, and set

xi := uii, i = 1, . . . , n.

A guiding idea to choose definitions and perform constructions in the present paper is to
impose a set of relations Rn among the generators {xi}1≤i≤n and that {uij}1≤i 6=j≤n which
ensure the mutual commutativity of the following elements

θ
(n)
i := θi = xi +

n∑
j 6=i

uij , i = 1, . . . , n,

in the algebra Fn2/Rn, as well as to have a good chance to describe/compute

• “Integral of motions”, that is finding a big enough set of algebraically independent polyno-

mials (quite possibly that polynomials are trigonometric or elliptic ones) I
(n)
α (y1, . . . , yn) ∈ R[Yn]

such that

I(n)
α

(
θ

(n)
1 , . . . , θ(n)

n

)
∈ R[Xn], ∀α,

in other words, the latter specialization of any integral of motion has to be independent of the
all generators {uij}1≤i 6=j≤n.

• Give a presentation of the algebra In generated by the integral of motions that is to find

a set of defining relations among the elements θ1, . . . , θn, and describe a R-basis
{
m

(n)
α

}
in the

algebra In.

• Generalized Littlewood–Richardson and Murnaghan–Nakayama problems. Given an inte-

gral of motion I
(m)
β (Ym) and an integer n ≥ m, find an explicit positive (if possible) expression

in the quotient algebra Fn2/Rn of the element

I
(m)
β

(
θ

(n)
1 , . . . , θ(n)

m

)
.

For example in the case of the 3-term relations algebra 3T
(0)
n (as well as its equivariant, quantum,

etc. versions) the generalized Littlewood–Richardson problem is to find a positive expression in

the algebra 3T
(0)
n for the element Sw

(
θ

(n)
1 , . . . , θ

(n)
m

)
, where Sw(Yn) stands for the Schubert

polynomial corresponding to a permutation w ∈ Sn.

Generalized Murnaghan–Nakayama problem consists in finding a combinatorial expression

in the algebra 3T
(0)
n for the element

m∑
i=1

(θ
(n)
i )k.
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Partial results concerning these problems have been obtained as far as we aware in [45, 70,
72, 73, 104, 117].
• “Partition functions”. Assume that the (graded) algebra In generated over R by the

elements θ1, . . . , θn has finite dimension/rank, and the (non zero) maximal degree component

I(n)
max of that algebra has dimension/rank one and generated by an element ω. For any element
g ∈ Fn2 let us denote by Resω(g) an element in R such that

g = Resω(g)ω,

where we denote by g the image of element g in the component I(n)
max.

We define partition function associated with the algebra In as follows

Z(In) = Resw

(
exp

(∑
α

qαm
(n)
α

))
,

where {qα} is a set of parameters which is consistent in one-to-one correspondence with a basis{
m

(n)
α

}
chosen.

We are interesting in to find a closed formula for the partition function Z(In) as well as that
for a small partition function

Z(0)(In) := Resω

(
exp

( ∑
1≤i,j≤n

λijuij

))
,

where {λij}1≤i,j≤n stands for a set of parameters. One can show [68] that the partition func-
tion Z(In) associated with algebra 3T qn satisfies the famous Witten–Dijkraaf–Verlinde–Verlinde
equations.

As a preliminary steps to perform our guiding idea we

(i) investigate properties of the abelianization of the algebra Fn2/Rn. Some unexpected
connections with the theory of hyperplane arrangements and graph theory are discovered;

(ii) investigate a variety of descendent relations coming from the defining relations. Some
polynomials with interesting combinatorial properties are naturally appear.

To keep the size of the present paper reasonable, several new results are presented as exercises.
We conclude Introduction by a short historical remark. As far as we aware, the commu-

tative version of 3-term relations which provided the framework for a definition of the FK
algebra En [45] and a plethora of its generalizations, have been frequently used implicitly in
the theory of elliptic functions and related topics, starting at least from the middle of the 19th
century, see, e.g., [141] for references, and up to now, and for sure will be used for ever. The
key point is that the Kronecker sigma function

σz(w) :=
σ(z − w)θ′(0)

σ(z)σ(−w)
,

where σ(z) denotes the Weierstrass sigma function, satisfies the quadratic three terms addition
formula or functional equation discovered, as far as we aware, by K. Weierstrass. In fact this
functional equation is really equivalent19 to the famous Jacobi–Riemann three term relation of
degree four between the Riemann theta functions θ(x). In the rational degeneration of theta
functions, the three term relation between Kronecker sigma functions turns to the famous three
term Jacobi identity which can be treated as an associative analogue of the Jacobi identity in
the theory of Lie algebras.

19We refer the reader to a nice written paper by Tom H. Koornwinder [79] for more historical information.
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To our best knowledge, in an abstract form that is as a set of defining relations in a certain
algebra, an anticommutative version of three term relations had been appeared in a remarkable
paper by V.I. Arnold [3]. Nowadays these relations are known as Arnold relations. These
relations and its various generalizations play fundamental role in the theory of arrangements,
see, e.g., [113], in topology, combinatorics and many other branches of Mathematics.

In commutative set up abstract form of 3-term relations has been invented by O. Mathieu [96].
In the context of the braided Hopf algebras (of type A) 3-term relations like algebras (as some
examples of the Nichols algebras) have appeared in papers by A. Milinski and H.-J. Schneider
(2000), N. Andruskiewitsch (2002), S. Madjid (2004), I. Heckenberger (2005) and many others20.

It is well-known that the Nichols algebra associated with the symmetric group Sn and trivial
conjugacy class is a quotient of the algebra FKn. It is still an open problem to prove (or disprove)
that these two algebras are isomorphic.

2 Dunkl elements

Having in mind to fulfill conditions suggested by our guiding line mentioned in Introduction as
far as it could be done till now, we are led to introduce the following algebras21.

Definition 2.1 (additive Dunkl elements). The (additive) Dunkl elements θi, i = 1, . . . , n, in
the algebra Fn are defined to be

θi = xi +
n∑
j=1
j 6=i

uij . (2.1)

We are interested in to find “natural relations” among the generators {uij}1≤i,j≤n such that
the Dunkl elements (2.1) are pair-wise commute. One of the natural conditions which is the
commonly accepted in the theory of integrable systems, is

• locality conditions:

(a) [xi, xj ] = 0 if i 6= j,

(b) uijukl = ukluij if i 6= j, k 6= l and {i, j} ∩ {k, l} = ∅. (2.2)

Lemma 2.2. Assume that elements {uij} satisfy the locality condition (2.1). If i 6= j, then

[θi, θj ] =

[
xi +

∑
k 6=i,j

uik, uij + uji

]
+

[
uij ,

n∑
k=1

xk

]
+
∑
k 6=i,j

wijk,

where

wijk = [uij , uik + ujk] + [uik, ujk] + [xi, ujk] + [uik, xj ] + [xk, uij ]. (2.3)

Therefore in order to ensure that the Dunkl elements form a pair-wise commuting family, it’s
natural to assume that the following conditions hold

20We refer the reader to the site https://en.wikipedia.org/wiki/Nichols_algebra for basic definitions and
results concerning Nichols’ algebras and references on vast literature treated different aspects of the theory of
Nichols’ algebras and braided Hopf algebras.

21Surprisingly enough, in many cases to find relations among the elements θ1, . . . , θn there is no need to require
that the elements {θi}1≤i≤n are pairwise commute.

https://en.wikipedia.org/wiki/Nichols_algebra
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• unitarity:

[uij + uji, ukl] = 0 = [uij + uji, xk] for all distinct i, j, k, l, (2.4)

i.e., the elements uij + uji are central.

• “conservation laws”:[
n∑
k=1

xk, uij

]
= 0 for all i, j, (2.5)

i.e., the element E :=
n∑
k=1

xk is central,

• unitary dynamical classical Yang–Baxter relations:

[uij , uik + ujk] + [uik, ujk] + [xi, ujk] + [uik, xj ] + [xk, uij ] = 0, (2.6)

if i, j, k are pair-wise distinct.

Definition 2.3 (dynamical six term relations algebra 6DTn). We denote by 6DTn (and fre-
quently will use also notation DCYBn) the quotient of the algebra Fn by the two-sided ideal
generated by relations (2.2)–(2.6).

Clearly, the Dunkl elements (2.1) generate a commutative subalgebra inside of the alge-

bra 6DTn, and the sum
n∑
i=1

θi =
n∑
i=1

xi belongs to the center of the algebra 6DTn.

Remark 2.4. Occasionally we will call the Dunkl elements of the form (2.1) by dynamical
Dunkl elements to distinguish the latter from truncated Dunkl elements, corresponding to the
case xi = 0, ∀ i.

2.1 Some representations of the algebra 6DTn

2.1.1 Dynamical Dunkl elements and equivariant quantum cohomology

(I) ( cf. [41]). Given a set q1, . . . , qn−1 of mutually commuting parameters, define

qij =

j−1∏
a=i

qa if i < j,

and set qij = qji in the case i > j. Clearly, that if i < j < k, then qijqjk = qik.
Let z1, . . . , zn be a set of (mutually commuting) variables. Denote by Pn := Z[z1, . . . , zn] the

corresponding ring of polynomials. We consider the variable zi, i = 1, . . . , n, also as the operator
acting on the ring of polynomials Pn by multiplication on the variable zi.

Let sij ∈ Sn be the transposition that swaps the letters i and j and fixes the all other letters
k 6= i, j. We consider the transposition sij also as the operator which acts on the ring Pn by
interchanging zi and zj , and fixes all other variables. We denote by

∂ij =
1− sij
zi − zj

, ∂i := ∂i,i+1,

the divided difference operators corresponding to the transposition sij and the simple transpo-
sition si := si,i+1 correspondingly. Finally we define operator (cf. [41])

∂(ij) := ∂i · · · ∂j−1∂j∂j−1 · · · ∂i if i < j.

The operators ∂(ij), 1 ≤ i < j ≤ n, satisfy (among other things) the following set of relations
(cf. [41])
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• [zj , ∂(ik)] = 0 if j /∈ [i, k],
[
∂(ij),

j∑
a=i

za

]
= 0,

• [∂(ij), ∂(kl)] = δjk[zj , ∂(il)] + δil[∂(kj), zi] if i < j, k < l.

Therefore, if we set uij = qij∂(ij) if i < j, and uij = −uji if i > j, then for a triple i < j < k
we will have

[uij , uik + ujk] + [uik, ujk] + [zi, ujk] + [uik, zj ] + [zk, ujk]

= qijqjk[∂(ij), ∂(jk)] + qik[∂(ik), zj ] = 0.

Thus the elements {zi, i = 1, . . . , n} and {uij , 1 ≤ i < j ≤ n} define a representation of the
algebra DCYBn, and therefore the Dunkl elements

θi := zi +
∑
j 6=i

uij = zi −
∑
j<i

qji∂(ji) +
∑
j>i

qij∂(ij)

form a pairwise commuting family of operators acting on the ring of polynomials

Z[q1, . . . , qn−1][z1, . . . , zn],

cf. [41]. This representation has been used in [41] to construct the small quantum cohomology
ring of the complete flag variety of type An−1.

(II) Consider degenerate affine Hecke algebra Hn generated by the central element h, the
elements of the symmetric group Sn, and the mutually commuting elements y1, . . . , yn, subject
to relations

siyi − yi+1si = h, 1 ≤ i < n, siyj = yjsi, j 6= i, i+ 1,

where si stand for the simple transposition that swaps only indices i and i + 1. For i < j, let
sij = si · · · sj−1sjsj−1 · · · si denotes the permutation that swaps only indices i and j. It is an
easy exercise to show that

• [yj , sik] = h[sij , sjk] if i < j < k,

• yisik − sikyk = h+ hsik
∑

i<j<k

sjk if i < k.

Finally, consider a set of mutually commuting parameters {pij , 1 ≤ i 6= j ≤ n, pij + pji = 0},
subject to the constraints

pijpjk = pikpij + pjkpik + hpik, i < j < k.

Comments 2.5. If parameters {pij} are invertible, and satisfy relations

pijpjk = pikpij + pjkpik + βpik, i < j < k,

then one can rewrite the above displayed relations in the following form

1 +
β

pik
=

(
1 +

β

pij

)(
1 +

β

pjk

)
, 1 ≤ i < j < k ≤ n.

Therefore there exist parameters {q1, . . . , qn} such that 1+β/pij = qi/qj , 1 ≤ i < j ≤ n. In other

words, pij =
βqj
qj−qj , 1 ≤ i < j ≤ n. However in general, there are many other types of solutions,

for example, solutions related to the Heaviside function22 H(x), namely, pij = H(xi − xj),
xi ∈ R, ∀ i, and its discrete analogue, see Example (III) below. In the both cases β = −1; see
also Comments 2.12 for other examples.

22See https://en.wikipedia.org/wiki/Heaviside_step_function.

https://en.wikipedia.org/wiki/Heaviside_step_function
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To continue presentation of Example (II), define elements uij = pijsij , 1 ≤ i 6= j ≤ n.

Lemma 2.6 (dynamical classical Yang–Baxter relations).

[uij , uik + ujk] + [uik, ujk] + [uik, yj ] = 0, 1 < i < j < k ≤ n. (2.7)

Indeed,

uijujk = uikuij + ujkuik + hpiksijsjk, ujkuij = uijuik + uikujk + hpiksjksij ,

and moreover, [yj , uik] = hpik[sij , sjk].
Therefore, the elements

θi = yi − h
∑
j<i

uij + h
∑
i<j

uij , i = 1, . . . , n,

form a mutually commuting set of elements in the algebra Z[{pij}]⊗Z Hn.

Theorem 2.7. Define matrix Mn = (mi,j)1≤i,j≤n as follows

mi,j(u; z1, . . . , zn) =


u− zi if i = j,

−h− pij if i < j,

pij if i > j.

Then

DET
∣∣Mn(u; θ1, . . . , θn)

∣∣ =
n∏
j=1

(u− yj).

Moreover, let us set qij := h2(pij + p2
ij) = h2qiqj(qi − qj)−2, i < j, then

ek(θ1, . . . , θn) = e
(q)
k (y1, . . . , yn), 1 ≤ k ≤ n,

where ek(x1, . . . , xn) and e
(q)
k (x1, . . . , xn) denote correspondingly the classical and multiparameter

quantum [45] elementary polynomials23.

Let’s stress that the elements yi and θj do not commute in the algebra Hn, but the symmetric
functions of y1, . . . , yn, i.e., the center of the algebra Hn, do.

A few remarks in order. First of all, u2
ij = p2

ij are central elements. Secondly, in the case
h = 0 and yi = 0, ∀ i, the equality

DET
∣∣Mn(u;x1, . . . , xn)

∣∣ = un

describes the set of polynomial relations among the Dunkl–Gaudin elements (with the following
choice of parameters pij = (qi− qj)−1 are taken). And our final remark is that according to [54,
Section 8], the quotient ring

Hqn := Q[y1, . . . , yn]Sn ⊗Q[θ1, . . . , θn]⊗Q[h]
/〈

Mn(u; θ1, . . . , θn) =

n∏
j=1

(u− yj)
〉

23For the reader convenience we remind [45] a definition of the quantum elementary polynomial eqk(x1, . . . , xn).
Let q := {qij}1≤i<j≤n be a collection of “quantum parameters”, then

eqk(x1, . . . , xn) =
∑
`

∑
1≤i1<···<i`≤n
j1>i1,...,j`>i`

ek−2`(XI∪J)
∏̀
a=1

qia,ja ,

where I = (i1, . . . , i`), J = (j1, . . . , j`) should be distinct elements of the set {1, . . . , n}, and XI∪J denotes set of
variables xa for which the subscript a is neither one of im nor one of the jm.
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is isomorphic to the quantum equivariant cohomology ring of the cotangent bundle T ∗F ln of
the complete flag variety of type An−1, namely,

Hqn ∼= QH∗Tn×C∗(T
∗F ln)

with the following choice of quantum parameters: Qi := hqi+1/qi, i = 1, . . . , n− 1.

On the other hand, in [75] we computed the so-called multiparameter deformation of the
equivariant cohomology ring of the complete flag variety of type An−1.

A deformation defined in [75] depends on parameters {qij , 1 ≤ i < j ≤ n} without any
constraints are imposed. For the special choice of parameters

qij := h2 qi qj
(qi − qj)2

the multiparameter deformation of the equivariant cohomology ring of the type An−1 com-
plete flag variety F ln constructed in [75], is isomorphic to the ring Hqn.

Comments 2.8. Let us fix a set of independent parameters {q1, . . . , qn} and define new pa-
rameters{

qij := hpij(pij + h) = h2 qiqj
(qi − qj)2

}
, 1 ≤ i < j ≤ n, where pij =

qj
qi − qj

, i < j.

We set deg(qij) = 2, deg(pij) = 1, deg(h) = 1.

The new parameters {qij}1≤i<j≤n, do not free anymore, but satisfy rather complicated alge-
braic relations. We display some of these relations soon, having in mind a question: is there
some intrinsic meaning of the algebraic variety defined by the set of defining relations among
the “quantum parameters” {qij}?

Let us denote by An,h the quotient ring of the ring of polynomials Q[h][xij , 1 ≤ i < j ≤ n]
modulo the ideal generating by polynomials f(xij) such that the specialization xij = qij of
a polynomial f(xij), namely f(qij), is equal to zero. The algebra An,h has a natural filtration,
and we denote by An = grAn,h the corresponding associated graded algebra.

To describe (a part of) relations among the parameters {qij} let us observe that parame-
ters {pij} and {qij} are related by the following identity

qijqjk − qik(qij + qjk) + h2qik = 2pijpikpjk(pik + h) if i < j < k.

Using this identity we can find the following relations among parameters in question

q2
ijq

2
jk + q2

ijq
2
ik + h4q2

ikq
2
jk − 2qijqikqjk(qij + qjk + qik)

− 2h2qik(qijqjk + qijqik + qjkqik) = 8hqijqikqjkpik, (2.8)

if 1 ≤ i < j < k ≤ n.

Finally, we come to a relation of degree 8 among the “quantum parameters” {qij}(
l.h.s. of (2.8)

)2
= 64h2q2

ijq
3
ikq

2
jk, 1 ≤ i < j < k ≤ n.

There are also higher degree relations among the parameters {qij} some of whose in degree 16
follow from the deformed Plücker relation between parameters {pij}:

1

pikpjl
=

1

pijpkl
+

1

pilpjk
+

h

pijpjkpkl
, i < j < k < l.
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However, we don’t know how to describe the algebra An,h generated by quantum parameters
{qij}1≤i<j≤n even for n = 4.

The algebra An = gr(An,h) is isomorphic to the quotient algebra of Q[xij , 1 ≤ i < j ≤ n]
modulo the ideal generated by the set of relations between “quantum parameters”{

qij :=

(
1

zi − zj

)2
}

1≤i<j≤n

,

which correspond to the Dunkl–Gaudin elements {θi}1≤i≤n, see Section 3.2 below for details. In
this case the parameters {qij} satisfy the following relations

q2
ijq

2
jk + q2

ijq
2
ik + q2

jkq
2
ik = 2qijqikqjk(qij + qjk + qjk)

which correspond to the relations (2.8) in the special case h = 0. One can find a set of relations
in degrees 6, 7 and 8, namely for a given pair-wise distinct integers 1 ≤ i, j, k, l ≤ n, one has

• one relation in degree 6

q2
ijq

2
ikq

2
il + q2

ijq
2
jkq

2
jl + q2

ikq
2
jkq

2
kl + q2

ilq
2
jlq

2
kl

− 2qijqikqilqjkqjlqkl

(
qij
qkl

+
qkl
qij

+
qik
qjl

+
qjl
qik

+
qil
qjk

+
qjk
qil

)
+ 8qijqikqilqjkqjlqkl = 0;

• three relations in degree 7

qik
(
qijqilqkl − qijqilqjk + qijqjkqkl − qilqjkqkl

)2
= 8q2

ijq
2
ikqjkqkl

(
qjk + qjl + qkl

)
− 4q2

ijq
2
ilqjl

(
q2
jk + q2

kl

)
,

• one relation in degree 8

q2
ijq

2
ilq

2
jkq

2
kl + q2

ijq
2
ikq

2
jlq

2
kl + q2

ikq
2
ilq

2
jkq

2
jl = 2qijqikqilqjkqjlqkl

(
qijqkl + qikqjl + qilqjk

)
,

However we don’t know does the list of relations displayed above, contains the all independent
relations among the elements {qij}1≤i<j≤n in degrees 6, 7 and 8, even for n = 4. In degrees ≥ 9
and n ≥ 5 some independent relations should appear.

Notice that the parameters
{
pij =

hqj
qi−qj , i < j

}
satisfy the so-called Gelfand–Varchenko

relations, see, e.g., [67]

pijpjk = pikpij + pjkpik + hpik, i < j < k,

whereas parameters
{
pij = 1

qi−qj , i < j
}

satisfy the so-called Arnold relations

pijpjk = pikpij + pjkpik, i < j < k.

Project 2.9. Find Hilbert series Hilb(An, t) for n ≥ 4.24

24This is a particular case of more general problem we are interested in. Namely, let {fα ∈ R[x1, . . . , xn]}1≤α≤N
be a collection of linear forms, and k ≥ 2 be an integer. Denote by I({fα}) the ideal in the ring of polynomials
R[z1, . . . , zN ] generated by polynomials Φ(z1, . . . , zN ) such that

Φ
(
f−k1 , . . . , f−kN

)
= 0.

Compute the Hilbert series (polynomial?) of the quotient algebra R[z1, . . . , zN ]/I({fα}).
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For example, Hilb(A3, t) = (1+t)(1+t2)
(1−t)2 .

Finally, if we set qi := exp(hzi) and take the limit lim
h→0

h2qiqj
(qi−qj)2 , as a result we obtain the

Dunkl–Gaudin parameter qij = 1
(zi−zj)2 .

(III) Consider the following representation of the degenerate affine Hecke algebra Hn on the
ring of polynomials Pn = Q[x1, . . . , xn]:

• the symmetric group Sn acts on Pn by means of operators

si = 1 + (xi+1 − xi − h)∂i, i = 1, . . . , n− 1,

• yi acts on the ring Pn by multiplication on the variable xi: yi(f(x)) = xif(x), f ∈ Pn.
Clearly,

yisi − yi+1si = h and yi(si − 1) = (si − 1)yi+1 + xi+1 − xi − h.

In the subsequent discussion we will identify the operator of multiplication by the variable xi,
namely the operator yi, with xi.

This time define uij = pij(si−1), if i < j and set uij = −uji if i > j, where parameters {pij}
satisfy the same conditions as in the previous example.

Lemma 2.10. The elements {uij , 1 ≤ i < j ≤ n}, satisfy the dynamical classical Yang–Baxter
relations displayed in Lemma 2.6, equation (2.7).

Therefore, the Dunkl elements

θi := xi +
∑
j
j 6=i

uij , i = 1, . . . , n,

form a commutative set of elements.

Theorem 2.11 ([54]). Define matrix Mn = (mij)1≤i,j≤n as follows

mi,j(u; z1, . . . , zn) =


u− zi +

∑
j 6=i

hpij if i = j,

−h− pij if i < j,

pij if i > j.

Then

DET
∣∣Mn(u; θ1, . . . , θn)

∣∣ =
n∏
j=1

(u− xj).

Comments 2.12. Let us list a few more representations of the dynamical classical Yang–Baxter
relations.

• Trigonometric Calogero–Moser representation. Let i < j, define

uij =
xj

xi − xj
(sij − ε), ε = 0 or 1,

sij(xi) = xj , sij(xj) = xi, sij(xk) = xk, ∀ k 6= i, j.
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• Mixed representation:

uij =

(
λj

λi − λj
− xj
xi − xj

)
(sij − ε), ε = 0 or 1, sij(λk) = λk, ∀ k.

We set uij = −uji, if i > j. In all cases we define Dunkl elements to be θi =
∑
j 6=i

uij .

Note that operators

rij =

(
λi + λj
λi − λj

− xi + xj
xi − xj

)
sij

satisfy the three term relations: rijrjk = rikrij + rjkrik, and rjkrij = rijrjk + rikrjk, and thus
satisfy the classical Yang–Baxter relations.

2.1.2 Step functions and the Dunkl–Uglov representations
of the degenerate aff ine Hecke algebras [138]

Consider step functions η± : R −→ {0, 1}

(Heaviside function) η+(x) =

{
1 if x ≥ 0,

0 if x < 0,
η−(x) =

{
1 if x > 0,

0 if x ≤ 0.

For any two real numbers xi and xj set η±ij = η±(xi − xj).

Lemma 2.13. The functions ηij satisfy the following relations

η±ij + η±ji = 1 + δxi,xj , (η±ij)
2 = η±ij ,

η±ijη
±
jk = η±ikη

±
ij + η±jkη

±
ik − η

±
ik,

where δx,y denotes the Kronecker delta function.

To introduce the Dunkl–Uglov operators [138] we need a few more definitions and notation.
To start with, denote by ∆±i the finite difference operators: ∆±i (f)(x1, . . . , xn) = f(. . . , xi ±
1, . . .). Let as before, {sij , 1 ≤ i 6= j ≤ n, sij = sji}, denotes the set of transpositions in
the symmetric group Sn. Recall that sij(xi) = xj , sij(xk) = xk, ∀ k 6= i, j. Finally define
Dunkl–Uglov operators d±i : Rn −→ Rn to be

d±i = ∆±i +
∑
j<i

δxi,xj −
∑
j<i

η±jisij +
∑
j>i

η±ijsij .

To simplify notation, set u±ij := η±ijsij if i < j, and ∆̃±i = ∆±i +
∑
j<i

δxi,xj .

Lemma 2.14. The operators {u±ij , 1 ≤ i < j ≤ n} satisfy the following relations

[
u±ij , u

±
ik + u±jk

]
+
[
u±ik, u

±
jk

]
+

[
u±ik,

∑
j<i

δxi,xj

]
= 0 if i < j < k.

From now on we assume that xi ∈ Z, ∀ i, that is, we will work with the restriction of the all
operators defined at beginning of Example 2.28(c), to the subset Zn ⊂ Rn. It is easy to see that
under the assumptions xi ∈ Z, ∀ i, we will have

∆±j η
±
ij = (η±ij ∓ δxi,xj )∆

±
i . (2.9)

Moreover, using relations (2.12), (2.13) one can prove that
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Lemma 2.15.

• [u±ij , ∆̃
±
i + ∆̃±j ] = 0,

• [u±ik, ∆̃
±
j ] =

[
u±ik,

∑
j<i

δxi,xj
]
, i < j < k.

Corollary 2.16.

• The operators {u±ij , 1 ≤ i < j < k ≤ n}, and ∆̃±i , i = 1, . . . , n satisfy the dynamical
classical Yang–Baxter relations[

u±ij , u
±
ik + u±jk

]
+
[
u±ik, u

±
jk

]
+
[
u±ik, ∆̃j

]
= 0 if i < j < k.

• The operators {si := si,i+1, 1 ≤ i < n, and ∆̃±j , 1 ≤ j ≤ n} give rise to two representations
of the degenerate affine Hecke algebra Hn. In particular, the Dunkl–Uglov operators are
mutually commute: [d±i , d

±
j ] = 0 [138].

2.1.3 Extended Kohno–Drinfeld algebra and Yangian Dunkl–Gaudin elements

Definition 2.17. Extended Kohno–Drinfeld algebra is an associative algebra over Q[β] gene-
rated by the elements {z1, . . . , zn} and {yij}1≤i 6=j≤n subject to the set of relations

(i) The elements {yij{1≤i 6=j≤n satisfy the Kohno–Drinfeld relations

• yij = yji, [yij , ykl] = 0 if i, j, k, l are distinct,

• [yij , yik + yjk] = 0 = [yij + yik, yjk] if i < j < k.

(ii) The elements z1, . . . , zn generate the free associative algebra Fn.

(iii) Crossing relations:

• [zi, yjk] = 0 if i 6= j, k, [zi, zj ] = β[yij , zi] if i 6= j.

To define the (Yangian) Dunkl–Gaudin elements, cf. [54], let us consider a set of elements
{pij}1≤i 6=j≤n subject to relations

• pij + pji = β, [pij , ykl] = 0 = [pij , zk] for all i, j, k,

• pijpjk = pik(pjk − pji) if i < j < k.

Let us set uij = pijyij , i 6= j, and define the (Yangian) Dunkl–Gaudin elements as follows

θi = zi +
∑
j 6=i

uij , i = 1, . . . , n.

Proposition 2.18 (cf. [54, Lemma 3.5]). The elements θ1, . . . , θn form a mutually commuting
family.

Indeed, let i < j, then

[θi, θj ] = [zi, zj ] + β[zi, yij ] + pij [yij , zi + zj ]

+
∑
k 6=i,j

(
pikpjk

[
yij + yik, yjk

]
+ pikpji

[
yij , yik + yjk

])
= 0.

A representation of the extended Kohno–Drinfeld algebra has been constructed in [54], namely
one can take

yij := T
(1)
ij T

(1)
ji − T

(1)
jj = yji, zi := βT

(2)
ii −

β

2
T

(1)
ii

(
T

(1)
ii − 1

)
,
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pij :=
βqj

qi − qj
, i 6= j,

where q1, . . . , qn stands for a set of mutually commuting quantum parameters, and
{
T

(s)
ij

}
1≤i,j≤n
s∈Z≥0

denotes the set of generators of the Yangian Y (gln), see, e.g., [106].
A proof that the elements {zi}1≤i≤n and {yij}1≤i 6=j≤n satisfy the extended Kohno–Drinfeld

algebra relations is based on the following relations, see, e.g., [54, Section 3],[
T

(1)
ij , T

(s)
kl

]
= δilT

(s)
kj − δjkT

(s)
il , i, j, k, l = 1, . . . , n, s ∈ Z≥0.

2.2 “Compatible” Dunkl elements, Manin matrices and algebras
related with weighted complete graphs rKn

Let us consider a collection of generators {u(α)
ij , 1 ≤ i, j ≤ n, α = 1, . . . , r}, subject to the

following relations

• either the unitarity (the case of sign “+”) or the symmetry relations (the case of sign “−”)25

u
(α)
ij ± u

(α)
ji = 0, ∀α, i, j, (2.10)

• local 3-term relations:

u
(α)
ij u

(α)
jk + u

(α)
jk u

α)
ki + u

(α)
ki u

(α)
ij = 0, i, j, k are distinct, 1 ≤ α ≤ r. (2.11)

We define global 3-term relations algebra 3T
(±)
n,r as “compatible product” of the local 3-term

relations algebras. Namely, we require that the elements

U
(λ)
ij :=

r∑
α=1

λαu
(α)
ij , 1 ≤ i, j ≤ n,

satisfy the global 3-term relations

U
(λ)
ij U

(λ)
jk + U

(λ)
jk U

(λ)
ki + U

(λ)
ki U

(λ)
ij = 0

for all values of parameters {λi ∈ R, 1 ≤ α ≤ r}.
It is easy to check that our request is equivalent to a validity of the following sets of relations

among the generators
{
u

(α)
ij

}
(a) local 3-term relations: u

(α)
ij u

α)
jk + u

(α)
jk u

(α)
ki + u

α)
kiu

(α)
ij = 0,

(b) 6-term crossing relations:

u
(α)
ij u

(β)
jk + u

(β)
ij u

(α)
jk + u

(α)
k,i u

(β)
ij u

(α)
ki + u

(α)
jk u

(β)
ki + u

(β)
jk u

(α)
ki = 0,

i, j, k are distinct, α 6= β.

25More generally one can impose the q-symmetry conditions

uij + quji = 0, 1 ≤ i < j ≤ n

and ask about relations among the local Dunkl elements to ensure the commutativity of the global ones. As
one might expect, the matrix Q :=

(
θ

(a)
j

)
1≤a≤r
1≤j≤n

composed from the local Dunkl elements should be a q-Manin

matrix. See, e.g., [25], or https://en.wikipedia.org/wiki/Manin.matrix for a definition and basic properties
of the latter.

https://en.wikipedia.org/wiki/Manin.matrix
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Now let us consider local Dunkl elements

θ
(α)
i :=

∑
j 6=i

u
(α)
ij , j = 1, . . . , n, α = 1, . . . , r.

It follows from the local 3-term relations (2.11) that for a fixed α ∈ [1, r] the local Dunkl elements{
θ

(α)
i

}
1≤i≤n
1≤α≤r

either mutually commute (the sign “+”), or pairwise anticommute (the sign “−”).

Similarly, the global 3-term relations imply that the global Dunkl elements

θ
(λ)
i := λ1θ

(1)
i + · · ·+ λrθ

(r)
i =

∑
j 6=i

U
(λ)
ij , i = 1, . . . , n,

also either mutually commute (the case “+”) or pairwise anticommute (the case “−”).

Now we are looking for a set of relations among the local Dunkl elements which is a conse-
quence of the commutativity (anticommutativity) of the global Dunkl elements. It is quite clear
that if i < j, then

[
θ

(a)
i , θ

(b)
j

]
± =

r∑
a=1

λ2
a

[
θ

(a)
i , θ

(a)
j

]
± +

∑
1≤a<b≤r

λaλb
([
θ

(a)
i , θ

(b)
j

]
± +

[
θ

(b)
i , θ

(a)
j

]
±
)
,

and the commutativity (or anticommutativity) of the global Dunkl elements for all (λ1, . . . , λr) ∈
Rr is equivalent to the following set of relations

• [θ
(a)
i , θ

(a)
j ]± = 0,

• [θ
(a)
i , θ

(b)
j ]±+[θ

(b)
i , θ

(a)
j ]± = 0, a < b and i < j, where by definition we set [a, b]± := ab∓ba.

In other words, the matrix Θn :=
(
θ

(a)
i

)
1≤a≤r
1≤i≤n

should be either a Manin matrix (the case “+”),

or its super analogue (the case “−”). Clearly enough that a similar construction can be applied
to the algebras studied in Section 2, I–III, and thus it produces some interesting examples
of the Manin matrices. It is an interesting problem to describe the algebra generated by the

local Dunkl elements
{
θ

(a)
i

}
1≤a≤r
1≤i≤n

and a commutative subalgebra generated by the global Dunkl

elements inside the former. It is also an interesting question whether or not the coefficients

C1, . . . , Cn of the column characteristic polynomial Detcol |Θn − tIn| =
n∑
k=0

Ckt
n−k of the Manin

matrix Θn generate a commutative subalgebra? For a definition of the column determinant of
a matrix, see, e.g., [25].

However a close look at this problem and the question posed needs an additional treatment
and has been omitted from the content of the present paper.

Here we are looking for a “natural conditions” to be imposed on the set of generators
{uαij} 1≤α≤r

1≤i,j≤n
in order to ensure that the local Dunkl elements satisfy the commutativity (or

anticommutativity) relations:[
θ

(α)
i , θ

(β)
j

]
± = 0, for all 1 ≤ i < j ≤ n, 1 ≤ α, β ≤ r.

The “natural conditions” we have in mind are

• locality relations:[
u

(α)
ij , u

(β)
kl

]
± = 0, (2.12)
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• twisted classical Yang–Baxter relations:[
u

(α)
ij , u

(β)
jk

]
± +

[
u

(α)
ik , u

(β)
ji

]
± +

[
u

(α)
ik , u

(β)
jk

]
± = 0, (2.13)

if i, j, k, l are distinct and 1 ≤ α, β ≤ r.

Finally we define a multiple analogue of the three term relations algebra, denoted by
3T±(rKn), to be the quotient of the global 3-term relations algebra 3T±n,r modulo the two-
sided ideal generated by the left hand sides of relations (2.12), (2.13) and that of the following
relations

•
(
u

(α)
ij

)2
= 0,

[
u

(α)
ij , u

(β)
ij

]
± = 0, for all i 6= j, α 6= β.

The outputs of this construction are

• commutative (or anticommutative) quadratic algebra 3T (±)(rKn) generated by the ele-

ments
{
u

(α)
ij

}
1≤i<j≤n
α=1,...,r

,

• a family of nr either mutually commuting (the case “+”), or pair-wise anticommuting (the

case “−”) local Dunkl elements
{
θ

(α)
i

}
i=1,...,n
α=1,...,r

.

We expect that the subalgebra generated by local Dunkl elements in the algebra 3T+(rKn) is
closely related (isomorphic for r = 2) with the coinvariant algebra of the diagonal action of the

symmetric group Sn on the ring of polynomials Q
[
X

(1)
n , . . . , X

(r)
n

]
, where X

(j)
n stands for the set

of variables
{
x

(j)
1 , . . . , x

(j)
n

}
. The algebra 3T−(2Kn)anti has been studied in [72] and [12]. In the

present paper we state only our old conjecture.

Conjecture 2.19 (A.N. Kirillov, 2000).

Hilb
(
3T−(3Kn)anti, t

)
= (1 + t)n(1 + nt)n−2,

where for any algebra A we denote by Aanti the quotient of algebra A by the two-sided ideal
generated by the set of anticommutators {ab+ ba | (a, b) ∈ A×A}.

According to observation of M. Haiman [55], the number 2n(n+ 1)n−2 is thought of as being
equal to the dimension of the space of triple coinvariants of the symmetric group Sn.

2.3 Miscellany

2.3.1 Non-unitary dynamical classical Yang–Baxter algebra DCYBn

Let Ãn be the quotient of the algebra Fn by the two-sided ideal generated by the relations (2.2),
(2.5) and (2.6). Consider elements

θi = xi +
∑
a6=i

uia and θ̄j = −xj +
∑
b6=j

ubj , 1 ≤ i < j ≤ n.

Clearly, if i < j, then

[θi, θ̄j ] + [xi, xj ] =

[
n∑
k=1

xk, uij

]
+
∑
k 6=i,j

wikj ,

where the elements wijk, i < j, have been defined in Lemma 2.2, equation (2.3).

Therefore the elements θi and θ̄j commute in the algebra Ãn.
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In the case when xi = 0 for all i = 1, . . . , n, the relations

wijk := [uij , uik + ujk] + [uik, ujk] = 0 if i, j, k are all distinct,

are well-known as the non-unitary classical Yang–Baxter relations. Note that for a given triple
of pair-wise distinct (i, j, k) one has in fact 6 relations. These six relations imply that [θi, θ̄j ] = 0.
However, in general,

[θi, θj ] =

[∑
k 6=i,j

uik, uij + uji

]
6= 0.

Dynamical classical Yang–Baxter algebra DCYBn. In order to ensure the commuta-
tivity relations among the Dunkl elements (2.1), i.e., [θi, θj ] = 0 for all i, j, let us remark that
if i 6= j, then

[θ,θj ] = [xi + uij , xj + uji] + [xi + xj , uij ] +

[
uij ,

n∑
k=1

xk

]

+

n∑
k=1
k 6=i,j

[uij + uik, ujk] + [uik, uji] + [xi, ujk] + [uik, xj ] + [xk, uij ].

Definition 2.20. Define dynamical non-unitary classical Yang–Baxter algebra DNUCYBn to
be the quotient of the free associative algebra Q〈{xi, 1 ≤ i ≤ n}, {uij}1≤i 6=j≤n〉 by the two-sided
ideal generated by the following set of relations

• zero curvature conditions:

[xi + uij , xj + uji] = 0, 1 ≤ i 6= j ≤ n, (2.14)

• conservation laws conditions:[
uij ,

n∑
k=1

xk

]
= 0 for all i 6= j, k.

• crossing relations:

[xi + xj , uij ] = 0, i 6= j.

• twisted dynamical classical Yang–Baxter relations:

[uij + uik, ujk] + [uik, uji] + [xi, ujk] + [uik, xj ] + [xk, uij ] = 0,

i, j, k are distinct.

It is easy to see that the twisted classical Yang–Baxter relations

[uij + uik, ujk] + [uik, uji] = 0, i, j, k are distinct, (2.15)

for a fixed triple of distinct indices i, j, k contain in fact 3 different relations whereas the
non-unitary classical Yang–Baxter relations

[uij + uik, ujk] + [uij , uik], i, j, k are distinct,

contain 6 different relations for a fixed triple of distinct indices i, j, k.
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Definition 2.21.

• Define dynamical classical Yang–Baxter algebra DCYBn to be the quotient of the algebra
DNUCYBn by the two-sided ideal generated by the elements∑

k 6=i,j
[uik, uij + uji] for all i 6= j.

• Define classical Yang–Baxter algebra CYBn to be the quotient of the dynamical classical
Yang–Baxter algebra DCYBn by the set of relations

xi = 0 for i = 1, . . . , n.

Example 2.22. Define

pij(z1, . . . , zn) =


zi

zi − zj
if 1 ≤ i < j ≤ n,

− zj
zj − zi

if n ≥ i > j ≥ 1.

Clearly, pij+pji = 1. Now define operators uij = pijsij , and the truncated Dunkl operators to be
θi =

∑
j 6=i

uij , i = 1, . . . , n. All these operators act on the field of rational functions Q(z1, . . . , zn);

the operator sij = sji acts as the exchange operator, namely, sij(zi) = zj , sij(zk) = zk, ∀ k 6= i, j,
sij(zj) = zi.

Note that this time one has

p12p23 = p13p12 + p23p13 − p13.

It is easy to see that the operators {uij , 1 ≤ i 6= j ≤ n} satisfy relations (3.1), and therefore,
satisfy the twisted classical Yang–Baxter relations (2.13). As a corollary we obtain that the
truncated Dunkl operators {θi, i = 1, . . . , n} are pair-wise commute. Now consider the Dunkl
operator Di = ∂zi + hθi, i = 1, . . . , n, where h is a parameter. Clearly that [∂zi + ∂zj , uij ] = 0,
and therefore [Di, Dj ] = 0, ∀ i, j. It easy to see that

si,i+1Di −Di+1si,i+1 = h, [Di, sj,j+1] = 0 if j 6= i, i+ 1.

In such a manner we come to the well-known representation of the degenerate affine Hecke
algebra Hn.

2.3.2 Dunkl and Knizhnik–Zamolodchikov elements

Assume that ∀ i, xi = 0, and generators {uij , 1 ≤ i < j ≤ n} satisfy the locality conditions (2.2)
and the classical Yang–Baxter relations

[uij , uik + ujk] + [uik, ujk] = 0 if 1 ≤ i < j < k ≤ n.

Let y, z, t1, . . . , tn be parameters, consider the rational function

FCYB(z; t) := FCYB(z; t1, . . . , tn) =
∑

1≤i<j≤n

(ti − tj)uij
(z − ti)(z − tj)

.

Then

[FCYB(z; t), FCYB(y; t)] = 0 and Resz=ti FCYB(z; t) = θi.
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Now assume that a set of generators {cij , 1 ≤ i 6= j ≤ n} satisfy the locality and symmetry
(i.e., cij = cji) conditions, and the Kohno–Drinfeld relations:

[cij , ckl] = 0 if {i, j} ∩ {k, l} = ∅,
[cij , cjk + cik] = 0 = [cij + cik, cjk], i < j < k.

Let y, z, t1, . . . , tn be parameters, consider the rational function

FKD(z; t) := FKD(z; t1, . . . , tn) =
∑

1≤i 6=j≤n

cij
(z − ti)(ti − tj)

=
∑

1≤i<j≤n

cij
(z − ti)(z − tj)

.

Then

[FKD(z; t), FKD(y; t)] = 0 and Resz=ti FKD(z; t) = KZi,

where

KZi =
n∑
j=1
j 6=i

cij
ti − tj

denotes the truncated Knizhnik–Zamolodchikov element.

2.3.3 Dunkl and Gaudin operators

(a) Rational Dunkl operators. Consider the quotient of the algebra DCYBn, see Defini-
tion 2.3, by the two-sided ideal generated by elements

{[xi + xj , uij ]} and {[xk, uij ], k 6= i, j}.

Clearly the Dunkl elements (2.1) mutually commute. Now let us consider the so-called Calogero–
Moser representation of the algebra DCYBn on the ring of polynomials Rn := R[z1, . . . , zn] given
by

xi(p(z)) = λ
∂p(z)

∂zi
, uij(p(z)) =

1

zi − zj
(1− sij)p(z), p(z) ∈ Rn.

The symmetric group Sn acts on the ring Rn by means of transpositions sij ∈ Sn: sij(zi) = zj ,
sij(zj) = zi, sij(zk) = zk if k 6= i, j.

In the Calogero–Moser representation the Dunkl elements θi becomes the rational Dunkl
operators [35], see Definition 1.1. Moreover, one has [xk, uij ] = 0 ifk 6= i, j, and

xiuij = uijxj +
1

zi − zj
(xi − xj − uij), xjuij = uijxi −

1

zi − zj
(xi − xj − uij).

(b) Gaudin operators. The Dunkl–Gaudin representation of the algebra DCYBn is defined
on the field of rational functions Kn := R(q1, . . . , qn) and given by

xi(f(q)) := λ
∂f(q)

∂qi
, uij =

sij
qi − qj

, f(q) ∈ Kn,

but this time we assume that w(qi) = qi, ∀ i ∈ [1, n] and for all w ∈ Sn. In the Dunkl–Gaudin
representation the Dunkl elements becomes the rational Gaudin operators, see, e.g., [108]. More-
over, one has [xk, uij ] = 0, if k 6= i, j, and

xiuij = uijxj −
uij

qi − qj
, xjuij = uijxi +

uij
qi − qj

.
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Comments 2.23. It is easy to check that if f ∈ R[z1, . . . , zn], and xi := ∂
∂zi

, then the following
commutation relations are true

xif = fxi +
∂

∂zi
(f), uijf = sij(f)uij + ∂zi,zj (f).

Using these relations it easy to check that in the both cases (a) and (b) the elementary symmetric
polynomials ek(x1, . . . , xn) commute with the all generators {uij}1≤i,j≤n, and therefore commute
with the all Dunkl elements {θi}1≤i≤n. Let us stress that [θi, xk] 6= 0 for all 1 ≤ i, k ≤ n.

Project 2.24. Describe a commutative algebra generated by the Dunkl elements {θi}1≤i≤n and
the elementary symmetric polynomials {ek(x1, . . . , xn)}1≤k≤n.

2.3.4 Representation of the algebra 3Tn on the free algebra Z〈t1, . . . , tn〉

Let Fn = Z〈t1, . . . , tn〉 be free associative algebra over the ring of integers Z, equipped with the
action of the symmetric group Sn: sij(ti) = tj , sij(tk) = tk, ∀ k 6= i, j.

Define the action of uij ∈ 3Tn on the set of generators of the algebra Fn as follows

uij(tk) = δi,ktitj − δj,ktjti.

The action of generator uij on the whole algebra Fn is defined by linearity and the twisted
Leibniz rule:

uij(1) = 0, uij(a+ b) = uij(a) + uij(b), uij(ab) = uij(a)b+ sij(a)uij(b).

It is easy to see from (2.14) that

sijujk = uiksij , sijukl = uklsij if {i, j} ∩ {k, l} = ∅, uij + uji = 0.

Now let us consider operator

uijk := uijujk − ujkuik − uikuij , 1 ≤ i < j < k ≤ n.

Lemma 2.25.

uijk(ab) = uijk(a)b+ sijsjk(a)uijk(b), a, b ∈ Fn.

Lemma 2.26.

uijk(a) = 0 ∀ a ∈ Fn.

Indeed,

uijk(ti) = −ujk(uij(ti))− uik(uij(ti)) = −tiujk(tk)− uik(ti)tj = ti(tktj)− (titk)tj = 0,

uijk(tk) = uij(ujk(tk))− ujk(uik(tk)) = −uij(tktj) + ujk(tkti) = tk(uij(tj) + ujk(tk)ti = 0,

uijk(tj) = uij(ujk(tj))− uik(uij(tj)) = −uij(tj)tk − tjuik(ti) = (tjti)tk − tj(titk) = 0.

Therefore Lemma 2.26 follows from Lemma 2.25.
Let F•n be the quotient of the free algebra Fn by the two-sided ideal generated by elements

t2i tj − tjt2i , 1 ≤ i 6= j ≤ n. Since u2
i,j(ti) = tit

2
j − t2j ti, one can define a representation of the

algebra 3T
(0)
n on that F•n. One can also define a representation of the algebra 3T

(0)
n on that F (0)

n ,

where F (0)
n denotes the quotient of the algebra Fn by the two-sided ideal generated by elements

{t2i , 1 ≤ i ≤ n}. Note that (ui,kuj,kui,j)(tk) = [titjti, tk] 6= 0 in the algebra F (0)
n , but the
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elements ui,jui,kuj,kui,j , 1 ≤ i < j < k ≤ n, which belong to the kernel of the Calogero–Moser

representation [72], act trivially both on the algebras F (0)
n and that F•n.

Note finally that the algebra F (0)
n is Koszul and has Hilbert series Hilb

(
F (0)
n , t

)
= 1+t

1−(n−1)t ,
whereas the algebra F•n is not Koszul for n ≥ 3, and

Hilb(F•n, t) =
1

(1− t)(1− (n− 1)t)(1− t2)n−1
.

In Appendix A.5 we apply the representation introduced in this section to the study of

relations in the subalgebra Z
(0)
n of the algebra 3T

(0)
n generated by the elements u1,n, . . . , un−1,n.

To distinguish the generators {uij} of the algebra 3T
(0)
n from the introduced in this section

operators uij acting on it, in Appendix A.5 we will use for the latter notation ∇ij := uij .

2.3.5 Kernel of Bruhat representation

Bruhat representations, classical and quantum, of algebras 3T
(0)
n and 3QTn can be seen as a con-

necting link between commutative subalgebras generating by either additive or multiplicative
Dunkl elements in these algebras, and classical and quantum Schubert and Grothendieck calculi.

(Ia) Bruhat representation of algebra 3T
(0)
n , cf. [45]. Define action of ui,j ∈ 3T

(0)
n on

the group ring of the symmetric group Z[Sn] as follows: let w ∈ Sn, then

ui,jw =

{
wsij if l(wsij) = l(w) + 1,

0 otherwise.

Let us remind that sij ∈ Sn denotes the transposition that interchanges i and j and fixes each
k 6= i, j; for each permutation u ∈ Sn, l(u) denotes its length.

(Ib) Quantum Bruhat representation of algebra 3QTn, cf. [45]. Let us remind that
algebra 3QTn is the quotient of the 3-term relations algebra 3Tn by the two-sided ideal generated
by the elements

{u2
ij , |j − i| ≥ 2}

⋃
{u2

i,i+1 = qi, i = 1, . . . , n− 1}.

Define the Z[q]−linear action of ui,j ∈ 3QTn, i < j, on the extended group ring of the symmetric
group Z[q][Sn] as follows: let w ∈ Sn, and qij = qiqi+1 · · · qj−1, i < j, then

ui,jw =


wsij if l(wsij) = l(w) + 1,

qijwsij if l(wsij) = l(w)− l(sij),
0 otherwise.

Let us remind, see, e.g., [92], that in general one has

l(wsij) =

{
l(w)− 2eij − 1 if w(i) > w(j),

l(w) + 2 eij + 1 if w(i) < w(j).

Here eij(w) denotes the number of k such that i < k < j and w(k) lies between w(i) and w(j).
In particular, l(wsij) = l(w) + 1 iff eij(w) = 0 and w(i) < w(j); l(wsij) = l(w) − l(sij) =
l(w)− 2(j − i) + 1 iff w(i) > w(j) and eij = j − i− 1 is the maximal possible.

(II) Kernel of the Bruhat representation. It is not difficult to see that the following
elements of degree three and four belong to the kernel of the Bruhat representation:

(IIa) ui,jui,kui,j and ui,kuj,kui,k if 1 ≤ i < j < k ≤ n;
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(IIb) ui,kui,luj,l and uj,lui,lui,k;

(IIc) uiluikujluil, uiluijukluil, uikuilujkuik,

uijuikuiluij , uikuiluijuik if 1 ≤ i < j < k < l ≤ n.

This observation motivates the following definition.

Definition 2.27. The reduced 3-term relation algebra 3T red
n is defined to be the quotient of the

algebra 3T
(0)
n by the two-sided ideal generated by the elements displayed in IIa–IIc above.

Example 2.28.

Hilb
(
3T red

3 , t
)

= (1, 3, 4, 1), dim
(
3T red

3

)
= 9,

Hilb
(
3T red

4 , t
)

= (1, 6, 19, 32, 19, 6, 1), dim
(
3T red

4

)
= 84,

Hilb
(
3T red

5 , t
)

= (1, 10, 55, 190, 383, 370, 227, 102, 34, 8, 1), dim
(
3T red

5

)
= 1374.

We expect that dim(3T redn )(n2)−1 = 2(n− 1) if n ≥ 3.

Theorem 2.29.

1. The algebra 3T red
n is finite-dimensional, and its Hilbert polynomial has degree

(
n
2

)
.

2. The maximal degree
(
n
2

)
component of the algebra 3T red

n has dimension one and generated
by any element which is equal to the product (in any order) of all generators of the algebra
3T red

n .

3. The subalgebra in 3T red
n generated by the elements {ui,i+1, i = 1, . . . , n− 1} is canonically

isomorphic to the nil-Coxeter algebra NCn. In particular, its Hilbert polynomial is equal

to [n]t! :=
n∏
j=1

(1−tj)
1−t , and the element

n−1∏
j=1

1∏
a=j

ua,a+1 of degree
(
n
2

)
generates the maximal

degree component of the algebra 3T red
n .

4. The subalgebra over Z generated by the Dunkl elements {θ1, . . . , θn} in the algebra 3T red
n is

canonically isomorphic to the cohomology ring H∗(F ln,Z) of the type A flag variety F ln.

A definition of the nil-Coxeter algebra NCn one can find in Section 4.1.1. It is known, see [8]
or Section 4.1.1, that the subalgebra generated by the elements {ui,i+1, i = 1, . . . , n− 1} in the

whole algebra 3T
(0)
n is canonically isomorphic to the nil-Coxeter algebra NCn as well.

We expect that the kernel of the Bruhat representation of the algebra 3T
(0)
n is generated by

all monomials of the form ui1,j1 · · ·uik,jk such that the sequence of transpositions ti1,j1 , . . . , tik,jk
does not correspond to a path in the Bruhat graph of the symmetric group Sn. For example if
1 ≤ i < j < k < l ≤ n, the elements ui,kui,luj,l and uj,lui,lui,k do belong to the kernel of the
Bruhat representation.

Problem 2.30.

1. The image of the Bruhat representation of the algebra 3T
(0)
n defines a subalgebra

Im
(
3T (0)

n

)
⊂ EndQ(Q[Sn]).

Does this image isomorphic to the algebra 3T red
n ? Compute Hilbert polynomials of algebras

Im
(
3T

(0)
n

)
and 3T red

n .

2. Describe the image(s) of the affine nil-Coxeter algebra ÑCn, see Section 4.1.1, in the
algebras 3T red

n and EndQ(Q[Sn]).
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2.3.6 The Fulton universal ring [47], multiparameter quantum cohomology
of flag varieties [45] and the full Kostant–Toda lattice [29, 80]

Let Xn = (x1, . . . , xn) be be a set of variables, and

g := g(n) = {ga[b] | a ≥ 1, b ≥ 1, a+ b ≤ n}

be a set of parameters; we put deg(xi) = 1 and deg(ga[b]) = b + 1, and set gk[0] := xk,
k = 1, . . . , n. For a subset S ⊂ [1, n] we denote by XS the set of variables {xi | i ∈ S}.

Let t be an auxiliary variable, denote by M = (mij)1≤i,j≤n the matrix of size n by n with
the following elements:

mi,j =


xi + t if i = j,

gi[j − i] if j > i,

−1 if i− j = 1,

0 if i− j > 1.

Let Pn(Xn, t) = det |M |.

Definition 2.31. The Fulton universal ring Rn−1 is defined to be the quotient26

Rn−1 = Z
[
g(n)

]
[x1, . . . , xn]/〈Pn(Xn, t)− tn〉.

Lemma 2.32. Let Pn(Xn, t) =
n∑
k=0

ck(n)tn−k, c0(n) = 1. Then

ck(n) := ck
(
n;Xn, g

(n)
)

=
∑

1≤i1<i2<···<is<n
j1≥1,...,js≥1

m:=
∑

(ja+1)≤n

s∏
a=1

gia [ja]ek−m
(
X

[1,n]\
s⋃
a=1

[ia,ia+ja]

)
, (2.16)

where in the summation we assume additionally that the sets [ia, ia+ja] := {ia, ia+1, . . . , ia+ja},
a = 1, . . . , s, are pair-wise disjoint.

It is clear that Rn−1 = Z[g(n)][x1, . . . , xn]/〈cn(1), . . . , cn(n)〉. One can easily see that the
coefficients ck(n) and gm[k] satisfy the following recurrence relations [47]:

ck(n) = ck(n− 1) +
k−1∑
a=0

gn−a[a]ck−a−1(n− a− 1), c0(n) = 1,

gm[k] = ck+1(m+ k)− ck+1(m+ k − 1)−
k−1∑
a=0

gm+k−a[a]ck−a(m+ k − a),

gm[0] := xm.

On the other hand, let {qij}1≤i<j≤n be a set of (quantum) parameters, and e
(q)
k (Xn) be the

multiparameter quantum elementary polynomial introduced in [45]. We are interested in to
describe a set of relations between the parameters {gi[j]} i≥1,j≥1

i+j≤n
and the quantum parameters

{qij}1≤i<j≤n which implies that

ck(n) = e
(q)
k (Xn) for k = 1, . . . , n.

26If P (t,Xn) =
∑
k≥1

fk(Xn)tk, fk(Xn) ∈ Q[Xn] is a polynomial, we denote by 〈P (t,Xn)〉 the ideal in the

polynomial ring Q[Xn] generated by the coefficients {f1, f2, . . .}.
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To start with, let us recall the recurrence relations among the quantum elementary polynomials,
cf. [117]. To do so, consider the generating function

En
(
Xn; {qij}1≤i<j≤n

)
=

n∑
k=0

e
(q)
k (Xn)tn−k.

Lemma 2.33 ([41, 117]). One has

En
(
Xn; {qij}1≤i<j≤n

)
= (t+ xn)En−1

(
Xn−1; {qij}1≤i<j≤n−1

)
+
n−1∑
j=1

qjnEn−2

(
X[1,n−1]\{j}; {qa,b} 1≤a<b≤n−1

a6=j,b 6=j

)
.

Proposition 2.34. Parameters {ga[b]} can be expressed polynomially in terms of quantum pa-
rameters {qij} and variables x1, . . . , xn, in a such way that

ck(n) = e
(q)
k (Xn), ∀ k, n.

Moreover,

• ga[b] =
a∑
k=1

qk,a+b

a+b−1∏
j=a+1

(xj − xk) + lower degree polynomials in x1, . . . , xn,

• the quantum parameters {qij} can be presented as rational functions in terms of variables
x1, . . . , xn and polynomially in terms of parameters {ga[b]} such that the equality ck(n) =

e
(q)
k (Xn) holds for all k, n.

In other words, the transformation

{qij}1≤i<j≤n ←→ {ga[b]} a+b≤n
a≥1, b≥1

defines a “birational transformation” between the algebra Z[g(n)][Xn]/〈Pn(Xn, t)− tn〉 and mul-
tiparameter quantum deformation of the algebra H∗(F ln,Z).

Example 2.35. Clearly,

gn−1[1] =
n−1∑
j=1

qj,n, n ≥ 2 and gn−2[2] =
n−2∑
j=1

qjn(xn−1 − xj), n ≥ 3.

Moreover

g1[3] = q14

(
(x2 − x1)(x3 − x1) + q23 − q12

)
+ q24

(
q13 − q12

)
,

g2[3] = q15

(
(x3 − x1)(x4 − x1) + q24 + q34 − q12 − q13

)
+ q25

(
(x3 − x2)(x4 − x2) + q14 + q34 − q12 − q23

)
+ q35

(
q14 + q24 − q13 − q23

)
.

Comments 2.36. The full Kostant–Toda lattice (FKTL for short) has been introduced in the
end of 70′s of the last century by B. Kostant and since that time has been extensively studied
both in Mathematical and Physical literature. We refer the reader to the original paper by
B. Kostant [29, 80] for the definition of the FKTL and its basic properties. In the present
paper we just want to point out on a connection of the Fulton universal ring and hence the
multiparameter deformation of the cohomology ring of complete flag varieties, and polynomial
integral of motion of the FKTL. Namely,

Polynomials ck(n;Xn, g
(n)) defined by (2.16) coincide with

the polynomial integrals of motion of the FKTL.

It seems an interesting task to clarify a meaning of the FKTL rational integrals of motion
in the context of the universal Schubert calculus [47] and the algebra 3HTn(0), as well as any
meaning of universal Schubert or Grothendieck polynomials in the context of the Toda or full
Kostant–Toda lattices.
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3 Algebra 3HTn

Consider the twisted classical Yang–Baxter relation

[uij + uik, ujk] + [uik, uji] = 0,

where i, j, k are distinct. Having in mind applications of the Dunkl elements to combinatorics
and algebraic geometry, we split the above relation into two relations

uijujk = ujkuik − uikuji and ujkuij = uikujk − ujiuik (3.1)

and impose the following unitarity constraints

uij + uji = β,

where β is a central element. Summarizing, we come to the following definition.

Definition 3.1. Define algebra 3Tn(β) to be the quotient of the free associative algebra

Z[β]〈uij , 1 ≤ i < j ≤ n〉

by the set of relations

• locality: uijukl = ukluij if {i, j} ∩ {k, l} = ∅,

• 3-term relations: uijujk = uikuij + ujkuik − βuik, and ujkuij = uijuik + uikujk − βuik
if 1 ≤ i < j < k ≤ n.

It is clear that the elements {uij , ujk, uik, 1 ≤ i < j < k ≤ n} satisfy the classical Yang–
Baxter relations, and therefore, the elements

{
θi :=

∑
j 6=i

uij , 1 = 1, . . . , n
}

form a mutually

commuting set of elements in the algebra 3Tn(β).

Definition 3.2. We will call θ1, . . . , θn by the (universal) additive Dunkl elements.

For each pair of indices i < j, we define element qij := u2
ij − βuij ∈ 3Tn(β).

Lemma 3.3.

1. The elements {qij , 1 ≤ i < j ≤ n} satisfy the Kohno–Drinfeld relations (known also as the
horizontal four term relations)

qijqkl = qklqij if {i, j} ∩ {k, l} = ∅,
[qij , qik + qjk] = 0, [qij + qik, qjk] = 0 if i < j < k.

2. For a triple (i < j < k) define uijk := uij − uik + ujk. Then

u2
ijk = βuijk + qij + qik + qjk.

3. Deviation from the Yang–Baxter and Coxeter relations:

uijuikujk − ujkuikuij = [uik, qij ] = [qjk, uik],

uijujkuij − ujkuijujk = qijuik − uikqjk.
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Comments 3.4. It is easy to see that the horizontal 4-term relations listed in Lemma 3.3(1),
are consequences of the locality conditions among the generators {qij}, together with the com-
mutativity conditions among the Jucys–Murphy elements

di :=
n∑

j=i+1

qij , i = 2, . . . , n,

namely, [di, dj ] = 0. In [72] we describe some properties of a commutative subalgebra generated
by the Jucys–Murphy elements in the (nil27) Kohno–Drinfeld algebra. It is well-known that the
Jucys–Murphy elements generate a maximal commutative subalgebra in the group ring of the
symmetric group Sn. It is an open problem

describe defining relations among the Jucys–Murphy ele-
ments in the group ring Z[Sn].

Finally we introduce the “Hecke quotient” of the algebra 3Tn(β), denoted by 3HTn(β).

Definition 3.5. Define algebra 3HTn(β) to be the quotient of the algebra 3Tn(β) by the set of
relations

qijqkl = qklqij for all i, j, k, l.

In other words we assume that the all elements {qij , 1 ≤ i < j ≤ n} are central in the algebra
3Tn(β). From Lemma 3.3 follows immediately that in the algebra 3HTn(β) the elements {uij}
satisfy the multiplicative (or quantum) Yang–Baxter relations

uijuikujk = ujkuikuij if i < j < k. (3.2)

To underline the dependence of the algebra 3HTn(β) on the central elements q := {qij}, we will

use for the former the notation 3T
(q)
n (β) as well.

Exercises 3.6 (some relations in the algebra 3T
(q)
n (β)).

1. Noncommutative analogue of recurrence relation among the Catalan numbers [70, 72], cf.
Section 5.1. Let k, n be positive integers, k < n and i1, . . . , ik, 1 ≤ ik < n, be a collection

of pairwise distinct integers. Prove the following identity in the algebra 3T
(q)
n (β)28

k∏
a=1

uia,ia+1 +
k+1∑
r=2

(
n∏
a=r

β(uia,ia+1)uiak+1
,ia1

(
r−2∏
a=1

uia,ia+1

))

= β

k∏
a=1

uia,ia+1 − β
(
ui1,ik+1

RI\{ik+1} −RI\{ik+1}uik,ik+1

)
,

where RI denotes the r.h.s. of the above identity. For example,

12 23 + 23 31 + 31 12 = β(12− 13 + 23),

12 23 34 + 23 34 41 + 34 41 12 + 41 12 23

= β(12 23− 14(12− 13 + 23) + (12− 13 + 23)34),

27That is the quotient of the Kohno–Drinfeld algebra generated by the elements {qij} by the two-sided ideal
generated by the elements {q2

ij}1≤i,j≤n.
28Hint: denote the r.h.s. of of the identity stated in item (1) by RI . One possible proof is based on induction

and examination of the element RI∪{ik+2} := uia1,ia+2
RI −RIuia+1,iai+2

.
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where we use short notation ij := uij . See Introduction, summation formula, A, for an
interpretation of the above formula in the case β = 0, qij = 0, ∀ i, j. Note that the above
formula does not depend on deformation (or quantum) parameters {qij}, in particular it
also true for the algebras 3T (Γ) associated with a simple graph Γ, and gives rise to quantum
as well as K-theoretic deformations of the Orlik–Terao algebra of a simple graph, cf. [89].

2. Cyclic relations, cf. [45]. Let i1, i2, . . . , ik, 1 ≤ ia ≤ n be a collection of pairwise distinct
integers. Show that

k−1∑
r=1

(
k∏

a=r+1

ui1,ia

)(
r∏

a=2

ui1,ia

)
uir+1,i1 = −

(
k∑
a=2

qi1,ia

(
k∏

b=a+1

uia,ib

)(
a−1∏
b=2

uia,ib

))
.

For example, 12 13 14 21 + 13 14 12 31 + 14 12 13 41 = −q12 23 24− q13 34 32− q14 42 43.

Note that the r.h.s. does not depend on parameter β.

3.1 Modified three term relations algebra 3MTn(β, ψ)

Let β, {qij = qji, ψij = ψji, 1 ≤ i, j ≤ n}, be a set of mutually commuting elements.

Definition 3.7. Modified 3-term relation algebra 3MTn(β, q, ψ) is an associative algebra over
the ring of polynomials Z[β, qij , ψij ] with the set of generators {uij , 1 ≤ i, j ≤ n} subject to the
set of relations

• uij + uji = β, uijukl = ukluij if {i, j} ∩ {k, l} = ∅,

• three term relations:

uijujk + ukiuij + ujkuki = β(uij + uik + ujk) if i, j, k are distinct,

• u2
ij = βuuj + qij + ψij if i 6= j,

• uijψkl = ψkluij if {i, j} ∩ {k, l} = ∅,

• exchange relations: uijψjk = ψikuij if i, j, k are distinct,

• elements β, {qij , 1 ≤ i, j ≤ n} are central.

It is easy to see that in the algebra 3MTn(β, q,ψ) the generators {uij} satisfy the modified
Coxeter and modified quantum Yang–Baxter relations, namely

• modified Coxeter relations: uijujkuij − ujkuijujk = (qij − qjk)uik,
• modified quantum Yang–Baxter relations:

uijuikujk − ujkuikuij = (ψjk − ψij)uik

if i, j, k are distinct.

Clearly the additive Dunkl elements
{
θi :=

∑
j 6=i

uij , i = 1, . . . , n
}

generate a commutative

subalgebra in 3MTn(β, ψ).
It is still possible to describe relations among the additive Dunkl elements [72], cf. [74].

However we don’t know any geometric interpretation of the commutative algebra obtained. It is
not unlikely that this commutative subalgebra is a common generalization of the small quantum
cohomology and elliptic cohomology (remains to be defined!) of complete flag varieties.

The algebra 3MTn(β = 0, q = 0, ψ) has an elliptic representation [72, 74]. Namely,

uij := σλi−λj (zi − zj)sij , qij = ℘(λi − λj), ψij = −℘(zi − zj),
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where {λi, i = 1, . . . , n} is a set of parameters (e.g., complex numbers), and {z1, . . . , zn} is a set
of variables; sij , i < j, denotes the transposition that swaps i on j and fixes all other variables;

σλ(z) :=
θ(z − λ)θ′(0)

θ(z)θ(λ)

denotes the Kronecker sigma function; ℘(z) denotes the Weierstrass P -function.

“Multiplicative” version of the elliptic representation. Let q be parameter. In this
place we will use the same symbol θ(x) to denote the “multiplicative” version of the Riemann
theta function

θ(x) := θ(x; q) = (x; q)∞(q/x; q)∞,

where by definition (x; q)∞ = (x)∞ =
∏
k≥0

(1 − x qk). Let us state some well-known properties

of the Riemann theta function:

• θ(qx; q) = θ(1/x; q) = −x−1θ(x; q),

• functional equation:

x/yθ
(
ux±1

)
θ
(
yv±1

)
+ θ
(
uv±1

)
θ
(
xy±1

)
= θ
(
uy±1

)
θ
(
xv±1

)
,

where by definition θ(xy±1) := θ(xy)θ(xy−1).

• Jacobi triple product identity:

(q; q)∞θ(x; q) =
∑
n∈Z

(−x)nq(
n
2).

One can easily check that after the change of variables

x :=

(
z2

λw

)1/2

, y :=
(w
λ

)1/2
, u :=

(
w

λµ2

)1/2

, v := (wλ)1/2,

the functional equation for the Riemann theta function θ(x) takes the following form

σλ(z) σµ(w) = σλµ(z)σµ(w/z) + σλµ(w)σλ(z/w),

where

σλ(z) :=
θ(z/λ)

θ(z)θ
(
λ−1

)
denotes the (multiplicative) Kronecker sigma function. Therefore, the operators

uij(f) := σλi/λj (zi/zj)sij(f),

where sij denotes the exchange operator which swaps the variables zi and zj , namely sij(zi) = zj ,
sij(zj) = zi, sij(zk) = zk, ∀ k 6= i, j, and sij acts trivially on dynamical parameters λi, namely,
sij(λk) = λk, ∀ k, give rise to a representation of the algebra 3MTn(β = 0, q = 0, ψ).

The 3-term relations among the elements {uij} are consequence (in fact equivalent) to the
famous Jacobi–Riemann 3-term relation of degree 4 among the theta function θ(z), see, e.g., [141,
p. 451, Example 5]. In several cases, see Introduction, relations (A) and (B), identities among
the Riemann theta functions can be rewritten in terms of the elliptic Kronecker sigma functions
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and turn out to be a consequence of certain relations in the algebra 3MTn(β = 0, q = 0, ψ) for
some integer n, and vice versa29.

The algebra 3HTn(β) is the quotient of algebra 3MTn(β, q, ψ) by the two-sided ideal gene-
rated by the elements {ψij}. Therefore the elements {uij} of the algebra 3HTn(β) satisfy the
quantum Yang–Baxter relations uijuikujk = ujkuikuij , i < j < k, and as a consequence, the
multiplicative Dunkl elements

Θi =
1∏

a=i−1

(1 + hua,i)
−1

n∏
a=i+1

(1 + hui,a), i = 1, . . . , n, u0,i = ui,n+1 = 0

generate a commutative subalgebra in the algebra 3HTn(β), see Section 3.1. We emphasize that
the Dunkl elements Θj , j = 1, . . . , n, do not pairwise commute in the algebra 3MTn(β, q,ψ), if
ψij 6= 0 for some i 6= j. One way to construct a multiplicative analog of additive Dunkl elements
θi :=

∑
j 6=i

uij is to add a new set of mutually commuting generators denoted by {ρij , ρij +ρji = 0,

1 ≤ i 6= j ≤ n} subject to the crossing relations

• ρij commutes with β, qkl and ψk,l for all i, j, k, l,

• ρijukl = uklρij if {i, j} ∩ {k, l} = ∅, ρijujk = ujkρik if i, j, k are distinct,

• ρ2
ij − βρij + ψij = ρ2

jk − βρjk + ψjk for all triples 1 ≤ i < j < k ≤ n.

Under these assumptions one can check that elements

Rij := ρij + uij , 1 ≤ i < j ≤ n

satisfy the quantum Yang–Baxter relations

RijRikRjk = RjkRikRij , i < j < k.

In the case of elliptic representation defined above, one can take

ρij := σµ(zi − zj),

where µ ∈ C∗ is a parameter. This solution to the quantum Yang–Baxter equation has been
discovered in [130]. It can be seen as an operator form of the famous (finite-dimensional) solution
to QYBE due to A. Belavin and V. Drinfeld [9]. One can go to one step more and add to the
algebra in question a new set of generators corresponding to the shift operators Ti,q : zi −→ qzi,
cf. [40]. In this case one can define multiplicative Dunkl elements which are closely related with
the elliptic Ruijsenaars–Schneider–Macdonald operators.

3.1.1 Equivariant modified three term relations algebra

Let h = (h2, . . . , hn) be a set of parameters. We define equivariant modified 3-term relations al-
gebra 3EMTn(β, h, q, ψ) to be the extension of the algebra 3TMn(β, q, ψ) by the set of mutually
commuting generators {y1, . . . , yn} subject to the crossing relations

• yiujk = ujkyi if i 6= j, k, yiuij = uijyj + hj , yjuij = uijyi − hj , i < j,

• [yk, qij ] = 0 = [yk, ψij ] for all i, j, k.

29It is commonly believed that any identity between the Riemann theta functions is a consequence of the Jacobi–
Riemann three term relations among the former. However we do not expect that the all hypergeometric type
identities among the Riemann theta functions can be obtained from certain relations in the algebra 3MTn(β = 0,
q = 0, ψ) after applying the elliptic representation of the latter.
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It is clear that the additive Dunkl elements θi = yi +
∑
j 6=i

uij , i = 1, . . . , n, are pair-wise

commute. For simplicity’s sake, we shall restrict our consideration to the case β = 0.

Theorem 3.8 (generalized Pieri’s rule, cf. [72, 74, 117]). Let 1 ≤ m ≤ n, then

e
(h,q)
k

(
θ

(n)
1 , . . . , θ(n)

m

)
:=

∑
A⊂[1,m], |A|=2r
B⊂[1,m]\A,|B|=2s

Hr(A)MB({qij})ek−2r−2s(Θ[1,m]\(A∪B))

=
∑

A⊂[1,m]

YA
∑

B⊂[1,m]\A
|B|=2s

(−1)sMB({ψij})
∑

I⊂[1,n]\A, I∩B=∅
|A|+|B|+|I|=k

∏
(iα,jα)∈I×I

1≤iα≤m<jα≤n, ∀α
i1,...,iI are distinct

uiα,jα ,

where for any subset C ⊂ [1, n] we put YC :=
∏
c∈C

yc, and e`(ΘC) = em({θc}c∈C) stands for the

degree ` elementary symmetric polynomial of the elements {θc}c∈C , ek({θc}c∈C) = δ0,k if k ≤ 0;
if B ⊂ [1, n], |B| = 2s, we set

MB({ψij) =
∏

L⊂B, |L|=s
(i1,...,is)⊂L

(j1,...,js)⊂B\L, iα<jα,jα∈B\L, iα<n ∀α

ψiα,jα ;

in a similar manner one can define MB({qij}); finally we set

Hr(A) = ha2r

( ∑
(a1,...,ar−1)⊂A\{a2r}

r−1∏
j=1

max(aj − 2j + 1, 0) haj

)
.

It is not difficult to show that

Hr(A)
∣∣
ha=1, a∈A = (2r − 1)!!,

as well as the number of different monomials which appear in Hr([1, 2r]) is equal to the Catalan
number Catr. For example,

H3([1, 6]) = h6(h24 + 2h25 + 2h34 + 4h35 + 6h45),

H4([1, 8]) = h8

(
h246 + 2h247 + 2h256 + 4h257 + 6h267 + 2h346 + 4h347 + 4h356

+ 8h357 + 12h367 + 6h456 + 12h457 + 18h467 + 24h567

)
.

Exercise 3.9. Write

Hr([1, 2r]) = ha2r

( ∑
A:=(a1,...,ar−1)⊂[1,2r−1]

aj≥2j

c
(r)
A hA

)
,

where c
(r)
A :=

r−1∏
j=1

max(aj − 2j + 1, 0) and hA :=
∏
a∈A

ha. Show that

∑
A:=(a1,...,ar−1)⊂[1,2r−1]

aj≥2j

(
c

(r)
A

)2
= Er, (3.3)

where Er denotes the r-th Euler number, see, e.g., [131, A000364].

Find representation theoretic interpretation of numbers {c(r)
A } and the identity (3.3).
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Clearly, ∑
A:=(a1,...,ar−1)⊂[1,2r−1]

aj≥2j

c
(r)
A = (2r − 1)!!.

Question 3.10. Does there exist a semisimple algebra A(r), dim(A(r)) = Er such that the all

irreducible representations π
(r)
A of the algebra A(r) are in one-to-one correspondence with the set

P(r) := {A = (a1, . . . , ar−1) ⊂ [1, 2r − 1], aj ≥ 2j, ∀ j} and dim(πA) = c
(r)
A , ∀A ∈ P(r)?

It is worth noting that the Dunkl element θi, 1 ≤ i ≤ n, doesn’t commute either with yj ,
j 6= i or any ψkl. On the other hand one can check easily that [ek(y1, . . . , yn), θi] = 0, ∀ k, i.

3.2 Multiplicative Dunkl elements

Since the elements uij , uik and ujk, i < j < k, satisfy the classical and quantum Yang–Baxter
relations (3.1) and (3.2), one can define a multiplicative analogue denoted by Θi, 1 ≤ i ≤ n, of
the Dunkl elements θi. Namely, to start with, we define elements

hij := hij(t) = 1 + tuij , i 6= j.

We consider hij(t) as an element of the algebra 3̃HTn := 3HTn(β) ⊗ Z[[q±1
ij , t, x, y, . . .]], where

we assume that the all parameters {qij , t, x, y, . . .} are central in the algebra 3̃HTn.

Lemma 3.11.

(1a) hij(x)hij(y) = hij(x+ y + βxy) + qijxy,

(1b) hij(x)hji(y) = hij(x− y) + βy − qijxy if i < j.

It follows from (1b) that hij(t)hji(t) = 1 + βt − t2qij if i < j, and therefore the elements {hij}
are invertible in the algebra 3̃HTn.

(2) hij(x)hjk(y) = hjk(y)hik(x) + hik(y)hij(x)− hik(x+ y + βxy),

(3) multiplicative Yang–Baxter relations:

hijhikhjk = hjkhikhij if i < j < k,

(4) define multiplicative Dunkl elements (in the algebra 3̃HTn) as follows

Θj := Θj(t) =

 1∏
a=j−1

h−1
aj

(j+1∏
a=n

hja

)
, 1 ≤ j ≤ n.

Then the multiplicative Dunkl elements pair-wise commute.

Clearly

n∏
j=1

Θj = 1, Θj = 1 + tθj + t2(· · · ) and ΘI

∏
i/∈I, j∈I
i<j

(
1 + tβ − t2qij

)
∈ 3HTn(β).

Here for a subset I ⊂ [1, n] we use notation ΘI =
∏
a∈I

Θa. Note, that the element ΘI is

a product of (exactly!) k(n− k) terms of a form hiαjα , where k := |I|.
Our main result of this section is a description of relations among the multiplicative Dunkl

elements.
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Theorem 3.12 (A.N. Kirillov and T. Maeno [76]). In the algebra 3HTn(β) the following rela-
tions hold true∑

I⊂[1,n]
|I|=k

ΘI

∏
i/∈I, j∈J
i<j

(
1 + tβ − t2qij

)
=

[
n

k

]
1+tβ

.

Here
[
n
k

]
q

denotes the q-Gaussian polynomial.

Corollary 3.13. Assume that qij 6= 0 for all 1 ≤ i < j ≤ n. Then the all elements {uij} are

invertible and u−1
ij = q−1

ij (uij − β). Now define elements Φi ∈ 3̃HTn as follows

Φi =

{
1∏

a=i−1

u−1
ai

}{
i+1∏
a=n

uia

}
, i = 1, . . . , n.

Then we have

(1) relationship among Θj and Φj:

tn−2j+1Θj

(
t−1
)
|t=0 = (−1)jΦj ,

(2) the elements {Φi, 1 ≤ i ≤ n, } generate a commutative subalgebra in the algebra 3̃HTn,

(3) for each k = 1, . . . , n, the following relation in the algebra 3HTn among the elements {Φi}
holds ∑

I⊂[1,n]
|I|=k

∏
i/∈I, j∈I
i<j

(−qij)ΦI = βk(n−k),

where ΦI :=
∏
a∈I

Φa.

In fact the element Φi admits the following “reduced expression” (i.e., one with the minimal
number of terms involved) which is useful for proofs and applications

Φi =

{−→∏
j∈I

{−−→∏
i∈Ic+
i<j

u−1
ij

}}{−−→∏
j∈Ic+

{−→∏
i∈I
i<j

uij

}}
. (3.4)

Let us explain notations. For any (totally) ordered set I = (i1 < i2 < · · · < ik) we denote by I+

the set I with the opposite order, i.e., I+ = (ik > ik−1 > · · · > i1); if I ⊂ [1, n], then we set

Ic := [1, n]\I. For any (totally) ordered set I we denote by
−→∏
i∈I

the ordered product according

to the order of the set I.
Note that the total number of terms in the r.h.s. of (3.4) is equal to i(n− i).
Finally, from the “reduced expression” (3.4) for the element Φi one can see that

∏
i/∈I,j∈I
i<j

(−qij)ΦI =

{−→∏
j∈I

{−−→∏
i∈Ic+
i<j

(β − uij)

}}{−−→∏
j∈Ic+

{−→∏
i∈I
i<j

uij

}}
:= Φ̃I ∈ 3HTn.

Therefore the identity∑
I⊂[1,n]
|I|=k

Φ̃I = βk(n−k)

is true in the algebra 3HTn for any set of parameters {qij}.
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Comments 3.14. In fact from our proof of Theorem 3.8 we can deduce more general statement,
namely, consider integers m and k such that 1 ≤ k ≤ m ≤ n. Then∑

I⊂[1,m]
|I|=k

ΘI

∏
i∈[1,m]\I, j∈J

i<j

(
1 + tβ − t2qij

)
=

[
m

k

]
1+tβ

+
∑

A⊂[1,n], B⊂[1,n]
|A|=|B|=r

uA,B, (3.5)

where, by definition, for two sets A = (i1, . . . , ir) and B = (j1, . . . , jr) the symbol uA,B is equal

to the (ordered) product
r∏

a=1
uia,ja . Moreover, the elements of the sets A and B have to satisfy

the following conditions:

• for each a = 1, . . . , r one has 1 ≤ ia ≤ m < ja ≤ n, and k ≤ r ≤ k(n− k).

Even more, if r = k, then sets A and B have to satisfy the following additional conditions:

• B = (j1 ≤ j2 ≤ · · · ≤ jk), and the elements of the set A are pair-wise distinct.

In the case β = 0 and r = k, i.e., in the case of additive (truncated) Dunkl elements, the
above statement, also known as the quantum Pieri formula, has been stated as conjecture in [45],
and has been proved later in [117].

Corollary 3.15 ([76]). In the case when β = 0 and qij = qiδj−i,1, the algebra over Z[q1, . . . , qn−1]
generated by the multiplicative Dunkl elements {Θi and Θ−1

i , 1 ≤ i ≤ n} is canonically isomor-
phic to the quantum K-theory of the complete flag variety F ln of type An−1.

It is still an open problem to describe explicitly the set of monomials {uA,B} which appear in
the r.h.s. of (3.5) when r > k.

3.3 Truncated Gaudin operators

Let {pij , 1 ≤ i 6= j ≤ n} be a set of mutually commuting parameters. We assume that parame-
ters {pij}1≤i<j≤n are invertible and satisfy the Arnold relations

1

pik
=

1

pij
+

1

pjk
, i < j, k.

For example one can take pij = (zi − zj)−1, where z = (z1, . . . , zn) ∈ (C\0)n.

Definition 3.16. Truncated (rational) Gaudin operator corresponding to the set of parame-
ters {pij} is defined to be

Gi =
∑
j 6=i

p−1
ij sij , 1 ≤ i ≤ n,

where sij denotes the exchange operator which switches variables xi and xj , and fixes parame-
ters {pij}.

We consider the Gaudin operator Gi as an element of the group ring Z[{p±1
ij }][Sn], call this

element Gi ∈ Z[{p±1
ij }][Sn], i = 1, . . . , n, by Gaudin element and denoted it by θ

(n)
i .

It is easy to see that the elements uij := p−1
ij sij , 1 ≤ i 6= j ≤ n, define a representation of the

algebra 3HTn(β) with parameters β = 0 and qij = u2
ij = p2

ij .
Therefore one can consider the (truncated) Gaudin elements as a special case of the (trun-

cated) Dunkl elements. Now one can rewrite the relations among the Dunkl elements, as well
as the quantum Pieri formula [45, 117], in terms of the Gaudin elements.
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The key observation which allows to rewrite the quantum Pieri formula as a certain relation
among the Gaudin elements, is the following one: parameters

{
p−1
ij

}
satisfy the Plücker relations

1

pikpjl
=

1

pijpkl
+

1

pilpjk
if i < j < k < l.

To describe relations among the Gaudin elements θ
(n)
i , i = 1, . . . , n, we need a bit of notation.

Let {pij} be a set of invertible parameters as before, ia < ja, a = 1, . . . , r. Define polynomials
in the variables h = (h1, . . . , hn)

G
(n)
m,k,r(h, {pij}) =

∑
I⊂[1,n−1]
|I|=r

1∏
i∈I

pin

∑
J⊂[1,n]

|I|+m=|J|+k

(
n− |I ∪ J |
n−m− |I|

)
h̃J , (3.6)

where

h̃J =
∑

K⊂J, L⊂J
|K|=|L|, K

⋂
L=∅

∏
j∈J\(K∪L)

hj
∏

ka∈K, la∈L
p2
ka,la ,

and summation runs over subsets K = {k1 < k2 < · · · < kr} and L = {l1 < l2 < · · · < lr} ⊂ J},
such that ka < la, a = 1, . . . , r.

Theorem 3.17 (relations among the Gaudin elements [72], cf. [108]).

(1) Under the assumption that elements {pij , 1 ≤ i < j ≤ n} are invertible, mutually commute
and satisfy the Arnold relations, one has

G
(n)
m,k,r

(
θ

(n)
1 , . . . , θ(n)

n , {pij}
)

= 0 if m > k,

G
(n)
0,0,r

(
θ

(n)
1 , . . . , θ(n)

n , {pij}
)

= er(d2, . . . , dn), (3.7)

where d2, . . . , dn denote the Jucys–Murphy elements in the group ring Z[Sn] of the sym-
metric group Sn, see Comments 3.4 for a definition of the Jucys–Murphy elements.

(2) Let J = {j1 < j2 < · · · < jr} ⊂ [1, n], define matrix MJ := (ma,b)1≤a,b≤r, where

ma,b := ma,b(h; {pij}) =


hja if a = b,

pja,jb if a < b,

−pjb,ja if a > b.

Then

h̃J = DET |MJ |.

Examples 3.18.

(1) Let us display the polynomials G
(n)
m,k,r(h, {pij}) a few cases

G
(n)
m,0,r(h, {pij}) =

∑
I⊂[1,n−1]
|I|=r

∏
i∈I

p−1
in

( ∑
J⊂[1,n]

|J|=m+r, I⊂J

h̃J

)
,

G
(n)
m,k,0(h, {pij}) =

(
n−m+ k

k

)
eqm−k(h1, . . . , hn),

G
(n)
m,1,r(h, {pij}) =

∑
I⊂[1,n−1]
|I|=r

∏
i∈I

p−1
in

( ∑
J⊂[1,n]

I⊂J, |J|=m+r

(n−m− r + 1)h̃J +
∑
J⊂[1,n]

|J|=m+r−1, |I∪J|=m+r

h̃J

)
.
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(2) Let us list the relations (3.7) among the Gaudin elements in the case n = 3. First of all,
the Gaudin elements satisfy the “standard” relations among the Dunkl elements θ1 +θ2 +θ3 = 0,
θ1θ2 + θ1θ3 + θ2θ3 + q12 + q13 + q23 = 0, θ1θ2θ3 + q12θ3 + q13θ2 + q23θ1 = 0. Moreover, we have
additional relations which are specific for the Gaudin elements

G
(3)
2,0,1 =

1

p13
(θ1θ2 + θ1θ3 + q12 + q13) +

1

p23
(θ1θ2 + θ2θ3 + q12 + q23) = 0,

the elements p23θ1 + p13θ2 and θ1θ2 are central.

It is well-known that the elementary symmetric polynomials er(d2, . . . , dn) := Cr, r =
1, . . . , n − 1, generate the center of the group ring Z[p±1

ij ][Sn], whereas the Gaudin elements

{θ(n)
i , i = 1, . . . , n}, generate a maximal commutative subalgebra B(pij), the so-called Bethe

subalgebra, in Z[p±1
ij ][Sn]. It is well-known, see, e.g., [108], that B(pij) =

⊕
λ`n Bλ(pij), where

Bλ(pij) is the λ-isotypic component of B(pij). On each λ-isotypic component the value of the
central element Ck is the explicitly known constant ck(λ).

It follows from [108] that the relations (3.7) together with relations

G0,0,r

(
θ

(n)
1 , . . . , θ(n)

n , {pij}
)

= cr(λ)

are the defining relations for the algebra Bλ(pij).
Let us remark that in the definition of the Gaudin elements we can use any set of mutually

commuting, invertible elements {pij} which satisfies the Arnold conditions. For example, we
can take

pij :=
qj−2(1− q)

1− qj−i
, 1 ≤ i < j ≤ n.

It is not difficult to see that in this case

lim
q→0

θ
(n)
J

p1j
= −dj = −

j−1∑
a=1

saj ,

where as before, dj denotes the Jucys–Murphy element in the group ring Z[Sn] of the symmetric
group Sn. Basically from relations (3.7) one can deduce the relations among the Jucys–Murphy

elements d2, . . . , dn after plugging in (3.6) the values pij := qj−2(1−q)
1−qj−i and passing to the limit

q → 0. However the real computations are rather involved.
Finally we note that the multiplicative Dunkl/Gaudin elements {Θi, 1, . . . , n} also generate

a maximal commutative subalgebra in the group ring Z[p±1
ij ][Sn]. Some relations among the

elements {Θl} follow from Theorem 3.12, but we don’t know an analogue of relations (3.7) for
the multiplicative Gaudin elements, but see [108].

Exercises 3.19. Let A = (ai,j) be a 2m×2m skew-symmetric matrix. The Pfaffian and Hafnian
of A are defined correspondingly by the equations

Pf(A) =
1

2mm!

∑
σ∈S2m

sgn(σ)

m∏
i=1

aσ(2i−1),σ(2i),

Hf(A) =
1

2mm!

∑
σ∈S2m

m∏
i=1

aσ(2i−1),σ(2i),

where S2m is the symmetric group and sgn(σ) is the signature of a permutation σ ∈ S2m.30

30See, e.g., https://en.wikipedia.org/wiki/Pfaffian.

https://en.wikipedia.org/wiki/Pfaffian
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Now let n be a positive integer, and {pij , 1 ≤ i 6= j ≤ n, pij + pji = 0} be a set of skew-
symmetric, invertible and mutually commuting elements. We set pii = 0 for all i, and q :={
p2
ij

}
1≤i<j≤n.

Now let us assume that the elements {pij}1≤i<j≤n satisfy the Plüker relations for the elements{
p−1
ij

}
1≤i<j≤n, namely,

1

pikpjl
=

1

pijpkl
+

1

pilpjk
for all 1 ≤ i < j < k < l ≤ n.

(a) Let n be an even positive integer. Let us define An(pij) := (pij)1≤i,j≤n to be the n × n
skew-symmetric matrix corresponding to the family {pij}1≤i<j≤n. Show that

DET |An(pij)| = Hf
(
An
(
p2
ij

))
.

(b) Let n be a positive integer, and z1, . . . , zn be a set of mutually commuting variables, define
polynomials Hi(z1, . . . , zn | {pij}), i = 1, . . . , n from the equation

DET | diag(t+ z1, . . . , t+ zn) +An(pij)| = tn +
n∑
i=1

Hi(z1, . . . , zn | {pij})tn−i,

where diag(t+ z1, . . . , t+ zn) means the diagonal matrix.

Show that for k = 1, . . . , n the polynomialHk(z1, . . . , zn | {pij}) is equal to the multiparameter

quantum elementary polynomial e
(q)
k (z1, . . . , zn), see, e.g., [45], or Theorem 2.7.

For example, take n = 4, then

DET |A(pij)| = (p12p34 − p13p24 + p14p23)2 = p2
12p

2
34 + p2

13p
2
24 + p2

14p
2
23

− 2p12p13p23p14p24p34

(
1

p12p34
− 1

p13p24
+

1

p14p23

)
= p2

12p
2
34 + p2

13p
2
24 + p2

14p
2
23 = Hf

(
A4

({
p2
ij

}))
.

The last equality follows from the Plücker relations for parameters {p−1
ij }.

On the other hand, if one assumes that a set of skew symmetric parameters {rij}1≤i<j≤n,
rij + rji = 0, satisfies the “standard” Plücker relations, namely

rikrjl = rijrkl + rilrjk, i < j < k < l,

then DET |An(rij)| = 0.

3.4 Shifted Dunkl elements di and Di

As it was stated in Corollary 3.15, the truncated additive and multiplicative Dunkl elements
in the algebra 3HTn(0) generate over the ring of polynomials Z[q1, . . . , qn−1] correspondingly
the quantum cohomology and quantum K-theory rings of the full flag variety F ln. In order
to describe the corresponding equivariant theories, we will introduce the shifted additive and
multiplicative Dunkl elements. To start with we need at first to introduce an extension of the
algebra 3HTn(β).

Let {z1, . . . , zn} be a set of mutually commuting elements and {β,h = (h2, . . . , hn), t, qij = qji,
1 ≤ i, j ≤ n} be a set of parameters. We set hn := 0.

Definition 3.20 (cf. Definition 3.1). Define algebra 3THn(β,h) to be the semi-direct product
of the algebra 3THn(β) and the ring of polynomials Z[h, t][z1, . . . , zn] with respect to the crossing
relations
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(1) ziukl = uklzi if i /∈ {k, l},
(2) ziuij = uijzj + βzi + hj , zjuij = uijzi − βzi − hj if 1 ≤ i < j < k ≤ n.

Now we set as before hij := hij(t) = 1 + tuij .

Definition 3.21.

• Define shifted additive Dunkl elements to be

di = zi +
∑
i<j

uij −
∑
i>j

uji.

• Define shifted multiplicative Dunkl elements to be

Di =

(
1∏

a=i−1

h−1
ai

)
(1 + zi)

(
i+1∏
a=n

hia

)
.

Lemma 3.22.

[di, dj ] = 0, [Di,Dj ] = 0 for all i, j.

Now we stated an analogue of Theorem 3.8 for shifted multiplicative Dunkl elements.

As a preliminary step, for any subset I ⊂ [1, n] let us set DI =
∏
a∈I

Da. It is clear that

DI

∏
i/∈I, j∈I
i<j

(
1 + tβ − t2qij

)
∈ 3HTn(β,h).

Theorem 3.23. In the algebra 3HTn(β,h) the following relations hold true∑
I⊂[1,n]
|I|=k

DI

∏
i/∈I,j∈J
i<j

(
1 + tβ − t2qij

)

=
∑
I⊂[1,n]

I={1≤i1<...<ik≤n}

k∏
a=1

(1 + tβ)n−k−ia+a

(
zia(1 + tβ)ia−a + 1 + hia

(1 + tβ)ia−a − 1

β

)
.

In particular, if β = 0, we will have

Corollary 3.24. In the algebra 3HTn(0,h) the following relations hold

∑
I⊂[1,n]
|I|=k

DI

∏
i/∈I,j∈J
i<j

(
1− t2qij

)
=

∑
I⊂[1,n]

I={1≤i1,...,ik≤n}

k∏
a=1

(
zia + 1 + thia(ia − a)

)
. (3.8)

Conjecture 3.25. If h1 = · · · = hn−1 = 1, t = 1 and qij = δi,j+1, then the subalgebra generated

by multiplicative Dunkl elements Di, i = 1, . . . , n, in the algebra 3HTn(0,h = 1) (and t = 1), is
isomorphic to the equivariant quantum K-theory of the complete flag variety F ln.

Our proof is based on induction on k and the following relations in the algebra 3HTn(β,h)

hji · (1 + xj) = hj + (1 + β)xj − xi + (1 + xi)hji, hjihjk = hjkhki + hikhji − 1− β,
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if i < j < k, and we set hij := hij(1). These relations allow to reduce the left hand side of the
relations listed in Theorem 3.23 to the case when zi = 0, hi = 0, ∀ i. Under these assumptions
one needs to proof the following relations in the algebra 3HTn(β), see Theorem 3.12,

∑
I⊂[1,n]
|I|=k

DI

∏
i/∈I, j∈J
i<j

(
1 + tβ − t2qij

)
=

[
n

k

]
1+tβ

.

In the case β = 0 the identity (3.8) has been proved in [76].

One of the main steps in our proof of Theorem 3.8 is the following explicit formula for the
elements DI .

Lemma 3.26. One has

D̃I := DI

∏
i/∈I, j∈I
i<j

(
1 + tβ − t2qij

)
=

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

) ↗∏
a∈I

(
(1 + za)

↘∏
b/∈I
a<b

hab

)
.

Note that if a < b, then hba = 1 + βt− uab. Here we have used the symbol

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

)

to denote the following product. At first, for a given element b ∈ I let us define the set

I(b) := {a ∈ [1, n]\I, a < b} := (a
(b)
1 < · · · < a

(b)
p ) for some p (depending on b). If I = (b1 <

b2 < · · · < bk), i.e., bi = a
(b)
i , then we set

↗∏
b∈I

( ↘∏
a/∈I
a<b

hba

)
=

k∏
j=1

(
ubj ,asubj ,as−1 · · ·ubj ,a1

)
.

For example, let us take n = 6 and I = (1, 3, 5), then

D̃I = h32h54h52(1 + z1)h16h14h12(1 + z3)h36h34(1 + z5)h56.

Let us stress that the element D̃I ∈ 3HTn(β) is a linear combination of square free monomials
and therefore, a computation of the left hand side of the equality stated in Theorem 3.17 can be
performed in the “classical case” that is in the case qij = 0, ∀ i < j. This case corresponds to the
computation of the classical equivariant cohomology of the type An−1 complete flag variety F ln
if h = 1.

A proof of the β = 0 case given in [76, Theorem 1], can be immediately extended to the case
β 6= 0.

Exercises 3.27.

(1) Show that

∑
1≤i1<···<ik≤n

k∏
a=1

(1 + β)n−k−ia+a =

[
n

k

]
1+tβ

.
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(2) (β, h)-Stirling polynomials of the second type. Define polynomials Sn,k(β, h) as follows

Sn,k(β, h) =
∑
I⊂[1,n]

I={1≤i1,...,ik≤n}

k∏
a=1

(
βn−k−ia+a + h

βn−k−ia+a − 1

β − 1

)
.

Show that

Sn,k(1, 1) =

{
n+ 1

k + 1

}
, Sn,k(β, 0) =

[
n

k

]
β

.

4 Algebra 3T (0)
n (Γ) and Tutte polynomial of graphs

4.1 Graph and nil-graph subalgebras, and partial flag varieties

Let’s consider the set Rn := {(i, j) ∈ Z× Z | 1 ≤ i < j ≤ n} as the set of edges of the complete
graph Kn on n labeled vertices v1, . . . , vn. Any subset S ⊂ Rn is the set of edges of a unique
subgraph Γ := ΓS of the complete graph Kn.

Definition 4.1 (graph and nil-graph subalgebras). The graph subalgebra 3Tn(Γ) (resp. nil-

graph subalgebra 3T
(0)
n (Γ)) corresponding to a subgraph Γ ⊂ Kn of the complete graph Kn,

is defined to be the subalgebra in the algebra 3Tn (resp. 3T
(0)
n ) generated by the elements

{uij | (i, j) ∈ Γ}.

In subsequent Sections 4.1.1 and 4.1.2 we will study some examples of graph subalgebras
corresponding to the complete multipartite graphs, cycle graphs and linear graphs.

4.1.1 Nil-Coxeter and affine nil-Coxeter subalgebras in 3T (0)
n

Our first example is concerned with the case when the graph Γ corresponds to either the set
S := {(i, i+ 1) | i = 1, . . . , n− 1} of simple roots of type An−1, or the set Saff := S ∪ {(1, n)} of

affine simple roots of type A
(1)
n−1.

Definition 4.2.

(a) Denote by ÑCn subalgebra in the algebra 3T
(0)
n generated by the elements ui,i+1, 1 ≤ i ≤

n− 1.

(b) Denote by ÃNCn subalgebra in the algebra 3T
(0)
n generated by the elements ui,i+1, 1 ≤

i ≤ n− 1 and −u1,n.

Theorem 4.3.

(A) The subalgebra ÑCn is canonically isomorphic to the nil-Coxeter algebra NCn. In partic-

ular, Hilb(ÑCn, t) = [n]t! (cf. [8]).

(B) The subalgebra ÃNCn has finite dimension and its Hilbert polynomial is equal to

Hilb(ÃNCn, t) = [n]t
∏

1≤j≤n−1

[j(n− j)]t = [n]t!
∏

1≤j≤n−1

[j]tn−j .

In particular, dim ÃNCn = (n− 1)!n!, degt Hilb(ÃNCn, t) =
(
n+1

3

)
.



On Some Quadratic Algebras 53

(C) The kernel of the map π : ÃNCn −→ ÑCn, π(u1,n) = 0, π(ui,i+1) = ui,i+1, 1 ≤ i ≤ n− 1,
is generated by the following elements:

f (k)
n =

1∏
j=k

n−k+j−1∏
a=j

ua,a+1, 1 ≤ k ≤ n− 1.

Note that deg f
(k)
n = k(n− k).

The statement (C) of Theorem 4.3 means that the element f
(k)
n which does not contain the

generator u1,n, can be written as a linear combination of degree k(n − k) monomials in the

algebra ÃNCn, each contains the generator u1,n at least once. By this means we obtain a set

of all extra relations (i.e., additional to those in the algebra ÑCn) in the algebra ÃNCn. More-
over, each monomial M in all linear combinations mentioned above, appears with coefficient
(−1)#|u1,n∈M |+1. For example,

f
(1)
4 := u1,2u2,3u3,4 = u2,3u3,4u1,4 + u3,4u1,4u1,2 + u1,4u1,2u2,3,

f
(2)
4 := u2,3u3,4u1,2u2,3 = u1,2u3,4u2,3u1,4 + u1,2u2,3u1,4u1,2 + u2,3u1,4u1,2u3,4

+ u3,4u2,3u1,4u3,4 − u1,4u1,2u3,4u1,4.

Worthy of mention is that dim(ÃNCn) = (n− 1)!n! is equal to the number of (directed) Hamil-
tonian cycles in the complete bipartite graph Kn,n, see, e.g., [131, A010790] for additional
information.

Remark 4.4. More generally, let (W,S) be a finite crystallographic Coxeter group of rank l
with the set of exponents 1 = m1 ≤ m2 ≤ · · · ≤ ml.

Let BW be the corresponding Nichols–Woronowicz algebra, see, e.g., [8]. Follow [8], denote

by ÑCW the subalgebra in BW generated by the elements [αs] ∈ BW corresponding to simple

roots s ∈ S. Denote by ÃNWCW the subalgebra in BW generated by ÑCW and the element [aθ],
where [aθ] stands for the element in BW corresponding to the highest root θ for W . In other

words, ÃNWCW is the image of the algebra ÃNCW under the natural map BE(W ) −→ BW ,

see, e.g., [8, 73]. It follows from [8, Section 6], that Hilb(ÑCW , t) =
l∏

i=1
[mi + 1]t.

Conjecture 4.5 (Yu. Bazlov and A.N. Kirillov, 2002).

Hilb
(
ÃNWCW , t

)
=

l∏
i=1

1− tmi+1

1− tmi

l∏
i=1

1− tai
1− t

= Paff(W, t)
l∏

i=1

(1− tai),

where

Paff(W, t) :=
∑

w∈Waff

tl(w) =

l∏
i=1

(1 + t+ · · ·+ tmi)

1− tmi

denotes the Poincaré polynomial corresponding to the affine Weyl group Waff , see [17, p. 245];
ai := (2ρ, α∨i ), 1 ≤ i ≤ l, denote the coefficients of the decomposition of the sum of positive
roots 2ρ in terms of the simple roots αi.

In particular,

dim ÃNWCW = |W |

l∏
i=1

ai

l∏
i=1

mi

and deg Hilb
(
ÃNWCW , t

)
=

l∑
1=1

ai.
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It is well-known that the product
l∏

i=1

1−tai
1−tmi is a symmetric (and unimodal?) polynomial with

non-negative integer coefficients.

Example 4.6.

(a) Hilb
(
ÃNC3, t

)
= [2]2t [3]t, Hilb

(
ÃNC4, t

)
= [3]2t [4]2t ,

Hilb
(
ÃNC5, t

)
= [4]2t [5]t[6]2t ,

(b) Hilb(BE2, t) = (1 + t)4
(
1 + t2

)2
,

Hilb(ÃNCB2 , t) = (1 + t)3
(
1 + t2

)2
= Paff(B2, t)

(
1− t3

)(
1− t4

)
.

(c) Hilb
(
ÃNCB3 , t

)
= (1 + t)3

(
1 + t2

)2(
1 + t3

)(
1 + t4

)(
1 + t+ t2

)(
1 + t3 + t6

)
= Paff(B3, t)

(
1− t5

)(
1− t8

)(
1− t9

)
.

Indeed, mB3 = (1, 3, 5), aB3 = (5, 8, 9).

Definition 4.7. Let 〈ÃNCn〉 denote the two-sided ideal in 3T
(0)
n generated by the elements

{ui,i+1}, 1 ≤ i ≤ n− 1, and u1,n. Denote by Un the quotient Un = 3T 0
n/〈ÃNCn〉.

Proposition 4.8.

U4
∼= 〈u1,3, u2,4〉 ∼= Z2 × Z2, U5

∼= 〈u1,4, u2,4, u2,5, u3,5, u1,3〉 ∼= ÃNC5.

In particular, Hilb
(
3T

(0)
5 , t

)
=
[
Hilb(ÃNC5, t)

]2
.

4.1.2 Parabolic 3-term relations algebras and partial f lag varieties

In fact one can construct an analogue of the algebra 3HTn and a commutative subalgebra inside
it, for any graph Γ = (V,E) on n vertices, possibly with loops and multiple edges [72]. We

denote this algebra by 3Tn(Γ), and denote by 3T
(0)
n (Γ) its nil-quotient, which may be considered

as a “classical limit of the algebra 3Tn(Γ)”.

The case of the complete graph Γ = Kn reproduces the results of the present paper and those
of [72], i.e., the case of the full flag variety F ln. The case of the complete multipartite graph
Γ = Kn1,...,nr reproduces the analogue of results stated in the present paper for the full flag
variety F ln, to the case of the partial flag variety Fn1,...,nr , see [72] for details.

We expect that in the case of the complete graph with all edges having the same multiplic-

ity m, denoted by either Γ = K
(m)
n , or mKn in the present paper, the commutative subalgebra

generated by the Dunkl elements in the algebra 3T
(0)
n (Γ) is related to the algebra of coinvariants

of the diagonal action of the symmetric group Sn on the ring of polynomials Q
[
X

(1)
n , . . . , X

(m)
n

]
,

where we set X
(i)
n =

{
x

(i)
1 , . . . , x

(i)
n

}
.

Example 4.9. Take Γ = K2,2. The algebra 3T (0)(Γ) is generated by four elements {a = u13,
b = u14, c = u23, d = u24} subject to the following set of (defining) relations

• a2 = b2 = c2 = d2 = 0, cb = bc, ad = da,

• aba+ bab = 0 = aca+ cac, bdb+ dbd = 0 = cdc+ dcd,
abd− bdc− cab+ dca = 0 = acd− bac− cdb+ dba,

• abca+ adbc+ badb+ bcad+ cadc+ dbcd = 0.
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It is not difficult to see that31

Hilb
(
3T (0)(K2,2), t

)
= [3]2t [4]2t , Hilb

(
3T (0)(K2,2)ab, t

)
= (1, 4, 6, 3).

Here for any algebra A we denote by Aab its abelianization32.

The commutative subalgebra in 3T (0)(K2,2), which corresponds to the intersection 3T (0)(K2,2)
∩Z[θ1, θ2, θ3, θ4], is generated by the elements c1 := θ1 + θ2 = (a + b + c + d) and c2 := θ1θ2 =
(ac+ ca+ bd+db+ad+ bc). The elements c1 and c2 commute and satisfy the following relations

c3
1 − 2c1c2 = 0, c2

2 − c2
1c2 = 0.

The ring of polynomials Z[c1, c2] is isomorphic to the cohomology ring H∗(Gr(2, 4),Z) of the
Grassmannian variety Gr(2, 4).

To continue exposition, let us take m ≤ n, and consider the complete multipartite graph
Kn,m which corresponds to the Grassmannian variety Gr(n,m+ n). One can show

Hilb
(
3T

(0)
n+m(Kn,m)ab, t

)
=

n−1∑
k=0

(−1)k(1 + (n− k)t)m−1
n−k∏
j=1

(1 + jt)

{
n

n− k

}
= tn+m−1Tutte

(
Kn,m, 1 + t−1, 0

)
,

where
{
n
k

}
:= S(n, k) denotes the Stirling numbers of the second kind, that is the number of

ways to partition a set of n labeled objects into k nonempty unlabeled subsets, and for any
graph Γ, Tutte(Γ, x, y) denotes the Tutte polynomial33 corresponding to graph Γ.

It is well-known that the Stirling numbers S(n, k) satisfy the following identities

n−1∑
k=0

(−1)k S(n, n− k)
n−k∏
j=1

(1 + jt) = (1 + t)n,
∑
n≥k

{
n

k

}
xn

n!
=

(ex − 1)k

k!
.

Let us observe that

dim
(
3T (0)(Kn,n)ab

)
=

n−1∑
k=0

(−1)k(n+ 1− k)n−1(n+ 1− k)!

{
n

n− k

}

=

n+1∑
k=1

((k − 1)!)2

{
n+ 1

k

}2

,

see, e.g., [131, A048163].
Moreover, if m ≥ 0, then∑

n≥1

dim
(
3T (0)(Kn,n+m)ab

)
tn =

∑
k≥1

kk+m−1(k − 1)!tk

k−1∏
j=1

(1 + kjt)

,

∑
n≥1

Hilb
(
3T (0)(Kn,m)ab, t

)
zn−1 =

∑
k≥0

(1 + kt)m−1
k∏
j=1

z(1 + jt)

1 + jz
.

31Hereinafter we shell use notation (a0, a1, . . . , ak)t := a0 + a1t+ · · ·+ akt
k.

32See http://groupprops.subwiki.org/wiki/Abelianization.
33See, e.g., https://en.wikipedia.org/wiki/Tutte_polynomial. It is well-known that

Tutte(Γ, 1 + t, 0) = (−1)|Γ|t−κ(Γ)Chrom(Γ,−t),

where for any graph Γ, |Γ| is equal to the number of vertices and κ(Γ) is equal to the number of connected
components of Γ. Finally Chrom(Γ, t) denotes the chromatic polynomial corresponding to graph Γ, see, e.g., [140],
or https://en.wikipedia.org/wiki/Chromatic_polynomial.

http://groupprops.subwiki.org/wiki/Abelianization
https://en.wikipedia.org/wiki/Tutte_polynomial
https://en.wikipedia.org/wiki/Chromatic_polynomial
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Comments 4.10 (poly-Bernoulli numbers). Based on listed above identities involving the Stir-
ling numbers S(n, k), one can prove the following combinatorial formula

dim
(
3T (0)(Kn,m)ab

)
=

min(n,m)∑
j=0

(j!)2

{
n+ 1

j + 1

}{
m+ 1

j + 1

}
= B(−m)

n = B(−n)
m , (4.1)

where B
(k)
n denotes the poly-Bernoulli number introduced by M. Kaneko [64].

On the other hand, it is well-known, see, e.g., footnote 33, that for any graph Γ the spe-
cialization Tutte(Γ; 2, 0) of the Tutte polynomial associated with graph Γ, counts the number

of acyclic orientations of Γ. Therefore, the poly-Bernulli number B
(−m)
n counts the number of

acyclic orientatations of the complete bipartite graph Kn,m.
For example, dim

(
3T (0)(K3,3)ab

)
= 230 = 1 + 72 + (2!)262 + (3!)2, cf. Example 4.16(3).

For the reader’s convenient, we recall below a definition of poly-Bernoulli numbers. To start
with, let k be an integer, consider the formal power series

Lik(z) :=
∞∑
n=1

zn

nk
.

If k ≥ 1, Lik(z) is the k-th polylogarithm, and if k ≤ 0, then Lik(z) is a rational function. Clearly
Li1(z) = − ln(1− z). Now define poly-Bernoulli numbers through the generating function

Lik(1− e−z)
1− e−z

=

∞∑
n=0

B(k)
n

zn

n!
.

Note that a combinatorial formula for the numbers B
(−k)
n stated in (4.1) is a consequence of the

following identity [64]

∞∑
n=0

∞∑
k=0

B(−k)
n

xn

n!

zk

k!
=

ex+z

1− (1− ex)(1− ez)
.

Note that the poly-Bernoulli numbers B
(−m)
n (= B

(−n)
m ) have the following combinatorial inter-

pretation34, namely, the number B
(−m)
n , and therefore the dimension of the algebra 3T (0)(Kn,m)

is equal to

B(−m)
n = T (n− 1,m) + T (n,m− 1),

where [26]

T (n,m) :=

min(n,m)∑
j=0

j!(j + 1)!

{
n+ 1

j + 1

}{
m+ 1

j + 1

}
is equal to the number of permutations w ∈ Sn+m having the excedance set {1, 2, . . . ,m}.

Exercise 4.11. Show that polynomial Hilb(3T (0)(Kn,m), t) has degree n+m− 1, and

Coefftn+m−1

(
Hilb

(
3T (0)(Kn,m), t

))
= T (n− 1,m− 1).

Problem 4.12. To find a bijective proof of the identity (4.1).

34See for example, [131, A136126], [131, A099594] or [26, Theorem 3.1], and the literature quoted therein.
Recall, that the excedance set of a permutation π ∈ Sn is the set of indices i, 1 ≤ i ≤ n, such that π(i) > i.
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Final remark, the explicit expression for the chromatic polynomial of the complete tripartite
graph Kn,n,n can be found in [131, A212220].

Now let θ
(n+m)
i =

∑
j 6=i

uij , 1 ≤ i ≤ n+m, be the Dunkl elements in the algebra 3T (0)(Kn+m),

define the following elements the in the algebra 3T (0)(Kn,m)

ck := ek
(
θ

(n+m)
1 , . . . , θ(n+m)

n

)
, 1 ≤ k ≤ n,

cr := er
(
θ

(n+m)
n+1 , . . . , θ

(n+m)
n+m

)
, 1 ≤ r ≤ m.

Clearly,(
1 +

n∑
k=1

ckt
k

)(
1 +

m∑
r=1

crt
r

)
=

n+m∏
j=1

(
1 + θ

(n+m)
j

)
= 1.

Moreover, there exist the natural isomorphisms of algebras

H∗(Gr(n, n+m),Z) ∼= Z[c1, . . . , cn]

/〈(
1 +

n∑
k=1

ckt
k

)(
1 +

m∑
r=1

crt
r

)
− 1

〉
,

QH∗(Gr(n, n+m)) ∼= Z[q][c1, . . . , cn]

/〈(
1 +

n∑
k=1

ckt
k

)(
1 +

m∑
r=1

crt
r

)
− 1− qtn+m

〉
.

Let us recall, see Section 2, footnote 26, that for a commutative ring R and a polynomial

p(t) =
s∑
j=1

gjt
j ∈ R[t], we denote by 〈p(t)〉 the ideal in the ring R generated by the coefficients

g1, . . . , gs.
These examples are illustrative of the similar results valid for the general complete multipartite

graphs Kn1,...,nr , i.e., for the partial flag varieties [72].
To state our results for partial flag varieties we need a bit of notation. Let N := n1 + · · ·+nr,

nj > 0, ∀ j, be a composition of sizeN . We setNj := n1+· · ·+nj , j = 1, . . . , r, andN0 = 0. Now,

consider the commutative subalgebra in the algebra 3T
(0)
N (KN ) generated by the set of Dunkl

elements
{
θ

(N)
1 , . . . , θ

(N)
N

}
, and define elements

{
c

(j,N)
kj

∈ 3T
(0)
N (Kn1,...,nr)

}
to be the degree kj

elementary symmetric polynomials of the Dunkl elements θ
(N)
Nj−1+1, . . . , θ

(N)
Nj

, namely,

c
(j)
k := c

(j,N)
kj

= ek
(
θ

(N)
Nj−1+1, . . . , θ

(N)
Nj

)
, 1 ≤ kj ≤ nj , j = 1, . . . , r,

c
(j)
0 = 1, ∀ j.

Clearly

r∏
j=1

( nj∑
a=0

c(j)
a ta

)
=

N∏
j=1

(
1 + θ

(N)
j tj

)
= 1.

Theorem 4.13. The commutative subalgebra generated by the elements {c(j)
kj
, 1 ≤ kj ≤ nj , 1 ≤

j ≤ r−1}, in the algebra 3T
(0)
N (Kn1,...,nr) is isomorphic to the cohomology ring H∗(F ln1,...,nr ,Z)

of the partial flag variety F ln1,...,nr .

In other words, we treat the Dunkl elements
{
θ

(N)
Nj−1+a, 1 ≤ a ≤ nj

}
, j = 1, . . . , r, as the

Chern roots of the vector bundles {ξj := Fj/Fj−1}, j = 1, . . . , r, over the partial flag variety
F ln1,...,nr .
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Recall that a point F of the partial flag variety F ln1,...,nr , n1 + · · · + nr = N , is a sequence
of embedded subspaces

F =
{

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr = CN
}

such that

dim(Fi/Fi−1) = ni, i = 1, . . . , r.

By definition, the fiber of the vector bundle ξi over a point F ∈ F ln1,...,nr is the ni-dimensional
vector space Fi/Fi−1.

To conclude, let us describe the set of (defining) relations among the elements
{
c

(j)
a

}
, 1 ≤

a ≤ nj , 1 ≤ j ≤ r − 1. To proceed, let us introduce the set of variables
{
x

(j)
a | 1 ≤ a ≤ nj , 1 ≤

j ≤ r − 1
}

, and define polynomials b0 = 1, bk := bk
({
x

(j)
a

})
, k ≥ 1 by the use of generating

function

1
r−1∏
j=1

nj∏
a=1

(
1 + x

(j)
a

)
ta

=
∑
k≥0

bkt
k.

Now let us introduce matrix Mm

({
x

(j)
a

})
:= (mij), where

mij :=


bi+j−1 if j > i,

1 if j = i− 1, i ≥ 2,

0 if j < i− 1.

Claim 4.14. detMm

({
c

(i)
a

})
= 0, Nr−1 < m ≤ N . Moreover,

H∗(F ln1,...,nr ,Z) ∼= Z[{xja}]/〈MNr−1+1, . . . ,MN 〉.

A meaning of the algebra 3T
(0)
n (Γ) and the corresponding commutative subalgebra inside it

for a general graph Γ is still unclear.

Conjecture 4.15. 35

(1) Let Γ = (V,E) be a connected subgraph of the complete graph Kn on n vertices. Then

Hilb
(
3T (0)

n (Γ)ab, t
)

= t|V |−1Tutte
(
Γ; 1 + t−1, 0

)
.

(2) Let Γ = (V,E, {mij , (ij) ∈ E}) be a connected subgraph of the complete graph K
(m)
n with

multiple edges such that an edge (ij) ∈ Kn has the multiplicity mij. Let 3T
(0)
n (Γ,m) de-

notes the subalgebra in the algebra 3T
(0)
n (m) generated by elements {u(α(ij))

ij , (ij) ∈ E, 1 ≤
α(ij) ≤ mij}, see Section 2.2. Let A(Γ, {mij}) denotes the graphic arrangement correspon-
ding to the graph (Γ, {mij}), that is the set of hyperplanes {H(ij),a = (xi − xj = a), 0 ≤
a ≤ mij − 1, (ij) ∈ E}. Then

3T (0)
n (Γ,m)ab = OS+(A(Γ, {mij})),

where for any arrangements of hyperplanes A, OS+(A) denotes the even Orlik–Solomon
algebra of the arrangement A [113]. In the case when mij = 1, ∀ 1 ≤ i < j ≤ n,

3T
(0)
n (Γ)anti = OS(A(Γ)).

35Part (1) of this conjecture has been proved in [89]. In [89] the author has used notation OT(Γ) for the Orlik–
Terao algebra associated with (simple) graph Γ. In our paper we prefer to denote the corresponding Orlik–Terao
algebra by OS+(Γ).
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Examples 4.16.

(1) Let G = K2,2 be complete bipartite graph of type (2, 2). Then

Hilb
(
3T 0

4 (2, 2)ab, t
)

= (1, 4, 6, 3) = t2(1 + t) + t(1 + t)2 + (1 + t)3,

and the Tutte polynomial for the graph K2,2 is equal to x+ x2 + x3 + y.

(2) Let G = K3,2 be complete bipartite graph of type (3, 2). Then

Hilb
(
3T 0

5 (3, 2)ab, t
)

= (1, 6, 15, 17, 7)

= t3(1 + t) + 3t2 (1 + t)2 + 2t(1 + t)3 + (1 + t)4,

and the Tutte polynomial for the graph K3,2 is equal to

x+ 3x2 + 2x3 + x4 + y + 3xy + y2.

(3) Let G = K3,3 be complete bipartite graph of type (3, 3). Then

Hilb
(
3T 0

6 (3, 3)ab, t
)

= (1, 9, 36, 75, 78, 31) = (1 + t)5 + 4t(1 + t)4

+ 10t2(1 + t)3 + 11t3(1 + t)2 + 5t4(1 + t),

and the Tutte polynomial of the bipartite graph K3,3 is equal to

5x+ 11x2 + 10x3 + 4x4 + x5 + 15xy + 9x2y + 6xy2 + 5y + 9y2 + 5y3 + y4.

(4) Consider complete multipartite graph K2,2,2. One can show that

Hilb
(
3T

(0)
6 (K2,2,2)ab, t

)
= (1, 12, 58, 137, 154, 64) = 11t4(1 + t) + 25t3(1 + t)2

+ 20t2(1 + t)3 + 7t(1 + t)4 + (1 + t)5,

and

Tutte(K2,2,2, x, y) = x(11, 25, 20, 7, 1)x + y(11, 46, 39, 8)x + y2(32, 52, 12)x

+ y3(40, 24)x + y4(29, 6)x + 15y5 + 5y6 + y7.

The above examples show that the Hilbert polynomial Hilb(3T 0
n(G)ab, t) appears to be a cer-

tain specialization of the Tutte polynomial of the corresponding graph G.
Instead of using the Hilbert polynomial of the algebra 3T 0

n(G)ab one can consider the graded
Betti numbers (over a field k) polynomial Bettik(3T 0

n(G)ab, x, y). For example,

BettiQ
(
3T 0

3 (K3)ab, x, y
)

= 1 + xy(4, 2)x + x2y2(3, 2)x,

BettiQ
(
3T 0

4 (K2,2)ab, x, y
)

= 1 + 4xy + xy2(1, 9, 3)x + x2y3(1, 6, 3)x,

BettiQ
(
3T 0

5 (K3,2)ab, x, y
)

= 1 + 6xy + xy2(3, 25, 9) + x2y3(6, 45, 34, 7) + x3y4(3, 25, 25, 7),

BettiQ
(
3T 0

4 (K4)ab, x, y
)

= 1 + xy(10, 10) + x2y2(25, 46, 26, 6) + x3y3(15, 36, 25, 6),

BettiZ/2Z
(
3T 0

4 (K4)ab, x, y
)

= 1 + xy(10, 10,1)x + x2y2(25, 46, 26, 6) + x3y3(16, 36, 25, 6),

BettiQ
(
3T 0

5 (K5)ab, x, y
)

= 1 + xy(20, 30) + x2y2(109, 342, 315, 72) + x3y3(195, 852, 1470,

1232, 639, 190, 24) + x4y4(105, 540, 1155, 1160, 639, 190, 24),

BettiQ
(
3T 0

5 (K5)ab, 1, 1
)

= 9304,

BettiZ/3Z
(
3T 0

5 (K5)ab, x, y
)

= 1 + xy(20, 30) + x2y2(109, 342, 315, 72,1)
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+ x3y3(195, 852, 1471, 1232, 640, 190, 24)

+ x4y4(105, 540,1156, 1160, 639, 190, 24),

BettiZ/3Z
(
3T 0

5 (K5)ab, 1, 1
)

= 9308,

BettiZ/2Z
(
3T 0

5 (K5)ab, x, y
)

= 1 + xy(20, 30,5) + x2y2(114, 342,340,131,10)

+ x3y3(220,911,1500, 1291, 649, 190, 24)

+ x4y4(125,599,1165, 1160, 639, 190, 24),

BettiZ/2Z
(
3T 0

5 (K5)ab, 1, 1
)

= 9680,

BettiZ/2Z
(
3T 0

6 (K3,3)ab, x, y
)

= 1 + 9xy + xy2(9, 69, 27) + x2y3(40, 285, 257,52)

+ x3y4(59, 526, 866, 563, 201, 31)

+ x4y5(28,311, 636, 520, 201, 31),

BettiZ/2Z
(
3T 0

6 (K3,3)ab, 1, 1
)

= 4740,

BettiQ
(
3T 0

6 (K3,3)ab, x, y
)

= 1 + 9xy + xy2(9, 69, 27) + x2y3(40, 285, 257, 43)

+ x3y4(59, 526, 866, 563, 201, 31)

+ x4y5(28, 302, 636, 520, 201, 31),

BettiQ
(
3T 0

6 (K3,3)ab, 1, 1
)

= 4704.

Let us observe that in all examples displayed above, the Betti polynomials are divisible by 1+xy.

It should be emphasize that in the literatute one can find definitions of big variety of (graded)
Betti’s numbers associated with a given simple graph Γ, depending on choosing an algebra/ideal
has been attached to graph Γ. For example, to define Betti’s numbers, one can start with edge
graph ideal/algebra associated with a graph in question, the Stanley–Reisner ideal/ring and so on
and so far. We refer the reader to carefully written book by E. Miller and B. Sturmfels [105] for
definitions and results concerning combinatorial commutative algebra graded Betti’s numbers.
As far as I’m aware, the graded Betti numbers we are looking for in the present paper, are
different from those treated in [105], and more close to those studied in [11].

It is not difficult to see (A.K.) that for a simple connected graph Γ the coefficient just before
the (unique!) monomial of the maximal degree in Bettik

(
3T 0(Γ)ab, x, y

)
is equal to Tutte(Γ; 1, 0).

It is known [10] that the number Tutte(Γ; 1, 0) counts that of acyclic orientations of the edges
of Γ with a unique source at a vertex v ∈ Γ, or equivalently [10], the number of maximum
Γ-parking functions relative to vertex v.

Claim 4.17. Let G = (V,E) be a connected graph without loops. Then over any field k

Bettik
(
3T 0

n(G)ab,−x, x
)

= (1− x)eHilb
(
3T 0

n(G)ab, x
)
,

where n = |V (G)| = number of vertices, e = |E(G)| = number of edges.

Question 4.18.

• Let G be a connected subgraph of the complete graph Kn. Does the graded Betti polynomial
BettiQ(3T 0

n(G)ab, x, y) is a certain specialization of the Tutte polynomial T (G, x, y)? If
not, give example of two (simple) graphs such that their Orlik–Terao algebras have the
same Tutte polynomial, but different Betti polynomials over Q , and vice versa.

• It is clear that for any graph Γ (or matroid) one has Tutte(Γ, x, y) = a(Γ)(x + y) +
(higher degree terms) for some integer a(Γ) ∈ N. Does the number a(Γ) have a simple
combinatorial interpretation?
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Proposition 4.19. Let n = (n1, . . . , nr) be a composition of n ∈ Z≥1, then

Hilb
(
3T (0)(Kn1,...,nr)

ab, t
)

=
∑

k=(k1,...,kr)
0<kj≤nj

(−t)|n|−|k|
r∏
j=1

{
nj
kj

} |k|−1∏
j=1

(1 + jt),

where we set |k| := k1 + · · ·+ kr.

Remark 4.20. This proposition is a consequence of Conjecture 4.15(1), which has been proved
in [89].

Corollary 4.21. One has

(a) 1 + t(t− 1)
∑

(n1,...,nr)∈Zr≥0\0r
Hilb

(
3T (0)(Kn1,...,nr

)ab
, t)

xn1
1

n1!
· · · x

nr
r

nr!

=

1 + t
r∑
j=1

(e−xj − 1)

1−t

,

(b)
∑

(n1,n2,...,nr)∈Z≥0\0r
dim

(
3T (0)(Kn1,...,nr)

ab
)xn1

n1!
· · · x

nr

nr!
= − log

1− r +
r∑
j=1

e−xj

 ,

(c) Hilb
(
3T (0)(Kn1,...,nr)

ab, t
)

= (−t)|n|Chrom
(
Kn1,...,nr ,−t−1

)
,

(d) dim
(
3T (0)(Γ)ab

)
is equal to the number of acyclic orientations of Γ,

where Γ stands for a simple graph.

Recall that for any graph Γ we denote by Chrom(Γ, x) the chromatic polynomial of that
graph.

Indeed, one can show36

Proposition 4.22. If r ∈ Z≥1, then

Chrom(Kn1,...,nr , t) =
∑

k=(k1,...,kr)

r∏
j=1

{
nj
kj

}
(t)|k|,

where by definition (t)m :=
m−1∏
j=1

(t− j), (t)0 = 1, (t)m = 0 if m < 0.

Finally we describe explicitly the exponential generating function for the Tutte polynomials
of the weighted complete multipartite graphs. We refer the reader to [98] for a definition and
a list of basic properties of the Tutte polynomial of a graph.

36If r = 1, the complete unipartite graph K(n) consists of n distinct points, and

Chrom(K(n), x) = xn =

n−1∑
k=0

{
n

k

}
(x)k.

Let us stress that to abuse of notation the complete unipartite graph K(n) consists of n disjoint points with the
Tutte polynomial equals to 1 for all n ≥ 1, whereas the complete graph Kn is equal to the complete multipartite
graph K(1n).
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Definition 4.23. Let r ≥ 2 be a positive integer and {S1, . . . , Sr} be a collection of sets of
cardinalities #|Sj | = nj , j = 1, . . . , r. Let ` := {`ij}1≤i<j≤n be a collection of non-negative
integers.

The `-weighted complete multipartite graph K
(`)
n1,...,nr is a graph with the set of vertices equals

to the disjoint union
r∐
j=1

Si of the sets S1, . . . , Sr, and the set of edges {(αi, βj), αi ∈ Si, βj ∈

Sj}1≤i<j≤r of multiplicity `ij each edge (αi, βj).

Theorem 4.24. Let us fix an integer r ≥ 2 and a collection of non-negative integers ` :=
{`ij}1≤i<j≤r. Then

1 +
∑

n=(n1,...,nr)∈Zr≥0
n6=0

(x− 1)κ(`,n)Tutte
(
K(`)
n1,...,nr , x, y

) tn1
1

n1!
· · · t

nr
r

nr!

=

 ∑
m=(m1,...,mr)∈Zr≥0

y

∑
1≤i<j≤r

`ijmimj
(y − 1)−|m|

tm1
1

m1!
· · · t

mr
r

mr!

(x−1)(y−1)

,

where κ(`,n) denotes the number of connected components of the graph K
(`)
n1,...,nr .

Comments 4.25.

(a) Clearly the condition `ij = 0 means that there are no edges between vertices from the
sets Si and Sj . Therefore Theorem 4.24 allows to compute the Tutte polynomial of any
(finite) graph. For example,

Tutte
(
K

(16)
2,2,2,2, x, y

)
=
{

(0, 362, 927, 911, 451, 121, 17, 1)x,

(362, 2154, 2928, 1584, 374, 32)x, (1589, 4731, 3744, 1072, 96)x,

(3376, 6096, 2928, 448, 16)x, (4828, 5736, 1764, 152)x,

(5404, 4464, 900, 32)x, (5140, 3040, 380)x, (4340, 1840, 124)x,

(3325, 984, 24)x, (2331, 448)x, (1492, 168)x, (868, 48)x, (454, 8)x,

210, 84, 28, 7, 1
}
y
.

(b) One can show that a formula for the chromatic polynomials from Proposition 4.19 cor-
responds to the specialization y = 0 (but not direct substitution!) of the formula for
generating function for the Tutte polynomials stated in Theorem 4.24.

(c) The Tutte polynomial Tutte
(
K

(`)
n1,...,nr , x, y

)
does not symmetric with respect to parameters

{`ij}1≤i<j≤r. For example, let us write ` = (`12, `23, `13, `14, `24, `34), then

Tutte
(
K

(6,3,4,5,2,4)
2,2,2,2 , 1, 1

)
= 28 · 3 · 5 · 113 · 241 = 1231760640.

On the other hand,

Tutte
(
K

(6,4,3,5,2,4)
2,2,2,2 , 1, 1

)
= 213 · 3 · 7 · 112 · 61 = 1269768192.

4.1.3 Universal Tutte polynomials

Let m = (mij , 1 ≤ i < j ≤ n) be a collection of non-negative integers. Define generalized

Tutte polynomial T̃n(m, x, y) as follows

(x− 1)κ(n,m)T̃n(m, x, y)
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= Coeff [t1···tn]


 ∑

`1,...,`n
`i∈{0,1}, ∀ i

y

∑
1≤i<j≤n

mij`i`j
(y − 1)−(

∑
j `j)t`11 · · · t

`n
n


(x−1)(y−1)

 ,
where as before, κ(n,m) denotes the number of connected components of the graph K

(m)
n .

Clearly that if Γ ⊂ K(`)
n is a subgraph of the weighted complete graph K

(`)
n

def
= K

(`)
1n , then the

Tutte polynomial of graph Γ multiplied by (x− 1)κ(Γ) is equal to the following specialization

mij = 0 if edge (i, j) /∈ Γ, mij = `ij if edge (i, j) ∈ Γ

of the generalized Tutte polynomial

(x− 1)κ(Γ)Tutte(Γ, x, y) = T̃n(m, x, y)
∣∣∣ mij=0 if (i,j)/∈Γ

mij=`ij if (i,j)∈Γ

.

For example,

(a) Take n = 6 and Γ = K6\{15, 16, 24, 25, 34, 36}, then

Tutte(Γ, x, y) = {(0, 4, 9, 8, 4, 1)x, (4, 13, 9)x, (8, 7)x, 5, 1}y.

(b) Take n = 6 and Γ = K6\{15, 26, 34}, then

Tutte(Γ, x, y) = {(0, 11, 25, 20, 7, 1)x, (11, 46, 39, 8)x, (32, 52, 12)x,

(40, 24)x, (29, 6)x, 15, 5, 1}y.

(c) Take n = 6 and Γ = K6\{12.34.56} = K2,2,2. As a result one obtains an expression for
the Tutte polynomial of the graph K2,2,2 displayed in Example 4.16(4).

Now set us set

qij :=
ymij − 1

y − 1
.

Lemma 4.26. The generalized Tutte polynomial T̃n(m, x, y) is a polynomial in the variables
{qij}1≤i<j≤n, x and y.

Definition 4.27. The universal Tutte polynomial Tn({qij}, x, y) is defined to be the polynomial
in the variables {qij}, x, and y defined in Lemma 4.26.

Explicitly,

(x− 1)Tn({qij}, x, y)

= Coeff [t1···tn]

( ∑
`1,...,`n

`i∈{0,1}, ∀ i

∏
1≤i<j≤n

(qij(y − 1) + 1)`i`j (y − 1)−(
∑
j `j)t`11 · · · t

`n
n

)(x−1)(y−1)
 .

Corollary 4.28. Let {mij}1≤i<j≤n be a collection of positive integers. Then the specialization

qij −→ [mij ]y :=
ymij − 1

y − 1

of the universal Tutte polynomial Tn({qij}, x, y) is equal to the Tutte polynomial of the complete
graph Kn with each edge (i, j) of the multiplicity mij.
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Further specialization qij −→ 0 if edge (i, j) /∈ Γ allows to compute the Tutte polynomial for
any graph

Tutte3({q12, q13, q23}, x, y) = (1− q[12])(1− q[13])(1− q[23]) + yq[12]q[13]q[23])

+ x(q[12] + q[13] + q[23]− 2) + x2.

It is not difficult to see that the Tutten({qij}, x, y) is a symmetric polynomial with respect
to parameters {qij}1≤i<j≤n.

For more compact expression, it is more convenient to rewrite the universal chromatic poly-
nomial in terms of parameters pij := 1− qij , 1 ≤ i < j ≤ n, and denote it by Chn({pij}, x). For
example,

Ch4({pij}, x) = −p12p13p14p23p24p34 + x
(
2− p12 − p13 − p14 − p23 − p24 − p34

+ p12p34 + p14p23 + p13p24 + p12p13p23 + p12p14p24 + p13p14p34

+ p23p24p34

)
+ x2

(
3− p12 − p13 − p14 − p23 − p24 − p34

)
+ x3.

Note that p12p34 + p14p23 + p13p24 is a symmetric polynomial of the variables p12, p34, p13, p24,
p14, p23. It is important to keep in mind that parameters {mij} and {pij} are connected by
relations

pij =
y − ymij
y − 1

, 1 ≤ i < j ≤ n.

Therefore, pij = 1 if (i, j) /∈ Edge(Γ), pij = 0 if mij = 1. We emphasize that the latter equalities
are valid for arbitrary y. It is not difficult to see that

Chn({qij = 0, ∀ i, j} = Tutte(Kn;x, 0), Chn({qij = 1, ∀ i, j} = (x− 1)n−1.

Define universal chromatic polynomial to be Chn({pij}, x) = Tutten({pij}, x, 0), where we
treat {pij}1≤i<j≤n as a collection of a free parameters.

To state our result concerning the universal chromatic polynomial Chn({pij}, x), first we
introduce a bit of notation. Let n ≥ 2 be an integer, consider a partition B =

{
Bi =(

b
(i)
1 , . . . , b

(i)
ri

)}
1≤i≤k of the set [1, n] := [1, 2, . . . , n]. In other words one has that [1, n] = ∪ki=1Bi

and Bi ∩ Bj = ∅ if i 6= j. We assume that b
(1)
1 < b

(2)
1 < · · · < b

(k)
1 . We define κ(B) := k. To

a given partition B we associate a monomial pB :=
k∏
a=1

pBa , where pBa = 1 if κ(B) = 1, and

pBa =
∏
i,j∈Ba
i<j

pij .

For a given partition λ ` n denote by L(β)
λ ({pij}) the sum of all monomials pBβ

κ(B)−2 such

that λ = λ(B)
def
= (|B1|, . . . , |Bκ(B)|)+, where for any composition α |= n, α+ denotes a unique

partition obtained from α by the reordering of its parts.

Define β-universal chromatic polynomial to be

Ch(β)
n ({pij}, x) = β−1L(n) +

∑
λ`n

Tutte(K`(λ)−1;x, 0)L(β)
λ ,
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where summation runs over all partitions λ of n; we set K0 := ∅ and Tutte(∅;x, y) = 0. For
the reader convenience we are reminded that for the complete graph Kn, n > 0, one has

Tutte(Kn, x, 0) =

n−1∏
j=1

(x+ j − 1) =

n−1∑
k=0

s(k, n− 1)xk,

where s(k, n) denotes the Stirling number of the first kind37.

Theorem 4.29 (formula for universal chromatic polynomials).

Chn({pi,j}, x) = Ch(β=−1)
n ({pij}, x).

For a given partition λ ` n denote by Lλ({pij}) the sum of all monomials pB such that

λ = λ(B)
def
= (|B1|, . . . , |Bκ(B)|)+, where for any composition α |= n, α+ denotes a unique

partition obtained from α by the reordering of its parts.
It is clear that for a graph Γ ⊂ Kn and partition B the value of monomial pB under the

specialization pij = 0 if (ij) ∈ Edge(Γ) and pij = 1 if (ij) /∈ Edge(Γ), is equal to 1 iff the
complementary graph Kn\Γ contains a subgraph which is isomorphic to the disjoint union of

complete graphs K(λ) :=
k∐
i=1

Kλi , where (λ1, . . . , λk) = λ(B). Therefore the specialization

Lλ
∣∣
pij=0, (ij)∈Γ,

pij=1, (ij)/∈Γ

is equal to the number of non isomorphic subgraphs of the complementary graph Kn\Γ which
are isomorphic to the graph K(λ).

Example 4.30. Take n = 6, then

Ch
(β)
6 = β−1L(6) + x(x+ 1)(x+ 2)(x+ 3)(x+ 4)L(16)β

4

+ x(x+ 1)(x+ 2)(x+ 3)L(2,14)β
3 + x(x+ 1)(x+ 2)

(
L(22,12) + L(3,13)

)
β2

+ x(x+ 1)
(
L(23) + L(3,2,1) + L(4,12)

)
β + L(32) + L(4,2) + L(5,1).

Since pij is equal to either 1 or 0, one can see that L(n) = 0 unless graph Γ is a collection of n
distinct points and therefore L = 1.

The chromatic polynomial of any graph is a Z-linear combination of the chromatic polyno-
mials corresponding to a set of complete graphs.

Corollary 4.31 (formula for universal β-Tutte polynomials38).

(1− y)n−1Tutte(β)
n ({pi,j};x, y)

=
∏

1≤i<j≤n
pij +

∑
λ`n

Tutte(K`(λ)−1;x+ y + βxy, 0)L(β)
λ ({pij}).

The polynomial (1 − y)|V (Γ)|−1Tutte(Γ;x, y) is a Z[y]-linear combination of the chromatic
polynomials Tutte(Km;x+ y − xy, 0) corresponding to a family of complete graphs {Km}.

Here V (Γ) denotes the set of vertices of graph Γ.

37See, e.g., [131, A008275] or https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind.
38It should be remembered that Tutte(K1;x, y) = 1 and Tutte(K0;x, y) = 0, since the graph K1 := {pt} and

graph K0 = ∅.

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind


66 A.N. Kirillov

Comments 4.32.

(i) Let us write

Ch(β)
n ({pij}, x) = −L(n)β

−1 +

n−1∑
k=1

a(k)
n ({pij)xk.

It follows from Theorem 4.29 that

a(k)
n =

∑
λ`n

s(`(λ)− 1, k)L(β)
λ ,

where as before, s(k, n) denote the Stirling numbers of the first kind, see, e.g., footnote 37.
For example,

a(Γ) = a(1)
n ({pij})

∣∣∣∣ pij=0, (ij)∈Γ,

pij=1, (ij)/∈Γ

(`(λ)− 2)!Nλ(Γ)β`(λ)−2,

where Nλ(Γ) denotes the number non isomorphic subgraphs in the complementary graph
Kn\Γ, which are isomorphic to the graph Kn(λ).

(ii) It is clear that for a general set of parameters {pij} the number of different monomials

which appear in L(β)
λ ({pij}), where partition λ =

n∑
j=1

jmj , λ ` n, is equal to

n!∏
j≥1

(j!)mjmj !
.

(iii) For general set of parameters {pij} one can show that the number of different monomials

which appear in polynomial a
(1)
n ({pij}) is equal to Bell(n)− 1, where Bell(n) denotes the

n-th Bell number, see, e.g., [131, A000110].

(iv) In the limit y −→ 1 one has qij = mij and pij = 1−mij .

(v) Let us introduce a modified universal Tutte polynomial, namely,

Tutte({qij};x, y, z) := (−1)n−1Coeff [t1···tn]

×

[( ∑
`1,...,`n

`i∈{0,1}, ∀ i

∏
1≤i<j≤n

(zqijy + 1)`i`jy−(
∑
j `j)t`11 · · · t

`n
n

)xy
x−1

]
.

We set deg(qij) = 1,

Proposition 4.33.

(a) Tutte({qij};x, y, z) ∈ N[{qij ][x, y, z].

(b) Degree n−1 monomials of the polynomial Tutte({qij}; 0, y, z) are in one-to-one correspon-
dence with the set of spanning trees of the complete graph Kn. Moreover, the polynomial
Tutte({qij = 1, ∀ i, j};x, 0, 1) is equal to the generating function of forests on n labeled ver-
tices, counting according to the number of connected components, whereas the polynomial
Tutte({qij = 1, ∀ i, j}; 1, 0, z) is equal to the Hilbert polynomial of the even Orlik–Solomon
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algebra39 OS+(Γn) associated to the type An−1 generic hyperplane arrangement Γn, see
[119, Section 5] or [72], namely,

Tutte({qij = 1, ∀ i, j}; 1, 0, z) = Hilb(OS+(Γn), z) =
∑
F
z|F|,

where the sum runs over all forests on the vertices {1, . . . , n}, and |F| denotes the number
of edges of F .

(c) More generally, denote by Fn(x, t) :=
∑
F
x|F|tinv(F) the generating function of statistics

|F| and inv(F) on the set F (n) of forests on n labeled vertices. Recall that the symbol |F|
denotes the number of edges in a forest F ∈ F (n) and that inv(F) its inversion index40.

Lemma 4.34. One can show that

Fn(x, t) = (xt)n−1Tutte(Kn; 1 + (xt)−1, t− 1),

Coeff(xt)n−1 [Fn(x, t)] = In(t),

where In(t) :=
∑
F∈Tree(n) t

inv(F) denotes the tree inversion polynomial, see, e.g., [51, 134].

(d) Set

DUn(x) := (zt)n−1Hilb
(
Kn; 1 + (zt)−1, z − 1

)∣∣∣
t:=−1
z:=−x

= Fn(−x,−1).

One (A.K.) can show that (n ≥ 2)

DUn(x) ∈ N[x], DUn(1) = UDn+1, Coeffxn−1 [DUn(x)] = UDn−1,

where UDn denote the Euler or up/down numbers associated with the exponential genera-
ting function sec(x) + tan(x), see41, e.g., [131, A000111].

(e) One has

x(n2)Tutte
(
{qij = 1, ∀ i, j};x, x−1 − 1, 1

)
= Hilb(An, x),

where An denotes the algebra generated by the curvature of 2-forms of the standard Her-
mitian linear bundles over the flag variety F ln, see [72, 118, 129] or Section 4.2.2, Theo-
rem 4.56(B).

(f) Write Tutte({qij}; 0, y, z) =
n−1∑
k=0

a
(k)
n (y, z), then monomials which appear in polynomial

a
(k)
n (y, z) are in one-to-one correspondence with the set of labeled graphs with n nodes

having exactly k connected components.

(g) One has Tutte(({qij};x,−1, 1) = Tutte({qij}, x+ 1, 0).

39Known also as Orlik–Terao algebra.
40For the readers convenience we recall definitions of statistics inv(F) and the major index maj(F). Given

a forest F on n labeled nodes, one can construct a tree T by adding a new vertex (root) connected with the
maximal vertices in the connected components of F .

The inversion index inv(F) is equal to the number of pairs (i, j) such that 1 ≤ i < j ≤ n, and the vertex labeled
by j lies on the shortest path in T from the vertex labeled by i to the root.

The major index maj(F) is equal to
∑

x∈Des(F)

h(x); here for any vertex x ∈ F , h(x) is the size of the subtree

rooted at x; the descent set Des(F) of F consists of the vertices x ∈ F which have the labeling strictly greater
than the labeling of its child’s.

41The fact that In(−1) = UDn−1 is due to G. Kreweras [82].
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(h) Recurrence relations for polynomials Fn(x, t), cf. [82],

F0(x, t) = F1(x, t) = 1, Fn+1(x, t) =
n∑
k=0

(
n

k

)
(xt)kIk(t)Fn−k(x, t).

Example 4.35. Take n = 5, then

Tutte(K5;x, y) = (0, 6, 11, 6, 1) + (6, 20, 10)y + 15(1, 1)y2 + 5(3, 1)y3 + 10y4 + 4y5 + y6,

F5(−x,−1) = (1, 10, 25, 20, 5).

Write Fn(x, t) = F̃n(u, t)
∣∣
u=xt

, then

F̃5(u, t) = 1 + 10u+ u2(35 + 10t) + u3(50, 40, 15, 5)t + u4(24, 36, 30, 20, 10, 4, 1)t,

F̃n(u, 0) =
n−1∏
j=1

(1 + j u),

Hilb(A5, t) = (1, 4, 10, 20, 35, 51, 64, 60, 35, 10, 1)t,

Hilb(OS+(Γ5), t) = (1, 10, 45, 110, 125)t.

Exercises 4.36.

(1) Assume that `ij = ` for all 1 ≤ i < j ≤ r. Based on the above formula for the exponential
generating function for the Tutte polynomials of the complete multipartite graphsKn1,...,nr ,
deduce the following well-known formula

Tutte
(
K(`)
n1,...,nr , 1, 1

)
= `N−1N r−2

r∏
j=1

(N − nj)nj−1,

where N := n1 + · · ·+ nr. It is well-known that the number Tutte(Γ, 1, 1) is equal to the
number of spanning trees of a connected graph Γ.

(2) Take r = 3 and let n1, n2, n3 and `12, `13, `23 be positive integers. Set N := `12`13n1 +
`12`23n2 + `13`23n3. Show that

Tutte
(
K`1,`2,`3
n1,n2,n3

, 1, 1
)

= N(`12n2+ `13n3)n1−1(`12n1+ `13n3)n2−1(`13n1+ `23n2)n3−1.

(3) Let r ≥ 2, consider weighted complete multipartite graph K
(`)
n, . . . , n︸ ︷︷ ︸

r

, where ` = (`ij) such

that `1,j = `, j = 1, . . . , r and `ij = k, 2 ≤ i < j ≤ r. Show that

Tutte
(
K

(`)
n, . . . , n︸ ︷︷ ︸

r

, 1, 1
)

= kn(r − 1)n−1((r − 1)`+ k)r−2((r − 2)`+ k)(r−1)(n−1)nnr−1.

Let Γn(∗) be a spanning star subgraph of the complete graph Kn. For example, one can
take for a graph Γn(∗) the subgraph K1,n−1 with the set of vertices V := {1, 2, . . . , n} and

that of edges E := {(i, n), i = 1, . . . , n − 1}. The algebra 3T
(0)
n (K1,n−1) can be treated as

a “noncommutative analog” of the projective space Pn−1. We have θ1 = u12 + u13 + · · · + u1n.

It is not difficult to see that Hilb(3T
(0)
n (K1,n−1)ab, t) = (1 + t)n−1, and θn1 = 0. Let us observe

that Chrom(Γn(?), t) = t(t− 1)n−1.

Problem 4.37. Compute the Hilbert series of the algebra 3T
(0)
n (Kn1,...,nr).
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The first non-trivial case is that of projective space, i.e., the case r = 2, n1 = 1, n2 = 5.
On the other hand, if Γn = {(1, 2) → (2, 3) → · · · → (n − 1, n)} is the Dynkin graph of

type An−1, then the algebra 3T
(0)
n (Γn) is isomorphic to the nil-Coxeter algebra of type An−1,

and if Γ
(aff)
n = {(1, 2)→ (2, 3)→ · · · → (n− 1, n)→ −(1, n)} is the Dynkin graph of type A

(1)
n−1,

i.e., a cycle, then the algebra 3T
(0)
n (Γ

(aff)
n ) is isomorphic to a certain quotient of the affine

nil-Coxeter algebra of type A
(1)
n−1 by the two-sided ideal which can be described explicitly [72].

Moreover [72],

Hilb
(
3T 0)

n

(
Γ(aff)

)
, t
)

= [n]t

n−1∏
j=1

[j(n− j)]t,

see Theorem 4.3. Therefore, the dimension dim(3T (0)(Γaff)) is equal to n!(n − 1)! and is equal
also, as it was pointed out in Section 4.1.1, to the number of (directed) Hamiltonian cycles in
the complete bipartite graph Kn,n, see [131, A010790].

It is not difficult to see that

Hilb
(
3T (0)

n (Γn)ab, t
)

= (t+ 1)n−1, Hilb
(
3T (0)

(
Γaff
n

)ab
, t
)

= t−1
(
(t+ 1)n − t− 1

)
,

whereas

Chrom(Γn, t) = t(t− 1)n−1, Chrom
(
Γaff
n , t

)
= (t− 1)n + (−1)n(t− 1).

Exercise 4.38. Let Kn1,...,nr be complete multipartite graph, N := n1 + · · ·+ nr. Show that42

Hilb(3TN (Kn1,...,nr), t) =

r∏
j=1

nj−1∏
a=1

(1− at)

N−1∏
j=1

(1− jt)
.

4.1.4 Quasi-classical and associative classical Yang–Baxter algebras of type Bn

In this section we introduce an analogue of the algebra 3Tn(β) for the classical root systems.

Definition 4.39.

(A) The quasi-classical Yang–Baxter algebra ̂ACYB(Bn) of type Bn is an associative algebra
with the set of generators {xij , yij , zi, 1 ≤ i 6= j ≤ n} subject to the set of defining
relations

(1) xij + xij = 0, yij = yji if i 6= j,

(2) zizj = zjzi,

(3) xijxkl = xklxij , xijykl = yklxij , yijykl = yklyij if i, j, k, l are distinct,

(4) zixkl = xklzi, ziykl = yklzi if i 6= k, l,

(5) three term relations:

xijxjk = xikxij + xjkxik − βxik, xijyjk = yikxij + yjkyik − βyik,
xikyjk = yjkyij + yijxik + βyij , yikxjk = xjkyij + yijyik + βyij

if 1 ≤ i < j < k ≤ n,

42It should be remembered that to abuse of notation, the complete graph Kn, by definition, is equal to the
complete multipartite graph K((1, . . . , 1)︸ ︷︷ ︸

n

), whereas the graph K(n) is a collection of n distinct points.
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(6) four term relations:

xijzj = zixij + yijzi + zjyij − βzi

if i < j.

(B) The associative classical Yang–Baxter algebra ACYB(Bn) of type Bn is the special case

β = 0 of the algebra ̂ACYB(Bn).

Comments 4.40.

• In the case β = 0 the algebra ACYB(Bn) has a rational representation

xij −→ (xi − xj)−1, yij −→ (xi + xj)
−1, zi −→ x−1

i .

• In the case β = 1 the algebra ̂ACYB(Bn) has a “trigonometric” representation

xij −→
(
1− qxi−xj

)−1
, yij −→

(
1− qxi+xj

)−1
, zi −→

(
1 + qxi

)(
1− qxi

)−1
.

Definition 4.41. The bracket algebra E(Bn) of type Bn is an associative algebra with the set
of generators {xij , yij , zi, 1 ≤ i 6= j ≤ n} subject to the set of relations (1)–(6) listed in
Definition 4.39, and the additional relations

(5a) xjkxij = xijxik + xikxjk − βxik, yjkxij = xijyik + yikyjk − βyik,
yjkxik = yijyjk + xikyij + βyij , xjkyik = yijxjk + yikyij + βyij

if 1 ≤ i < j < k ≤ n,

(6a) zjxij = xijzi + ziyij + yijzj − βzi

if i < j.

Definition 4.42. The quasi-classical Yang–Baxter algebra ̂ACYB(Dn) of type Dn, as well as the
algebras ACYB(Dn) and E(Dn) are defined by putting zi = 0, i = 1, . . . , n, in the corresponding
Bn-versions of algebras in question.

Conjecture 4.43. The both algebras E(Bn) and E(Dn) are Koszul, and

Hilb(E(Bn), t) =

 n∏
j=1

(1− (2j − 1)t)

−1

;

if n ≥ 4

Hilb(E(Dn), t) =

n−1∏
j=1

(1− 2jt)

−1

.

Example 4.44.

Hilb(ACYB(B2), t) =
(
1− 4t+ 2t2

)−1
,

Hilb(ACYB(B3), t) =
(
1− 9t+ 16t2 − 4t3

)−1
,

Hilb(ACYB(B4), t) =
(
1− 16t+ 64t2 − 60t3 + 9t4

)−1
,

Hilb(ACYB(D4), t) =
(
1− 12t+ 18t2 − 4t3

)−1
.

However,

Hilb(ACYB(B5), t) =
(
1− 25t+ 180t2 − 400t3 + 221t4 − 31t5

)−1
.
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Let us introduce the following Coxeter type elements

hBn :=
n−1∏
a=1

xa,a+1zn ∈ E(Bn) and hDn :=
n−1∏
a=1

xa,a+1yn−1,n ∈ E(Dn). (4.2)

Let us bring the element hBn (resp. hDn) to the reduced form in the algebra E(Bn) that is, let
us consecutively apply the defining relations (1)–(6), (5a), (6a) to the element hBn (resp. apply
to hDn the defining relations for algebra E(Dn)) in any order until unable to do so. Denote the
resulting (noncommutative) polynomial by PBn(xij , yij , z) (resp. PDn(xij , yij)). In principal, this
polynomial itself can depend on the order in which the relations (1)–(6), (5a), (6a) are applied.

Conjecture 4.45 (cf. [133, Exercise 8.C5(c)]).

(1) Apart from applying the commutativity relations (1)–(4), the polynomial PBn(xij , yij , z)
(resp. PDn(xij , yij)) does not depend on the order in which the defining relations have been
applied.

(2) Define polynomial PBn(s, r, t) (resp. PDn(s, r)) to be the the image of that PBn(xij , yij , z)
(resp. PDn(xij , yij)) under the specialization

xij −→ s, yij −→ r, zi −→ t.

Then PBn(1, 1, 1) = 1
2

(
2n
n

)
= 1

2CatBn.

Note that PBn(1, 0, 1) = CatAn−1 .

Problem 4.46. Investigate the Bn and Dn types reduced polynomials corresponding to the Co-
xeter elements (4.2), and the reduced polynomials corresponding to the longest elements

wBn :=

n∏
J=1

zj

 ∏
1≤i<j≤n

xijyij

 , wDn =
∏

1≤i<j≤n
xijyij .

4.2 Super analogue of 6-term relations and classical Yang–Baxter algebras

4.2.1 Six term relations algebra 6Tn, its quadratic dual (6Tn)!, and algebra 6HTn

Definition 4.47. The 6 term relations algebra 6Tn is an associative algebra (say over Q) with
the set of generators {ri,j , 1 ≤ i 6= j < n}, subject to the following relations:

1) ri,j and rk,l commute if {i, j} ∩ {k, l} = ∅,

2) unitarity condition: rij + rji = 0,

3) classical Yang–Baxter relations: [rij , rik + rjk] + [rik, rjk] = 0 if i, j, k are distinct.

We denote by CYBn, named by classical Yang–Baxter algebra, an associative algebra over Q
generated by elements {rij , 1 ≤ i 6= j ≤ n} subject to relations 1) and 3).

Note that the algebra 6Tn is given by
(
n
2

)
generators and

(
n
3

)
+ 3
(
n
4

)
quadratic relations.

Definition 4.48. Define Dunkl elements in the algebra 6Tn to be

θi =
∑
j 6=i

rij , i = 1, . . . , n.

It easy to see that the Dunkl elements {θi}1≤i≤n generate a commutative subalgebra in the
algebra 6Tn.
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Example 4.49 (some “rational and trigonometric” representations of the algebra 6Tn). Let
A = U(sl(2)) be the universal enveloping algebra of the Lie algebra sl(2). Recall that the
algebra sl(2) is spanned by the elements e, f , h, such that [h, e] = 2e, [h, f ] = −2f , [e, f ] = h.

Let’s search for solutions to the CYBE in the form

ri,j = a(ui, uj)h⊗ h+ b(ui, uj)e⊗ f + c(ui, uj)f ⊗ e,

where a(u, v), b(u, v) 6= 0, c(u, v) 6= 0 are meromorphic functions of the variables (u, v) ∈ C2,
defined in a neighborhood of (0, 0), taking values in A ⊗ A. Let aij := a(ui, uj) (resp. bij :=
b(ui, uj), cij := c(ui, uj)).

Lemma 4.50. The elements ri,j := aijh⊗ h+ bije⊗ f + cijf ⊗ e satisfy CYBE iff

bijbjkcik = cijcjkbik and 4aik = bijbjk/bik − bikcjk/bij − bikcij/bjk

for 1 ≤ i < j < k ≤ n.

It is not hard to see that

• there are three rational solutions:

r1(u, v) =
1/2h⊗ h+ e⊗ f + f ⊗ e

u− v
,

r2(u, v) =
u+ v

4(u− v)
h⊗ h+

u

u− v
e⊗ f +

v

u− v
f ⊗ e,

and r3(u, v) := −r2(v, u),

• there is a trigonometric solution

rtrig(u, v) =
1

4

q2u + q2v

q2u − q2v
h⊗ h+

qu+v

q2u − q2v

(
e⊗ f + f ⊗ e

)
.

Notice that the Dunkl element θj :=
∑
a6=j

rtrig(ua, uj) corresponds to the truncated (or level 0)

trigonometric Knizhnik–Zamolodchikov operator.
In fact, the “sln-Casimir element”

Ω =
1

2

(
n∑
i=1

Eii ⊗ Eii

)
+

∑
1≤i<j≤n

Eij ⊗ Eji

satisfies the 4-term relations

[Ω12,Ω13 + Ω23] = 0 = [Ω12 + Ω13,Ω23],

and the elements rij :=
Ωij
ui−uj , 1 ≤ i < j ≤ n, satisfy the classical Yang–Baxter relations.

Recall that the set {Eij := (δikδjl)1≤k,l≤n, 1 ≤ i, j ≤ n}, stands for the standard basis of the
algebra Mat(n,R).

Definition 4.51. Denote by 6T
(0)
n the quotient of the algebra 6Tn by the (two-sided) ideal

generated by the set of elements {r2
i,j , 1 ≤ i < j ≤ n}.

More generally, let {β, qij , 1 ≤ i < j ≤ n} be a set of parameters. Let R := Q[β][q±1
ij ].

Definition 4.52. Denote by 6HTn the quotient of the algebra 6Tn⊗R by the (two-sided) ideal
generated by the set of elements {r2

i,j − βri,j − qij , 1 ≤ i < j ≤ n}.
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All these algebras are naturally graded, with deg(ri,j) = 1, deg(β) = 1, deg(qij) = 2. It is

clear that the algebra 6T
(0)
n can be considered as the infinitesimal deformation Ri,j := 1 + εri,j ,

ε −→ 0, of the Yang–Baxter group YBn.
For the reader convenience we recall the definition of the Yang–Baxter group.

Definition 4.53. The Yang–Baxter group YBn is a group generated by elements {R±1
ij , 1 ≤

i < j ≤ n}, subject to the set of defining relations

• RijRkl = RklRij if i, j, k, l are distinct,

• quantum Yang–Baxter relations:

RijRikRjk = RjkRikRij if 1 ≤ i < j < k ≤ n.

Corollary 4.54. Define hij = 1+rij ∈ 6HTn. Then the following relations in the algebra 6HTn
are satisfied:

(1) rijrikrjk = rjkrikrij for all pairwise distinct i, j and k;

(2) Yang–Baxter relations: hijhikhjk = hjkhikhij if 1 ≤ i < j < k ≤ n.

Note, the item (1) includes three relations in fact.

Proposition 4.55.

(1) The quadratic dual (6Tn)! of the algebra 6Tn is a quadratic algebra generated by the elements
{ti,j , 1 ≤ i < j ≤ n} subject to the set of relations

(i) t2i,j = 0 for all i 6= j;

(ii) anticommutativity: tijtk,l + tk,lti,j = 0 for all i 6= j and k 6= l;

(iii) ti,jti,k = ti,ktj,k = ti,jtj,k if i, j, k are distinct.

(2) The quadratic dual (6T
(0)
n )! of the algebra 6T

(0)
n is a quadratic algebra with generators

{ti,j , 1 ≤ i < j ≤ n} subject to the relations (ii)–(iii) above only.

4.2.2 Algebras 6T (0)
n and 6TFn

We are reminded that the algebra 6T
(0)
n is the quotient of the six term relation algebra 6Tn

by the two-sided ideal generated by the elements {rij}1≤i<j≤n. Important consequence of the
classical Yang–Baxter relations and relations r2

ij = 0, ∀ i 6= j, is that the both additive Dunkl
elements {θi}1≤i≤n and multiplicative onesΘi =

1∏
a=i−1

h−1
ai

n∏
a=i+1

hia


1≤i≤n

generate commutative subalgebras in the algebra 6T
(0)
n (and in the algebra 6Tn as well), see

Corollary 4.54. The problem we are interested in, is to describe commutative subalgebras gen-

erated by additive (resp. multiplicative) Dunkl elements in the algebra 6T
(0)
n . Notice that the

subalgebra generated by additive Dunkl elements in the abelianization43 of the algebra 6Tn(0)
has been studied in [118, 129]. In order to state the result from [118] we need, let us introduce
a bit of notation. As before, let F ln denotes the complete flag variety, and denote by An the
algebra generated by the curvature of 2-forms of the standard Hermitian linear bundles over

43See, e.g., http://mathworld.wolfram.com/Abelianization.html.

http://mathworld.wolfram.com/Abelianization.html
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the flag variety F ln, see, e.g., [118]. Finally, denote by In the ideal in the ring of polynomials
Z[t1, . . . , tn] generated by the set of elements

(ti1 + · · ·+ tik)k(n−k)+1

for all sequences of indices 1 ≤ i1 < i2 < · · · < ik ≤ n, k = 1, . . . , n.

Theorem 4.56 ([118, 129]).

(A) There exists a natural isomorphism

An −→ Z[t1, . . . , tn]/In,

(B)

Hilb(An, t) = t(
n
2)Tutte

(
Kn, 1 + t, t−1

)
.

Therefore the dimension of An (as a Z-vector space) is equal to the number F(n) of forests
on n labeled vertices. It is well-known that

∑
n≥1

F(n)
xn

n!
= exp

∑
n≥1

nn−1x
n

n!

− 1.

For example,

Hilb(A3, t) = (1, 2, 3, 1), Hilb(A4, t) = (1, 3, 6, 10, 11, 6, 1),

Hilb(A5, t) = (1, 4, 10, 20, 35, 51, 64, 60, 35, 10, 1),

Hilb(A6, t) = (1, 5, 15, 35, 70, 126, 204, 300, 405, 490, 511, 424, 245, 85, 15, 1).

Problem 4.57. Describe subalgebra in (6T
(0)
n )ab generated by the multiplicative Dunkl elements

{Θi}1≤i≤n.

On the other hand, the commutative subalgebra Bn generated by the additive Dunkl elements

in the algebra 6T
(0)
n , n ≥ 3, has infinite dimension. For example,

B3
∼= Z[x, y]/〈xy(x+ y)〉,

and the Dunkl elements θ
(3)
j , j = 1, 2, 3, have infinite order.

Definition 4.58. Define algebra 6TFn to be the quotient of that 6T
(0)
n by the two-sided ideal

generated by the set of “cyclic relations”

m∑
j=2

m∏
a=j

ri1,ia

j∏
a=2

ri1,ia = 0

for all sequences {1 ≤ i1, i2, . . . , im ≤ n} of pairwise distinct integers, and all integers 2 ≤ m ≤ n.

For example,

• Hilb(6TF3 , t) = (1, 3, 5, 4, 1) = (1 + t)(1, 2, 3, 1),

• subalgebra (over Z) in the algebra 6TF3 generated by Dunkl elements θ1 and θ2 has the
Hilbert polynomial equal to (1, 2, 3, 1), and the following presentation: Z[x, y]/I3, where
I3 denotes the ideal in Z[x, y] generated by x3, y3, and (x+ y)3,
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• Hilb(6TF4 , t) = (1, 6, 23, 65, 134, 164, 111, 43, 11, 1)t.

As a consequence of the cyclic relations, one can check that for any integer n ≥ 2 the n-th
power of the additive Dunkl element θi is equal to zero in the algebra 6TFn for all i = 1, . . . , n.
Therefore, the Dunkl elements generate a finite-dimensional commutative subalgebra in the
algebra 6TFn . There exist natural homomorphisms

6TFn −→ 3T (0)
n , Bn

π̃−−−−→ An −→ H∗(F ln,Z) (4.3)

The first and third arrows in (4.3) are epimorphism. We expect that the map π̃ is also epimor-
phism44, and looking for a description of the kernel ker(π̃).

Comments 4.59.

• Let us denote by Bmult
n and Amult

n the subalgebras generated by multiplicative Dunkl ele-

ments in the algebras 6T
(0)
n and

(
6T

(0)
n

)ab
correspondingly. One can define a sequence of

maps

Bmult
n −→ Amult

n
φ̃−→ K∗(F ln), (4.4)

which is a K-theoretic analog of that (4.3). It is an interesting problem to find a geometric
interpretation of the algebra Amult

n and the map φ̃.

• “Quantization”. Let β and {qij = qji, 1 ≤ i, j ≤ n} be parameters.

Definition 4.60. Define algebra 6HTn to be the quotient of the algebra 6Tn by the two sided
ideal generated by the elements {r2

ij − βrij − qij}1≤i,j≤n.

Lemma 4.61. The both additive {θi}1≤i≤n and multiplicative {Θi}1≤i≤n Dunkl elements gen-
erate commutative subalgebras in the algebra 6HTn.

Therefore one can define algebras 6HBn and 6HAn which are a “quantum deformation” of
algebras Bn and An respectively. We expect that in the case β = 0 and a special choice of
“arithmetic parameters” {qij}, the algebra HAn is connected with the arithmetic Schubert and
Grothendieck calculi, cf. [129, 137]. Moreover, for a “general” set of parameters {qij}1≤i,j≤n and
β = 0, we expect an existence of a natural homomorphism

HAmult
n −→ QK∗(F ln),

where QK∗(F ln) denotes a multiparameter quantum deformation of the K-theory ring K∗(F ln)
[72, 76]; see also Section 3.1. Thus, we treat the algebra HAmult

n as the K-theory version of
a multiparameter quantum deformation of the algebra Amult

n which is generated by the curvature
of 2-forms of the Hermitian linear bundles over the flag variety F ln.

• One can define an analogue of the algebras 6T
(0)
n , 6HTn etc., denoted by 6T (Γ) etc., for

any subgraph Γ ⊂ Kn of the complete graph Kn, and in fact for any oriented matroid. It
is known that Hilb((6Tn(Γ)ab, t) = te(Γ)Tutte(Γ, 1 + t, t−1), see, e.g., [11] and the literature
quoted therein.

44Contrary to the case of the map prn : Z[θ1, . . . , θn] −→ (3Tn(0))ab, where the image Im(prn) has dimension
equals to the number of permutations in Sn with (n− 1) inversions see [131, A001892].
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4.2.3 Hilbert series of algebras CYBn and 6Tn
45

Examples 4.62.

Hilb(6T3, t) =
(
1− 3t+ t2

)−1
, Hilb(6T4, t) =

(
1− 6t+ 7t2 − t3

)−1
,

Hilb(6T5, t) =
(
1− 10t+ 25t2 − 15t3 + t4

)−1
,

Hilb(6T6, t) =
(
1− 15t+ 65t2 − 90t3 + 31t4 − t5

)−1
,

Hilb
(
6T

(0)
3 , t

)
= [2][3](1− t)−1, Hilb

(
6T

(0)
4 , t

)
= [4](1− t)−2

(
1− 3t+ t2

)−1
.

In fact, the following statements are true.

Proposition 4.63 (cf. [7]). Let n ≥ 2, then

• The algebras 6Tn and CYBn are Koszul.

• We have

Hilb(6Tn, t) =

(
n−1∑
k=0

(−1)k
{

n

n− k

}
tk

)−1

,

where
{
n
k

}
stands for the Stirling numbers of the second kind, i.e., the number of ways to

partition a set of n things into k nonempty subsets.

•

Hilb(CYBn, t) =

(
n−1∑
k=0

(−1)k(k + 1)!N(k, n)tk

)−1

,

where N(k, n) = 1
n

(
n
k

)(
n
k+1

)
denotes the Narayana number, i.e., the number of Dyck n-paths

with exactly k peaks.

Corollary 4.64.

(A) The Hilbert polynomial of the quadratic dual of the algebra 6Tn is equal to

Hilb
(
6T !

n, t
)

=

n−1∑
k=0

{
n

n− k

}
tk.

It is well-known that∑
n≥0

(
n−1∑
k=0

{
n

n− k

}
tk

)
zn

n!
= exp

(
exp(zt)− 1

t

)
.

Therefore,

dim(6Tn)! = Belln,

where Belln denotes the n-th Bell number, i.e., the number of ways to partition n things
into subsets, see [131]. Recall, that∑

n≥0

Belln
zn

n!
= exp(exp(z)− 1)).

45Results of this subsection have been obtained independently in [7]. This paper contains, among other things,
a description of a basis in the algebra 6Tn, and much more.
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(B) The Hilbert polynomial of the quadratic dual of the algebra CYBn is equal to

Hilb
(
(CYBn

)!
, t) =

n−1∑
k=0

(k + 1)!N(k, n)tk = (n− 1)!L
(α=1)
n−1

(
−t−1

)
tn−1,

where

L(α)
n (x) =

x−αex

n!

dn

dxn
(
e−xxn+α

)
denotes the generalized Laguerre polynomial. The numbers (k + 1)!N(n, k) := L(n, n− k)
are known as Lah numbers, see, e.g., [131, A008297], moreover [131],

dim(CYBn)! = A000262.

It is well-known that

∑
n≥0

n−1∑
k≥0

(k + 1)!N(k, n)tk

 zn

n!
= exp

(
z(1− zt)−1

)
.

Comments 4.65. Let En(u), u 6= 0, 1, be the Yokonuma–Hecke algebra, see, e.g., [124] and the
literature quoted therein. It is known that the dimension of the Yokonuma–Hecke algebra En(u)
is equal to n!Bn, where Bn denotes as before the n-th Bell number. Therefore, dim(En(u)) =
dim((6Tn)! o Sn), where (6Tn)! o Sn denotes the semi-direct product of the algebra (6Tn)! and
the symmetric group Sn. It seems an interesting task to check whether or not the algebras
(6Tn)! o Sn and En(u) are isomorphic.

Remark 4.66. Denote by MYBn the group algebra over Q of the monoid corresponding to
the Yang–Baxter group YBn, see, e.g., Definition 4.48. Let P (MYBn, s, t) denotes the Poincaré
polynomial of the algebra MYBn. One can show that

Hilb(6Tn, s) = P (MYBn,−s, 1)−1.

For example,

P (MYB3, s, t) = 1 + 3st+ s2t3,

P (MYB4, s, t) = 1 + 6st+ s2
(
3t2 + 4t3

)
+ s3t6,

P (MYB5, s, t) = 1 + 10st+ s2
(
15t2 + 10t3

)
+ s3

(
10t4 + 5t6

)
+ s4t10.

Note that Hilb(MYBn, t) = P (MYBn,−1, t)−1 and P (MYBn, 1, 1) = Belln, the n-th Bell
number.

Conjecture 4.67.

P (MYBn, s, t) =
∑
π

s#(π)tn(π),

where the sum runs over all partitions π = (I1, . . . , Ik) of the set [n] := [1, . . . , n] into nonempty

subsets I1, . . . , Ik, and we set by definition, #(π) := n− k, n(π) :=
k∑
a=1

(|Ia|
2

)
.

Remark 4.68. For any finite Coxeter group (W,S) one can define the algebra CYB(W ) :=
CYB(W,S) which is an analog of the algebra CYBn = CYB(An−1) for other root systems.
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Conjecture 4.69 (A.N. Kirillov, Yu. Bazlov). Let (W,S) be a finite Coxeter group with the
root system Φ. Then

• the algebra CYB(W ) is Koszul;

• Hilb(CYB(W ), t) =

{
|S|∑
k=0

rk(Φ)(−t)k
}−1

,

where rk(Φ) is equal to the number of subsets in Φ+ which constitute the positive part of a root
subsystem of rank k. For example, r1(Φ) = |Φ+|, and r2(Φ) is equal to the number of defining
relations in a representation of the algebra CYB(W ).

Example 4.70.

Hilb
(
CYB(B2)!, t

)
= (1, 4, 3), Hilb

(
CYB(B3)!, t

)
= (1, 9, 13, 2),

Hilb
(
CYB(B4)!, t

)
= (1, 16, 46, 28, 5), Hilb

(
CYB(B5)!, t

)
= (1, 25, 130, 200, 101, 12),

Hilb
(
CYB(D4)!, t

)
= (1, 12, 34, 24, 4), Hilb

(
CYB(D5)!, t

)
= (1, 20, 110, 190, 96, 11).

Definition 4.71. The even generic Orlik–Solomon algebra OS+(Γn) is defined to be an associa-
tive algebra (say over Z) generated by the set of mutually commuting elements yi,j , 1 ≤ i 6= j ≤ n,
subject to the set of cyclic relations

yi,j = yj,i, yi1,i2yi2,i3 · · · yik−1,ikyi1,ik = 0 for k = 2, . . . , n,

and all sequences of pairwise distinct integers 1 ≤ i1, . . . , ik ≤ n.

Exercises 4.72.

(1) Show that

exp
(
z(1− zt)−q

)
= 1 +

∑
n≥1

(
1 +

n−1∑
k=1

(
n− 1

k

) k−1∏
a=0

(a+ (n− k)q)tk

)
zn

n!
.

(2) The even generic Orlik–Solomon algebra. Show that the number of degree k, k ≥ 3,
relations in the definition of the Orlik–Solomon algebra OS+(Γn) is equal to 1

2(k − 1)!
(
n
k

)
and also is equal to the maximal number of k-cycles in the complete graph Kn.

Note that if one replaces the commutativity condition in the above definition on the condi-
tion that yi,j ’s pairwise anticommute, then the resulting algebra appears to be isomorphic to
the Orlik–Solomon algebra OS(Γn) corresponding to the generic hyperplane arrangement Γn,
see [119]. It is known [119, Corollary 5.3], that

Hilb(OS(Γn), t) =
∑
F

t|F |,

where the sum runs over all forests F on the vertices 1, . . . , n, and |F | denotes the number of
edges in a forest F .

It follows from Corollary 4.64, that∑
n≥1

Hilb(OS(Γn), t)
zn

n!
= exp

∑
n≥1

nn−2tn−1 z
n

n!

 .

It is not difficult to see that Hilb(OS+(Γn), t) = Hilb(OS(Γn), t). In particular, dim OS+(Γn) =
F(n). Note also that a sequence {Hilb(OS(Γn),−1)}n≥2 appears in [131, A057817]. The poly-
nomials Hilb(An, t), Fn(x, t) and Hilb(OS+(Γn), t) can be expressed, see, e.g., [118], as certain
specializations of the Tutte polynomial T (G;x, y) corresponding to the complete graph G := Kn.
Namely,

Hilb(An, t) = t(
n
2)T
(
Kn; 1 + t, t−1

)
, Hilb

(
OS+(Γn), t

)
= tn−1T

(
Kn; 1 + t−1, 1

)
.
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4.2.4 Super analogue of 6-term relations algebra

Let n, m be non-negative integers.

Definition 4.73. The super 6-term relations algebra 6Tn,m is an associative algebra over Q
generated by the elements {xi,j , 1 ≤ i 6= j ≤ n} and {yα,β, 1 ≤ α 6= β ≤ m} subject to the set
of relations

(0) xi,j + xj,i = 0, yα,β = yβ,α;

(1) xi,jxk,l = xk,lxi,j , xi,jyα,β = yα,βxi,j , yα,βyγ,δ + yγ,δyα,β = 0, if tuples (i, j, k, l), (i, j, α, β),
as well as (α, β, γ, δ) consist of pair-wise distinct integers;

(2) classical Yang–Baxter relations and theirs super analogue: [xi,k, xj,i+xj,k]+ [xi,j , xj,k] = 0
if 1 ≤ i, j, k ≤ n are distinct, [xi,k, yj,i + yj,k] + [xi,j , yj,k] = 0 if 1 ≤ i, j, k ≤ min(n,m) are
distinct, [yα,γ , yβ,α + yβ,γ ]+ + [yα,β, yβ,γ ]+ = 0 if 1 ≤ α, β, γ ≤ m are distinct.

Recall that [a, b]+ := ab+ ba denotes the anticommutator of elements a and b.

Conjecture 4.74. The algebra 6Tn,m is Koszul.

Theorem 4.75. Let n,m ∈ Z≥1, one has

Hilb
(
(6Tn)!, t

)
Hilb

(
(6Tm)!, t

)
=

min(n,m)−1∑
k=0

{
min(n,m)

min(n,m)− k

}
Hilb

(
(6Tn−k,m−k)

!, t
)
t2k,

where as before
{

n
n−k
}

denotes the Stirling numbers of the second kind, see, e.g., [131, A008278].

Corollary 4.76. Let n,m ∈ Z≥1. One has

(a) Symmetry: Hilb(6Tn,m, t) = Hilb(6Tm,n, t).

(b) Let n ≤ m, then

Hilb
(
(6Tn,m)!, t

)
=

n−1∑
k=0

s(n− 1, n− k)Hilb
(
(6Tn−k)

!, t
)
Hilb

(
(6Tm−k)

!, t
)
t2k,

where s(n− 1, n− k) denotes the Stirling numbers of the first kind, i.e.,

n−1∑
k=0

s(n− 1, n− k)tk =
n−1∏
j=1

(1− jt).

(c) dim(6Tn,n)! is equal to the number of pairs of partitions of the set {1, 2, . . . , n} whose meet
is the partition {{1}, {2}, . . . , {n}}, see, e.g., [131, A059849].

Example 4.77.

Hilb
(
(6T3,2)!, t

)
= Hilb

(
(6T2,3)!, t

)
= (1, 4, 3),

Hilb
(
(6T2,4)!, t

)
= Hilb

(
(6T4,2)!, t

)
= (1, 7, 12, 5), Hilb

(
(6T3,3)!, t

)
= (1, 6, 8),

Hilb
(
(6T2,5)!, t

)
= Hilb

(
(6T5,2)!, t

)
= (1, 11, 34, 34, 9),

Hilb
(
(6T3,4)!, t

)
= Hilb

(
(6T4,3)!, t

)
= (1, 9, 23, 16),

Hilb
(
(6T4,4)!, t

)
= (1, 12, 44, 50, 6),

Hilb
(
(6T3,5)!, t

)
= Hilb

(
(6T5,3)!, t

)
= (1, 13, 53, 79, 34),

Hilb
(
(6T4,5)!, t

)
= Hilb

(
(6T5,4)!, t

)
= (1, 16, 86, 182, 131, 12),

Hilb
(
(6T5,5)!, t

)
= (1, 20, 140, 410, 462, 120).
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Now let us define in the algebra 6Tn,m the Dunkl elements θi :=
∑
j 6=i

xi,j , 1 ≤ i ≤ n, and

θ̄α :=
∑
β 6=α

yα,β, 1 ≤ α ≤ m.

Lemma 4.78. One has

• [θi, θj ] = 0,

• [θi, θ̄α] = [xi,α, yi,α],

• [θ̄α, θ̄β]+ = 2y2
α,β if α 6= β.

Remark 4.79 (“odd” six-term relations algebra). In particular, one can define an “odd” analog

6T
(−)
n = 6T0,n of the six term relations algebra 6Tn. Namely, the algebra 6T

(−)
n is given by the

set of generators {yij , 1 ≤ i < j ≤ n}, and that of relations:

1) yi,j and yk,l anticommute if i, j, k, l are pairwise distinct;

2) [yi,j , yi,k + yj,k]+ + [yi,k, yj,k]+ = 0, if 1 ≤ i < j ≤ k ≤ n, where [x, y]+ = xy + yx denotes
the anticommutator of x and y.

The “odd” three term relations algebra 3T−n can be obtained as the quotient of the alge-
bra 6T−n by the two-sided ideal generated by the three term relations yijyjk + yjkyki+ ykiyij = 0
if i, j, k are pairwise distinct.

One can show that the Dunkl elements θi and θj , i 6= j, given by formula

θi =
∑
j 6=i

yij , i = 1, . . . , n,

form an anticommutative family of elements in the algebra 6T
(−)
n .

In a similar fashion one can define an “odd” analogue of the dynamical six term relations
algebra 6DTn, see Definition 2.3 and Section 2.1.1, as well as define an “odd’ analogues of the
algebra 3MTn(β,0), see Definition 3.7, the Kohno–Drinfeld algebra, the Hecke algebra and few
others considered in the present paper. Details are omitted in the present paper.

More generally, one can ask what are natural q-analogues of the six term and three term
relations algebras? In other words to describe relations which ensure the q-commutativity of
Dunkl elements defined above. First of all it would appear natural that the “q-locality and q-
symmetry conditions” hold among the set of generators {yij , 1 ≤ i 6= j ≤ n}, that is yij + qyji =
0, yijykl = qyklyij if i < j, k < l, and {i, j} ∩ {k, l} = ∅.

Another natural condition is the fulfillment of q-analogue of the classical Yang–Baxter rela-
tions, namely, [yik, yjk]q+[yik, yji]q+[yij , yjk]q = 0 if i < j < k, where [x, y]q := xy−qyx denotes
the q-commutator. However we are not able to find the q-analogue of the classical Yang–Baxter
relation listed above in the mathematical and physical literature yet. Only cases q = 1 and
q = −1 have been extensively studied.

4.3 Four term relations algebras / Kohno–Drinfeld algebras

4.3.1 Kohno–Drinfeld algebra 4Tn and algebra CYBn

Definition 4.80. The 4-term relations algebra (or the Kohno–Drinfeld algebra, or infinitesimal
pure braids algebra) 4Tn is an associative algebra (say over Q) with the set of generators yi,j ,
1 ≤ i < j ≤ n, subject to the following relations

1) yi,j and yk,l are commute, if i, j, k, l are all distinct;

2) [yi,j , yi,k + yj,k] = 0, [yi,j + yi,k, yj,k] = 0 if 1 ≤ i < j ≤ k ≤ n.
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Note that the algebra 4Tn is given by
(
n
2

)
generators and 2

(
n
3

)
+ 3
(
n
4

)
quadratic relations, and

the element

c :=
∑

1≤i<j≤n
yi,j

belongs to the center of the Kohno–Drinfeld algebra.

Definition 4.81. Denote by 4T
(0)
n the quotient of the algebra 4Tn by the (two-sided) ideal

generated by by the set of elements {y2
i,j , 1 ≤ i < j ≤ n}.

More generally, let β, {qij , 1 ≤ i < j ≤ n} be the set of parameters, denote by 4HTn the
quotient of the algebra 4Tn by the two-sided ideal generated by the set of elements {y2

ij −βyij −
qij , 1 ≤ i < j ≤ n}.

These algebras are naturally graded, with deg(yi,j) = 1, deg(β) = 1, deg(qij) = 2, as well as
each of that algebras has a natural filtration by setting deg(yi,j) = 1, deg(β) = 0, deg(qij) = 0,
∀ i 6= j.

It is clear that the algebra 4Tn can be considered as the infinitesimal deformation gi,j :=
1 + εyi,j , ε −→ 0, of the pure braid group Pn.

There is a natural action of the symmetric group Sn on the algebra 4Tn (and also on 4T 0
n)

which preserves the grading: it is defined by w · yi,j = yw(i),w(j) for w ∈ Sn. The semi-direct

product QSnn4Tn (and also that QSnn4T 0
n) is a Hopf algebra denoted by Bn (respectively B(0)

n ).

Remark 4.82. There exists the natural map

CYBn −→ 4Tn given by yi,j := ui,j + uj,i.

Indeed, one can easily check that

[yij , yik + yjk] = wijk + wjik − wkij − wkji,

see Section 2.3.1, Definition 2.21 for a definition of the classical Yang–Baxter algebra CY Bn,
and Section 2, equation (2.3), for a definition of the element wijk.

Remark 4.83.

• Much as the relations in the algebra 6Tn are chosen in a way to imply (and “essentially”46

equivalent) the pair-wise commutativity of the Dunkl elements {θi}1≤i≤n, the relations in
the Kohno–Drinfeld algebra imply (and “essentially” equivalent) to pair-wise commutati-
vity of the Jucys–Murphy elements (or, equivalently, dual JM-elements) dj :=

∑
1≤a<j

yaj ,

2 ≤ j ≤ n (resp. di =
∑

1≤a≤i
yn−i,n−a+1, 1 ≤ i ≤ n− 1).

• It follows from the classical 3-term identity (“Jacobi identity”)

1

(a− b)(a− c)
− 1

(a− b)(b− c)
+

1

(a− c)(b− c)
= 0,

that if elements {yi,j | 1 ≤ i < j ≤ n} satisfy the 4-term algebra relations, see Defini-
tion 4.80, and t1, . . . , tn, a set of (pair-wise) commuting parameters, then the elements

ri,j :=
yi,j
ti − tj

46Together with locality and factorization conditions a set of defining relations in the algebra 6Tn is equivalent
to the commutativity property of Dunkl’s elements.
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satisfy the set of defining relations of the 6-term relations algebra 6Tn, see Section 4.2.1,
Definition 4.47. In particular, the Knizhnik–Zamolodchikov elements

KZj :=
∑
i 6=j

yi,j
ti − tj

, 1 ≤ j ≤ n,

form a pair-wise commuting family (by definition, we put yi,j = yj,i if i > j).

Example 4.84.

(1) Yang representation of the 4Tn. Let Sn be the symmetric group acting identically on the
set of variables {x1, . . . , xn}. Clearly that the elements {yi,j := sij}1≤i<j≤n, yi,j := yj,i
if i > j, satisfy the Kohno–Drinfeld relations listed in Definition 4.80. Therefore the
operators uij defined by

uij = (xi − xj)−1sij

give rise to a representation of the algebra 3Tn on the field of rational functions Q(x1, . . .,
xn). The Dunkl–Gaudin elements

θi =
∑
j,j 6=i

yij , i = 1, . . . , n

correspond to the truncated Gaudin operators acting in the tensor space (C)⊗n. Cf.
Section 3.3.

(2) Let A = U(sl(2)) be the universal enveloping algebra of the Lie algebra sl(2). Recall
that the algebra sl(2) is spanned by the elements e, f , h, so that [h, e] = 2e, [h, f ] = −2f ,
[e, f ] = h. Consider the element Ω = 1

2h⊗h+e⊗f+f⊗e. Then the map yi,j −→ Ωi,j ∈ A⊗n
defines a representation of the Kohno–Drinfeld algebra 4Tn on that A⊗n. The element
KZj defined above, corresponds to the truncated (or at critical level) rational Knizhnik–
Zamolodchikov operator. Cf. Section 4.2.1, Example 4.49.

Proposition 4.85 (T. Kohno, V. Drinfeld).

Hilb(4Tn, t) =

n−1∏
j=1

(1− jt)−1 =
∑
k≥0

{
n+ k − 1

n− 1

}
tk,

where
{
n
k

}
stands for the Stirling numbers of the second kind, i.e., the number of ways to partition

a set of n things into k nonempty subsets.

Remark 4.86. It follows from [6] that Hilb(4Tn, t) is equal to the generating function

1 +
∑
d≥1

v
(n)
d td

for the number v
(n)
d of Vassiliev invariants of order d for n-strand braids. Therefore, one has the

following equality:

v
(n)
d =

{
n+ d− 1

n− 1

}
,

i.e., the number of Vassiliev invariants of order d for n-strand braids is equal to the Stirling
number of the second kind

{
n+d−1
n−1

}
.
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We expect that the generating function

1 +
∑
d≥1

v̂
(n)
d td

for the number v̂
(n)
d of Vassiliev invariants of order d for n-strand virtual braids is equal to

the Hilbert series Hilb(4NTn, t) of the nonsymmetric Kohno–Drinfeld algebra 4NTn, see Sec-
tion 4.3.2.

Proposition 4.87 (cf. [7]). The algebra 4NTn, t) is Koszul, and

Hilb(4NTn, t) =

(
n−1∑
k=0

(k + 1)!N(k, n)(−t)k
)−1

,

Hilb
(
(4NTn)!, t

)
= (n− 1)!L

(α=1)
n−1

(
−t−1

)
tn−1,

where N(k, n) := 1
n

(
n
k

)(
n
k+1

)
denotes the Narayana number, i.e., the number of Dyck n-paths

with exactly k peaks,

L(α)
n (x) =

xαex

n!

dn

dxn
(
exx

n+α
)

denotes the generalized Laguerre polynomial.

See also Theorem 4.91 below.
It is well-known that the quadratic dual 4T !

n of the Kohno–Drinfeld algebra 4Tn is isomorphic
to the Orlik–Solomon algebra of type An−1, as well as the algebra 3T anti

n . However the algebra
4T 0

n is failed to be Koszul.

Examples 4.88.

Hilb
(
4T 0

3 , t
)

= [2]2[3], Hilb
(
4T 0

4 , t
)

= (1, 6, 19, 42, 70, 90, 87, 57, 23, 6, 1),

Hilb
((

4T 0
3

)!
, t
)
(1− t) = (1, 2, 2, 1), Hilb

((
4T 0

4

)!
, t
)
(1− t)2 = (1, 4, 6, 2,−4,−3),

Hilb
((

4T 0
5

)!
, t
)
(1− t)2 = (1, 8, 26, 40, 24,−3,−6).

We expect that Hilb
(
(4T 0

n)!, t
)

is a rational function with the only pole at t = 1 of order [n/2],
cf. Examples 4.77.

Remark 4.89. One can show that if n ≥ 4, then Hilb(4T 0
n , t) < Hilb(3T 0

n , t) contrary to the
statement of Conjecture 9.6 from [67].

4.3.2 Nonsymmetric Kohno–Drinfeld algebra 4NTn,
and McCool algebras PΣn and PΣ+

n

Definition 4.90. The nonsymmetric 4-term relations algebra (or the nonsymmetric Kohno–
Drinfeld algebra) 4NTn is an associative algebra (say over Q) with the set of generators yi,j ,
1 ≤ i 6= j ≤ n, subject to the following relations

1) yi,j and yk,l are commute if i, j, k, l are all distinct;

2) [yi,j , yi,k + yj,k] = 0 if i, j, k are all distinct.

We denote by 4NT+
n the quotient of the algebra 4NTn by the two-sided ideal generated by

the elements {yij + yji = 0, 1 ≤ i 6= j ≤ n}.
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Theorem 4.91. One has

Hilb(4NTn, t) = Hilb(CYBn, t), Hilb
(
4NT+

n , t
)

= Hilb(6Tn, t)

for all n ≥ 2.

We expect that the both algebras 4NTn and 4NT+
n are Koszul.

Definition 4.92.

(1) Define the McCool algebra PΣn to be the quotient of the nonsymmetric Kohno–Drinfeld
algebra 4NTn by the two-sided ideal generated by the elements {yikyjk − yjkyik} for all
pairwise distinct i, j and k.

(2) Define the upper triangular McCool algebra PΣ+
n to be the quotient of the McCool algebra

PΣn by the two-sided ideal generated by the elements {yij + yji}, 1 ≤ i 6= j ≤ n.

Theorem 4.93. The quadratic duals of the algebras PΣn and PΣ+
n have the following Hilbert

polynomials

Hilb
(
PΣ!

n, t
)

= (1 + nt)n−1, Hilb
((
PΣ+

n

)!
, t
)

=

n−1∏
j=1

(1 + jt).

Proposition 4.94.

(1) The quadratic dual PΣ!
n of the algebra PΣn admits the following description. It is gene-

rated over Z by the set of pairwise anticommuting elements {yij , 1 ≤ i 6= j ≤ n}, subject
to the set of relations

(a) y2
ij = 0, yijyji = 0, 1 ≤ i 6= j ≤ n,

(b) yikyjk = 0 for all distinct i, j, k,

(c) yijyjk + yikyij + ykjyik = 0 for all distinct i, j, k.

(2) The quadratic dual (PΣ+
n )! of the algebra PΣ+

n admits the following description. It is
generated over Z by the set of pairwise anticommuting elements {zij , 1 ≤ i < j ≤ n},
subject to the set of relations

(a) z2
ij = 0 for all i < j,

(b) zijzjk = zijzik for all 1 ≤ i < j < k ≤ n.

Comments 4.95 (the McCool groups and algebras). The McCool group PΣn is, by definition,
the group of pure symmetric automorphisms of the free group Fn consisting of all automorphism
that, for a fixed basis {x1, . . . , xn}, send each xi to a conjugate of itself. This group is generated
by automorphisms αij , 1 ≤ i 6= j ≤ n, defined by

αij(xk) =

{
xjxix

−1
j , k = i,

xk, k 6= i.

McCool have proved that the relations
[αij , αkl] = 1, i, j, k, l are distinct,

[αij , αji] = 1, i 6= j,

[αij , αikαjk] = 1, i, j, k are distinct.

form the set of defining relations for the group PΣn The subgroup of PΣn generated by the αij
for 1 ≤ i < j ≤ n is denoted by PΣ+

n and is called by upper triangular McCool group. It is
easy to see that the McCool algebras PΣn and PΣ+

n are the “infinitesimal deformations” of the
McCool groups PΣn and PΣ+

n respectively.
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Theorem 4.96.

(1) There exists a natural isomorphism

H∗(PΣn,Z) ' PΣ!
n

of the quadratic dual PΣ!
n of the McCool algebra PΣn and the cohomology ring H∗(PΣn,Z)

of the McCool group PΣn, see [61].

(2) There exists a natural isomorphism

H∗(PΣ+
n ,Z) ' (PΣ+

n )!

of the quadratic dual (PΣ+
n )! of the upper triangular McCool algebra PΣ+

n and the coho-
mology ring H∗(PΣ+

n ,Z) of the upper triangular McCool group PΣ+
n , see [27].

4.3.3 Algebras 4TTn and 4STn

Definition 4.97.

(I) Algebra 4TTn is generated over Z by the set of elements {xij , 1 ≤ i 6= j ≤ n}, subject to
the set of relations

(1) xijxkl = xklxij if all i, j, k, l are distinct,

(2) [xij + xjk, xik] = 0, [xji + xkj , xki] = 0 if i < j < k.

(II) Algebra 4STn is generated over Z by the set of elements {xij , 1 ≤ i 6= j ≤ n}, subject to
the set of relations

(1) [xij , xkl] = 0, [xij , xji] = 0 if i, j, k, l are distinct,

(2) [xij , xik] = [xik, xjk] = [xjk, xij ], [xji, xki] = [xki, xkj ] = [xkj , xii],

(3) [xij , xki] = [xkj , xij ] = [xji, xik] = [xik, xkj ] = [xki, xjk] = [xjk, xji] if i < j < k.

Proposition 4.98. One has

t
∑
n≥2

Hilb
(
(4TTn)!, t

)zn
n!

=
exp(−tz)
(1− z)2t

− 1− tz.

Therefore, dim(4TTn)! is equal to the number of permutations of the set [1, . . . , n + 1] having
no substring [k, k + 1]; also, for n ≥ 1 equals to the maximal permanent of a nonsingular n× n
(0, 1)-matrix, see [131, A000255]47. Moreover, one has

Hilb
(
(4STn)!, t

)
= (1 + t)n(1 + nt)n−2,

cf. Conjecture 4.112.

We expect that The both algebras 4TTn and 4STn are Koszul.

Problem 4.99. Give a combinatorial interpretation of polynomials Hilb((4TTn)!, t) and con-
struct a monomial basis in the algebras (4TTn)! and 4STn.

47See also a paper by F. Hivert, J.-C. Novelli and J.-Y. Thibon [57, Section 3.8.4] for yet another combinatorial
interpretation of the dimension of the algebra (4TTn)!.
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4.4 Subalgebra generated by Jucys–Murphy elements in 4T 0
n

Definition 4.100. The Jucys–Murphy elements dj , 2 ≤ j ≤ n, in the quadratic algebra 4Tn are
defined as follows

dj =
∑

1≤i<j
yi,j , j = 2, . . . , n.

It is clear that Jucys–Murphy’s elements dj are the infinitesimal deformation of the elements
D1,j ∈ Pn.

Theorem 4.101.

(1) The Jucys–Murphy elements dj, 2 ≤ j ≤ n, commute pairwise in the algebra 4Tn.

(2) In the algebra 4T 0
n the Jucys–Murphy elements dj, 2 ≤ j ≤ n, satisfy the following relations

(d2 + · · ·+ dj)d
2j−3
j = 0, 2 ≤ j ≤ n.

(3) Subalgebra (over Z) in 4T 0
n generated by the Jucys–Murphy elements d2, . . . , dn has the

following Hilbert polynomial
n−1∏
j=1

[2j].

(4) There exists an (birational) isomorphism Z[x1, . . . , xn−1]/Jn−1 −→ Z[d2, . . . , dn] defined

by dj :=
n−j∏
i=1

xi, 2 ≤ j ≤ n, where Jn−1 is a (two-sided) ideal generated by ei(x
2
1, . . . , x

2
n−1),

1 ≤ i ≤ n − 1, and ei(x1, . . . , xn−1) stands for the i-th elementary symmetric polynomial
in the variables x1, . . . , xn−1.

Remark 4.102.

(1) It is clearly seen that the commutativity of the Jucys–Murphy elements is equivalent to the
validity of the Kohno–Drinfeld relations and the locality relations among the generators
{yi,j}1≤i<j≤n.

(2) Let’s stress that d2j−2
j 6= 0 in the algebra 4T 0

n for j = 3, . . . , n. For example, d4
3 =

y13y23y13y23 + y23y13y23y13 6= 0 since dim(4T 0
3 )4 = 1 and it is generated by the element d4

3.

(3) The map ι : yi,j −→ yn+1−j,n+1−i preserves the relations 1) and 2) in the definition of the
algebra 4Tn, and therefore defines an involution of the Kohno–Drinfeld algebra. Hence
the elements

d̂j :=
n∑

k=j+1

yj,k = ι(dn+1−j), 1 ≤ j ≤ n− 1

also form a pairwise commuting family.

Problems 4.103.

(a) Compute Hilbert series of the algebra 4T 0
n and its quadratic dual algebra (4T 0

n)!.

(b) Describe subalgebra in the algebra 4HTn generated by the Jucys–Murphy elements dj, 2 ≤
j ≤ n.

It is well-known that the Kohno–Drinfeld algebra 4Tn is Koszul, and its quadratic dual 4T !
n

is isomorphic to the anticommutative quotient 3T 0,anti
n of the algebra 3T

(−),0
n .

On the other hand, if n ≥ 3 the algebra 4T 0
n is not Koszul, and its quadratic dual is isomorphic

to the quotient of the ring of polynomials in the set of anticommutative variables {ti,j | 1 ≤ i <
j ≤ n}, where we do not impose conditions t2ij = 0, modulo the ideal generated by Arnold’s
relations {ti,jtj,k + ti,k(ti,j − tj,k) = 0} for all pairwise distinct i, j and k.
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4.5 Nonlocal Kohno–Drinfeld algebra NL4Tn

Definition 4.104. Nonlocal Kohno–Drinfeld algebra NL4Tn is an associative algebra over Z
with the set of generators {yij , 1 ≤ i < j ≤ n} subject to the set of relations

(1) yijykl = yklyij if (i− k)(i− l)(j − k)(j − l) > 0,

(2)
[
yij ,

j∑
a=i

yak
]

= 0 if i < j < k,

(3)
[
yjk,

k∑
a=j

yia
]

= 0 if i < j < k.

It’s not difficult to see that relations (1)–(3) imply the following relations

(4)
[
xij ,

j−1∑
a=i+1

(yia + yaj)
]

= 0 if i < j.

Let’s introduce in the nonlocal Kohno–Drinfeld algebra NL4Tn the Jucys–Murphy elements
(JM-elements for short) dj and the dual JM-elements d̂j as follows

dj =

j−1∑
a=1

yaj , d̂j =

n∑
a=n−j+2

yn−j+1,a, j = 2, . . . , n. (4.5)

It follows from relations (1) and (2) (resp. (1) and (3)) that the Jucys–Murphy elements d2, . . . , dn
(resp. d̂2, . . . , d̂n) form a commutative subalgebra in the algebra NL4Tn. Moreover, it follows

from relations (1)–(3) that the element c1 :=
n∑
j=2

dj =
n∑
j=2

d̂j belongs to the center of the algebra

NL4Tn.

Theorem 4.105.

(1) The algebra NL4Tn is Koszul, and

Hilb
(
(NL4Tn)!, t

)
=

n−1∑
k=0

Ck

(
n+ k − 1

2k

)
tk,

where Ck = 1
k+1

(
2k
k

)
stands for the k-th Catalan number.

(2) The quadratic dual (NL4Tn)! of the nonlocal Kohno–Drinfeld algebra NL4Tn is an associa-
tive algebra generated by the set of mutually anticommuting elements {tij , 1 ≤ i < j ≤ n}
subject to the set of relations

• t2ij = 0 if 1 ≤ i < j ≤ n,

• Arnold’s relations: tijtjk + tiktij + tjktik = 0 if i < j < k,

• disentanglement relations: tiktjl + tiltik + tjltil = 0 if i < j < k < l.

Therefore the algebra (NL4Tn)! is the quotient of the Orlik–Solomon algebra OSn by the
ideal generated by Disentanglement relations, and dim((NL4Tn+1)!) is equal to the number of
Schröder paths, i.e., paths from (0, 0) to (2n, 0) consisting of steps U = (1, 1), D = (1,−1),
H = (2, 0) and never going below the x-axis. The Hilbert polynomial Hilb((NL4Tn)!, t) is the
generating function of such paths with respect to the number of U ′s, see [131, A088617].

Remark 4.106. Denote byHn(q) “the normalized” Hecke algebra of type An, i.e., an associative
algebra generated over Z[q, q−1] by elements T1, . . . , Tn−1 subject to the set of relations
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(a) TiTj = TjTi if |i− j| > 1, TiTjTi = TjTiTj if |i− j| = 1,

(b) T 2
i = (q − q−1) Ti + 1 for i = 1, . . . , n− 1.

If 1 ≤ i < j ≤ n− 1, let’s consider elements T(ij) := TiTi+1 · · ·Tj−1TjTj−1 · · ·Ti+1Ti.

Lemma 4.107. The elements {T(ij), 1 ≤ i < j < n − 1} satisfy the defining relations of the
non-local Kohno–Drinfeld algebra NL4Tn−1, see Definition 4.104.

Therefore the map yij → H(ij) defines a epimorphism ιn : NL4Tn −→ Hn+1(q).

Definition 4.108. Denote by NL4Tn the quotient of the non-local Kohno–Drinfeld algebra
NL4Tn by the two-sided ideal In generated by the following set of degree three elements:

(1) zij := yi,j+1yijyj,j+1 − yj,j+1yijyi,j+1 if 1 ≤ i < j ≤ n,

(2) ui := yi,i+1

 i−1∑
a=1

i−1∑
b=1, b 6=a

yaiyb,i+1

−
 i−1∑
a=1

i−1∑
b=1, b 6=a

yb,i+1yai

 yi,i+1

if 1 ≤ i ≤ n− 1,

(3) vi := yi,i+1

 n∑
a=i+1

n∑
b=i+1, b 6=a

yi+1,ayi,b

−
 n∑
a=i+1

n∑
b=i+1, b 6=a

yi+1,ayi,b

 yi,i+1,

if 1 ≤ i ≤ n− 1.

Proposition 4.109.

(1) The ideal Tn belongs to the kernel of the epimorphism ιn : In ⊂ Ker(ιn),

(2) Let d2, . . . , dn (resp. d̂2, . . . , d̂n) be the Jucys–Murphy elements (resp. dual JM-elements)
in the algebra NL4Tn given by the formula (4.5).

Then the all elementary symmetric polynomials ek(d2, . . . , dn) (resp. ek(d̂2, . . . , d̂n)) of deg-
ree k, 1 ≤ k < n, in the Jucys–Murphy elements d2, . . . , dn, (resp. in the dual JM-elements
d̂2, . . . , d̂n), commute in the algebra NL4Tn with the all elements yi,i+1, i = 1, . . . , n− 1.

Therefore, there exists an epimorphism of algebras NL4Tn −→ Hn(q), and images of the ele-
ments ek(d2, . . . , dn) (resp. ek(d̂2, . . . , d̂n), 1 ≤ k < n, belongs to the center of the “normalized”
Hecke algebra Hn(q), and in fact generate the center of algebra Hn(q).

Few comments in order:

(A) Let N`4Tn be an associative algebra over Z with the set of generators {yij , 1 ≤ i < j ≤ n}
subject to the set of relations

(1) yijykl = yklyij if (i− k)(i− l)(j − k)(j − l) > 0,

(2)
[
yij ,

j∑
a=i

yak
]

= 0 if i < j < k.

Proposition 4.110.

(1) The algebra N`4Tn is Koszul and has the Hilbert series equals to

Hilb(N`4Tn, t) =

(
n−1∑
k=0

(−1)kN(k, n)tk

)−1

,

where N(k, n) := 1
n

(
n
k

)(
n
k+1

)
denotes the Narayana number, i.e., the number of Dyck n-

paths with exactly k peaks, see, e.g., [131, A001263]. Therefore, dim(N`4Tn)! = 1
n+1

(
2n
n

)
,

the n-th Catalan number.
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(2) Elementary symmetric polynomials ek(d2, . . . , dn) of degree k, 1 ≤ k < n, in the Jucys–
Murphy elements d2, . . . , dn, commute in the algebra N`4Tn with the all elements yi,i+1,
i = 1, . . . , n− 1.

(B) The kernel of the epimorphism NL4Tn −→ Hn(q) contains the elements

{yi,i+1yi+1,i+2yi,i+1 − yi+1,i+2yi,i+1yi+1,i+2, i = 1, . . . , n− 2},{
T 2
i,i+1 −

(
q − q−1

)
Ti,i+1 − 1

}
,

as well as the following set of commutators

[yij , ek(di, . . . , dj)], 1 ≤ k ≤ j − i+ 1.

It is an interesting task to find defining relations among the Jucys–Murphy elements
{dj , j = 2, . . . , n} in the algebra NL4Tn or that N`4Tn. We expect that the Jucys–Murphy
element dk satisfies the following relation (= minimal polynomial) in the Hecke algebra
Hn(q), n ≥ k,

k−1∏
a=1

(
dk −

q − q2a+1

1− q2

)(
dk +

q−1 − q−2a−1

1− q−2

)
= 0.

4.5.1 On relations among JM-elements in Hecke algebras

Let Hn(q) be the “normalized” Hecke algebra of type An, see Remark 4.106. Let λ ` n be
a partition of n. For a box x = (i, j) ∈ λ define

cλ(x; q) := q
1− q2(j−i)

1− q2
.

It is clear that if q = 1, cq=1(x) is equal to the content c(x) of a box x ∈ λ. Denote by

Λ(n)
q = Z

[
q, q−1

]
[z1, . . . , zn]Sn

the space of symmetric polynomials over the ring Z[q, q−1] in variables {z1, . . . , zn}.

Definition 4.111. Denote by J
(n)
q the set of symmetric polynomials f ∈ Λ

(n)
q such that for any

partition λ ` n one has

f(cλ(x; q)|x ∈ λ) = 0.

For example, one can check that symmetric polynomial

e2
1 −

(
q2 + 1 + q−2

)
e2 − 2

(
q − q−1

)
e1 − 3

belongs to the set J
(3)
q .

Finally, denote by J(n)
q the ideal in the ring Z[q, q−1][z1, . . . , zn] generated by the set J

(n)
q .

Conjecture 4.112. The algebra over Z[q, q−1] generated by the Jucys–Murphy elements d2,
. . . , dn corresponding to the Hecke algebra Hn(q) of type An−1, is isomorphic to the quotient of

the algebra Z[q, q−1][z1, . . . , zn] by the ideal J(n)
q .

It seems an interesting problem to find a minimal set of generators for the ideal J(n)
q .



90 A.N. Kirillov

Comments 4.113. Denote by JM(n) the algebra over Z generated by the JM-elements d2,
. . . , dn, deg(di) = 1, ∀ i, corresponding to the symmetric group Sn. In this case one can check
Conjecture 4.112 for n < 8, and compute the Hilbert polynomial(s) of the associated graded
algebra(s) gr(JM(n)). For example48

Hilb(gr(JM(2), t) = (1, 1), Hilb(gr(JM(3), t) = (1, 2, 1),

Hilb(gr(JM(4), t) = (1, 3, 4, 2), Hilb(gr(JM(5), t) = (1, 4, 8, 9, 4),

Hilb(gr(JM(6), t) = (1, 5, 13, 21, 21, 12, 3),

Hilb(gr(JM(7), t) = (1, 6, 19, 40, 59, 60, 37, 10).

It seems an interesting task to find a combinatorial interpretation of the polynomials
Hilb(gr(JM(n)), t) in terms of standard Young tableaux of size n.

Let {χλ, λ ` n} be the characters of the irreducible representations of the symmetric group Sn,
which form a basis of the center Zn of the group ring Z[Sn]. The famous result by A. Jucys [62]
states that for any symmetric polynomial f(z1, . . . , zn) the character expansion of f(d2, . . . , dn, 0)
∈ Zn is

f(d2, . . . , dn, 0) =
∑
λ`n

f(Cλ)

Hλ
χλ,

where Hλ =
∏
x∈λ

hx denotes the product of all hook-lengths of λ, and Cλ := {c(x)}x∈λ denotes

the set of contents of all boxes of λ.

Recall that the Jucys–Murphy elements
{
dHj
}

2≤j≤n in the (normalized) Hecke algebra Hn(q)

are defined as follows: dHj :=
∑
i<j

T(ij), where T(ij) := Ti · · ·Tj−1TjTj−1 · · ·Ti. Finally denote

by Hλ(q) and C
(q)
λ the hook polynomial and the set {cλx; q)}x ∈ λ. Then for any symmetric

polynomial f(z1, . . . , zn) one has

f
(
dH2 , . . . , d

H
n , 0

)
=
∑
λ`n

f(C
(q)
λ )

Hλ(q)
χλq ,

where χλq denotes the q-character of the algebra Hn(q).

Therefore, if f ∈ J (n)
q , then f

(
dH2 , . . . , d

H
n , 0

)
= 0. It is an open problem to prove/disprove

that if f
(
dH2 , . . . , d

H
n , 0

)
= 0, then f

(
C

(q)
λ

)
= 0 for all partitions of size n (even in the case q = 1).

4.6 Extended nil-three term relations algebra and DAHA, cf. [24]

Let A := {q, t, a, b, c, h, e, f, . . .} be a set of parameters.

Definition 4.114. Extended nil-three term relations algebra 3Tn is an associative algebra over
Z[q±1, t±1, a, b, c, h, e, . . .] with the set of generators {ui,j , 1 ≤ i 6= j ≤ n, xi, 1 ≤ i ≤ n, π}
subject to the set of relations

(0) ui,j + uj,i = 0, u2
i,j = 0,

(1) xixj = xjxi, ui,juk,l = uk,lui,j if i, j, k, l are distinct,

(2) xiukl = uk,lxi if i 6= k, l,

48I would like to thank Dr. S. Tsuchioka for computation the Hilbert polynomials Hilb(JM(n), t), as well as
the sets of defining relations among the Jucys–Murphy elements in the symmetric group Sn for n ≤ 7.
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(3) xiui,j = ui,jxj + 1, xjui,j = ui,jxi − 1,

(4) ui,juj,k + uk,iui,j + uj,kuk,i = 0 if i, j, k are distinct,

(5) πxi = xi+1π if 1 ≤ i < n, πxn = t−1x1π,

(6) πuij = ui+1,j+1 if 1 ≤ i < j < n, πjun−j+1,n = tu1,jπ
j , 2 ≤ j ≤ n.

Note that the algebra 3Tn contains also the set of elements {πaujn, 1 ≤ a ≤ n− j}.

Definition 4.115 (cf. [87]). Let 1 ≤ i < j ≤ n, define

Ti,j = a+ (bxi + cxj + h+ exixj)ui,j .

Lemma 4.116.

(1) T 2
i,j = (2a+ b− c)Ti,j − a(a+ b− c) if a = 0, then T 2

ij = (b− c)Tij.
(2) Coxeter relations

Ti,jTj,kTi,j = Tj,kTi,jTj,k,

are valid, if and only if the following relation holds

(a+ b)(a− c) + he = 0. (4.6)

(3) Yang–Baxter relations

Ti,jTi,kTj,k = Tj,kTi,kTi,j

are valid if and only if b = c = e = 0, i.e., Tij = a+ duij.

(4) T 2
ij = 1 if and only if a = ±1, c = b± 2, he = (b± 1)2.

(5) Assume that parameters a, b, c, h, e satisfy the conditions (4.6) and that bc + 1 = he.
Then

TijxiTij = xj + (h+ (a+ b)(xi + xj) + exixj)Tij .

(6) Quantum Yang–Baxterization. Assume that parameters a, b, c, h, e satisfy the condi-
tions (4.6) and that β := 2a + b − c 6= 0. Then (cf. [59, 85] and the literature quoted
therein) the elements Rij(u, v) := 1 + λ−µ

βµ Tij satisfy the twisted quantum Yang–Baxter
relations

Rij(λi, µj)Rjk(λi, νk)Rij(µj , νk) = Rjk(µj , νk)Rij(λi, νk)Rjk(λi, µj), i < j < k,

where {λi, µi, νi}1≤i≤n are parameters.

Corollary 4.117. If (a+ b)(a− c) + he = 0, then for any permutation w ∈ Sn the element

Tw := Ti1 · · ·Til ∈ 3Tn,

where w = si1 · · · sil is any reduced decomposition of w, is well-defined.

Example 4.118. Each of the set of elements

s
(h)
i = 1 + (xi+1 − xi + h)ui,i+1

and

t
(h)
i = −1 + (xi − xi+1 + h(1 + xi)(1 + xi+1)uij , i = 1, . . . , n− 1,

by itself generate the symmetric group Sn.
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Comments 4.119. Let A = (a, b, c, h, e) be a sequence of integers satisfying the conditions (4.6).
Denote by ∂Ai the divided difference operator

∂Ai = (a+ (bxi + cxi+1 + h+ exixi+1)∂i, i = 1, . . . , n− 1.

It follows from Lemma 4.107 that the operators {∂Ai }1≤i≤n satisfy the Coxeter relations

∂Ai ∂
A
i+1∂

A
i = ∂Ai+1∂

A
i ∂

A
i+1, i = 1, . . . , n− 1.

Definition 4.120.

(1) Let w ∈ Sn be a permutation. Define the generalized Schubert polynomial corresponding
to permutation w as follows

SA
w(Xn) = ∂Aw−1w0

xδn ,

where

xδn := xn−1
1 xn−2

2 · · ·xn−1,

and w0 denotes the longest element in the symmetric group Sn.

(2) Let α be a composition with at most n parts, denote by wα ∈ Sn the permutation such
that wα(α) = α, where α denotes a unique partition corresponding to composition α.

Proposition 4.121 ([71]). Let w ∈ Sn be a permutation.

• If A = (0, 0, 0, 1, 0), then SA
w(Xn) is equal to the Schubert polynomial Sw(Xn).

• If A = (−β, β, 0, 1, 0), then SA
w(Xn) is equal to the β-Grothendieck polynomial G

(β)
w (Xn)

introduced in [42].

• If A = (0, 1, 0, 1, 0) then SA
w(Xn) is equal to the dual Grothendieck polynomial [71, 84].

• If A = (−1, 2, 0, 1, 1), then SA
w(Xn) is equal to the Di Francesco–Zinn-Justin polynomials

and studied in [32, 33, 34] and [71].

In all cases listed above the polynomials SA
w(Xn) have non-negative integer coefficients.

• If A = (1,−1, 1,−h, 0), then SA
w(Xn) is equal to the h-Schubert polynomials introduced

in [71].

Define the generalized key or Demazure polynomial corresponding to a composition α as
follows

KA
α (Xn) = ∂wαx

α.

• If A = (1, 0, 1, 0, 0), then KA
α (Xn) is equal to key (or Demazure) polynomial corresponding

to α.

• If A = (0, 0, 1, 0, 0), then KA
α (Xn) is equal to the reduced key polynomial introduced in [71].

• If A = (1, 0, 1, 0, β), then KA
α (Xn) is equal to the key Grothendieck polynomial KGα(Xn)

introduced in [71].

• If A = (0, 0, 1, 0, β), then KA
α (Xn) is equal to the reduced key Grothendieck polynomial [71].

In all cases listed above the polynomials SA
w(Xn) have non-negative integer coefficients.
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Exercises 4.122.

(1) Let b, c, h, e be a collection of integers, define elements Pij := fijuij ∈ 3T, where
fij := bxi + cxj + h+ exixj . Show that

• P 2
ij = (b− c)Pij ,

• PijPjkPij = fijfikfjkuijujkuij + (bc− eh)Pij ,
PjkPijPjk = fijfikfjkuijujkuij − (bc− eh)Pjk.

(2) Assume that a = q, b = −q, c = q−1, h = e = 0, and introduce elements

eij :=
(
qxi − q−1xj

)
uij , 1 ≤ i < j < k ≤ n.

(a) Show that if i, j, k are distinct, then

eijejkeij = eij +
(
qxi − q−1xj

)(
qxi − q−1xk

)(
qxj − q−1xk

)
uijujkuij ,

e2
ij =

(
q + q−1

)
eij .

(b) Assume additionally that

uijujkuij = 0, if i, j, k are distinct.

Show that the elements {ei := ei,i+1, i = 1, . . . , n− 1}, generate a subalgebra in 3Ln
which is isomorphic to the Temperley–Lieb algebra TLn(q + q−1).

(3) Let us set Ti := Ti,i+1, i = 1, . . . , n− 1, and define

T0 := πTn−1π
−1.

Show that if (a+ b)(a− c) + eh = 0, then

T1T0T1 = T1T0T1, Tn−1T0Tn−1 = T0Tn−1T0,

Recall that T 2
i = (2a+ b− c)Ti − a(a+ b− c), 0 ≤ i ≤ n− 1.

In what follows we take a = q, b = −q, c = q−1, h = e = 0. Therefore, T 2
i,j = (q−q−1)Ti,j +1.

We denote by Hn(q) a subalgebra in 3Tn generated by the elements Ti := Ti,i+1, i = 1, . . . , n−1.

Remark 4.123. Let us stress on a difference between elements Tij as a part of generators of
the algebra 3Tn, and the elements

T(ij) := Ti · · ·Tj−1TjTj−1 · · ·Ti ∈ Hn(q).

Whereas one has [Tij , Tkl] = 0 if i, j, k, l are distinct, the relation [T(ij), T(kl)] = 0 in the algebra
Hn(q) holds (for general q and i ≤ k) if and only if either one has i < j < k < l or i < k < l < j.

Lemma 4.124.

(1) TijTkl = TklTij if i, j, k, l are distinct,

(2) Ti,jxiTi,j = xj if 1 ≤ i < j ≤ n,

(3) πTi,j = Ti+1,j+1 if 1 ≤ i < j < n, πjTn−j+1,n = T1,jπ
j.

Definition 4.125. Let 1 ≤ i < j ≤ n, set

Yi,j = T−1
i−1,j−1T

−1
i−2,j−2 · · ·T

−1
1,j−i+1π

j−i Tn−j+i,n · · ·Ti+1,j+1Ti,j , 1 ≤ i < j ≤ n,

and Yn = T−1
n−1,n · · ·T

−1
1,2 π.
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For example,

Y1,j = πj−1Tn−j+1,n · · ·T1,j , j ≥ 2,

Y2,j = T−1
1,j−1π

j−2Tn−j+2,n · · ·T2,j , and so on,

Yj−1,j = T−1
j−2,j−1 · · ·T

−1
1,2 πTn−1,n · · ·Tj−1,j .

Proposition 4.126.

(1) xjxjTij = Tijxixj,

(2) Yi,j = Ti,jYi+1,j+1Ti,j if 1 ≤ i < j < n,

(3) Yi,jYi+k,j+k = Yi+k,j+kYi,j if 1 ≤ i < j ≤ n− k,

(4) one has xi−1Y
−1
i,j = Y −1

i,j xi−1T
2
i−1,j−1, 2 ≤ i < j ≤ n,

(5) Yi,jx1x2 · · ·xn = tx1x2 · · ·xnYi,j,

(6) xiY1Y2 · · ·Yn = t−1Y1Y2 · · ·Ynxi,

where we set Yi := Yi,i+1, 1 ≤ i < j < n.

Conjecture 4.127. Subalgebra of 3Tn generated by the elements {Ti := Ti,i+1, 1 ≤ i <
n, Y1, . . . , Yn, and x1, . . . , xn}, is isomorphic to the double affine Hecke algebra DAHAq,t(n).

Note that the algebra 3Tn contains also two additional commutative subalgebras generated
by additive

{
θi =

∑
j 6=i

uij
}

1≤i≤n and multiplicative

{
Θi =

i−1∏
a=1

(1− uai)
n∏

a=i+1

(1 + uia)

}
1≤i≤n

Dunkl elements correspondingly.

Finally we introduce (cf. [24]) a (projective) representation of the modular group SL(2,Z)
on the extended affine Hecke algebra Ĥn over the ring Z[q±1, t±1] generated by elements

{T1, . . . , Tn−1}, π, and {x1, . . . , xn}.

It is well-known that the group SL(2,Z) can be generated by two matrices

τ+ =

(
1 1
0 1

)
, τ− =

(
1 0
1 1

)
,

which satisfy the following relations

τ+τ
−1
− τ+ = τ−1

− τ+τ
−1
− ,

(
τ+τ

−1
− τ+

)6
= I2×2.

Let us introduce operators τ+ and τ− acting on the extended affine algebra Ĥn. Namely,

τ+(π) = x1π, τ+(Ti) = Ti, τ+(xi) = xi, ∀ i,

τ−(π) = π, τ−(Ti) = Ti, τ−(xi) =

(
1∏

a=i−1

Ta

)
π

(
i∏

a=n

Ta

)
xi.
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Lemma 4.128.

τ+(Yi) =

(
1∏

a=i−1

T−1
a

)(
i−1∏
a=1

T−1
a

)
xiYi,

τ−(xi) =

(
1∏

a=i−1

Ta

)(
i−1∏
a=1

Ta

)
Yixi,(

τ+τ
−1
− τ+

)
(xi) = Y −1

i =
(
τ−1
− τ+τ

−1
−
)
(xi),(

τ+τ
−1
− τ+

)
(Yi) = txi

(
1∏

a=i−1

Ta

)
(T1 · · ·Tn−1)

(
i∏

a=n−1

Ta

)
, i = 1, . . . , n.

In the last formula we set Tn = 1 for convenience.

4.7 Braid, affine braid and virtual braid groups

The main objective of this section is to describe the distinguish abelian subgroup in the braid
group Bn, see Proposition 4.132

(
2(0)
)
, and that in the Yang–Baxter groups ŶBn and YBn, see

Proposition 4.132
(
5(0)
)

and
(
6(0)
)

correspondingly. As far as I’m aware, these constructions go
back to E. Artin in the case of braid groups, and to C.N. Yang in the case of Yang–Baxter group,
and nowadays are widely use in the representation theory of Hecke’s type algebras and that of
integrable systems. In a few words, by choosing a suitable representation (finite-dimensional

or birational) of either Bn or YBn, or ŶBn, one gives rise to a family of mutually commuting
operators acting in the space of a representation selected. In the case of braid groups one
comes to Jucys–Murphy’s type operators/elements, and in the case of Yang–Baxter groups one
comes to Dunkl’s type operators/elements. See, e.g., [59, 60], where it was used the so-called

R-matrix representation of the affine braid group of type C
(1)
n to construct the (two boundary)

quantum Knizhnik–Zamolodchikov connections with values in the affine Birman–Murakami–
Wenzl algebras.

To start with, let n ≥ 2 be an integer.

Definition 4.129.

• Denote by Sn the symmetric group on n letters, and by si the simple transposition (i, i+1)
for 1 ≤ i ≤ n − 1. The well-known Moore–Coxeter presentation of the symmetric group
has the form

〈s1, . . . , sn−1 | s2
i = 1, sisi+1si = si+1sisi+1, sisj = sjsi if |i− j| ≥ 2〉.

Transpositions sij := sisi+1 · · · sj−2sj−1sj−2 · · · si+1si, 1 ≤ i < j < j ≤ n, satisfy the
following set of (defining) relations

s2
ij = 1, sijskl = sklsij if {i, j} ∩ {k, l} = ∅,
sijsik = sjksij = siksjk, siksij = sijsjk = sjksik, i < j < k.

• The Artin braid group on n strands Bn is defined by generators σ1, . . . , σn−1 and relations

σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n− 2, σiσj = σjσi if |i− j| ≥ 2. (4.7)

• The monoid of positive braids on n strands B+
n is a monoid generated by the elements

σ1, . . . , σn−1 subject to the set of relations (4.7).
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• A new representation of the braid group [15]. The Birman–Ko–Lee representation of the
braid group Bn has the set of generators {σi,j | 1 ≤ i < j ≤ n} subject to the Birman–Ko–
Lee (defining) relations

σi,jσk,l = σk,lσi,j if (j − l)(j − k)(i− l)(i− k) > 0,

σi,jσi,k = σj,kσi,j = σi,kσj,k if 1 ≤ i < j < k ≤ n.

One can take σi,j := (σj−1 · · ·σi+1)σi(σ
−1
i+1 · · ·σ

−1
j−1), see [14] for details. It would be well

to note that as a corollary of the Birman–Ko–Lee relations one can deduce the 2D Coxeter
relations among the Birman–Ko–Lee generators

σi,jσj,kσi,j = σj,kσi,jσj,k, 1 ≤ i < j < k ≤ n.

• The Birman–Ko–Lee monoid BKLn is a monoid generated by the elements σi,j , 1 ≤ i <
j ≤ n, subject to the Birman–Ko–Lee relations. We denote by BKL(n) and called it as the
Birman–Ko–Lee algebra, the group algebra Q[BKLn] of the Birman–Ko–Lee monoid. The
Hilbert series of the Birman–Ko–Lee algebra BKL(n) will be computed in Section 4.7.3,
Theorem 4.134.

• The pure braid group PBn is defined to be the kernel of the natural (non-split) projection
p : Bn −→ Sn given by p(σi) = si. It is well-known that the pure braid group PBn is
generated by the elements

gi,j := σ2
i,j = σj−1σj−2 · · ·σi+1σ

2
i σ
−1
i+1 · · ·σ

−1
j−2σ

−1
j−1 for 1 ≤ i < j ≤ n,

subject to the following defining relations

gi,jgk,l = gk,lgi,j if (i− k)(i− l)(j − k)(j − l) > 0,

gi,jgi,kgj,k = gi,kgj,kgi,j = gj,kgi,jgi,k if 1 ≤ i < j < k ≤ n,
gi,kgi,lgj,lgk,l = gi,lgj,lgk,lgi,k if 1 ≤ i < j < k < l ≤ n.

Comments 4.130. It is easy to see that the defining relations for the pure braid group PBn

listed above are equivalent to the following list of defining relations

g−1
i,j gk,lgi,j =


gk,l if (i− k)(i− l)(j − k)(j − l) > 0,

gi,lgk,lg
−1
i,l if i < k = j < l,

gi,lgj,lgk,lg
−1
i,l g

−1
j,l if i = k < j < l,

gi,lgj,lg
−1
i,l g

−1
j,l gk,lgj,lgi,lg

−1
j,l g

−1
i,l if i < k < j < l,

commonly used in the literature to describe the defining relations among the generators {gij}
of the pure braid group Pn, see, e.g., [14].

• The affine Artin braid group Baff
n , cf. [112], is an extension of the Artin braid group on n

strands Bn by the element τ subject to the set of crossing relations

σ1τσ1τ = τσ1τσ1, σiτ = τσi for 2 ≤ i ≤ n− 1.

• The virtual braid group VBn is a group generated by σ1, . . . , σn−1 and s1, . . . , sn−1 subject
to the relations:

(1) braid relations σ1, . . . , σn−1 generate the Artin braid group Bn;

(2) Moore–Coxeter relations s1, . . . , sn−1 generate the symmetric group Sn;

(3) crossing relations σisj = sjσi if |i− j| ≥ 2, sisi+1σi = σi+1sisi+1 if 1 ≤ i ≤ n− 2.

• The virtual pure braid group VPn is defined to be the kernel of the natural map

η : VBn −→ Sn, η(σi) = η(si) = si, i = 1, . . . , n− 1.
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4.7.1 Yang–Baxter groups

Definition 4.131.

• The quasitriangular Yang–Baxter group ŶBn, cf. [7], is a group generated by the set of
elements {Qi,j , 1 ≤ i 6= j ≤ n}, subject to the set of defining relations

(1) [Qi,j , Qk,l] = 0 if i, j, k and l are all distinct,

(2) Yang–Baxter relations Qi,jQi,kQj,k = Qj,kQi,kQi,j if i, j, k are distinct.

According to [5, Theorem 1], the quasitriangular Yang–Baxter group ŶBn is isomorphic to
the virtual pure braid group VPn.

• The Yang–Baxter monoid ỸBn is a monoid generated by the elements Qi,j , 1 ≤ i 6= j ≤ n.
Important particular case corresponds to the case when Qi,jQj,i = 1 for all 1 ≤ i 6= j ≤ n.

• The Yang–Baxter group YBn is defined by the set of generators Ri,j , 1 ≤ i < j ≤ n,
subject to the set of defining relations

(1) Ri,jRk,l = Rk,lRi,j if i, j, k and l are pairwise distinct,

(2) Ri,jRi,kRj,k = Rj,kRi,kRi,j if 1 ≤ i < j < k ≤ n.

4.7.2 Some properties of braid and Yang–Baxter groups

For the sake of convenience and future references, below we state some basic properties of the
groups Pn, YBn and Baff

n .

Proposition 4.132. Let Fm denotes the free group with m generators.(
10
)

The elements g1,n, g2,n, . . . , gn−1,n generate a free normal subgroup Fn−1 in Pn, and Pn =
Pn−1 n 〈g1,n, g2,n, . . . , gn−1,n〉. Hence Pn is an iterated extension of free groups.(

20
)

Let us consider the following elements in the group Baff
n :

γ1 = τ, γi =

1∏
j=i−1

σjτ

i−1∏
j=1

σj , 2 ≤ i ≤ n.

Then

(a) commutativity, γiγj = γjγi for all 1 ≤ i, j ≤ n;

(b) the elements γ1, . . . , γn generate a free abelian subgroup of rang n in Baff
n .49(

30
)

Let us introduce elements

Di,j := σj−1σj−2 · · ·σi+1 σ
2
i σi+1 · · ·σj−2σj−1 =

∏
i≤a<j

ga,j ∈ Pn,

Fi,j := σn−jσn−j+1 · · ·σn−i−1σ
2
n−iσn−i−1 · · ·σn−j+1σn−j =

i+1∏
a=j

gn−a,n−i ∈ Pn,

where 1 ≤ i < j ≤ n. For example,

Di,i+1 = σ2
i , Di,i+2 = σi+1σ

2
i σi+1, Fi,i+1 = σ2

n−i,

Fi,i+2 = σn−i−1σ
2
n−iσn−i−1

and etc. Then
49We refer the reader to [112] for more details about affine braid groups. Here we only remark that the type A

affine Weyl groups Ŝn, the Hecke algebras Hn,q, the affine Hecke algebras Ĥn,q, the Ariki–Koike, or cyclotomic
Hecke, algebras Hr,1,n, the affine and cyclotomic Birman–Murakami–Wenzl algebras Zr,1,n, all can be obtained
as certain quotients of the group algebra CBaff

n of the affine braid group.
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• For each j = 3, . . . , n, the element D1,j commutes with σ1, . . . , σj−2.

• The elements D1,2, D1,3, . . . , D1,n (resp. F1,2, F1,3, . . . , F1,n) generate a free abelian
subgroup in Pn.

• If n ≥ 3, the element∏
2≤j≤n

D1,j =
∏

2≤j≤n
F1,j = (σ1 · · ·σn−1)n

generates the center of the braid group Bn and that of the pure braid group Pn.

• Di,jDi,j+1Dj,j+1 = Dj,j+1Di,j+1Di,j if i < j.

• Consider the elements s := σ1σ2σ1, t := σ1σ2 in the braid group B3. Then s2 = t3

and the element c := s2 generates the center of the group B3. Moreover,

B3/〈c〉 ∼= PSL2(Z), B3/〈c2〉 ∼= SL2(Z).(
40
)

Let us introduce the following elements in the quasitriangular Yang–Baxter group ŶBn:

Ci,j =

 i∏
a=j−1

Qa,j

(j−1∏
b=i

Qj,b

)
, fi,j =

 i+1∏
a=j−1

Qa,j

Qi,jQj,i

(
j−1∏
b=i+1

Qb,j

)−1

.

Then

• The elements C1,2, C1,3, . . . , C1,n generate a free abelian subgroup in ŶBn.

• The elements fi,j, 1 ≤ i < j ≤ n, generate a subgroup in ŶBn, which is isomorphic
to the pure braid group Pn.50(

50
)

Assume that the following additional relations in ŶBn are satisfied

Qi,jQj,i = Qj,iQi,j , Qk,lQi,jQj,i = Qj,iQi,jQk,l

if i 6= j and k 6= l. In other words, the elements Qi,j and Qj,i commute, and the elements
Qi,jQj,i = Qj,iQi,j are central. Under these assumptions, we have that the elements

Θi :=
1∏

j=i−1

Qj,i

i+1∏
j=n

Qi,j , Θ̄i :=
n∏

j=i+1

Qj,i

i−1∏
j=1

Qi,j , 1 ≤ i ≤ n,

50It is enough to check that the elements {fi,j , 1 ≤ i < j ≤ n} satisfy the defining relations for the pure braid
group Pn only in the case n = 4. Let us prove that

f1,4f2,4f3,4f1,3 = f1,3f1,4f2,4f3,4.

Other relations are simple and can be checked in a similar fashion.
Let

l.h.s. = f1,4f2,4f3,4f1,3 = Q34Q24Q14Q41Q42Q43Q23Q13Q31Q
−1
23 ,

r.h.s. = f1,3f1,4f2,4f3,4 = Q23Q13Q31Q
−1
23 Q34Q24Q14Q41Q42Q43.

Now we are going to apply the Yang–Baxter relations

Q−1
23 Q34Q24 = Q24Q34Q

−1
23 , Q−1

23 Q42Q43 = Q43Q42Q
−1
23 , Q31Q34Q14 = Q14Q34Q31.

Therefore,

r.h.s. = Q23Q13Q31Q
−1
23 Q34Q24Q14Q41Q42Q

−1
23 = Q23Q24Q34Q14Q13Q31Q41Q43Q42Q

−1
23

= Q34Q24Q14Q23Q13Q43Q41Q42Q31Q
−1
23 = Q34Q24Q14Q41Q23Q43Q42Q13Q31Q

−1
23

= Q34Q24Q14Q41Q42Q43Q23Q13Q31Q
−1
23 = l.h.s.
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satisfy the following relations

[Θi,Θj ] = 0 = [Θ̄i, Θ̄j ],

ΘiΘ̄i =
∏
j 6=i

Qi,jQj,i = Θ̄iΘi,
n∏
i=1

Θi =
∏

1≤i 6=j≤n
Qi,jQj,i =

n∏
i=1

Θ̄i.

(
60
)

In the special case Qi,jQj,i = 1 for all i 6= j, the following statement holds: the elements

Θj =
1∏

a=j−1

R−1
a,j

j+1∏
b=n

Rj,b, 1 ≤ j ≤ n− 1,

generate a subgroup in the Yang–Baxter group YBn, which is isomorphic to the free abelian
group of rang n− 1.

4.7.3 Artin and Birman–Ko–Lee monoids

Let (W,S) be a finite Coxeter group, B(W ) and B+(W ) be the corresponding braid group
and monoid of positive braids. Denote by PW (s, t) =

∑
i≥0, j≥0

BQ[B+(W )](i, j)s
itj the Poincaré

polynomial of the group algebra over Q of the monoid B+(W ).

Conjecture 4.133. PW (s, 1) = (s+ 1)|S|.

It is known [30, 125] that the Hilbert series of the group algebra of the monoid B+(W ) is
a rational function of the form 1

P (t) for a some polynomial P (t) := PW (t) ∈ Z[t].

Theorem 4.134.

(1) Some Betti numbers of the group algebra over Q of the monoid B+(An−1):

BQ[B+(An−1)](k, k) =

(
n− k
k

)
,

BQ[B+(An−1)]

(
k,

(
k + 1

2

))
= n− k, 1 ≤ k ≤ n− 1,

BQ[B+(An−1)](k, k + 1) = (k − 1)

(
n− k
k − 1

)
,

BQ[B+(An−1)](k, k + 2) =

(
k − 2

2

)(
n− k
k − 2

)
,

BQ[B+(An−1)](k, k + 3) = (k − 2)

(
n− k
k − 2

)
+ max(3k − 17, 0)

(
n− k
k − 3

)
if k ≥ 3.

(2) The Birman–Ko–Lee algebra BKL(n) is Koszul, and the Hilbert polynomial of its quadratic
dual is equal to

Hilb
(
BKL(n)!, t

)
=

n−1∑
k=0

1

k + 1

(
n− 1

k

)(
n+ k − 1

k

)
tk.

Conjecture 4.135 (type An−1 case). Let I ⊂ [1, n − 1] be a subset of vertices in the Dynkin
diagram of type An−1, and RI denotes the root system generated by the positive roots {αij =
εi − εj , (i, j) ∈ I × I}. Assume that

RI ∼= An1

∐
· · ·
∐

Ank , n1 + · · ·+ nk = n− 1
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stands for the decomposition of the root system RI into the disjoint union of irreducible root
subsystems of type A. The numbers n1, . . . , nk are defined uniquely up to a permutation. Let us

set n(I) =
k∑
a=1

(
na
2

)
. Then

PAn−1(s, t) =
∑
I

s|I|tn(I),

where the sum runs over the all subsets of vertices I in the Dynkin diagram of type An−1,
including the empty set, and |I| denotes the cardinality of the set I.

Comments 4.136.

(A) The Hilbert polynomial of the Birman–Ko–Li algebra BKL(n) has been computed also by
M. Albenque and P. Nadeau, see [2].

(B) Let’s consider the truncated theta function θ+(z, t) =
∑
n≥0

tn(n+1)/2zn. Then

∑
n≥1

PAn−1(s, t)zn−1 = θ+(t, sz)/(1− z(θ+(t, sz))).

(C) It is well known that the number

T (n, k) =
1

k + 1

(
n

k

) (
n+ k

k

)
counts the number of Schröder paths (i.e., consisting of steps (1, 1), (1,−1) and (2, 0) and
never going below x-axis) from (0, 0) to (2n, 0), having exactly k (1, 1) steps. In particular,

dim(BKL(n)!) = Sch(n),

is the n-th (large) Schröder number, see [131, A006318]. It is a classical result that

n∑
k=0

T (n, k)xk(1− x)n−k =
n−1∑
k=0

N(n, k)xk,

where N(n, k) := 1
n

(
n
k

)(
n
k+1

)
denotes the Narayana number. Some explicit combinatorial

interpretations of the values of the above polynomials for x = 0, 1, 2, 4 can be found in [131,
A088617]. Note that Hilb(BKL!, t) = (1 + t)Assn−2(t), where

Assn(t) :=
n∑
k=0

1

k + 1

(
n

k

)(
n+ k

k

)
tk

denotes the f -vector polynomial corresponding to the associahedron of type An.

(D) The polynomials F (n, t) :=
∑
k≥0

BQ[B+(An−1)](k, k)tk appear to be equal to the so-called

Fibonacci polynomials, see, e.g., [131, A011973]. It is well-known that∑
n≥0

F (n, t)yn =
1 + ty

1− y − ty2
.

Moreover, the coefficient BQ[B+(An−1)](k, k) is equal to the number of compositions of n+2
into k + 1 parts, all ≥ 2, see [131, A011973].
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(E) Monoid of positive pure braids. The monoid of positive pure braids PB+
n (of the type

An−1) is the monoid generated by the set {gi,j , 1 ≤ i < j ≤ n} of the Artin generators of
the pure braid group PBn.

Conjecture 4.137. The following list of relations is the defining set of relations in the monoid
PBn:

(a) [gi,j , gk,l] = 0, [gi,l, gj,k] = 0, if 1 ≤ i < j < k < l ≤ n,

(b)

[
gj1+m,jk−1+m,

k−1∏
a=1

gja+m,jk+m

]
= 0,

for all sequences of integers 1 ≤ j1 < j2 < · · · < jk ≤ n of the length k ≥ 4 and m = 0, . . . , n−1.
Here we assume that gi,j = gj,i for all i 6= j, and for any non-negative integer a we denote by a
a unique integer 1 ≤ a ≤ n such that a ≡ a (modn+ 1).

It is worth noting that the defining relations in the pure braid group Pn are that listed in (a)
and the part of that listed in (b) corresponding to k = 3, m = 0 and 1, and that for k = 4,
m = 0.

5 Combinatorics of associative Yang–Baxter algebras

Let α and β be parameters.

Definition 5.1 ([66, 70, 72], cf. [1, 115]).

(1) The associative quasi-classical Yang–Baxter algebra of weight (α, β), denoted by

ÂCYBn(α, β), is an associative algebra, over the ring of polynomials Z[α, β], generated
by the set of elements {xij , 1 ≤ i < j ≤ n}, subject to the set of relations

(a) xijxkl = xklxij if {i, j} ∩ {k, l} = ∅,

(b) xijxjk = xikxij + xjkxik + βxik + α if 1 ≤ 1 < i < j ≤ n.

(2) Define associative quasi-classical Yang–Baxter algebra of weight β, denoted by ÂCYBn(β),

to be ÂCYBn(0, β).

Comments 5.2. The algebra 3Tn(β), see Definition 3.1, is the quotient of the algebra

ÂCYBn(−β), by the “dual relations”

xjkxij − xijxik − xikxjk + βxik = 0, i < j < k.

The (truncated) Dunkl elements θi =
∑
j 6=i

xij , i = 1, . . . , n, do not commute in the algebra

ÂCYBn(β). However a certain version of noncommutative elementary polynomial of degree
k ≥ 1, still is equal to zero after the substitution of Dunkl elements instead of variables [72]. We
state here the corresponding result only “in classical case”, i.e., if β = 0 and qij = 0 for all i, j.

Lemma 5.3 ([72]). Define noncommutative elementary polynomial Lk(x1, . . . , xn) as follows

Lk(x1, . . . , xn) =
∑

I=(i1<i2<···<ik)⊂[1,n]

xi1xi2 · · ·xik .

Then Lk(θ1, θ2, . . . , θn) = 0.
Moreover, if 1 ≤ k ≤ m ≤ n, then one can show that the value of the noncommutative

polynomial Lk(θ
(n)
1 , . . . , θ

(n)
m ) in the algebra ÂCYBn(β) is given by the Pieri formula, see [45,

117].
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5.1 Combinatorics of Coxeter element

Consider the “Coxeter element” w ∈ ÂCYBn(α, β) which is equal to the ordered product of
“simple generators”:

w := wn =
n−1∏
a=1

xa,a+1.

Let us bring the element w to the reduced form in the algebra ÂCYBn(α, β), that is, let us
consecutively apply the defining relations (a) and (b) to the element w in any order until unable
to do so. Denote the resulting (noncommutative) polynomial by Pn(xij ;α, β). In principal, the
polynomial itself can depend on the order in which the relations (a) and (b) are applied. We set
Pn(xij ;β) := Pn(xij ; 0, β).

Proposition 5.4 (cf. [133, Exercise 6.C5(c)], [99, 100]).

(1) Apart from applying the relation (a) (commutativity), the polynomial Pn(xij ;β) does not
depend on the order in which relations (a) and (b) have been applied, and can be written
in a unique way as a linear combination:

Pn(xij ;β) =
n−1∑
s=1

βn−s−1
∑
{ia}

s∏
a=1

xia,ja ,

where the second summation runs over all sequences of integers {ia}sa=1 such that n− 1 ≥
i1 ≥ i2 ≥ · · · ≥ is = 1, and ia ≤ n − a for a = 1, . . . , s − 1; moreover, the corresponding
sequence {ja}n−1

a=1 can be defined uniquely by that {ia}n−1
a=1 .

• It is clear that the polynomial P (xij ;β) also can be written in a unique way as a linear

combination of monomials
s∏

a=1
xia,ja such that j1 ≥ j2 · · · ≥ js.

(2) Let us set deg(xij) = 1, deg(β) = 0. Denote by Tn(k, r) the number of degree k monomials
in the polynomial P (xij ;β) which contain exactly r factors of the form x∗,n. (Note that
1 ≤ r ≤ k ≤ n− 1.) Then

Tn(k, r) =
r

k

(
n+ k − r − 2

n− 2

)(
n− 2

k − 1

)
.

In other words,

Pn(t, β) =
∑

1≤r≤k<n
Tn(k, r)trβn−1−k,

where Pn(t, β) denotes the following specialization

xij −→ 1 if j < n, xin −→ t, ∀ i = 1, . . . , n− 1

of the polynomial Pn(xij ;β).

In particular, Tn(k, k) =
(
n−2
k−1

)
and Tn(k, 1) = T (n− 2, k − 1), where

T (n, k) :=
1

k + 1

(
n+ k

k

)(
n

k

)
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is equal to the number of Schröder paths (i.e., consisting of steps U = (1, 1), D = (1,−1),
H = (2, 0) and never going below the x-axis) from (0, 0) to (2n, 0), having k U ’s, see [131,
A088617].

Moreover, Tn(n− 1, r) = Tab(n− 2, r − 1), where

Tab(n, k) :=
k + 1

n+ 1

(
2n− k
n

)
= F

(2)
n−k(k)

is equal to the number of standard Young tableaux of the shape (n, n−k), see [131, A009766].

Recall that F
(p)
n (b) = 1+b

n

(
np+b
n−1

)
stands for the generalized Fuss–Catalan number.

(3) After the specialization xij −→ 1 the polynomial P (xij) is transformed to the polynomial

Pn(β) :=

n−1∑
k=0

N(n, k)(1 + β)k,

where N(n, k) := 1
n

(
n
k

)(
n
k+1

)
, k = 0, . . . , n− 1, stand for the Narayana numbers.

Furthermore, Pn(β) =
n−1∑
d=0

sn(d)βd, where

sn(d) =
1

n+ 1

(
2n− d
n

)(
n− 1

d

)
is the number of ways to draw n − 1 − d diagonals in a convex (n + 2)-gon, such that no
two diagonals intersect their interior.

Therefore, the number of (nonzero) terms in the polynomial P (xij ;β) is equal to the n-th

little Schröder number sn :=
n−1∑
d=0

sn(d), also known as the n-th super-Catalan number, see,

e.g., [131, A001003].

(4) Upon the specialization x1j −→ t, 1 ≤ j ≤ n, and that xij −→ 1 if 2 ≤ i < j ≤ n, the
polynomial P (xij ;β) is transformed to the polynomial

Pn(β, t) = t

n∑
k=1

(1 + β)n−k
∑
π

tp(π),

where the second summation runs over the set of Dick paths π of length 2n with exactly k
picks (UD-steps), and p(π) denotes the number of valleys (DU-steps) that touch upon the
line x = 0.

(5) The polynomial P (xij ;β) is invariant under the action of anti-involution φ ◦ τ , see [72,
Section 5.1.1] for definitions of φ and τ .

(6) Follow [133, Exercise 6.C8(c)] consider the specialization

xij −→ ti, 1 ≤ i < j ≤ n,

and def ine Pn(t1, . . . , tn−1;β) = Pn(xij = ti;β).

One can show, cf. [133], that

Pn(t1, . . . , tn−1;β) =
∑

βn−kti1 · · · tik ,

where the sum runs over all pairs {(a1, . . . , ak), (i1, . . . , ik) ∈ Z≥1 × Z≥1} such that 1 ≤
a1 < a2 < · · · < ak, 1 ≤ i1 ≤ i2 · · · ≤ ik ≤ n and ij ≤ aj for all j.
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Now we are ready to state our main result about polynomials Pn(t1, . . . , tn;β). Let π := πn ∈
Sn be the permutation

π =

(
1 2 3 . . . n
1 n n− 1 · · · 2

)
.

Then

Pn(t1, . . . , tn−1;β) =

(
n−1∏
i=1

tn−ii

)
G(β)
π

(
t−1
1 , . . . , t−1

n−1

)
=
∑
T
wt(T ), (5.1)

where G
(β)
w (x1, . . . , xn−1) denotes the β-Grothendieck polynomial corresponding to a permuta-

tion w ∈ Sn, see [42] or Appendix A.1; summation in the right hand side of the second equality
runs over the set of all dissections T of a convex (n + 2)-gon, and wt(T ) denotes weight of
a dissection T , namely,

wt(T ) =
∏
d∈T

xdβ
n−3−|T |,

where the product runs over diagonals in T , xd = xij , if diagonal d connects vertices i and j,
i < j, and |T | denotes the number of diagonals in dissection T .

In particular,

G(β)
π (x1 = 1, . . . , xn−1 = 1) =

n−1∑
k=0

N(n, k)(1 + β)k,

where N(n, k) denotes the Narayana numbers, see item (3) of Proposition 5.4.

More generally, write Pn(t, β) =
∑
k

P
(k)
n (β)tk. Then

G(β)
π (x1 = t, xi = 1, ∀ i ≥ 2) =

n−1∑
k=0

P
(k)
n−1

(
β−1

)
βktn−1−k.

Comments 5.5.

• Note that if β = 0, then one has G
(β=0)
w (x1, . . . , xn−1) = Sw(x1, . . . , xn−1), that is the

β-Grothendieck polynomial at β = 0, is equal to the Schubert polynomial corresponding
to the same permutation w. Therefore, if

π =

(
1 2 3 . . . n
1 n n− 1 . . . 2

)
,

then

Sπ(x1 = 1, . . . , tn−1 = 1) = Cn−1, (5.2)

where Cm denotes the m-th Catalan number. Using the formula (5.2) it is not difficult to
check that the following formula for the principal specialization of the Schubert polynomial
Sπ(Xn) is true

Sπ

(
1, q, . . . , qn−1

)
= q(

n−1
3 )Cn−1(q), (5.3)

where Cm(q) denotes the Carlitz–Riordan q-analogue of the Catalan numbers, see,
e.g., [134]. The formula (5.3) has been proved in [44] using the observation that π is a vex-
illary permutation, see [92] for the a definition of the latter. A combinatorial/bijective
proof of the formula (5.2) is due to A. Woo [142].
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• The Grothendieck polynomials, had been defined originally by A. Lascoux and M.-P. Schüt-
zenberger, see, e.g., [86], correspond to the case β = −1. In this case Pn(−1) = 1 if n ≥ 0,

and therefore the specialization G
(−1)
w (x1 = 1, . . . , xn−1 = 1) = 1 for all w ∈ Sn.

• In Section 5.2.2, Theorems 5.28 and 5.29, we state a generalization of the second equality in

the formula (5.1) to the case of Richardson’s permutations of the form 1k×w(n−k)
0 := π

(n)
k ,

and relate monomials which appear in a combinatorial formula51 for the corresponding β-
Grothendieck polynomial, and/with the set of k-dissections and k-triangulations of a con-
vex (n+k+1)-gon, and the Lagrange inversion formula, see Section 5.4.2 for more details.

Clearly, the Richardson permutations π
(0)
k are special subset of permutations of the form

1k × wλ := w
(λ)
k , where wλ stands for the dominant permutation of shape λ. An analogue and

extension of the first equality in the formula (5.1) for permutations of the form w
(λ)
1 has been

proved in [39, Theorem 5.4]. We state here a particular case of that result related with the Fuss–
Catalan numbers obtained independently by the author of the present paper as a generalization
of [133, Exercise 8C5(c)] and [142] to the case of Fuss–Catalan numbers. Namely, let λ =
(λ1, . . . , λk = 1) be a Young diagram such that λi − λi+1 ≤ 1. Therefore, the boundary ∂(λ)
of λ, that is the set of the last boxes in each row of λ, is a disjoint union of vertical intervals.
To the last box of the lowermost interval we attach the generator x23. To the next box of that
interval, if exists, we attach the generator u24 and so on, up to the top box of that interval is
equipped with the generator, say x2,k1 . It is clear that k1 = λ′1 − λ′2 + 2. Now let us consider
the next vertical interval. To the bottom box of that interval we attach the variable xk1,k1+1,
to the next box we attach the variable xk1,k1+2 and so on. Let the top of that vertical interval
is equipped with the generator xk1,k2 ; it is clear that k2 = λ′1 − λ′3 + 2. Applying this procedure
successively step by step to each vertical interval, we attach the variable ub to each box b in the
boundary of Young diagram λ. Finally we attach the monomial

Mλ = x12

∏
b∈∂(λ)

xb.

Theorem 5.6 ([39]). Let λ be a partition such that λi−λi+1 ≤ 1, ∀ i ≥ 1, and set N := λ′1 + 2.

Let wλ ∈ SN be a unique dominant partition of shape λ, and Mλ ∈ ÂCYBN (β) be the monomial
associated with the boundary ∂(λ) of partition λ. Then

PMλ
(xij = ti, ∀ i, j;β) = tλG

(β)
1×wλ

(
t−1
1 , . . . , t−1

N

)
,

where tλ := t
λ′1
1 · · · t

λ′N
N . In other words, after the specialization xij −→ t−1

i , ∀ i, j, the spe-
cialized reduced polynomial corresponding to the monomial Mλ is equal to t−λ multiplied by the
β-Grothendieck polynomial associated with the permutation 1× wλ.

Let us illustrate the above theorem by example. We take λ = 43221. In this caseN = 7 = 5+2
and w := wλ = [1, 6, 5, 4, 7, 3, 2]. The monomial corresponding to the boundary of λ is equal to

x12x23x34x35x56x67 ∈ ÂCYB7.

Since the both reduced and β-Grothendieck polynomials appearing in this example are huge, we
display only its specialized values at xij = 1, ∀ i, j and ti = 1, ∀ i. We set also d := β − 1. It is
not difficult to check that the reduced polynomial corresponding to monomial x12x23x34x35x56

after the specialization xij = 1, ∀ 1 ≤ i < j ≤ 5, and the identification xi,6 = x1,6, 1 ≤ i ≤ 5, is
equal to

(9, 20, 14, 3)βx16 + (9, 15, 6)βx
2
16 + (4, 4)βx

3
16 + x4

16.

51See [13, 44, 77] for example.
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Finally after multiplication of the above expression by x67, applying 3-term relations (b) in the

algebra ÂCYB7 to the result obtained,and and taking the specialization xi,7 = 1, ∀ i, we will
come to the following expression

(9, 20, 14, 3)β(2 + β) + (9, 15, 6)β(3 + 2β)2 + (4, 4)β(4 + 3β) + (5 + 4β)

= (66, 144, 108, 32, 3)β.

One can check that the latter polynomial is equal to Gβ
w(1).

Corollary 5.7 (monomials and Fuss–Catalan numbers FC
(p+1)
n ). Let p, n, b be integers, consider

diagram λ = (nb, (n − 1)p, (n − 2)p, . . . , 2p, 1p) and dominant permutation w ∈ S(n−1)p+b+2 of
shape λ. Let us define monomial

Mn,p,b = x12

n−2∏
j=0

(
p+2∏
a=3

xjp+2,jp+a

)
b+2∏
a=3

x(n−1)p+2,(n−1)p+a.

Then

PMn,p,b
(xij = 1, ∀ i, j)(β) =

n∑
k=1

1

k

(
n− 1

k − 1

)(
pn− b
k − 1

)
(β + 1)k−1.

Moreover,

PMn,p,b
(xij = 1, ∀ i, j)(β = 0) =

1

np− b+ 1

(
n(p+ 1)− b

n

)
=

1

n

(
n(p+ 1)− b

n− 1

)
,

where b := b− 1−(−1)b

2 .

For b = 0 the right hand side of the above equality is equal to the Fuss–Narayana poly-
nomial, see Theorem 5.46 and Proposition 5.47; a combinatorial interpretation of the value
PMn,p,b

(xij = 1, ∀ i, j)(β = 1) one can find in [110]. Note that reduced expressions for monomial

Mn,p,b in the (noncommutative) algebra ÂCYBn(β) up to applying the commutativity rules (a),
Definition 5.1, is unique.

It seems an interesting problem to construct a natural bijection between the set of monomials
in the (noncommutative) reduced expression associated with monomials Mn,p,0 and the set of
(p+ 1)-gulations52 Finally we remark that there are certain connections of the β-Grothendieck
polynomials corresponding to shifted dominance permutations (i.e., permutations of the form
1k×wλ) and some generating functions for the set of bounded by k plane partitions of shape λ,
see, e.g., [44]. In the case of a staircase shape partition λ = (n − 1, . . . , 1) one can envision
(cf. [128, 135]) a connection/bijection between the set of k-bounded plane partitions of that
shape and k-dissections of a convex (n + k + 1)-gon. However in the case k ≥ 2 it is not clear

does there exist a monomial M in the algebra ÂCYBn such that the value of the corresponding
reduced polynomial at xij = 1, ∀ i, j is equal to the number of k-dissections (k ≥ 2) of a convex
(n+ k + 1)-gon.

Exercises 5.8.
(1)
(a) Let as before,

π =

(
1 2 3 . . . n
1 n n− 1 . . . 2

)
.

52That is the set of dissections of a convex pk-gon by (maximal) collection of non-crossing diagonals such that
the all regions obtained are a convex (p+ 2)-gons of a convex kp-gon.
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Show that

Sπ(x1 = q, xj = 1, ∀ j 6= i) =
n−2∑
a=0

n− a− 1

n− 1

(
n+ a− 2

a

)
qa.

Note that the number

n− k + 1

n+ 1

(
n+ k

k

)
is equal to the dimension of irreducible representation of the symmetric group Sn+k that corre-
sponds to partition (n+ k, k).

(b) Big Schröder numbers, paths and polynomials G
(β)

1×w(n−1)
0

(x1 = q, xi = 1, ∀ i ≥ 2). Let

n ≥ 1 and k ≥ 0 be integers, denote by Sk,n the number of big Schröder paths of type (k, n),
that is lattice paths from the point (0, 0) and ending at point (2n + k, k), using only the steps
U = (1, 1), H = (2, 0) and D = (1,−1) and never going below the line x = 0. The numbers
S(n) := S0,n commonly known as big Schröder numbers, see, e.g., [131, A001003]. It is well-
known that

Sk,n =
k + 1

n

n∑
a=0

(
n

a

)(
n+ k + a

n− 1

)
.

Show that

G
(β)

1×w(n−1)
0

(x1 = q, xi = 1, ∀ i ≥ 2) =
n−2∑
k=0

Sk,n−2−k(β)qn−k−2,

where Sk,n(β) is the generating functions of the big Schröder paths of type (k, n) according to
the number of horizontal steps H.

(c) Show that the polynomial G
(β)

1×w(n−1−1)
0

(x1 = q, xi = 1, ∀ i ≥ 2) belongs to the ring

N[q, β + 1]. For example, for n = 8 one has

G
(β)

1×w(7)
0

(x1 = q, xi = 1, ∀ i ≥ 2) = (0, 1, 15, 50, 50, 15, 1)β+1t
6 + (0, 2, 24, 60, 40, 6)β+1t

5

+ (0, 3, 27, 45, 15)β+1t
4 + (0, 4, 24, 20)β+1t

3 + (0, 5, 15)β+1t
2 + 6(β + 1)t+ 1.

Show that

Sk,n(β) =
k + 1

n

n∑
a=0

(
n

a

)(
n+ k + a

n− 1

)
βn−a =

k + 1

k + 1 + n

(
2n+ k

n

)
+ · · ·+

(
n+ k

n

)
βn.

(d) Write

G
(β)

1k×w(n−k)
0

(x1 = q, xi = 1, ∀ i ≥ 2) = Ak,n(β)qn−k−1 + · · ·+Bn,k(β).

Show that

Ak,n = (1 + β)kG
(β)
k,n−1(xi = 1, ∀ i ≥ 1), Bk,n = G

(β)
k−1,n−1(xi = 1, ∀ i ≥ 1).

(2) Consider the commutative quotient ÃCYB
ab

n (α, β) of the algebra ÃCYBn(α, β), i.e., as-
sume that the all generators {xij | 1 ≤ i < j ≤ n are mutually commute. Denote by Pn(xij ;α, β)
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the image of polynomial the Pn(xij ;α, β) ∈ ÃCYBn(α, β) in the algebra ÃCYB
ab

n (α, β). Finally,
define polynomials Pn(t, α, β) to be the specialization

xij −→ 1 if j < n, xin −→ t if 1 ≤ i < n.

Show that

(a) Polynomial Pn(t, α, β) does not depend on on order in which relations (a) and (b), see
Definition 5.1, have been applied.

(b)

Pn(1, α = 1, β = 0) =
∑
k≥0

(2n− 2k)!

k!(n+ 1− k)!(n− 2k)!
,

see [131, A052709(n)] for combinatorial interpretations of these numbers.

For example,

P7(t, α, β) = t7 + 6(1 + β)t6 + [(0, 5, 15)β+1 + 6α]t5 + [(0, 4, 24, 20)β+1 + α(5, 29)β+1]t4

+ [(0, 3, 27, 45, 15)β+1 + α(4, 45, 55)β+1 + 14α2]t3

+ [(0, 2, 24, 60, 40, 6)β+1 + α(3, 48, 115, 50)β+1 + α2(21, 49)β+1]t2

+ [(0, 1, 15, 50, 50, 15, 1)β+1 + α(2, 38, 130, 110, 20)β+1 + α2(21, 91, 56)β+1

+ 14α3]t+ α(1, 15, 50, 50, 15, 1)β+1 + α2(14, 70, 70, 14)β+1 + α3(21, 21)β+1.

(c) Show that in fact

Pn(1, α, 0) =
∑
k≥0

1

n+ 1

(
2n− 2k

n

)(
n+ 1

k

)
αk =

∑
k≥0

Tn+2(n− k, k + 1)

2n− 1− 2k
αk,

see Proposition 5.4(2), for definition of numbers Tn(k, r). As for a combinatorial interpretation
of the polynomials Pn(1, α, 0), see [131, A117434, A085880].

(3) Consider polynomials Pn(t, β) as it has been defined in Proposition 5.4(2). Show that

Pn(t, β) = Pn(t, α = 0, β) = tn +
n−1∑
r=1

tr

(
n−1−r∑
k=0

r

n

(
n

k + r

)(
n− r − 1

k

)
(1 + β)n−r−k

)
,

cf., e.g., [131, A033877].

A few comments in order. Several combinatorial interpretations of the integer numbers

Un(r, k) :=
r

n+ 1

(
n+ 1

k + r

)(
n− r
k

)
are well-known. For example, if r = 1, the numbers Un(1, k) = 1

n

(
n
k+1

)(
n
k

)
are equal to the

Narayana numbers, see, e.g., [131, A001263]; if r = 2, the number Un(2, k) counts the number
of Dyck (n+ 1)-paths whose last descent has length 2 and which contain n− k peaks, see [131,
A108838] for details.

Finally, it’s easily seen, that Pn(1, β) = A127529(n), and Pn(t, 1) = A033184(n), see [131].

(4) Show that

Pn(t, α, β) ∈ N[t, α][β + 1],

that is the polynomial Pn(t, α, β) is a polynomial of β+ 1 with coefficients from the ring N[t, α].



On Some Quadratic Algebras 109

Show that

Pn(0, 1, β) ∈ N[β + 2].

For example,

P7(0, 1, β) = (0, 3, 8, 14, 10, 1)β+2, P8(0, 1, β) = (1, 3, 11, 25, 35, 15, 1)β+2.

Show that [131]

Pn(1, 1, 0) = A052709(n+ 1),

that is the number of underdiagonal lattice paths from (0, 0) to (n−1, n−1) and such that each
step is either (1, 0), (0, 1), or (2, 1). For example, P7(1, 1, 0) = 1697 = A052709(8). Cf. with the
next exercise.

Show that [131]

Pn(0, 1, 0) = A052705(n),

namely, the number of underdiagonal paths from (0,0) to the line x = n − 2, using only steps
(1, 0), (0, 1) and NE = (2, 1). For example,

P7(0, 1, 0) = 36 + 106 + 120 + 64 + 15 + 1 = 342 = A052705(7).

Show that [131]

∂

∂a
Pn(a, b = 1,β = 0,α = 1,y = z = 1) = A005775,

that is the number number of paths in the half-plane x ≥ 0 from (0, 0) to (n−1, 2) or (n−1,−3),
and consisting of steps U = (1, 1), D = (1,−1) and H = (1, 0) that contain at least one UUU
but avoid UUU ′s starting above level 0.

5.1.1 Multiparameter deformation of Catalan, Narayana and Schröder numbers

Let b = (β1, . . . , βn−1) be a set of mutually commuting parameters. We define a multiparameter

analogue of the associative quasi-classical Yang–Baxter algebra M̂ACYBn(b) as follows.

Definition 5.9 (cf. Definition 2.20). The multiparameter associative quasi- classical Yang–

Baxter algebra of weight b, denoted by M̂ACYBn(b), is an associative algebra, over the ring of
polynomials Z[β1, . . . , βn−1], generated by the set of elements {xij , 1 ≤ i < j ≤ n}, subject to
the set of relations

(a) xijxkl = xklxij if {i, j} ∩ {k, l} = ∅,

(b) xijxjk = xikxij + xjkxik + βixik if 1 ≤ 1 < i < j ≤ n.

Consider the “Coxeter element” wn ∈ M̂ACYBn(b) which is equal to the ordered product of
“simple generators”:

wn :=

n−1∏
a=1

xa,a+1.

Now we can use the same method as in [133, Exercise 8.C5(c)], see Section 5.1, to define the
reduced form of the Coxeter element wn. Namely, let us bring the element wn to the reduced form
in the algebra M̂ACYBn(b), that is, let us consecutively apply the defining relations (a) and (b)
to the element wn in any order until unable to do so. Denote the resulting (noncommutative)
polynomial by P (xij ; b). In principal, the polynomial itself can depend on the order in which
the relations (a) and (b) are applied.
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Proposition 5.10 (cf. [133, Exercise 8.C5(c)], [99, 100]). The specialized polynomial P (xij = 1,
∀ i, j, b) does not depend on the order in which relations (a) and (b) have been applied.

To state our main result of this subsection, let us define polynomials

Q(β1, . . . , βn−1) := P (xij = 1, ∀ i, j; β1 − 1, β2 − 1, . . . , βn−1 − 1).

Example 5.11.

Q(β1, β2) = 1 + 2β1 + β2 + β2
1 ,

Q(β1, β2, β3) = 1 + 3β1 + 2β2 + β3 + 3β2
1 + β1β2 + β1β3 + β2

2 + β3
1 ,

Q(β1, β2, β3, β4) = 1 + 4β1 + 3β2 + 2β3 + β4 + β1(6β1 + 3β2 + 3β3 + 2β4)

+ β2(3β2 + β3 + β4) + β2
3 + β2

1(4β1 + β2 + β3 + β4)

+ β1(β2
2 + β2

3) + β3
2 + β4

1 .

Theorem 5.12. Polynomial Q(β1, . . . , βn−1) has non-negative integer coefficients.

It follows from [133] and Proposition 5.4, that

Q(β1, . . . , βn−1)
∣∣
β1=1,...,βn−1=1

= Catn.

Polynomials Q(β1, . . . , βn−1) and Q(β1 +1, . . . , βn−1 +1) can be considered as a multiparameter
deformation of the Catalan and (small) Schröder numbers correspondingly, and the homogeneous
degree k part of Q(β1, . . . , βn−1) as a multiparameter analogue of Narayana numbers.

5.2 Grothendieck and q-Schröder polynomials

5.2.1 Schröder paths and polynomials

Definition 5.13. A Schröder path of the length n is an over diagonal path from (0, 0) to (n, n)
with steps (1, 0), (0, 1) and steps D = (1, 1) without steps of type D on the diagonal x = y.

If p is a Schröder path, we denote by d(p) the number of the diagonal steps resting on the
path p, and by a(p) the number of unit squares located between the path p and the diagonal
x = y. For each (unit) diagonal step D of a path p we denote by i(D) the x-coordinate of the
column which contains the diagonal step D. Finally, define the index i(p) of a path p as the
some of the numbers i(D) for all diagonal steps of the path p.

Definition 5.14. Define q-Schröder polynomial Sn(q;β) as follows

Sn(q;β) =
∑
p

qa(p)+i(p)βd(p), (5.4)

where the sum runs over the set of all Schröder paths of length n.

Example 5.15.

S1(q;β) = 1, S2(q;β) = 1 + q + βq,

S3(q;β) = 1 + 2q + q2 + q3 + β
(
q + 2q2 + 2q3

)
+ β2q3,

S4(q;β) = 1 + 3q + 3q2 + 3q3 + 2q4 + q5 + q6 + β
(
q + 3q2 + 5q3 + 6q4 + 3q5 + 3q6

)
+ β2

(
q3 + 2q4 + 3q5 + 3q6

)
+ β3q6.
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Comments 5.16. The q-Schröder polynomials defined by the formula (5.4) are different from
the q-analogue of Schröder polynomials which has been considered in [19]. It seems that there
are no simple connections between the both.

Proposition 5.17 (recurrence relations for q-Schröder polynomials). The q-Schröder polyno-
mials satisfy the following relations

Sn+1(q;β) =
(
1 + qn + βqn

)
Sn(q;β) +

k=n−1∑
k=1

(
qk + βqn−k

)
Sk(q; q

n−kβ)Sn−k(q;β),

and the initial condition S1(q;β) = 1.

Note that Pn(β) = Sn(1;β) and in particular, the polynomials Pn(β) satisfy the following
recurrence relations

Pn+1(β) = (2 + β) Pn(β) + (1 + β)
n−1∑
k=1

Pk(β) Pn−k(β). (5.5)

Theorem 5.18 (evaluation of the Schröder–Hankel determinant). Consider permutation

π
(n)
k =

(
1 2 . . . k k + 1 k + 2 . . . n
1 2 . . . k n n− 1 . . . k + 1

)
.

Let as before

Pn(β) =
n−1∑
j=0

N(n, j)(1 + β)j , n ≥ 1, (5.6)

be Schröder polynomials. Then

(1 + β)(
k
2)G

(β)

π
(n)
k

(x1 = 1, . . . , xn−k = 1) = Det |Pn+k−i−j(β)|1≤i,j≤k.

Proof is based on an observation that the permutation π
(n)
k is a vexillary one and the recur-

rence relations (5.5).

Comments 5.19. (1) In the case β = 0, i.e., in the case of Schubert polynomials, Theorem 5.18
has been proved in [44].

(2) In the cases when β = 1 and 0 ≤ n − k ≤ 2, the value of the determinant in the r.h.s.
of (5.6) is known53. One can check that in the all cases mentioned above, the formula (5.6) gives
the same results.

(3) Grothendieck and Narayana polynomials. It follows from the expression (5.5) for the
Narayana–Schröder polynomials that Pn(β − 1) = Nn(β), where

Nn(β) :=

n−1∑
j=0

1

n

(
n

j

)(
n

j + 1

)
βj ,

denotes the n-th Narayana polynomial. Therefore, Pn(β−1) = Nn(β) is a symmetric polynomial
in β with non-negative integer coefficients. Moreover, the value of the polynomial Pn(β − 1) at
β = 1 is equal to the n-th Catalan number Cn := 1

n+1

(
2n
n

)
.

53See, e.g., [19], or M. Ichikawa talk “Hankel determinants of Catalan, Motzkin and Schröder numbers and its
q-analogue”, http://www.uec.tottori-u.ac.jp/~mi/talks/kyoto07.pdf.

http://www.uec.tottori-u.ac.jp/~mi/talks/kyoto07.pdf
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It is well-known, see, e.g., [136], that the Narayana polynomial Nn(β) is equal to the gene-
rating function of the statistics π(p) = (number of peaks of a Dick path p)− 1 on the set Dickn
of Dick paths of the length 2n

Nn(β) =
∑
p

βπ(p).

Moreover, using the Lindström–Gessel–Viennot lemma54, one can see that

DET |Nn+k−i−j(β)|1≤i,j≤k = β(k2)
∑

(p1,...,pk)

βπ(p1)+···+π(pk), (5.7)

where the sum runs over k-tuple of non-crossing Dick paths (p1, . . . , pk) such that the path pi
starts from the point (i− 1, 0) and has length 2(n− i+ 1), i = 1, . . . , k.

We denote the sum in the r.h.s. of (5.7) by N
(k)
n (β). Note that N

(k)
k−1(β) = 1 for all k ≥ 2.

Thus, N
(k)
n (β) is a symmetric polynomial in β with non-negative integer coefficients, and

N(k)
n (β = 1) = C(k)

n =
∏

1≤i≤j≤n−k

2k + i+ j

i+ j
=

∏
2a≤n−k−1

(
2n−2a

2k

)(
2k+2a+1

2k

) .
As a corollary we obtain the following statement

Proposition 5.20. Let n ≥ k, then

G
(β−1)

π
(n)
k

(x1 = 1, . . . , xn = 1) = N(k)
n (β).

Summarizing, the specialization G
(β−1)

π
(n)
k

(x1 = 1, . . . , xn = 1) is a symmetric polynomial in β

with non-negative integer coefficients, and coincides with the generating function of the statistics
k∑
i=1

π(pi) on the set k-Dickn of k-tuple of non-crossing Dick paths (p1, . . . , pk).

Example 5.21. Take n = 5, k = 1. Then π
(5)
1 = (15432) and one has

G
(β)

π
(5)
1

(
1, q, q2, q3

)
= q4(1, 3, 3, 3, 2, 1, 1) + q5(1, 3, 5, 6, 3, 3)β + q7(1, 2, 3, 3)β2 + q10β3.

It is easy to compute the Carlitz–Riordan q-analogue of the Catalan number C5, namely,

C5(q) = (1, 3, 3, 3, 2, 1, 1).

Remark 5.22. The value Nn(4) of the Narayana polynomial at β = 4 has the following com-
binatorial interpretation: Nn(4) is equal to the number of different lattice paths from the point
(0, 0) to that (n, 0) using steps from the set Σ = {(k, k) or (k,−k), k ∈ Z>0}, that never go
below the x-axis, see [131, A059231].

Exercises 5.23.

(a) Show that

γk,n :=
C

(k+1)
n

C
(k)
n

=
(2n− 2k)!(2k + 1)!

(n− k)!(n+ k + 1)!
.

54See, e.g., https://en.wikipedia.org/wiki/Lindstrom-Gessel-Viennot_lemma.

https://en.wikipedia.org/wiki/Lindstrom-Gessel-Viennot_lemma
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(b) Show that γk,n ≤ 1 if k ≤ n ≤ 3k + 1, and γk,n ≥ 2n−3k−1 if n > 3k + 1.

(4) Polynomials Fw(β), Hw(β), Hw(q, t;β) and Rw(q;β). Let w ∈ Sn be a permutation,

G
(β)
w (Xn) and G

(β)
w (Xn, Yn) be the corresponding β-Grothendieck and double β-Grothendieck

polynomials. We denote by G
(β)
w (1) and by G

(β)
w (1; 1) the specializations Xn := (x1 = 1, . . .,

xn = 1), Yn := (y1 = 1, . . . , yn = 1) of the β-Grothendieck polynomials introduced above.

Theorem 5.24. Let w ∈ Sn be a permutation. Then

(i) The polynomials Fw(β) := G
(β−1)
w (1) and Hw(β) := G

(β−1)
w (1; 1) have both non-negative

integer coefficients.

(ii) One has

Hw(β) = (1 + β)`(w)Fw
(
β2
)
.

(iii) Let w ∈ Sn be a permutation, define polynomials

Hw(q, t;β) := G(β)
w (x1 = q, x2 = q, . . . , xn = q, y1 = t, y2 = t, . . . , yn = t)

to be the specialization {xi = q, yi = t, ∀ i} of the double β-Grothendieck polynomial

G
(β)
w (Xn, Yn). Then

Hw(q, t;β) = (q + t+ βqt)`(w)Fw((1 + βq)(1 + βt)).

In particular, Hw(1, 1;β) = (2 + β)`(w)Fw((1 + β)2).

(iv) Let w ∈ Sn be a permutation, define polynomial

Rw(q;β) := G(β−1)
w (x1 = q, x2 = 1, x3 = 1, . . .)

to be the specialization {x1 = q, xi = 1, ∀ i ≥ 2}, of the (β − 1)-Grothendieck polynomial

G
(β−1)
w (Xn). Then

Rw(q;β) = qw(1)−1Rw(q;β),

where Rw(q;β) is a polynomial in q and β with non-negative integer coefficients, and
Rw(0;β = 0) = 1.

(v) Consider permutation w
(1)
n := [1, n, n − 1, n − 2, . . . , 3, 2] ∈ Sn. Then H

w
(1)
n

(1, 1; 1) =

3(n−1
2 )Nn(4).

In particular, if w
(k)
n = (1, 2, . . . , k, n, n− 1, . . . , k + 1) ∈ Sn, then

S
(β−1)

w
(k)
n

(1; 1) = (1 + β)(
n−k

2 )S
(β−1)

w
(k)
n

(
β2
)
.

See Remark 5.22 for a combinatorial interpretation of the number Nn(4).

Example 5.25. Consider permutation v = [2, 3, 5, 6, 8, 9, 1, 4, 7] ∈ S9 of the length 12, and set
x := (1 + βq)(1 + βt). One can check that

Hv(q, t;β) = x12(1 + 2x)
(
1 + 6x+ 19x2 + 24x3 + 13x4

)
,

and Fv(β) = (1 + 2β)(1 + 6β + 19β2 + 24β3 + 13β4).
Note that Fv(β = 1) = 27 × 7, and 7 = AMS(3), 26 = CSTCTPP(3), cf. Conjecture 5.52,

Section 5.2.4.
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Remark 5.26. One can show, cf. [92, p. 89], that if w ∈ Sn, then Rw(1, β) = Rw−1(1, β).
However, the equality Rw(q, β) = Rw−1(q, β) can be violated, and it seems that in general,
there are no simple connections between polynomials Rw(q, β) and Rw−1(q, β), if so.

From this point we shell use the notation (a0, a1, . . . , ar)β :=
r∑
j=0

ajβ
j , etc.

Example 5.27. Let us take w = [1, 3, 4, 6, 7, 9, 10, 2, 5, 8]. Then

Rw(q, β) = (1, 6, 21, 36, 51, 48, 26)β + qβ(6, 36, 126, 216, 306, 288, 156)β

+ q2β3(20, 125, 242, 403, 460, 289)β + q3β5(6, 46, 114, 204, 170)β.

Moreover, Rw(q, 1) = (189, 1134, 1539, 540)q. On the other hand, w−1 = [1, 8, 2, 3, 9, 4, 5, 10, 6, 7],
and

Rw−1(q, β) = (1, 6, 21, 36, 51, 48, 26)β + qβ(1, 6, 31, 56, 96, 110, 78)β

+ q2β(1, 6, 27, 58, 92, 122, 120, 78)β + q3β(1, 6, 24, 58, 92, 126, 132, 102, 26)β

+ q4β(1, 6, 22, 57, 92, 127, 134, 105, 44)β

+ q5β(1, 6, 21, 56, 91, 126, 133, 104, 50)β

+ q6β(1, 6, 21, 56, 91, 126, 133, 104, 50)β.

Moreover, Rw−1(q, 1) = (189, 378, 504, 567, 588, 588, 588)q.

Notice that w = 1× u, where u = [2, 3, 5, 6, 8, 9, 1, 4, 7]. One can show that

Ru(q, β) = (1, 6, 11, 16, 11)β + qβ2(10, 20, 35, 34)β + q2β4(5, 14, 26)β.

On the other hand, u−1 = [7, 1, 2, 8, 3, 4, 9, 5, 6] and

Ru−1(1, β) = (1, 6, 21, 36, 51, 48, 26)β = Ru(1, β).

Recall that by our definition (a0, a1, . . . , ar)β :=
r∑
j=0

ajβ
j .

5.2.2 Grothendieck polynomials and k-dissections

Let k ∈ N and n ≥ k − 1, be a integer, define a k-dissection of a convex (n + k + 1)-gon
to be a collection E of diagonals in (n + k + 1)-gon not containing (k + 1)-subset of pairwise
crossing diagonals and such that at least 2(k − 1) diagonals are coming from each vertex of the
(n+k+ 1)-gon in question. One can show that the number of diagonals in any k-dissection E of
a convex (n+k+ 1)-gon contains at least (n+k+ 1)(k−1) and at most n(2k−1)−1 diagonals.
We define the index of a k-dissection E to be i(E) = n(2k − 1)− 1−#|E|. Denote by

T (k)
n (β) =

∑
E
βi(E)

the generating function for the number of k-dissections with a fixed index, where the above sum
runs over the set of all k-dissections of a convex (n+ k + 1)-gon.

Theorem 5.28.

G
(β)

π
(n)
k

(x1 = 1, . . . , xn = 1) = T (k)
n (β).
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Mopre generally, let n ≥ k > 0 be integers, consider a convex (n + k + 1)-gon Pn+k+1

and a vertex v0 ∈ Pn+k+1. Let us label clockwise the vertices of Pn+k+1 by the numbers
1, 2, . . . , n+k+1 starting from the vertex v0. Let Dis(Pn+k+1) denotes the set of all k-dissections
of the (n+ k+ 1)-gon Pn+k+1. We denote by D0 := Dis0(Pn+k+1) the “minimal” k-dissection of
the (n+ k + 1)-gon Pn+k+1 in question consisting of the set of diagonals connecting vertices va
and va+r, where 2 ≤ r ≤ k, 1 ≤ a ≤ n + k + 1, and for any positive integer a we denote by
a a unique integer such that 1 ≤ a ≤ n + k + 1 and a ≡ a(mod (n + k + 1)). For example, if
k = 1, then Dis0(Pn+2) = ∅; if k = 3 and n = 4, in other words, P8 is a octagon, the minimal
3-dissection consists of 16 diagonals connecting vertices with the following labels

1→ 3→ 5→ 7→ 9 = 1, 2→ 4→ 6→ 8→ 10 = 2,

1→ 4→ 7→ 10 = 2→ 5→ 8→ 11 = 3→ 6→ 9 = 1.

Now let D ∈ Dis(Pn+k+1) be a dissection. Consider a diagonal dij ∈ (D\D0), i < j which
connects vertex vi with that vj . We attach variable xi to the diagonal dij in question and
consider the following expression

TPn+k+1
(Xn+k+1) =

∑
D∈Dis(Pn+k+1)

β#|D\D0|
∑

dij∈(D\D0)

i<j

∏
xi.

Theorem 5.29. One has

TPn+n+1(Xn+k+1) = βk(n−k)
n∏
a=1

xmin(n−a+1,n−k)
a Gβ−1

wnk

(
x−1

1 , . . . , x−1
n

)
.

Exercises 5.30. It is not difficult to check that

Gβ
15432(X5) = β3x3

1x
3
2x

2
3x4 + β2(x3

1x
3
2x3 + 2x3

1x
3
2x3x4 + 3x3

1x
2
2x

2
3x4 + 3x2

1x
3
2x

2
3x4)

+ β(x3
1x

3
2x3 + x3

1x
3
2x4 + 2x3

1x
2
2x3 + 2x2

1x
3
2x

2
3 + 3x3

1x
2
2x3x4 + 3x3

1x2x
2
3x4

+ 3x2
1x

3
2x3x4 + 3x2

1x
2
2x

2
3x4 + 3x1x

3
2x

2
3x4) + x3

1x
2
2x3 + x3

1x
2
2x4 + x3

1x2x
2
3

+ x3
1x2x3x4 + x3

1x
2
3x4 + x2

1x
3
2x3 + x2

1x
3
2x4 + x2

1x
2
2x

2
3 + x2

1x
2
2x3x4 + x2

1x2x
2
3x4

+ x1x
3
2x

2
3 + x1x

3
2x3x4 + x1x

2
2x

2
3x4 + x3

2x
2
3x4.

Describe bijection between dissections of hexagon P6 (the case k = 1, n = 4) and the above

listed monomials involved in the β-Grothendieck polynomial Gβ
15432(x1, x2, x3, x4).

A k-dissection of a convex (n+k+1)-gon with the maximal number of diagonals (which is equal
to n(2k−1)−1) is called k-triangulation. It is well-known that the number of k-triangulations of

a convex (n+k+1)-gon is equal to the Catalan–Hankel number C
(k)
n−1. Explicit bijection between

the set of k-triangulations of a convex (n + k + 1)-gon and the set of k-tuple of non-crossing
Dick paths (γ1, . . . , γk) such that the Dick path γi connects points (i− 1, 0) and (2n− i− 1, 0),
has been constructed in [128, 135].

5.2.3 Grothendieck polynomials and q-Schröder polynomials

Let π
(n)
k = 1k × w(n−k)

0 ∈ Sn be the vexillary permutation as before, see Theorem 5.18. Recall
that

π
(n)
k =

(
1 2 . . . k k + 1 k + 2 . . . n
1 2 . . . k n n− 1 . . . k + 1

)
.
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(A) Principal specialization of the Schubert polynomial S
π

(n)
k

. Note that π
(n)
k is

a vexillary permutation of the staircase shape λ = (n−k−1, . . . , 2, 1) and has the staircase flag
φ = (k + 1, k + 2, . . . , n − 1). It is known, see, e.g., [92, 139], that for a vexillary permutation
w ∈ Sn of the shape λ and flag φ = (φ1, . . . , φr), r = `(λ), the corresponding Schubert polynomial
Sw(Xn) is equal to the multi-Schur polynomial sλ(Xφ), where Xφ denotes the flagged set
of variables, namely, Xφ = (Xφ1 , . . . , Xφr) and Xm = (x1, . . . , xm). Therefore we can write
the following determinantal formula for the principal specialization of the Schubert polynomial

corresponding to the vexillary permutation π
(n)
k

S
π

(n)
k

(
1, q, q2, . . .

)
= DET

([
n− i+ j − 1

k + i− 1

]
q

)
1≤i,j≤n−k

,

where
[
n
k

]
q

denotes the q-binomial coefficient.

Let us observe that the Carlitz–Riordan q-analogue Cn(q) of the Catalan number Cn is equal
to the value of the q-Schröder polynomial at β = 0, namely, Cn(q) = Sn(q, 0).

Lemma 5.31. Let k, n be integers and n > k, then

(1) DET

([
n− i+ j − 1

k + i− 1

]
q

)
1≤i,j≤n−k

= q(
n−k

3 )C(k)
n (q),

(2) DET
(
Cn+k−i−j(q)

)
1≤i,j≤k = qk(k−1)(6n−2k−5)/6 C(k)

n (q).

(B) Principal specialization of the Grothendieck polynomial G
(β)

π
(n)
k

.

Theorem 5.32.

q(
n−k+1

3 )−(k−1)(n−k2 ) DET
∣∣Sn+k−i−j

(
q; qi−1β

)∣∣
1≤i,j≤k

= qk(k−1)(4k+1)/6
k−1∏
a=1

(
1 + qa−1β

)
G
π

(n)
k

(
1, q, q2, . . .

)
.

Corollary 5.33.

(1) If k = n− 1, then

DET |S2n−1−i−j
(
q; qi−1β

)
|1≤i,j≤n−1 = q(n−1)(n−2)(4n−3)/6

n−2∏
a=1

(
1 + qa−1β

)n−a−1
,

(2) If k = n− 2, then

qn−2 DET
∣∣S2n−2−i−j

(
q; qi−1β

)∣∣
1≤i,j≤n−2

= q(n−2)(n−3)(4n−7)/6
n−3∏
a=1

(
1 + qa−1β

)n−a−2
{

(1 + β)n−1 − 1

β

}
.

Generalization. Let n = (n1, . . . , np) ∈ Np be a composition of n so that n = n1 + · · ·+np.
We set n(j) = n1 + · · ·+ nj , j = 1, . . . , p, n(0) = 0.

Now consider the permutation w(n) = w
(n1)
0 × w(n2)

0 × · · · × w(np)
0 ∈ Sn, where w

(m)
0 ∈ Sm

denotes the longest permutation in the symmetric group Sm. In other words,

w(n) =

(
1 2 . . . n1 n(2) . . . n1 + 1 . . . n(p−1) . . . n

n1 n1 − 1 . . . 1 n1 + 1 . . . n(2) . . . n . . . n(p−1)+1

)
.
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For the permutation w(n) defined above, one has the following factorization formula for the
Grothendieck polynomial corresponding to w(n) [92]

G
(β)

w(n) = G
(β)

w
(n1)
0

×G
(β)

1n1×w(n2)
0

×G
(β)

1n1+n2×w(n3)
0

× · · · ×G
(β)

1n1+...np−1×w(np)
0

.

In particular, if

w(n) = w
(n1)
0 × w(n2)

0 × · · · × w(np)
0 ∈ Sn, (5.8)

then the principal specialization G
(β)

w(n) of the Grothendieck polynomial corresponding to the
permutation w, is the product of q-Schröder–Hankel polynomials. Finally, we observe that from
discussions in Section 5.2.1(3), Grothendieck and Narayana polynomials, one can deduce that

G
(β−1)

w(n) (x1 = 1, . . . , xn = 1) =

p−1∏
j=1

N
(n(j))

n(j+1)(β).

In particular, the polynomial G
(β−1)

w(n) (x1, . . . , xn) is a symmetric polynomial in β with non-
negative integer coefficients.

Example 5.34.
(1) Let us take (non vexillary) permutation w = 2143 = s1s3. One can check that

G(β)
w (1, 1, 1, 1) = 3 + 3β + β2 = 1 + (β + 1) + (β + 1)2,

and

N4(β) = (1, 6, 6, 1), N3(β) = (1, 3, 1), N2(β) = (1, 1).

It is easy to see that

βG(β)
w (1, 1, 1, 1) = DET

∣∣∣∣N4(β) N3(β)
N3(β) N2(β)

∣∣∣∣ .
On the other hand,

DET

∣∣∣∣P4(β) P3(β)
P3(β) P2(β)

∣∣∣∣ = (3, 6, 4, 1) =
(
3 + 3β + β2

)
(1 + β).

It is more involved to check that

q5(1 + β) G(β)
w

(
1, q, q2, q3

)
= DET

∣∣∣∣ S4(q;β) S3(q;β)
S3(q; qβ) S2(q; qβ)

∣∣∣∣ .
(2) Let us illustrate Theorem 5.32 by a few examples. For the sake of simplicity, we consider

the case β = 0, i.e., the case of Schubert polynomials. In this case Pn(q;β = 0) = Cn(q) is equal
to the Carlitz–Riordan q-analogue of Catalan numbers. We are reminded that the q-Catalan–
Hankel polynomials are defined as follows

C(k)
n (q) = qk(1−k)(4k−1)/6 DET |Cn+k−i−j(q)|1≤i,j≤n.

In the case β = 0 the Theorem 5.32 states that if n = (n1, . . . , np) ∈ Np and the permutation
w(n) ∈ Sn is defined by the use of (5.7), then

Sw(n)

(
1, q, q2, . . .

)
= q

∑
(ni3 )C

(n1)
n1+n2

(q)× C(n1+n2)
n1+n2+n3

(q)× C(n−np)
n (q).

Now let us consider a few examples for n = 6.
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• n = (1, 5) =⇒ Sw(n)(1, q, . . .) = q10C
(1)
6 (q) = C5(q).

• n = (2, 4) =⇒ Sw(n)(1, q, . . .) = q4C
(2)
6 (q) = DET

∣∣∣∣C6(q) C5(q)
C5(q) C4(q)

∣∣∣∣.
Note that Sw(2,4)(1, q, . . .) = Sw(1,1,4)(1, q, . . .).

• n = (2, 2, 2) =⇒ Sw(n)(1, q, . . .) = C
(2)
4 (q)C

(4)
6 (q).

• n = (1, 1, 4) =⇒ Sw(n)(1, q, . . .) = q4C
(1)
2 (q)C

(2)
4 (q) = q4C

(2)
4 (q), the last equality follows

from that C
(k)
k+1(q) = 1 for all k ≥ 1.

• n = (1, 2, 3) =⇒ Sw(n)(1, q, . . .) = qC
(1)
3 (q)C

(3)
6 (q).

• n = (3, 2, 1) =⇒ Sw(n)(1, q, . . .) = qC
(3)
5 (q)C

(5)
6 (q) = qC

(3)
5 (q) = q(1, 1, 1, 1). Note that

C
(k)
k+2(q) =

[
k+1

1

]
q
.

Exercises 5.35. Let 1 ≤ k ≤ m ≤ n be integers, n ≥ 2k + 1. Consider permutation

w =

(
1 2 . . . k k + 1 . . . n
m m− 1 . . . m− k + 1 n . . . . . . 1

)
∈ Sn.

Show that

Sw(1, q, . . .) = qn(D(w))C
(m)
n−m+k(q),

where for any permutation w, n(D(w)) =
∑(

di(w)
2

)
and di(w) denotes the number of boxes in

the i-th column of the (Rothe) diagram D(w) of the permutation w, see [92, p. 8].

(C) A determinantal formula for the Grothendieck polynomials G
(β)

π
(n)
k

. Define

polynomials

Φ(m)
n (Xn) =

n∑
a=m

ea(Xn)βa−m,

Ai,j(Xn+k−1) =
1

(i− j)!

(
∂

∂β

)j−1

Φ
(n+1−i)
k+n−i (Xk+n−i) if 1 ≤ i ≤ j ≤ n,

and

Ai,j(Xk+n−1) =

i−j−1∑
a=0

en−i−a(Xn+k−i)

(
i− j − 1

a

)
if 1 ≤ j < i ≤ n.

Theorem 5.36.

DET |Ai,j |1≤i,j≤n = G
(β)

π
(k)
k+n

(Xk+n−1).

Comments 5.37.
(a) One can compute the Grothendieck polynomials for yet another interesting family of

permutations. namely, grassmannian permutations

σ
(n)
k =

(
1 2 . . . k − 1 k k + 1 k + 2 . . . n+ k
1 2 . . . k − 1 n+ k k k + 1 . . . n+ k − 1

)
= sksk+1 · · · sn+k−1 ∈ Sn+k.
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Then

G
(β)

σk(n)(x1, . . . , xn+k) =
k−1∑
j=0

s(n,1j)(Xk)β
j ,

where s(n,1j)(Xk) denotes the Schur polynomial corresponding to the hook shape partition (n, 1j)
and the set of variables Xk := (x1, . . . , xk). In particular,

G
(β)

σk(n)(xj = 1, ∀ j) =

(
n+ k − 1

k

)k−1∑
j=0

k

n+ j

(
k − 1

j

)
βj

 =
k−1∑
j=0

(
n+ j − 1

j

)
(1 + β)j .

(b) Grothendieck polynomials for grassmannian permutations. In the case of a grassmannian
permutation w := σλ ∈ S∞ of the shape λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) where n is a unique descent
of w, one can prove the following formulas for the β-Grothendieck polynomial

G(β)
σλ

(Xn) =
DET

∣∣xλj+n−ji (1 + βxi)
j−1
∣∣
1≤i,j≤n∏

1≤i<j≤n
(xi − xj)

, (5.9)

DET
∣∣h(β)
λj+i,j

(X[i,n])
∣∣
1≤i,j≤n = DET

∣∣h(β)
λj+i,j

(Xn)
∣∣
1≤i,j≤n,

where X[i,n] = (xi, xi+1, . . . , xn), and for any set of variables X

h
(β)
n,k(X) =

k−1∑
a=0

(
k − 1

a

)
hn−k+a(X)βa,

and hk(X) denotes the complete symmetric polynomial of degree k in the variables from the
set X.

A proof is a straightforward adaptation of the proof of special case β = 0 (the case of Schur
polynomials) given by I. Macdonald [92, Section 2, equation (2.10) and Section 4, equation (4.9)].

Indeed, consider β-divided difference operators π
(β)
j , j = 1, . . . , n − 1, and π

(β)
w , w ∈ Sn,

introduced in [42]. For example,

π
(β)
j (f) =

1

xj − xj+1

(
(1 + βxj+1)f(Xn)− (1 + βxj)f(sj(Xn)

)
.

Now let w0 := w
(n)
0 be the longest element in the symmetric group Sn. The same proves of

the Statements 2.10, 2.16 from [92] show that

π(β)
w0

= a−1
δ w0

∑
σ∈Sn

(−1)`(σ)
n−1∏
j=1

(1 + βxj)
n−jσ

 ,

where aδ =
∏

1≤i<j≤n
(xi − xj).

On the other hand, the same arguments as in the proof of Statement 4.8 from [92] show that

G(β)
σλ

(Xn) = π
(β)

w(0)

(
xλ+δn

)
.

Application of the formula for operator π
(β)

w
(0)
n

displayed above to the monomial xλ+δn finishes the

proof of the first equality in (5.8). The statement that the right hand side of the equality (5.9)
coincides with determinants displayed in the identity (5.9) can be checked by means of simple
transformations.
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Problems 5.38.

(1) Give a bijective prove of Theorem 5.28, i.e., construct a bijection between

• the set of k-tuple of mutually non-crossing Schröder paths (p1, . . . , pk) of lengths
(n, n− 1, . . . , n− k + 1) correspondingly, and

• the set of pairs (m, T ), where T is a k-dissection of a convex (n+ k+ 1)-gon, and m
is a upper triangle (0, 1)-matrix of size (k − 1) × (k − 1), which is compatible with
natural statistics on the both sets.

(2) Let w ∈ Sn be a permutation, and CS(w) be the set of compatible sequences corresponding
to w, see, e.g., [13]. Define statistics c(•) on the set CS(w) such that

G(β−1)
w (x1 = 1, x2 = 1, . . .) =

∑
a∈CS(w)

βc(a).

(3) Let w be a vexillary permutation. Find a determinantal formula for the β-Grothendieck

polynomial G
(β)
w (X).

(4) Let w be a permutation. Find a geometric interpretation of coefficients of the polynomials

S
(β)
w (xi = 1) and S

(β)
w (xi = q, xj = 1, ∀ j 6= i).

For example, let w ∈ Sn be an involution, i.e., w2 = 1, and w′ ∈ Sn+1 be the image of w under
the natural embedding Sn ↪→ Sn+1 given by w ∈ Sn −→ (w, n+ 1) ∈ Sn+1. It is well-known, see,
e.g., [77, 142], that the multiplicity me,w of the 0-dimensional Schubert cell {pt} = Y

w
(n+1)
0

in

the Schubert variety Y w′ is equal to the specialization Sw(xi = 1) of the Schubert polynomial

Sw(Xn). Therefore one can consider the polynomial S
(β)
w (xi = 1) as a β-deformation of the

multiplicity me,w.

Question 5.39. What is a geometrical meaning of the coefficients of the polynomial

S
(β)
w (xi = 1) ∈ N[β]?

Conjecture 5.40. The polynomial S
(β)
w (xi = 1) is a unimodal polynomial for any permuta-

tion w.

5.2.4 Specialization of Schubert polynomials

Let n, k, r be positive integers and p, b be non-negative integers such that r ≤ p + 1. It is
well-known [92] that in this case there exists a unique vexillary permutation $ := $λ,φ ∈ S∞
which has the shape λ = (λ1, . . . , λn+1) and the flag φ = (φ1, . . . , φn+1), where

λi = (n− i+ 1)p+ b, φi = k + 1 + r(i− 1), 1 ≤ i ≤ n+ 1− δb,0.

According to a theorem by M. Wachs [139], the Schubert polynomial S$(X) admits the following
determinantal representation

S$(X) = DET
(
hλi−i+j(Xφi)

)
1≤i,j≤n+1

.

Therefore we have

S$(1) := S$(x1 = 1, x2 = 1, . . .)

= DET

((
(n− i+ 1)p+ b− i+ j + k + (i− 1)r

k + (i− 1)r

))
1≤i,j≤n+1

.

We denote the above determinant by D(n, k, r, b, p).
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Theorem 5.41.

D(n, k, r, b, p) =
∏

(i,j)∈An,k,r

i+ b+ jp

i

∏
(i,j)∈Bn,k,r

(k − i+ 1)(p+ 1) + (i+ j − 1)r + r(b+ np)

k − i+ 1 + (i+ j − 1)r
,

where

An,k,r =
{

(i, j) ∈ Z2
≥0 | j ≤ n, j < i ≤ k + (r − 1)(n− j)

}
,

Bn,k,r =
{

(i, j) ∈ Z2
≥1 | i+ j ≤ n+ 1, i 6= k + 1 + rs, s ∈ Z≥0

}
.

It is convenient to re-write the above formula for D(n, k, r, b, p) in the following form

D(n, k, r, b, p) =
n+1∏
j=1

((n− j + 1)p+ b+ k + (j − 1)(r − 1))!(n− j + 1)!

(k + (j − 1)r)!((n− j + 1)(p+ 1) + b)!

×
∏

1≤i≤j≤n
((k − i+ 1)(p+ 1) + jr + (np+ b)r).

Corollary 5.42 (some special cases). (A) The case r = 1.

We consider below some special cases of Theorem 5.41 in the case r = 1. To simplify no-
tation, we set D(n, k, b, p) := D(n, k, r = 1, b, p). Then we can rewrite the above formula for
D(n, k, r, b, p) as follows

D(n, k, b, p) =
n+1∏
j=1

((n+ k − j + 1)(p+ 1) + b)!((n− j + 1)p+ b+ k)!(j − 1)!

((n− j + 1)(p+ 1) + b)!((k + n− j + 1)p+ b+ k)!(k + j − 1)!
.

(1) If k ≤ n+ 1, then

D(n, k, b, p) =

k∏
j=1

(
(n+ k + 1− j)(p+ 1) + b

n− j + 1

)(
(k − j)p+ b+ k

j

)
j!(k − j)!(n− j + 1)!

(n+ k − j + 1)!
.

In particular,

• if k = 1, then

D(n, 1, b, p) =
1 + b

1 + b+ (n+ 1)p

(
(p+ 1)(n+ 1) + b

n+ 1

)
:= F

(p+1)
n+1 (b),

where F pn(b) := 1+b
1+b+(p−1)n

(
pn+b
n

)
denotes the generalized Fuss–Catalan number,

• if k = 2, then

D(n, 2, b, p) =
(2 + b)(2 + b+ p)

(1 + b)(2 + b+ (n+ 1)p)(2 + b+ (n+ 2)p)
F

(p+1)
n+1 (b)F

(p+1)
n+2 (b),

in particular,

D(n, 2, 0, 1) =
6

(n+ 3)(n+ 4)
Catn+1Catn+2.

See [131, A005700] for several combinatorial interpretations of these numbers.
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(2) Consider the Young diagram (see R.A. Proctor [122])

λ := λn,p,b =
{

(i, j) ∈ Z≥1 × Z≥1 | 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ (n+ 1− i)p+ b}.

For each box (i, j) ∈ λ define the numbers c(i, j) := n+ 1− i+ j, and

l(i,j)(k) =


k + c(p, j)

c(i, j)
if j ≤ (n+ 1− i)(p− 1) + b,

(p+ 1)k + c(i, j)

c(i, j)
if (n+ 1− i)(p− 1) < j − b ≤ (n+ 1− i)p.

Then

D(n, k, b, p) =
∏

(i,j)∈λ

l(i,j)(k). (5.10)

Therefore, D(n, k, b, p) is a polynomial in k with rational coefficients.
(3) If p = 0, then

D(n, k, b, 0) = dimV
gl(b+k)

(n+1)k
=

n+k∏
j=1

(
j + b

j

)min(j,n+k+1−j)
,

where for any partition µ, `(µ) ≤ m, V
gl(m)
µ denotes the irreducible gl(m)-module with the highest

weight µ. In particular,

D(n, 2, b, 0) =
1

n+ 2 + b

(
n+ 2 + b

b

)(
n+ 2 + b

b+ 1

)
is equal to the Narayana number N(n+ b+ 2, b),

D(1, k, b, 0) =
(b+ k)!(b+ k + 1)!

k!b!(k + 1)!(b+ 1)!
:= N(b+ k + 1, k),

and therefore the number D(1, k, b, 0) counts the number of pairs of non-crossing lattice paths
inside a rectangular of size (b+1)×(k+1), which go from the point (1, 0) (resp. from that (0, 1))
to the point (b + 1, k) (resp. to that (b, k + 1)), consisting of steps U = (1, 0) and R = (0, 1),
see [131, A001263], for some list of combinatorial interpretations of the Narayana numbers.

(4) If p = b = 1, then

D(n, k, 1, 1) = C
(k)
n+k+1 :=

∏
1≤i≤j≤n+1

2k + i+ j

i+ j
.

(5) If p = 1 and b is odd integer, then D(n, k, b, 1) is equal to the dimension of the irre-
ducible representation of the symplectic Lie algebra Sp(b+ 2n+ 1) with the highest weight kωn+1

(R.A. Proctor [120, 121]).
(6) If p = 1 and b = 0, then

D(n, k, 1, 0) = D(n− 1, k, 1, 1) =
∏

1≤i≤j≤n

2k + i+ j

i+ j
= C

(k)
n+k,

see section on Grothendieck and Narayana polynomials.
(7) Let $λ be a unique dominant permutation of shape λ := λn,p,b and ` := `n,p,b = 1

2(n +
1)(np+ 2b) be its length (cf. [44]). Then∑

a∈R($λ)

∏̀
i=1

(x+ ai) = `!B(n, x, p, b).

Here for any permutation w of length l, we denote by R(w) the set {a = (a1, . . . , al)} of all
reduced decompositions of w.
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Exercises 5.43. Show that

DET
∣∣F (2)
n+i+j−2(0)

∣∣
1≤i,j≤k =

k∏
j=1

F
(2)
n+j−1(0)

(
k+1

2

)
!∏

1≤i≤k−1
1≤j≤k

(n+ i+ j)
,

D(n, k, b, 1) =

k∏
j=1

F
(2)
n+j(b)

∏
1≤i≤j≤k

(b+ i+ j − 1)∏
1≤i≤k−1

1≤j≤k

(n+ b+ i+ j + 1)
.

Clearly that if b = 0, then F
(2)
n (0) = Cn, and D(n, k, 0, 1) is equal to the Catalan–Hankel

determinant C
(k)
n .

Finally we recall that the generalized Fuss–Catalan number F
(p+1)
n+1 (b) counts the number of

lattice paths from (0, 0) to (b+ np, n) that do not go above the line x = py, see, e.g., [81].

Comments 5.44. It is well-known, see, e.g., [122] or [134, Vol. 2, Exercise 7.101.b], that the
number D(n, k, b, p) is equal to the total number ppλn,p,b(k) of plane partitions55 bounded by k
and contained in the shape λn,b,p.

More generally, see, e.g., [44], for any partition λ denote by wλ ∈ S∞ a unique dominant
permutation of shape λ, that is a unique permutation with the code c(w) = λ. Now for any

non-negative integer k consider the so-called shifted dominant permutation w
(k)
λ which has the

shape λ and the flag φ = (φi = k + i− 1, i = 1, . . . , `(λ)). Then

S
w

(k)
λ

(1) = ppλ(≤ k),

where ppλ(≤ k) denotes the number of all plane partitions bounded by k and contained in λ.
Moreover,∑

π∈PPλ(≤k)

q|π| = qn(λ)S
w

(k)
λ

(
1, q−1, q−2, . . .

)
,

where PP λ(≤ k) denotes the set of all plane partitions bounded by k and contained in λ.

Exercises 5.45.
(1) Show that

lim
k→∞

S
w

(k)
λ

(
1, q, q2, . . .

)
=

qn(λ)

Hλ(q)
,

where Hλ(q) =
∏
x∈λ

(1− qh(x)) denotes the hook polynomial corresponding to a given partition λ.

(2) Let λ = ((n+ `)`, `n) be a fat hook. Show that

lim
k→∞

qn(λ)S
w

(k)
λ

(
1, q−1, q−2, . . .

)
= qs(`,n) Kλ(q)

M`(2n+ 2`− 1; q)
,

where a(`, n) is a certain integer we don’t need to specify in what follows,

M`(N ; q) =
N∏
j=1

(
1

1− qj

)min(j,N+1−j,`)

55Let λ be a partition. A plane (ordinary) partition bounded by d and shape λ is a filling of the shape λ
by the numbers from the set {0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly
decreasing. A reverse plane partition bounded by d and shape λ is a filling of the shape λ by the numbers from
the set {0, 1, . . . , d} in such a way that the numbers along columns and rows are weakly increasing.
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denotes the MacMahon generating function for the number of plane partitions fit inside the box
N ×N × `, Kλ(q) is a polynomial in q such that Kλ(0) = 1.

(a) Show that

(1− q)|λ| Kλ(q)

M`(2n+ 2`− 1; q)

∣∣∣∣
q=1

=
1∏

x∈λ
h(x)

.

(b) Show that

Kλ(q) ∈ N[q] and Kλ(1) = M(n, n, `),

where M(a, b, c) denotes the number of plane partitions fit inside the box a × b × c. It is
well-known, see, e.g., [93, p. 81], that

M(a, b, c) =
∏

1≤i≤a
1≤j≤b
1≤k≤c

i+ j + k − 1

i+ j + k − 2
=

c∏
i=1

(a+ b+ i− 1)!(i− 1)!

(a+ i− 1)!(b+ 1− 1)!
= dimV

glb+c
(ac) .

Show that

Kλ(q) =
∑

π∈Bn,n,`

qwt`(π),

where the sum runs over the set of plane partitions π = (πij)1≤i,j≤n fit inside the box Bn,n,` :=
n× n× `, and

wt`(π) =
∑
i,j

πij + `
∑
i

πii.

(c) Assume as before that λ := ((n+ `)`, `n). Show that

lim
n→∞

Kλ(q) = M`(q)
∑
µ

`(µ)≤`

q|µ|

(
qn(µ)∏

x∈µ(1− qh(x))

)2

,

where the sum runs over the set of partitions µ with the number of parts at most `, and
n(µ) =

∑
i(i− 1)µi,

M`(q) :=
∏
j≥1

(
1− qj

)min(j,`)
.

Therefore the generating function PP (`,0)(q) :=
∑

π∈PP (`,0)

q|π| is equal to

∑
µ

`(µ)≤`

q|µ|

 qn(µ)∏
x∈µ

(1− qh(x))


2

,

where PP (`,k) := {π = (πij)i,j≥1 |πij ≥ 0, π`+1,`+1 ≤ k}, |π| =
∑
i,j
πij .

(d) Show that

PP (`,0)(q) =
1

M`(q)2

∑
µ,

`(µ)≤`

(−q)|µ|qn(µ)+n(µ′)
(

dimq V
gl(`)
µ

)2
,
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where µ′ denotes the conjugate partition of µ, therefore n(µ′) =
∑
i≥1

(
µi
2

)
.

The formula (5.10) is the special case n = m of [109, Theorem 1.2]. In particular, if ` = 1
then one come to following identity

1

(q; q)2
∞

∑
k≥0

(−1)kq(
k+1

2 ) =
∑
k≥0

qk
(

1

(q; q)k

)2

.

(e) Let k ≥ 0, ` ≥ 1 be integers. Show that the (fermionic) generating function for the
number of plane partitions π = (πij) ∈ PP (`,k) is equal to

∑
π∈PP (`,k)

q|π| =
∑
µ

µ`+1≤k

q|µ|

 qn(µ)∏
x∈µ

(1− qh(x))


2

.

(B) The case k = 0.

(1) D(n, 0, 1, p, b) = 1 for all nonnegative n, p, b.

(2) D(n, 0, 2, 2, 2) = VSASM(n), i.e., the number of alternating sign (2n+1)×(2n+1) matrices
symmetric about the vertical axis, see, e.g., [131, A005156].

(3) D(n, 0, 2, 1, 2) = CSTCPP(n), i.e., the number of cyclically symmetric transpose comple-
ment plane partitions, see, e.g., [131, A051255].

Theorem 5.46. Let $n,k,p be a unique vexillary permutation of the shape λn.p := (n, n −
1, . . . , 2, 1)p and flag φn,k := (k + 1, k + 2, . . . , k + n− 1, k + n). Then

G(β−1)
$n,1,p(1) =

n+1∑
j=1

1

n+ 1

(
n+ 1

j

)(
(n+ 1)p

j − 1

)
βj−1.

If k ≥ 2, then Gn,k,p(β) := G
(β−1)
$n,k,p(1) is a polynomial of degree nk in β, and

Coeff [βnk](Gn,k,p(β)) = D(n, k, 1, p− 1, 0).

The polynomial

n∑
j=1

1

n

(
n

j

)(
pn

j − 1

)
tj−1 := FNn(t)

is known as the Fuss–Narayana polynomial and can be considered as a t-deformation of the
Fuss–Catalan number FCp

n(0).

Recall that the number 1
n

(
n
j

)(
pn
j−1

)
counts paths from (0, 0) to (np, 0) in the first quadrant,

consisting of steps U = (1, 1) and D = (1,−p) and have j peaks (i.e., UD’s), cf. [131, A108767].

For example, take n = 3, k = 2, p = 3, r = 1, b = 0. Then

$3,2,3 = [1, 2, 12, 9, 6, 3, 4, 5, 7, 8, 10, 11] ∈ S12,

G3,2,3(β) = (1, 18, 171, 747, 1767, 1995, 1001).

Therefore,

G3,2,3(1) = 5700 = D(3, 2, 3, 0) and Coeff [β6](G3,2,3(β)) = 1001 = D(3, 2, 2, 0).
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Proposition 5.47 ([110]). The value of the Fuss–Catalan polynomial at t = 2, that is the
number

n∑
j=1

1

n

(
n

j

)(
pn

j − 1

)
2j−1

is equal to the number of hyperplactic classes of p-parking functions of length n, see [110] for
definition of p-parking functions, its properties and connections with some combinatorial Hopf
algebras.

Therefore, the value of the Grothendieck polynomial G
(β=1)
$n,1,p(1) at β = 1 and xi = 1, ∀ i,

is equal to the number of p-parking functions of length n + 1. It is an open problem to find

combinatorial interpretations of the polynomials G
(β)
$n,k,p(1) in the case k ≥ 2. Note finally, that

in the case p = 2, k = 1 the values of the Fuss–Catalan polynomials at t = 2 one can find in
[131, A034015].

Comments 5.48. (=⇒) The case r = 0. It follows from Theorem 5.32 that in the case r = 0
and k ≥ n, one has

D(n, k, 0, p, b) = dimV
gl(k+1)
λn,p,b

= (1 + p)(
n+1

2 )
n+1∏
j=1

((n−j+1)p+b+k−j+1
k−j+1

)(
(n−j+1)(p+1)+b

n−j+1

) .

Now consider the conjugate ν := νn,p,b := ((n + 1)b, np, (n − 1)p, . . . , 1p) of the partition λn,p,b,
and a rectangular shape partition ψ = (k, . . . , k︸ ︷︷ ︸

np+b

). If k ≥ np + b, then there exists a unique

grassmannian permutation σ := σn,k,p,b of the shape ν and the flag ψ [92]. It is easy to see from
the above formula for D(n, k, 0, p, b), that

Sσn,k,p,b(1) = dimV gl(k−1)
νn,p,b

= (1 + p)(
n
2)
(
k + n− 1

b

) n∏
j=1

(p+ 1)(n− j + 1)

(n− j + 1)(p+ 1) + b

n∏
j=1

( k+j−2
(n−j+1)p+b

)(
(n−j+1)(p+1)+b−1

n−j
) .

After the substitution k := np+ b+ 1 in the above formula we will have

Sσn,np+b+1,p,b
(1) = (1 + p)(

n
2)

n∏
j=1

(np+b+j−1
(n−j+1)p

)(
j(p+1)−1
j−1

) .
In the case b = 0 some simplifications are happened, namely,

Sσn,k,p,0(1) = (1 + p)(
n
2)

n∏
j=1

( k+j−2
(n−j+1)p

)(
(n−j+1)p+n−j

n−j
) .

Finally we observe that if k = np+ 1, then

n∏
j=1

( np+j−1
(n−j+1)p

)(
(n−j+1)p+n−j

n−j
) =

n∏
j=2

( np+j−1
(p+1)(j−1)

)(
j(p+1)−1
j−1

) =

n−1∏
j=1

j!(n(p+ 1)− j − 1)!

((n− j)(p+ 1))!((n− j)(p+ 1)− 1)!
:= A(p)

n ,

where the numbers A
(p)
n are integers that generalize the numbers of alternating sign matrices

(ASM) of size n× n, recovered in the case p = 2, see [33, 111] for details.
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Examples 5.49.

(1) Let us consider polynomials Gn(β) := G
(β−1)
σn,2n,2,0(1).

If n = 2, then

σ2,4,2,0 = 235614 ∈ S6, G2(β) = (1, 2,3) := 1 + 2β + 3β2.

Moreover,

Rσ2,4,2,0(q;β) = (1,2)β + 3qβ2.

If n = 3, then

σ3,6,2,0 = 235689147 ∈ S9, G3(β) = (1, 6, 21, 36, 51, 48,26).

Moreover,

Rσ3,6,2,0(q;β) = (1, 6, 11, 16,11)β + qβ2(10, 20, 35, 34)β + q2β4(5, 14,26)β,

Rσ3,6,2,0(q; 1) = (45, 99, 45)q.

If n = 4, then

σ4,8,2,0 = [2, 3, 5, 6, 8, 9, 11, 12, 1, 4, 7, 10] ∈ S12,

G4(β) = (1, 12, 78, 308, 903, 2016, 3528, 4944, 5886, 5696, 4320, 2280,646).

Moreover,

Rσ4,8,2,0(q;β) = (1, 12, 57, 182, 392, 602, 763, 730, 493,170)β

+ qβ2(21, 126, 476, 1190, 1925, 2626, 2713, 2026, 804)β

+ q2β4(35, 224, 833, 1534, 2446, 2974, 2607, 1254)β

+ q3β6(7, 54, 234, 526, 909, 1026,646)β,

Rσ4,8,2,0(q; 1) = (3402, 11907, 11907, 3402)q = 1701 (2, 7, 7, 2)q.

• If n = 5, then

σ5,10,2 = [2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 1, 4, 7, 10, 13] ∈ S15,

G5(β) = (1, 20, 210, 1420, 7085, 27636, 87430, 230240, 516375, 997790, 1676587, 2466840,

3204065, 3695650, 3778095, 3371612, 2569795, 1610910, 782175, 262200,45885).

Moreover,

Rσ5,10,2,0(q;β) = (1, 20, 174, 988, 4025, 12516, 31402, 64760, 111510, 162170,

202957, 220200, 202493, 153106, 89355, 35972,7429)β

+ qβ2(36, 432, 2934, 13608, 45990, 123516, 269703, 487908, 738927,

956430, 1076265, 1028808, 813177, 499374, 213597, 47538)β

+ q2β4(126, 1512, 9954, 40860, 127359, 314172, 627831, 1029726, 1421253,

1711728, 1753893, 1492974, 991809, 461322, 112860)β

+ q3β6(84, 1104, 7794, 33408, 105840, 255492, 486324, 753984, 1019538,

1169520, 1112340, 825930, 428895, 117990)β

+ q4β8(9, 132, 1032, 4992, 17730, 48024, 102132, 173772, 244620, 276120,
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240420, 144210,45885)β,

Rσ5,10,2,0(q; 1) = (1299078, 6318243, 10097379, 6318243, 1299078)q

= 59049(22, 107, 171, 107, 22)q.

We are reminded that over the paper we have used the notation

(a0, a1, . . . , ar)β :=
r∑
j=0

ajβ
j ,

etc.

One can show that deg[β] Gn(β) = n(n− 1), deg[q] Rσn,2n,2,0(q, 1) = n− 1, and looking on the
numbers 3, 26, 646, 45885 we made

Conjecture 5.50. Let a(n) := Coeff[βn(n−1)] (Gn(β)). Then

a(n) = VSASM(n) = OSASM(n) =

n−1∏
j=1

(3j + 2)(6j + 3)!(2j + 1)!

(4j + 2)!(4j + 3)!
,

where VSASM(n) is the number of alternating sign (2n+1)× (2n+1) matrices symmetric about
the vertical axis, OSASM(n) is the number of 2n × 2n off-diagonal symmetric alternating sign
matrices. See [131, A005156], [111] and references therein, for details.

Conjecture 5.51. Polynomial Rσn,2n,2,0(q; 1) is symmetric and

Rσn,2n,2,0(0; 1) = A20342(2n− 1),

see [131].

(2) Let us consider polynomials Fn(β) := G
(β−1)
σn,2n+1,2,0(1).

If n = 1, then

σ1,3,2,0 = 1342 ∈ S4, F2(β) = (1,2) := 1 + 2β.

If n = 2, then

σ2,5,2,0 = 1346725 ∈ S7, F3(β) = (1, 6, 11, 16,11).

Moreover,

Rσ2,5,2,0(q;β) = (1, 2,3)β + qβ(4, 8, 12)β + q2β3(4,11)β.

If n = 3, then

σ3,7,2,0 = [1, 3, 4, 6, 7, 9, 10, 2, 5, 8] ∈ S10,

F4(β) = (1, 12, 57, 182, 392, 602, 763, 730, 493,170).

Moreover,

Rσ3,7,2,0(q;β) = (1, 6, 21, 36, 51, 48,26)β + qβ(6, 36, 126, 216, 306, 288, 156)β

+ q2β3(20, 125, 242, 403, 460, 289)β + q3β5(6, 46, 114, 204,170)β,

Rσ3,7,2,0(q; 1) = (189, 1134, 1539, 540)q = 27(7, 42, 57, 20)q.
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If n = 4, then

σ4,9,2,0 = [1, 3, 4, 6, 7, 9, 10, 12, 13, 2, 5, 8, 11] ∈ S13,

F5(β) = (1, 20, 174, 988, 4025, 12516, 31402, 64760, 111510, 162170, 202957,

220200, 202493, 153106, 89355, 35972,7429).

Moreover,

Rσ4,9,2,0(q;β) = (1, 12, 78, 308, 903, 2016, 3528, 4944, 5886, 5696, 4320, 2280,646)β

+ qβ(8, 96, 624, 2464, 7224, 16128, 28224, 39552, 47088, 45568,

34560, 18240, 5168)β

+ q2β3(56, 658, 3220, 11018, 27848, 53135, 78902, 100109, 103436,

84201, 47830, 14467)β

+ q3β5(56, 728, 3736, 12820, 29788, 50236, 72652, 85444, 78868,

50876, 17204)β

+ q4β7(8, 117, 696, 2724, 7272, 13962, 21240, 24012, 18768,7429)β,

Rσ4,9,2,0(q; 1) = (30618, 244944, 524880, 402408, 96228)q = 4374(7, 56, 120, 92, 22)q.

One can show that Fn(β) is a polynomial in β of degree n2, and looking on the numbers 2,
11, 170, 7429 we made

Conjecture 5.52. Let b(n) := Coeff
[β(n−1)2 ]

(Fn(β)). Then b(n) = CSTCPP(n). In other words,

b(n) is equal to the number of cyclically symmetric transpose complement plane partitions in an
2n× 2n× 2n box. This number is known to be

n−1∏
j

(3j + 1)(6j)!(2j)!

(4j + 1)!(4j)!
,

see [131, A051255], [18, p. 199].

It ease to see that polynomial Rσn,2n+1,2,0(q; 1) has degree n.

Conjecture 5.53.

Coeff [βn]

(
Rσn,2n+1,2,0(q; 1)

)
= A20342(2n),

see [131];

Rσn,2n+1,2,0(0; 1) = A
(1)
QT(4n; 3) = 3n(n−1)/2ASM(n),

see [83, Theorem 5] or [131, A059491].

Proposition 5.54. One has

Rσ4,2n+1,2,0(0;β) = Gn(β) = G(β−1)
σn,2n,2,0(1), Rσn,2n,2,0(0, β) = Fn(β) = G(β−1)

σn,2n+1,2,0
(1).

Finally we define (β, q)-deformations of the numbers VSASM(n) and CSCTPP(n). To ac-
complish these ends, let us consider permutations

w−k = (2, 4, . . . , 2k, 2k − 1, 2k − 3, . . . , 3, 1),

w+
k = (2, 4, . . . , 2k, 2k + 1, 2k − 1, . . . , 3, 1).
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Proposition 5.55. One has

Sw−k
(1) = VSAM(k), Sw+

k
(1) = CSTCPP(k).

Therefore the polynomials G
(β−1)

w−k
(x1 = q, xj = 1, ∀ j ≥ 2) and G

(β−1)

w+
k

(x1 = q, xj = 1,

∀ j ≥ 2) define (β, q)-deformations of the numbers VSAM(k) and CSTCPP(k) respectively.
Note that the inverse permutations

(w−k )−1 = (2k, 1︸︷︷︸, . . . , 2k + 1− i, i︸ ︷︷ ︸, . . . , k + 1, k︸ ︷︷ ︸),
(w+

k )−1 = (2k + 1, 1︸ ︷︷ ︸, . . . , 2k + 2− j, j︸ ︷︷ ︸, . . . , k + 2, k︸ ︷︷ ︸, k + 1)

also define a (β, q)-deformation of the numbers considered above.

Problem 5.56. It is well-known, see, e.g., [37, p. 43], that the set VSASM(n) of alternating
sign (2n+1)×(2n+1) matrices symmetric about the vertical axis has the same cardinality as the
set SYT2(λ(n),≤ n) of semistandard Young tableaux of the shape λ(n) := (2n−1, 2n−3, . . . , 3, 1)
filled by the numbers from the set {1, 2, . . . , n}, and such that the entries are weakly increasing
down the anti-diagonals.

On the other hand, consider the set CS(w−k ) of compatible sequences, see, e.g., [13, 42],
corresponding to the permutation w−k ∈ S2k.

Challenge 5.57. Construct bijections between the sets CS(w−k ), SYT2(λ(k),≤ k) and
VSASM(k).

Remark 5.58. One can compute the principal specialization of the Schubert polynomial cor-
responding to the transposition tk,n := (k, n− k) ∈ Sn that interchanges k and n− k, and fixes
all other elements of [1, n].

Proposition 5.59.

q(n−1)(k−1)Stk,n−k

(
1, q−1, q−2, q−3, . . .

)
=

k∑
j=1

(−1)j−1q(
j
2)
[
n− 1

k − j

]
q

[
n− 2 + j

k + j − 1

]
q

=
n−2∑
j=1

qj

([
j + k − 2

k − 1

]
q

)2

.

Exercises 5.60.
(1) Show that if k ≥ 1, then

Coeff [qkβ2k](Rσn,2n,2,0(q; t)) =

(
2n− 1

2k

)
,

Coeff [qkβ2k−1](Rσn,2n+1,2,0(q; t)) =

(
2n

2k − 1

)
.

(2) Let n ≥ 1 be a positive integer, consider “zig-zag” permutation

w =

(
1 2 3 4 . . . 2k + 1 2k + 2 . . . 2n− 1 2n
2 1 4 3 . . . 2k + 2 2k + 1 . . . 2n 2n− 1

)
∈ S2n.

Show that

Rw(q, β) =

n−1∏
k=0

(
1− β2k

1− β
+ qβ2k

)
.
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(3) Let σk,n,m be grassmannian permutation with shape λ = (nm) and flag φ = (k+1)m, i.e.,

σk,n,m =

(
1 2 . . . k k + 1 . . . k + n k + n+ 1 . . . k + n+m
1 2 . . . k k +m+ 1 . . . k +m+ n k + 1 . . . k +m

)
.

Clearly σk+1,n,m = 1× σk,n,m.
Show that the coefficient Coeffβm(Rσk,n,m(1, β)) is equal to the Narayana number N(k+n+

m, k).
(4) Consider permutation w := w(n) = (w1, . . . , w2n+1), where w2k−1 = 2k+1 for k = 1, . . . , n,

w2n+1 = 2n, w2 = 1 and w2k = 2k − 2 for k = 2, . . . , n. For example, w(3) = (3152746). We

set w(0) = 1. Show that the polynomial S
(β)
w (xi = 1, ∀i) has degree n(n− 1) and the coefficient

Coeffβn(n−1)(S
(β)
w (xi = 1, ∀ i)) is equal to the n-th Catalan number Cn.

Note that the specialization S
(β)
w (xi = 1)|β=1 is equal to the 2n-th Euler (or up/down)

number, see [131, A000111].

More generally, consider permutation w
(n)
k := 1k × w(n) ∈ Sk+2n+1, and polynomials

Pk(z) =
∑
j≥0

(−1)jS
w

(j)
k−2j

(xi = 1)zk−2j , k ≥ 0.

Show that∑
k≥0

Pk(z)
tk

k!
= exp(tz) sech(t).

The polynomials Pk(z) are well-known as Swiss–Knife polynomials, see [131, A153641], where
one can find an overview of some properties of the Swiss–Knife polynomials.

(5) Assume that n = 2k + 3, k ≥ 1, and consider permutation vn = (v1, . . . , vn) ∈ Sn, where
v2a+1 = 2a + 3, a = 0, . . . , n − 1, w2 = 1 and w2a = 2a − 2, a = 2, . . . , k + 1. For example,
v4 = [31527496, 11, 8, 10] and Sv4(1) = 50521 = E10.

Show that

Svn(q, xi = 1, ∀ i ≥ 2) = (n− 2)En−3q
2 + · · ·+ 2k−1(k − 1)!qk+2,

Svn(xi = 1, ∀ i ≥ 1) = En−1.

Set β = d− 1, consider polynomials En(q, d) = G
(β)
vn (x1 = q, xi = 1, ∀ i ≥ 2). Clearly, see the

latter formula, En(1, 1) = En−1. Give a combinatorial prove that En(q, d) ∈ N[q, d], that is to
give combinatorial interpretation(s) of coefficients of the polynomial En(q, d).

Show that degd En(1, d) = n(n+ 1) and the leading coefficient is equal to the Catalan num-
ber Cn+1.

(6) Consider permutation u := un = (u1, . . . , u2n) ∈ S2n, n ≥ 2, where u1 = 2, u2k+1 = 2k−1,
k = 1, . . . , n, u2k = 2k + 2, k = 1, . . . , n− 1, u2n = 2n− 1. For example, u4 = (24163857).

Now consider polynomial

R(k)
n (q) = S1k×un(x1 = q, xi = 1, ∀ i ≥ 2).

Show that R
(k)
n (1) =

(
2n+k−1

k

)
E2n−1, where E2k−1, k ≥ 1, denotes the Euler number, see [131,

A00111]. In particular, R
(1)
n (1) = 22n−1Gn, where Gn denotes the unsigned Genocchi number,

see [131, A110501].

Show that degq R
(k)
n (q) = n and Coeffqn

(
R

(0)
n (q)

)
= (2n− 3)!!.

(7) Consider permutation wn ∈ S2n+2, where w2 = 1, w4 = 2, and

w2k−1 = 2k + 2, 1 ≤ k ≤ n, w2k = 2k − 3, 3 ≤ k ≤ n,
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w2n+1 = 2n− 3, w2n+2 = 2n− 1.

For example, w5 = [4, 1, 6, 2, 8, 3, 10, 5, 12, 7, 9, 11].

Show that

Swn(xi = 1, ∀ i) = (2n+ 1)!!
(
22n − 2

)
|B2n|,

where B2n denotes the Bernoulli numbers56.

(8) Consider permutation wk := (2k + 1, 2k − 1, . . . , 3, 1, 2k, 2k − 2, . . . , 4, 2) ∈ S2k+1. Show
that

S(β−1)
wk

(x1 = q, xj = 1, ∀ j ≥ 2) = q2k(1 + β)(
n
2).

(9) Consider permutations σ+
k = (1, 3, 5, . . . , 2k+ 1, 2k+ 2, 2k, . . . , 4, 2) and σ−k = (1, 3, 5, . . .,

2k + 1, 2k, 2k − 2, . . . , 4, 2), and define polynomials

S±k (q) = Sσ±k
(x1 = q, xj = 1, ∀ j ≥ 2).

Show that

S+
k (0) = VSASM(k), S+

k (1) = VSASM(k + 1),

∂

∂q
S+
k (q)|q=0 = 2kS+

k (0), Coeffqk(S+
k (q)) = CSTCPP(k + 1),

S−k (0) = CSTCPP(k), S−k (1) = CSTCPP(k + 1),

∂

∂q
S−k (q)|q=0 = (2k − 1)S−k (0), Coeffqk(S−k (q)) = VSASM(k).

Let’s observe that σ±k = 1 × τ±k−1, where τ+
k = (2, 4, . . . , 2k, 2k + 1, 2k − 1, . . . , 3, 1) and

τ−k = (2, 4, . . . , 2k, 2k − 1, 2k − 3, . . . , 3, 1). Therefore,

Sτ±k
(x1 = q, xj = 1, ∀j ≥ 2) = qS±k−1(q).

Recall that CSTCPP(n) denotes the number of cyclically symmetric transpose compliment plane
partitions in a 2n × 2n box, see, e.g., [131, A051255], and VSASM(n) denotes the number of
alternating sign (2n+1)×(2n+1) matrices symmetric the vertical axis, see, e.g., [131, A005156].

It might be well to point out that

Sσ+
n−1

(x1 = x, xi = 1, ∀ i ≥ 2) = G2n−1,n−1(x, y = 1),

Sσ−n
(x1 = x, xi = 1, ∀ i ≥ 2) = F2n,n−1(x, y = 1),

where (homogeneous) polynomials Gm,n(x, y) and Fm,n(x, y) are defined in [123], and related
with integral solutions to Pascal’s hexagon relations

fm−1,nfm+1,n + fm,n−1fm,n+1 = fm−1,n−1fm+1,n+1, (m,n) ∈ Z2.

(10) Consider permutation

un =

(
1 2 . . . n n+ 1 n+ 2 n+ 3 . . . 2n
2 4 . . . 2n 1 3 5 . . . 2n− 1

)
,

56See, e.g., https://en.wikipedia.org/wiki/Bernoulli_number.

https://en.wikipedia.org/wiki/Bernoulli_number
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and set u
(k)
n := 12k+1 × un. Show that

G
(β−1)

u
(k)
n

(xi = 1, ∀ i ≥ 1) = (1 + β)(
n+1

2 )G
((β)2−1)

1k×w(n+1)
0

(xi = 1, ∀ i ≥ 1),

where w
(n+)
0 denotes the permutation (n+ 1, n, n− 1, . . . , 2, 1).

(11) Let n ≥ 0 be an integer. Consider permutation un = 1n × 321 ∈ S3+n. Show that

Sun(x1 = t, xi = 1, ∀ i ≥ 2) =
1

4

(
2n+ 2

3

)
+
n

2

(
2n+ 2

1

)
t+

1

2

(
2n+ 2

1

)
t2.

Consider permutation vn := 1n × 4321 ∈ Sn+4. Show that

Svn(x1 = t, xi = 1, ∀ i ≥ 2)

=
1

24

(
2n+ 4

5

)(
2n+ 2

1

)
+

1

2

(
2n+ 4

5

)
t+

n

4

(
2n+ 4

3

)
t2 +

1

4

(
2n+ 4

3

)
t3.

(12) Show that

∑
(a,b,c)∈(Z≥0)3

qa+b+c

[
a+ b

b

]
q

[
a+ c

c

]
q

[
b+ c

b

]
q

=
1

(q; q)3
∞

∑
k≥2

(−1)k
(
k

2

)
q(
k
2)−1

 .

It is not difficult to see that the left hand side sum of the above identity counts the weighted
number of plane partitions π = (πij) such that

πi,j ≥ 0, πij ≥ max(πi+1,j , πi,j+1), πij ≤ 1 if i ≥ 2 and j ≥ 2,

and the weight wt(π) :=
∑
i,j
πij .

(13) Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λp > 0) be a partition of size n. For an integer k such that
1 ≤ k ≤ n− p define a grassmannian permutation

w
(k)
λ = [1, . . . , k, λp + k + 1, λp−1 + k + 2, . . . , λ1 + k + p, a1, . . . , an−p−k],

where we denote by (a1 < a2 < · · · < an−k−p) the complement [1, n]\(1, . . . , k, λp+k+ 1, λp−1 +
k + 2, . . . , λ1 + k + p)].

Show that the Grothendieck polynomial

Gλ(β) := Gβ−1
wλk

(1n)

is a polynomial of β with nonnegative coefficients. Clearly, Gλ(1) = dimV
Gl(k+`(λ))
λ .

Find a combinatorial interpretations of polynomial Gλ(β).

Final remark, it follows from the seventh exercise listed above, that the polynomials S
(β)

σ±k
(x1 =

q, xj = 1, ∀ j ≥ 2) define a (q, β)-deformation of the number VSASM(k) (the case σ+
k ) and the

number CSTCPP(k) (the case σ−k ), respectively.

5.2.5 Specialization of Grothendieck polynomials

Let p, b, n and i, 2i < n be positive integers. Denote by T (i)
p,b,n the trapezoid, i.e., a convex

quadrangle having vertices at the points

(ip, i), (ip, n− i), (b+ ip, i) and (b+ (n− i)p, n− i).
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Definition 5.61. Denote by FC
(i)
b,p,n the set of lattice path from the point (ip, i) to that (b +

(n − i)p, n − i) with east steps E = (0, 1) and north steps N = (1, 0), which are located inside

of the trapezoid T (i)
p,b,n.

If p ∈ FC
(i)
b,p,n is a path, we denote by p(p) the number of peaks, i.e.,

p(p) = NE(p) + Ein(p) +Nend(p),

where NE(p) is equal to the number of steps NE resting on path p; Ein(p) is equal to 1, if the
path p starts with step E and 0 otherwise; Nend(p) is equal to 1, if the path p ends by the step N
and 0 otherwise.

Note that the equality Nend(p) = 1 may happened only in the case b = 0.

Definition 5.62. Denote by FC
(k)
b,p,n the set of k-tuples P = (p1, . . . , pk) of non-crossing lattice

paths, where for each i = 1, . . . , k, pi ∈ FC
(i)
b,p,n.

Let

FC
(k)
b,p,n(β) :=

∑
P∈FC

(k)
b,p,n

βp(P)

denotes the generating function of the statistics p(P) :=
k∑
i=1

p(pi)− k.

Theorem 5.63. The following equality holds

G(β)
σn,k,p,b

(x1 = 1, x2 = 1, . . .) = FC
(k)
p,b,n+k(β + 1),

where σn,k,p,b is a unique grassmannian permutation with shape ((n + 1)b, np, (n − 1)p, . . . , 1p)
and flag (k, . . . , k)︸ ︷︷ ︸

np+b

.

5.3 The “longest element” and Chan–Robbins–Yuen polytope57

5.3.1 The Chan–Robbins–Yuen polytope CRYn

Assume additionally, cf. [133, Exercise 6.C8(d)], that the condition (a) in Definition 5.1 is
replaced by that

(a′) xij and xkl commute for all i, j, k and l.

Consider the element w
(n)
0 :=

∏
1≤i<j≤n

xij . Let us bring the element w
(n)
0 to the reduced form,

that is, let us consecutively apply the defining relations (a′) and (b) to the element w
(n)
0 in any

order until unable to do so. Denote the resulting polynomial by Qn(xij ;α, β). Note that the
polynomial itself depends on the order in which the relations (a′) and (b) are applied.

We denote by Qn(β) the specialization

xij = 1 for all i and j,

of the polynomial Qn(xij ;α = 0, β).

57Some results of this section, e.g., Theorems 5.63 and 5.65, has been proved independently and in greater
generality in [102].
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Example 5.64.

Q3(β) = (2, 1) = 1 + (β + 1), Q4(β) = (10, 13, 4) = 1 + 5(β + 1) + 4(β + 1)2,

Q5(β) = (140, 336, 280, 92, 9) = 1 + 16(β + 1) + 58(β + 1)2 + 56(β + 1)3 + 9(β + 1)4,

Q6(β) = 1 + 42(β + 1) + 448(β + 1)2 + 1674(β + 1)3 + 2364(β + 1)4

+ 1182(β + 1)5 + 169(β + 1)6,

Q7(β) = (1, 99, 2569, 25587, 114005, 242415, 248817, 118587, 22924, 1156)β+1,

Q8(β) = (1, 219, 12444, 279616, 2990335, 16804401, 52421688, 93221276, 94803125,

53910939, 16163947, 2255749, 108900)β+1.

What one can say about the polynomial Qn(β) := Qn(xij ;β)|xij=1, ∀ i,j?
It is known, [133, Exercise 6.C8(d)], that the constant term of the polynomial Qn(β) is

equal to the product of Catalan numbers
n−1∏
j=1

Cj . It is not difficult to see that if n ≥ 3,

then Coeff [β+1](Qn(β)) = 2n − 1 −
(
n+1

2

)
, see [131, A002662], for a number of combinatorial

interpretations of the numbers 2n − 1−
(
n+1

2

)
.

Theorem 5.65. One has

Qn(β − 1) =

∑
m≥0

ι(CRYn+1,m)βm

 (1− β)(
n+1

2 )+1,

where CRYm denotes the Chan–Robbins–Yuen polytope [20, 21], i.e., the convex polytope given
by the following conditions:

CRYm =
{

(aij) ∈ Matm×m(Z≥0)
}

such that

(1)
∑

i aij = 1,
∑

j aij = 1,

(2) aij = 0 if j > i+ 1.

Here for any integral convex polytope P ⊂ Zd, ι(P, n) denotes the number of integer points in
the set nP ∩ Zd.

In particular, the polynomial Qn(β) does not depend on the order in which the relations (a′)
and (b) have been applied.

Now let us denote by Q̂n(q, t;α, β) the specialization

xij = 1, i < j < n, and xi,n = q if i = 2, . . . , n− 1, x1,n = t

of the (reduced) polynomial Qn(xij ;α, β) obtained by applying the relations (a′) and (b) in
a certain order. The polynomial Qn(xij ;α, β) itself depends on the order selected. To define
polynomials which are frequently appear in Section 5, we apply the rules (a) and (b) stated in

Definition 5.1 to a given monomial xi1,j1 · · ·xip,jp ∈ ÂCYBn(α, β) consequently according to the

order in which the monomial taken has been written. We set Qn(t, α, β) := Q̂n(q = t, t;α, β).

Conjecture 5.66. Let n ≥ 3 and write

Qn(t = 1;α, β) =
∑
k≥0

(1 + β)kck,n(α),
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then ck,n(α) ∈ Z≥0[α].

The polynomial Qn(t, β, α = 0) has degree dn := [ (n−1)2

4 ] with respect to β. Write

Qn(t, β) := Qn(t;α = 0, β) = tn−2
dn∑
k=0

c(k)
n (t)βk.

Then c
(dn)
n (1) = a2

n for some non-negative integer an. Moreover, there exists a polynomial
an(t) ∈ N[t] such that

c(dn)
n (t) = an(1)an(t), an(0) = an−1.

The all roots of the polynomial Qn(β) belong to the set R<−1.

For example,

Q4(t = 1;α, β) = (1, 5, 4)β+1 + α(5, 7)β+1 + 3α2,

Q5(t = 1;α, β) = (1, 16, 58, 56, 9)β+1 + α(16, 109, 146, 29)β+1

+ α2(51, 125, 34)β+1 + α3(35, 17)β+1,

c
(6)
6 = 13(2, 3, 3, 3, 2), c

(9)
7 (t) = 34(3, 5, 6, 6, 6, 5, 3),

c
(12)
8 (t) = 330(13, 27, 37, 43, 45, 45, 43, 37, 27, 13),

Q4(t, β, α = 0)t−1 = t2 + (β + 1)
(
3t+ 2t2

)
+ (β + 1)2(t+ 1)2,

Q̂4(q, t;α = 0, β) =
(
qt2 + t3 + 2qt3 + q2t3 + q3t3 + t4 + 2qt4 + q2t4

)
+
(
2qt2 + 2t3 + 3qt3 + 2q2t3 + 2t4 + 2qt4

)
β +

(
t2 + t3

)
(q + t)β2,

Q̂5(q, t;α = 0, β) =
(
3q2t+ q3t+ 5qt2 + 6q2t2 + 2q3t2 + 2t3 + 10qt3 + 10q2t3 + 6q3t3

+ 3q4t3 + 3q5t3 + 2q6t3 + 3t4 + 11qt4 + 11q2t4 + 8q3t4 + 5q4t4 + 3q5t4

+ 3t5 + 9qt5 + 9q2t5 + 6q3t5 + 3q4t5 + 2t6 + 6qt6 + 6q2t6 + 2q3t6
)

+
(
9q2t+ 2q3t+ 17qt2 + 18q2t2 + 4q3t2 + 7t3 + 31qt3 + 29q2t3

+ 15q3t3 + 10q4t3 + 7q5t3 + 10t4 + 31qt4 + 29q2t4 + 18q3t4

+ 10q4t4 + 10t5 + 24qt5 + 21q2t5 + 10q3t5 + 6t6 + 12qt6 + 6q2t6
)
β

+
(
9q2t+ q3t+ 21qt2 + 18q2t2 + 2q3t2 + 9t3 + 34qt3 + 28q2t3

+ 14q3t3 + 9q4t3 + 12t4 + 30qt4 + 24q2t4 + 12q3t4 + 12t5 + 21qt5

+ 12q2t5 + 6t6 + 6qt6
)
β2 +

(
3q2t+ 11qt2 + 6q2t2 + 5t3 + 15qt3

+ 10q2t3 + 5q3t3 + 6t4 + 11qt4 + 6q2t4 + 6t5 + 6qt5 + 2t6
)
β3

+
(
2qt2 + t3 + 2qt3 + q2t3 + t4 + qt4 + t5

)
β4.

Note that polynomials Q̂n(q, t;α = 0, β = 0) give rise to a two parameters deformation of the
product of Catalan’s numbers C1C2 · · ·Cn−1. Are there combinatorial interpretations of these
polynomials and polynomials Q̂n(q, t;α = 0, β)?

Comments 5.67. We expect that for each integer n ≥ 2 the set

Ψn+1 :=

w ∈ S2n−1 |Sw(1) =

n∏
j=1

Catj


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is non empty, whereas the setw ∈ S2n−2 |Sw(1) =
n∏
j=1

Catj


is empty. For example,

Ψ4 = {[1, 5, 3, 4, 2]}, Ψ5 = {[1, 5, 7, 3, 2, 6, 4], [1, 5, 4, 7, 2, 6, 3]},
Ψ6 =

{
w := [1, 3, 2, 8, 6, 9, 4, 5, 7], w−1, . . .

}
, Ψ7 = {???},

but one can check that for w = [2358, 10, 549, 12, 11] ∈ S12

Sw(1) = 776160 =

6∏
j=2

Catj .

More generally, for any positive integer N define

κ(N) = min{n | ∃w ∈ Sn such that Sw(1) = N}.

It is clear that κ(N) ≤ N + 1.

Problem 5.68. Compute the following numbers

κ(n!), κ

 n∏
j=1

Catj

 , κ(ASM(n)), κ
(
(n+ 1)n−1

)
.

For example, 10 ≤ κ(ASM(6) = 7436) ≤ 12. Indeed, take w = [716983254, 10, 12, 11] ∈ S12.
One can show that

Sw(x1 = t, xi = 1, ∀ i ≥ 2) = 13t6(t+ 10)(15t+ 37),

so that Sw(1) = ASM(6); κ(64) = 9, namely, one can take w = [157364298].

Question 5.69. Let N be a positive integer. Does there exist a vexillary (grassmannian?)
permutation w ∈ Sn such that n ≤ 2κ(N) and Sw(1) = N?

For example, w = [1, 4, 5, 6, 8, 3, 5, 7] ∈ S8 is a grassmannian permutation such that Sw(1) =
140, and Rw(1, β) = (1, 9, 27, 43, 38, 18, 4).

Remark 5.70. We expect that for n ≥ 5 there are no permutations w ∈ S∞ such that Qn(β) =

S
(β)
w (1).

The numbers Cn :=
n∏
j=1

Catj appear also as the values of the Kostant partition function of

the type An−1 on some special vectors. Namely,

Cn = KΦ(1n)(γn), where γn =

(
1, 2, 3, . . . , n− 1,−

(
n

2

))
,

see, e.g., [133, Exercise 6.C10], and [69, pp. 173–178]. More generally [69, Exercise g, p. 177,
(7.25)], one has

KΦ(1n)(γn,d) = ppδn(d)Cn−1 =

n+d−2∏
j=d

1

2j + 1

(
n+ d+ j

2j

)
,
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where γn,d = (d+ 1, d+ 2, . . . , d+ n− 1,−n(2d+ n− 1)/2), ppδn(d) denotes the set of reversed
(weak) plane partitions bounded by d and contained in the shape δn = (n − 1, n − 2, . . . , 1).
Clearly, ppδn(1) =

∏
1≤i<j≤n

i+j+1
i+j−1 = Cn, where Cn is the n-th Catalan number58.

Conjecture 5.71. For any permutation w ∈ Sn there exists a graph Γw = (V,E), possibly with

multiple edges, such that the reduced volume ṽol(FΓw) of the flow polytope FΓw , see, e.g., [132]
for a definition of the former, is equal to Sw(1).

For a family of vexillary permutations wn,p of the shape λ = pδn+1 and flag φ = (1, 2, . . .,
n − 1, n) the corresponding graphs Γn,p have been constructed in [101, Section 6]. In this case
the reduced volume of the flow polytope FΓn,p is equal to the Fuss–Catalan number

1

1 + (n+ 1)p

(
(n+ 1)(p+ 1)

n+ 1

)
= Swn,p(1),

cf. Corollary 5.33.

Exercises 5.72.

(a) Show that the polynomial Rn(t) := t1−nQn(t; 0, 0) is symmetric (unimodal?), and Rn(0) =
n−2∏
k=1

Catk. For example,

R4(t) = (1 + t)
(
2 + t+ 2t2

)
, R5(t) = 2(5, 10, 13, 14, 13, 10, 5)t,

R6(t) = 10(2, 3, 2)t(7, 7, 10, 13, 10, 13, 10, 7, 7)t, R7(t) = 30
(
196 + · · ·+ 196t15

)
.

Note that Rn(1) =
n−1∏
k=1

Catk.

(b) More generally, write as before,

Qn(t; 0, β) = tn−2
∑
k≥0

c(k)
n (t)βk.

Show that the polynomials c
(k)
n (t) are symmetric (unimodal?) for all k and n.

(c) Consider a reduced polynomial Rn({xij}) of the element∏
1≤i<j≤n

(i,j)6=(n−1,n)

xij ∈ ÂCYB(α = β = 0)ab,

see Definition 5.1. Here we assume additionally, that all elements {xij} are mutually

commute. Define polynomial R̃n(q, t) to be the following specialization

xij −→ 1 if i < j < n− 1, xi,n−1 −→ q, xi,n −→ t, ∀ i

of the polynomial Rn({xij}) in question. Show that polynomials R̃n(q, t) are well-defined,
and

R̃n(q, t) = R̃n(t, q).

58For example, if n = 3, there exist 5 reverse (weak) plane partitions of shape δ3 = (2, 1) bounded by 1, namely

reverse plane partitions

{(
0 0
0

)
,

(
0 0
1

)
,

(
0 1
0

)
,

(
0 1
1

)
,

(
1 1
1

)}
.
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Examples 5.73.

R4(t, β) = (2, 3, 3, 2)t + (4, 5, 4)tβ + (2, 2)tβ
2,

R5(t, β) = (10, 20, 26, 28, 26, 20, 10)t + (33, 61, 74, 74, 61, 33)tβ + (39, 65, 72, 65, 39)tβ
2

+ (19, 27, 27, 19)tβ
3 + (3, 3, 3)tβ

4,

R6(t, β) = (140, 350, 550, 700, 790, 820, 790, 700, 550, 350, 140)t

+ (686, 1640, 2478, 3044, 3322, 3322, 3044, 2478, 1640, 686)tβ

+ (1370, 3106, 4480, 5280, 5537, 5280, 4480, 3106, 1370)tβ
2

+ (1420, 3017, 4113, 4615, 4615, 4113, 3017, 1420)tβ
3

+ (800, 1565, 1987, 2105, 1987, 1565, 800)tβ
4 + (230, 403, 465, 465, 403, 230)tβ

5

+ (26, 39, 39, 39, 26)tβ
6,

R6(1, β) = (5880, 22340, 34009, 26330, 10809, 2196, 169)β,

R7(t, β) = (5880, 17640, 32340, 47040, 59790, 69630, 76230, 79530, 79530, 76230, 69630,

59790, 47040, 32340, 17640, 5880)t + (39980, 116510, 208196, 295954, 368410,

420850, 452226, 462648, 452226, 420850, 368410, 295954, 208196, 116510,

39980)tβ + (118179, 333345, 578812, 802004, 975555, 1090913, 1147982,

1147982, 1090913, 975555, 802004, 578812, 333345, 118179)tβ
2

+ (198519, 539551, 906940, 1221060, 1447565, 1580835, 1624550, 1580835,

1447565, 1221060, 906940, 539551, 198519)tβ
3

+ (207712, 540840, 875969, 1141589, 1314942, 1398556, 1398556, 1314942,

1141589, 875969, 540840, 207712)tβ
4

+ (139320, 344910, 535107, 671897, 749338, 773900, 749338, 671897, 535107,

344910, 139320)tβ
5 + (59235, 137985, 203527, 244815, 263389, 263389, 244815,

203527, 137985, 59235)tβ
6 + (15119, 32635, 45333, 51865, 53691, 51865, 45333,

32635, 15119)tβ
7 + (2034, 3966, 5132, 5532, 5532, 5132, 3966, 2034)β8

+ (102, 170, 204, 204, 204, 170, 102)tβ
9,

R7(1, β) = (776160, 4266900, 10093580, 13413490, 10959216, 5655044, 1817902,

343595, 33328, 1156)β.

5.3.2 The Chan–Robbins–Mészáros polytope Pn,m

Let m ≥ 0 and n ≥ 2 be integers, consider the reduced polynomial Qn,m(t, β) corresponding to
the element

Mn.m :=

 n∏
j=2

x1j

m+1
n−2∏
j=2

n∏
k=j+2

xjk.

For example,

Q2,4(t, β) = (4, 7, 9, 10, 10, 9, 7, 4)t + (10, 17, 21, 22, 21, 17, 10)tβ

+ (8, 13, 15, 15, 13, 8)tβ
2 + (2, 3, 3, 3, 2)tβ

3,

Q2,4(1, β) = (60, 118, 72, 13)β,

Q2,5(t, β) = (60, 144, 228, 298, 348, 378, 388, 378, 348, 298, 228, 144, 60)t
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+ (262, 614, 948, 1208, 1378, 1462, 1462, 1378, 1208, 948, 614, 262)tβ

+ (458, 1042, 1560, 1930, 2142, 2211, 2142, 1930, 1560, 1042, 458)tβ
2

+ (405, 887, 1278, 1526, 1640, 1640, 1526, 1278, 887, 405)tβ
4

+ (187, 389, 534, 610, 632, 610, 534, 389, 187)tβ
4

+ (41, 79, 102, 110, 110, 102, 79, 41)tβ
5 + (3, 5, 6, 6, 6, 5, 3)tβ

6,

Q2,5(1, β) = (3300, 11744, 16475, 11472, 4072, 664, 34)β,

Q2,6(1, β) = (660660, 3626584, 8574762, 11407812, 9355194, 4866708, 1589799,

310172, 32182, 1320)β,

Q2,7(β) = (1, 213, 12145, 279189, 3102220, 18400252, 61726264, 120846096, 139463706,

93866194, 5567810, 7053370, 626730, 16290)β+1.

Theorem 5.74. One has

Qm,n(1, 1) =
n−2∏
k=1

Catk
∏

1≤i<j≤n−1

2(m+ 1) + i+ j − 1

i+ j − 1
,

∑
k≥0

ι(Pn,m; k)βk =
Qm,n(1, β − 1)

(1− β)(
n+1

2 )+1
,

where Pn,m denotes the generalized Chan–Robbins–Yuen polytope defined in [101], and for any
integral convex polytope P, ι(P, k) denotes the Ehrhart polynomial of polytope P.

Conjecture 5.75. Let n ≥ 3, m ≥ 0 be integers, , write

Qm,n(t, β) =
∑
k≥0

c(k)
m,n(t)βk, and set b(m,n) := max

(
k | c(k)

m,n(t) 6= 0
)
.

Denote by c̃m,n(t) the polynomial obtained from that c
(b(m,n)
m,n (t) by dividing the all coefficients of

the latter on their GCD. Then

c̃n,m(t) = an+m(t),

where the polynomials an(t) := c0,n(t) have been defined in Conjecture 5.66.

For example,

c2,5(t) = 4a7(t), c2,6(t) = 10a8(t), c3,5(t) = a8(t),

c2,7(t) = 10(34, 78, 118, 148, 168, 178, 181, 178, 168, 148, 118, 78, 34)
?
= 10a9(t).

It is known [69, 99, 100] that

n−2∏
k=1

Catk
∏

1≤i<j≤n−1

2(m+ 1) + i+ j − 1

i+ j − 1
=

m+n−2∏
j=m+1

1

2j + 1

(
n+m+ j

2j

)

= KAn+1

(
m+ 1,m+ 2, . . . , n+m,−mn−

(
n

2

))
.

Conjecture 5.76. Let a = (a2, a3, . . . , an) be a sequence of non-negative integers, consider the
following element

M(a) =

 n∏
j=2

x
aj
1j

 n−1∏
j=2

 n∏
k=j+1

xjk

 .
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Let Ra(t1, . . . , tn−1, α, β) be the following specialization xij −→ tj−1 for all 1 ≤ i < j ≤ n

of the reduced polynomial Ra(xij) of monomial Ma ∈ ÂCYBn(α, β). Then the polynomial
Ra(t1, . . . , tn−1, α, β) is well-defined, i.e., does not depend on an order in which relations (a′)
and (b), Definition 5.1, have been applied.

QMa(1, β = 0) = KAn+1

a2 + 1, a3 + 2, . . . , an + n− 1,−
(
n

2

)
−

n∑
j=2

aj

 .

Write

QMa(t, β) =
∑
k≥0

c
(k)
a (t)βk.

The polynomials c
(k)
a (t) are symmetric (unimodal?) for all k.

Example 5.77. Let’s take n = 5, a = (2, 1, 1, 0). One can show that the value of the Kostant
partition function KA5(3, 3, 4, 4,−14) is equal to 1967. On the other hand, one has

Q(2,1,1,0)(t, β)t−3 = (50, 118, 183, 233, 263, 273, 263, 233, 183, 118, 50)t

+ (214, 491, 738, 908, 992, 992, 908, 738, 491, 214)tβ

+ (365, 808, 1167, 1379, 1448, 1379, 1167, 808, 365)tβ
2

+ (313, 661, 906, 1020, 1020, 906, 661, 313)tβ
3

+ (139, 275, 351, 373, 351, 275, 139)tβ
4

+ (29, 52, 60, 60, 52, 29)tβ
5 + (2, 3, 3, 3, 2)tβ

6,

Q(2,1,1,0)(1, β) = (1967, 6686, 8886, 5800, 1903, 282, 13) = (1, 34, 279, 748, 688, 204, 13)β+1.

It might be well to point out that since we know, see Theorem 5.63, that polynomials
QMa(1, β) in face are polynomials of β + 1 with non-negative integer coefficients, we can treat
the polynomial Q̃Ma(β) := QMa(1, β − 1) as a β-analogue of the Kostant partition function in
the dominant chamber. It seems an interesting problem to find an interpretation of polynomials
Q̃Ma(β) in the framework of the representation theory of Lie algebras. For example,

Q̃(2,1,1,0)(β) = (1, 34, 279, 748, 688, 204, 13)β,

Q̃(2,1,1,0)(β = 1) = 1967 = KA5(3, 3, 4, 4,−14).

Exercises 5.78.

(1) Show that

Rn(t,−1) = t2(n−2)Rn−1

(
−t−1, 1

)
.

(2) Show that the ratio

Rn(0, β)

(1 + β)n−2

is a polynomial in (β + 1) with non-negative coefficients.

(3) Show that polynomial Rn(t, 1) has degree en := (n+ 1)(n− 2)/2, and

Coeff[ten ]Rn(t, 1) =
n−1∏
k=1

Catk.
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(4) Show that

Q̃(n,2,3,0)(β) =

(
1, 3n+ 2,

(
n+ 1

2

)
+ n,

(
n+ 1

3

)
+

(
n

2

))
β

,

and

KA4(n, 3, 4,−n− 7) =
(n+ 2)(n+ 3)(n+ 9)

6
.

Problems 5.79.

(1) Assume additionally to the conditions (a′) and (b) above that

x2
ij = βxij + 1 if 1 ≤ i < j ≤ n.

What one can say about a reduced form of the element w0 in this case?

(2) According to a result by S. Matsumoto and J. Novak [97], if π ∈ Sn is a permutation
of the cyclic type λ ` n, then the total number of primitive factorizations (see definition
in [97]) of π into product of n− `(λ) transpositions, denoted by Primn−`(λ)(λ), is equal to
the product of Catalan numbers:

Primn−`(λ)(λ) =

`(λ)∏
i=1

Catλi−1.

Recall that the Catalan number Catn := Cn = 1
n

(
2n
n

)
. Now take λ = (2, 3, . . . , n+1). Then

Qn(1) =
n∏
a=1

Cata = Prim(n2)
(λ).

Does there exist “a natural” bijection between the primitive factorizations and monomials
which appear in the polynomial Qn(xij ;β)?

(3) Compute in the algebra ÂCYBn(α, β) the specialization

xij −→ 1, j < n, xij −→ t, 1 ≤ i < n,

denoted by Pwn(t, α, β), of the reduced polynomial Psij ({xij}, α, β) corresponding to the
transposition

sij :=

(
j−2∏
k=i

xk,k+1

)
xj−1,j

 i∏
k=j−2

xk,k+1

 ∈ ÂCYBn(α, β).

For example,

Ps14(t, α, β) = t5 + 3(1 + β)t4 + ((3, 5, 2)β + 3α)t3 + (2(1 + β)2 + α(5 + 4β))t2

+ ((1 + β((1 + 3α) + 2α2)t+ α+ α2.



On Some Quadratic Algebras 143

5.4 Reduced polynomials of certain monomials

In this subsection we compute the reduced polynomials corresponding to dominant monomials
of the form

xm := xm1
1,2x

m2
23 · · ·x

mn−1

n−1,n ∈
(
ÂCYBn(β)

)ab
,

where m = (m1 ≥ m2 ≥ · · · ≥ mn−1 ≥ 0) is a partition, and we apply the relations (a′) and (b)

in the algebra (ÂCYBn(β))ab, see Definition 5.1 and Section 5.3.1, successively, starting from
xm1

12 x23.

Proposition 5.80. The function

Zn−1
≥0 −→ Zn−1

≥0 , m −→ Pm(t = 1;β = 1)

can be extended to a piece-wise polynomial function on the space Rn−1
≥0 .

We start with the study of powers of Coxeter elements. Namely, for powers of Coxeter
elements, one has59

P(x12x23)2(β) = (6, 6, 1), P(x12x23x34)2(β) = (71, 142, 91, 20, 1) = (1, 16, 37, 16, 1)β+1,

P(x12x23x34)3(β) = (1301, 3903, 4407, 2309, 555, 51, 1) = (1, 45, 315, 579, 315, 45, 1)β+1,

P(x12x23x34x45)2(β) = (1266, 3798, 4289, 2248, 541, 50, 1) = (1, 44, 306, 564, 306, 44, 1)β+1,

P(x12x23x34)3(β = 1) = 12527, P(x12x23x34)4(β = 0) = 26599,

P(x12x23x34)4(β = 1) = 539601, P(x12x23x34x45)2(β = 1) = 12193,

P(x12x23x34x45)3(β = 0) = 50000, P(x12x23x34x45)3(β = 1) = 1090199.

Lemma 5.81. One has

Pxn12x
m
23

(β) =

min(n,m)∑
k=0

(
n+m− k

m

)(
m

k

)
βk =

min(n,m)∑
k=0

(
n

k

)(
m

k

)
(1 + β)k.

Moreover,

• polynomial P(x12x23···xn−1,n)m(β − 1) is a symmetric polynomial in β with non-negative
coefficients.

• polynomial Pxn12x
m
23

(β) counts the number of (n,m)-Delannoy paths according to the number
of NE steps60.

Proposition 5.82. Let n and k, 0 ≤ k ≤ n, be integers. The number

P(x12x23)n(x34)k(β = 0)

is equal to the number of n up, n down permutations in the symmetric group S2n+k+1, see [131,
A229892] and Exercises 5.30(2).

Conjecture 5.83. Let n, m, k be nonnegative integers. Then the number

Pxn12x
m
23x

k
34

(β = 0)

is equal to the number of n up, m down and k up permutations in the symmetric group Sn+m+k+1.

59To simplify notation we set Pw(β) := Pw(xij = 1;β).
60Recall that a (n,m)-Delannoy path is a lattice paths from (0, 0) to (n,m) with steps E = (1, 0), N = (0, 1)

and NE = (1, 1) only. For the definition and examples of the Delannoy paths and numbers, see [131, A001850,
A008288] and http://mathworld.wolfram.com/DelannoyNumber.html.

http://mathworld.wolfram.com/DelannoyNumber.html
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For example,

• Take n = 2, k = 0, the six permutations in S5 with 2 up, 2 down are 12543, 13542, 14532,
23541, 24531, 34521.

• Take n = 3, k = 1, the twenty permutations in S7 with 3 up, 3 down are 1237654, 1247653,
1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432, 2347651,
2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421, 4567321, see
[131, A229892].

• Take n = 3, m = 2, k = 1, the number of 3 up, 2 down and 1 up permutations in S7 is
equal to 50 = P321(0): 1237645, 1237546, . . . , 4567312.

• Take n = 1, m = 3, k = 2, the number of 1 up, 3 down and 2 up permutations in S7 is
equal to 55 = P132(0), as it can be easily checked.

On the other hand, Px4
12x

3
23x

2
34x45

(β = 0) = 7203 < 7910, where 7910 is the number of 4 up,
3 down, 2 up and 1 down permutations in the symmetric group S11.

Conjecture 5.84. Let k1, . . . , kn−1 be a sequence of non-negative integer numbers, consider

monomial M := xk1
12x

k2
23 · · ·x

kn−1

n−1,n. Then reduced polynomial PM (β−1) is a unimodal polynomial
in β with non-negative coefficients.

Example 5.85.

P3,2,1(β) = (1, 14, 27, 8)β+1 = P1,2,3(β), P2,3,1(β) = (1, 15, 30, 9)β+1 = P1,3,2(β),

P3,1,2(β) = (1, 11, 18, 4)β+1 = P2,1,3(β),

P4,3,2,1(β) = (1, 74, 837, 2630, 2708, 885, 68)β+1, P4,3,2,1(0) = 7203 = 3 · 74,

P5,4,3,2,1(β) = (1, 394, 19177, 270210, 1485163, 3638790, 4198361, 2282942,

553828, 51945, 1300)β+1,

P5,4,3,2,1(0) = 12502111 = 1019× 12269.

Exercises 5.86.
(1) Show that if n ≥ m, then

xnijx
m
jk


xij=1=xjk

=
n∑
a=0

(
m+ a− 1

a

)n−a∑
p=0

(
m

p

)
βp

xm+a
ik .

(2) Show that if n ≥ m ≥ k, then

Pxn12x
m
23x

k
34

(β) = Pxn12x
m
23

(β)

+
∑
a≥1
b,p≥0

(
m

p

)(
k

a

)(
a− 1

b

)(
n+ 1

p+ a− b

)(
m+ a− 1− b

a

)
(β + 1)p+a.

In particular, if n ≥ m ≥ k, then

Pxn12x
m
23x

k
34

(0) =

(
m+ n

n

)
+
∑
a≥1

(
k

a

)( a∑
b=1

(
m+ n+ 1

m+ b

)(
a− 1

b− 1

)(
m+ b− 1

a

))
.

Note that the set of relations from the item (1) allows to give an explicit formula for the
polynomial PM (β) for any dominant sequence M = (m1 ≥ m2 ≥ · · · ≥ mk) ∈ (Z>0)k. Namely,

PM (β + 1) =
∑
a

k∏
j=2

(
mj + aj−1 − 1

aj−1

)∑
b

k−1∏
j=1

(
mj+1

bj

)
βbj

 ,
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where the first sum runs over the following set A(M) of integer sequences a = (a1, . . . , ak−1)

A(M) := {0 ≤ aj ≤ mj + aj−1, j = 1, . . . , k − 1}, a0 = 0,

and the second sum runs over the set B(M) of all integer sequences b = (b1, . . . , bk−1)

B(M) :=
⋃

a∈A(M)

{0 ≤ bj ≤ min(mj+1,mj − aj + aj−1)}, j = 1, . . . , k − 1.

(3) Show that

#
∣∣A(n, 1k−1

)∣∣ =
n+ 1

k

(
2k + n

k − 1

)
= f (n+k,k),

where f (n+k,k) denotes the number of standard Young tableaux of shape (n+k, k). In particular,
#|A(1k)| = Ck+1.

(4) Let n ≥ m ≥ 1 be integers and set M = (n,m, 1k). Show that

PM (xij = 1;β = 0) =
n∑
p=0

m+ p+ 1

k

(
m+ p− 1

p

)(
m+ 2k + p

k − 1

)
:= Pk(n,m).

In particular, P1(n,m) =
(
n+m
n

)
+m

(
n+m+1

n

)
,

Pk(n, 1) =
n+ 1

k + 1

(
2k + 2 + n

k

)
, Pk(2, 2) =

(
79k2 + 341k + 360

) (2k + 2)!

k!(k + 5)!
.

Let us remark that

Pk(n, 1) =
n+ 1

n+ k + 2

(
2(k + 1) + n

k + 1

)
= F

(2)
k+1(n) = D(k, 1, n, 2),

where the D(k, 1, n, 2) and F
(2)
k+1(n) are defined in Section 5.2.4.

(5) Let T ∈ STY((n + k, k)) be a standard Young tableau of shape (n + k, k). Denote
by r(T ) the number of integers j ∈ [1, n+ k] such that the integer j belongs to the second row
of tableau T , whereas the number j + 1 belongs to the first row of T .

Show that

Pxn12x23···xk+1,k+2
(β − 1) =

∑
T∈STY((n+k,k))

βr(T ).

(6) Let M = (m1,m2, . . . ,mk−1) ∈ Zk−1
>0 be a composition. Denote by

←−
M the composition

(mk−1,mk−2, . . . ,m2,m1), and set for short

PM (β) := P∏k−1
i=1 x

mi
i,i+1

(xij = 1;β).

Show that PM (β) = P←−
M

(β). Note that in general,

Pk−1∏
i=1

x
mi
i,i+1

(xij ;β) 6= Pk−1∏
i=1

x
mk−i
i,i+1

(xij ;β).

(7) Define polynomial PM (t, β) to be the following specialization

xij −→ 1, i < j < n, xin −→ t, i = 1, . . . , n− 1
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of a polynomial Pk−1∏
i=1

x
mi
i,i+1

(xij ;β).

Show that if n ≥ m, then

Pxn12x
m
23

(t, β) =
m∑
j=0

(
m

j

)(n+m−j−1∑
k=m−1

(
k

m− 1

)
tk−m+1

)
βj .

See Lemma 5.31 for the case t = 1.
(8) Define polynomials R̃n(t) as follows

R̃n(t) := P(x12x23x34)n
(
−t−1, β = −1

)
(−t)3n.

Show that polynomials R̃n(t) have non-negative coefficients, and

R̃n(0) =
(3n)!

6(n!)3
.

(9) Consider reduced polynomial Pn,2,2(β) corresponding to monomial xn12(x23x34)2 and set
P̃n,2,2(β) := Pn,2,2(β − 1). Show that

P̃n,2,2(β) ∈ N[β] and P̃n,2,2(1) = T (n+ 5, 3),

where the numbers T (n, k) are defined in [131, A110952, A001701].

Conjecture 5.87. Let λ be a partition. The element sλ(θ
(n)
1 , . . . , θ

(n)
m ) of the algebra 3T

(0)
n can

be written in this algebra as a sum of(∏
x∈λ

h(x)

)
× dimVλ′

(gl(n−m)) × dimVλ
(gl(m))

monomials with all coefficients are equal to 1.
Here sλ(x1, . . . , xm) denotes the Schur function corresponding to the partition λ and the set

of variables {x1, . . . , xm}; for x ∈ λ, h(x) denotes the hook length corresponding to a box x;

V
(gl(n))
λ denotes the highest weight λ irreducible representation of the Lie algebra gl(n).

Problems 5.88.

(1) Define a bijection between monomials of the form
s∏

a=1
xia,ja involved in the polynomial

P (xij ;β), and dissections of a convex (n+2)-gon by s diagonals, such that no two diagonals
intersect their interior.

(2) Describe permutations w ∈ Sn such that the Grothendieck polynomial Gw(t1, . . . , tn) is
equal to the “reduced polynomial” for a some monomial in the associative quasi-classical
Yang–Baxter algebra ÂCYBn(β).

(3) Study “reduced polynomials” corresponding to the monomials

• transposition: s1n := (x12x23 · · ·xn−2,n−1)2xn−1,n,

• powers of the Coxeter element: (x12x23 · · ·xn−1,n)k,

in the algebra ÂCYBn(α, β)ab.

(4) Construct a bijection between the set of k-dissections of a convex (n + k + 1)-gon and

“pipe dreams” corresponding to the Grothendieck polynomial G
(β)

π
(n)
k

(x1, . . . , xn). As for

a definition of “pipe dreams” for Grothendieck polynomials, see [78] and [42].
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Comments 5.89. We don’t know any “good” combinatorial interpretation of polynomials which
appear in Problem 5.88(3) for general n and k. For example,

Ps13(xij = 1;β) = (3, 2)β, Ps14(xij = 1;β) = (26, 42, 19, 2)β,

Ps15(xij = 1;β) = (381, 988, 917, 362, 55, 2)β, Ps15(xij = 1; 1) = 2705.

On the other hand,

P(x12x23)2x34(x45)2(xij = 1;β) = (252, 633, 565, 212, 30, 1),

that is in deciding on different reduced decompositions of the transposition s1n. one obtains in
general different reduced polynomials.

One can compare these formulas for polynomials Psab(xij = 1;β) with those for the β-
Grothendieck polynomials corresponding to transpositions (a, b), see Comments 5.37.

5.4.1 Reduced polynomials, Motzkin and Riordan numbers

In this subsection we investigate reduced polynomials associated with Coxeter element Cn =
u12u23 · · ·un−1,n in commutative algebra ÂCYBn(α, β) in more detail. Recall that this algebra
is generated over the ring Z[z, α, β] by the set of elements {ui,j , 1 ≤ i < j ≤ n} subject to the
following relations

uijujk = uikuij + ujkuik + βuik + α, i < j < k.

Show that

Pn(1, 1, β = −1) = Mn,

where Mn denotes the n-th Motzkin number that is the number of Motzkin n-paths: paths from
(0, 0) to (n, 0) in an n×n grid using only steps U = (1, 1), (1, 0) and (1,−1). It is also the number
of Dyck (n+1)-paths with no steps UUU , see [131, A001006] for a wide variety of combinatorial
interpretations, and vast literature concerning the Motzkin numbers. For example,

P7(0, 1, β = −1) = 36 + 37 + 24 + 18 + 5 + 6 + 0 + 1 = 127 = M7.

Therefore we treat the polynomials Pn(t, α, β = −1) as the (t, α)-Motzkin numbers. For
example,

P7(t, α, β = −1) = t7 + 6αt5 + 5αt4 + (0, 4, 14)αt
3 + (0, 3, 21)αt

2 + (0, 2, 21, 14)αt

+ (0, 1, 14, 21)α = t7 + α(1, 2, 3, 4, 5, 6)t + α2(14, 21, 21, 14)t + α3(21, 14)t.

Therefore

P7(t, 1, β = −1) = 1 + 21α+ 70α2 + 35α3, P7(1, 1, β = −1) = 127 = M7.

Show that

Pn(0, 1, β = −1) = A005043(n),

known as the Riordan number, or Motzkin sum [131]. This number, denoted by MSn, counts
the number of Motzkin paths of length n with no horizontal steps at level zero; it is also equal
to the number of Dyck paths of semilenght n with no peaks at odd level, see [131, A005043] for



148 A.N. Kirillov

a bit more combinatorial interpretations, and literature concerning the Motzkin sum or Riordan
numbers. For example,

P7(t, 1,−1) = (36, 37, 24, 18, 5, 6, 0, 1), 36 = MS7.

Show that the Riordan number MSn is equal to the number of underdiagonal paths from
(0, 0) to the line x = n − 2, using only steps (1, 0), (0, 1) and NE = (2, 1) and beginning with
the step NE = (2, 1). Note that the number of such paths with no steps NE is equal to the
Catalan number Catn−1.

Let MS = {n ∈ N |n = 22k(2r + 1) − 1, k ≥ 1, r ≥ 0} be a subset of the set of all odd
integers [31]. Show that

(a) MSn ≡ 1 (mod 2), if either n ≡ 0 (mod 2) or n ∈MSn,
(b) MSn ≡ 0 (mod 2), if n is an odd integer and n /∈MS.
Show that

Pn(0, α, β)

α

∣∣∣
α=0

= Nn−1(β + 1),

where as before, Nn(t) denotes the Narayana polynomial.
Let us set

Pn(0, α, β) =
∑
k≥0

ck(β + 1)αk.

Show that polynomials ck(β + 1), k ≥ 0 are symmetric (unimodal?) polynomials of the variable
β + 1.

Show that [131]

Pn(1, 1, 0) = A052709(n+ 1).

Show that [131]

Pn(0, 1, 0) = A052705(n)

that is the number of underdiagonal paths from (0, 0) to the line x = n − 2, using only steps
R = (1, 0), V = (0, 1) and NE = (2, 1).

For example,

P7(0, 10) = 36 + 106 + 120 + 64 + 15 + 1 = 342 = A052705(7).

Show that [131]

∂

∂α
Pn(t, α, β)

∣∣∣ α=0,
β=0,
t=1

= A05775(n− 1),

that is the number of paths in the half-plane x ≥ 0 from (0, 0) to (n− 1, 2) or (n− 1,−3), and
consisting of steps U = (1, 1), D = (1,−1) and H = (1, 0). For example,

l.h.s. = 106 + 130 + 99 + 48 + 5 + 6 = 427 = A05775(6).

Let us set

Pn(t, α, β = 1) :=
∑
k,l≥0

c
(n)
k,l t

kαl.

Show that

(a)
n∑
k=1

c
(n)
k,n−kt

kαn−k = (t+ α)n−1,

(b) c
(n)
k,n−k−1 = (k + 1)

(
n− 1

k + 2

)
, 0 ≤ k ≤ n− 3,

(c) c
(n)
1,0 = c

(n)
0,0 + (−1)n−1, n ≥ 3.
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5.4.2 Reduced polynomials, dissections and Lagrange inversion formula

Let {ai, bi, βi, αi, 1 ≤ i ≤ n − 1} be a set of parameters, consider non commutative algebra
generated over the ring Z[{ai, bi, βi, αi}1≤i≤n−1] by the set of generators {uij , 1 ≤ i < j ≤ n}
subject to the set of relations

uijujk = aiuikuij + biujkuik + βuik + αi, 1 ≤ i < j < k ≤ n.

Consider reduced expression Rn({uij}1≤i<j≤n) in the above algebra which corresponds to the
“Coxeter element”

Cn := u12u23 · · ·un−1,n.

Note that the reduced expression Rn({uij}) is a linear combination of noncommutative mono-
mials in the generators {uij , 1 ≤ i < j ≤ n} with coefficients from the ring

Kn := Z[{ai, bi, βi, αi}1≤i<n].

Now to each monomial U which appears in the reduced expression Rn({uij}) we associate
a dissection D := DU of a convex (n+ 1)-gon as follows. First of all let us label the vertices of
a convex (n+1)-gon selected, by the numbers n+1, n, . . . , 1, written consequently and clockwise,
starting from a fixed vertex, from here on named by (n+ 1)-vertex.

Next, let us take a monomial U = ui1,j1 · · ·uip,jp which appears in the reduced expression
Rn({uij}) with coefficient c(U) ∈ Kn. We draw diagonals in a convex (n+ 1)-gon chosen which
connect vertices labeled correspondingly by numbers is and js+1, s = 1, . . . , p. It is clearly seen
from the defining relations in the algebra in question when being applied to the Coxeter element
above, that in fact, the diagonals we have drawn in a convex (n+1)-gon selected, do not meet at
interior points of our convex (n+ 1)-gon. Therefore, to each monomial U which appears in the
reduced polynomial associated with the Coxeter element Cn above, one can associate a dissecion
D := DU of a convex (n + 1)-gon selected. Moreover, it is not difficult to see (e.g., cf. [58])
that there exists a natural bijection U ⇐⇒ DU between monomials which appear in the reduced
expression Rn({uij}) and the set of dissections of a convex (n+ 1)-gon. As a corollary, to each
dissection D := DU of a conves (n + 1)-gon one can attache the element c(D) := c(U) ∈ Kn

which is equal to the coefficient in front of monomial U in the reduced expression corresponding
to the Coxeter element Cn.

To continue, let x = (x1, . . . , xn−1), y = (y1, . . . , yn−1) and z = (z1, . . . , zn−1) be three sets
of variables, and D be a dissection of a convex (n + 1)-gon. We associate with dissection D
a monomial m(D) ∈ Kn as follows

m(D) :=

n−1∏
k=1

x
n(k)
k y

m(k)
k zr(k),

where m(k) := mk(D) (resp. r(k) := rk(D) and n(k) := nk(D)) denotes the number of (convex)
(mk + 2)-gons constituent a dissection D taken (resp. the number of diagonals issue out of the
vertex labeled by (n+ 1); nk(D)) stands for the number of (oriented) diagonals and edges which
issue out of the vertex labeled by k, k = 1, . . . , n). Therefore we associate with the reduced
polynomial corresponding to the Coxeter element u12, . . . , un−1,n the following polynomial

PLn(a, b,β,α,x,y, z) =
∑
D
m(D)c(D),

where the sum runs over all dissections D of a convex (n+ 1)-gon.
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To begin with we set x = 1 and consider the following specializations

Bn(a,y) = PLn(a, b = 1,β = 1,α = 0,y, z = 1),

Pn(z,a, b,β) = PLn(a, b,β,α = 0,y = 1, z),

Show that

Bn−1(a,y)) = Coefftn
(
z − f(ty1, . . . , tyn)

)[−1]
,

where f(y1, . . . , yn) =
n−1∑
k=1

yku
k+1, and for any formal power series g(u), d

dug(u)|u=0 = 1, we

denote by g(u)[−1] the Lagrange Inverse formal power series associated with that g(u) that is
a unique formal power series such that g(g[−1](u)) = u = g[−1](g(u)).

Now let us recall the statement of Lagrange’s inversion theorem. Namely, let

f(x) = x−
∑
k≥1

ykx
k+1

be a formal power series. Then the inverse power series f [−1](u) is given by the following formula

f [−1](y) =
∑
n≥1

wnu
n,

where

wn := wn(p1, . . . , pn) =
1

n+ 1

∑
p1,...,pn≥0∑

jpj=n

(
n+

∑
pj

n, p1, . . . , pn

)
yp1

1 y
p2
2 · · · y

pn
n ,

where if N = m1 + · · ·+mn, then(
N

m1, . . . ,mn

)
=

N !

m1!m2! · · ·mn!

denotes the multinomial coefficient.
Therefore, the coefficient

bn(p1, . . . , pn) :=
1

n+ 1

(
n+

∑
pj

n, p1, . . . , pn

)
,

∑
j

jpj = n

is equal to the number of dissections of a convex (n + 2)-gon which contain exactly pj convex
(j + 2)-gons, see, e.g., [38]. Equivalently, the number bn(p1, . . . , pn) is equal to the number of
cells of the associahedron Kn−1 which are isomorphic to the cartesian product (K0)p1 × · · · ×
(Kn−1)pn [90, 91]. Based on a natural and well-known bijection between the set of dissections
of a convex (n + 2)-gon and the set of plane trees with (n + 1) ends and such that the all
other vertices have degree at least 2, see, e.g., [134], one can readily seen that the number
wn(p1, . . . , pn) defined above under constraint

∑
j jpj = n, is equal to the number of plane trees

with n+ 1 ends and having pj vertices of degree j + 1.

Example 5.90. For short we set Bn = PLn(a, b,β,α,x,y).
(1) Quadrangular:

B2 = y2
1(a1z1 + b1z1z2) + y2(β1z1 + α1).
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(2) Pentagon:

B3 = y3
1

(
a2

1z1 + a1b1z1 + a2b
2
1z1z2 + a1b1z1z3 + b21b2z1z2z3

)
+ y1y2

(
2a1β1z1 + b1β1z1 + b21β2z1z2 + b1β1z1z3 + a1α1b1α1 + α1z3

)
+ y3

(
β1α1 + β2

1z1 + b21α2z1

)
.

(3) Hexagon:

B4 = y4
1

((
a3

1 + 2a2
1b1 + a1a2b

2
1 + a1b

2
1b2
)
z1

+ a2
1b1b2z1z2 + a2b

3
1b2z1z2 + a1a3b

2
1z1z3 + a2

1b1z1z4 + a1b
2
1z1z4 + a3b

3
1b

2
2z1z2z3

+ a2b
2
1b2z1z2z4 + a1b

2
1b3z1z3z4 + b31b

2
2b3z1z2z3z4

)
+ y2

1y2

(
a2

1α1 + 2a1b1α1 + a2b
2
1α1

+ b21b2α1 + (3a2
1bβ1 + 4a1b1β1 + a2b

2
1β1 + b21 + b2β1 + a1b

2
1β2)z1 + a2b

2
1β2z1z2

+ b31b2β2z1z2 + a2b
3
1β2z1z2 + a1b

2
1b3z1z3 + a1b1β1z1z3 + a3b

2
1z1z3 + b21β1z1z4

+ a1b1β1z1z4 + b21b2β3z1z2z3 + b31b2β2z1z2z4 + b21b3β1z1z3z4

)
+ y1y3

(
a1β1α1

+ 2b1β1α1 +
(
2a1β

2
1 + 2b1β

2
1a1b

2
1α3 + a2b

2
1α2 + b31b2α2

)
z1 + b31b2α3z1z2 + b31β

2
2z1z2

+ b31α3z1z4 + b3α1z3z3z4 + a3α1z3 + a1α1z4 + b1α1z4 + β1α1z4

)
+ y2

2

(
a1β1α1

+ b21β2α2 +
(
b21β1β2 + a1β

2
1 + a1β

2
1α2

)
z1 + β3α1z3 + b1β1β3z1z3

)
+ y4(α1α3 + β2

1α1

+ b21α1α2

(
b21β1α2 + b31β2α2 + β3

1 + b21β1α3

)
z1

)
.

Special cases. Generalized Schröder or Lagrange polynomials:

Pn(a, b,β,y, z) = Bn
∣∣
α=0

.

For example,

P4(a, b,y) = y4
1

((
a3

1 + 2a2
1b1 + a1a2b

2
1 + a1b

2
1b2
)
z1 + a2

1b1b2z1z2 + a2b
3
1b2z1z2 + a1a3b

2
1z1z3

+ a2
1b1z1z4 + a1b

2
1z1z4 + a3b

3
1b

2
2z1z2z3 + a2b

2
1b2z1z2z4 + a1b

2
1b3z1z3z4

+ b31b
2
2b3z1z2z3z4

)
+ y2

1y2

((
3a2

1bβ1 + 4a1b1β1 + a2b
2
1β1 + b21 + b2β1

+ a1b
2
1β2

)
z1 + a2b

2
1β2z1z2 + b31b2β2z1z2 + a2b

3
1β2z1z2 + a1b

2
1b3z1z3

+ a1b1β1z1z3 + a3b
2
1z1z3 + b21β1z1z4 + a1b1β1z1z4 + b21b2β3z1z2z3

+ b31b2β2z1z2z4 + b21b3β1z1z3z4

)
+ y1y3

(
2a1β

2
1 + 2b1β

2
1 + b31β

2
2z1z2

+ b1β
2
1z1z4

)
+ y2

2

((
b21β1β2 + a1β

2
1

)
z1 + b1β1β3z1z3

)
+ y4β

3
1z1.

After the specialization ai = bi = βi = zi = 1, i = 1, 2, 3, 4, one will obtain

P4(a = 1, b = 1,β = 1,y, z = 1) = 14y4
1 + 21y2

1y2 + 6y1y3 + 3y2
2 + y4.

Generalized Narayana polynomials:

Pn(a, b,y, z) = Bn
∣∣
α=0
β=0

,

Pn(a, b,y, z) = y4
1

((
a3

1 + 2a2
1b1 + a1a2b

2
1 + a1b

2
1b2
)
z1 + a2

1b1b2z1z2 + a2b
3
1b2z1z2

+ a1a3b
2
1z1z3 + a2

1b1z1z4 + a1b
2
1z1z4 + a3b

3
1b

2
2z1z2z3 + a2b

2
1b2z1z2z4

+ a1b
2
1b3z1z3z4 + b31b

2
2b3z1z2z3z4

)
.

Generalized Motzkin–Schröder polynomials:

MSn(a, b,y, z) = Bn
∣∣
a=0

.
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For example,

MS4(a, b,y, z) = y1
1y2

(
a2

1α1 + 2a1b1α1 + a2b
2
1α1 + b21b2α1

)
+ y1y3(a1β1α1 + 2b1β1α1)

+ y2
2

(
a1β1α1 + b21β2α2

)
+ y4

(
α1α3 + b21α1α2 + β2

1α1

)
.

Generalized Motzkin polynomials:

Mn(b,y, z) = Bn
∣∣
a=0
β=0

.

For example,

M4(b,y, z) = y4
1b

3
1b

2
2b3z1z2z3z4 + y2

1y2b
2
1b2α1 + y1y3

(
b31b2α2 + b1α1z4 + b31b2z1z3

+ b31α2z1z4 + b3α1z3z4

)
+ y4

(
α2α3 + b21α1α2

)
.

Generalized Motzkin–Riordan polynomials:

MRn(a, b,β,α,y) = Bn
∣∣
z=0

.

Generalized Riordan polynomials:

RIn(b,α,y) = Bn
∣∣
z=0>a=0
β=0

.

For example,

RI4(b,α,y) = y2
1y2b

2
1b2α1 + y4

(
α2α3 + b21α1α2

)
.

Let us set Bn(y1, . . . , yn) = Bn(a = 1, b = 1,β = 1,y). Let β be a new parameter. Show
that

B(1, β, . . . , βn−1) = G
(β)

1×w(n−1)
0

(1, . . . , 1︸ ︷︷ ︸
n

),

where G
(β)
w (X) denotes the β-Grothendieck polynomial corresponding to a permutation w ∈ Sn.

In particular,

Bn(1, . . . , 1︸ ︷︷ ︸
n

) = Schn,

where Schn denotes the n-th Schröder number, that is the numbers of paths from (0, 0) to (2n, 0),
using only steps northeast U = (1, 1) or or D = (1,−1)) or double H = (2, 0), that never fall
below the x-axis.

Assume that n is devisible by an integer d ≥ 1. Show that if y = (yj = δj+1,d), then

Bn(0, . . . , 0, 1︸︷︷︸
d−1

, 0, . . . , 0) = FC
(d+1)
n/d ,

where FCp
m denotes the Fuss–Catalan number, see, e.g., [134], and [131, A001764] for a variety

of combinatorial interpretations the Fuss–Catalan numbers FC
(3)
n .

More generally, let 2 < d1 < · · · < dk be a sequence of integers, and set

y = (δi+1,dj , 1 ≤ j ≤ k).

Show that the specialization Bn(y) counts the number of dissections of a convex (n+ 2)-gon on
parts which are convex (d + 2)-gons, where each d belongs to the set {d1, . . . , dk}. We would
like to point out that the polynomials

FS(d)
n := Coeffynd

(
Pnd(a, b,β,y = (δi+1,d), z)

)
.

can be treated as a multi-parameter analogue of the Fuss–Catalan numbers FC
(d+1)
n .

Colored dissections [127]. A colored dissection of a convex polygon is a dissection where each
(d+ 1)-gon appearing in the dissection can be colored by one of bd possible colors61, d ≥ 2 [127].

61We assume that if bd = 0, then the dissection in question doesn’t contain parts which are (d+ 1)-gons.
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Show [127] that if b2, . . . , bn be a sequence of non-negative integers, Bn(b2, . . . , . . . , bn) is equal
to the number of colored dissections of a convex (n+ 2)-gon.

Consider the specialization yi = i− 1, i = 1, . . . , n. Show that

Bn(y) := SL(0, 1, . . . , n− 1) = Fine(n+ 1),

where Fine(m) denotes the m-th Fine number, that is the number of ordered rooted trees with
m edges having root of even degree [131, A000957]. Therefore, the Fine number Fine(n + 1)
counts the number of dissections of a convex (n+ 2)-gon such that each (d+ 3)-gon appearing
in the dissection can be colored by d possible colors, d ≥ 1.

Consider the specialization y3k+1 = 1, y3k+2 = 0, y3k+3 = −1, k ≥ 0. Show that

Bn(y1, . . . , yn) = Mn,

where Mn denotes the n-th Motzkin number [131, A001006].
Recall that it is the number of ways to draw any number of nonintersecting chord joining n

labeled points on a circle. The number Mn is also equals to the number of Motzkin paths,
that is paths from (0, 0) to (n, n) in the n× n grid using only steps U = (1, 1), H = (1, 0) and
D = (1,−1), see [131, A001006] for references and a wide variety of combinatorial interpretations
of Motzkin’s numbers.

Consider the specialization y3k+1 = 0, y3k+2 = (−1)k, y3k+3 = (−1)k, k ≥ 0. Show that

Bn(y1, . . . , yn) = MSn,

where MSn denotes the Motzkin sum or Riordan number [131, A005043].
Recall that it is the number of Motzkin paths of length n with no horizontal steps H = (1, 0)

at level zero, see [131, A005043] for references and a wide variety of combinatorial interpretations
of Riordan’s numbers.

Consider the specialization y2k+1 = (−1)k, y2k = (−1)k+1, k ≥ 0. Show that [131]

Bn(y1, . . . , yn) = A052709(n),

that is the number of underdiagonal lattice paths from (0, 0) to (n−1, n−1) and such that each
step is either H = (1, 0), V = (0, 1), or D = (2, 1).

Consider specialization yk = (−1)k n!
k! , k ≥ 1. Show that

Bn(y1, . . . , yn) = nn−2,

that is the number of parking functions, see, e.g., [55, 134] and the literature quoted therein.
Consider the specialization yk = n!

k! . Show that [131]

Bn(y1, . . . , yn) = A052894(n),

where A052894(n) denotes the number of Schröder trees62.

A Appendixes

A.1 Grothendieck polynomials

Definition A.1. Let β be a parameter. The Id-Coxeter algebra IdCn(β) is an associative
algebra over the ring of polynomials Z[β] generated by elements 〈e1, . . . , en−1〉 subject to the set
of relations

62Schröder trees have been introduced in a paper by W.Y.C. Chen [23]. Namely, these are trees for which the
set of subtrees at any vertex is endowed with the structure of ordered partition. Recall that an ordered partition
of a set in which the blocks are linearly ordered [23].
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• eiej = ejei if |i− j| ≥ 2,

• eiejei = ejeiej if |i− j| = 1,

• e2
i = βei 1 ≤ i ≤ n− 1.

It is well-known that the elements {ew, w ∈ Sn} form a Z[β]-linear basis of the algebra
IdCn(β). Here for a permutation w ∈ Sn we denoted by ew the product ei1ei2 · · · ei` ∈ IdCn(β),
where (i1, i2, . . . , i`) is any reduced word for a permutation w, i.e., w = si1si2 · · · si` and ` = `(w)
is the length of w.

Let x1, x2, . . . , xn−1, xn = y, xn+1 = z, . . . be a set of mutually commuting variables. We
assume that xi and ej commute for all values of i and j. Let us define

hi(x) = 1 + xei, Ai(x) =
i∏

a=n−1

ha(x), i = 1, . . . , n− 1.

Lemma A.2. One has

(1) addition formula:

hi(x)hi(y) = hi(x⊕ y),

where we set (x⊕ y) := x+ y + βxy;

(2) Yang–Baxter relation:

hi(x)hi+1(x⊕ y)hi(y) = hi+1(y)hi(x⊕ y)hi+1(x).

Corollary A.3.

(1) [hi+1(x)hi(x), hi+1(y)hi(y)] = 0.

(2) [Ai(x), Ai(y)] = 0, i = 1, 2, . . . , n− 1.

The second equality follows from the first one by induction using the addition formula,
whereas the fist equality follows directly from the Yang–Baxter relation.

Definition A.4 (Grothendieck expression).

Gn(x1, . . . , xn−1) := A1(x1)A2(x2) · · ·An−1(xn−1).

Theorem A.5 ([42]). The following identity

Gn(x1, . . . , xn−1) =
∑
w∈Sn

G(β)
w (Xn−1)ew

holds in the algebra IdCn ⊗ Z[x1, . . . , xn−1].

Definition A.6. We will call polynomial G
(β)
w (Xn−1) as the β-Grothendieck polynomial corre-

sponding to a permutation w.

Corollary A.7.

(1) If β = −1, the polynomials G
(−1)
w (Xn−1) coincide with the Grothendieck polynomials in-

troduced by Lascoux and M.-P. Schützenberger [86].

(2) The β-Grothendieck polynomial G
(β)
w (Xn−1) is divisible by x

w(1)−1
1 .
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(3) For any integer k ∈ [1, n − 1] the polynomial G
(β−1)
w (xk = q, xa = 1, ∀ a 6= k) is a poly-

nomial in the variables q and β with non-negative integer coefficients.

Sketch of proof. It is enough to show that the specialized Grothendieck expression Gn(xk = q,
xa = 1, ∀ a 6= k) can be written in the algebra IdCn(β − 1)⊗ Z[q, β] as a linear combination of
elements {ew}w∈Sn with coefficients which are polynomials in the variables q and β with non-
negative coefficients. Observe that one can rewrite the relation e2

k = (β − 1)ek in the following
form ek(ek + 1) = βek. Now, all possible negative contributions to the expression Gn(xk = q,
xa = 1, ∀ a 6= k) can appear only from products of a form ca(q) := (1 + qek)(1 + ek)

a. But using
the Addition formula one can see that (1 + qek)(1 + ek) = 1 + (1 + qβ)ek. It follows by induction
on a that ca(q) is a polynomial in the variables q and β with non-negative coefficients. �

Definition A.8.

• The double β-Grothendieck expression Gn(Xn, Yn) is defined as follows

Gn(Xn, Yn) = Gn(Xn)Gn(−Yn)−1 ∈ IdCn(β)⊗ Z[Xn, Yn].

• The double β-Grothendieck polynomials {Gw(Xn, Yn)}w∈Sn are defined from the decom-
position

Gn(Xn, Yn) =
∑
w∈Sn

Gw(Xn, Yn)ew

of the double β-Grothendieck expression in the algebra IdCn(β).

More details about β-Grothendieck and related polynomials can be found in [71, 84].

A.2 Cohomology of partial f lag varieties

Let n = n1 + · · · + nk, ni ∈ Z≥1∀i, be a composition of n, k ≥ 2. For each j = 1, . . . , k define
the numbers Nj = n1 + · · ·+ nj , N0 = 0, and Mj = nj + · · ·+ nk. Denote by X := Xn1,...,nk =

{x(i)
a | i = 1, . . . , k, 1 ≤ a ≤ ni} (resp. Y , . . . ) a set of variables of the cardinality n. We

set deg(x
(i)
a ) = a, i = 1, . . . , k. For each i = 1, . . . , k define quasihomogeneous polynomial of

degree ni in variables X(i) =
{
x

(i)
a | 1 ≤ a ≤ ni

}
pni
(
X(i), t

)
= tni +

ni∑
a=1

x(i)
a t

ni−a,

and put

pn1,...,nk(X, t) =

k∏
i=1

pni(X
(i), t).

We summarize in the theorem below some well-known results about the classical and quantum
cohomology and K-theory rings of type An−1 partial flag varieties F ln1,...,nk . Let q1, . . . , qk−1,
deg(qi) = ni + ni+1, i = 1, . . . , k − 1, be a set of “quantum parameters”.

Theorem A.9. There are canonical isomorphisms

H∗(F ln1,...,nk ,Z) ∼= Z[Xn1,...,nk ]
/〈
pn1,...,nk(X, t)− tn

〉
,

K•(F ln1,...,nk ,Z) ∼= Z[Y ±1]
/〈
pn1,...,nk(Y , t)− (1 + t)n

〉
,
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H∗T (F ln1,...,nk ,Z) ∼= Z[X,Y ]
/〈 k∏

i=1

ni∏
a=1

(x(i)
a + t)− pn1,...,nk(Y , t)

〉
,

QH∗(F ln1,...,nk) ∼= Z[Xn1,...,nk , q1, . . . , qk−1]
/〈

∆n1,...,nk(X, t)− tn
〉

(cf. [4]),

QH∗T (F ln1,...,nk) ∼= Z[X,Y , q1, . . . , qk−1]
/〈

∆n1,...,nk(X, t)− pn1,...,nk(Y , t)
〉

(cf. [4]),

where63

∆n1,...,nk(X, t) =

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pn1(X(1), t) q1 0 · · · · · · · · · 0

−1 pn2(X(2), t) q2 0 · · · · · · 0

0 −1 pn3(X(3), t) q3 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · · · · 0 −1 pnk−1
(X(k−1), t) qk−1

0 · · · · · · · · · 0 −1 pnk(X(k), t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here for any polynomial P (x, t) =
r∑
j=0

bj(x)tr−j in variables x = (x1, x2, . . .), we denote by

〈P (x, t)〉 the ideal in the ring Z[x] generated by the coefficients b0(x), . . . , br(x). A similar
meaning have the symbols〈

k∏
i=1

ni∏
a=1

(x(i)
a + t)− pn1,...,nk(y, t)

〉
,

〈
∆n1,...,nk(x, t)− tn

〉
and so on.

Note that dim(Fn1,...,nk) =
∑
i<j

ninj and the Hilbert polynomial Hilb(Fn1,...,nk , q) of the partial

flag variety Fn1,...,nk is equal to the q-multinomial coefficient
[

n
n1,...,nk

]
q
, and also is equal to

the q-dimension of the weight (n1, . . . , nk) subspace of the n-th tensor power (Cn)⊗n of the
fundamental representation of the Lie algebra gl(n).

Comments A.10. The cohomology and (small) quantum cohomology rings H∗(Fn1,...,nk ,Z)
and QH∗(Fn1,...,nk ,Z), of the partial flag variety Fn1,...,nk admit yet another representations we
are going to present. To start with, let as before n = n1+· · ·+nk, ni ∈ Z≥1, ∀ i, be a composition.

Consider the set of variables X̂ = Xn1,...,nk−1
:= {x(i)

a | 1 ≤ i ≤ na, a = 1, . . . , k − 1}, and set as

before deg x
(i)
a = a. Note that the number of variables X̂ is equal to n− nk. To continue, let’s

define elementary quasihomogeneous polynomials of degree r

er
(
X̂
)

=
∑
I,A

x(i1)
a1
· · ·x(is)

as , e0

(
X̂
)

= 1, e−r
(
X̂
)

= 0, r > 0,

where the sum runs over sequences of integers I = (i1, . . . , is) and A = (a1, . . . , as) such that

• 1 ≤ i1 < · · · < is ≤ k − 1,

• 1 ≤ aj ≤ nij , j = 1, . . . , s, and r = a1 + · · ·+ as,

and complete homogeneous polynomials of degree p

hp
(
X̂
)

= det
∣∣ej−i+1

(
X̂
)∣∣

1≤i,j≤p.

63We prefer to use quantum parameters {qi | 1 ≤ i ≤ k− 1} instead of the parameters {(−1)niqi | 1 ≤ i ≤ k− 1}
have been used in [4].
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Finally, let’s define the ideal Jn1,...,nk in the ring of polynomials Z[Xn1,...,nk−1
] generated by

polynomials

hnk+1

(
X̂
)
, . . . , hn

(
X̂
)
.

Note that the ideal Jn1,...,nk is generated by n− nk = #(Xn1,...,nk−1
) elements.

Proposition A.11. There exists an isomorphism of rings

H∗(Fn1,...,nk ,Z) ∼= Z[Xn1,...,nk−1
]/Jn1,...,nk .

In a similar way one can describe relations in the (small) quantum cohomology ring of the
partial flag variety Fn1,...,nk . To accomplish this let’s introduce quantum quasihomogeneous

elementary polynomials of degree j e
(q)
j (Xn1,...,nr) through the decomposition

∆n1,...,nr(Xn1,...,nr) =

Nr∑
j=0

e
(q)
j (Xn1,...,nr)t

Nr−j , e
(q)
0 (x) = 1, e

(q)
−p(x) = 0, p > 0.

To exclude redundant variables
{
x

(k)
a , 1 ≤ a ≤ nk

}
, let us define quantum quasihomogeneous

Schur polynomials s
(q)
α (Xn1,...,nr) corresponding to a composition α = (α1 ≤ α2 ≤ · · · ≤ αp) as

follows

s(q)
α (Xn1,...,nr) = det

∣∣e(q)
j−i+αi(Xn1,...,nr)

∣∣
1≤i,j≤p.

Proposition A.12. The (small) quantum cohomology ring QH∗(Fn1,...,nk ,Z) is isomorphic to
the quotient of the ring of polynomials Z[q1, . . . , qk−1] [Xn1,...,nk−1

] by the ideal In1,...,nk−1
gene-

rated by the elements

gr(Xn1,...,nk−1
) := s

(q1,...,qk−1)
(1nk ,r) (Xn1,...,nk−1

)− qk−1e
(q1,...,qk−2)
r−nk−1

(Xn1,...,nk−2
),

where nk + 1 ≤ r ≤ n.

It is easy to see that the Jacobi matrix(
∂

∂x
(i)
a

gr(Xn1,...,nk−1
)

)
{a=1,...,k−1, 1≤i≤na

nk+1≤r≤n}

corresponding to the set of polynomials gr(Xn1,...,nk−1
), nk ≤ r ≤ n, has nonzero determi-

nant, and the component of maximal degree nmax :=
∑
l<j

ninj in the ring QH∗(Fn1,...,nk ,Z) is

a Z[q1, . . . , qk−1]-module of rank one with generator

Λ =
k−1∏
i=1

na∏
a=1

(
x(i)
a

)Mi .

Therefore, one can define a scalar product (the Grothendieck residue)

〈•, •〉 : HQ∗(Fn1,...,nk ,Z)×HQ∗(Fn1,...,nk ,Z) −→ Z[q1, . . . , qk−1]

setting for elements f and g of degrees a and b, 〈f, h〉 = 0, if a + b 6= nmax, and 〈f, h〉 = λ(q),
if a + b = nmax and fh = λ(q)Λ. It is well known that the Grothendieck pairing 〈•, •〉 is
nondegenerate (for any choice of parameters q1, . . . , qk−1).



158 A.N. Kirillov

Finally we state “a mirror presentation” of the small quantum cohomology ring of partial
flag varieties. To start with, let n = n1 + · · · + nk, k ∈ Zge2 be a composition of size n, and
consider the set

Σ(n) =
{

(i, j) ∈ Z× Z | 1 ≤ i ≤ Na, Ma+1 + 1 ≤ j ≤Ma, a = 1, . . . , k − 1},

where Na = n1 + · · ·+ na, N0 = 0, Nk = n Ma = na+1 + · · ·+ nk, M0 = n,Mk = 0.
With these data given, let us introduce the set of variables

Zn = {zi,j | (i, j) ∈ Σ(n)},

and define “boundary conditions” as follows

• zi,Ma+1 = 0, if Na−1 + 2 ≤ i ≤ Na, a = 1, . . . , k − 1,

• zNa+1,j =∞, if Ma+1 + 2 ≤ j ≤Ma, a = 1, . . . , k − 1,

• zNa−1+1,Ma+1 = qa, a = 1, . . . , k, where q1, . . . , qk are “quantum parameters.

Now we are ready, follow [53], to define superpotential

Wq,n =
∑

(p,j)∈Σ(n)

(
zi,j+1

zi,j
+

zi,j
zi+1,j

)
.

Conjecture A.13 (cf. [53]). There exists an isomorphism of rings

QH∗[2](F ln1,...,nk ,Z) ∼= Z
[
q±1

1 , . . . , q±1
k

][
Z±1
n

]
/J(Wq,n),

where QH∗[2](F ln1,...,nk ,Z) denotes the subring of the ring QH∗(F ln1,...,nk ,Z) generated by the

elements from H2(F ln1,...,nk ,Z).
J(Wq,n) stands for the ideal generated by the partial derivatives of the superpotential Wq,n:

J(Wq,n) =

〈
∂Wq

∂zi,j

〉
, (i, j) ∈ Σ(n).

Note that variables {zi,j ∈ Σ(n), i 6= Na + 1, a = 0, . . . , k − 2} are redundant, whereas
the variables {za,j := z−1

Na+1,j , j = 1, . . . , na, a = 0, . . . , k − 2} satisfy the system of algebraic
equations.

In the case of complete flag variety F ln corresponds to partition n = (1n) and the superpo-
tential Wq,1n is equal to

Wq,1n =
∑

1≤i<j≤n−1

(
zi,j+1

zi,j
+

zi,j
zi−1,j+1

)
,

where we set zi,n := qi, i = 1, . . . , n. The ideal J(Wq,1n) is generated by elements

∂Wq,1n

zi,j
=

1

zi,j−1
+

1

zi−1,j+1
− zi,j+1 + zi−1,j−1

z2
i,j

.

One can check that the ideal J(Wq,1n) can be also generated by elements of the form

i∑
j=0

A
(i)
j (q1, . . . , qn−i+1, zn−1, . . . , zn−i+1)zj−i−1

n−i = 1, A
(i)
0 = q1 · · · qn−i+1,

where zi := z−1
1,i , i = 1, . . . n− 1. For example,

zn1 q1 · · · qn = 1, q1q2z
2
n−1 − q2zn−2 = 1,

q1q2q3z
3
n−2 − 2q1q2q3zn−1zn−2zn−3 + q2q3z

2
n−3 + q3zn−4 = 1.

Therefore the number of critical points of the superpotential Wq is equal to n! = dimH∗(F ln,Z),
as it should be. Note also that QH∗(F ln,Z) = QH∗[2](F ln,Z).
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A.3 Multiparamater 3-term relations algebras

A.3.1 Equivariant multiparameter 3-term relations algebras

Let q = {qij}1≤i 6=j≤n, qij = qji, be a collection of mutually commuting parameters and β =
{βij}1≤i 6=j≤n, βij = βji and ` = {`ij}1≤i 6=j≤n, `ij = `ji, be two sets of mutually commuting
variables each.

Definition A.14. Denote by 3QTn(β, `, q) an associative algebra generated over the ring
Z[β, `, q] by the set of generators {x1, . . . , xn} and that {uij}1≤i 6=j≤n subject to the set of
relations

(1) locality conditions: [xi, xj ] = 0, [uij , ukl] = 0, [xk, uij ] = 0 if i, j, k, l are pairwise distinct,

(2) generalized unitarity conditions: uij + uji = βij ,

(3) Hecke type conditions: uijuji = −qij if i 6= j,

(4) twisted 3-term relations: uijujk = ujkuik − uikuji, ujkuij = uikujk − ujiuik if i, j, k are
distinct,

(5) crossing relations: xiuji = −uijxj − `ij if i 6= j.

As before we define the (additive) Dunkl elements to be

θi = xi +
∑
j 6=i

uij , i = 1, . . . , n. (A.1)

It should be pointed out that the Dunkl elements do not commute with variables {xi}, {βij}
and {`ij}.

It is clearly seen from the defining relations listed in Definition A.14 that for any triple of
distinct indices (i, j, k) the elements {xi, xj , xk, uji, uik, ujk} satisfy the twisted dynamical Yang–
Baxter relations, and thus the Dunkl elements {θi}1≤i≤n generate a commutative subalgebra in
the algebra 3QTn(β, `).

On the other hand, one can show that the set of defining relations involve in the definition of
algebra 3QTn(β, `) implies the following set of compatibility relations among the set of generators
{uij} and the set of variables {βij} and {`ij}

`ijujk + uij`jk + βijujkxi + uijβjkxj = ujk`ik + `ikuij + ujkβikxi + βijxiuij ,

if i, j, k are distinct.

These relations are satisfied, for example, if either βij = β, and `ij = h, ∀ i, j for some
parameters (i.e., a central elements) β and h, or variables {βij} and {`ij} satisfy the exchange
relations with generators {uij}, namely, the commutativity relations

[βij , ukm] = 0, [`ij , ukm] = 0 if {i, j} ∩ {k,m} = ∅

and the exchange relations

βijujk = ujkβik, `ijujk = ujk`ik if k 6= i, j.

It happens that in the first case, if β = 0, then the (commutative) algebra generated by additive
Dunkl’s elements and elementary symmetric polynomials {ek(Xn)}1≤k≤n (resp. multiplicative
Dunkl’s elements) is isomorphic to the equivariant quantum cohomology ring (resp. to the equiv-
ariant quantum K-theory ring) of the type An−1 complete flag variety. In the second case a
geometric interpretation of the algebra generated by Dunkl’s elements is missing.
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Our main objective in this section is to to describe (part of) relations among Dunkl’s element
using defining relations involve in the Definition A.14 of the algebra 3QTn(β, `, q), under the
following constraints

`ij = hmax(i,j), h2, . . . , hn are all central.

Note, that except the case βj = β and hi = hj , ∀ i, j, our assumption violates the crossing
relations between the elements βij , `ij and uj,k, but nevertheless allows to compute explicitly
(part of) relations among the Dunkl’s elements. We expect that an abstract algebra generated
over Q[β,h] by a set of mutually commuting elements θ1, . . . , θn and elementary symmetric
polynomials {ek(Xn)}1≤k≤n subject to the set of relations descending from those for Dunkl’s
elements which were mentioned above, has some interesting combinatorial/geometric interpre-
tations. Below we state some results concerning relations among Dunkl elements in the algebra
3QTn(β, `, q).

Theorem A.15 (cf. Theorem 3.17, Section 3). Let k ≥ 1 be an integer. There exist polynomials

Rk(q,h, z1, . . . , zn) ∈ Z[β, q, {hj − hi}1≤i<j≤n][Zn],

Tk(β,h, z1, . . . , zn) ∈ Z[β,h][Zn]Sn

such that

Rk(q,h, z1, . . . , zn) = e
(q+h)
k (z1, . . . , zn) + monomials of total degree

≤ k − 2 w.r.t. variables {zi}1≤i≤n,

Tk(β,h, z1, . . . , zn) = ek(z1, . . . , zn) +
∑
j<k

cj,kej(Xn), cj,k ∈ Z[β,h],

Rk(θ1, . . . , θn) = Tk(x1, . . . , xn),

where e
(q+h)
k (z1, . . . , zn) denotes the multiparameter quantum elementary polynomial correspond-

ing to the set of parameters {(q + h)} = {qij + hj}1≤i<j≤n.

It is not difficult to see that the unitarity and crossing conditions imply the following relations

[xi + xj , ukl] = 0 = [xixj , ukl], [x2
i , ukl] = 0

are valid for all indices i 6= j, k 6= l. As a consequence of these relations one can deduce that
the all symmetric polynomials ek(Xn) := ek(x1, . . . , xn), k = 1, . . . , n, belong to the center of
the algebra 3QTn(q,h), and therefore one has [θi, ek(Xn)] = 0 for all i and k. Let us denote
by QH(β,h) a commutative subalgebra in the algebra 3QTn(β,h) generated by the elementary
symmetric polynomials {ek(Xn)}1≤k≤n and the Dunkl elements {θi}1≤i≤n. It is an interesting
problem to give a geometric/cohomological interpretation of the commutative algebra QH(β,h).
We don’t know any geometric interpretation of that commutative algebra, except the special
case [75]

β = 0, hj = 1, ∀ j, qij := qiδi+1,j . (A.2)

Proposition A.16 ([75]). Under assumptions (A.2), the algebra QH(0,0) isomorphic to the
equivariant quantum cohomology QH∗T (F ln) of the complete f lag variety F ln.

Examples A.17. Let us list the relations among the Dunkl elements in the algebra 3QTn(β,h)
for n = 3, 4, and βj = β, ∀j.

(1) e1(θ1, . . . , θn) = e1(Xn) +

(
n

2

)
β,
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(2) e
(q+h)
2 (θ1, . . . , θn) = e2(Xn) + (n− 1)βe1(Xn) +

n(n− 1)(n− 2)(3n− 1)

24
β2, n ≥ 3,

(3) e
(q+h)
3 (θ1, θ2, θ3) = e3(X3) + h3β,

e
(q+h)
3 (θ1, θ2, θ3, θ4) = e3(X4) + βe2(X4) + 2β2e1(X4) + 6β3 + β(h3 + 3h4),

(4) e
(q+h)
4 (θ1, θ2, θ3, θ4) + β(h4 − h3)θ4 = e4(X4) + βh4e1(X4) + 5β2h4.

Note that n(n−1)(n−2)(3n−1)
24 = s(n− 2, 2) = e2(1, 2, . . . , n− 1) is equal to the Stirling number of

the first kind.

Conjecture A.18. The polynomial Rk(q,h, Zn), see Theorem 2.29, can be written as a poly-
nomial in the variables {hij := hj − hi, 1 ≤ i < j ≤ n, z1, . . . , zn, β, qij , 1 ≤ i < j ≤ n} with
nonnegative coefficients.

Exercises A.19 (Pieri formula in the algebra 3Tn(0, h), [75]). Assume that β = 0 and h2 =

· · · = hn = h, and denote by θ
(n)
i , i = 1, . . . , n the Dunkl elements (A.1) in the algebra 3Tn(0, h).

Show that

ek
(
θ

(n)
1 , . . . , θ(n)

m

)
=
∑
r≥0

(−h)rN(m− k, 2 r)


∑

S⊂[1,m]
I={ia}, J={ja}

XSui1,j1 · · ·ui|I|,j|J|

 ,

where

N(a, 2b) = (2b− 1)!!

(
a+ 2b

2b

)
,

XS =
∏
s∈S

xs, and the second summation runs over triples of sets {S, I, J} such that S ⊂ [1,m],

I ⊂ [1,m]\S, |I|+ |S|+ 2r = k, |I| = |J |, 1 ≤ ia < m < ja ≤ n and j1 ≤ · · · ≤ j|I|.

A.3.2 Algebra 3QTn(β, h), generalized unitary case

Let β = (β1, . . . , βn−1), h = (h2, . . . , hn) and {qij}1≤i<j≤n be collections of mutually commuting
parameters as in the previous section. As before we define the Dunkl elements θi, i = 1, . . . , n,
by the formula (A.1). It is necessary to stress that the Dunkl elements {θ}1≤i≤n do not commute
in the algebra 3QTn(β,h) but satisfy a noncommutative analogue of the relations displayed in
Theorem A.15. Namely, one needs to replace the both elementary polynomials ek(Zn) and

the quantum multiparameter elementary polynomials e
(q)
k (Zn) by its noncommutative versions.

Recall that the noncommutative elementary polynomial ek(Zn) is equal to∑
1≤j1<j2<···<jk≤n

zj1 zj2 · · · zjk

and the noncommutative quantum multiparameters elementary polynomial e
(q)
k (Zn) is equal to

∑
`

∑
1≤i1<···<j`≤n
i1<j1,...,i`<j`

ek−2`(ZI∪J)
∏̀
a=1

uia,ja ,

where I = (i1, . . . , i`), J = (j1, . . . , j`) should be distinct elements of the set {1, . . . , n}, and
ZI∪J denotes set of variables za for which the subscript a is neither one of im nor one of the jm.
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Example A.20.

e
(q+h)
2 (θ1, . . . , θn) = e2(Xn) +

n−1∑
j=1

βj

 e1(Xn) +
∑

1≤a<b≤n−1

abβaβb,

e
(q+h)
3 (θ1, θ2, θ3, θ4) + (β3 − β1)(θ3θ4 + q34 + h4 + β2(θ1 + θ2)) + (β3 − β2)((θ1 + θ2)θ4

+ q14 + q24 + 2h4 + β1θ3) = e3(X4) + β3e2(X4) + (β1β3 + β2β3 + β2
3 − β1β2)e1(X4)

+ (3β2
3 − β1β2)(β1 + 2β2) + β1(h3 + h4) + 2β2h4,

e
(q+h)
4 (θ1, θ2, θ3, θ4) + (β2h4 − β1h3)θ4 + h4(β2 − β1)θ3

= e4(X4) + β2h4e1(X4) + β2h4(2β2 + 3β3).

Project A.21 (noncommutative universal Schubert polynomials). Let w ∈ Sn be a permutation
and Sw(Zn) be the corresponding Schubert polynomial.

(1) There exists a (noncommutative) polynomial Shw({uij}1≤i<j≤n) with non-negative integer
coefficients such that the following identity

Sw(θ1, . . . , θn) = Shw({uij}1≤i<j≤n)

holds in the algebra 3T
(0)
n , where {θj}1≤j≤n are the Dunkl elements in the algebra 3T

(0)
n .

(2) There exist polynomials Rw(β, q,h, Zn) ∈ N[β, q, hj − hi1≤i<j≤n][Zn] and Tw(β,h, Zn) ∈
Z[β,h][Zn] such that the following identity

Rw(β, q,h, θ1, . . . , θn) = Tw(β,h, Xn) + Shw({uij}1≤i<j≤n)

holds in the algebra 3QTn(β,h).
3) Let r ∈ Z≥2 and N = n1 + · · · + nr, nj ∈ Z≥1, ∀ j, be a composition of N , and set

Nj = n1 + · · ·+nj, j ≥ 1, N0 = 0. Eliminate the Dunkl elements θ
(N)
Nr−1+1, . . . , θ

(N)
N from the set

of relations among the Dunkl elements θ
(N)
1 , . . . , θ

(N)
N in the algebra 3QTn(β,h), by the use of

the degree 1, . . . , nr relations among the former. As a result one obtains a set consisting of Nr−1

relations among the Nr−1 elements

θ
(N)
j.kj

:= e
(q)
kj

(
θ

(N)
Nj−1+1, . . . , θ

(N)
Nj

)
, 1 ≤ kj ≤ nj , 1 ≤ j ≤ r − 1.

Give a geometric interpretation of the commutative subalgebra QHn1,...,nr(β,h) ⊂ 3QTn(β,h)

generated by the set of elements θ
(N)
j,kj

, 1 ≤ kj ≤ nj, j = 1, . . . , r − 1.

A.4 Koszul dual of quadratic algebras and Betti numbers

Let k be a field of zero characteristic, F (n) := k〈x1, . . . , xn〉 =
⊕

j≥0 F
(n)
j be the free associative

algebra generated by {xi, 1 ≤ i ≤ n}. Let A = F (n)/I be a quadratic algebra, i.e., the ideal

of relations I is generated by the elements of degree 2, I ⊂ F
(n)
2 . Let F (n)∗ = Hom(Fn, k) =⊕

j≥0 F
(n)∗
j with a multiplication induced by the rule fg(ab) = f(a)g(b), f ∈ F (n)∗

i , g ∈ F (n)∗
j ,

a ∈ F
(n)
i , b ∈ F

(n)
j . Let I⊥2 = {f ∈ F

(n)∗
2 , f(I2) = 0}, and denote by I⊥ the two-sided ideal

in F (n)∗ generated by the set I⊥2 .

Definition A.22. The Koszul (or quadratic) dual A! of a quadratic algebra A is defined to be
A! := F (n)∗/I⊥.

The Koszul dual of a quadratic algebra A is a quadratic algebra and (A!)! = A.
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Examples A.23.
(1) Let A = F (n) be the free associative algebra, then the quadratic dual

A! = k〈y1, . . . , yn〉/(yiyj , 1 ≤ i, j ≤ n).

(2) If A = k[x1, . . . , xn] is the ring of polynomials, then

A! = k[y1, . . . , yn]/([yi, yj ]−, 1 ≤ i, j ≤ n),

where we put by definition [yi, yj ]− = yiyj + yjyi if i 6= j, and [yi, yi] = y2
i .

(3) Let A = F (n)/(f1, . . . , fr), where fi =
∑

1≤j,k≤n
aijkxjxk, i = 1, . . . , r are linear independent

elements of degree 2 in F (n). Then the quadratic dual of A is equal to the quotient algebra
A! = k〈y1, . . . , yn〉/J , where the ideal J = 〈g1, . . . , gs〉, s = n2 − r, is generated by elements
gm =

∑
1≤j,k≤n

bmjkyjyk. The coefficients bmjk, m = l, . . . , s, 1 ≤ j, k ≤ n, can be defined from the

system of linear equations
∑

1≤j,k≤n
aijkbmjk = 0, i = 1, . . . , r, m = 1, . . . , s (cf. [95, Chapter 5]).

Let A =
⊕

j≥0Aj be a graded finitely generated algebra over field k.

Definition A.24. The Hilbert series of a graded algebra A is defined to be the generating
function of dimensions of its homogeneous components: Hilb(A, t) =

∑
k≥0

dimAkt
k.

The Betti–Poincaré numbers BA(n,m) of a graded algebra A are defined to be BA(i, j) :=
dim TorAi (k, k)j . The Poincaré series of algebra A is defined to be the generating function for
the Betti numbers: PA(s, t) :=

∑
i≥0,j≥0

BA(i, j)sitj .

Let B is a k-module and A is a B-module. The Betti number β
B(A)
ij of A over B is the

rank of the free module B[−j] the ith module of a minimal resolution of A over B that is
βBij (A) = dimk ExtBi (A, k)j . The graded Betti series of A over B is the generating function

BettiB(A, x, y) :=
∑

i∈N, j∈Z
βBij (A)xiy−j ∈ Z[y, y−1][[x]].

Definition A.25. A quadratic algebra A is called Koszul iff the Betti numbers BA(i, j) are
equal to zero unless i = j.

It is well-known that Hilb(A, t)PA(−1, t) = 1, and a quadratic algebra A is Koszul, if and
only if BA(i, j) = 0 for all i 6= j. In this case Hilb(A, t) Hilb(A!,−t) = 1.

Example A.26. Let F
(0)
n be a quotient of the free associative algebra Fn over field k with the set

of generators {x1, . . . , xn} by the two-sided ideal generated by the set of elements {x2
1, . . . , x

2
n}.

Then the algebra F
(0)
f n is Koszul, and Hilb

(
F

(0)
n , t

)
= 1+t

1−(n−1)t .

We refer the reader to a nice written book by A. Polishchuk and L. Positselski [116] to read
more widely in the theory of quadratic algebras, see also [94].

A.5 On relations in the algebra Z0
n

Let us define algebra Z0
n to be the subalgebra in 3T 0

n generated by the elements ui,n, 1 ≤ i ≤ n−1.
It is clear that Z0

n is a Sn−1-module,and well-known [46] that if one sets Hilb(Z0
k , t) := Zk(t),

then

Hilb
(
3T (0)

n , t
)

=
n∏
k=2

Zk(t).

There exists a natural action of algebra 3T 0
n−1 on that Z0

n. To define it, it’s convenient to
put xi := ui,n, 1 ≤ i ≤ n− 1.
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Definition A.27 (cf. [67] and Section 2.3.4). Define operators ∇i,j , 1 ≤ i < j ≤ n − 1, which
act on Z0

n, by the following rules

• ∇i,j(xk) = 0 if k 6= i, j,

• ∇i,j(xi) = xixj ,∇i,j(xj) = −xjxi,
• twisted Leibniz rule:

∇i,j(x · y) = ∇i,j(x) · y + si,j(x) · ∇i,j(y)

for x, y ∈ Z0
n and all 1 ≤ i < j ≤ n − 1. Here si,j ∈ Sn−1 denotes the transposition that

interchanges i and j and fixes each k 6= i, j.

Proposition A.28. The operators ∇i,j, 1 ≤ i < j ≤ n − 1, satisfy all defining relations of
algebra 3T 0

n−1.

In particular, the operators ∇i,j , satisfy the Coxeter and Yang–Baxter relations:

• Yang–Baxter relations:

∇i,j∇i,k∇j,k = ∇j,k∇i,k∇i,j ,

• Coxeter relations. Let ∇j = ∇j,j+1, 1 ≤ j ≤ n− 2, then

∇j∇j+1∇j = ∇j+1∇j∇j+1, [∇i,∇j ] = 0 if |i− j| ≥ 2.

Therefore, for each w ∈ Sn−1 one can define the operator ∇w = ∇a1 · · · ∇al , where the sequence
(a1, . . . , al) is a reduce decomposition of the element w.

Denote by Rn the kernel of the epimorphism ι : Zn −→ Fn−1 given by ι(uk,n) = xk, where
Fn−1 := Q〈x1, . . . , xn−1〉 denotes the free associative algebra generated by the elements x1, . . . ,
xn−1. There exists the decomposition Rn =

⊕
k≥2Rn,k, where Rn,k denotes the degree k part

of Rn. We denote by rn,k the dimension of the space Rn,k/
n−1∑
j=1

(xj,nRn,k−1 +Rn,k−1xj,n), and

put rn := (rn,2, rn,3, . . . ).

Example A.29.

r3 = (2, 1), r4 = (3, 3, 2), r5 = (4, 6, 8, 6, 3),

r6 = (5, 10, 20, 30, 39, 40, 39, 30, 20, 10, 4).

Remark A.30. The same formulas for the action of ∇i,j on Z0
n given in Definition A.27, define

an action of operators ∇i,j on the free algebra Fn−1. In this way we obtain a representation of
the algebra 3Tn−1 on that Fn−1, cf. Section 2.3.4.

Let us denote by F̂n the quotient of the free associative algebra Fn = 〈x1, . . . , xn〉 by the
two-sided ideal generated by the elements {x2

ixj − xjx2
i , 1 ≤ i, j ≤ n}. It is not difficult to see

that the operators ∇i,j , 1 ≤ i < j ≤ n, define a representation of the algebra 3T 0
n on that F̂n.

Note that

F̂n w Fn−1 ⊗ Z[y1, y2, . . . , yn],

where deg(y1) = 1, deg(yj) = 2, j = 2, . . . , n. Therefore,

Hilb
(
F̂n, t

)
=

1

(1− t)(1− (n− 1)t)(1− t2)n−1
.



On Some Quadratic Algebras 165

Conjecture A.31. The kernel Rn coincides with the two-sided ideal in the free algebra Fn−1

generated by elements of the form
s∏

k=1

∇ik,jk(x2
a) for some positive integers s and 1 ≤ a ≤ n− 1.

In other words, the all relations in the algebra Z0
n are consequence of the following relations

u∇w(x2
1) = 0 for some u,w ∈ Sn−1.

Challenge A.32.

(1) Compute the numbers rn,k.

(2) Prove (or disprove) that there exists a positive integer kmax := k
(n)
max such that rn,kmax 6= 0,

but rn,k = 0 for all integers k > k
(n)
max.

(3) These examples suggest that there might be exist a certain symmetry rn,k = rn,kmax−k+2,
if 3 ≤ k < kmax, between the numbers rn,k, and moreover, rn,kmax = rn,2 − 1. If so, how to
explain these properties of the numbers rn,k?

We expect that if n ≥ 4, then k
(n)
max = 2

(
n−2

[(n−2)/2]

)
.

Example A.33 (cyclic relations in the algebra Z0
n). The following relation

n−1∏
j=1

∇n−j,n−j+1

(
x2

1

)
=

n∑
i=1

xi

(
n∏

a=i+1

xa

i−1∏
a=1

xa

)
xi

holds in the free algebra Fn. Therefore in the algebra Z0
n one has the following cyclic relation

of the degree n and length n− 1:

n−1∑
i=1

xi

(
n−1∏
a=i+1

xa

i−1∏
a=1

xa

)
xi = 0.

If n ≥ 5, then by applying to monomials of the form
n−1∏
j=2
∇n−j,n−j+1(x2

1) the action of either

operators ∇a,n−1, 2 ≤ a ≤ n− 3, or those ∇a,b, 1 ≤ a ≤ b− 2 ≤ n− 4, new, more complicated
relations in the algebra Z0

n, i.e., non-cyclic relations, can appear. These are relations of the
length 2n and degree n+ 1 in the algebra Z0

n. Conjecturally all relations in the algebra Z0
n can

be obtained by this method.

Proposition A.34.

rn,k = (k − 2)!

(
n− 1

k − 1

)
, 2 ≤ k ≤ 5,

rn,6 = 4!

(
n− 1

5

)
+ 3

(
n− 1

4

)
, rn,7 = 5!

(
n− 1

6

)
+ 40

(
n− 1

5

)
,

rn,8 = 6!

(
n− 1

7

)
+ 430

(
n− 1

6

)
+ 39

(
n− 1

5

)
.

A.5.1 Hilbert series Hilb
(
3T 0

n, t
)

and Hilb
((

3T 0
n

)!
, t
)
: Examples64

Examples A.35.

Hilb
(
3T 0

3 , t
)

= [2]2[3], Hilb
(
3T 0

4 , t
)

= [2]2[3]2[4]2, Hilb
(
3T 0

5 , t
)

= [4]4[5]2[6]4,

64All computations in this section were performed by using the computer system Bergman, except computa-
tions of Hilb(3T 0

6 , t) in degrees from twelfth till fifteenth. The last computations were made by J. Backelin,
S. Lundqvist and J.-E. Roos from Stockholm University, using the computer algebra system aalg mainly devel-
oped by S. Lundqvist.
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Hilb
(
3T 0

6 , t
)

= (1, 15, 125, 765, 3831, 16605, 64432, 228855, 755777, 2347365, 6916867,

19468980, 52632322, 137268120, 346652740, 850296030, . . . )

= Hilb
(
3T 0

5 , t
)
(1, 5, 20, 70, 220, 640, 1751, 4560, 11386, 27425, 64015,

145330, 321843, 696960, 1478887, 3080190, . . . ),

Hilb
(
3T 0

7 , t
)

= Hilb
(
3T 0

6 , t
)
(1, 6, 30, 135, 560, 2190, 8181, 29472, 103032,

351192, 1170377, . . . ),

Hilb
(
3T 0

8 , t
)

= Hilb
(
3T 0

7 , t
)
(1, 7, 42, 231, 1190, 5845, 27671, 127239, 571299, 2514463,

Hilb
((

3T 0
3

)!
, t
)
(1− t) = (1, 2, 2, 1), Hilb

((
3T 0

4

)!
, t
)
(1− t)2 = (1, 4, 6, 2,−5,−4,−1),

Hilb
((

3T 0
5

)!
, t
)
(1− t)2 = (1, 8, 26, 40, 19,−18,−22,−8,−1),

Hilb
((

3T 0
6

)!
, t
)
(1− t)3 = (1, 12, 58, 134, 109,−112,−245,−73, 68, 50, 12, 1),

Hilb
((

3T 0
7

)!
, t
)
(1− t)3 = (1,18, 136, 545, 1169, 1022,−624,−1838,−837, 312, 374, 123,18, 1).

We expect that Hilb((3T 0
n)!, t) is a rational function with the only pole at t = 1 of order [n/2],

and the polynomial Hilb((3T 0
n)!, t)(1− t)[n/2] has degree equals to [5n/2]− 4, if n ≥ 2.

A.6 Summation and Duality transformation formulas [63]

Summation formula. Let a1 + · · ·+ am = b. Then

m∑
i=1

[ai]

∏
j 6=i

[xi − xj + aj ]

[xi − xj ]

 [xi + y − b]
[xi + y]

= [b]
∏

1≤i≤m

[y + xi − ai]
[y + xi]

.

Duality transformation, case N = 1. Let a1 + · · ·+ am = b1 + · · ·+ bn. Then

m∑
i=1

[ai]
∏
j 6=i

[xi − xj + aj ]

[xi − xj ]
∏

1≤k≤n

[xi + yk − bk]
[xi + yk]

=

n∑
k=1

[bk]
∏
l 6=k

[yk − yl + bl]

[yk − yl]
∏

1≤i≤m

[yk + xi − ai]
[yk + xi]

.
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Mathématiques, Montreal, QC, 1988.

[96] Mathieu O., The symplectic operad, in Functional Analysis on the Eve of the 21st Century, Vol. 1 (New
Brunswick, NJ, 1993), Progr. Math., Vol. 131, Birkhäuser Boston, Boston, MA, 1995, 223–243.
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[99] Mészáros K., Root polytopes, triangulations, and the subdivision algebra. I, Trans. Amer. Math. Soc. 363
(2011), 4359–4382, arXiv:0904.2194.
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[103] Mészáros K., Morales A.H., Flow polytopes of signed graphs and the Kostant partition function, Int. Math.
Res. Not. 2015 (2015), 830–871, arXiv:1208.0140.

[104] Mészáros K., Panova G., Postnikov A., Schur times Schubert via the Fomin–Kirillov algebra, Electron. J.
Combin. 21 (2014), 1.39, 22 pages, arXiv:1210.1295.

[105] Miller E., Sturmfels B., Combinatorial commutative algebra, Graduate Texts in Mathematics, Vol. 227,
Springer-Verlag, New York, 2005.

[106] Molev A., Yangians and classical Lie algebras, Mathematical Surveys and Monographs, Vol. 143, Amer.
Math. Soc., Providence, RI, 2007.

[107] Motegi K., Sakai K., Vertex models, TASEP and Grothendieck polynomials, J. Phys. A: Math. Theor. 46
(2013), 355201, 26 pages, arXiv:1305.3030.

[108] Mukhin E., Tarasov V., Varchenko A., Bethe subalgebras of the group algebra of the symmetric group,
Transform. Groups 18 (2013), 767–801, arXiv:1004.4248.

[109] Mutafyan G.S., Feigin B.L., Characters of representations of the quantum toroidal algebra
̂̂
gl1: plane

partitions with “stands”, Funct. Anal. Appl. 48 (2014), 36–48.

[110] Novelli J.-C., Thibon J.-Y., Hopf algebras of m-permutations, (m+ 1)-ary trees, and m-parking functions,
arXiv:1403.5962.

[111] Okada S., Enumeration of symmetry classes of alternating sign matrices and characters of classical groups,
J. Algebraic Combin. 23 (2006), 43–69, math.CO/0408234.

[112] Orellana R., Ram A., Affine braids, Markov traces and the category O, in Algebraic Groups and Ho-
mogeneous Spaces, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007, 423–473,
math.RT/0401317.

[113] Orlik P., Terao H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften,
Vol. 300, Springer-Verlag, Berlin, 1992.

[114] Orlik P., Terao H., Commutative algebras for arrangements, Nagoya Math. J. 134 (1994), 65–73.

http://arxiv.org/abs/1409.4872
http://arxiv.org/abs/math.CO/0403316
hptt://www-irma.u-strasbg.fr/~loday/PAPERS/MultFAsENG2.pdf
hptt://www-irma.u-strasbg.fr/~loday/PAPERS/MultFAsENG2.pdf
http://dx.doi.org/10.5802/aif.1117
http://dx.doi.org/10.1007/978-1-4612-4262-8_8
http://arxiv.org/abs/1005.0151
http://dx.doi.org/10.1155/2012/430859
http://dx.doi.org/10.1155/2012/430859
http://arxiv.org/abs/1203.0090
http://dx.doi.org/10.1090/S0002-9947-2011-05265-7
http://arxiv.org/abs/0904.2194
http://dx.doi.org/10.1090/S0002-9947-2011-05371-7
http://arxiv.org/abs/0904.3339
http://dx.doi.org/10.1090/S0002-9939-2014-12182-4
http://arxiv.org/abs/1111.5634
http://arxiv.org/abs/1407.2685
http://dx.doi.org/10.1093/imrn/rnt212
http://dx.doi.org/10.1093/imrn/rnt212
http://arxiv.org/abs/1208.0140
http://arxiv.org/abs/1210.1295
http://dx.doi.org/10.1007/b138602
http://dx.doi.org/10.1090/surv/143
http://dx.doi.org/10.1088/1751-8113/46/35/355201
http://arxiv.org/abs/1305.3030
http://dx.doi.org/10.1007/s00031-013-9232-y
http://arxiv.org/abs/1004.4248
http://dx.doi.org/10.1007/s10688-014-0044-1
http://arxiv.org/abs/1403.5962
http://dx.doi.org/10.1007/s10801-006-6028-3
http://arxiv.org/abs/math.CO/0408234
http://arxiv.org/abs/math.RT/0401317
http://dx.doi.org/10.1007/978-3-662-02772-1


172 A.N. Kirillov

[115] Polishchuk A., Classical Yang–Baxter equation and the A∞-constraint, Adv. Math. 168 (2002), 56–95,
math.AG/0008156.

[116] Polishchuk A., Positselski L., Quadratic algebras, University Lecture Series, Vol. 37, Amer. Math. Soc.,
Providence, RI, 2005.

[117] Postnikov A., On a quantum version of Pieri’s formula, in Advances in geometry, Progr. Math., Vol. 172,
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