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Abstract. In this paper we prove a conjecture of B. Shoikhet. This conjecture states
that the tangent isomorphism on homology, between the Poisson homology associated to
a Poisson structure on Rd and the Hochschild homology of its quantized star-product algebra,
is an isomorphism of modules over the (isomorphic) respective cohomology algebras. As
a consequence, we obtain a version of the Duflo isomorphism on coinvariants.
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1 Introduction

In his seminal paper [7] on the deformation quantization of Poisson manifolds M. Kontsevich
proved that the differential graded Lie algebra (shortly, DGLA) of polydifferential operators on
a smooth manifold M is formal (i.e. it is quasi-isomorphic, as a DGLA, to its cohomology). As
a consequence one obtains that any Poisson structure π on M can be quantized in the sense
of [2], and that the Hochschild cohomology of the deformed quantized algebra is isomorphic to
the Poisson cohomology of (M,π). Moreover, it is known that the Hochschild cohomology of an
associative algebra is naturally equipped with an associative cup-product; and Kontsevich proved
that the mentioned isomorphism between Hochschild and Poisson cohomologies is actually mul-
tiplicative if M = Rd, using a homotopy argument involving the so-called Kontsevich eye. The
proof of this statement, known as the “compatibility with cup-products”, has been clarified in [8],
and appeared to have a surprising application to Lie theory [7] (see also [9] and [5]) in providing
a new proof, together with a cohomological extension, of the famous Duflo isomorphism [6]. We
recall to the reader that the result of Duflo states that the Poincaré–Birkhoff–Witt map can be
modified so that it reduces to an isomorphism of algebras on invariants.

A homological version of Kontsevich’s formality theorem has been formulated by B. Tsygan
in [13] and proved by Shoikhet in [10] (in the case M = Rd) and by Tsygan and Tamarkin in [12],
using different approaches. It broadly states that the Hochschild chain complex of the algebra
of smooth functions on M is formal as a DG Lie module over the DGLA of polydifferential
operators. Again, one obtains as a direct consequence of the general formalism on L∞-algebras,
their modules and L∞-morphisms between them, that the Hochschild homology of the deformed
quantized algebra is isomorphic to the Poisson homology of (M,π). The present paper is mainly
concerned about the multiplicativity of this isomorphism. Namely, Hochschild (resp. Poisson)
homology is naturally a graded module over the Hochschild (resp. Poisson) cohomology algeb-
ra, and we prove that the isomorphism induced by the Tsygan–Shoikhet formality intertwines

?This paper is a contribution to the Special Issue on Deformation Quantization. The full collection is available
at http://www.emis.de/journals/SIGMA/Deformation Quantization.html
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these module structures (both cohomology algebras being themselves isomorphic thanks to the
compatibility with cup-products). We call our result the “compatibility with cap-products”.

As in the cohomological situation, this compatibility with cap-products has an application
to Lie theory in providing a version of the Duflo isomorphism for coinvariants.

The main goal of this paper is to present a short and comprehensible proof of this conjecture
(which is a particular case of a more general result, whose detailed proof is presented in [4]).
Here the proof also relies on a homotopy argument, Kontsevich’s eye being replaced by the
I-cube, this time being a manifold with corners of dimension 3.

The paper is organized as follows. In Section 2 we state the main result we mentioned in
this introduction. Section 3 is a brief reminder on Kontsevich’s and Shoikhet’s configuration
spaces and their compactifications; we also mention how they are related to each other, a fact
which will play a central rôle in some later computations. In Section 4 we recall the construction
of Kontsevich’s and Shoikhet’s formality L∞-quasi-isomorphisms. This is the first time where
the configuration spaces that were introduced in the previous section appear operatively. Sec-
tion 5 is the heart of the paper. It contains the proof of the main result, for which compactified
configuration spaces (and integrals over them) play a crucial rôle. We finally end the paper with
the proof of a version of the Duflo isomorphism for coinvariants, which we obtain as a conse-
quence of our main result; we only observe that we prefer to give a direct computational proof,
as opposed to the proof of the same result in [10], where it was proved under the assumption
that the conjecture (whose proof is the core of this paper) were true.

2 The main result

For the manifold V = Rd, we consider the differential graded Lie algebras (shortly, DGLA)
T •poly(V ) and D•

poly(V ) of polyvector vector fields on V and of polydifferential operators on V
respectively.

Further, let γ be a solution of the Maurer–Cartan equation in T •poly(V ) of the form

γ = ~π, (1)

where π is a bivector field and ~ a formal parameter (therefore in particular π is a Poisson
structure). The Formality Theorem of Kontsevich [7] implies that the polydifferential operator

B = U(γ) =
∑
n≥1

1
n!
Un(γ, . . . , γ︸ ︷︷ ︸

n

)

Un being the Taylor components of the L∞-quasi isomorphism between T •poly(V ) and D•
poly(V ),

satisfies the Maurer–Cartan equation in the DGLA D•
poly(V )[[~]] of (series of) polydifferential

operators on V , viewed as a subcomplex of the Hochschild cochain complex of the C[[~]]-algebra
A = C∞(V )[[~]].

We denote by µ the usual multiplication on the algebra A: it may be viewed as an element
of D•

poly(V )[[~]] of degree 1, and the sum µ+B specifies an associative product ? on A, which is
a deformation of the usual product on A, and which moreover satisfies

f ? g − g ? f = 2~〈π,df ∧ dg〉+O(~2).

In other words, ? is a quantization of the Poisson structure π on V in the sense of [2].
The DGLA T •poly(V ) possesses an associative product ∪, namely the usual ∧-product on

T •poly(V ), and a solution γ of the Maurer–Cartan equation defines, by means of the Schouten–
Nijenhuis bracket1, a differential γ· = [γ, ] on T •poly(V ) w.r.t. ∪.

1We observe that, if we follow the sign conventions of [1], we have then to modify the Schouten–Nijenhuis
bracket as [α, β]′SN = −[β, α]SN, where the Schouten–Nijenhuis bracket on the right-hand side is the usual one.
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The (negatively graded) deRham complex Ω−•(V ) of differential forms on V is naturally
a differential graded module (shortly, DGM) over the DGLA T •poly(V ): the extensions of the Lie
derivative L by means of the Cartan formula and of the contraction operator ι define respectively
a differential Lγ , for γ as in (1), and an action ∩ of T •poly(V ) on Ω−•(V ).

On the other hand, for γ as above, there is a product ∪ (of degree 1) on the (shifted by 1)
Hochschild cochain complex C•(A,A)[1] of A with values in A,

(ϕ ∪ ψ)(a1, . . . , ap+q) = ϕ(a1, . . . , ap) ? ψ(ap+1, . . . , ap+q).

Additionally, the Hochschild differential dH on the Hochschild cochain complex of A is modified
to the Hochschild differential dH,? w.r.t. ?. All these structures descend to the subcomplex of
polydifferential operators on V .

For the algebra A, we consider the (negatively graded) Hochschild chain complex C−•(A,A).
For γ as (1), there is an action of C•(A,A)[1] on C−•(A,A) via

ϕ ∩ (a0|a1| · · · |an) = (a0 ? ϕ(a1, . . . , am)|am+1| · · · |an),

if m ≤ n; if m > n, the action is trivial. Furthermore, we also have the differential b? on
C−•(A,A), which modifies the usual Hochschild differential b on C−•(A,A). The previous
formula defines also an action of the DGLA of polydifferential operators on V on C−•(A,A).

We denote by Sn, n ≥ 0, the Taylor components of the L∞-quasi-isomorphism S from the
L∞-module C−•(A,A) to the DGM Ω•(V )[[~]], both over T •poly(V ), constructed in [10]. The
DGM structure of Ω•(V )[[~]] over T •poly(V ) comes from the Lie derivative of polyvector fields on
differential forms, while, as shown in [10], composition of the L∞-quasi-isomorphism U with the
action L of Hochschild cochains on A on Hochschild chains gives C−•(A,A) the structure of an
L∞-module over T •poly(V ).

For a solution γ of the Maurer–Cartan equation as in (1), we consider the following linear
maps:

Uγ(α) =
∑
n≥0

1
n!
Un+1(α, γ, . . . , γ︸ ︷︷ ︸

n

), resp. (2)

Sγ(c) =
∑
n≥0

1
n!
Sn(γ, . . . , γ︸ ︷︷ ︸

n

, c), (3)

for a general polyvector field α on V , resp. Hochschild chain c on A.

Theorem 1. For a solution γ of the Maurer–Cartan equation as in (1), (2) is a quasi-isomor-
phism of complexes

Uγ :
(
T •poly(V )[[~]], γ·

)
→

(
D•

poly(V )[[~]],dH,?

)
,

which additionally preserves the products in the corresponding cohomologies,

[Uγ([α] ∪ [β])] = [Uγ([α]) ∪ Uγ([β])] ,

square brackets denoting cohomology classes.

We refer to [7, 8] for the proof of Theorem 1. The main result of this paper is the proof of
Conjecture 3.5.3.1 in [10], which we may state in the following

Theorem 2. For a solution γ of the Maurer–Cartan equation as in (1), (3) is a quasi-isomor-
phism of complexes

Sγ : (C−•(A,A),b?) → (Ω•(V )[[~]],Lγ)

and additionally preserves the action of T •poly(V ) in the corresponding cohomologies,

[[α] ∩ Sγ([c])] = [Sγ(Uγ([α]) ∩ [c])] ,

with the previous notation for cohomology classes.



4 D. Calaque and C.A. Rossi

3 Configuration spaces and their compactifications

We briefly discuss in this Section configuration spaces of i) points in the complex upper-half
plane H and on the real axis R, and ii) points in the interior of the punctured unit disk D and
on the boundary S1, and their compactifications à la Fulton–MacPherson.

3.1 Configuration spaces of points in the upper half-plane

For a pair of non-negative integers (n,m), the (open) configuration space C+
n,m is defined as

C+
n,m = {(p1, . . . , pn, q1, . . . , qm) ∈ Hn × Rm : pi 6= pj , i 6= j, q1 < · · · < qm} /G2,

where G2 is the semidirect product R+nR, acting via rescalings and translations. If 2n+m−2 ≥
0, C+

n,m is a smooth real manifold of dimension 2n + m − 2. We may consider more general
configuration spaces C+

A,B, where A is any finite set and B is any ordered finite set.
The configuration space Cn is defined as

Cn = {(p1, . . . , pn) ∈ Cn : pi 6= pj , i 6= j} /G3,

where G3 is the semidirect product R+ n C, acting via rescalings and complex translations. If
2n − 3 ≥ 0, Cn is a smooth real manifold of dimension 2n − 3. Again, we may consider more
general configuration spaces CA, for any finite set A.

Both configuration spaces C+
A,B and CA are orientable, see e.g. [1].

Configuration spaces C+
A,B and CA admit compactifications à la Fulton–MacPherson, denoted

by C+
A,B and CA respectively: they are smooth manifolds with corners and we refer to [7, 8, 3]

and [4] for their explicit constructions.

3.2 Configuration spaces of points in the punctured disk

As in Subsection 3.1, for a pair of non-negative integers (n,m), m ≥ 1, the (open) configuration
space D+

n,m is defined as

D+
n,m =

{
(p1, . . . , pn, q1, . . . , qm) ∈ (D×)n × (S1)m :

{
pi 6= pj , i 6= j,

q1 < · · · < qm < q1,

}
/S1,

where D× denotes the punctured unit disk, and where we introduced a cyclic order on S1; the
group S1 acts by rotations. If 2n + m − 1 ≥ 0, D+

n,m is a smooth real manifold of dimension
2n + m − 1. As before, we may consider configuration spaces D+

A,B, where A is any finite set
and B is any cyclically ordered finite set. When |B| = 1, we omit the superscript +.

For a positive integer n, we consider the configuration space

Dn =
{
(p1, . . . , pn) ∈ (C×)n : pi 6= pj , i 6= j

}
/R+,

where R+ acts by rescaling. It is obviously a smooth real manifold of dimension 2n − 1, when
2n− 1 ≥ 0. We may consider configuration spaces DA, with A any finite set.

Finally, D+
A,B and DA are orientable, by the same arguments as in [1].

Configuration spaces D+
A,B and DA, admit compactifications à la Fulton–MacPherson, de-

noted by D+
A,B and DA respectively, which are smooth manifolds with corners.

Being D+
A,B a stratified space, its boundary strata of codimension 1 are given in the following

list:
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i) There is a subset A1 of A, obeying 1 ≤ |A1| ≤ |A|, such that

∂A1,0D+
A,B

∼= DA1 ×D+
A\A1,B. (4)

Clearly, 2|A1| − 1 ≥ 0 and 2(|A| − |A1|) + |B| − 1 ≥ 0. Intuitively, this corresponds to the
situation, where points in D× labelled by A1 collapse together to the origin.

ii) There is a subset A1 of A, obeying 2 ≤ |A1| ≤ |A|, such that

∂A1D+
A,B

∼= CA1 ×D+
A\A1t{•},B. (5)

We must impose 2|A1| − 3 ≥ 0 and 2(|A| − |A1| + 1) + |B| − 1 ≥ 0. Intuitively, this
corresponds to the situation, where points in D× labelled by A1 collapse together to
a single point in D× labelled by •.

iii) Finally, there is a subset A1 of A and an ordered subset B1 of successive elements of B,
obeying 0 ≤ |A1| ≤ |A| and 2 ≤ |B1| ≤ |B|, such that

∂A1,B1D+
A,B

∼= C+
A1,B1

×D+
A\A1,B\B1t{•}. (6)

We impose 2|A1|+ |B1|−2 ≥ 0 and 2(|A|− |A1|)+(|B|− |B1|+1)−1 ≥ 0. Intuitively, this
corresponds to the situation, where points in D× labelled by A1 and points in S1 labelled
by B1 collapse together to a single point in S1 labelled by •.

3.3 An identification between compactified configuration spaces

We may use the action of S1 to construct a section of D+
A,B, namely we fix one point ◦ in S1

to 1. This section is diffeomorphic, by means of the Möbius transformation

ψ : H t R −→ D t S1\{1}; z 7−→ z − i
z + i

,

where D is the unit disk, to a smooth section of C+
At{•},B\{◦}, given by fixing one point • in the

complex upper half-plane H to i by means of the action of G2.
Then, the compactified configuration space D+

A,B can be identified with C+
At{•},B\{◦}, and we

observe that the cyclic order on the points in S1 translates naturally into an order on the points
on the real axis R.

We further consider the manifold DA, and notice the identification DA
∼= CAt{•}: to be more

precise, by means of complex translation, we may put one point • in Cn+1 at the origin, and
using rescalings, one can put the remaining points in the punctured unit disk with boundary.
Analogously as before, the compactification DA of DA can be identified with CAt{•}.

We consequently identify the codimension 1 boundary strata of D+
A,B with those of C+

At{•},B\{◦}
(higher codimension can be worked out along the same lines very easily):

i) A boundary stratum as in (4) corresponds to the situation, where points labelled byA1t{•}
collapse together to a single point in H, which takes the rôle of the marked point •.

ii) A boundary stratum as in (5) corresponds to the situation, where points labelled by A1

collapse together to a single point in H, which will not be the new marked point •.
iii1) A boundary stratum as in (6), where ◦ /∈ B1, corresponds to the situation, where points

labelled by A1 t B1 collapse to a single point in R, which will not be the new marked
point ◦.

iii2) Finally, a boundary stratum as in (6), where ◦ ∈ B1, corresponds to the situation, where
points labelled by the set A\A1 t {•} t B\B1 collapse to a single point in R, which will
be the new marked point ◦.
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4 Explicit formulæ for the formality morphism
for cochains and chains

Here is a short review of the formulæ we will need to construct the aforementioned L∞-quasi-
isomorphisms U and S.

4.1 The L∞-quasi-isomorphism U

For the sake of simplicity, we denote by [n], for a positive integer n, the set {1, . . . , n}. For any
pair of non-negative integers (n,m), such that 2n + m − 2 ≥ 0, an admissible graph Γ of type
(n,m) is by definition a directed graph with labels obeying the following requirements:

i) The set of vertices VΓ is given by [n] t [m]; vertices labelled by integers in [n], resp. [m],
are called vertices of the first, resp. second type; further, the labelling of vertices of the
first type specifies an order on them. The set of vertices factorizes into VΓ = V 1

Γ t V 2
Γ ,

where V 1
Γ , resp. V 2

Γ , is the set of vertices of the first type, resp. second type.

ii) Every edge in EΓ starts at some vertex of the first type; there is at most one edge between
any two distinct vertices of Γ; no edge starts and ends at the same vertex.

For a given vertex v of Γ, we denote by star(v) the subset of EΓ of edges starting at v: then,
we assume that, for any vertex of the first type v of Γ, the elements of star(v) are labelled as
(e1v, . . . , e

|star(v)|
v ). By definition, the valence of a vertex v is the cardinality of the star of v. The

set of admissible graphs of type (n,m) is denoted by Gn,m.
We also need the following lemma, borrowed from [7], to which we also refer for a more careful

explanation of the origins of the form ω.

Lemma 1. There exists a smooth 1-form ω on C2,0, with the following properties:

i) The restriction of ω to the boundary stratum C2 = S1 equals the deRham differential of the
angle function measured in counterclockwise direction from the positive imaginary axis.

ii) The restriction of ω to C1,1, where the first point in the complex upper half-plane goes to
the real axis, vanishes.

For any pair of non-negative integers (n,m), such that 2n + m − 2 ≥ 0, there are natural
smooth projections from C+

n,m onto C2,0 (provided n ≥ 2) or onto C1,1 (if n,m ≥ 1), extending
the natural projections on the open configuration spaces.

To an admissible graph Γ of type (n,m) is associated its Kontsevich’s weight WΓ via

WΓ =
∫
C+

n,m

∧
e∈EΓ

ωe =
∫
C+

n,m

ωΓ, (7)

where, for an edge e of Γ, ωe denotes the pull-back of ω to C+
n,m via the projection πe from C+

n,m

onto C2,0, onto the pair of points labelled by the endpoints of e. The labelling of Γ specifies an
order of the forms ωe in the above product.

To an admissible graph Γ of type (n,m), to n polyvector fields γ1, . . . , γn and to m functions
f1, . . . , fm on V , such that |star(k)| = |γk|+ 1, k = 1, . . . , n, we associate a function

UΓ(γ1, . . . , γn)(f1, . . . , fm)

by the following rule: to a vertex v of the first type, resp. second type, we associate the polyvector
field γv, resp. the function fv. For a function I from EΓ to [d], we associate to the vertex v of
the first type, resp. second type, the function

ϕI
v = γI(e1

v),...,I(e
|star(v)|
v )

v , resp. ϕI
v = fv.
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with the same notations as before. The function I labels edges of Γ by (standard) coordinates
of V . Then, we have the following assignment, for an admissible graph Γ of type (n,m):

UΓ(γ1, . . . , γn)(f1, . . . , fm) =
∑

I:EΓ→[d]

∏
v∈VΓ

 ∏
e∈EΓ:e=(∗,v)

∂I(e)

ϕI
v. (8)

It is clear that UΓ, with Γ as above, maps n polyvector fields {γ1, . . . , γn} to a polydifferential
operator of (shifted) degree m− 1 by its very construction.

Finally, we define the n-th Taylor component Un of Kontsevich’s L∞-quasi-isomorphism U
by combining (7) and (8), namely

Un =
∑
m≥0

∑
Γ∈Gn,m

WΓUΓ. (9)

Theorem 3 (Kontsevich). The Taylor components (9) combine to an L∞-quasi-isomorphism

U : T •poly(V ) → D•
poly(V ),

of L∞-algebras, whose first order Taylor component reduces to the Hochschild–Kostant–Rosen-
berg quasi-isomorphism in cohomology.

For a proof of Theorem 3, we refer to [7].

4.2 The L∞-quasi-isomorphism S

An admissible graph of type (n,m), for any two non-negative integers such that 2n+m−1 ≥ 0,
is a directed labelled graph Γ as in Subsection 4.1, with the only difference that there is a special
vertex, labelled by 0, from which edges can only depart; the vertex 0 belongs neither to vertices of
the first type nor of the second type. The other requirements and notations from Subsection 4.1
remain unaltered. The set of admissible graphs of this kind of type (n,m) is denoted by Gn,m,0.

A (partial) counterpart of Lemma 1 in this framework is the following lemma.
We define a smooth 1-form on the configuration space C3,0 via

ϕD(p, q, r) = ϕ(q, r)− ϕ(q, p),

for any three pairwise distinct points p, q, r in H t R: we then set ωD = dϕD.

Lemma 2. The 1-form ωD extends to a smooth 1-form on C3,0, with the following properties:

i) its restriction to C2,1, when q approaches the real axis, vanishes;

ii) its restriction to C2,0 × C1,1, when p and q collapse together to the real axis, equals −π∗1ω;

iii) its restriction to C2 × C2,0, when p and q collapse together in the upper half-plane, equals
π∗2ω − π∗1ω;

iv) its restriction to C2,0×C1,1 (resp. C2×C2,0), when p and r collapse together to the real axis
(resp. in the upper half-plane), vanishes;

v) its restriction to C2,0 × C1,1, when q and r collapse together to the real axis, equals π∗1ω;

vi) its restriction to C2 × C2,0, when q and r collapse together in the upper half-plane, equals
π∗1ω − π∗2ω.

As above, we define a Shoikhet’s weight associated to a graph without loop Γ with m+n+1
vertices labelled by V(Γ) := {0, . . . , n, 1, . . . ,m}. To any edge e = (i, j) ∈ E(Γ), we associate
a smooth 1-form ωD,e on D+

n,m by the following rules:
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• if neither i nor j lies in {0, 1}, then ωD,e := π∗(0,i,j)ωD, where

π(0,i,j) : D+
n,m

∼= C+
n+1,m−1 −→ C3,0,

[
(z0, . . . , zn, z2, . . . , zm)

]
7−→

[
(z0, zi, zj)

]
;

• if i = 0 and j 6= 1, then ωD,e := π∗(i,j)ω, where

π(i,j) : D+
n,m

∼= C+
n+1,m−1 −→ C2,0,

[
(z0, . . . , zn, z2, . . . , zm)

]
7−→

[
(zi, zj)

]
;

• if j = 1 and i 6= 0, then ωD,e := p∗(i,j)ω, where

p(i,j) : D+
n,m −→ D1,1

∼= C2,0,
[
(z1, . . . , zn, z1, . . . , zm)

]
7−→

[
(zi, zj)

]
;

• if i = 1 or j = 0 or (i, j) = (0, 1), then ωD,e = 0.

Then, as above,

ωD,Γ :=
∧

e∈E(Γ)

ωD,e

defines a differential form on D+
n,m.

Definition 1. The Shoikhet weight WD,Γ of the directed graph Γ is

WD,Γ :=
∫
D+

n,m

ωD,Γ.

We consider an admissible graph in Gn,m,0, such that |star(0)| = l. To n polyvector fields
{γ1, . . . , γn} on V , such that |star(k)| = |γk| + 1, k = 1, . . . , n, and to a Hochschild chain
c = (a0|a1| · · · |am−1) of degree −m+1, we associate an l-form on V (whose actual degree is −l,
following the grading introduced in [10]) via

〈α, SΓ(γ1, . . . , γn, c)〉 = UΓ(α, γ1, . . . , γn)(a0, . . . , an) .

Finally, the n-th Taylor component Sn of the L∞-quasi-isomorphism S from the L∞-module
C−•(A,A) to the L∞-module Ω−•(V ) over T •poly(V ) is given by

Sn =
∑
m≥1

∑
Γ∈Gn,m,0

WΓ,DSΓ. (10)

Theorem 4 (Shoikhet). The Taylor components (10) combine to an L∞-quasi-isomorphism

S : C−•(A,A) → Ω−•(V ),

of L∞-modules over T •poly(V ), whose 0-th order Taylor component reduces to the Hochschild–
Kostant–Rosenberg quasi-isomorphism in homology.

We refer to [10] for the proof of Theorem 4.

5 Compatibility between the actions of polyvector fields
on forms and Hochschild chains

In this Section we sketch the proof of Theorem 2, Section 2, whose strategy owes to the homotopy
argument used in [7, 8]; for a more detailed version of the proof of Theorem 2 in an even more
general case, we refer to [4].

We must consider separately the case, where Sγ acts on Hochschild chains i) of degree m = 0
and ii) of degree −m ≤ −1: as we will soon notice, the geometric aspects of the two cases are
quite different.
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5.1 The space D1,1 and Hochschild chains of degree 0

By the definition of the action ∩, if c has degree 0, the only Hochschild cochains acting on c
non-trivially must be functions, in which case the action is simply multiplication on the right
w.r.t. the product ?.

We consider the curve ` on the configuration space D1,1, with initial point on α, and final
point b, which corresponds to the following embedding of the open unit interval into D1,1:

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

0 s 1

interior of the curve
in the brave new eye

α

b

the curve 

a

l
l

Figure 1. The curve ` in D1,1.

Since D1,1
∼= C2, D1,1 coincides with Kontsevich’s eye: its “pupil” α represents the boundary

stratum D2 × D0,1 of codimension 1, while the point b represents the boundary stratum C1,0 ×
C+

0,2 ×D0,1 of codimension 2, graphically

α

0

b

0

Figure 2. The boundary strata α and b of D1,1.

The subset Y+
n,m of D+

n,m, for n ≥ 1, consisting of those configurations, whose projection
onto D1,1 belongs to the curve `, is a smooth submanifold with corners of D+

n,m of codimension 1.
Pictorially, a typical configuration in Yn,1 looks like as follows:

0

Figure 3. A typical configuration in Yn,1.

The dashed line represents the curve, along which the first point in D× (labelled by ◦) moves,
going from the origin to the unit circle.

We are interested in the boundary strata of Yn,1 of codimension 1, which correspond to the
chosen point on the pupil α and to the point b of D1,1, namely

i) configurations in Dn,1, whose projection onto D1,1 is the initial point of the curve ` (the
corresponding strata are denoted collectively by Y0

n,1);

ii) configurations in Dn,1, whose projection onto D1,1 is the final point of the curve ` (the
corresponding strata are denoted collectively by Y1

n,1);
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Let γ be a solution of the Maurer–Cartan equation as in (1), α a polyvector field on V of
degree −1 and c = a0 a Hochschild chain of degree 0 for the algebra A.

Proposition 1. For γ, α and c as above, the following identities hold true:

α ∩ Sγ(c) =
∑
n≥0

1
n!

∑
Γ∈Gn+1,1,0

W 0
D,ΓSΓ(α, γ, . . . , γ︸ ︷︷ ︸

n

, c), (11)

Sγ(Uγ(α) ∩ c) =
∑
n≥0

1
n!

∑
Γ∈Gn+1,1,0

W 1
D,ΓSΓ(α, γ, . . . , γ︸ ︷︷ ︸

n

, c), (12)

where the weights W i
D,Γ, i = 0, 1, are defined via

W i
Γ =

∫
Yi

n,1

ωD,Γ.

Proof. The proof of (11) and (12) relies mainly on the evaluation of the weights W i
D,Γ, i = 0, 1:

we only give a sketch of such evaluations, referring to [4] for all details.
By construction, all admissible graphs Γ appearing in the expressions on the right-hand side

of (11) and (12) have all vertices of the first type of valence 2, except the vertex labelled by 1,
which in this case has valence 0.

First, for any admissible graph Γ in Gn+1,1,0, the weight W 0
D,Γ vanishes, if 1 has at least one

incoming edge: namely, if 1 has one arrow coming from 0, then the integral vanishes, since the
angle form is the derivative of a (locally) constant function. Further, Kontsevich’s Vanishing
Lemma [7, Lemma 6.4] applies to the remaining cases, whence only the case matters, where 0
and 1 collapse together, and then Lemma 2 does the job. Otherwise, the identity

W 0
D,Γ = WD,Γ0 (13)

holds true, where Γ0 is the admissible graph in Gn,1, obtained from Γ by collapsing the vertices 0
and 1. Here is a graphical representation of a general component Z of Y0

n+1,1

0
A

Figure 4. A typical configuration in Y0
n,1.

Second, for an admissible graph Γ in Gn+1,1,0, the weight W 1
D,Γ, restricted to a component Z

of Y1
n+1,1 of the form

Z ∼= CA1,0 × C+
A2,2 ×DA3,1, 1 ≤ |A1|,

vanishes, unless there are no edges outgoing from A1 or from A2, in which cases the weight
factorizes as

W 1
D,Γ|Z = WΓ1WΓ2WD,Γ3 , (14)

and Γ1 is the admissible subgraph of Γ, whose vertices of the first type are labelled by A1,
Γ2 is the graph, whose vertices are labelled by A2 t {1, 2}, and obtained by collapsing Γ1 to the
vertex 2, and Γ3 is the graph, whose vertices are labelled by A3 t{1}, obtained by collapsing Γ2

to the vertex 1.
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Graphically, a typical configuration in the component Z looks like as

A1

A

A

0

3

2

Figure 5. A typical configuration in Y1
n,1.

First of all, if there is an edge e.g. from A1 to A2, the corresponding contribution vanishes
by means of Lemma 2, i); the same argument implies the claim in all other cases. We observe
that this also implies that Γi, i = 1, 2, 3, is admissible.

Further, the first two factors in the factorization of the weight W 1
D,Γ reduce to usual Kont-

sevich’s weights, again in virtue of Lemma 2, v). �

The curve ` in D1,1 “interpolates” between Y0
n+1,1 and Y1

n+1,1: we may evaluate weights of
admissible graphs in Gn+1,1,0 on the remaining boundary strata of codimension 1 of Yn+1,1, and,
by means of Stokes’ Theorem, this implies that (11) and (12) coincide at the level of cohomology;
for a complete discussion of the corresponding homotopy formula, we refer to [4].

5.2 The space D+
1,2 and Hochschild chains of higher degree

We prove now Theorem 2 in the case, where (3) is applied to Hochschild chains c of higher
(negative) degree.

The open unit square in C can be embedded in the open configuration space D+
1,2 via (s, t) 7→[(

s, 1, e2πit
)]

, where the square brackets denote equivalence classes w.r.t. the action of S1; we
may take a possible closure σ of it in the compactification D+

1,2 as follows:

α

β

ξ

a

b

d

e

f

h

j

o

p

q

boundary of the surface 

interior of the surface 
an imbedding of the plane square

,σ

σ

in the open I−cube

0 1s

e2 tiπ

Figure 6. The boundary of σ in D+
1,2.

Topologically, D+
1,2 is a “cube with two eyes”, or I-cube: we will be mostly interested, in the

forthcoming discussion, in the boundary stratum ξ of codimension 1, which is D1 × D+
0,2, and

in the boundary strata o, q of codimension 2, which are C1,0 × C+
0,2 ×D+

0,2 and C1,1 × C+
0,2 ×D0,1

respectively; graphically
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1 2

0

ξ

0

1 2

o

0

21

q

Figure 7. The boundary strata ξ, o and q of D+
1,2.

We observe that the straight line on the boundary stratum ξ corresponds to the edge {s = 0},
the boundary stratum o corresponds to the edge {s = 1} and the boundary stratum q corresponds
to (a way of imbedding) the point (1, 0).

For any two positive integers (m,n), with n ≥ 1 and m ≥ 2, the subset Y+
n,m of those confi-

gurations in D+
n,m, whose projection onto D+

1,2 belongs to σ, is a smooth, orientable submanifold
with corners of D+

n,m of codimension 1. Graphically,

0

21

Figure 8. A typical configuration in Y+
n,m.

We will need the boundary strata of Y+
n,m of codimension 1, corresponding to configurations

in D+
n,m, whose projection onto the I-cube is in the boundary of σ (collectively denoted by Y+,∂σ

n,m ).
More precisely, Y+,∂σ

n,m factorizes into eight different types, denoted by Y+,x
n,m, and we will consider

only x to be the straight line on ξ or o and q.
We consider a solution γ of the Maurer–Cartan equation as in (1), a polyvector field α on V ,

and a Hochschild chain c = (a0| · · · |am) in A, m ≥ 1.

Proposition 2. For γ, α and c of degree −m ≤ −1 as above, the following identities hold true:

α ∩ Sγ(c) =
∑
n≥0

1
n!

∑
Γ∈Gn+1,m+1,0

W ξ
D,ΓSΓ(α, γ, . . . , γ︸ ︷︷ ︸

n

, c), (15)

and

Sγ(Uγ(α) ∩ c) =


∑

n≥0
1
n!

∑
Γ∈Gn+1,m+1,0

W o
D,ΓSΓ(α, γ, . . . , γ︸ ︷︷ ︸

n

, c), |α| = −1,∑
n≥0

1
n!

∑
Γ∈Gn+1,m+1,0

W q
D,ΓSΓ(α, γ, . . . , γ︸ ︷︷ ︸

n

, c), |α| ≥ 0,
(16)

where the weights W x
D,Γ, x = ξ, o, q, are defined via

W x
D,Γ =

∫
Y+,x

n+1,m

ωD,Γ.

Proof. The proof follows along the same lines of the proof of Proposition 1, with some due
changes; once again, we refer to [4] for the complete proofs, while here we make some necessary
comments on the degrees, which hold true in this particular situation.
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We observe that, for any admissible graph Γ in Gn+1,m,0, the weight W ξ
D,Γ vanishes, if the

vertex 1 has at least one incoming edge, by the very same arguments sketched in the proof of
Proposition 1. Otherwise, the identity

W ξ
D,Γ = WD,Γ0

holds true, where Γ0 in Gn,m,0 is obtained from Γ by collapsing the vertices 0 and 1: this
generalizes (13) in the proof of Proposition 1, and the proof uses almost the same arguments.

On the other hand, a general component Z of the boundary strata of Y+,o
n,m, resp. Y+,q

n,m has
the explicit form

Z ∼= C+
A1,0 × C+

A2,B2
×D+

A3,B3
, resp. (17)

Z ∼= C+
A1,B1

× C+
A2,B2

×D+
A3,B3

, (18)

where Ai, i = 1, 2, 3, are disjoint subsets of [n], with 1 ≤ |A1| ≤ n, 0 ≤ |A2| ≤ n, 0 ≤ |A3| ≤ n,
with n = |A1|+ |A2|+ |A3|, and Bi, i = 1, 2, 3, are disjoint ordered subsets of [m] of successive
elements, such that 1 ≤ |B1| ≤ m, 2 ≤ |B2| ≤ m, 1 ≤ |B3| ≤ m, and m = |B1| + |B2| + |B3|.
Pictorially,

0 0

1

2

A

A2

3

A1

A

A

A21

3

2

1

o q

B
B

B
B

B13

2

2

3

Figure 9. Typical components of Y+,o
n,m and Y+,q

n,m.

We consider a component Z of Yo
n+1,m as in (17), resp. of Yq

n+1,m as in (18), and for an
admissible graph Γ as before, we denote by Γ1 the admissible subgraph of Γ, whose vertices are
labelled by A1 t B1, by Γ2 the graph, whose vertices are labelled by A2 t B2, and obtained by
collapsing Γ1 to a single vertex, and by Γ3 the graph, whose vertices are labelled by A3 t B3,
obtained by collapsing Γ2 to a single vertex.

The weight W o
D,Γ, restricted to a component Z of Y+,o

n+1,m as above vanishes, unless there are
no edges going from A1 to A2 or A3, or from A2 to A3, |B2| = 2, and α has degree −1. In fact,
the weight W o

D,Γ factorizes as

W o
D,Γ|Z = WΓ1WΓ2WD,Γ3 ,

with B1 = ∅. In particular, the third weight on the right-hand side is non-trivial only if 2|A1|−2
equals the degree of the integrand, which, by the above reasonings, is precisely 2(|A1|−1)+|α|+1
(since all vertices of the first type in A1 are 2-valent except the first vertex): therefore, the
integral is non-trivial only if |α| = −1.

The weight W q
D,Γ, restricted to a component Z of Y+,q

n+1,m as above vanishes, unless there are
no edges going from A1 to A2 or A3, or from A2 to A3, |B2| = 2, and |B1| = |α| + 1 (which
implies that α has degree bigger or equal than 0). In such cases, the weight W o

D,Γ factorizes as

W o
D,Γ|Z = WΓ1WΓ2WD,Γ3 ,
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with 1 ≤ |B1|. Dimensional reasons as in the case of a component Z of Y+,q
n+1,m force the degree

of α to be bigger or equal than 0: namely, the degree of the third integrand is 2(|A1|−1)+|α|+1,
and the integral is non-trivial only if it equals 2|A1|+ |B1|−2. Since 1 ≤ |B1|, the non-triviality
condition forces |α| = |B1| − 1, whence the claim.

This result obviously generalizes (14) in the proof of Proposition 1, and its proof is the same
as the proof of (14). �

The surface σ “interpolates” between the boundary strata Y+,ξ
n+1,m, Y+,o

n+1,m and Y+,q
n+1,m: the

“interpolation” in this situation is of course more complicated than the one in Subsection 5.1,
since we have to keep track of the boundary of σ. In fact, the weighted sums as in (15) and (16),
where we integrate over boundary strata of Y+,x

n+1,m, x = h, j, p, vanish; the weighted sums over
the remaining boundary strata of Y+

n+1,m can be also explicitly evaluated, and, by means of
Stokes’ Theorem, they produce a homotopy formula, proving that the left-hand sides of (15)
and (16) coincide at the level of cohomology.

6 Duflo isomorphism on (co)invariants revisited

Let g be a finite dimensional Lie algebra over C.
First of all, the (modified) Duflo element [6] is defined via

J := det
(ead/2 − e−ad/2

ad

)
∈ Ŝ(g∗)g.

We have a morphism of g-modules

D := sym ◦ (J1/2·) : S(g) −→ U(g),

where U(g) is the Universal Enveloping Algebra of g, and sym denotes the usual symmetrization
map from the symmetric algebra S(g) to U(g).

The following result generalizes to coinvariants the well-known Duflo isomorphism [6].

Theorem 5. The map D restricts to an isomorphism of algebras S(g)g −̃→U(g)g = Z
(
U(g)

)
on invariants, and induces an isomorphism of S(g)g-modules S(g)g −̃→U(g)g = A

(
U(g)

)
on

coinvariants.

Here Z(B) denotes the center of an algebra B, and A(B) = B/[B,B] its abelianization.
We sketch here a proof of Theorem 5 in the spirit of the approach of [7, 9] to the original

Duflo isomorphism.
We consider the Kirillov–Kostant–Souriau Poisson bivector π on g∗ and associated product ?.

Since the product ? obeys x?y−y ?x = [x, y]g2, viewing x, y ∈ g as linear functions on g∗, there
is an algebra morphism

I : U(g) −→
(
S(g), ?

)
; x 7−→ x.

The map I−1 ◦ Uγ induces an algebra isomorphism by means of Theorem 1, Section 2,

S(g)g = Z
(
S(g), {, }

)
−→ Z

(
U(g)

)
= U(g)g

while, dually, Sγ ◦I induces an isomorphism of S(g)g-modules by means of Theorem 2, Section 2,

U(g)g = A
(
U(g)

)
−→ A

(
S(g), {, }

)
= S(g)g.

2We may set ~ = 1, as the Poisson structure is linear.
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In [11], the restriction of Uγ to S(g) has been shown to be the identity, which, coupled with
Kontsevich’s discussion [7, Section 8], implies that I−1 ◦ Uγ = I−1 = D : S(g) → U(g).

Shoikhet’s proof of the fact that the restriction of Uγ to functions is the identity can be
summarized as follows: for any function f ∈ S(g), Uγ(f) is expressed only via so-called inner
wheels, whose weights vanish by the main result of [11]. Pictorially, an inner wheel looks like as
follows:

i

8

0

Figure 10. An inner wheel.

Theorem 5 follows then from the following

Proposition 3. The restriction of Sγ on S(g) coincides with the identity map.

Proof. By the arguments of [10, Paragraph 3.6.1], the only admissible graphs contributing
non-trivially to Sγ are of the form

a0

a0

0 i

8

Figure 11. A typical admissible graph in Sγ on functions and its counterpart in the upper half-plane.

Further, we use a correspondence between weights of admissible graphs in Gn,1,0 and admis-
sible graphs in Gn+1,0, by means of the Möbius transformation

ψ : H t R −→ D t S1\{1}; z 7−→ z − i

z + i
,

which induces (see Subsection 3.3) isomorphisms Cn+1,0 −̃→Dn,1, to prove that Sγ = id.
First of all, given on D1,1 the 1-form ωD as in Lemma 2, then the 1-form ω := ψ∗ωD on C2,0

is a difference of usual Kontsevich’s angle forms as in Lemma 1. Then the weight WD,Γ of an
admissible graph Γ in Gn,1,0 is pulled-back to a weight WΓ′ , Γ′ being admissible in Gn+1,0: the
vertex 0 is mapped to a vertex of the first type, while the only vertex of the second type is
mapped to ∞ in the complex upper half-plane. The factors of ωD,Γ are pulled-back to i) usual
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forms ωe, whenever e is an edge from some vertex (of the first and of the second type) to 1, and
the “new” e is now an edge from the (inverse image of the) starting point to i, and ii) differences
between ωe and ωe(i), if e is an edge between two vertices (of the first and second type, neither
of which is 0) and the new edge e connects the (inverse images of the) endpoints, while e(i) is an
edge, whose starting point is the starting point of e and whose endpoint is i. We have used here
the arguments exposed in Appendix 1 of [4], to which we refer for a more detailed discussion, as
well as for the properties of ωD. We also used the fact that the form ω vanishes when its final
point goes to infinity, which finally implies the above correspondence.

We observe that dashed arrows denote forms ωD,e on Dn,1 in the left-most graph of Fig. 11,
while we have used plain, resp. dashed, arrows to denote forms ωe on Cn+1,0, resp. differences of
such forms, in the right-most graph.

Finally, we use the following graphical calculus for replacing dashed edges by plain ones:

= −i ii

Figure 12. Replacing dashed edges by plain ones in an inner wheel.

The second graph on the right-hand side has a double edge, whence its weight vanishes. Thus,
the Shoikhet weight of the left-most graph in Fig. 11 equals the usual Kontsevich weight of the
right-most one (i.e. with all edges turned into black ones), which is zero by [11]. �

We finally observe that Proposition 3 has been proved in Subsubsection 3.6.2 of [10] under
the assumption of the validity of Conjecture 3.5.3.1, which is implied by Theorem 2: our proof,
on the contrary, is purely based on the main result of [11] and on the properties of the forms ωD.

7 Conclusion

In this paper, we have proved Shoikhet’s conjecture using configuration space integrals: it is
worthwhile noticing that we did not exploit all boundary strata of the I-cube, which replaces in
our homotopy argument Kontsevich’s eye (namely, we made use only of the boundary stratum ξ
of codimension 1 and of the boundary strata o and q of codimension 2). In fact, Shoikhet’s
conjecture can be viewed as a special case of a more general result, which involves a Maurer–
Cartan element of a more general shape, i.e. a sum of polyvector fields of different degrees, to
which, via Kontsevich’s formality, corresponds also a sum of polydifferential operators, also of
different degrees: accordingly, all boundary strata of the surface σ in the I-cube contribute to
the proof of this more general result [4].
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