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1 Introduction

In 1992 I. Frenkel and N. Reshetikhin [7] had developed the theory of intertwining operators
for quantum affine algebras and had shown that the matrix elements of intertwiners satisfy the
quantized Knizhnik–Zamolodchikov (qKZ) equations.

The theory of intertwiners and qKZ equations was successfully applied to the study of solvable
lattice models [9] (and references therein). As to the study of solutions of the qKZ equations,
bases are constructed by Tarasov and Varchenko [22] in the form of multi-dimensional hyper-
geometric integrals in the case of Uq(ŝl2). However solutions of the qKZ equations for other
quantum affine algebras are not well studied [21].

The method of free fields is effective to compute correlation functions in conformal field theo-
ry (CFT) [3], in particular, solutions to the Knizhnik–Zamolodchikov (KZ) equations [18, 19].
A similar role is expected for those of quantum affine algebras. Unfortunately it is difficult to
say that this expectation is well realized, as we shall explain below.

Free field realizations of quantum affine algebras are constructed by Frenkel and Jing [6]
for level one integrable representations of ADE type algebras and by Matsuo [15], Shiraishi [16]
and Abada et al. [1] for representations with arbitrary level of Uq(ŝl2). The latter results are
extended to Uq(ŝlN ) in [2]. Free field realizations of intertwiners are constructed based on these
representations in the case of Uq(ŝl2) [9, 10, 12, 15, 4].

The simplicity of the Frenkel–Jing realizations makes it possible not only to compute matrix
elements but also traces of intertwining operators [9], which are special solutions to the qKZ
equations. The case of q-Wakimoto modules with an arbitrary level becomes more complex and
the detailed study of the solutions of the qKZ equations making use of it is not well developed.
In [15] Matsuo derived his integral formulae [14] from the formulae obtained by the free field
calculation in the simplest case of one integration variable. However it is not known in general
whether the integral formulae derived from the free field realizations recover those of [14, 23, 22]1.

1See Note 1 in the end of the paper.
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The aim of this paper is to study this problem in the case of the qKZ equation with the value
in the tensor product of two dimensional irreducible representations of Uq(ŝl2). More general
cases will be studied in a subsequent paper.

There are mainly two reasons why the comparison of two formulae is difficult. One is that
the formulae derived from the free field calculations contain more integration variables than
in Tarasov–Varchenko’s (TV) formulae. This means that one has to carry out some integrals
explicitly to compare two formulae. The second reason is that the formulae from free fields
contains a certain sum. This stems from the fact that the current and screening operators are
written as a sum which is absent in the non-quantum case. Since TV formulae have a similar
structure to those for the solutions of the KZ equation [18, 19], one needs to sum up certain
terms explicitly for the comparison of two formulae. We carry out such calculations in the case
we mentioned.

The plan of this paper is as follows. In Section 2 the construction of the hypergeometric solu-
tions of the qKZ equation due to Tarasov and Varchenko is reviewed. The free field construction
of intertwining operators is reviewed in Section 3. In Section 4 the formulae for the highest to
highest matrix elements of some operators are calculated. The main theorem is also stated in
this section. The transformation of the formulae from free fields to Tarasov–Varchenko’s formu-
lae is described in Section 5. In Section 6 the proof of the main theorem is given. Remaining
problems are discussed in Section 7. The appendix contains the list of the operator product
expansions which is necessary to derive the integral formula.

2 Tarasov–Varchenko’s formula

Let V (1) = Cv0 ⊕ Cv1 be a two-dimensional irreducible representation of the algebra Uq(sl2),
and R(z) ∈ End(V (1)⊗2) be a trigonometric quantum R-matrix given by

R(z) (vε ⊗ vε) = vε ⊗ vε,

R(z) (v0 ⊗ v1) =
1− z

1− q2z
qv0 ⊗ v1 +

1− q2

1− q2z
v1 ⊗ v0,

R(z) (v1 ⊗ v0) =
1− q2

1− q2z
zv0 ⊗ v1 +

1− z

1− q2z
qv1 ⊗ v0,

Let p be a complex number such that |p| < 1 and Tj denote the multiplicative p-shift operator
of zj ,

Tjf(z1, . . . , zn) = f(z1, . . . , pzj , . . . , zn).

The qKZ equation for the V (1)⊗n-valued function Ψ(z1, . . . , zn) is

TjΨ = Rj,j−1(pzj/zj−1) · · ·Rj,1(pzj/z1)κ
1−hj

2 Rj,n(zj/zn) · · ·Rj,j+1(zj/zj+1)Ψ, (1)

where Rij(z) signifies that R(z) acts on the i-th and j-th components, κ is a complex parameter,

κ
1−hj

2 acts on the j-th component as

κ
1−hj

2 vε = κεvε.

Let us briefly recall the construction of the hypergeometric solutions [22, 20] of the equation (1).
In the remaining part of the paper we assume |q| < 1. We set

(z)∞ = (z; p)∞, (z; p)∞ =
∞∏

j=0

(1− pjz), θ(z) = (z)∞(pz−1)∞(p)∞.
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Let n and l be non-negative integers satisfying l ≤ n. For a sequence (ε) = (ε1, . . . , εn) ∈
{0, 1}n satisfying ]{i|εi = 1} = l let

w(ε)(t, z) =
∏
a<b

ta − tb
q−2ta − tb

∑
1≤a1,...,al≤l

ai 6=aj(i6=j)

l∏
i=1

 tai

tai − q−1zki

∏
j<ki

q−1tai − zj

tai − q−1zj

∏
i<j

q−2tai − taj

tai − taj

 ,

where {i|εi = 1} = {k1 < · · · < kl}.
The elliptic hypergeometric space Fell is the space of functions W (t, z) = W (t1, . . . , tl,

z1, . . . , zn) of the form

W = Y (z)Θ(t, z)
1∏n

j=1

∏l
a=1 θ(qta/zj)

∏
1≤a<b≤l

θ(ta/tb)
θ(q−2ta/tb)

satisfying the following conditions

(i) Y (z) is meromorphic on (C∗)n in z1,. . . ,zn, where C∗ = C\{0};
(ii) Θ(t, z) is holomorphic on (C∗)n+l in t1,. . . ,zn and symmetric in t1,. . . ,tl;

(iii) T t
aW/W = κqn−2l+4a−2, T z

j W/W = q−l, where T t
aW = W (t1, . . . , pta, . . . tl, z) and T z

j W =
W (t, z1, . . . , pzj , . . . zn).

Define the phase function Φ(t, z) by

Φ(t, z) =
n∏

i=1

l∏
a=1

(qta/zi)∞
(q−1ta/zi)∞

∏
a<b

(q−2ta/tb)∞
(q2ta/tb)∞

.

For W ∈ Fell let

I(w(ε),W ) =
∫

T̃l

l∏
a=1

dta
ta

Φ(t, z)w(ε)(t, z)W (t, z),

where T̃l is a suitable deformation of the torus

Tl = {(t1, . . . , tl)| |ti| = 1, 1 ≤ i ≤ l},

specified as follows [22].
Notice that the integrand has simple poles at

ta/zj = (psq−1)±1, s ≥ 0, 1 ≤ a ≤ l, 1 ≤ j ≤ n,

ta/tb = (psq2)±1, s ≥ 0, 1 ≤ a < b ≤ l.

The contour for the integration variable ta is a simple closed curve which rounds the origin in
the counterclockwise direction and separates the following two sets,

{psq−1zj , p
sq2tb | s ≥ 0, 1 ≤ j ≤ n, a < b },

{p−sqzj , p
−sq−2tb | s ≥ 0, 1 ≤ j ≤ n, a < b }.

Then

ΨW =
∑
(ε)

I(w(ε),W )vε1 ⊗ · · · ⊗ vεn ,

is a solution of the qKZ equation (1) for any W ∈ Fell.
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3 Free field realizations

In this section we review the free field construction of the representation of the quantum affine
algebra Uq(ŝl2) of level k and intertwining operators. We mainly follow the notation in [10]. We
set

[x] =
qx − q−x

q − q−1
.

Let k be a complex number and {an, bn, cn, ã0, b̃0, c̃0, Qa, Qb, Qc|n ∈ Z\{0}} satisfy

[an, am] = δm+n,0
[2n][(k + 2)n]

n
, [ã0, Qa] = 2(k + 2),

[bn, bm] = −δm+n,0
[2n]2

n
, [b̃0, Qb] = −4,

[cn, cm] = δm+n,0
[2n]2

n
, [c̃0, Qc] = 4,

Other combinations of elements are supposed to commute. Set

N± = C[an, bn, cn| ± n > 0].

Then the Fock module Fr,s is defined to be the free N−-module of rank one generated by the
vector which satisfies

N+|r, s〉 = 0, ã0|r, s〉 = r|r, s〉, b̃0|r, s〉 = −2s|r, s〉, c̃0|r, s〉 = 2s|r, s〉.

We set

Fr = ⊕s∈ZFr,s.

A representation of the quantum affine algebra Uq(ŝl2) is constructed on Fr for any r ∈ C
in [16].

The right Fock module F †
r,s and F †

r are similarly defined using the vector 〈r, s| satisfying the
conditions

〈r, s|N− = 0, 〈r, s|ã0 = r〈r, s|, 〈r, s|b̃0 = −2s〈r, s|, 〈r, s|c̃0 = 2s〈r, s|.

Remark 1. We change the definition of |r, s〉 in [10]. Namely we use

|r, s〉 = exp
(

r

2(k + 2)
Qa + s

Qb + Qc

2

)
|0, 0〉.

Let us introduce field operators which are relevant to our purpose. For x = a, b, c let

x(L;M,N |z : α) = −
∑
n6=0

[Ln]xn

[Mn][Nn]
z−nq|n|α +

Lx̃0

MN
log z +

L

MN
Qx,

x(N |z : α) = x(L;L,N |z : α) = −
∑
n6=0

xn

[Nn]
z−nq|n|α +

x̃0

N
log z +

1
N

Qx.

The normal ordering is defined by specifying N+, ã0, b̃0, c̃0 as annihilation operators and N−,
Qa, Qb, Qc as creation operators. With this notation let us define the operators

J−(z) : Fr,s −→ Fr,s+1, φ(l)
m (z) : Fr,s −→ Fr+l,s+l−m, S(z) : Fr,s −→ Fr−2,s−1,
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by

J−(z) =
1

(q − q−1)z
(
J−+ (z)− J−− (z)

)
,

J−µ (z) =: exp
(

a(µ)

(
q−2z;−k + 2

2

)
+ b
(
2|q(µ−1)(k+2)z;−1

)
+ c
(
2|q(µ−1)(k+1)−1z; 0

))
:,

a(µ)

(
q−2z;−k + 2

2

)
= µ

{
(q − q−1)

∞∑
n=1

aµnz−µnq(2µ− k+2
2

)n + ã0 log q

}
,

S(z) =
−1

(q − q−1)z
(S+(z)− S−(z)) ,

Sε(z) =: exp
(
−a

(
k + 2|q−2z;−k + 2

2

)
− b
(
2|q−k−2z;−1

)
− c
(
2|q−k−2+εz; 0

))
:,

φ
(l)
l (z) =: exp

(
a

(
l; 2, k + 2|qkz;

k + 2
2

))
:,

φ
(l)
l−r(z) =

1
[r]!

∮ r∏
j=1

duj

2πi

[
· · ·
[[

φ
(l)
l (z), J−(u1)

]
ql

, J−(u2)
]

ql−2

, . . . , J−(ur)

]
ql−2r+2

,

where

[r]! = [r][r − 1] · · · [1], [X, Y ]q = XY − qY X,

and the integral in φ
(l)
l−r(z) signifies to take the coefficient of (u1 · · ·ur)−1.

The operator J−(z) is a generating function of a part of generators of the Drinfeld realization
Uq(ŝl2) at level k. While the operators φ

(l)
m (z) are conjectured to determine the intertwining

operator for Uq(ŝl2) modules [10, 15]

φ(l)(z) : Wr −→ Wr+l ⊗ V (l)
z , φ(l)(z) =

l∑
m=0

φ(l)
m (z)⊗ v(l)

m ,

where Wr is a certain submodule of Fr specified as a kernel of a certain operator, called q-
Wakimoto module [15, 12, 13, 11, 1], V (l) is the irreducible representation of Uq(sl2) with spin l/2
and V

(l)
z is the evaluation representation of Uq(ŝl2) on V (l).

In this paper we exclusively consider the case l = 1 and set

φ+(z) = φ
(1)
0 , φ−(z) = φ

(1)
1 , v0 = v

(1)
0 , v1 = v

(1)
1 .

The operator S(z) commutes with Uq(ŝl2) modulo total difference. Here modulo total
difference means modulo functions of the form

k+2∂zf(z) :=
f(qk+2z)− f(q−(k+2)z)

(q − q−1)z
.

Remark 2. The intertwining properties of φ(l)(z) for l ∈ Z are not proved in [10] as pointed out
in [15]. However the fact that the matrix elements of compositions of φ(l)(z)’s and S(t)’s satisfy
the qKZ equation modulo total difference can be proved in a similar way to Proposition 6.1
in [15] using the result of Konno [11] (see (4)).

Let

|m〉 = |m, 0〉 ∈ Fm,0, 〈m| = 〈m, 0| ∈ F †
m,0.
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They become left and right highest weight vectors of Uq(ŝl2) with the weight mΛ1 + (k−m)Λ0

respectively, where Λ0, Λ1 are fundamental weights of ŝl2. Consider

F (t, z) = 〈m + n− 2l|φ(1)(z1) · · ·φ(1)(zn)S(t1) · · ·S(tl)|m〉 (2)

which is a function taking the value in V (1)⊗n. Let

∆j =
j(j + 2)
4(k + 2)

, s =
1

2(k + 2)
.

Set

F̂ =

(
n∏

i=1

z
∆m+n−2l+1−i−∆m+n−2l−i

i

)
F =

(
n∏

i=1

z
s(m+n−2l−i+ 3

2
)

i

)
F, (3)

Let the parameter p be defined from k by

p = q2(k+2).

We assume |p| < 1 as before. Then the function F̂ satisfies the following qKZ equation modulo
total difference of a function [15, 8, 7, 10, 11]

T z
j F̂ = R̂j,j−1(pzj/zj−1)· · ·R̂j,1(pzj/z1)q−(m+n/2−l+1)hj R̂j,n(zj/zn)· · ·R̂j,j+1(zj/zj+1)F̂ , (4)

where

R̂(z) = ρ(z)R̃(z), R̃(z) = C⊗2R(z)C⊗2,

ρ(z) = q1/2 (z−1; q4)∞(q4z−1; q4)∞
(q2z−1; q4)2∞

, (z;x)∞ =
∞∏
i=0

(1− xiz), Cvε = v1−ε.

4 Integral formulae

Define the components of F (t, z) by

F (t, z) =
∑

(ν)∈{0,1}n

F (ν)(t, z)v(ν), v(ν) = vν1 ⊗ · · · ⊗ vνn ,

where (ν) = (ν1, . . . , νn). By the weight condition F (ν)(t, z) = 0 unless the condition

]{i|νi = 0} = l

is satisfied. We assume this condition once for all. Notice that

φ+(z) =
1

(q − q−1)

∮
du

2πiu
[φ−(z), J−+ (u)− J−− (u)]q,

S(t) =
−1

(q − q−1)t
(S+(t)− S−(t)).

Let

{i|νi = 0} = {k1 < · · · < kl},
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and

F
(ν)
(ε)(µ)(t, z|u) = 〈m + n− 2l|φ−(z1) · · · [φ−(zk1), J

−
µ1

(u1)]q · · · [φ−(zkl
), J−µl

(ul)]q · · ·φ−(zn)

× Sε1(t1) · · ·Sεl
(tl)|m〉.

Then F (ν)(t, z) can be written as

F (ν)(t, z) = (−1)l(q − q−1)−2l
l∏

a=1

t−1
a

∑
εi,µj

l∏
i=1

(εiµi)
∫

Cl

l∏
j=1

duj

2πiuj
F

(ν)
(ε)(µ)(t, z|u),

where C l is a suitable deformation of the torus Tl specified as follows.
The contour for the integration variable ui is a simple closed curve rounding the origin in the

counterclockwise direction such that qk+3zj (1 ≤ j ≤ n), q−2uj (i < j), q−µi(k+2)ta (1 ≤ a ≤ l)
are inside and qk+1zj (1 ≤ j ≤ n), q2uj (j < i) are outside.

By the operator product expansions (OPE) of the products of φ−(z), J−µ (u), Sε(t) in the

appendix, one can compute the function F
(ν)
(ε)(µ)(t, z|u) explicitly. In order to write down the

formula we need some notation. Set

ξ(z) =
(pz−1; p, q4)∞(pq4z−1; p, q4)∞

(pq2z−1; p, q4)∞
, (z; p, q)∞ =

∞∏
i=0

∞∏
j=0

(1− piqjz).

Then

F
(ν)
(ε)(µ)(t, z|u) = f

(ν)
(µ)(t, z|u)Φ(t, z)G(ν)

(ε)(µ)(t, z|u),

where

f
(ν)
(µ)(t, z|u) = (1− q2)lq

∑l
i=1(n+m−2l−ki+i)µi

n∏
i=1

(
qkzi

)s(m+n−l−i)
∏
i<j

ξ(zi/zj)

×
l∏

a=1

(q−2ta)4s(a−1)−2ms,

G
(ν)
(ε)(µ)(t, z|u) = Ĝ

(ν)
(ε)(µ)(t, z|u)

∏
a<b

qεbtb − qεata
tb − q−2ta

,

Ĝ
(ν)
(ε)(µ)(t, z|u) =

l∏
i=1

ui(zki
− qµi−2−kui)

(zki
− q−1−kui)(ui − qk+3zki

)

l∏
j=1

∏
i<kj

zi − qµj−2−kuj

zi − q−1−kuj

×
l∏

j=1

∏
kj<i

uj − qk+2−µjzi

uj − qk+3zi

∏
i<j

ui − qµi−µjuj

ui − q−2uj

∏
i,a

ui − q−µi(k+1)−εata

ui − q−µi(k+2)ta
.

Let

G
(ν)
(µ)(t, z) =

∑
ε1,...,εn=±

n∏
j=1

εj

∫
Cl

l∏
j=1

duj

2πiuj
G

(ν)
(ε)(µ)(t, z).

The main theorem in this paper is

Theorem 1. If (µ) 6= (−l) = (−, . . . ,−), G
(ν)
(µ)(t, z) = 0. For (µ) = (−l) we have

G
(ν)

(−l)
(t, z) = q−2l+ 1

2
l(l−1)−

∑l
i=1 ki(q − q−1)lw(−ν)(t, z),

where (−ν) = (1− ν1, . . . , 1− νn).
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It follows that F (ν)(t, z) is given by

F (ν)(t, z) = (−1)lq−(n+m+2−2l)l+ksn(m+n−l)− 1
2
ksn(n+1)+4sl(m−l+1)

×
n∏

i=1

z
s(m+n−l−i)
i

∏
i<j

ξ(zi/zj)
l∏

a=1

t2s(2a−2−m)−1
a Φ(t, z)w(−ν)(t, z).

5 Transformation to Tarasov–Varchenko’s formulae

We describe a transformation from F , which satisfies (4), to Ψ, which satisfies (1). The parame-
ter κ is also determined as a function of l, m, n.

For a solution Ĝ of (4) let

G̃ =
n∏

i=1

z
−s(m+n

2
−l+1)

i

(
n∏

i=1

zi)s/2
∏
i<j

ξ(zi/zj)

−1

C⊗nĜ. (5)

One can easily verify that G̃ satisfies (1) with κ = q2l−2−n−2m using

ξ(pz)
ξ(z)

=
(z−1; q4)∞(q4z−1; q4)∞

(q2z−1; q4)2∞
.

Let F̂ be defined by (3) and F̃ by (5). Then

F̃ = (−1)lq−(n+m+2−2l)l+ksn(m+n−l)− 1
2
ksn(n+1)+4sl(m−l+1)

×
n∏

i=1

z
s(m+n−2l−i)
i

l∏
a=1

t2s(2a−2−m)−1
a Φ(t, z)

∑
w(ν)(t, z)⊗ v(ν).

For W ∈ Fell let

W̃ = W

(
n∏

i=1

z
s(m+n−2l−i)
i

l∏
a=1

t2s(2a−2−m)
a

)−1

. (6)

Then the condition (iii) for W is equivalent to the following conditions,

T t
aW̃/W̃ = 1, T z

j W̃/W̃ = ql−m−n+j .

To sum up we have

Proposition 1. For any W ∈ Fell

Ψ̃W =
∫

T̃l

l∏
a=1

dta
2πi

F̃ (t, z)W̃ (t, z),

is a solution of the qKZ equation (1), where F̃ is defined by (5) with F̂ and F being given in (3)
and (2) and W̃ is defined by (6).
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6 Proof of Theorem

Let A± = {j|µj = ±}. Suppose that the number of elements in A± is r± and write A± = {l±1 <
· · · < l±

r±}. Set A = A−, r = r− and li = l−i for simplicity. Let

I
(ν)
(ε)(µ)(t, z) =

∫
Cl

l∏
j=1

duj

2πiuj
Ĝ

(ν)
(ε)(µ)(t, z|u).

Lemma 1. We have

I
(ν)
(ε)(µ)(t, z) = (−q−2)r(q − q−1)r

l∑
a1,...,ar=1
ai 6=aj(i6=j)

r∏
i=1

δεai ,+

r∏
i=1

tai

zkli
− qtai

r∏
j=1

∏
i<klj

zi − q−1taj

zi − qtaj

×
r∏

i=1

∏
a 6=ai,...,ar

tai − q−1−εata
tai − ta

.

Proof. We first integrate in the variables uj , j ∈ A+ in the order ul+1
, . . . , ul+

r+
. Let us consider

the integration in ul+1
. We denote the integration contour in ui by Ci. The only singularity of

the integrand outside Cl+1
is ∞. Thus the integral is calculated by taking residue at ∞. Since

the integrand is of the form

dul+1

ul+1

H(ul+1
),

where H(u) is holomorphic at ∞. Then∫
C

l+1

du

2πiu
H(u) = − Res

u=∞

du

u
H(u) = lim

u−→∞
H(u).

In this way the integral in ul+1
is calculated. After this integration the integrand as a function

of ul+2
has a similar structure. Therefore the integration with respect to ul+2

is carried out in
a similar way and so on. Finally we get

I
(ν)
(ε)(µ)(t, z) = (−1)r+

Res
u

l+

r+
=∞

· · · Res
u

l+1
=∞

Ĝ
(ν)
(ε)(µ)(t, z|u)

=
∫

Cn−r+

∏
j∈A

duj

2πiuj

∏
i∈A

−q−3−kui

zki
− q−1−kui

∏
i<kj
j∈A

zi − q−3−kuj

zi − q−1−kuj

∏
i<j

i,j∈A

ui − uj

ui − q−2uj

×
∏
i∈A

a

ui − qk+1−εata
ui − qk+2ta

.

Here Cn−r+
is specified by similar conditions to C l, where ul+i

1 ≤ i ≤ r+ are omitted. We

denote the right hand side of this equation other than
∫
Cn−r+

∏
j

duj

2πiuj
by I

(ν)+
(ε)(µ)(t, z).

Next we integrate with respect to the remaining variables uj , j ∈ A in the order ulr ,. . . ,ul1 .
Let us consider the integration with respect to ulr . The poles of the integrand inside Clr is
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qk+2ta, a = 1, . . . , l. Thus we have∫
Clr

dulr

2πiulr

I
(ν)+
(ε)(µ)(t, z) =

l∑
ar=1

Res
ulr=qk+2tar

I
(ν)+
(ε)(µ)(t, z)

=
l∑

ar=1

∏
i∈A
i6=lr

−q−3−kui

zki
− q−1−kui

∏
i<kj

j∈A\{lr}

zi − q−3−kuj

zi − q−1−kuj

∏
i<j<lr
i,j∈A

ui − uj

ui − q−2uj

∏
i∈A\{lr}

a

ui − qk+1−εata
ui − qk+2ta

× −q−1tar

zklr
− qtar

∏
i<klr

zi − q−1tar

zi − qtar

∏
i<klr
i∈A

ui − qk+2tar

ui − qktar

∏
a 6=ar

tar − q−1−εata
tar − ta

(1− q−1−εa)

= (1− q−2)
l∑

ar=1

δεar ,+

∏
i∈A
i6=lr

−q−3−kui

zki
− q−1−kui

∏
i<kj

j∈A\{lr}

zi − q−3−kuj

zi − q−1−kuj

∏
i<j<lr
i,j∈A

ui − uj

ui − q−2uj

×

 ∏
i∈A\{lr}

a6=ar

ui − qk+1−εata
ui − qk+2ta

 −q−1tar

zklr
− qtar

∏
i<klr

zi − q−1tar

zi − qtar

∏
a 6=ar

tar − q−1−εata
tar − ta

.

The last expression as a function of ulr−1 has a similar form to I
(ν)+
(ε)(µ)(t, z) as a function of ulr .

Namely the poles inside Clr−1 are qk+2ta, a 6= ar. Thus the integral in ulr−1 is the sum of residues
at qk+2ta, a 6= ar and so on. Finally we get

I
(ν)
(ε)(µ)(t, z) =

l∑
ar=1

l∑
ar−1=1

ar−1 6=ar

· · ·
l∑

a1
a1 6=a2,...,ar

Res
ul1

=qk+2ta1

· · · Res
ulr=qk+2tar

I
(ν)+
(ε)(µ)(t, z)

= (−q−2)r(q − q−1)r
l∑

a1,...,ar=1
ai 6=aj(i6=j)

r∏
i=1

δεai ,+

r∏
i=1

tai

zkli
− qtai

r∏
j=1

∏
i<klj

zi − q−1taj

zi − qtaj

×
r∏

i=1

∏
a 6=ai,...,ar

tai − q−1−εata
tai − ta

.

Thus the lemma is proved. �

Recall that

G
(ν)
(ε)(µ)(t, z) = I

(ν)
(ε)(µ)(t, z)

∏
a<b

qεbtb − qεata
tb − q−2ta

.

For a set {a1, . . . , ar} let {b1, . . . , br+} be defined by

{1, . . . , l} = {ai} ∪ {bi}.

Then

(−q2)r(q − q−1)−rG
(ν)
(µ)(t, z)

=
l∑

a1,...,ar=1
ai 6=aj(i6=j)

r∏
i=1

tai

zkli
− qtai

r∏
i=1

∏
j<kli

zj − q−1tai

zj − qtai

∏
i>j

tai − q−2taj

tai − taj

r∏
i=1

r+∏
j=1

1
tai − tbj

∏
a<b

1
tb − q−2ta

×
r∏

i=1

δεai ,+

∑
εb1

,...,εb
r+

=±

r+∏
j=1

εbj

r∏
i=1

r+∏
j=1

(tai − q
−1−εbj tbj

)
∏
a<b

(qεbtb − qεata).
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Let us calculate the sum in {εbi
} assuming εai = +. Using

(ta − q−1−εbtb)(ta − q−1+εbtb) = (ta − tb)(ta − q−2tb),

and ∏
a<b

(qεbtb − qεata) =
∏
i,j

ai>aj

q(tai − taj )
∏
i,j

bi>bj

(qεbi tbi
− q

εbj tbj
)

×
∏
i,j

ai>bj

(qtai − q
εbj tbj

)
∏
i,j

bj>ai

(qεbj tbj
− qtai),

we have

∑
εb1

,...,εb
r+

=±

r+∏
j=1

εbj

r∏
i=1

r+∏
j=1

(tai − q
−1−εbj tbj

)
∏
a<b

(qεbtb − qεata)

= (−1)lr− 1
2
r(r−1)−

∑r
i=1 aiqrr++ 1

2
r(r−1)

r∏
i=1

r+∏
j=1

(tai − tbj
)(tai − q−2tbj

)
∏
i,j

ai>aj

(tai − taj )

×
∑

εb1
,...,εb

r+
=±

r+∏
j=1

εbj

∏
i,j

bi>bj

(qεbi tbi
− q

εbj tbj
). (7)

Lemma 2. For N ≥ 1 we have

∑
ε1,...,εN=±

N∏
j=1

εj

∏
i>j

(qεiti − qεj tj) = 0. (8)

Proof. Let

ai(ε) = t(1, qεti, (qεti)2, . . . , (qεti)N−1).

Then the left hand side of (8) is equal to

∑
ε1,...,εN=±

N∏
j=1

εj det (a1(ε1), . . . ,aN (εN )) = det

(∑
ε1

ε1a1(ε1), . . . ,
∑
εN

εNaN (εN )

)
. (9)

Since∑
ε

εai(ε) = t
(
0, (q − q−1)ti, . . . , (qN−1 − q−(N−1))tN−1

i

)
,

the right hand side of (9) is zero. �

By this lemma the right hand side of (7) becomes zero if r+ > 0. Consequently G
(ν)
(µ) = 0 for

r+ > 0. Suppose that r+ = 0. In this case r = l, li = i (1 ≤ i ≤ l) and

(−q2)l(q − q−1)−lG
(ν)

(−l)
(t, z)

=
∏
a<b

q(tb − ta)
tb − q−2ta

l∑
a1,...,al=1

ai 6=aj(i6=j)

l∏
i=1

 tai

zki
− qtai

∏
j<ki

zj − q−1tai

zj − qtai

∏
i>j

tai − q−2taj

tai − taj

 .

The theorem easily follows from this.
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7 Concluding remarks

In this paper we study the solutions of the qKZ equation taking the value in the tensor product
of the two dimensional evaluation representation of Uq(ŝl2). The integral formulae are derived
for the highest to highest matrix elements for certain intertwining operators by using free field
realizations. The integrals with respect to u variables corresponding to the operator J−(u) are
calculated and the sum arising from the expression of J−(u) and the screening operator S(t)
is calculated. The formulae thus obtained coincide with those of Tarasov and Varchenko. The
calculations in this paper can be extended to the case where the vector space V (1)⊗n is replaced
by a tensor product of more general representations. It is an interesting problem to perform
similar calculations for other quantum affine algebras [2] and the elliptic algebras [13].

In Tarasov–Varchenko’s theory solutions of a qKZ equation are parametrized by elements of
the elliptic hypergeometric space Fell while the matrix elements are specified by intertwiners.
It is an interesting problem to establish a correspondence between intertwining operators and
elements of Fell. With the results of the present paper one can begin to study this problem.
Study in this direction will provide a new insight on the space of local fields and correlation
functions of integrable field theories and solvable lattice models. The corresponding problem in
CFT is studied in [5].

Appendix. List of OPE’s

Here we list OPE’s which are necessary in this paper. Almost all of them are taken from the
paper [10]. Let

C(z) =
(q−2z; p)∞
(q2z; p)∞

, (z)∞ = (z; p)∞.

Sε1(t1)Sε2(t2) = (q−2t1)4sqε1 t1 − qε2−ε1t2
t1 − q−2t2

C(t2/t1) : Sε1(t1)Sε2(t2) :, |q−2t2| < |t1|,

φ−(z)Sε(t) = (qkz)−s (qt/z)∞
(q−1t/z)∞

: φ−(z)Sε(t) :, |q−1t| < |z|,

J−µ (u)Sε(t) = q−µ u− q−µ(k+1)−εt

u− q−µ(k+2)t
: J−µ (u)Sε(t) :, |q−(k+2)t| < |u|,

φ−(z)J−µ (u) =
z − qµ−2−ku

z − q−1−ku
: φ−(z)J−µ (u) :, |u| < |qk+3z| for µ = −,

J−µ (u)φ−(z) = qµ u− qk+2−µz

u− qk+3z
: φ−(z)J−µ (u) :, |qk+1z| < |u| for µ = +,

[φ−(z), J−µ (u)]q =
(1− q2)u(z − qµ−2−ku)
(z − q−1−ku)(u− qk+3z)

: φ−(z)J−µ (u) :,

J−µ1
(u1)J−µ2

(u2) = q−µ1
u1 − qµ1−µ2u2

u1 − q−2u2
: J−µ1

(u1)J−µ2
(u2) :, |q−2u2| < |u1|,

φ−(z1)φ−(z2) = (qkz1)sξ(z1/z2) : φ−(z1)φ−(z2) :, |pz2| < |z1|.

Note 1. After completing the paper we were informed that H. Awata, S. Odake and J. Shiraishi
obtained a similar result to this paper. The result is reviewed in Shiraishi’s PhD thesis [17] in
which one statement is a conjecture. However the complete version containing all proofs for all
statements had not been published after all. We would like to thank J. Shiraishi for the kind
correspondence.
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