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ELLIPTIC EQUATIONS
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Abstract — The objective of this mini-course is to take a look at a standard semilinear
partial differential equation —Au = Af(u) on which we show the use of some basic
tools in the study of elliptic equation. We will mention the maximum principle, barrier
method, blow-up analysis, regularity and boot-strap argument, stability, localization
and quantification of singularities, Pohozaev identities, moving plane method, etc.

RésumégQuelques situations limites pour les équations semi-liradres elliptiques)

L’objectif de ce mini-cours est de jeter un coup d’ceil sur une équation aux dérivées
partielles standard —Awu = Af(u), avec laquelle nous allons montrer quelques outils
de base dans 1’étude des équations elliptiques. Nous mentionnerons le principe du
maximum, la méthode de barriére, I’analyse de blow-up, la régularité, ’argument de
boot-strap, la stabilité, la localisation et quantification de singularités, les identités
de Pohozaev, la méthode du plan mobile, etc.

1. Introduction

We consider the following semilinear partial differential equation:
—Au = Af(u) in
(Pr) u >0 in Q,
u =0 on 0,

where ¢ R¥ is a smooth bounded domain and f is a smooth positive, nondecreasing
and convex function over R . For getting a positive solution u, necessarily A is
positive.

The convexity of f implies that

= limy_o f(t)/t = a € Ry U{oo} exists.

—Ifa e Ry, then lim .o f(t) —at =1 € RU{—oc} exists.
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Since the case a = 0 is trivial (f = constant), we will suppose that a > 0. Thus we
can divide the study of problem (Py) into two different situations: the quasilinear case
when a € (0,00) and superlinear case when a = co. We will see that the first case is
rather well understood, while many questions are remained open for the second one.

In the following, || - ||, denotes the standard L? norm for 1 < p < co. WHP(Q) is
the Sobolev space of functions f such that f and Vf € LP(Q2). When p = 2, we use
for simplicity H'(Q) to denote W12(Q), H} () is the space of functions f € H(Q)
verifying f = 0 on 992. The symbol C' means always a positive constant independent
of .

2. Quasilinear situation

We begin with the quasilinear case where a € (0,00). Many results presented here
are obtained by Mironescu & Radulescu in [27].

2.1. Minimal solution and stability. — Since f(u) < au + f(0) in this case,
then if u € L}(Q) is a weak solution of (Py) in the sense of distribution, we get easily
that u is always a classical solution by standard boot-strap argument.

Lemma2.1 — For A > 0, if (P\) is resolvable, then a minimal solution u) exists
in the sense that any solution v of (Py\) verifies v > uy in Q. Moreover, (Py) is
resolvable for any N € (0, \).

Proof. — We will use the barrier method. Remark that for A > 0, wg = 0 is a sub
solution of (Py) since f(0) > 0. Now we define for any n € N,

(1) —Awpt1 = Af(wy) In Q, wpy1 =0 on IN.

Using maximum principle, w; > wg = 0 in €. On the other hand, let v be any
solution of (Py), by monotonicity of f, we obtain

—A(wy —v) =A[f(0) = f(v)] <0 inQ, wy—v=0 ond.

Thus w; < v in Q. We can prove by induction that the sequence {w,} verifies
Wy < Wpp1 < v in Q for any n, so uy = lim,—o w, is well defined, and wu) is a
solution of (Py) by passing to the limit in (1). Moreover, uy < v. Notice that the
definition of u) is independent of the choice of v, it is the minimal solution claimed.

If (Py) has a solution wu, it is a super solution for (Py/) when 0 < X < A. Aswg =0
is always a sub solution, the barrier method will solve as above (Py/). O

Let A1 be the first eigenvalue of —A on 2 with the Dirichlet boundary condition,
we define ¢( to be the first eigenfunction such that ¢ > 0 in Q and ||¢g||2 = 1.

Lemma 2.2 — If we denote ro = infisg f(t)/t, then (Py) has no solution for A >
A1/ro. On the other hand, (Py) is resolvable for A > 0 small enough.
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Proof. — Let & € HY(Q) N L>(Q) be the solution of —A¢ =1 in Q. It is easy to see
that ¢ is a super solution of (Py) for A < f(||¢]|s)™!. Applying the barrier method,
we get a solution of (Py) for such .

Now we suppose that u is a solution of (Py) for some A > 0, using ¢p as test
function and integrating by parts, we get

/\1/ poudr = —/ uApodr = —/ @OAudz:/\/ f(w)podx.
Q Q Q Q

As f(u) > rou in , we have then

(A — /\7’0)/ poudz > 0.
Q

Recalling that ¢y and u are positive in §2, the lemma is proved. o
Combining these two lemmas, we can claim

Theorem 2.3 — There exists a critical value \* € (0,00) for the parameter X\, such
that for any A > X*, no solution exists for the problem (Py) while for any A € (0, \*),
a unique minimal solution uy exists for (Py). Furthermore the mapping A\ — uy is
icreasing with .

It is natural to ask if we can determine the exact value of A* and what happens when
A = \*. Before considering these two questions, we show another characterization of
the minimal solution wy, its stability. A solution u of (Py) is called stable if and only
if the linearized operator associated to the equation, —A — Af’(u) is nonnegative.
More precisely,

(2) )\/ f'(u)thd:Eg/ |Vp|?dz, for any ¢ € H(Q).
Q )

Theorem 2.4 — Let A € (0, \*), the minimal solution uy is the unique stable solution

Of (P,\)

Proof. — First we prove that uy is stable. If it is not true, the first eigenvalue 77 of
—A — \f'(uy) is negative, then there exists an eigenfunction ¢ € H}(Q2) such that

—AY = Af'(u\)p =my inQ, >0 in Q.
Consider u® = u) — €, a direct calculation gives
—Au® = Mf(uT) = —mey = A[f(ux — ) = fux) + e f (ua)y] = e [=m + 0 (1)] .
Since 71 < 0, then —Au® — Af(u®) > 0in Q for € > 0 small enough. Otherwise, using
Hopf’s lemma, we know that uy > C% in ) for some C' > 0. Thus u® > 0 is a super

solution of (Py) for € > 0 small enough. As before, we can get a solution u such that
u < uf in 2, which contradicts the minimality of uy. So n; > 0.

Now we prove that (Py) has at most one stable solution. Suppose the contrary,
there exists another stable solution v # wy. Define ¢ = v — uy, we get

A rorgtae< [1VePds == [ papde =2 [ 170) = fun)] oo,

Q
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/Q [F@) = Fun) = F/@)(0 — un)] ode > 0.

By maximum principle, we know that ¢ > 0 in 2. The convexity of f yields that
the term in the bracket is non positive, so the only possibility is f(v) — f(ux) —
f'(v)(v—uy) =0 in Q, which means f is affine over [u)(z),v(z)] for any z € Q. Thus
f(z) = ar+b in [0, maxq v] and we get two solutions u and v of —Aw = aw+b. This

implies that
0= / u\Av — vAuydx = b/ (v —wuy)de = b/ pdz,
Q Q Q

which is impossible since b = f(0) > 0 and ¢ is positive in . So we are done. O
An immediate consequence of Theorem 2.4 is
Proposition 2.5 — For any A € (0, A1/a), (Px) has one and unique solution wy.

Proof. — Remark first a = supg, f '(t) by convexity of f. Thanks to the definition of
A1, it is clear that each solution is stable if A € (0, A1/a), so we get the uniqueness by
that for stable solution. For the existence, we can consider the minimization problem
ming (o) J(u) where

J(u) = %/Q|Vu|2dx—)\/QF(u)dx
with .
F(u) = /0 f(s)ds, wu' =max(u,0).

If A € (0, \1/a), there exist €, A > 0 depending on A such that 2AF(t) < (\; —¢)t*+ A
over R. Thus J(u) is coercive, bounded from below and weakly lower semi-continuous
in H(Q), the infimum of J is reached then by a function u € H}(Q), so also by
ut € HY(Q) since J(uT) < J(u). This critical point u > 0 of J gives a solution of
(Py)- O

2.2. Estimate of A\*. — By Proposition 2.5, we know that A* > A /a. The follow-
ing result in [27] gives us more precise information for A\*.

Theorem 2.6 — We have three equivalent assertions:
(i) A* =X\/a.
(ii) No solution exists for (Px«).
(iii) lmy—x+ uy = 00 w.c. in Q. (u.c. means “uniformly on each compact set”)

Proof. — (i) implies (ii). If (Px~) has a solution w, then uy < u in Q for any A €
(0, A*), using the monotonicity of uy, u* = limy_,x« uy is well defined and u* is clearly
a stable solution of (Py~) by limit. Consider the operator G(u, \) = —Au — Af(u), if
the first eigenvalue n; of —A — X\*f’(u*) is positive, then we can apply the Implicit
Function Theorem to get a solution curve in a neighborhood of A*, but this contradicts
the definition of A\*, so 7, = 0. Thus, there exists ¢ € H}(Q) satisfying

(3) —AY— N f ()b =0 and ¥ >0 in Q.
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Using ¢o as test function and integrating by parts, we get
/ A1 — N f'(u*)] Ypodz = 0.
Q

As A\ — A f(u*) > 0, we get f/(u*) = a in Q so that f(t) = at + b in [0, maxg u*].
But b > 0 deduces that no positive solution in Hg () can exist for the equation
—Au = Mu+ bA1/a (we can use again ¢p), so the hypothesis is not true.

(ii) implies (iii). Here we mention a result of Hormander (see [22]) as follows: For a
sequence of nonnegative super-harmonic functions {v,} in Q, either v, converges u.c.
to 0o; or there exists a subsequence which converges in L}, .(Q2). We need just to prove
that the second case cannot occur for uy. Suppose the contrary, there exist uy = uy,
which converges in L, (Q) to u* with A, — A\*. We claim that ||ug|ls < C. If it is
false, we define uy, = lywy, with ||wk||2 = 1 and limg_,o I = 0o (up to subsequence).
Since f(t) < at + f(0),

A A
—Aw, = M < a\pwy + %(0) < aMywi +C in Q,

k k

it is easy to see that wy is bounded in H}(Q), so that up to a subsequence, wy
converges weakly in H} and strongly in L? to some w € Hg. Meanwhile, —Awy, tends
to zero in L}, () since f(uy) < aux + b and I, tends to oo, this implies —Aw = 0
in Q. Hence w = 0, which is impossible because ||w||2 = limg— oo ||wk||2 = 1. So {uy}
is bounded in L?(2), hence in H}(Q) by equation. We prove readily that u* is a
solution of (Py«) which contradicts (ii).

(iii) implies (ii). Any solution u of (Py~) should satisfy u > uy, V A < A*.

(i) (iii) implies (i). Clearly limy_,x» ||ua|l2 = oo. Take uy = [ywy with [|Jwy|l2 = 1,
then we have a subsequence wy which converges weakly in Hg, strongly in L? and
almost everywhere to w > 0. Moreover, in the sense of distribution,

Aw f (lpw)

i = Naw > \jw a.e.
k

—Aw = — lim Awg = lim
D/(Q)

Taking again @ as test function, we see that the last inequality must be an equality,
so A* = A1 /a. O

Remark that when f(¢) > at in R, we cannot get a solution for A = \;/a since
f(t) > at in a neighborhood of 0 (using always ¢o as test function), we obtain an
important consequence of Theorem 2.6 and Proposition 2.5.

Corollary 2.7. — If we have lim;—.o f(t) — at =1 > 0, then \* = A\1/a, and a unique
solution uy exists for (Py) for A € (0, \*) while no solution exists for A > \*.

Moreover, the following result is established in [27].

Proposition 2.8 — If lim;_. f(t) —at =1 < 0, then \j/a < X\* < \1/r9. A unique
solution u* = limy_,x- uy exists for (P\+). Furthermore, for any X\ € (A1/a,\*), we
have a second solution vy for (Py), such that vy tends u.c. to oo in Q when A | A\ /a.
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Sketch of Proof. — A second solution vy is obtained by the standard Mountain-pass
theory. We check here just \* < A;/a and the uniqueness of solution for (Py«). If
A* = Ai/a, by Theorem 2.6, uy — oo u.c. to oo as A tends to \*. Taking the first
eigenfunction g, for A < A\*, as Aa < A\

0= [ voldus+ Al do = [ o) = duldo < [ golf(un) - au] de
Q Q Q
Passing A\ to \*, we get
OS)\l/cpodx<0,
Q

which is absurd, hence A* > A1 /a if | < 0.

As we have A* > \;/a, a solution v exists for (Py+) by Theorem 2.6. By the proof
of Theorem 2.6 (see step (i) implies (ii)), we can claim that u* = limy_,x~ uy is a
solution of (Py«), u* < v and n1(—A — A* f'(u*)) = 0. If v # u*, consider w = v — u*,
we have w > 0 in 2 and

—Aw = X[f(v) — f(u")] = X f'(u")w in Q.
Using the eigenfunction ¢ verifying (3) (with 73 = 0),

0:/Q (Z/JAw—wAﬂJ)dz < )\*/Q [f (e — f (U*)1/)w]dz:0_

Therefore, we must have the equality f(v)— f(u*) = f'(v*)w in Q, which yields that f
is linear in [0, maxq v] and leads to a contradiction as in the proof of Theorem 2.4. [

It is also proved in [27] that if | > 0, the normalized family wx = wux/|luall2
converges to g in Hg(Q) as A T A* = A\1/a. In the case [ > 0 or some special cases for
[ =0, they showed a first order expansion of the norm ||u,||2 in function of (A* — \).
If I < 0, similar results were obtained for vy when A | A1/a. In conclusion, all these
results give us a rather clear schema of solutions for the quasilinear case.

3. Superlinear situation

From now on, we suppose that

f is a positive, smooth, nondecreasing and convex function such that

) lim & =
t—oo ¢

With minor changes, Theorems 2.3 and 2.4 hold still, so we can ask always the ques-
tions as how to determinate A* or how to understand the asymptotic behavior of wu)
when A tends to A\*. In quasilinear case, we can prove by standard regularity theory
that any weak solution in L!(€2) is a classical solution, and when X tends to \*, either
u) tends to infinity on each point of 0, or u) tends to a classical solution for the
limiting problem (Py~). We will see that it is no longer true for the superlinear case,
unbounded weak solutions can exist. In [7], Brezis et al. have proposed the following
definition.
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Definition 3.1 — A function ¢ € LY Q) is called a weak solution of (Py), if
f(&)d(x,0) € LY(Q) and

(5) - [ etpde=x [ f(@)pda

for any ¢ € C%(Q) N {p|sa = 0}.
They proved then
Theorem 3.2 — u* = limy_,x~ uy is always a weak solution of (Py«).

Proof. — For any A € [\*/2,\*), taking pq as test function,

(6) At /Q pourdr = )\/Qf(ux\)@odx > g/gf(ux\)@odx-

Since f is superlinear, there exists C' > 0 such that A\t < A*f(¢)/4 + C in R;.
Using (6), we get

A
flux)podz < C, for any 5 <A< A"
Q
Now let —A¢ =1 1in Q and £ = 0 on 012, we have

/ urde = — / wAgde = [ fluy)éds < C1x" / f(ur)podz < Cs.
Q Q Q Q

We have used the fact £ < Cyg (by Hopf’s lemma) to get the first inequality. Tending
A to \*, we obtain u* € LY(Q) and f(u*)d(x,0) € LY(Q), since po > Cd(x,00).
Now it is easy to verify (5) for u*. O

On the other hand, it is proved in [7] that for any A > A\*, no weak solution exists
for (P\). Later on, Martel proved in [25] that u* is the unique weak solution for
(Px+), so u* is really the extreme solution on the right in the schema (A, u), we call
it the extremal solution.

3.1. Regularity of u*. — By classical examples, we know that u* can be either a
classical solution or not. The most well known cases are exponential and polynomial
situations (see [19], [23], [11], [26] and [9]).

— For f(u) = e¥, u* is smooth when N < 9. If N > 10 and © is the unit ball
B1(0), u* = —2log |x| is the extremal solution, hence no longer bounded.
— For f(u) = (u+ 1)? with p > 1, if

4 4ypp—-1)
N<N,=6 5
p + 1 + b1
u* is smooth, and for N > N,, u* = |x|_ﬁ — 1 is the extremal solution on

B;1(0). An immediate consequence is that for any p > 1 and N < 10, u* is a
smooth solution.
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When f(u) = e* and N > 3, we can verify that U(z) = —2log|z| is always a weak
solution of (Py) with Q = B;1(0) C RY and A = 2(INV —2). So not all unbounded weak
solutions are extremal solutions v*. Two natural questions are raised.

— For general superlinear nonlinearity f satisfying (4), when is the extremal solu-

tion u* smooth?

— How can we know whether an unbounded weak solution is just u*?
The key of the second question is the stability of u*. Since u) are stable, passing
to the limit, we know that (2) holds always for u*. We look at the example where
f(u) =e* and ©Q = B1(0). Consider U(x) = —2log |z|, a necessary condition to have
U(z) = u* is then the positivity of the operator —A —2(N —2)7~2 where r = |z|. On
the other hand, we have Hardy’s inequality for H}(£2), which is optimal:

/|w| dr> I =2° /ﬂdx Ve HA(Q).

Thus we need to have 2(N — 2) < (N — 2)?/4 which is just equivalent to N > 10.

Brezis & Véazquez showed the following general result, whose proof is similar to
that for the uniqueness of stable solution in Theorem 2.4.

Theorem 3.3 — Ifv € H(Q) is an unbounded solution for (Py) such that the stability
condition (2) is satisfied, then \* = X and u* = v.

For the regularity of extremal solution u*, we can remark that u* is smooth for low
dimensions in general. By standard boot-strap argument, in order to show that u* is
a classical solution, it is sufficient to prove u* € L (), therefore it suffices to prove
that ||uy||c remains uniformly bounded. The first result was obtained by Crandall &
Rabinowitz [11]:

Theorem 3.4 — Let f verify (4). Suppose moreover there exist to, 3, p > 0 such that

p< B <24 /utpand BfE(E) = f()f"(t) = pf?(t) for t > to. Then |[ullo ds
uniformly bounded in (0, \*) if N <4+ 2u+ 4./1.

Recently, Nedev proved a remarkable result in [31]:

Theorem 3.5 — Let f verify (4), then if N = 2 or 3, u* is smooth solution for (Py«).

Furthermore, if N > 4, u* € LYQ) for any q < % and f(u*) € L1Q) for all
N

q< N—3-

The main idea is always to make use of the stability of uy. Let ¢, ) be two smooth
functions satisfying ¢(0) = 1(0) = 0 and ¢’ = ¢'2, take p(uy) as test function in (2),
we get

A/Q-fI(U/\)QOQ(UA)dxS/Q|V<P(U)\)|2d$:/91/)/(U)\)VU)\VU,\d:E

) / F ) (uy)dz

(7)
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Thus for any X € (0, \*),

(8) fun)@?(ua)de < | flun)p(uy)de.
Q Q

Now we need to choose suitable ¢ which leads to some interesting estimates of f(u))
or uy. For example, Nedev used just the test function ¢(t) = f(t) — f(0).

We look again at the exponential case f(u) = e, let p(u) = e** — 1 with a > 0,
then 9 (u) = a(e?®** — 1)/2. The inequality (8) gives

U
/ U (eaux _ 1)2 dx < / ae (€2au>\ _ 1) dz,
0 o 2

hence

(1 _ g) / e(2atux 7. < / 9elatuy + (1 _ g) erdx < E/ e(Ratlux 1. +C.
27 Jo Q 2 Q

for any € > 0. So if we take @ < 2 and € < 1 — /2, we obtain
/ eatlungy < 0.
Q

This means that || f(ua)||, < Cp for any p < 5, so ||ux||w=2.» is bounded for any p < 5.
We know that W2P(Q) C L>(Q) for p > N/2, which means |Ju)|s < C if N <9.

In [36], we have proved a general result under a weak additional condition on f.

Theorem 3.6 — Let f satisfy (4), rewrite f(t) = f(0)+te9®). Then lim;_.o t2g'(t) =
0o. Assume in addition that there exists to > 0 such that t>g’(t) is nondecreasing in
[to, 0), we have then u* is a smooth solution, for all @ C RN with N < 9.

This result is almost optimal, since by the example of e“, we see that the result
fails in general for V > 10. Moreover, our result is valid for any usual superlinear
nonlinearity f, because the corresponding function #2¢’ will not change infinitely its
variation near oo, so it works for weak superlinear functions as f(t) = tloglog...logt

.e

(for ¢ near c0), or for strong nonlinearities as f(t) = e®’

Conversely, the worst situation is when f looks like piecewise affine. In other words,
when f’ changes infinitely its speed of acceleration, then we could never verify the
condition required for g.

Proof. — Using (4), we can prove that lim;—,o(tf" — f)/f' = o0o. So we get
oy L 4 5O) - f

g = = — OQ.

f=10) I
To prove the regularity of u*, we need the following lemma, whose proof is given by
boot-strap argument (see [36]).

Lemma 3.7 — Assume that for p > 1, o € [1,p), there exists C > 0 satisfying

(9) /f(uA)der P <o wae (0, \%)
Q o uh ?
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where f(t) = f(t) — f(0). Then
— if p > N/2, uy is uniformly bounded in L>(£2);

- prg N/2) HuA”q S C: Vq < Na_]\gp and ”f(u/\)”q S C: VQ < #jpﬂga'

Take now ¢(t) = te®9®") (o > 0) and

t
vlt) = [ ¢ (e)ds,
0
Using integration by parts and the monotonicity of t2¢’ in [tg, o), we may claim

(10) Y(t) <O+ [t + %th’(t)} 29 vieR,

Inserting this estimate in (8), we get
(1 - %)/ u3g/(u)e(2a+1)g(“)dx S/ [C + Cued™ 4 ye2e9(w) %qu'(u)eQO‘g(“) dx.
Q Q

Since lim; .o €91 = lim; o t2¢g'(t) = oo, for any € > 0, there exists C. > 0 such

that
(1 - % — 5) / ugg’(u)e(mﬂ)g(“)dx < C..
Q

Thus for any a < 2, there exists C' > 0 such that
Iy 2041
/ fi(u%dx = / g (u)ee DI g < € for all X e (0, \").
Q Uy Q

By Lemma 3.7, the extremal solution u* is bounded if N < 9. O

When u* is just a weak solution, it is interesting to have its regularity in some
Sobolev spaces, one motivation comes also from Theorem 3.3. In [36], we prove

Theorem 3.8 — Let f verify (4) and rewrite f = e9, assume that

: —9"(t)
11 lim su =1-
(11) MU 1
for € (0,1). Then u* is bounded if N < 6 + 4,/n. Furthermore, if N > 6 + 4./,

we have

N 2(1+ /)N N 2(1+ /)N
u* e Li(QY), vq<7N7674\/ﬁ and f(u*) € LI(Q), Vq<7]\772 .
The condition (11) is equivalent to liminf; . ff”/f? = u, which is a little bit
stronger than the convexity of f, but much less restrictive than conditions in Theo-
rem 3.4, since we do not need any upper bound for ff”/f"?. Remark also that under
the condition (11), we have always u* € H?(Q) since f(u*) belongs to L*(f), so we
can apply Theorem 3.3.

Furthermore, Theorem 3.8 shows also that if f is strongly nonlinear such that
> 9/16, then u* is a classic solution when N < 9.

Another interesting question on the regularity of extremal solution u* is to under-
stand if it depends only on topological properties of the domain €2 or it depends also
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on geometrical properties of Q. For example, the following question appeared in [9]:
Let f(u) = e* and € be arbitrary smooth bounded domain in RY with N > 10, do
we have always ||u*||c = 00?7 Recently, Davila & Dupaigne have given a negative
answer in [14].

4. Blow up analysis

When u* is smooth, we know by Crandall-Rabinowitz’s theory that (A\*,«*) is a
turning point in the solution schema (A, u), that is for A < A* but near A\*, a second
solution exists. We are interested in the behavior of this branch of unstable solutions.
In this direction, no general conclusion can be obtained, since the behavior depends
strongly on the nonlinearity f, on the topological or/and geometrical properties of
the domain .

We will concentrate our attention for the case f(u) ~ e* near co, which has many
applications in geometry and physics. In fact, the equation —Awu = le" relates to
the geometric problem of Riemannian surfaces with constant Gaussian curvature in
dimension two. In higher dimension (when N > 3), it arises in the theory of thermionic
emission, isothermal gas sphere, gas combustion and many other physical problems.

4.1. Exponential case in dimension two. — Consider (A > 0)
(12) ~Au=Mxe" inQCR?* wu=0 ondQ.

We know that the Moser-Trudinger inequality holds: there exists C' > 0 such that
/ At /IVulls g < C, for any u € H ().
Q

Consequently, e € LY(Q) for all k > 0 if u € HZ(Q). Applying Mountain-pass
theory, we can prove then for any A € (0, \*), a second unstable solution vy exists.
Moreover, the family vy satisfies

(13) lim ||vallec =00 and )\/ e dr < C.
A—0 Q

We would like to understand the blow-up of vy when A — 0. As —Auw, is uniformly
bounded in L (Q), the standard regularity theory for elliptic equation (see [21]) shows
that {vy} is bounded in WP(Q), for any p € [1,2). Then up to a subsequence, vy
converges weakly in WhP(Q) (1 < p < 2) to a limit function vg. We would like
to determine the function vy, which will permit us to understand more clearly the
asymptotic behavior of vy. A first step was obtained by Brezis & Merle in [8], they
proved the following e —regularity result.

Theorem 4.1 — Let vy be a family of functions satisfying —Avy = Xe®™ in Q C R2,

if for some n > 0, Bay(xo) C 2 and ||)\GUXHL1(BQ77(:EU)) < e < 4m, then H’U)\”LOO(BTI(ZU))
is uniformly bounded.
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Proof. — For simplicity, we omit the index A and we use B, to denote B,.(xg). Define
E(z) = Ae¥®) and
1
wi(@) = —o— | logle —y| x E(y)dy.
i Bay,

So —Aw; = Ae” in By,. Apply Jensen’s inequality,

@ F
/ e*dx < // |z —y _Tgﬁdydm, for any o > 0,
Bay, Bay X Bay Q

where Q = [[Xe”||L1(p,,). Thus e*** € L'(By,) if aQ < 4. Define
—Aws =0 in By, wz=v—w; on dBy,.
Obviously v = wy +ws in By,,. Using the well known properties for harmonic functions
(see [21]), we have
lwall o8y, < Cllwalliszay) < C[I0]23(ay) + l0tllzsma,) |

If Q < & < 4w, we can choose « € (1,47 /¢), then € = e¥*T%2 is uniformly bounded
in L*(Bs,/2). Now we decompose v as w} 4+ wj in Bs, /o with

—Awy = Ae” in Bs, s and —Awy = 0 in Bsy,
wy= 0 ondBsy wy = v on dBsys.
We get easily that [wi|lw2.a(p,,,) and ||ws|[L~(p,) are uniformly bounded. Using

the fact W2 C L™ in dimension two for a > 1, the proof is completed. O

Now for a family of solutions verifying (12) and (13), we define the blow-up set S
as the set where vy is not uniformly bounded, that is

(14) S={zeQ|3I A\ — 0, zx — x such that vy, (x) — co}.

Theorem 4.1 yields that if the L' norm of Ae” is locally smaller then 47, then \e”
tends locally to zero and no blow-up can occur. Thus we can claim that S = ¥ where

(15) S={aeQ|Vn>0, limsup||]Ae™| 115, @)na) > 47}
A—0

From the boundedness of [|Ae”*||1, up to a subsequence, we obtain

#(9) <00, A — Z m;0g, in the sense of measures
;€S
where m; > 47 and J, denotes the Dirac measure over the point x. Therefore,

Proposition 4.2 — Let vy be a family of functions satisfying (12) and (13), there
exists a finite set S C Q) and m; > 4w such that up to a subsequence,

vy — Vo = Z m;G(z,z;) in WP(Q), V1<p<?2
z; €S
where G(x,x;) is the Green function
—AG(z,y) =dy(x) inQ and G(z,y)=0 if =€ 0.
Moreover, vy converges to v in CE_(Q\ S) for any k € N.
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In fact, as indicated in [30], using the moving plane argument proved by Gidas,
Ni & Nirenberg (see Proposition 4.6 and Appendix), we can show the existence of a
fixed neighborhood U of 92 such that no blow-up occurs in U (under the assumptions
[Ae |1y = O(1) and © C R?). The last assertion of Proposition comes from the
fact that no blow-up appears out of S or near 952, so v, are uniformly bounded locally
in '\ S, which leads to the higher order convergence by boot-strap arguments.

The next step is to determine the quantities m; and to localize the blow-up set S.
For that, we will use the local analysis and Pohozaev identities.

Lemma4.3 — Let Q be a smooth bounded domain in RN, if —Au = f(u) in Q, then
N -2
/ [NF(u)— uf(u)| dx
Q 2

/M2 {(x . VU)% (- V)W;"Q F(zv)F) + 2= QU@] do

(16)

t
where v denotes the unit external normal vector on 9Q and F(t) = / f(s)ds.
0

Return to our problem, let xg be any point in S, by translation, we can assume
that g = 0. Taking now N =2, f(u) = Ae* and Q@ = B,, = B,(0) in (16), we get

2 2
(17) 2/B Ae™ —1)dx = /9B ln <%) - @ +nA(e™ — 1)] do.

n

We fix 19 > 0 small enough such that B,, NS = {0}. By Proposition 4.2, for any
n € (0,no] fixed, when A — 0,

AE™ = 1)xp, —mody and vy — 7? logr + Ro(z) in C'(By)
s

where r = |z| and Ry € C*(B,,). Thus, the Lh.s. of (17) is equal to 2mg + 0x(1)

while

2
= % +O0(n) +ox(1), Vn<n fixed.

Tending first A to 0 and then 7 to 0, we get 2mg = mg/4m, that is mo = 8.

r.h.s.

For the localization of x;, we give here just the proof of single blow-up situation.
The general case can be obtained in a similar way. Multiplying —Au = f(u) by Vu
and integrating by parts over (), we obtain a Pohozaev type identity:

|Vul? ou
18 / F(u)vdo = / |:—l/ — —Vu| do.
(18) a0 W al 2 v

In our case, vy = 0 on 91, so that Vuy = (9, vx)v on 9. Hence

(19) / (%)2ud0—0
o0 81/ Rz
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If S = {xo}, passing to the limit A — 0, we get

(20) /6 ) [g—f(x, xo)] " o = Oz

We claim that z( is a critical point of the Robin function H associated to the Green
function G. Thus the blow-up set S is localized by the Green function of the domain
Q. Indeed, this is a direct consequence of

Lemma 4.4 — For any xo € Q, the left hand side of (20) is just fVI;T(:cO).

Proof. — This lemma and the idea of its proof here are valid in any dimension, but
we consider only the case of dimension two for simplicity. If Q C IR?, we know that

log |x —
(21) Glry) = 2L i,y

where H is a smooth symmetric function in £ x € and H(z) = H(x,z). Using (18)
with —A,G(z,z0) =0 on Q,, =Q\ B,(z0) (1> 0 is small) and G(z,zo) = 0 on 09,

SO
1 oG\ > VG2 aG
—= — uda—i—/ v——VGdo =0.
2 /an <5V> 0B, 2 ov

Noticing that the unit normal vector v on 9B, is just —(x — zo)/n, we get

2 Y. 2
/ VG| do — / [ v (x —x0) VHz/—i— |[VH| u] do
oB, oB,

2 8m2n? 2mn? 2
o, H
= — vdo 4+ O(n).
/637, 27 )
Moreover,
1 _
/ 98 G Gdo :/ <— + 8,,H> {L“ZO) + VH] do
2B, ov aB, \271 271
o,H 1
:—/ vdo + — V. H(x,xz0)do + O(n).
o8B, 2m) 2m) B,
Finally
aG\* 1
/ — | vdo = —— V. H(z,x0)do + O(n) = =2V, H(xq,x0) + O(n).
a0 \ OV ™ JaB,

In conclusion, by passing 1 to 0, we obtain

9G ? ~
(22) / [—(m,xo)} vdo = —VH(zo).
o0 L Ov
Here we used VH () = 2V, H (0, o) by the symmetry of H. O
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We can also get (22) by the Pohozaev identity. Using (16) for vy,

%LQ(I.V) <%)2do/g 2F (vy)dz.

But if we translate the domain  and consider vy (x + x¢) for any x¢ € R?, we have

also
1 ov 2
Z — . —Z = 2F .
5 [99 (x —x0) v ( 5 ) do /Q (va)dx

By difference, we obtain

finn ()

which is just equivalent to (19). We remark that the exact form of f or F is not used,
that’s why for autonomous partial differential equation with —A and the Dirichlet
boundary condition, the single blow-up lies often on the critical point of the Robin
function.

0, VSC0€R2

In general, we have the following result proved in [30].

Theorem 4.5 — Let vy be a family of solutions of (12) such that

lim [ Ae™dzx=/¢¢e€ R, U{occ} exists.
A—0 Q

Then we have the following alternatives:

(i) £ = oo, then vy tends to co u.c. in §);

(il) £ =0, vy tends to zero uniformly in Q;

(iii) ¢ = 8mm with m € N*. Up to a subsequence, there exists S = {z1,...,xm} C Q
such that vy blows up on S, vy converges to 8m ), G(z,x;) in Whr(Q) for
any 1 < p < 2. Moreover, \e"*dx — 8w Zj 0z, in the sense of measure and
x = (21, ..., Tm) 18 a critical point of

For the proof of (i), we need a remarkable result which is proved in [20] by moving
plane method (see Appendix), and which is only valid in dimension two.

Proposition 4.6 — Let Q C R? be a smooth bounded domain, there exists g > 0
depending only on ) such that for any C* function f and u € C*(Q) solution of

~Au=f(u), u>0 nQCR? wu=0 onodQ,

then u has no stationary point in the D.,, where D, = {x € Q, d(x,0Q) < €} denotes
the open e-neighborhood of OS).
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Associated to Hopf’s lemma, we get then vy is decreasing with respect to d(x, 99Q)
in a small neighborhood of the boundary independent of A\. This implies that if ¢ = oo,
there exists ; > 0 satisfying

lim e’ dzr = oo.
A=0Jo\p,,

Therefore for any compact set K C 2, using the uniform positivity of the Green
function G over K x (2 \ D, ), there exists C > 0 such that for any x € K,

oa(z) = /Q G(z, y)Aedy > /

G(z,y) e dy > / Che" dy — oc.
a\D.,

Q\D.,

The case (ii) comes from Theorem 4.1. The case (iii) can be proved by similar calculus
as for the single bubble case using local analysis and Pohozaev’s identities.

Now a natural question is to understand the quantity 8m. Indeed, a gauge trans-
formation will give us the answer. Take ) which realizes maxq vy (x), define Ay =
oa(zy), & = e~ ArTlog A and wy (z) = va(xa + Exz) +log A+ 2log€y. Tt is easy to see
that

—Awy = e in Q) = {y eRZ zy+ &y e Q}, wx(0) =0 and wy(z) <0 in Q).

/)\ev*dz:/ e dzx.
Q Qs

For vy verifying (13), we have £, tends to zero, otherwise vy is uniformly bounded
and no blow-up occurs. Using wy < 0, 0 < e”* < 1 and Harnack’s inequality, we
can prove that up to a subsequence, wy converges locally uniformly to a function w,
solution of

Moreover

(23) —Aw = e in R?, e’dr < oo,
R2

and maxge w(z) = w(0) = 0. Chen & Li proved in [10] that any solution of (23)

satisfies
/ e’dr = 8.
More precisely, w is a radial function
|z[? . 2
w(z) = —2log 1—1—? in R?.

The same analysis can be done near any blow-up point, which means that the function
vy looks like locally as the concentration of a standard solution over IR? near each
x; €85.
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4.2. Further results and comments. — By Theorem 4.5, we know that the be-
havior of blow-up solutions of (12) is controlled by the Green function of the domain
Q). Conversely, we may ask if all configurations in Theorem 4.5 can really appear.
Indeed, the answer depends on topological or/and geometrical properties of the do-
main €.

For simply connected domain, Mizoguchi & Suzuki proved that the case (i) can
never happen. For example, when Q = B; C R?, we know that all solutions are
radially symmetric (see Theorem 5.1 in Appendix), moreover u is decreasing along
the radius by maximum principle, so the only possibility is the blow-up at the origin,
thus only the case m = 1 occurs.

More generally, Baraket & Pacard showed in [4] that if (z;) € Q™ is a nondegen-
erate critical point of ¥, then there exists a family of solutions vy such that vy blows
up exactly on these points x;. But it is rather difficult to verify the nondegeneracy
condition for a general critical point (x;). Very recently, Del Pino, Kowalczyk &
Musso prove that if the domain €2 is not simply connected, than for any m € N*, we
may construct a family of solutions which makes m bubbles, in particular, by diag-
onal process, we can find a family of solutions such that the case (i) of Theorem 4.5
appears.

On the other hand, Theorem 4.5 works for more general exponential like nonlinear-
ities f. In fact, we need just to suppose that lim; ., f(t)e™* = 1, and similar result
holds also for the equation —Au = AV (z)e* with a function V € C*(Q) (see [34, 24]).
The result in [4] was also generalized to functions like f(u) = e* 4+ Ce?™ with v < 1
in [5], the case f(z,u) = V(z)e* and multiplicity result for blow-up solutions are
obtained in [16].

In contrast with the situation in dimension two, the behavior of unstable solutions
for —Au = e is far away to be understood for higher dimension cases (N > 3). The
only situation well known is the case with €2 = By, for which we can take advantage
of the radial symmetry of solutions. For example, when Q = B;(0) C R3, Gel’fand
showed in [19] that the curve of solutions will make a form of corkscrew near another
critical value A** € (0, \*), so the configuration is quite different from the case with
By C R2.

In [35] and [33], we have considered the following problem:
(24) —div(¢(z)Vu) = X(z)e" in QcR? wu=0 ondQ
where ( is a positive smooth function over . Our motivation are two fold. First,

when we work with rotational symmetric solutions of —Au = Ae* in dimension N > 3,
we can find that the equation is reduced to (24). Fore example, let the torus be

T = {(z:) € RY, (2]l - 1)* + 2} < R}

where R < 1 and T = (z1,...,2ny-1). If we look for solutions in the form wu(z) =
u(r,zy) with r = ||Z]|, a direct calculus shows that the problem —Au = \e“ in  is
transformed to

—div(rV72Vu) = V72" in Qp = {(r,2): (r —1)2 + 22 < R?*}, u=0 on 9Qr.
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This is just a special case of (24). On the other hand, equation (24) is similar to (12),
we may expect that similar results will hold. But this is not true.

It is not difficult to see the existence of critical value A* and that of minimal
solutions uy for (24). In [35], we studied the asymptotic behavior of bubbling or
unstable solutions vy of (24) when A — 0. We proved that if

/ A (z)e" dx — £ and /\lim loa]loo = o0,
Q e

then ¢ € 87N*. Furthermore, up to a subsequence, there exists a finite set S =
{21, ...,m1} C Q such that vy — vg in WP for any p € (1,2), where vy satisfies

div({(x)Vuo) + 87r2mig(zi)5mi =0 inQ, wvy=0 on N

Here m; € N* and each x; must be a critical point of ¢. This is similar to the case (ii)
in Theorem 4.5, but the blow-up set is determined now by the function ( instead of
the Green function.

We proved also that if x € S is a nondegenerate minimum point of (, then the
corresponding m must be equal to 1, and a single bubble example (k = m; = 1) is
constructed for the symmetric case ) = B; with radial (. However, we were not able
to determine if each m; is always equal to 1 in general, and we did not give a method
to construct bubbling solutions for general ( or 2.

We give the answer to these questions in a very recent work [33].

Theorem 4.7 — Let & € Q be a strict local maximum point of (, i.e. there exists
6 > 0 such that

((x) <¢(2), Ve Bs@)\{z}
Then for any m € N*, equation (24) has a family of solutions vy such that

A [ @ ds - smme(@), v i Ch@\(a})
Q
where vy satisfies
—V((x)Vuvy) = 8mm((Z)dz n Q, wvo=0 on 0.
Thus near a strict maximum point of {, we obtain a family of multi-bubble solutions

with any m € N*. Therefore by diagonal process, we may have a family of solutions
for (24), such that

(25) lim [ A (x)e*dx = oo,
A—0 [9)

even for simply connected domain. This is unexpected and new, comparing to the
result in [28] for isotropic case or to the case of local minimum point for ¢ for (24).

Furthermore, we can give precise expansion of blow-up solutions vy near T and show
that near z, the flatter the anisotropic coefficient ( is, the larger are the distances
between the bubbles. We prove also that if z( is a topologically non trivial critical
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point of ¢ (see definition in [15]), we have always a family of single bubble solution
which blows up at this point.

However, if we look at the problem on the torus with rotational symmetry, we see
that the function ¢(x) = 2 =2 does not have any critical point in Q. Thus, a new
situation occurs, the bubble must go to the boundary, while the boundary bubbles do
not appear in the isotropic case, thanks to Proposition 4.6.

In this case, we show in a forthcoming work [32] some analysis of boundary blow-up
for (24). For example, we show that the bubbles will be localized near critical points
of Claq, i.e. at x € 90 verifying 9,((z) = 0. We prove that no bubble can exist near
a nondegenerate maximum of ¢ on 02, and also the existence of solutions such that
A((z)e" dx converges to 8md,, when A — 0, if zp € 02 is a strict local minimum of
¢ such that 9,((xy) < 0.

Returning to the situation on T, this result will enable us to get a new family
of solutions for —Au = Ae* which blows up on a (N — 2) dimensional submanifold

on OT.

5. Appendix : Moving plane method

The moving plane method goes back to Alexandrov’s famous paper on constant
mean curvature hypersurface. It has known a great development in the study of
partial differential equations since the work of Gidas, Ni & Nirenberg [20]. The main
idea is to move a hyperplane ¥, = {x - n = ¢} following a fixed direction n from far
away, it will reach for a first time some points of €2, then cut a little domain T5; we
will try to compare the value of solution over 7T;; with that in the reflecting domain of
T, by the hyperplane ¥, and we hope to push the hyperplane as far as we can.

5.1. Classical method. — We consider a solution u of
(26) —Au=fu), u>0 in B cRY w=0 ondB

where B; = Bi(0) is the unit ball. The classical method suppose that u is a C!
solution and f is locally Lipschitz. Then by Hopf’s lemma, we know that d,u < 0
on the boundary, in particular, diu(e1) < 0 where e; = (1,0,...,0). Hence Oju is
negative in a neighborhood of e;, which means that u is decreasing in the x; direction
near e;. Therefore, if we denote X, the hyperplane defined by {z = (x;) € RY| 2y =
q}, T, = {z € B1, =1 > ¢}, then there exists ¢ > 0 such that
u(r) < u(2q — z1,%), foranyxzeT, and g€ (1—¢,1).

Here & = (22,...,2N), s0 (29 — x1, ) is just the reflecting point of 2 with respect to
>4. Consider now

qo = inf {g > 0, s.t. u(x) <u(2b—x1,7) inTp, Vbe(q,1)}.
Clearly such qq is well defined.

We claim then go = 0. If it is not the case, by continuity, we get u(z) < vg,(z) =
u(2g0 — z1,%) in Ty, and u # vy, since u(zx) = 0 for x € 9By N 0Ty, while the
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reflecting point of such z lies in B;. Thus by the invariance of Laplacian under
reflection, wg, = vg, — u is a nontrivial solution of

_Awtm = f(UQO) - f(u) = c(x)wqw We, = 0 in qu; wg, =0 on aTqu N Eqo'

Using the strong maximum principle, we obtain wg, > 0 in T,, and O1we, > 0 on
0Ty, NEy,. Moreover, if we look at wy(z) = vg(x) — u(z) = w(2¢ — 21, %) — u(x), it is
easy to see that

% = _286—;1 on 0T, N X,.
So we get dru(x) < 0 on 0Ty, N E,,. The same argument works for all b € [qo, 1],
finally 0ju(z) < 01in Ty,. This implies that we can push a little bit the hyperplane ¥,
for some ¢ < qo, and we still have u(z) — u(2¢ — 21,%) < 0, which is a contradiction

with the definition of go. Thus gy = 0.

Finally, g0 = 0 means u(z) < u(—xz1,%) for any x € B; and z; < 0. But if we
do the same work with the opposite direction, the inverse inequality is also true, so
u(z) = u(—xz1,Z) in By, i.e. we obtain the symmetry of u with respect to ;. Now,
as we can proceed with any direction, we conclude that u is a radial function in Bj.

We remark that the central argument is the invariance of Laplacian under reflection
and the strong maximum principle. But we need here a nice regularity of u.

5.2. Idea of Berestycki & Nirenberg. — In [6], Berestycki & Nirenberg weak-
ened a lot the condition on u by remarking that the first eigenvalue of —A is large for
a domain with small Lebesgue measure. They used also the Harnack type inequalities
to replace the classical strong maximum principle.

More precisely, let u be a solution of (26) in C°(Q) N H(), we fix A > 0 large
enough such that g(z) = f(x)— Ax is decreasing in [0, maxq u]. We know that A\ (—A)
associated to the Dirichlet boundary condition tends to oo when ||, the Lebesgue
measure of {0, goes to zero. Therefore, there exists g > 0 such that the operator
L =—A— Ais coercive in Hi(Q'), if || < &o. It is the case for T, when ¢ is near 1.
Using the same notation as above, we get

Lwy = g(vg) — g(u) in Ty, w, = min(0,w,) =0 on 97Ty,

Using w, as test function, we get
(27)
0< / {|qu—|2 _ A(wq_)Q} dx = / wy L(wg)dr = / [9(vg) — g(u)]w, dr < 0.
T, T, T,
Hence w, = 0 which means u(z) < u(2q — x1,7) in T;, for ¢ near 1.

Moreover, as g(u) — g(vq) = ¢(x)wq with ¢ uniformly bounded, using the equation
for the nonnegative H! function wg, we have the following Harnack inequality:

(28)  3ro, p, C>0 st wgllpe(s.) < C_inf wq, V1 <ro, Bar(z) C T,
B

2 ()

As T, is connected, either wy =0 or wg > 0 in 7.
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Now we define go as above, we claim again go = 0. Suppose the contrary, we have
Wqo > 0in Ty and wq, > 0 on 0By N 0Ty, S0 wg, > 0in Ty, \ Eq,. We cut then the
domain Tj, into two parts

Klquoﬂ{xeRN, $1€(QOJJ0+77)}’ KQ:TQO\Fl

where 7 > 0 is small enough such that [K;| < eo/2. It is easy to see that ming wg, >
0. By the continuity of u, ming, wq > 0 for g near go. Otherwise, for g near gy such
that |T, \ K2| < &g, we have w > 0 on (T, \ K2). Similarly as in (27), we obtain then
wg > 01in T, \ K3. Finally we conclude that wq > 0 in T for g less than, but near go.
We reach again a contradiction, which leads to

Theorem 5.1 — Let f be a locally Lipschitz function in R | let u be a solution of (26)
in CO(Q) N HY(Q). Then u is radially symmetric.

5.3. Further remarks. — The moving plane method is based essentially on the
invariance of elliptic operator with respect to some symmetry transformation, Beresty-
cki & Nirenberg’s idea takes advantage of small domain to begin this method, and
the Harnack type estimates lead to push the hyperplane to the limiting position.

So the idea of moving plane method can be generalized to many other situations,
it can be applied with other symmetric domains and manifolds, with other transfor-
mations or hypersurfaces (for example moving sphere under Kelvin transformation),
with more general elliptic operators provided their invariance under the corresponding
transformation, or work with the whole space under suitable condition on the behav-
ior of solution at infinity. We refer the readers to [3, 2, 17] and references therein for
some recent developments.

The idea of weak regularity required for u is very important, since it incites us
to generalize the method to other type of degenerate operators as p-Laplacian, or
some degenerate operators in Carnot-Caratheodory spaces, for which the solutions
are generally less smooth than for —A| see for example [12, 13, 18].
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