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MICROLOCAL ESTIMATES OF THE STATIONARY
SCHRODINGER EQUATION IN SEMI-CLASSICAL LIMIT

by

Xue Ping Wang

Abstract — We give a new proof for microlocal resolvent estimates for semi-classical
Schrédinger operators, extending the known results to potentials with local singularity
and to those depending on a parameter. These results are applied to the study of the
stationary Schédinger equation with the approach of semi-classical measures. Under
some weak regularity assumptions, we prove that the stationary Schrodinger equation
tends to the Liouville equation in the semi-classical limit and that the associated
semi-classical measure is unique with support contained in an outgoing region.

RésuméEstimations microlocales de I'équation de Schrodinger sitionnaire en limite semi-
classique)

Nous présentons une nouvelle démonstration pour les estimations microlocales
de opérateur de Schrodinger semi-classique, qui permet de généraliser les résultats
connus aux potentiels avec singularité locale et aux potentiels dépendant d’un para-
metre. Nous appliquons ces résultats a I’étude de I’équation de Schédinger stationnaire
par ’approche de mesure semi-classique. Sous des hypotheses faibles sur la régularité
du potentiel, nous montrons que I’équation de Schrodinger stationnaire converge vers
I’équation de Liouville en limite semi-classique et que la mesure semi-classique est
unique et de support inclus dans une région sortante.

1. Introduction

Microlocal resolvent estimates for two-body Schrédinger operators were firstly stud-
ied by Isozaki and Kitada in [19, 24] for smooth potentials. These results are useful
in the study of scattering problems. For semi-classical Schrodinger operators, under a
non-trapping assumption on the classical Hamiltonian, microlocal resolvent estimates
were obtained in [36]. The method of [36] consists in comparing the total resolvent
with the free one, using the global parametrix in form of Fourier integral operators.
Here we want to give a more elementary proof of such results which allows to treat
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266 X. P. WANG

potentials with local singularity or depending on a parameter. We will apply these es-
timates to study the semi-classical measure of stationary Schrodinger equation, which
is motivated by the recent works on the high frequency Helmholtz equation with a
source term having concentration or concentration-oscillation phenomena.

Let P(h) = —h?A + V() with V a smooth long-range potential verifying V €
C>(R%;R) and for some p > 0

(1.1) 0%V (2)| < Co(x)™Plel 2 e R™,

for any o € N”. Here h > 0 is a small parameter and (z) = (1 + |z[>)'/2. P(h) is
self-adjoint in L?(R™). Let R(z,h) = (P(h) — 2)~! for 2 & o(P(h)). Let bs(.,.) be
bounded smooth symbols with supp by C {(z,&) € R*"; +a-& > —(1 — €)|z||¢]} for
some € > 0. Denote by by (x, hD) the h-pseudo-differential operators with symbol by
defined by

(1.2 (s hDYu) ) = s [ €, )i(E) s

(2mwh)d
where u € S(R?) and 4 is the Fourier transform of u. We denote by b*(z, hD) the
Weyl quantization of b
1
(2wh)™

At the level of principal symbols in the semi-classical limit h — 0, the two quantiza-

(13) @ hD)@) = o [ (@ )2, uly) dedy

tions are equivalent.
Let p(z, &) denote the classical Hamiltonian p(z, &) = ¢2 + V(z) and

t— (z(t;y,m),€(ty,m))
be solutions of the Hamiltonian system associated with p(z, §):
3 = Ow(@.6), «(0y,m) =y,

% = —0up(x.€), £(03y.m) =n.

E > 0 is called a non-trapping energy for the classical Hamiltonian p(x,§) = [£]* +
V(z) if

(1.5) lim |z(t;y,n)| =00, V (y,n) €p '(E).

|t|—o0

(1.4)

The one-sided microlocalized resolvent estimate says that if £ > 0 is a non-trapping
energy, then one has for any s > 1/2

(1.6) [(x)* " b+ (2, ARD)R(E £ i0, h){z) || < Csh™!
uniformly in & > 0 small enough. Here

R(E £i0,h) = liﬁ)l(P(h) —~EFie)
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MICROLOCAL ESTIMATES 267

and || - || denotes the norm of bounded operators on L?(R™). Recall that without
microlocalization, one can only have an estimate like

(L.7) ()" R(E £ i0, h){a)~*|| < Cuh~".

See [33]. With microlocalization, one can overcome some difficulties related to the
lack of decay. There are also two-sided microlocal resolvent estimates in semi-classical
limit. See [37] for potentials satisfying (1.1).

The recent interest in uniform resolvent estimates arises from the study of prop-
agation of semi-classical measure related to the high frequency Helmoltz equation.
Recall that the Helmholtz equation describes the propagation of light wave in mate-
rial medium. It appears in the design of very high power laser devices such as Laser
Méga-Joule in France or the National Ignition Facility in the USA. The laser field,
A(z), can be very accurately modelled and computed by the solution of the Helmholtz
equation

(1.8) AA(x) + k(1 — N(x))A(z) + ikov(z)A(z) =0

where ko is the wave number of laser in vacuum, N(z) is a smooth positive func-
tion representing the electronic density of material medium and v(z) is positive
smooth function representing the absorption coefficient of the laser energy by ma-
terial medium. Since laser can not propagate in the medium with the electronic
density bigger than 1, it is assumed that 0 < N(z) < 1. The equation (1.8) may be
posed in an unbounded domain with a known incident excitation Ag. The equation is
then complemented by a radiation condition. The highly oscillatory behavior of the
solution to the Helmholtz equation makes the numerical resolution of (1.8) unstable
and rather expensive. See [3]. Fortunately, the wave length of laser in vacuum, i—:,
is much smaller than the scale of N. It is therefore natural and important to study
the Helmholtz equation in the high frequency limit ky — oco. To be simple, instead of
studying boundary value problem related to a non-self-adjoint operator, one studies
the high frequency Helmholtz equation with a source term

(1.9) (A + e 2n(x)? +ie Lo )uc(x) = —Sc(z)

in RY d > 1. Here n(x) is the refraction index, € ~ k—lo > 0 is regarded as a small

parameter, o > 0 and

(1.10) gi_r%oze =a>0.

In [4, 8, 40], «. is assumed to be a regularizing parameter :

(1.11) if & = 0,3y €]0, 1] such that o, > €.

Motivated by this model, we study in this work the Schrédinger equation
(1.12) (=h2A +V(z) — (B +ir))up = S"(x)

by the Wigner’s approach or the approach of semi-classical measures. Here £ > 0,
k = k(h) > 0 and Kk — 0 as h — 0. To prove the existence of a limiting Liouville
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equation when h — 0, we assume that aj, = kh™! satisfies (1.10) with e = h — 0.
The condition (1.11) is not needed in this work: when x = 0, uy, is defined as the
unique outgoing (or incoming) solution of (1.12) for each h € ]0,1]. Note that (1.12)
is a scattering problem, since the behavior of (—=h?A +V — (E +ix))~! for x near 0
is closely related to the long-time behavior of the unitary group

U(t,h) _ e—itP(h)/h

as t — oo.

In the study of semi-classical measures associated to up, the uniform resolvent
estimate plays an important role. See [4, 9, 8, 10, 40]. Under some technical
conditions, the microlocal estimates are used in [40] to overcome the difficulty due to
the lack of decay for the source term with concentration-oscillation over a hyperplane.

In these notes, we recall in Section 2 some abstract results on the uniform limit-
ing absorption principle. In Section 3, we give a new proof of microlocal resolvent
estimates in the semi-classical limit, using the Mourre’s method and symbolic cal-
culus of h-pseudo-differential operators. For fixed h, related ideas have appeared in
[12, 21, 34, 38]. Our approach combines these ideas and the method used in the
semi-classical resolvent estimates [11, 13, 33, 38]. The same ideas can be applied
to potentials with singularities and potentials depending on a parameter. In Sub-
section 4.3, we apply the results on uniform resolvent estimates to the study of the
equation (1.12) with the second hand side concentrated near one point. We prove
that the outgoing solution of (1.12), when microlocalized in an incoming region, is
uniformly bounded in L?. The convergence of (1.12) to the limiting Liouville equa-
tion is proved under the assumption on the uniform continuity of V., VV and x - VV.
The microlocal estimates for (1.12) give rise to some strong radiation property of the
semi-classical measure associated with uy, from which we derive the uniqueness of the
semi-classical measure. The decay of the potential V' is not needed. The results of
Subsection 4.3 hold for a large class of N-body potentials of the form

Viz) = Va(a®),

where z® is part of the variables z € R?.

The pre-requests of these lecture notes are contained in the books [18, 31] and [32].
The symbolic and functional calculi for h-pseudo-differential operators will be fre-
quently used and can be found in [31]. To be self-contained, some known results are
recalled here. In particular, the results of Section 2 are contained in a joint work with
P. Zhang [40] and those of Subsections 4.1 and 4.2 are based on [14, 16, 26].

Acknowledgements. — Some ideas of this work came to me during my collabora-
tion with Ping Zhang. I sincerely thank him for many useful discussions and for his
hospitalities during my visits in Beijing. Research partially supported by a grant of
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the programme “Outstanding Overseas Chinese Scholars” of the Chinese Academy of
Sciences.

2. Some abstract results

2.1. Mourre’s method depending on a parameter. — We first state a param-
eter dependent version of Mourre’s method which is an important tool in quantum
scattering theory. Given two families {P.}, {4}, € € ]0,1], in some Hilbert space
H, we shall say A, is uniformly conjugate operator of P, on an interval I C R if the
following properties are satisfied:

1. Domains of P, and A, are independent of e: D(P.) = Dy,D(A.) = Dy. For
each ¢, D = Dy N Dy is dense in D; in the graph norm

ullr, = [[Peul| + [[ul].

2. The unitary group e*?4<, § € R is bounded from D; into itself and

sup  ||e”eu|r, < 00, Vu€ D;.

c€]o,1],[01<1

3. The quadratic form i[P., A] defined on D is bounded from below and extends
to a self-adjoint operator B, with D(B,) D D; and B, is uniformly bounded
from D; to H, i.e. 3C' > 0 such that

[ Beul| < Cllullr,, we Dy

uniformly in e.

4. The quadratic form defined by i[B., A.] on D extends to a uniformly bounded
operator from D to H.

5. (Uniform Mourre’s estimate) There is m, > 0 such that

(2.13) E[(P.)i[P., A)E{(P.) > m.E[(P.)
Remark that the usual Mourre’s estimate is of the form

for some ¢g > 0 and K a compact operator. If E ¢ o,(P), E;(P) tends to 0
strongly, as the length of I tends to 0. So, one can take § > 0 small enough so that
E[(P)i|P, A|E;(P) > c1 Er(P) for I = [E — 6, E + 6] with 6 > 0 sufficiently small and
for some ¢; > 0. For Mourre’s method independent of parameter, see [21, 22, 27, 28|
and also [2] for more information.

In some estimates, we need the following condition on multiple commutators:

(2.15)  (P.414)"'Bj(e)(P. +i)~! extends to uniformly bounded operators on H

for 1 < j < n,n € N*. Here By(e) = B and Bj(e) = [B;_1(€), A] for j > 1. The
following parameter-dependent estimates are useful in many situations.
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Theorem 2.1 — (The uniform limiting absorption principle) Assume that A. is a
uniform conjugate operator of P. on I =]a,b[. Let Re(z) = (P. —z)"! and E € I.
(i). For any s >1/2, and 6 > 0, there exists C > 0 such that

(2.16) (A *R(E % ir)(A) % < Cm !

Assume in addition that the condition (2.15) is satisfied for some n > 2. One has
the following estimates

(ii). Let cx € R and let x+ denote the characteristic functions of |—oo,c_| and
les, 400, respectively. For any 1/2 < s < n, there exists C > 0 such that

(2.17) 1{Ae)* ™ xg (Ae) Re(E £ ir){Ae)~*|| < Ot

(iii). For anyr,s € R, with (r)+ 4+ (s)+ <n—1 and (s); = max{s,0}, there is C >0
(2.18) 1(Ae)" x5 (Ae) Re(E £ i) x(Ae)(Ae)*|| < Cm .

The above estimates are all uniform in €,k € ]0,1] and locally uniform for E € I.

(i) of Theorem 2.1 implies the point spectrum of P is absent in I and the spectrum
of P, is absolutely continuous. The proof of Theorem 2.1 as stated is not written
explicitly in the literature, but it can be derived by following the Mourre’s original
functional differential inequality method [27] and its subsequent improvement [2, 13,
21, 37, 38]. The conditions in parts (ii) and (iii) imply that for each €, P, is 2-smooth
with respect to A, in sense of [21]. By the arguments of the above works, one sees
that the boundary values

R.(E +i0) = lim R.(E *+ik)

rk—04

exist in suitable topology and satisfy the same uniform estimates. As in the case of
fixed €, one can state a similar version of Theorem 2.1 in terms of quadratic forms
which allows to include stronger local singularity of potential in Schrédinger operators.
See [2].

2.2. Uniform resolvent estimates in Besov spaces. — The Mourre’s method
can be used to obtain uniform resolvent estimates in Besov spaces for operators de-
pending on a small parameter. This idea goes back to Mourre [27, 28] and was used
in [23, 42] for operators without small parameter. One can follow the same idea in
taking care of the dependence on the small parameter. See [40].

Let F be a self-adjoint operator in H. Let F}, j € N, denote the spectral projector
of F onto the set ;, where Q; = {\ € R;2971 < |\] < 27} for j > 1 and Qp =
{A € R; || < 1}. Introduce the abstract Besov spaces, Bs(F'), defined in terms of the
operator F"

B,(F) = {ue H; Y 2" Ful < oo}, s>0.
k=0
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Its dual space (BI)* with respect to the scalar product on H is a Banach space with
the norm given by
[ull B.(r) = supjen 277 Fjull-
When F is equal to the multiplication by |z|, one recovers the usual Besov spaces

denoted by By and Bj;. Note that in this case, the B}-norm is equivalent with the
norm

1 9 1/2
u|||p» = sup == x)|* dx .
el = swp = { [ (s as)

Theorem 2.2[40]). — Let P. and Ac be two families of self-adjoint operators in H.
Assume that A is uniformly conjugate to P, on an interval I = |a,b| and that (P, +
i) [ Be, Acl, AJ(P. + )™t extends to uniformly bounded operator on H. Let E € I
and s > % One has:

(2.19) IR(E £ ik)llc(B.a0),B. (407 < Cm!

uniformly in 0 < €,k < 1. Here m¢ is the constant in the uniform Mourre esti-
mate (2.13) and R.(z) = (P. — z)~ L.

Let [2°° denote the space of measurable functions g(¢) on R such that

1
lgllzce = { - Il }

kEZ

where |g|r = esssup {|g(t)[;k <t < k+ 1}, k € Z. The following result with e = 1
is due to [23].

Proposition 2.3 — Let f1, fo € [>°°.

(2-20) Hfl(Ae)Re(E + i"ﬁ)f2(Ae)H < Cm6_1||f1||2700|\f2||2700,

uniformly in 0 < k < 1.

Proof. — We follow the Mourre’s argument used in the proof of (III) of Theorem 1.2
in [28] (see also [23]), checking the e-dependence. Let x, (x4, resp.) denote the
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characteristic function of [n,n + 1, n € Z, ([0,+o0[,]—00,0][, resp.). Then for u,
veEH,

| (f1(A)Re(E + i) fo(A)u, v) |

< D bl falmlxa (Aol xm(Aull [xn(A)Re(E £ ir)xm(Ad)ll
n,meZ
<l vl 2,00l f2ll2,00 S [Ixn (Ae) Re(E + i) xm (Ae) ||
It remains to prove
(2.21) SUp [|[Xn (Ae) Re (B £ i) Xm (Ae) | < Cm?

n,m

uniformly in « € ]0,1]. Note that A. — n is still a conjugate operator of P. satisfying
the uniform Mourre’s estimate with the same lower bound. Theorem 2.1 (i) with A.p
replaced by A. — n gives that

[xn(A)Re(E £ ik)xn(Ad)|| < Cm_?
uniformly in n and k. Decompose xn(Ac)Re(E + ik)xm(Ac) as

Xn(Ae)RE(E + i’f)Xm(AE)
= Xn(A){x-(Ae = m)R(E +iK) + x+(Ac — m)Re(E — iK)
+2ikx+(Ac —M)R(F — ik)R(E + ik) }xm(Ae)

The first two terms can be bounded by Cm_! according to (2.17). For the third term,
note that the operator R.(E — ix)R.(E + ix) is positive. the Cauchy’s inequality
applied to the positive quadratic form

© =< @, R(E — ir)R(E + ik)p >
implies that

| <@, R(E —ik)R(E + ik)y > |
< | <@, R(E —ik)R(E + ik)p > |"?| < th, R(E — ir)R(E +ir)p > |2

This shows

26||xn(Ae)Re(E — ik) Re(E + ik)Xm (Ac) ||

< 2lxn(A)Re(E + ir)xn (A2 [x0m (Ac) Re (B + i) xm (A ) |
< Cm;1
uniformly in n,m and . (2.21) is proved. O
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Proof of Theorem 2.2. — Let f € Bs(A¢). By Proposition 2.3, one has for s >
27| F5R(E £ i) f|

1
2

< Y 2P|FR(E £iR) B B fl
k=0

IN

= _i(s—1 _
Cm;' Y 2710222 B f| < OmZ Y £ s ),
k=0

uniformly in €, k and j. This proves Theorem 2.2. O

3. Uniform microlocal resolvent estimates

The purpose of this Section is to prove uniform microlocal resolvent estimates for
a large class of Schrodinger operators depending on a parameter. In Subsection 3.1,
we give a new proof of the result of [36]. The idea is to construct a uniform conjugate
operator F'(h) in the form

F(h)=hz-D+D-z)/2+ psp-(x) +r*(z,hD)

where p and 7 are to choose appropriately, and r*(z, hD) is an h-pseudo-differential
operator with compactly supported symbol. It remains then to turn the spectral
localizations of Theorem 2.1 into microlalizations. In Subsections 3.2 and 3.3, we show
that the same ideas can be applied to potentials with repulsive Coulomb singularity
and to potentials depending on a parameter.

3.1. Microlocal estimates in semi-classical limit. — An interesting applica-
tion of the abstract results of Section 2 is the resolvent estimate of semi-classical
Schrodinger operators P(h) = —h?A + V(x) near a non-trapping energy. For two-
body Schrédinger operators, under the non-trapping condition, the semi-classical re-
solvent estimate (1.7) was firstly proved in [33] by method of global parametrix. The
necessity of non-trapping condition to obtain (1.7) was proved in [35]. Its proof based
on Mourre’s method was given in [13]. Since then, there are many extensions and new
proofs, among which we mention an interesting proof using method of semi-classical
measures (see [6, 20]). The same method is also used by Castella-Jecko in [7] to prove
the semi-classical estimates in homogenous Besov (or Morrey-Campanato) spaces for
C? potentials. This result is particularly useful in the study of concentration phe-
nomenon. For N-body Schrédinger operators, the semi-classical resolvent estimate
was proved in [11] for N = 3 and in [37] for general N. For microlocal resolvent esti-
mates, see [19, 21, 24, 12, 38] for the case h > 0 is fixed and [36] in semi-classical
limit.
Let V' € C*° satisfying
(3.22) 109V ()| < Cor(x)(z)71ol, zeRY V¥V ae N,
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Here r(z) — 0 as © — co. Let E € Ry such that
(3.23) p is non-trapping at E.

Under the assumptions (3.22) and (3.23), one can construct a uniform conjugate
operator, F'(h), of P(h) near E in the form

F(h)=h(x-D+D-x)/24r"(x,hD)

where r (z, h D) is a self-adjoint bounded smoothing semi-classical pseudo-differential
operator and one has

(3.24) ix(P(h))[P(h), F(h)]x(P(h)) > cohx(P(h))?, h€]0,1],

where ¢y > 0 is independent of h and x is a smooth real function on R supported
sufficiently near E. See [13]. From the abstract results of Section 2, one deduces
easily the semi-classical resolvent estimates in Besov spaces.

Theorem 3.1 — Let s > 3. Under the assumptions (3.22) and (3.23), one has:
(3.25) VR(E = in, ) (5,52 < Ch™

uniformly in 0 < h,k < 1.

Proof. — Let F(h) be fined above. Theorem 2.2 is true with A. replaced by F'(h)
and me by h. Let x € C§°(R) with x(t) = 1 for t near E. (1 —x(P(h))?)R(E +ik,h)
is uniformly bounded in £(L?, L?), therefore also in £(Bs, B¥). Note that F(h) is a
semi-classical pseudo-differential operator with the Weyl symbol z - £ + r(x, ) where
r is a bounded symbol. We can show that for s > 0,

(3.26) IKE(R))* X (P(R))(2) ™" < C
uniformly in h. An argument of interpolation ([1, 18]) gives then

IX(P(M)| £(B.,B.(F(h)) < C

uniformly in h. By the duality, the same is true for x(P(h)) as operator from (BI)*
to B}. It follows that

IX(P(h))*R(E + ik, h)| £ (p,,B2) < Ch™1.
(3.25) follows from Theorem 2.2. O

Denote by S+ the class of bounded symbols a+ on R?? satisfying, for some d4 > 0,

(3.27) suppa+ C {(z,€); £z - £ > —(1 —d1)[z[/¢]},
and
ax € C™(R*), 070 ax(z,€)| < Caple)I?l(g) 717!
For ;1 € R, we denote by Si(u) the class of bounded symbols a+ on R?¢ satisfying

(3.28) suppat C {(z,&);xx - £ > Lu(x)},
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and the same estimates on the derivatives. A family of symbols a(h),h € |0, hol, is
said in the class St or Sy (p+) if for any N, a(h) admits an expansion of the form

N .

a(h) =Y Wa;+h" ey (h)

j=0

where each a; satisfies support properties required above and
020 a; (2, )| < Cap(a) 71V, va, 5
and
1050 P (€, )| < Cagla) N 110l N0 va, g

uniformly in h.
Theorem 3.2 — Assume (3.22) and (3.23). Then one has the following estimates

uniformly in k €10,1] and h > 0 small enough.
(i). Let by € Sy. For any s > 1/2, there exists C > 0 such that

(3.29) |[(x)* bx(z, RD)R(E £ i, h){(z)~*|| < Ch~*

(i1). Let by € St for some 1+ > 0 such that 6— + 64 > 2. Then for any s,r € R,
there exists C' > 0 such that
(3.30) [(z)*b (2, hD)R(E +ir, h)by(x, hD)(z)"|| < Ch™*

The first step of the proof is to construct an appropriate uniform conjugate opera-
tor, combining ideas from [13, 11, 37] and [12, 21, 34, 38]. Let p € R, 7 > 0. Put

7 = Th. Define the parameter-dependent function s = s, j, by

(E2

(3.31) s(x) = (D

7 > 0 is to be taken small enough. An additional parameter p is used in order
to obtain microlocal estimates with support as large as possible. See the proof of
Corollary 3.6 for its choice.

Lemma 3.3 — For any € > 0, there is 1o such that
(3.32) i[—h2A, ps(z)] > —h(p?(1 +€) — h%2A), VY he]0,1]
uniformly in 0 < 7 <719 and p € R.
Proof. — We have:
i[-h*A, us(x)] = ph(Vs(z) - hD + hD - Vs(z))

1
> —h(—p2(1 Vs(z)|* — ——h*A),
> —h(—4*(1+0)|Vs(@) — ——h*A)
where o is a positive number to be adjusted below. An easy calculation gives:
- 22 (22 + 277%)? 22772

<1 < 5/4.
(22 +72)3 = + (22 +772)2 = /

(3.33) |Vs(x)]
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For |z| > R/, |[Vs(x)|? <1+ R™2. Consequently,

I1Vs] ullZz (o> rrry < (14 R ul®.
Let p € C§° with p(z) =1 for |z| < 1. Recall the following Hardy inequality
(3.34) [lz|™ull < Cllull ., s €1]0,d/2],

where H* is the homogeneous Sobolev space of the order s equipped with the norm

Ioll = ([ l€Plo(6) gy 2,
and ¢ is the Fourier transform of v. One can derive from (3.34) that for some s’ €
10,1/2]
I(=A+ 1) 2pa/n)(=A + 1) 72| g2y < O™
By a dilation, we obtain
I(=R*A + 1) p(a/ () (=h* A + 1) 72| 212y < O

uniformly in A > 0. For |z| < R7’ and u € D(—A), we can apply the above estimate
to obtain that

(T8l ag ey < 5/ plar/ (Rrbyul < C(Rr) < (~hA+ 1y, u >
for some s’ > 0. Therefore

< |Vs(@)Pu,u >< (1+R2 4+ C(RT)*)|ul® + C(RT)* < —h*Au,u> .
This proves that

i[—h2A, ps(z)] > —h( — 121 +0)(1+ R 2+ C(Rr)*) - Mh%).

140
Now taking o = C(R7)*, (3.32) follows by choosing R = R(e) large enough and
7o = To(R, €) small enough. O
Set
(3.35) A, (h) = A(h) + ps(z), A(h)=h(z-D+D-x)/2.

A nice property of A, (h) is that for any p € R, A(p) is unitarily equivalent with

A(h):
(336) Aﬂ(h) _ 671%(m2+7/2)1/2A(h)ei%(x2+,r/42)

1/2

Proposition 3.4 — Under the assumptions (3.22) and (3.23), for any p € R with
|| < VE, there exists r € C3°(R?*?) and T > 0 small enough such that

(3.37) F(h) = A,(h) + (2, hD)

is a uniform conjugate operator of P(h) at the energy E (with P. = P(h) and A, =
F(h) in notation of Section 2) with the estimate

(3.38) iE1(P(h))[P(h), F(h))Er(P) > chEr(P(h)),
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and (2.15) is satisfied for any n. Here ¢ > 0, I = |E — &, E + do[ for some 69 > 0
and Er(P(h)) denotes the spectral projection of P(h) onto the interval I.

Proof. — One has the formula
i[P(h), Au(h)] = h(2P(h) — 2V — 2 - VV) +i[-h*A, us].
By (3.22) and Lemma 3.3, for P(h) localized near E, u?> < E and |z| > Ry with
Ry = Ro(u) large enough, we can take 7 > 0 small enough such that
i[P(h), Au(h)] > ch > 0.

Making use of the non-trapping condition, we can construct as in [13] a smooth
function, r, with compact support such that F(h) = A, (h) 4+ r*(z, hD) is a uniform
conjugate operator of P(h) near E. More explicitly, let § > 0 be small enough such
that the condition (3.23) remains true for any energy in |E — 2§, E+ 26[. Let g € C§°
with 0 < g <1and g(x) =1 for || <1, 0 for |z] > 2. Set

Here x1 € C§°(|E — 26, E + 26[) and is equal to 1 on [E — §, E + §]. For Ry, Ry large
enough, one can estimate the Poisson bracket
{p(z,8), - &+ ps(z) +r(z,6)} =2 ¢>0

for all (z,¢) € p~'([E — §,E +6]). Let x € C*(JE — §,E + §]) , equal to 1 near
E. By the result on functional calculus of h-pseudo-differential operators, x(P(h)) is
an h-pseudo-differential operator with the principal symbol x(p(z,§)). See [31]. One
can estimate that

ix(P(h)[P(h), E(h)x(P(h)) = ghx(P(h))2

for h > 0 small enough. The lower bound in (3.38) follows. Since r is of compact
support and A, (h) is unitarily equivalent with A(h), the other conditions for uniform
conjugate operator can easily verified. In particular, remark that s is h-dependent.
One has the control 9°Vs(z) = O(h~1l), or equivalently, (h0)*Vs(z) = O(1) uni-
formly in 2 and h. We can check that (2.15) is verified for any n uniformly in h.

O

Theorem 2.1 shows that for any s > 1/2
(3.39) KE(h))*™ X (F () R(E & i, h)(F(h))~*[| < Ch™
and for any r, s € R,
(3.40) I(F(h))" x5 (F(h)R(E £ irs, h)x(F(h)(F(h))*| < Ch™,

uniformly in k£ € ]0,1] and A > 0 small enough. It remains to convert spectral
localizations into microlocalizations. The following Proposition is the main technical
issue in this step. See also [21] for the special case f =0 and h = 1.
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Proposition 3.5 — Let p € R be the parameter used in the definition of F(h) and let
by € Sy(ps) with supp by C {|x| > 1}. Then one has
(i) For any £py > Fpu, one has for any s > 0

(3.41) [{2)*bs (2, RD)(F(R)) ™" < C

uniformly in h.

(i) Let xo € C®[R) with x4+(r) = 0 4if r < c1; x+(r) = 1 if r > ca (resp.,
X—(r)=0ifr>co; x—(r) =04fr <c1 ) for some c1 < ca. For any s1,s2 € R, one
has:

(3.42) [{2)** b (2, RD)x = (F () (F(h))*] < C
uniformly in h.

Proof
(i) Since r is of compact support, (F'(h))~*(A,(h))® is uniformly bounded. It
suffices to prove (3.41) with F'(h) replaced by A, (h). Note that
A, (h) = efiuf(z)/hA(h)eiuf(z)/h’
where f(z) = (22 + 1/2)1/2,
Let x(-) be a cut-off function on R such that x(¢) =1, if t <4; 0if ¢t > 5. Put:

b1 (2,8) = b (2, §)(1 = x(€]/(1))); b2, €) = ba(a, )x €]/ (1))

Let us first consider by ;. Noticing that A, (h) is unitarily equivalent with A(h), we
obtain

(3.43) [[2) "0+ 1 (2, RD) (A (h) ™[ = [[2)* bl (2, hD; B)(A(R)) "],
where

Vi (z, hD;h) = e @ /My, | (x, hD)e S @)/h,
Writing f(z) — f(y) = (x — y) - Vf(z,y), we have:

1 i (p—y) z)—
Voo hDihula) = oy [ [ eHE U@ o €uy) dedy

1 i
_ L(a—y)-€
= W //6’”( v) bi1(2,§ — uVf(z,y))uly) dédy.
Using the Taylor expansion of by 1(z,§ — uV f(z,y)) around y = 0, we obtain for any

M eN:
M

bi(.’l], hDa h) - Z hjCiJ‘ ((E, hD) + hM+17"i,M([L" hD, h),
=0
where
e j(@,6) = Y CadiDEbs1(2,€ — pVf(2,y)) lyo, j=0,1,---, M.

loe|=4
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Let us look at ¢y g = by 1(z,§ — uV f(z)) carefully. Assume without loss that puy <0
and g > 0. By the choice of b, 1,

supp by,1 C {z- & = pylzf, [z] > 1 and [€] > 4(u)}.
Consequently, the support of ¢4 ¢ is contained in
{z- (6= nVf(2)) = pylzf, x| > 1 and |§ = pV f(2)] = 4u)}.
Recall that
z-Vf(z)=s(z) and(1—71?)"2z| < s(z) < |z|
for |x| > 1 and 7/ = 7h. On the support of ¢y o, one has for 7 > 0 small enough,
2 &> (g + (1 =72 )|x| > 6lal /2, |€] > 3(u)
for some ¢ > 0. This implies that on the support of cy o,
1§ = uV (@) = CUEl+ (1),
for some C' > 0. Since by € Sy (u4), we can check that:
050 et 0(@, €)| < Capla) 1 (€) 717,
Similarly, we can verify that
(3.44) |aga§c+,j(:c,g)| < Copla) I lelge)y=3=181 for j=1,--- | M.
To prove that ||(z)*bY (z, hD; h){A(h))~*| is uniformly bounded, consider first the
case s = 1. Setting (z)cy j(z,§) = cj(z,&)(z -  + 1) with

Cl»(l',g) _ <1‘>C+1j(:€7‘§)7
j (o €+1)
we have:
(3.45) (z)ey j(@,hD) = c(x, hD)(A(h) +14) + hrj(z, hD; h).
On the support of cy j, one has x - £ > c|z|. Consequently, the symbols ¢ and 7;(h)
and their derivatives are all bounded. This proves:

||C;-(:L', hD)H < Cv HTJ(:C7hD7h)H < Cv .7 = Oa e 7M7

uniformly in h. It follows that ||(z)cs j(z,hD)(A(R))™!|| < C. The case s € N,
s > 1 can be proved in the same way. The result for any s > 0 follows from a complex
interpolation. By the method of symbolic calculus of pseudo-differential operators, we
can prove that the remainder term r pr(h) satisfies estimates (3.44) with j replaced
by M uniformly in h. Taking M > s, we derive that |[(z)%ry(xz, hD;h)(A(R))%| is
also uniformly bounded. Consequently, one obtains

(3.46) ()bt 1 (2, hD){Au(h) | < C.
To prove the similar estimates for b, 2, we introduce

ba = p(2)0(z - &/ pulz])x([£]/ (1) € S+(—n),
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where supp p C {z;|z| > 1} with p(z) =1 for |z| > 2 and 6(t) =0 if t < —1 + €/2;
1if ¢ > —1 + € for some € > 0 small enough. Since b4 2 and 1 — by are of disjoint
support, it suffices to prove the estimate with by » replaced by bs. Let

by (z,hD;h) = ei“f(w)/hbg(z, hD)e_i“f(m)/h.

We can expand the symbol b4 by the method used before:

M
bh(h) =Y hid; + M ey ar(h),
j=0

where d; has a similar expression as c;. Due to the choice of by, the support of
Oedy = Ocba(x,§ — uV f(x)) is contained in

{=(1—e2ulz| <z (§—pVf(2) < —(1 = ulz[} U{d(p) <[€—pV[(z)] < 5w}

By an elementary analysis, one sees that on the both parts of the support of 9bs(x, & —
uVf(x)), 1€ — uVi(x) > C{). This allows us to check that (3.44) holds for d; with
j=0,---,M. The estimate (3.46) for bs follows from the arguments already used
above. This finishes the proof of (i) for by. The proof for b_ is the same.

(ii) Let g(r) = x4+(r){r)* s < —1. By the formula on functional calculus of Helffer-
Sjostrand (Proposition 7.2 of [17]), one has

(3.47) gp) =~ [ 2

= 82<Z)<P —2)7! L(dz).

Here P is a self-adjoint operator, L(dz) denotes the Lebesgue’s measure over C and
g € C°°(C) satisfies g(r) = g(r) for r € R and 9zg(z) = O(|Sz|>°) for z near R
(i.e., an almost holomorphic extension of g). Since F'(h) and A, (h) differ only by
an h-pseudo-differential operators with compactly supported symbol, for any k£ > 1,
there exists Ny > 0 such that

(@) = EAH(ER) = 2)7 = (A1) = 97 = (7577
in £(L?) norm. Applying (3.47) to F(h) and A, (h), one sees that
(3.48) 1((z)? = h*A)*(g(F(h)) = g(Au(W)))]| < C
uniformly in h. When s > —1, using the identity

X+ (F(R)(F(h)* = x+(Au(h)){Au(h))®
= (G FEMNFR) TN = xa (Au(h))(Au(h)* = )(F (R)Y
(A () (A (R)* ™) (F (R)Y = (Au(h)™)

for some integer N > s+ 1, one can apply (3.48) to show that

@) x4 (F () (F(R))* = x- (A () (A (B)*] < C.
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This estimate allows us to replace F'(h) by A, (h) in (3.42). To prove (3.42) for A, (h),
we introduce the same decompositions for the symbols and make the same unitary
transformation as in (i). We are reduced to prove that

()" c(x, hD)x~ (A(h))(A(R))*

is uniformly bounded in £(L?), where c is a bounded symbol with the same support
properties as ¢4 o. On the support of ¢(z, ), one has z-§ > olz| and |£| > o for some
o > 0. Using (i), we may suppose that x_(r) =0 for r > —R, R > 0.

Let M be the Mellin transform defined by

1
V2rh
Then M extends to a unitary map from L?(R% dz) onto L?(R, L?(S%'); d\dw) and
is a spectral representation of A(h)

(MAR)f) (A w) = AM(f) (A w)
for f € D(A(h)). See [29]. One has
FrAh)F = —A(h),

(3.49) M\ w) =

/ frw)rd/2=1=Nhgpe £ e 05 (RY).
0

where F is the h-dependent Fourier transform. For u € C§°(R?), we can write

M(F*((2)* c(z, hD)x—(A(h))(A(R))*) u) (A w)
1 o . . -
. s . (d/2—1+41iX/h)logr+irz-w/h s
= @n@n N x—( /\)/0 /e c(x, rw){x)® u(x)dzdr
The phase function r — ®(r) = Alogr + rz - w has no critical point in ]0, +-co[ when
A>R>0and z-w > o|z| for ¢ > 0. The method of non-stationary phase shows

that
(3.50) 1(z)* e(a, hD)x - (A(h))(A(R))*|| < CihN

for any N € N and s,s’” > 0. This estimate, together with the reduction used before,
finishes the proof of (3.42). O

Corollary 3.6 — Assume the conditions (3.22) and (3.23). Let by € Sy(us) with
+p+ > —VE. Then one has for any s > 1/2

(3.51) [{z)* " bx(x, hD)R(E + i, h){z)~*|| < Ch™*

If u_ < py, then one has for r;s € R,

(3.52) |(z)"bx (2, hD)R(E =+ ir, h)b+(x, hD){(z)*|| < Ch™!,
uniformly in k € 10,1] and h > 0 small enough.

Proof. — Let b_ € S(u_) with u_ < vE. Take u_ < pu < v/E so that Proposi-
tions 3.4 and 3.5 can be applied. Let x € C°(JE—0, E4+6[) with0 <y <land x =1
on [E—§/2,E+§/2]. § = d(ep) is small enough. x(P(h)) is an h-pseudo-differential
operators with bounded symbols whose support is contained in p~*(JE — 6, E + §[).
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() *x(P(h))(F(h))* is uniformly bounded for any s > 0. Let x4 + x— = 1 with x4
having the similar properties as in (ii) of Proposition 3.5. One can then estimate for
any s > 1/2
[(z)*"'b_ (2, hD)R(E + ik, h){z)~*||
< @) 7 o= (2, D) R(E +ir, R)(EF (W) " [ [{F (h)*x(P(h){z)~°|
+[{@)* b (2, hD)R(E + ir, h)(1 — x(P(h)))(z) |
Cl(F(h))""R(E + i, h)(F(h)) ™|
+C(E () " x=(F(h))R(E + ir, h)(F (h))~*|| + C
< C'h

IN

This proves (3.51) for b_. The other cases in Corollary 3.6 can be proved similarly.
Note that under the conditions of (3.52), we can construct a uniform conjugate oper-
ator F(h) for some u satisfying u_ < p < py and |p| < VE. O

Note that the classes of symbols used in Corollary 3.6 are sufficient for the con-
struction of the partition of unity in the phase space. But their supports are not as
large as those in Si. Using the decay assumption (3.22), we can derive Theorem 3.2
from Corollary 3.6 by a localization in energy.

Proof of Theorem 3.2. — Let us first prove (3.29) for b_. Let ¢y > 0 be such that
supp b— C {z-& < (1—¢€p)|z||£|}. Let x be a cut-off around E as above with 6 = d(ep)
small enough. On suppb_ Np~L(|E — 6, E + §)),

v &< (1—e)lzllé], E—25 <[¢* < E+26
for |z| large enough. This shows that b_(z, hD)x(P(h)) is of symbol supported in
{z- €< (1~ e)(E +20)"2|z]} U{lz| > R}

for some R large enough. Taking § > 0 so small that u = (1 —€g)(E +20)Y/? < E'/2,
one can then apply Theorem 3.1 and Corollary 3.6 to obtain for any s > 1/2

()~ tb_ (2, hD)x(P(R))R(E + ix, h){z) 5| < Ch~L.
Clearly, one has
(x>~ (2, hD)(1 — x(P(h)))R(E + ir, h)(z)*|| < C.

This proves (3.29) for b_. (3.29) for b4 can be derived in the same way.
To prove (3.30), let by € Si be a pair of symbols with the property of disjoint
support. Then, there exists 1 > 0 with 6+ + d_ > 2 such that

supp b (.,.) C {#z- &> —(1 —d1)lzl[¢]}-
For (z,€) € supp b_ Np~Y(]JE —§, E + ] and |x| large enough, one has
€< (1= 6 )(B +20)al,
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while for (z,€) € supp by Np~Y(JE — §, E + 4] and |z| large enough one has
2-€ > —(1-8,)(E - 20)2[al.
Since d_ + 04+ > 2, we can take § > 0 small enough such that
(1—0_)(E+20)Y? < —(1—6,)(E—28)Y2
We can then apply Corollary 3.6 and (3.29) to obtain that
()" b (2, D)X (P(h)R(E % irs, )b (ar, hD){x)*|| < Ch™"

Since b_ and by are of disjoint support and (1 — x(P(h)))R(E =+ ik, h) is an
h-pseudo-differential operator uniformly bounded for x € [0,1]. One has

&) b (2, RD)(L = x(P(R))R(E i, )b (, hD) (@) | < Creh
for any N € N and r,s € R. (3.30) is proved. O
From Theorems 3.1 and 3.2, one can use appropriate partition of unity of the form
bi(z,&)+b_(2,8) =10onp ' (]JE—6,E+J[), one can deduce from Theorems 3.1 and

(3.2) the high order resolvent estimates. Let £ € N, £ > 2. Then one has for by € S..
For any s > ¢ —1/2,

(3.53) [(z)* = b (z, hD)(R(E + i, b)) (z)~*|| < Ch~*

If by € S1 for some d+ > 0 such that d_ + 64 > 2, then for any s,r € R, there exists
C > 0 such that

(3.54) (2" b= (, AD)(R(E = i, )b (w2, kD) ()" || < Ch~"
Uniform propagation estimates of the time-dependent Schréodinger equation
ihOrup(t) = P(h)up(t), un(0) = uo.
can be deduced from the high order resolvent estimates. Let U(t,h) = e #F(h)/h
be the associated unitary group. A direct application of (3.53) only gives that for
X € C§°(JE — 6, E + 4[) for some 6 > 0, one has
(@) ~"bg (2w, RD)U (t, h)x (P(h)){x) ~°|| < Ch™(t) ™", £t >0,

for any ¢ > 0, which is not satisfactory in semi-classical limit. In this subject, the
following results are known ([35]).

Theorem 3.7 — Assume the condition (3.22) for r(x)
Then (3.23) is a necessary and sufficient condition for the following estimate to hold
uniformly in h > 0:

[(2) U (8 h)x (P () {x)°[| < Cs(t) ™", VEER,

for any s > 0, where x € C°(JE — 6, E + §[) for some § > 0.
If (3.28) is satisfied, one has

[{2)*~ "o (2, RD)U (¢, h)x (P (h)) () °[| < Crs(t)™", £t >0,

(x)=Po for some py > 0.
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and for by satisfying the conditions of (3.54)
[{z)*bx(z, RD)U (t, h)x(P(h))bs (z, hD){x)"|| < Cys(t)~", £t >0
for all s,r >0, uniformly in h.

Note that the necessity of the non-trapping condition (3.23) in uniform propagation
estimates of Theorem 3.7 is proved in [35] by the method of coherent states. See [32]
for other applications of coherent states in semi-classical analysis.

3.2. Potentials with local singularities. — In the proof of Theorem 3.2, the
smoothness of V' is only used in the construction of a uniform conjugate operator and
in the functional calculus of P(h) used in the last step. In this Subsection, we want to
show that local singularities of V' can be included. Let n > 1. Assume that (z- V)’V
are form-compact perturbations of —A for 0 < j < n+ 1 and there exists R > 0 such
that

(3.55) |00V ()| < Co(x)=ro~lol, V aeN |o| <n+1,

for || > R. Let E,puo € Ry. Assume that for each p with |u| < po, there exists
r, € C§°(R?) such that F(h) = A(h) + ps(z) + r(x, hD) is a uniform conjugate
operator of P(h) = —h?A + V(z) at the energy E with

(3.56) iEy(P(h))[P(h), F(h)|E1(P(h)) = ChE(P(h), C >0, I=]E=bE+]
as form on D(P(h)) and satisfies (2.15) for some n > 2 and for P, = P(h), A. = F(h).
Remark. — It is difficult to construct a uniform conjugate operator in form of
pseudo-differential operators without sufficient regularity of V. But in some cases,

one can construct a uniform conjugate operator in form of differential operators.
Suppose, for example, that d > 2 and V is of the form

Viz) = L +U(z),

 af

v € Ry. Assume that U is smooth on RY and satisfies (3.55) for some 0 < py < 1.
This implies that V(x) has only one singularity at = 0 and (3.55) is satisfied by V
outside any neighborhood of 0. Assume that

(3.57) Ulz) + - VU(z) <0.

We want to show that for any E > 0, (3.56) (together with (2.15)) is satisfied for
pio = V'E and for any n. In fact, we just take r = 0 and F(h) = A, (h) = A(h)+us(z).
Then

i[P(h), Au(h)] = h{P(h) — h*A — U(z) — x - VU ()} + i[-h*A, ps(z)].

By Lemma 3.3,
i[—h2A, us(@)] = —h(i? + ¢ — h2A),
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for any € > 0 provided that 7 is small enough. This gives
i[P(h), Au(h)] = h(P(h) — pi* — €).

For any F > 0,1 = [E — §, E + §], let E; denote the spectral projector of P(h) onto
the interval I. Clearly,

Er(P()ilP(h), A, (h)]E1(P() > W(E — 12 — 6 — ) Ey(P(h)), h e ]o,1].
For |u? < E, we can take € and § small enough such that
(3.58) Er(P(h))ilP(h), A, (W) E1(P(h) > cohEr(P(h).
To examine multiple commutators of P(h) with A,(h), we remark that
4 r(r? 4+ 1'?) 0
(r2 +7/2)3/2 0r’

Therefore its commutator with the Coulomb potential does not worsen the singularity.

Vs(z)- D

r =zl

Till now, v € R can be arbitrary. Since v > 0, one has
= BAPE) +) I C (Pt +i) M <C
uniformly in h. Consequently, (P(h) + i)' By (h)(P(h) +i)~! is uniformly bounded,
where
Bo(h) = [P(h), Au(h)],  Bi(h) = [Br-1(h), Au(R)], k=1,2,3,---.

This shows that the results below hold for repulsive Coulomb singularity. It is an
interesting question to prove the same estimates for attractive Coulomb singularity

(v <0).

Theorem 3.8 — Assume the conditions (3.55) and (3.56) for some E > 0, po > 0
and n > 2. The following estimates hold uniformly in 0 < kK < 1 and h > 0 small.
(i) For any s > 1/2, there exists C > 0 such that

(3.59) IR\ £ ik, h)| 2,52y < CRTT
(ii) For any 1/2 < s <mn and by € Sy (py) with us > —puo, one has
(3.60) [(2)* " b (x, RD)R(E +ir, h)(z) || < Ch~1.
(ili) For any s,s’ € R with (s)+ + (s')+ <n—1, and by € Sy (px) with |us| < po
and py > p—, there exists C > 0 such that
(3.61) [(z)*bs (2, hRD)R(A + ik, h)b+(x, hD){z)*|| < Ch™'.
The proof of Theorem 3.8 is the same as that of Corollary 3.6 and is omitted.

Lemma 3.9 — Let f be a cut-off around E. Let (3.55) be satisfied for some n > 1.
Let P'(h) = —h2A + x(x/R)V (x) with x a cut-off which is equal to 1 for |x| > 2 and
to 0 for |x| < 1. R is chosen large enough so that x(x/R)V (x) is smooth on R%. The
following estimates hold.
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(a) One has:
(3.62) 1(@)* (£ (P(R)) = F(P' (W) (@)™ || < C.
for any s+ s <n+1. In particular, for |s| <n+ 1, one has
(3.63) [[{z)* f(P(h))(z)*[| < C.
and f(P(h)) = f(~h2A) + R(h) with R(h) satisfying: Ipo > O such that
(3.64) [[{) "0 R(h) () ~*|| < C,

uniformly in h.
(b) For any s € R with |s| < n+ 1, one has:

(3.65) [{z)* (1 = f(P(R))R(E £ ik, h)(x)~*|| < C
uniformly in k €]0,1] and h > 0.

(c) Let by, by € S1 be two bounded symbols with disjoint support. Then for s1+s2 <
n+ 1, one has:

(3.66) [{z)®1b1(z, hD)(1 — f(P(h)))R(E % ik, h)ba(x, hD){z)*?| < C,
uniformly in h > 0 and k €10, 1].
Proof. — The proof is based on the formula of functional calculus (3.47). For (a), we

compare R(z,h) with (P'(h) — 2)~! and commute repeatedly (z) with the resolvent.
(b) and (c) are deduced similarly. The details are omitted here. O

Theorem 3.10 — If pg is equal to E in the conditions of Theorem 3.8, the following
estimates hold.
(i) For any 1/2 < s <n and by € S+

(3.67) [{(z)*~ b (z, AD)R(E £ ik, h)(z)~*|| < Ch™ .

(ii) For any s,s’ € R with (s)4+ + (s')+ <n—1 and by € Sy for some 61 with
04 + 60— > 2, there exists C > 0 such that
(3.68) I{z)*b+(z, RD)R(X £ ik, h)bs(z, hD)(z)s/ | <Ccht.
Proof. — We only show that the proofs of Subsection 3.1 go through in presence
of local singularities. Consider (3.67) for b_. Let ¢y > 0 be chosen so that supp
b C {z-& < (1 —¢)lx|l€]}. Take x1 € CG°(JE — 6, E + 4[) with 0 < x3 < 1 and
x1=1on[E—§/2,E+6/2]. Lemma 3.9 (c),

()5 bx (2, hD)(1 — x1(P(R))R(E £ ik, h){z)~*
is uniformly bounded. From Lemma 3.9 (a), il follows that for 0 < s < n,
[(2)*= - (2, hD)x1 (P(h)) R(E + ir){x) ||
(3.69) < C{I2) T TR(E + ik, h) ()77
+[ (@) o— (2, hD)x1 (P')(R(E + i, h)(z) ||
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(i) of Theorem 3.8 implies that
[{z) """ R(E +ir, h){z)"*|| < Ch™!

for s > 1/2. Since po = E'/2, by taking § > 0 small enough, we can apply Theorem
3.8 and the method of used in the proof of Theorem 3.2 to show that

()"~ b (w, AD)x1 (P')(R(E + iri, h)(x) || < Ch™".

(3.67) for b_ is proved for any 1/2 < s < n. O

3.3. Potentials depending on a parameter. — In the study of the semi-classical
Schrodinger equation with a source term concentrated near one point, one needs
uniform resolvent estimates for the Schrédinger operator P. = —A+V (ex). Although
this operator is unitarily equivalent with P(h) = —h?A+V (z) in L?, we can not derive
simply the resolvent estimates of P, from those of P(h), since the spaces used above
are not homogeneous under dilation. We want to explain how the ideas used before
can be applied to P, to establish uniform resolvent estimates.

Consider the Schrodinger operator P, = —A+V.(x) on RY with potential depending
on a parameter € € ]0,1]. Assume that the multiplication operators

(3.70) (x-V;) Ve, 0<j<n+1, are —A-bounded

uniformly in € for some n > 1. Let E > 0. Let A, = A, (1) be the defined as before
with h = 1. Assume further that there exists a bounded family of bounded symbols,
{re,€ €]0,1]} such that for some po > 0,

(3.71)
for any |p| < po, Fu(e) = A, +r¥(x, D) is a uniform conjugate operator of P,
at E.

Then one has the following

Theorem 3.11 — Let R.(z) = (P. — 2)~'. Under the conditions (3.70), (3.71), the
following estimates hold uniformly in €, x €10, 1].
(i) Let n =1. For s > 1/2, one has

(3.72) IR(E £ k)l z(B..81) < C.

(i) Letn > 2, 1/2 < s <n and by € S (Fu) with |ps| < po, there exists C > 0
such that

(3.73) [(2)* b (2, D)Re(E + i) {z) || < C

(ili) Letn > 2, s,7 € R with (s)++(r)4 <n—1 and by € St (Fp+) with |p+| < po
and p— < p4, one has

(3.74) [[{(z)*bs (2, D)R(E £ ik)b (z, D)(x)"|| < C.
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The proof of Theorem 3.11 is the same as Corollary 3.6 with A = 1 fixed.

Example. — Assume that (z-V,)/V,, 0 < j < n+ 1, are —A-bounded uniformly
in € for some n > 1. Let E > 0. Suppose that there exists some v € |0,2] and ¢y > 0
such that

(3.75) vo(E —Ve(z)) —x - VVe(z) > ¢
uniformly in 2 and e. Then the assumption (3.71) is verified for some po > 0 and
Fu(e) = Ay, |u| < po. Here h is fixed to be 1 in the definition of the function
s(x) = sy p(x). Let I = [E — 6, E 4 0]. Then
IEr(P)i[=A, s(2)]|| < C
uniformly in e. Since
iB1(P)[Pey Ay E1(P.) = E1(P)(wo(E — 6) — vV (w) — & - VVi(x) — [ulC) By (P.),
under the condition (3.75), we can take ¢ and po small enough such that
’L'E](Pﬁ)[Pe, AM]E[(PG) Z Co/QE](PG)

for all |u| < wo. Note that (3.75) is a kind of virial condition and the case vy = 2 is
mostly used.

Using the inequality of Hardy (3.34), we can deduce the Morrey-Campanato es-
timates from the resolvent estimates obtained above. See [30], and also [10] for
discontinuous refraction index. Denote the Morrey-Companato norm

1
[[[ul|I* = sup — |uf*dz
R>0 |z|<R

and N(f) the dual norm

NGRS (2]‘“ / } |f|2dw>

JEZ

1
2

where C; = {z € R%;27 < |z]| < 2971}, These norms are homogeneous in dilation and
are useful in the study of concentration phenomenon of the high frequency Helmholtz
equation. A consequence of Theorem 3.11 is the following

Corollary 3.12 — Assume d > 2. Under the assumptions of Theorem 3.11 (i), one
has

(3.76) I1(Pe = (E £ ir)) " ull] < ON(u),

for all w € L2 with N(u) < oo, uniformly in €, k.

loc

Corollary 3.12 follows from (i) of Theorem 3.11 and the inequality of Hardy (3.34)
for appropriate s > 1/2. See [40] for more details in the case d > 3.
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In [7], the authors proved (3.72) and (3.76) under the general non-trapping as-
sumption, using the approach of semi-classical measures. It is an interesting open
question to see if (ii) and (iii) of Theorem 3.11 remain true under this condition.

4. Semi-classical measures of the stationary Schrédinger equation

The purpose of this Section is to apply the uniform resolvent estimates to the study
of the semi-classical measures of the stationary Schrodinger equation

(4.77) (=R*A +V(z) — E —ir)uy = S"(x),

where E > 0, K = k(h) > 0 and kK — 0 as h — 0. Note that here x can be identically
zero: when k = 0, uy, is taken as the unique outgoing solution of (4.77) in the sense
that wuy, is defined as

up, = lim (P(h) — E —ie)~1S",

e—04

where P(h) = —h%?A + V(z). The high frequency Helmholtz equation (1.9) can be
written in the form of (4.77) with h = €,u, = u.,S" = —€2S., k = ea., and where
V(z) = E — n?(x). The precise conditions on V and S" will be stated below. To be
simple, we study only the case where the source term is concentrated near one point.
See also [4, 9]. The case of the source term with concentration-oscillation effect is
more difficult and is studied in [8] for constant refraction index and in [40] for variable
refraction index under some conditions. When the refraction index n(x)? = E -V (z)
presents discontinuity, the propagation of semi-classical measures is studied by E.
Fouassier.

To begin with, we recall in Subsections 4.1 and 4.2 some basic properties of Wigner
transform and semi-classical measures. See [5, 15, 14, 16, 25, 26] for more details.
In Subsection 4.3, we apply the results of Section 3 to study (4.77) for source term
concentrated near one point.

4.1. Basic properties of Wigner transform. — Semi-classical measures or
Wigner measures were introduced by Wigner in 1932 in the study of semi-classical
limit of quantum mechanics from the point of views of thermodynamic equilibrium.
See [41]. For ¢ € L%(R%), the Wigner transform of v is defined by

(4.78) W9 = @0 [ (ot L)oo F)

Rd 2

for (x,¢) € R?. W(3) is quadratic in 1, but is linear with respect to the density
function p(z,y) = ¥(x)y¥(y), a.e. in x,y. A remarkable property of Wigner transform
is that if ¢p = () is solution to the Schrodinger equation

(4.79) ihGy = —HA
1/’\t:0 = 1/105
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then the scaled Wigner transform, W, (z, § ;1) of ¥:

Wile, &) = 2w () (v, +)
is solution to the Liouville equation
N S
Whit=o HW (%o)(z, £)
More generally, if there is an appropriate potential V(z), it was expected that the
Wigner transform, Wp,(t), of the solution ¢ (t) to the Scrédinger equation

awh( ) h?
4.81 =(—-Z_A
(4:81) i = (= SA+ V@)l
converges to some limit f as h — 0, which satisfies the associated Liouville equation
0
(4.82) a_{+§ Vof =VV(2)-Vef =0 in RIxRE xRy

It is worth to notice that the solution of (4.82) can be written down explicitly in
terms of solution of the Hamiltonian system of p(z,§) = E + V(x). The approach
of E. Wigner allows to relate formally the quantum mechanlcs to classical mechanics.
However, the limit f is, in general, not a function, but only a measure. Rigorous
justification of Wigner’s approach requires the study of measures obtained as week
limit of the Wigner transform of a family of wave functions. This approach was
justified for many linear and nonlinear evolution equations. See [26, 15, 16, 43, 44].
Let 1 € L?(R%). Denote

p(z,y) = b(a)d(y), ﬁ(w,y):p(awg,zf%), a. e in (z,y) € RY x RY.

It is clear that
p € D2(R2) \ Cun (RY; LM (RY)) 1 Co (RS L ()
where Coo (R%; L' (RZ)) denotes the space of Lj-valued functions on R¢ which tend

to 0 as y — oo. C’OO(RZI;Ll(Rg)) is equipped with the natural norm. The Wigner
transform, W}, (1), of ¢ depending on a small parameter h > 0, is defined by

W8 = n [ e re(or L)o(a- L) dy

(4.83) = )t [ ey dy
R

Proposition 4.1 — One has

(4.84) [Wh(@)]Z> = 2mh) |7l (dmh) = lpl 72 = (4mh) =922,

(4.85) /d Wh(W)(z,€) d§ = p(x,x), ae. inz,

(4.86) / Wi () (z, €)e "€ /2 d¢ (27rh)—d/2/ pa, hy)e v /M) qy.
Ry
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Remark that
Wh(¥)(x,€) = (2h) " Fy_ep(x,&/h)

where Fy_.¢ is Fourier transform

Fyeu(€) = / e u(y) dy.

Rd
(4.84) follows from Plancherel formula for Fourier transform. (4.85) is trivial. (4.86)
follows from the same calculation and the inverse Fourier transform of £ — e—he/2,
It is useful to introduce the bilinear mapping associated with Wigner transform
which is quadratic in ¥. Define

wn(f.9)(w.€) = m) " [ ep (o n)g(o—hT) dy.

Clearly, wp(f, f) = Wi(f). By the properties of Fourier transform on temperate
distributions, wy, extends to a continuous bilinear mapping from S’(R%) x &'(R9) to
S’(R24). One has, for f and g in L2,

(4.87) / o)) de = S

(489) / ol 0)(a.€) de = S /e
(4.89) Few(wn(f,9)(x,0) = flx—hv/2)g(x + hv/2)
a.e. in x,& and v. For f, g € &', one has

(4.90) <wp(f,g9),a> = <a“(z,hD)f,g>, VYac SR,
(4.91) wn(f.9) = wnlg,f), in S (B2

where < -,- > denotes the dual product between S’ and S.

Proposition 4.2([16)])
(a) For f,g € L*(R%), one has

(4.92) Fewwn(f,9)(@,v) € Co(RY; L'(RY))
(4.93) Fomwn(f,9)(n,€) € Co(R; L'(RY))

and their respective norms are uniformly bounded by | f| |lgll-
(b) Let a,b € S(R*?). Then,

(4.94) <wn(f,9),ab>s s=<a"(x,hD)f,b"(x,hD)g >s'.5 +Tn
where |ry| < hC(a,b)||f]] llg|| for some C(a,b) independent of f,g and h.

Proof
(a) (4.92) follows from (4.89) and

sup (- = hv/2)g(- + hv/2)[ L1 gy < [ fll2llgll>-
S
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(4.93) can be deduced from the following relation
(G
@rh)d! \n " 2)9\h " 2
and the Parseval formula.

(b) By (4.90), < wi(f,g),ab >=< 7,(ab)”(z,hD)f >. By the calculus of
semi-classical pseudo-differential operators, (ab)"(x,hD) = b*(x,hD)a"(x,hD) +
hR*(z,hD;h), where R(h) is a bounded family in S(R??). Since b¥(x,hD) is

invariant by transposition, we obtain

fmﬁnwh(fag)(nag) =

< wh(fag)aab >=< a“’(m,hD)f, bw(xa hD)g >+

where r, = h < g, R”(xz,hD;h)f > satisfies the desired estimate, due to the uniform

L?-boundedness for semi-classical pseudo-differential operators with bounded symbol.
O

4.2. Semi-classical measures. — Let X denote the space
X = {p € O (R}%); Fezpp(z, 2) € L'(RY; Coo (RY)) }

equipped with the norm
lellx = / sup [ Fe—.¢p(z, 2)|dz,
RS @

where C'y, is the space of continuous functions tending to 0 at the infinity. X is a

Banach algebra and S(R2?), C5°(R?4) are dense in X.
Let {u,} be a sequence in L2(R%). Denote

Uh,n(wag) = Wh(un)($,£)

Theorem 4.3[14]). — Let {u,} be bounded sequence in L?. There exists a subse-
quence {un, } of {un}, a sequence {hy} with hy — 0 and a positive bounded Radon
measure i on R such that for any a € C§°(R??)

(4.95) klirrgo < a”(z, hipD)tn,, , Un,, > // a(x, &) p(dxdf).

w is called the semi-classical measure (or Wigner measure) associated with {un,, }.

Proof. — Let Uy, be defined as above. For any f € X, one has

1 hz hz
/de Unn(,)f 2, )l = 15 /de Fero f(2, 2)un (z n ?)un (:c _ 7) dadz.
It follows that

]/R Unn(2,€) f (2,6 dxd§’ dHfHXHunHQ < C|If|Ix.
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This proves that {Up,} is bounded in X*. Since X is separable, there exists a
subsequence {Up, n, } of {Unn} and g € X* such that hy — 0 and {Up, », } converges
x-weakly to p:

Jimn [ Un ., fdndg = /R I Ou(deds), VS € X.

By (4.90), for a € C§°(R??),
< a"(x, hiy D)n,,, Un,y, >12=< Upy nyr @ >50.5 -
It follows that
< a"(x, hiD)tn,, s Un,, >p2— ) a(z,&u(ded), k — co.
R2

It remains to prove that u is a measure. For any a € C§°(R??), take ¢ € C5° with
0 < ¢ <1and ¢a = a. For p > 0, put b, = ¢/a+n. Then, b, € C5° and
b% = a + n¢?. Making use of symbolic calculus of semi-classical pseudo-differential
operators, we have

a®(z,hD) = by (z,hD)? — n¢" (x,hD)* + Oy(h), in L(L?).

From this decomposition and the boundedness of {u,,}, one obtains that there exists
C > 0 independent of 1 such that
lim inf < a“(x, hD)up,u, >> —Cn.

—0

Since n > 0 is arbitrary, we get
/a(x,f)u(dzdf) = klim < a”(z, hiyD)un,,, Un, >> 0.

Therefore, p is a positive distribution, thus a measure on R??. See [18]. It is clear
that p(R24) < supy, ||un, ||? < oc. O
Remark When {u,} is only bounded in L? , using the properties of Wigner trans-
form in &', one can still show that there exists a subsequence {u,, } of {u,} and a
locally bounded positive Radon measure p on R2¢ such that

k—o0

lim < a“(x,hgD)un, , un, >= // a(z, §)pu(dzde),Va € C§°.

See [5, 14]. We will use this remark in the following Subsection.
Let {u.} be a bounded sequence in L? with € € I where I is a countable set with
0 as the only accumulating point. Let

Ue = We(ue)a U =U.* ( 6_(I2+£2)/(46)).
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By extracting successively subsequences, we can assume, by an abuse of notation,
that

Ue — UE L?

U = peX:
U. > peXx-.
A sequence {v.} C L*(R?) will be said compact at infinity if
(4.96) sup/ |ve(x)|? dz — 0, as R — oo.

|z|>R

€

The basic properties of semi-classical measures can be resumed in the following

Theorem 4.4[26])
(a) One has p = fi.
(b) i = u(x)[*60(&) and
Jul < (R < limin 2

(c) |uc(x)|? converges weakly in sense of measures to fRZ du(-, &) if and only if the
family {e=a(&/€)|?} is compact at infinity.

(d) The equality u(R??) = lim. o ||uc]|> hold if and only if both {u.(x)} and
{e=a(¢/€)|?} are compact at infinity. In this case, {u.} converges strongly to u
in L? if and only if pu = |u(z)|?50(€).

(e) Let u be a positive finite Radon measure. Letu € L? such that u > |u(x)|?>50(€).
Then there exists a sequence {uc} in L? such that uc—u in L?, U, A won X* and
(R*) = lim, o ||

This result shows that semi-classical measures contain information about the lack
of compactness for a bounded sequence in L2.

4.3. The Schrodinger equation with concentration effect. — For the high
frequency Helmholtz equation with the source term concentrated near one point x = 0,
[4] shows that the correct normalization of the source is given by

Se(z) =€

—4tg( L)
€
for some S independent of €. By a change of notation, the equation can be put into

the form
(4.97) (—h2A + V(2) — E — ik)up(z) = h 2 S(%)
where
h=¢—0, k=&x(h)>0.
We assume that ' > 0 and V satisfies

(4.98) (x - V)V (x) is bounded on R? for 0 < j < 3.
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Assume also that for some vy € |0, 2], there exists ¢g > 0 such that

(4.99) v(E—V(x)) —x-VV(z) > co.
Put wy, (x) = h{=D/24y(hx). Then wy, is the solution of
(4.100) (A +V(hx) — E —ir)wp(x) = S(z)

Theorem 4.5 — Assume (4.98) and (4.99).
(a) Let S € By. One has wy € B} and
2

(4.101) lwnllsy < CliSls,

(b) Assume that (x)70S € L? for some ro > 3/2, E—V(0) >0 and
(4.102) (z- V)V (x) is uniformly continuous on R? for j =0, 1.
Let wq is the outgoing solution of the equation
(4.103) (—A+V(0) — E—i0)we(z) = S(x).

For any s > 3/2, one has

(4.104) %in% lwn — wol|Bs = 0.

In particular, wy, converges x-weakly to wg in B} .
2

Remark. — The x-weak convergence of wy, to wq is conjectured in [4] and is proved
in [9] under the general non-trapping assumption (1.5) and a condition on the geom-
etry of self intersection set near zero of the Hamilton flow. Under some additional
decay assumptions, the results of [40] for source having concentration-oscillation near
a subspace, when simplified to the case of point source, proved that there exists a sub-
sequence of {wp} converging x-weakly to wg in B}. For smooth potentials, a proof
of (b) is given in [39], using microlocal resolvent estimates. Since no decay of V() is
needed, Theorem 4.5 holds for N-body Schrédinger operators.
To prove Theorem 4.5 (b), we need the following

Lemma4.6 — Let A= (x-D+ D x)/2.
(a) Let V be bounded and uniformly continuous on RY. For any & > 0, f €
C&(Ry), one has

(4.105) lim [[(4) 72 (V (ha) — V/(0))f(~4) | =0.
and
(4.106) Tim (v (k) — V/(0)) f(~A){4) =" =0,

(b) Suppose that x - VV is uniformly continuous on R%. Let x. be a cut-off of
[0, ool.

(4.107) lim I(A)* [+ (A), V (ha)[(A)* f(-A)| =0 < C

for any s, s’ € [0,1].
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Proof. — To prove (4.105), it is sufficient to show that for any g € C§°(R)
(4.108) Lim [|g(A)(V (hz) = V(0))f(=A)[| = 0.

||

Let x € C§°(R) with x(s) =1 for s <1 and x(s) = 0 for s > 2. Let xr(z) = x(‘5)
and

K= M(g(A)(1 = xr)f(-A)F" : L (R% d) — L*(R, L*(S™"1); dAdw),

where M is the Mellin transform defined by (3.49) with A = 1. The kernel of Ky is
given by
R

Kr(Aw; &) = WQ()\)

/ e(d/271+i)\)(log r+log R)JriRrw{)(l _ X(T))f(§2)
0

For A € supp g and ¢ in the support of f(£2), the derivative of the phase verifies
|0r(Aogr + Rrw - &)| > (6oR — C)r > 0,

for r > 1 and R large enough. We can use the method of non-stationary phase to
show that

l9(A)(A = xr(2) f(=A)[ = [ KRl — 0
as R — oo. For U € C}(R?), space of bounded C! function with bounded derivatives,
we can use (3.47) to show that ||[f(—=A),U(hz)]|| = O(h). For V bounded and
uniformly continuous on R¢, we can approximate it by a sequence {V,,} of C}(R%)
such that ||V — V,||p~ — 0, as n — 0. It can be derived that ||[f(—A), V(hz)]|| — 0
as h — 0. This proves

(4.109) i lg(A)(1 = xr(@))V (ha)f(=A)l| = 0.

For each fixed R, one has ||[xgr(x)(V (hx) — V(0)||r~ — 0, as h — 0 (4.105) follows by
an elementary argument. (4.106) results from(4.105) and the limit

lim [[[f(=A), V (h2)]|| = 0.

To show (4.107), using the formula of functional calculus (3.47) and commuting
V(hz) with (A —2)71, [x+(A4),V (hx)] can be expressed as

1 [ 0x

s (A), V(ha)] = —= / NE) (4 oyt OV (ha)(A - =) L(dz)
T Jo 0Z

Since x4(r) is constant for |r| large, we can find an almost-holomorphic extension

X+(2) of x4 on C such that ax%z(z)

6 >0 and

is supported in a region {z;|3z| > §|Rz|} for some

oxX+(2), _ C
1< =
0z |z]
for |z| large enough. Since x - VV (z) is vanishing at & = 0, one can apply the part
(a) to z - VV(x) to show (4.107). O
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Proof of Theorem 4.5. — (4.98) and (4.99) show that A is a uniform conjugate
operator of P, = —A + V(hx) at E. (i) of Theorem 3.11 gives

(4.110) [(Prn—E — m)_1||c(3%,31) <C
uniformly in h and k. (4.101) follows.
To prove (b), put

Ru(E +ik) = (A +V(hz) — E —ix)~!
and

Ro(E +ik) = (A +V(0) — E —ir)" L
Ro(E + ix)S converges to wy in B}, as k — 0. Write v, = wp, — Ro(E + ik)S as

2
vp, = Rp(E +ik)(V(0) — V(hz))Ro(E + ik)S
Let p € C§°(|E — 26, E + 20[) with p(A\) =1 on [E — 6, E 4 4] and
ry, = Rp(F +1ix)(V(0) — V(ha))Ro(E + ir)p(—A)S

One can check that for any r > 0

[{x)" Ro(E +ir)p(=A) S| < C|[{x)" S|
and consequently for any feCg5°(R9)
(4.111) | <vn —rn, > < Cor(h)|[(2)" S|l {x)" f]
for some 1/2 < s < r < ry. Here

51(h) = (@) (V.(he) = VO) — 0, as h—0.
To show that < ry, f >— 0, take x4+ € C°°(R) such that x4+ + x- =1on R, x4y =1
on [$,00[, and 0 on Joo, —3]. Decompose p(—A)Ry(E + ik) as
p(—A)Ro(E + i) = p(—A) (x4 (4) + x— (A)p(—A)Ro(E + in)pr (—A)

where p; € C§° with pp; = p. Inserting this decomposition into r;, and applying
Theorem 2.2, we obtain for 1/2 < s < s’ <19 —1

| < f>] < Co(M) (A x—(A)Ro(E +ir)S| [ (A)*p(~A) f]|
+[1(A)* o1 (=) [[[()* b (2, D) R (E — ir) f)
+ < p(=A)Ro(E + k)5, [+ (A), V (ha) | B (E — i) f > |
(4.112) < Co(M) @) TS| @) £l + Cos ()1 (@)* S| )* £,
where C' is independent of h and x and
0a(h) = [[(A) = (V(0) = V(ha))p(=A) || + [[(V(0) = V (ha))p(—A)(A) || = 0

and

85(h) = I{A4)°* [x+(A), V (ha)]p(~ A)(A)* | = 0
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for s, > 1/2 with s + s’ < 2, according to Lemma 4.6 (a) and (b). From the above
estimates on vy, — r, and on r,, we obtain that for s,s" > 1/2 with 1 4+ ¢’ <rg

(4.113) | <on, f > | < CER)II(@)* S| II(@)*H fl ¥ € C°
with §(h) — 0, uniformly in S, f and k. (4.113) gives
(4.114) lonlls;,, < Co(R)I[{x)™S].

14s
Since vy, is bounded in B}, an argument of density shows that vy, tends to 0 x-weakly
in BY. O
Theorem 4.7 — Let (4.98) and (4.99) be satisfied.
(a) Let S € B1i. Then up € B} and there exists C > 0 such that
2 3
(4.115) lunllzy < CliSlls,

uniformly in h.
(b) Assume (x)S € L?. There exists g > 0 such that for b_ € S_(uo)

(4.116) [b— (@, AD)un| > < C|[{x)S||
uniformly in h.

Proof
(a) By Theorem 4.5,

lwnlls; < ClISIls, -
2

For 0 < h < 1, one has

1 3
B, = Ssup —1(/ |Uh(hz>|2hd_1d$)
3 R>1 R2 \J|z|<R

1 / 5 \?
= sup —< up(x)|“dx
R>1 (hR)i( |z|<hR| @l )
1 oo\ 3
= sup (/ up(x das)
sup ot m<n/| n(z)]
S

1 L\
up (/ up (T das) = [|lupl|g* .
sp T |IKR,l ()] [[unl i

[[wn|

Y

(4.115) follows.

(b) To prove (4.116), remark that A, is a uniform conjugate operator of P, for all
p with |p| < po for some po > 0. Theorem 3.11 (ii) can be applied to Ry(E + ik).
For s = 1, we obtain that for any b_ € S_(uq)

16— (2, D)wn ] < C[[{x)S]]
uniformly in h. It follows that
16— (A=, RDYunl| < CR12] (z)S]].
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Let x € C*(R),n € Cgo(Rg) with supp x C ]—oo, o[ and x(t) = 1 for t < pg — €.
Take b_ g € S_(up) as

x-&

b—o(z,§) = X(W

Then b_ o(h~tx, hD) = by(x, hD; h) where

)77(6)-

bo(z, &5 h) = X(W)ﬁ(f)-

Let p € C®°(R%) with p(z) =1 for |z| > 26 , 0 for |z| < §. For arbitrary b_ € S_(p)
with |u| < po — €, using localization in energy, we can suppose without loss that b_
is compactly supported in £&. Then we can choose suitable xy and n in by such that

px)b—(z,8) = p(x)b—(z,E)bo(, &; h)

for all h > 0 small enough. Note that p(x)bo(z,&;h) is in S_(p). Using symbolic
calculus and Theorem 4.7 (a), we obtain

lp(@)b— (2, hD)un | < Cllbo(x, hD; hyun|| + Chl| (@)~ un|| < C'B?||(z)S]).
Since 1 — p(x) is of compact support, Theorem 4.7 (a) implies
1= p@)b—(z, AD)unll < ClIS]l5y -
This shows that
(4.117) 16— (z, hD)un| < C||S|

Bx + Ch1/2H(x>S||.
2
(b) is proved. O

Theorem 4.7 (a) shows that {us; h € ]0, ho]} is bounded in LZ . By the remark fol-
lowing Theorem 4.3, there exists a subsequence {uy, } and a locally bounded positive

Radon measure f on R?? such that for any a(z,¢) € C5°(R??), one has

(4.118) lim (a(x,th)uhj,uhj) :/ a(z, &) f(x,§) dx dE.
R2d

J—00

Theorem 4.8 (a) below is announced in [4], but the proof given there can only give
an estimate of the form
1

sup—/ / flz, &) ded < Cs
r>1 B Jjz)<r Jeera
for any s > 1. See also [8, 40]. We give a complete proof here.

Theorem 4.8 — Let the conditions of Theorem 4.5 (a) be satisfied. Let f be a semi-
classical measure constructed as above.
(a) One has
1
(4.119) swp i [ [ pwgdeds < C)s,.
lz]<R JEeR 2

r>1 IR
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(b) Assume in addition that V is bounded and uniformly continuous on R%. Then,
supp [ C p~(E).

Proof
(a) To prove (4.119), take a cut-off function x € C§°(R) with 0 < x <1, supp x C
(—1,2) and x(r) =1 on [0, 1]. Set

_ 1l s
IR = RX( R )6

for 6 > 0, and vy, = e=0IhDIPy,, Using the uniform continuity of e in weighted
L?-spaces and an argument of interpolation (see Theorem 14.1.4 of [18]), one deduces
that

—6&|hD|?

2
e OIhDI™ . B: — B}

is uniformly bounded. Therefore,

lvnllBy < Cllunlsy-
2 2
We can then estimate
1 /|| 1 /|| 23
Iz (Rl = 12 (Rl eyt 2 Flonlisergen
3 1<2k<R+1
1 1 2No+1
= E(l + Z Qk) sup Q—E”’UhHLZ(‘m‘SQk) < thHB*l
1<26<R+1 k2022 B

IN

3llvnllps < Cllunlsy
2 2

where Ny is taken such that 20 < R+ 1. As a consequence, one has

(4.120) ](am(x, hD)un, uh)‘ < Clup|

2
B’iv
p)

uniformly in h, R and é. This, together with (4.118) implies that

| 2]y sl
R )¢ €T, dx d < C'su u
R/IzlgR/RdX(R) f(w,€) dw dg h>18|| |

Taking 0 — 0, we obtain (4.119).

(b) Let 0 < ag(x, &) € C3°(R??) such that supp agNp~1(E) = @. Let p € C°(R)
with support sufficiently near F such that supp apNsupp p(p) = @. If V is smooth with
bounded derivatives, by the functional calculus of h-pseudo-differential operators, one
sees that

(4.121)  [lao(z, hD)un||py < Cl[( = p(P(h)))unllz2 + llao(z, hD)p(P(h))unllz,

2
B*l'
2

is bounded by O(h'/?). Part (a) of Theorem 4.7 gives

| (a0, hDYun, wn) | < llao(e, hDYunllz, lunllzy < Ch.
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(4.118) implies
[, ol )€ dwds =0,
RZ
for any ag € C§°(R??) with ag = 0 in a neighborhood of p~1(E). This shows that

(4.122) supp f C p~ ' (E)

when V is smooth with all derivatives bounded.
For V satisfying the conditions of (b), we can construct a sequence {V;,} of smooth
functions with bounded derivatives such that

IV = Vl]lgee =0, n— 00
Put P,(h) = —h?A + V,,(x). Then using (3.47), one can show that

Oon = S 1(z) =" (p(Pr () = p(P())){@)l| = 0, n — oo.

From Theorem 4.7, it follows that

llao (2, RD)p(P(h))un| 5,

< C(I{=) " (p(Pa(h)) = p(P(W))) ()| + llao(z, hD)p(Pn (h)[])||un)
< Co,+ Cph

*
Bl
2

where C' is independent of n and h. This implies
lao(z, hD)unll, < CI(A = p(P(h)))unllzz + [ao(z, hD)p(P(h))unl| 5,
< Cph+Coy
for any n. It follows that for V satisfying the conditions of Theorem 4.5 (a),
(4.123) %11% lao(z, hD)uh||B% =0.

The argument used above for V' smooth shows that (4.122) still holds in the general
case. (|

Let fp(x,&) denote the Wigner transform of up (z):

. h 7h
a9 = @ [ S+ 2 Y (o — 22
Rd 2 2
Using the equation (4.97), an elementary calculation shows that

(4.124) anfn+&-Vafn —On(fn) = Qn
where O, is defined by

On(fa)(z, &) = (271r)d /de eﬂ'y'(&")ﬁ (V(:E - %) — V(:E - %))fh(w,n)dydn

y,n
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and

Qw8 = a5z [ g 50+ (5= ) =5 = ) (4 )

By (4.118), one has for some sequence hjy — 0

(4.125) < a, fn, >=<a”(x, hiD)up,, up, >— // a(x, &) f(x,&)dxdE

for any @ € C§°. Assume that

Kk = hap,  with a — a

as h — 0. If VV is uniformly continuous on R?, one can show that

(4.126) S, + & Vafn, = On(fny) = af +&-Vaf =VV(2)-Vef
in D’. We only give the proof of the limit
(4.127) th (fhk) - VV(SC) . ng.
For a € C§°(R??), we have
(4.128)
V(@ +) V(e -
ny 2 2/~
(©n(f1), / e g [, - — e, y) dy d di,

where a(z,y) = fgﬁy( a(x,&)). Denote

. / i /1 vV (o + hoy) dba(x, y) d
e . x + — ) dfa(zx, .
2i(2m)% R¢ -1 Y 2 e
By Theorem 4.7, to prove (4.127), we only need to show that for any s > 1
1
(4.129) [ sup {0 |7 Gty = 59V@) - Tyatarm)|} -0
Yy x

as h — 0. But

/ o s [ oV (e + ") e - 9Vt

< /Rd Iseugd{ ‘2 / (y . VV(.T + @) -y VV(x)) dea(x,y)‘}dy
(4.130)

Gh(xvn) -

We decompose the last integral into two parts, denoted I(h) and II(h), according to
lyl>h " or |yl <h™",0<r <1 For |yl <h™",
ho
vV (o+ L -vv@)| -0, h—0
uniformly in z, since VV is uniformly continuous on R?. This shows I(h) — 0. When

ly| > k™", a(x,y) is rapidly decreasing in y. In this case,

[z, y)] = O(h™ (@, y)™™)
for any N, which gives I1(h) — 0. This proves (4.127).
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A more subtle task is to compute explicitly the limit of the source term Q5 which
depends on uy. To do this, we take ¢, 9 € S and write

/ Qn(, €)p() () dude

= m/ W%*%) (x—%)

_ﬁ o+ }‘P y)dwdy
- o L W”m@(hx/ oy

Sun(n(e’ + y))e(ha' + L) byt dy

Recall that according to Theorem 4.5 (b), h(?=1)/2y,, (hx) converges *-weakly to wp
in B} and strongly to wg in B¥ for any s > 3/2. We can estimate
2

[ s+ n@m e+ )

< CmS¢+ et +2)

Bs

with §(h) — 0 as h — 0. Since (x)"°S € L? for some ry > 3/2, we can take
3/2 < s < rp to prove that

J.

uniformly in A. It follow that

)|, By < )

S(+y)e(h-+

limy [ Qu(z. () (€) dod

= i g [, [ e (e - )
ST’ + ) (ha' + )] D)’ dy

)

7

_ (S;;O)d /R S+ V(0) — B —i0) " [S(&)Ph(€)ds

We finally find that Qn — E20(2)S(¢2 +V/(0) — E —i0)1S()[? in sense of distri-
butions. We have proved the following
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Theorem 4.9 — Let o, = kh™! — a > 0. Under the assumptions of Theorem 4.5
(b), assume that VV is uniformly continuous on R?, then, the semi-classical measure
f wverifies the following Liouville equation

(4.131) af +&€-Vaof - %sz(z) Vef =Q(z,6), in D' (R*?)
with
(4.132) Q,&) = (Q%WS@)F&(@&(&? +V(0) - E)

Under stronger decay and smoothness conditions, Theorem 4.9 is proved in [4, 9]
for point source and in [8, 40] for source term supported on a subspace. In these
works, an additional regularizing condition (1.11) is needed if oo = 0.

The following result seems to be new. It describes a strong outgoing radiation
property of the semi-classical measure f.

Theorem 4.10 — Under the conditions of Theorem 4.7 (b), there exists some co > 0
such that

(4.133) supp fNQ_ =2,
where Q_ = {(z,£);x - £ < colz|}.

Proof. — Let py > 0 be given in Theorem 4.7 and let 0 < ¢p < po. Then, any
a € C§°(Q_) belongs to S_(po). Since a is equal to zero for z near 0, the proof of
Theorem 4.7 (b) shows that

la(z, hD)un|[5, < Chl/2,
2

It follows that
| < a™(z, hD)up,up > | < Ch'/2.

Using the subsequence defining f, one obtains that
//a(x,&)f(ac,ﬁ)dxdf = hl,fTo < a"(z,hiD)up,,up, >=0
for any a € C§°(Q2_). (4.133) follows. O
The outgoing radiation condition determines uniquely a solution of (4.131).

Corollary 4.11 — With the conditions of Theorem 4.7 (b), the solution f of (4.131)
s gwen by

(4.134) f(x, &) = /0 e~ Qy(—s;x,6),n(—s;2,6))ds, in D'(R??)
where (y(s),n(s)) is solution of the Hamiltonian system

o= ), y(0) ==,
(4.135) ; 1

o = —3V0s),  n0)=¢&
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Proof. — Let Q = p~Y(]JE — 6, E + §]) for some § > 0 small enough. Under the
condition (4.99), one can show that for any R > 0, there exists Ty > 0 such that

(z,6) € Qwith |[z| < R = ®'(2,) €., Vt< Ty

where ®(z, &) = (y(t;z,£),n(t; z,£)). In fact, the assumption (4.99) implies that for
some by > 0,

y(t;2,8) - nt;z,§) <a-E+bot <0
for all t < =Ty if Ty = To(R) is large enough and (z,§) € Q with |z| < R. For any
a € C§°(RN), by (4.131) and (4.133), the function
Gt) =<e*fod' a>
verifies
%G(t) —ceQodta>, Gt) =0, t<—Tp

It follows that G(¢) is uniquely determined by

G(t) :/t e < Qo®° a> ds,
which implies
< fia>=G(0) = /+OO <e *Qod % a>ds,
0
for any a € C§°(€2). Since supp f C p~!(E), Corollary 4.11 is proved. O

Remark. A weak version of radiation condition of the limiting measure f is also
proved in [4, 9, 8, 39, 40]. In [4, 8, 40], it is shown that under some conditions, f
verifies

(4.136) /de R(x,§)f(z,§)ded = | g(x,§)Q(x,§) dxds, V Re D),

R2d
where g is the solution of the equation

(4.137) ag—§€-Vyg+ %VzV(x) -Veg=R.
given by
(4.138) o(e,€) = /O e R(y(s;x, &), n(s: , ) ds.

Note that (4.134) implies that
(4.139) dimfo o' =0, inD'(Q),

where ®t(z, ) is the solution to the Hamiltonian system. In fact, for R € D(),

| @@ @ o) i~ /OOe—“SR(<I>s—t<x,s>>dsQ<:c,£)dxdg.
RQd de 0
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Since supp @ is compact, the non-trapping condition implies that there exists 73 > 0
such that for all (z,£) € supp @, one has

|®7(2,8)| > R1, ¥V 7> 11,
where R; is taken large enough so that supp R C {|z| + |¢| < R1}. This shows

/ /00 e” ¥ R(P5t(x,£))dsQ(x, &) dedE =0, t< —T1.
R2d Jo

This proves (4.139). Clearly, (4.139) also follows more directly from (4.133), as can
be seen from the proof of Corollary 4.11.

The results of Theorems 4.9 and 4.10 hold for any subsequence {Uhkj} extracted
from a subsequence {up, } of {up}. The uniqueness of the limiting measure f allows
to conclude that the whole sequence {uy} satisfies

(4.140) }1}3{) < a”(z,hD)up,up >= // a(x, &) f(x, &§)dxde,

for any a € C§°(R??). This shows that the sequence {uy} is pure, according to the
terminology of [14].

The results presented in this Subsection shows that under some conditions, the
stationary Schrodinger equation

(=h*A +V(2) — B)uy, = S"(x)

converges, in the sense of semi-classical measures, to the Liouville equation

£ Vaf ~ 5VaV(2) Vef = Q)

where
Q, ) = (Q%WS*@)P&(@&(&? +V(0) - E)

and this convergence preserves the nature of the corresponding radiation conditions.
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