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ISOMONODROMY FOR COMPLEX LINEAR q-DIFFERENCE

EQUATIONS

by

Jacques Sauloy

Anyone who considers transcendental
means of producing Galois groups
is, of course, in a state of sin. (*)

Abstract. — The words “monodromy” and “isomonodromy” are used in the theory of
difference and q-difference equations by Baranovsky-Ginzburg, Jimbo-Sakai, Borodin,
Krichever,... although it is not clear that phenomena of branching during analytic
continuation are involved there. In order to clarify what is at stake, we survey
results obtained during the last few years, mostly by J.-P. Ramis, J. Sauloy and
C. Zhang. Links to Galois theory (as developped by P. Etingof, M. van der Put &
M. Singer, Y. André, L. Di Vizio...) are briefly mentioned. A tentative definition of
isomonodromy deformations is given along with some elementary results.

Résumé(Isomonodromie des équations auxq-différences complexes). — Les mots « mo-
nodromie« et « isomonodromie » ont été employés en théorie des équations aux diffé-
rences et aux q-différences par Baranovsky-Ginzburg, Jimbo-Sakai, Borodin, Kriche-
ver,... bien que, dans un tel contexte, n’apparaissent pas clairement des phénomènes
de ramification par prolongement analytique. Afin de clarifier ce qui est en jeu, nous
décrivons des résultats obtenus ces dernières années, principalement par J.-P. Ramis,
J. Sauloy et C. Zhang. Les liens avec la théorie de Galois (telle qu’elle a été développée
par P. Etingof, M. van der Put & M. Singer, Y. André, L. Di Vizio...) sont briève-
ment mentionnés. Une définition expérimentale de déformation isomonodromique est
proposée, ainsi que quelques résultats élémentaires.

0. Introduction

0.1. Roots. — In recent years, the words“monodromy”,“isomonodromy”have been

used in various places in the context of difference and q-difference equations, e.g., see

V. Baranovsky & V. Ginzburg ([6]), M. Jimbo & H. Sakai, drawing on previous results

2000Mathematics Subject Classification. — Primary 39A13; Secondary 34M55, 34M40.
Key words and phrases. — q-difference equations, isomonodromic deformations .
(*) Adapted from von Neumann who said “arithmetical means of producing random digits”, see [41].
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250 J. SAULOY

of Jimbo and Miwa ([21]), A. Borodin ([10]) and, more recently(1), I. Krichever ([22]).

However, in these contexts, it is not clear that problems of multivalued solutions and

branching at singularities are really involved, as it is the case in the classical setting

of linear differential equations in the complex plane. The goal of this survey, is to

summarize what can be said about an underlying geometry or topology of solutions

encoded in a monodromy group or a Galois group, even if the solutions are taken to be

uniform. We shall stick to q-differences, since the theory looks much better behaved

there than for differences. Moreover, we shall almost only refer to work conducted

under the impulse of Jean-Pierre Ramis, mostly by J.-P. Ramis, C. Zhang and the

author. Note that this is meant to be a survey paper: essentially no proofs are given.

On the other hand, for a survey with a broader scope, [14] is recommended.

While the prehistory of q-difference equations may be thought to have started with

Euler, the archetypal example certainly is Heine’s basic hypergeometric series, here

written for a “base” q ∈ C such that |q| > 1 (see [14]):

Φ(a, b, c; q, z) =
∑

n≥0

(a; p)n(b; p)n

(c; p)n(p; p)n
zn, where p = q−1 and (x; p)n =

n−1
∏

i=0

(1 − xpi).

It is a q-analogue of the Gauss hypergeometric series

F (α, β, γ; z) =
∑

n≥0

(α)n(β)n

(1)n(γ)n
zn, where (α)n =

n−1
∏

i=0

(α + i).

The most obvious analogy is that, if one takes a = pα, b = pβ , c = pγ and lets q go

to 1, then, the coefficients of the series defining Φ(a, b, c; q, z) tend to the coefficients

of the series defining F (α, β, γ; z).

A deeper analogy is related to functional equations. The function Φ = Φ(a, b, c; q, z)

is solution of a second order linear q-difference equation with rational coefficients, that

is, it satisfies a C(z)-linear relation on Φ(z), Φ(qz) and Φ(q2z). This relation can be

written in terms of the operator σq defined by σqφ(z) = φ(qz), thus giving rise to the

relation

(0.0.1) σ2
qΦ − λσqΦ + µΦ = 0 with















λ =
(a + b)z − (1 + c/q)

abz − c/q

µ =
z − 1

abz − c/q

.

(1)The ArXiv preprint by Krichever appeared one month after the Painlevé conference for which this

talk was prepared.
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It can also be given in terms of the operator δq defined by δqφ(z) =
φ(qz) − φ(z)

q − 1
. It,

then, takes the form

(0.0.2) δ2
qΦ − λ̃(q)δqΦ + µ̃(q)Φ = 0 with















λ̃(q) =
λ − 2

q − 1

µ̃(q) =
µ − λ + 1

(q − 1)2

.

If one brutally (or heuristically) replaces the operator δq by the Euler differential

operator δ = z d/dz, and the coefficients by their limit as q goes to 1, one finds the

corresponding hypergeometric differential equation satisfied by F = F (α, β, γ; z):

(0.0.3) δ2F − λ̃δF + µ̃F = 0 with











λ̃ =
(α + β)z + (1 − γ)

1 − z

µ̃ =
αβz

1 − z

.

Since this equation was the first instance of the so-called Riemann-Hilbert correspon-

dence, one would expect this limiting process to be reflected on the monodromy: the

general theory shall be mentioned in 1.3, this particular example being dealt with, in

full detail, in [35]. We shall rather use the operator σq and also rather use systems

than equations. For instance, putting X =

(

f

σqf

)

, we get the system

(0.0.4) σqX = AX with A =

(

0 1

−µ λ

)

∈ GL2(C(z)).

The modern history begins with the famous paper by Birkhoff about the so-called

generalized Riemann problem, [8]. There, he tackled what we perhaps would call

nowadays the Riemann-Hilbert problem of classifying differential equations by their

singularities and (loosely said) global geometric behaviour. For regular singular differ-

ential equations, the former are encoded in the local Jordan structure (generically, the

eigenvalues or exponents) and the latter means the monodromy representation or, in

less intrinsic terms, the knowledge of sufficiently many connection matrices. Birkhoff

showed that, to a large extent, the problem can be posed and solved in parallel for

differential, difference and q-difference equations. For definiteness, from now on, we

consider (as Birkhoff did) q-difference systems meromorphic over the Riemann sphere.

To be more precise, we first introduce some notations.

Throughout the text, q is a fixed complex number with modulus |q| > 1(2). We

also fix a τ ∈ H (the Poincaré half plane) such that q = e−2ıπτ . The field K of

(2)The opposite convention (that is, 0 < |q| < 1) holds equally often in the litterature, for instance in

[18]; some formulas or definitions (e.g., classical “basic” functions or the Newton polygon) do depend

on the chosen convention. The fundamental fact, if one wants to do some analysis, is that |q| 6= 1

(at least in the present state of our technology).
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252 J. SAULOY

coefficients is one of the following: the field C(z) of rational functions (global case),

the field C({z}) of convergent Laurent series meromorphic at 0 (analytic or convergent

local case) and the field C((z)) of formal Laurent series meromorphic at 0 (formal

local case); we understand meromorphic Laurent series to have finitely many negative

exponents. Any of these fields can be endowed with an automorphism σq defined by

(σqf)(z) = f(qz). A linear q-difference equation of order n may be written

(0.0.5) σn
q (f) + a1σ

n−1
q (f) + · · · + anf = 0 , a1, . . . , an ∈ K , an 6= 0.

By vectorializing, i.e., setting

(0.0.6)

X = Xf =
def











f

σqf
...

σn−1
q f











and A = Aa =
def















0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1















,

the equation (0.0.5) may be turned into a system

(0.0.7) σqX = AX , A ∈ GLn(K).

For any such equation or system with coefficients in the field K, one will look for

solutions in some K-algebra of functions A endowed with a dilatation operator σq

extending the one of K. One possible choice for A is the field M(C∗) of meromorphic

functions over C∗, with the natural operation defined by (σqf)(z) = f(qz). The

subalgebra of q-constants

Aσq =
def

{f ∈ A / σqf = f}

is then the field M(C∗)σq of q-invariant meromorphic functions. Letting z = e2ıπx,

we see that M(C∗)σq is isomorphic to the field of meromorphic functions over C with

periods 1 and τ , thus, to a field of elliptic functions. More geometrically, M(C∗)σq

can be identified in a natural way to the field M(Eq) of meromorphic functions

over the Riemann surface Eq = C∗/qZ. The latter is an elliptic curve, since the

exponential map x 7→ e2ıπx makes C a covering of C∗ and induces an isomorphism

C/(Z + Zτ) → Eq.

If we find a fundamental solution of (0.0.7) in A = M(C∗), that is, a matrix

X ∈ GLn(A) such that σqX = AX , then the vector solutions X ∈ An are exactly

the vectors XC with C ∈ (Aσq )
n
, that is, they form a vector space of rank n over
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the field of constants M(Eq). As a matter of fact, contrary to the case of differential

equations, a fundamental solution in A = M(C∗) always exists: one does not have

to rely on multivalued functions (but, see remark 0.1 below).

Birkhoff considered systems (0.0.7) for K = C(z). These should be classified with

respect to rational equivalence:

(0.0.8) B ∼ A ⇐⇒ B = F [A] =
def

(σqF )AF−1 for an F ∈ GLn(C(z)).

Note that the gauge transformation X 7→ Y = FX changes solutions of the system

σqX = AX into solutions of the system σqY = BY . By the way, Birkhoff proved

that any such system is equivalent to the system obtained through (0.0.6) from some

equation (0.0.5), a result known today as the cyclic vector lemma.

To begin with, the matrix F has coefficients in the field K = C(z) (global classifi-

cation); but intermediate results involve local classification, for which we allow local

gauge transforms F ∈ GLn(C({z})) or F ∈ GLn(C((z))). In this setting, the only

possible local information seems to be located at 0 and ∞, since they are the only

points fixed by the automorphism z 7→ qz. Birkhoff (relying on previous results by

Adams and Carmichael) then defined what it means for a system to be singular reg-

ular at these points and built multivalued local solutions at 0 and ∞. The a priori

local solutions X (0) and X (∞) thus obtained are actually meromorphic all over C∗,

because the functional equation σqX = AX (A rational) expands any given disk of

convergence by the factor |q| > 1.

Then, solutions X (0) and X (∞) being given, he defines their connection matrix P

through the relation: X (0) = X (∞)P . Since X (0) and X (∞) are fundamental solutions

of the same q-difference system, the matrix P is q-invariant, thus elliptic: it can

therefore be encoded by finitely many numerical invariants. These, of course, should

be joined with the local invariants at 0 and ∞ (the exponents).

In order to compare the class of q-difference systems (up to rational equivalence)

to the class of such sets of invariants (up to natural symetries), Birkhoff counted the

number of free parameters on both sides and found them equal. Then, he formulated

the inverse problem in the generic case (the local matrices A(0) and A(∞) are semi-

simple): does every such family of numerical invariants come from a regular singular

system ? He solved this “generalized Riemann problem” affirmatively. Here, the

main tool was the “preliminary theorem”, better known as “Birkhoff factorization of

matrices”. Nowadays, it is rather formulated as the Birkhoff-Grothendieck theorem

about the classification of holomorphic vector bundles over the Riemann sphere (see

[5] or [25]), making it quite clear that it has a topological meaning. Besides, this

theorem was used in this form by Röhrl in [31] to solve the Riemann-Hilbert problem

for differential equations (see also [32]).
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254 J. SAULOY

Remark 0.1. — The possibility of a uniform fundamental solution was seemingly ig-

nored by the ancient authors, including Birkhoff. Hence, they had multivalued solu-

tions and their constants were not quite elliptic functions. For instance, in [8], the

connection matrix P has a constant automorphy factor when going from z to ze2ıπ.

However, it is still rigid enough to be encoded by finitely many numerical invariants.

0.2. Organisation of the paper. — We survey here some recent progress in q-

difference equations. Birkhoff’s results were modernized in [35]. Solutions of Fuchsian

systems are built from theta functions and power series, thereby yielding an elliptic

connection matrix. The resulting classification scheme is described in 1.1 and 1.2. The

most striking feature of this approach is confluence to classical monodromy, explained

in 1.3. This amounts to a topological interpretation of all known classical q-analogies

and can be found in [35]. At the end of section 1, we add some remarks about the

transition from classification to Galois theory for q-difference equations.

We, then, tackle Galois theory by transcendental means. For Fuchsian equations,

we define and compute the local Galois group with the help of a classification by flat

holomorphic vector bundles over an elliptic curve Eq and deduce the local monodromy;

this is done in section 2. In section 3, to get the global Galois group of Fuchsian

equations along the same lines, we generalize Birkhoff’s scheme with a more intrinsic

construction of the connection matrix. Then, we propose a tentative computation of

global monodromy in the Abelian regular case with the help of the geometric class

field theory of the elliptic curve Eq. The results of sections 2 and 3 are taken from

[36].

In section 4, we address the corresponding problems for general q-difference sys-

tems. The local theory, involving a Stokes phenomenon, is summarized in 4.1. The

main results about classification come from [29](3), also based on [38] and [37]. Their

application to Galois theory in 4.2 will be published in [34], as well as the (so far,

more fragmentary) global theory of 4.3.

Last, we try to address the motivating subject of this survey (and the subject of

the Conference) in an elementary discussion of isomonodromy and integrability for

q-difference equations, in section 5.

Acknowledgements. — This text was written after a lecture given at the Confer-

ence “Théories asymptotiques et équations de Painlevé” held in Angers in June 2004.

I do wish to warmly thank the organizers, Eric Delabaere and Michèle Loday-Richaud

for an exciting scientific event and lasting stimulation.

(3)Until this is published, see [30] and the subsequent notes.
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1. Birkhoff revisited

Following a suggestion by Birkhoff in [8], J.-P. Ramis, in [26], emphasized and

initiated the use of theta functions and of the geometry of the elliptic curve in the

study of q-difference equations. One salient feature of this angle of attack is that

the necessity of multivalued functions totally disappears. Instead of branching at 0

and ∞, the elementary functions of the theory come with discrete logarithmic spirals

of zeroes and poles and the constants (q-invariant functions) of the theory, e.g., the

coefficients of the Birkhoff connection matrix, are elliptic functions. Theta functions

can then be taken as a natural scale for asymptotics and were used that way in [27](4).

1.1. Local resolution. — We shall give here some more useful notation and ter-

minology. The local study (at 0) of equation (0.0.5) involves some kind of Newton

polygon at 0, which was first introduced by Adams in [1]. This is the convex hull

of the set {(i, j) / i ∈ {0, . . . , n} , j ≥ v0(ai)}, where v0(a) denotes the order at 0

of the series a ∈ K (z-adic valuation), and we have written a0 = 1 for simplicity.

The boundary of the Newton polygon is made of two vertical half-lines and k ≥ 1

lower sides of rational slopes µ1 > · · · > µk (here numbered from right to left). The

lengths of horizontal projections (absolute abcissae) of these sides are positive inte-

gers r1, . . . , rk ∈ N∗, the multiplicities of the slopes. Giving the slopes and their

multiplicities allows one to recover the Newton polygon, and we will identify these

two kinds of data.

Definition 1.1. — An equation is said to be pure of slope µ if its Newton polygon has

only one slope µ1 = µ, and it is said to be Fuchsian, or regular singular, if it is pure

of slope 0.

We shall give the definition of regularity (having an ordinary point at 0) only for

systems, see the next definition. There are criteria of Fuchsianity resting on orders

of growth (or decay) of the solutions near 0. Similar definitions and criteria can be

formulated at ∞ (this is also true of all that follows). Birkhoff considered systems

with matrices A such that A(0) ∈ GLn(C), whence the following definitions:

Definition 1.2. — The system (0.0.7) will be said to be regular singular or Fuchsian

at 0 if A is locally equivalent to A′ ∈ GLn(K) such that A′(0) ∈ GLn(C). It will

be said to be regular or to have an ordinary point at 0 if A is locally equivalent to

A′ ∈ GLn(K) such that A′(0) = In.

Here, “locally” means: through a gauge transformation with coefficients in C({z})

if K = C(z) or C({z}), with coefficients in C((z)) if K = C((z)). One can then prove

that a system (0.0.7) is Fuchsian if and only if it is equivalent to a system (0.0.6)

obtained by starting from a Fuchsian equation; also, a rational system that is Fuchsian

(4)Results about asymptotics can also be found in [7].
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256 J. SAULOY

at 0 and at ∞ is rationally equivalent to one such that A′(0), A′(∞) ∈ GLn(C).

One easily checks that, for a system with coefficients in C({z}) (a fortiori in C(z)),

regularity (having an ordinary point at 0) is equivalent to the condition that the

system has a fundamental solution X ∈ GLn(C({z})). This is similar to the case of

regular (or ordinary) points for differential equations.

These definitions are local at 0 (or ∞). Intermediary singularities (those in C∗)

are defined in a different way. For the sake of clarity, we introduce now the relevant

terminology, although it won’t be used in the local study.

Definition 1.3. — A singularity of the meromorphic matrix A(z) is either a pole of

A(z) or of A−1(z) in C∗. Assuming A(z) ∈ C({z}), the system (0.0.7) is said to be

singular at z0 ∈ C∗ if z0 is a singularity of A(z). If A(z) and A−1(z) are holomorphic

over C∗ (with values in GLn(C)), the matrix A(z) and the system (0.0.7) are said to

be regular over C∗.

As is the case for differential equations, a basic lemma says that any Fuchsian

system, is locally equivalent to a system with constant coefficients. We state it in the

convergent case.

Lemma 1.4. — Let A ∈ GLn(C({z})) be Fuchsian at 0. Then, there exists F (0) ∈

GLn(C({z})) and A(0) ∈ GLn(C) such that F (0)[A(0)] = A.

The latter equality reads F (0)(qz) = A(z)F (0)(z)
(

A(0)
)−1

. This implies that, if A

is rational, then F (0) is actually meromorphic all over C: it has, a priori, as many half

discrete logarithmic spirals ziq
N∗

of singularities as A(z) has singularities zi ∈ C∗.

We now show how to get a fundamental solution for (0.0.7) in the Fuchsian case

at 0. We write A = F (0)[A(0)] as in the lemma. Then, X (0) = F (0)eA(0) is such a

fundamental solution if eA(0) is so for the system with matrix A(0). For the latter, we

use the multiplicative Dunford decomposition:

A(0) = A(0)
s A(0)

u ,

where A
(0)
s is semi-simple, A

(0)
u is unipotent and they commute. One builds e

A
(0)
s

from

elementary functions such that σqec = cec (this accounts for the eigenvalues c of A(0),

also called exponents) and e
A

(0)
u

from an elementary function such that σq l = l + 1

(in case A
(0)
u is nontrivial). We do not give the details. Last, we put

eA(0) = e
A

(0)
s

e
A

(0)
u

.

Classically (Adams, Carmichael, Birkhoff ...), one took ec = zlogq(c) and l = logq(z).

These functions have no singularities over C∗, but they are multivalued and so will

be X (0) with those choices.

SÉMINAIRES & CONGRÈS 14
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Following [26], one can instead build single valued fundamental solutions in

M(C∗). This uses Jacobi’s theta function θq ∈ O(C∗), which is defined as:

(1.4.1) θq(z) =
∑

n∈Z

(−1)nq−n(n−1)/2zn.

It satisfies the q-difference equation:

(1.4.2) σqθq = −qzθq.

For instance, one can then take ec = eq,c and l = lq, where::

eq,c(z) = θq(z)/θq(c
−1z) and(1.4.3)

lq(z) = zθ′q(z)/θq(z).(1.4.4)

Since θq has simple zeroes on the discrete logarithmic spiral qZ, instead of ramification

at 0 and ∞, the solution X (0) inherits discrete logarithmic q-spirals (or half-spirals)

of poles.

Remark 1.5. — As noted before, the fundamental solution X (0) for the Fuchsian sys-

tem (0.0.7) has, in some sense, moderate growth near 0. However, as a rule, it has an

essential singularity at 0. As an example, let us follow the “non Fuchsian” function

θq versus the “Fuchsian” function eq,c along the discrete half-spiral q−Nz0, for some

z0 6∈ qZ ∪ cqZ. We assume c 6∈ qZ, so that eq,c indeed has an essential singularity at

0 (coming from the denominator θq(c
−1z)). We find, for n ∈ N:

θq(q
−nz0) = (−1)nqn(n−1)/2z−n

0 θq(z0),

eq,c(q
−nz0) = c−neq,c(z0).

Thus, along a generic half q-spiral, eq,c has polynomial growth while θq has not.

If A is as well Fuchsian at ∞, we end up with two fundamental solutions X (0)

and X (∞), each with discrete logarithmic q-spirals of singularities (accounting for the

local Jordan structures at 0 and ∞, that is, those of A(0) and A(∞)) and also half

discrete logarithmic q-spirals of singularities (accounting for the singularities of A(z)

and inherited through the gauge transformations F (0) and F (∞)).

q
0

q
∞

q
z2

q
z1

q
z3

q
0

q
∞

q
z2

q
z1

q
z3

Singularities of X
(0) Singularities of X

(∞)
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1.2. Connection matrix. — To the rational system A(z) Fuchsian at 0 and ∞,

Birkhoff then associated the connection matrix :

P =
(

X (∞)
)−1

X (0).

The latter is σq-invariant, hence (almost) elliptic. Indeed, if the elementary functions

were chosen multivalued, one may have P (ze2ıπ) 6= P (z). However, if one takes

uniform elementary functions, as we just did, then the Birkhoff connection matrix P

is truly elliptic: P ∈ GLn(M(Eq)). This, of course, comes from the identification of

M(C∗)σq with M(Eq).

Theorem 1.6. — (Birkhoff, [8].) From the connection matrix P together with the local

data A(0) and A(∞), one can recover the rational system A.

This can be made more precise: the theorem in section 2.2, p. 1041 of [35] provides

an explicit one to one correspondance between sets of equivalence classes (it will

be made more functorial in the next section). However, the heart of the theorem

is the above existence assertion, which relies directly on Birkhoff decomposition of

matrices.

Problem: to interpret the connection matrix in Galois or in monodromy terms.

By the way: the same problem holds for the local data encoded in A(0) and A(∞).

Since all functions are uniform, this will not come from ambiguity in analytic con-

tinuation. In order to get into the problem, we shall need some Tannakian formalism

which we give in section 2.

1.3. Confluence. — In order to give a geometric interpretation to the connec-

tion matrix, one can draw on the classical q-analogy alluded to in the introduc-

tion: δq =
σq−1
q−1 → δ = z d

dz when q → 1. The phenomenon of confluence is de-

scribed more precisely in [35]. The choice of this term may be justified by the fact

that the poles of the meromorphic solutions of q-difference equations will be seen to

come together and condensate into cuts for the multivalued solutions of differential

equations.

Suppose (Aq − In)/(q − 1) → B̃. Then, when q → 1, under adequate hypotheses,

a (single valued) fundamental solution X
(0)
q of σqX = AqX over C∗ converges to a

(multivalued) fundamental solution X̃ (0) of δX = B̃X . Discrete spirals of poles of

X
(0)
q condensate into cuts of X̃ (0), which are continuous spirals z̃jq

R, where z̃0 = 1

and z̃1, . . . , z̃m are the poles of B̃ on C∗. The same holds at ∞.
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q
0

q
∞

q̃
z2

q̃
z1

q̃
z3

q
0

q
∞

q̃
z2

q̃
z1

q̃
z3

Definition domain of X̃
(0) Definition domain of X̃

(∞)

The connection matrix Pq =
(

X
(∞)
q

)−1

X
(0)
q converges to P̃ =

(

X̃ (∞)
)−1

X̃ (0),

which is locally constant on the open set: Ω̃ = C∗ \
⋃

z̃jq
R, with values P̃1, . . . , P̃m.

q
0

q
∞

q̃
z2

q̃
z1

q̃
z3 Ω̃

Definition domain of P̃

Theorem 1.7. — The monodromy matrix around z̃j is P̃−1
j P̃j−1.

The example of the q-hypergeometric series degenerating to the classical hyperge-

ometric series is treated at length in [35].

1.4. Renewal. — As for Galois theory, the idea to extend Picard-Vessiot theory

and differential algebra to difference or q-difference equations has been around for

quite a while, see for instance [17] or [12]. However, from the very beginning, stands

a difficulty about the field of constants of such a theory. While, in differential Picard-

Vessiot theory, constants are functions with a zero derivative, hence elements of C

(at least in the complex analytic theory), in our setting, constants are σq-invariants,

hence, as we saw, elliptic functions and it is not clear that algebraic groups over the

field of constants could be descended to the field C. It is indeed necessary to have,

for all exponents c ∈ C∗, functions such that σqec = cec. If we require these functions

to be uniform meromorphic, we get a family of elliptic functions eced

ecd
which can be

shown to generate a transcendental extension of C.

Bypassing this difficulty, P. Etingof gave in [16] the first precise Galoisian interpre-

tation of the connection matrix. He considered only regular systems, for which there

is no need for the ec or for special functions of any kind, everything being solvable

with power series (see definition 1.2). Thanks to this, the field of constants is then
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C and Etingof was able to use the values of the Birkhoff connection matrix P to

generate the Picard-Vessiot Galois group: more precisely, he shows the P (a)−1P (b),

for regular points a, b ∈ C∗ to be a set of generators.

These results were extended to general linear q-difference equations by M. van der

Put and M. Singer in [25]. They use as a substitute for special functions a family of

symbolic solutions ec that are (algebraically) constrained to the relations ecd = eced

and build a universal Picard-Vessiot extension over C. They also recover the Galois

group by Tannakian construction in the spirit of [13]. A minor complication of the

theory is that the universal Picard-Vessiot extension is not an integral ring (and

cannot be embedded into a field). A more serious backdraw is that the use of symbolic

solutions wipes out the function theoretic point of view.

In [2], Y. André took up the program of Birkhoff to unify differential, difference

and q-difference equations and developped the notion of non commutative differentials

and connections. Among other things, this allowed him to define the Galois groups

for mixed families, involving simultaneously any of the three types of such functional

equations, and to prove a specialization theorem for these families. This is purely

algebraic, but the confluence result we have met in subsection 1.3 can be seen as an

analytical incarnation of (a particular case of) this theorem. The algebraic viewpoint

has also led L. Di Vizio to results of an arithmetical nature, although they rather deal

with the generic Galois group ([15]).

2. Local monodromy for Fuchsian equations

2.1. Some Tannakian formalism. — The following considerations will be needed

for the construction of the local as well as the global monodromy and Galois groups.

In the study of differential equations, solutions of the system δX = AX (δ a

derivation) are seen as null-vectors of the operator ∆A : X 7→ δX−AX and the latter

is abstracted as a connection on a differential module. In analogy with this, we see

the solutions of the system (0.0.7) as invariant vectors of the semi-linear operator ΦA :

X 7→ A−1σqX . Abstracting the latter, we call q-difference module a pair M = (V, Φ)

where V is a finite dimensional vector space over K and Φ a σq-linear automorphism;

this means a group automorphism of V satisfying the following rule (which replaces

here Leibnitz rule):

∀a ∈ K , ∀x ∈ V , Φ(ax) = σq(a)Φ(x).

Actually, choosing a base allows one to identify any q-difference module with (Kn, ΦA)

for some A ∈ GLn(K). A morphism from the q-difference module M = (V, Φ)

to the q-difference module N = (W, Ψ) is a K-linear map f from V to W such that

Ψ◦f = f ◦Φ; thus, an isomorphism from (Kn, ΦA) to (Kn, ΦB) is the same as a gauge

transformation (0.0.8) from A to B. Things can be made even more intrinsic (and

maybe further clarified) by noting that the category DiffMod(K, σq) of q-difference
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modules over (K, σq) is equivalent to the category of finite length left Dq,K-modules,

where we write Dq,K = K
〈

σ, σ−1
〉

for the Öre algebra of non commutative Laurent

polynomials characterized by the relation σ.f = σq(f).σ (the operation of Φ being

identified with left multiplication by σ). One can then prove that the Newton polygon

is an intrinsic object in the following sense: it depends only on the (isomorphism class

of) the module obtained from an equation.

At any rate, classical linear operations (tensor product, internal Hom, dual ...)

may be defined in DiffMod(K, σq) turning it into a rigid C-linear Abelian tensor

category: this is because for any of our three base fields, the subfield of constants

is C. The category DiffMod(K, σq) is moreover Tannakian, and we shall describe

fibre functors and the corresponding Tannakian Galois groups.

Our main object of interest is E = DiffMod(C(z), σq). As a step towards this

global study, we shall consider the localized category E(0) = DiffMod(C({z}), σq)

and the corresponding category E(∞) involving w = 1/z. In particular, we shall deal

with the full subcategory E
(0)
f of E(0) (resp. E

(∞)
f of E(∞), resp. Ef of E) having as

objects modules that are Fuchsian at 0 (resp. at ∞, resp. at both 0 and ∞). These

are all Tannakian subcategories of each other.

Since we know that the categories at stake are Tannakian, it is tempting to use the

construction of X (0) and X (∞) to define fibre functors ω(0) and ω(∞), then to interpret

the construction of P as providing a tensor isomorphism ω(0) → ω(∞), whence a path

in the Galois groupoid. However, the formation of X (0), X (∞) and P is not tensor

compatible, because eced 6= ecd. Moreover, as noted in section 1.4, this is unavoidable

while using meromorphic functions.

The local classification of global systems (0.0.7) with A ∈ GLn(C(z)) deals with

gauge transformations with coefficients in C({z}) (local analytic classification) or in

C((z)) (formal analytic classification). One finds that, for Fuchsian systems, the local

equivalence classes of such systems have the same explicit description in both settings

(formal or analytic), see [25] or [38]. As a consequence of the explicit description,

one does not change the local category if we allow objects over the coefficient field

C({z}) or even C((z)), instead of C(z). Therefore, the object of this section is the

category E
(0)
f . Note that results rather similar to those described here were obtained

by V. Baranovsky and V. Ginzburg in [6]. A precise comparison is made in [36].

2.2. Equivalence with flat holomorphic vector bundles over Eq. — Write

P(0) the full subcategory of E
(0)
f made of flat objects, that is, modules (C({z})

n
, ΦA)

with A ∈ GLn(C). From lemma 1.4, the canonical inclusion of P(0) in E
(0)
f is an

equivalence of categories.

To the flat object (C({z})
n
, ΦA), we associate a flat holomorphic vector bundle over

the elliptic curve Eq in the following way. First, we consider the trivial holomorphic

vector bundle C∗×Cn over C∗. We write ∼A for the equivalence relation on the total
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space C∗ × Cn generated by the relations ∀(z, X) ∈ C∗ × Cn , (z, X) ∼A (qz, AX).

The quotient set FA = (C∗ ×Cn)/ ∼A is then naturally endowed with a structure of

holomorphic vector bundle over C∗/qZ = Eq, and this bundle is flat. The following

is proven in [36]:

Theorem 2.1. — We thereby obtain an equivalence of the category E
(0)
f with the cate-

gory Fibp(Eq) of flat holomorphic vector bundles over Eq.

The latter is to be understood as a full subcategory of the category of all holomor-

phic vector bundles over Eq. In particular, we shall have no use for connections on

these bundles and we do not consider them as part of the structure.

It is well known (Weil correspondence, see [42],[19] or [20]) that flat holomorphic

vector bundles over a Riemann surface X are“the same”as finite dimensional complex

linear representations of its fundamental group π1(X) (we assume X to be connected

and omit the base point). However, it should be noticed that isomorphic vector

bundles do not correspond to isomorphic representations in the usual sense. To make

this more precise, we introduce a category whose objects are the finite dimensional

complex linear representations of Γ = π1(X). Here, we see the group Γ as acting on

the universal covering X̃ of X . Then we take as morphisms from the representation

ρ : Γ → GL(V ) to the representation ρ′ : Γ → GL(V )′ all equivariant mappings:

these are the holomorphic maps φ : X̃ → L(V, V ′) (the space of C-linear maps from

V to V ′) such that ∀z ∈ X̃, ∀γ ∈ Γ , φ(γz)◦ρ(γ) = ρ′(γ)◦φ(z). This category admits

the (usual) category of finite dimensional complex linear representations of Γ as an

essential but not full subcategory.

The above correspondence stems from the fact that any continuous vector bundle

over X trivializes over the covering X̃ of X and that X = X̃/Γ. In the case that X

is the elliptic curve Eq, there is a tower of coverings:

C → C∗ → Eq,

realizing Eq as a quotient of the intermediate covering C∗ by the group qZ of its auto-

morphisms, and holomorphic vector bundles already trivialize over the open Riemann

surface C∗. This provides another description of Fibp(Eq), similar to the previous

one, but where we take X̃ = C∗ and Γ = Z (acting through powers of q).

Proposition 2.2. — The category Fibp(Eq) is equivalent to the category R having as

objects the finite dimensional complex representations of Z and, as morphisms from

ρ : Z → GL(V ) to ρ′ : Z → GL(V ′) respectively characterized by A = ρ(1) and

A′ = ρ′(1), all holomorphic maps F : C∗ → L(V, V ′) such that ∀z ∈ C∗ , F (qz)◦A =

A′ ◦ F (z).

The equivalence of E
(0)
f , Fibp(Eq) and R is to be understood as a Tannakian

equivalence, that is, compatible with linear operations (tensor product, internal Hom,

dual).
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2.3. Galois group and monodromy group. — To compute the Galois group of

E
(0)
f one has to describe fibre functors, which can be done in two ways:

1. Algebraic: since holomorphic vector bundles over the Riemann surface Eq are

the same thing as algebraic vector bundles over the algebraic curve Eq, the

functor A FA from E
(0)
f to Fibp(Eq) can itself be seen as a fibre functor over

the base Eq. As such, according to [13], it gives rise to a Galois groupoid over

Eq in the algebro-geometric sense.

2. Analytic: using the equivalence of E
(0)
f with a category of equivariant bundles

over C∗, we can actually define a family fibre functors indexed by C∗ and thereby

define a Galois groupoid with base C∗.

We follow here the latter path, which gives a richer information.

First recall the Tannakian category RepC(Z) of finite dimensional complex rep-

resentations of Z. It has a natural fibre functor ω(0) : RepC(Z) → V ectfC, i.e. the

forgetful functor, which sends each representation to its underlying finite dimensional

complex vector space and each morphism of representations to the underlying linear

map. One proves RepC(Z) to be neutral tannakian over C, thus, equivalent to the

category of representations of a unique complex proalgebraic group:

Zalg = Homgr(C
∗,C∗) × C,

the proalgebraic hull of Z.

Our category R has the same objects as RepC(Z) but more morphisms. Therefore,

there is a (not fully) faithful essentially surjective functor RepC(Z) → R and it is

compatible with linear operations.

For each a ∈ C∗ we define a fibre functor ω
(0)
a on R over C: on objects, it has

the same effect as ω(0) (it sends a representation to its underlying space), but on

morphisms, it is richer: it sends a morphism F from ρ : Z → GL(V ) to ρ′ : Z →

GL(V ′) to the linear map F (a). Indeed, recall from proposition 2.2 that F is a

holomorphic map from C∗ to L(V, V ′), so that F (a) ∈ L(V, V ′). All these ω
(0)
a have

the same restriction ω(0) to RepC(Z). General nonsense and a small computation

then yield:

Theorem 2.3. — The local Galois groupoid, with base C∗, is given by:

Iso⊗(ω(0)
a , ω

(0)
b ) = {(γ, λ) ∈ Zalg / γ(q)a = b}.

Corollary 2.4. — The local Galois group (relative to any base point in C∗) is:

G
(0)
f = {(γ, λ) ∈ Zalg / γ(q) = 1}.

We see that G
(0)
f = G

(0)
f,s × G

(0)
f,u, where the semi-simple component G

(0)
f,s is {γ ∈

Homgr(C
∗,C∗) / γ(q) = 1} and the unipotent component is G

(0)
f,u = C.

The unipotent component is plain enough. We can understand better the semi-

simple component by extracting some sort of compact form of it, the subgroup M
(0)
f,s
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of continuous elements of G
(0)
f,s. We notice that elements of M

(0)
f,s must send C∗ to

U = {u ∈ C / |u| = 1}, since they factor through the compact group C∗/qZ. Using

the splitting C∗ = U × qR, where qR is defined as e2ıπτR, we can introduce two

particular elements of M
(0)
f,s :

{

γ1 : ue−2ıπτy 7→ u

γ2 : ue−2ıπτy 7→ e2ıπy
, where |u| = 1 and y ∈ R.

Proposition 2.5. — The group M
(0)
f,s is the free Abelian group generated by γ1 and γ2.

It is Zariski-dense in G
(0)
f,s.

We see γ1, γ2 as generating the (semi-simple component of the) fundamental group

of an infinitesimal elliptic curve and consider M
(0)
f,s as the (semi-simple component of

the) the local monodromy. Thus, what we got amounts to a Schlesinger-type density

theorem.

We also note without further detail that the behaviour of M
(0)
f,s (generators and

relations) under confluence (q → 1) can be precisely described and linked to the

differential Galois group and the monodromy group of the differential equation at the

limit [36]. This is a particular case of the specialisation theorem in [2], with a bit

more transcendental information.

3. Global monodromy for Fuchsian equations

Here, we deal with the full subcategory Ef of E = DiffMod(C(z), σq) whose

objects are the modules that are Fuchsian at 0 and at ∞. Such a module can be

incarnated by a matrix A ∈ GLn(C(z)) such that A(0) , A(∞) ∈ GLn(C). These are

precisely the systems considered by Birkhoff. We take up his basic idea: to localize

at 0 and at ∞ and to keep track of the global information ithrough the connection

matrix, which glues solutions at 0 and at ∞.

3.1. Equivalence with connection triples. — To a Fuchsian system A, we

can associate (non canonically) two systems with constant coefficients A(0), A(∞) ∈

GLn(C) which are respectively locally equivalent to A at 0 and at ∞ through

gauge transformations F (0) ∈ GLn(M(C)) and F (∞) ∈ GLn(M(S \ {∞})): one has

F (0)[A(0)] = A and F (∞)[A(∞)] = A. Then F =
(

F (∞)
)−1

F (0) ∈ GLn(M(C∗)) is

such that (σqF )A(0) = A(∞)F .

More geometrically, we define two flat holomorphic vector bundles F (0) and F (∞)

over Eq and a meromorphic isomorphism φ : F (0) → F (∞). This is, of course, an

intrinsic version of Birkhoff matrix: the latter can be recovered by trivializing the

pullbacks of F (0) and of F (∞) over C∗ through the choice of meromorphic frames, for

instance our fundamental solutions eq,A(0) and eq,A(∞) . However, the construction of

φ is tensor compatible, in contrast to the construction of Birkhoff’s connection matrix.
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Theorem 3.1. — We thus obtain an equivalence of Tannakian categories over C from

Ef to the category of such triples (F (0), φ,F (∞)).

The above description of how to get a triple from a system is not canonical, but

there is a way to make it functorial ([36]).

Now, from section 2, we get, for each a ∈ C∗, two fibre functors ω
(0)
a and ω

(∞)
a .

Recall that they are defined by pulling back the bundles F (0) and F (∞) through the

covering C∗ → Eq, which trivializes them. Then, the central component φ of the triple

X = (F (0), φ,F (∞)) is incarnated by a matrix F meromorphic over C∗, actually, the

same F intoduced at the beginning of this section. Evaluation at a yields a linear

map F (a) : ω
(0)
a (X ) → ω

(∞)
a (X ).

Proposition 3.2. — In this way, we obtain a tensor isomorphism of fibre functors:
[

(F (0), φ,F (∞)) F (a)
]

∈ Iso⊗(ω(0)
a , ω(∞)

a )

Remark 3.3. — We are not being quite rigorous here, as the linear map F (a) needs

not to be defined for all X and all a: in principle, the meromorphic matrix F has as

singularities the q-spirals generated by the singularities of A(z) (the rational system

it comes from). So the tensor isomorphism just constructed is really defined over

some Tannakian subcategory, for instance, the subcategory generated by a particular

system of interest. The corresponding machinery is detailed in [36].

The following diagram may help to visualize the corresponding Galois groupoid.

The base of the groupoid is the disjoint union C∗∨C∗ which we can see as two parallel

vertical punctured planes. The point a of each plane corresponds to the fibre functor

ω
(0)
a (resp. ω

(∞)
a ). Pathes between a and b within the first plane come for the elements

of Iso⊗(ω
(0)
a , ω

(0)
b ) described in section 2, and the corresponding pathes in the second

plane are similar. Then, for each a ∈ C∗, we just defined a tensor isomorphism from

ω
(0)
a to ω

(∞)
a , to be visualized as a horizontal path joining the two components.

ω
(0)
a (X)

F (a)
//

��

ω
(∞)
a (X)

��

ω
(0)
c (X)

F (c)
//

::uuuuuuuuu

ω
(∞)
c (X)

99ttttttttt

ω
(0)
b

(X)
F (b)

//

\\9
9
9
9
9
9
9
9
9
9
9
9
9
9

ω
(∞)
b

(X)

]];
;
;
;
;
;
;
;
;
;
;
;
;
;
;

Theorem 3.4. — Together with G
(0)
f and G

(∞)
f , these elements Zariski-generate the

global Galois groupoid.
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Recall from definition 1.2 and the remarks in section 1.4 that, in the case of a regular

system, no q-character or q-logarithm is involved in the local resolution. Then, the

local bundles are trivial as are the local Galois groupoids: one should see the above

diagram as having each of its C∗-components shrunk to a point.

As a corollary, we can state Etingof result ([16]):

Corollary 3.5. — The Galois group of a regular system with connection matrix P is

generated by the values P (a)−1P (b).

Confluence. — The precise relationship of the intrinsic (and tensor compatible) de-

scription above with the one by Birkhoff is the following. With the notations in-

troduced at the beginning of this section, the local solutions of Birkhoff are X (0) =

F (0)eq,A(0) and X (∞) = F (∞)eq,A(∞) , so that the connection matrix reads:

P =
(

X (∞)
)−1

X (0)

=
(

eq,A(∞)

)−1
Feq,A(0) .

Thus, the local and global contributions of the monodromy are mixed in P , while they

are separated in the bundle encoding: this explains why the latter behaves better with

respect to linear constructions.

The proof of the confluence result stated in 1.3 actually deals separately with

eq,A(0) and eq,A(∞) on the one hand, F (0) and F (∞) on the other, so that the “central

component” F =
(

F (∞)
)−1

F (0) itself has a limit. From this result, we deduce the

confluence of the Galois group (cf [36]), which is again a special case of [2] with a

more function theoretic flavour.

3.2. Monodromy for Abelian regular equations. — The previous description

of the global (or connection) component of the Galois group or groupoid involves

uncountably many generators, indexed by a ∈ Eq \ { singularities }. This cannot be

considered as satisfactory in the spirit of a Riemann correspondance, for we should

like the monodromy to involve a tractable set of generators and relations.

To tackle the problem, we restrict ourselves to the case of regular equations, where

there is no interference of the local monodromy: we saw that, in that case, the Galois

group is generated by the values P (a)−1P (b), computed from the connection matrix

P . Since P is elliptic, we may see it as meromorphic over Eq. Also, up to conjugacy,

we may assume that the Galois group is generated by the values P (a) of P . We

thus have a linear algebraic group rationally parameterized by an elliptic curve, with

known prescribed singularities.

Now we further assume that our equation is Abelian, that is, its Galois group is

Abelian. Geometric class field theory, which describes commutative linear algebraic

groups parameterized by algebraic curves, with known prescribed singularities, is
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suited for our needs. The theory is due to Lang and Rosenlicht and expounded in

[39]. Applied to our setting, it gives the following statement:

Theorem 3.6. — The Abelian regular systems with singularities in a prescribed finite

subset S ⊂ Eq are classified by the representations of the following algebraic group:

π1
ab,S,reg =

LS,s

L′
S,s

× LS,u, where:

{

LS,s = Gm

S

∆ ' Gm
|S|−1,

LS,u '
∏

p∈S (1 + tpC[[tp]])
,

where Gm is the multiplicative group, where ∆ is the diagonal in Gm
S and where











RelEq
(S) = {(np)p∈S ∈ ZS /

∑

p∈S

npp = 0Eq
}

L′
S,s = image in LS,s of {(xp)p∈S / ∀(np)p∈S ∈ RelEq

(S) ,
∏

p∈S

x
np
p = 1}

.

Example 3.7. — We just illustrate the case of a rank 1 system (taken from [36]). We

consider the equation σqy = ay, where:

a(z) = a0

r
∏

i=1

1 − u−1
i z

1 − v−1
i z

= a∞

r
∏

i=1

1 − uiw

1 − viw

One has used w = 1
z ; the above requires that a∞

∏

ui = a0

∏

vi. Then the connection

function:

p(z) =
eq,a0(z)

eq,a−1
∞

(w)

r
∏

i=1

uiΘq(z/ui)

viΘq(z/vi)

is elliptic. In the regular case, one has a0 = a∞ = 1,
∏

ui =
∏

vi and the connection

function is:

p(z) =

r
∏

i=1

uiΘq(z/ui)

viΘq(z/vi)
.

The connection component is the subgroup of C∗ generated by the values p(b)
p(a) , where

a, b run through C∗ − {u1, . . . , ur, v1, . . . , vr}. One can of course fix a. This group is

clearly connected, so it has to be C∗ (the general case) or trivial. The latter occurs

if p(z) is constant, that is, if the given equation is (equivalent to) the trivial equation

σqf = f .

4. Monodromy for irregular equations

In this section, we address the local study of the category E = DiffMod(C(z), σq).

For reasons similar to those given at the beginning of 2, this amounts to dealing with

the localized category E(0) = DiffMod(C({z}), σq). However, we shall find out that

here, the formal and analytic equivalence are by no means the same: in the general

case of irregular equations, there is a Stokes phenomenon. We shall call“formalisation”

the base change functor −⊗C((z)), going from E(0) to Ê(0) = DiffMod(C((z)), σq).
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4.1. Local analytic classification

The canonical filtration by the slopes. — Recall from sections 1.1 and 1.2 that, to

each q-difference equation, system or module, is attached a Newton polygon at 0.

Recall also from the classical theory of complex linear differential equations how the

Newton polygon of a differential equation, system or module can be used to produce

solutions, using exponentials of rational functions and formal power series; equiva-

lently, analytic linear differential operators admit a formal factorisation with “pure”

factors; equivalently again, differential modules can be split as a direct sum of “pure”

modules (one slope only) in the formal category. However, the formal series which

appear in the resolution or in the factorisation are, as a rule, divergent and differential

modules cannot be simplified within the analytic category.

Similar methods are available for q-difference equations, with (for instance) theta

functions in guise of exponential factors. Adams and Carmichael found that one can

therefore build a fundamental basis of formal solutions, but Adams, in [1], found the

following striking fact:

Theorem 4.1(Adams’ Lemma, [1]). — Solutions built from the first (leftmost) slope of

the Newton polygon are convergent.

For a proof, see [38]. This implies that any analytic q-difference operator can be

factored within the analytic category. As for q-difference modules, the following is

proved in loc. cit.:

Theorem 4.2. — Any q-difference module admits a unique filtration (M≥µ)µ∈Q with

M (µ) = M≥µ

M>µ pure of slope µ. After formalisation, this filtration splits.

Actually, the solutions successively built from Adam’s lemma may involve ramifica-

tion of the complex variable if some slope is non integral. However, the factorisation,

filtration and splitting mentioned in the theorem are valid without any restrictive

assumption (e.g., integrality) on the slopes.

Definition 4.3. — We call tamely irregular a direct sum of pure modules or, what

amounts to the same, a module M that is isomorphic to the graded module
⊕

M (µ).

The corresponding full subcategory of E(0) will be denoted by E
(0)
mi . The importance

of these constructions in classification matters (and for Galois theory) stems from the

following facts:

Theorem 4.4. — The filtration is functorial and gr : M  

⊕

M (µ) is a faithful exact

C-linear ⊗-compatible functor. After formalisation, gr becomes isomorphic to the

identity functor.

We should notice that, in this way, our filtration resemble those axiomatized in [33]

but are very different from those defined for differential equations or in arithmetic,

like in [3].
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Although the above constructions are defined quite generally, concrete applications,

like normal forms or explicit Galoisian operators, are much easier to describe when

the slopes are integral(5). So, from now on, we consider only modules with integral

slopes. We let E
(0)
1 (resp. E

(0)
mi,1) be the full subcategory of E(0) made of modules

(resp. direct sums of pure modules) with integral slopes. They are Tannakian. The

following is an easy consequence of the previous discussion.

Theorem 4.5. — The Galois group G
(0)
1 of E

(0)
1 is the semi-direct product of the Galois

group G
(0)
mi,1 = C∗ × G

(0)
f of E

(0)
mi,1 by a prounipotent group that we call St.

We shall now want to build explicit Galoisian Stokes operators generating the so-

called Stokes group St, thereby obtaining the so-called wild monodromy (see [28]).

Classification by the Stokes sheaf. — The following constructions were mainly moti-

vated by classification concerns and they are not all directly related to the Galois and

monodromy group. However, it seems difficult to completely separate the two trends

of thought.

As follows from theorem 4.4, the formal class of a q-difference module M in E(0) is

entirely determined by the associated graded module, an object of E
(0)
mi . In the case

of E
(0)
1 and E

(0)
mi,1 (integral slopes), the formal classification and graded modules are

moreover easily described in terms of the local Fuchsian classification (which is the

same for the formal and analytic categories): indeed, a pure module of integral slope

is the tensor product of a rank 1 module by a Fuchsian module, so that we just have

to add to the Fuchsian invariants a grading by the slopes. On the side of solutions,

this means allowing integral powers of theta functions.

As it is customary for differential equations, we shall study analytical classes within

a formal class or, what amounts to the same, isomorphism classes of modules with

a prescribed graded module. Thus, we fix a formal class, by giving a direct sum

M0 = P1 ⊕ · · · ⊕ Pk of pure modules with slopes µ1 > · · · > µk and ranks r1, . . . , rk.

Each of the pure components of M0 can be put into the form Pi = (C({z})
ri , Φz−µi Ai

).

Therefore, one has M0 = (C({z})n, ΦA0) for some block-diagonal matrix A0:

(4.5.1) A0 =















z−µ1A1 . . . . . . . . . . . .

. . . . . . . . . 0 . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . z−µkAk















,

where the µi and ri are as above and Ai ∈ GLri
(C) (i = 1, . . . , k).

(5)After submission of this paper, the preprint [24] by M. van der Put and M. Reversat appeared. It

contains, among other results, a complete classification of pure modules without restrictive assump-

tions on the slopes. It can certainly be used to extend the results described here about classification

and Galois theory.
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The objects we want to classify are, precisely, modules in E
(0)
1 endowed with a

formalisation; by this, we mean pairs (M, g) made up of such a module and an

isomorphism g : gr(M) → M0. We consider two such objects (M, g) and (M ′, g′) to be

equivalent if there is an isomorphism u : M → M ′ compatible with the formalisations,

that is, g′ ◦ gr(u) = g. We shall write F(M0) for the set of such isoformal analytic

classes. A pair (M, g) is thus described by giving the module M the shape M =

(C({z})
n
, ΦA), with:

(4.5.2) A = AU =
def















z−µ1A1 . . . . . . . . . . . .

. . . . . . . . . Ui,j . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . z−µkAk















,

where

U = (Ui,j)1≤i<j≤k ∈
∏

1≤i<j≤k

Matri,rj
(C({z})).

In the above representation, a morphism M → M ′ is described by a matrix F ∈

GLn(C({z})) such that F [AU ] = AU ′ . Since the filtration is functorial, F must be

upper triangular by blocks. To express the requirement that it is compatible with the

formalisation, we introduce the algebraic subgroup G of GLn made up of matrices of

the form:

(4.5.3) F =















Ir1 . . . . . . . . . . . .

. . . . . . . . . Fi,j . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . Irk















.

Then, the requirement is that F ∈ G(C({z})).

Theorem 4.4 entails that, for any AU as above, there is a unique F ∈ G(C((z)))

such that F [A0] = AU . We write it F̂ (U). We also see that F̂ (U, V ) = F̂ (V )F̂ (U)−1

is the unique F ∈ G(C((z))) such that F [AU ] = AV and that the corresponding

pairs are equivalent if and only if F̂ (U, V ) ∈ G(C({z})). We conclude that send-

ing AU to F̂ (U) induces a one-to-one correspondance between F(M0) and the left

quotient G(C({z}))\GA0(C((z))), where G
A0(C((z))) = {F ∈ G(C((z))) / F [A0] ∈

GLn(C({z}))}.

The following result of [29] originates in the so-called Birkhoff-Guenther normal

form of [9]:

Theorem 4.6. — The set F(M0) of isoformal analytic classes can be parameterized by

polynomial matrices with prescribed degrees:

∀i, j s.t. 1 ≤ i < j ≤ k , coeffs(Ui,j) ∈
∑

µj≤d<µi

Czd.

Therefore, it is an affine algebraic variety of dimension
∑

i<j

rirj(µi − µj).
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In loc. cit., a theory of asymptotic expansions adapted to the type of divergence

of q-calculus was developped . This allows one to define a sheaf ΛI(M0) of auto-

morphisms of M0 infinitely tangent to identity. Note that this is a sheaf over Eq, in

the same way as the classical analogue is a sheaf over the circle of directions. The

following is a q-analogue of one of the Malgrange-Sibuya theorems.

Theorem 4.7. — There is a natural correspondance: F(M0) ' H1(Eq, ΛI(M0)).

There are two proofs. One is sheaf theoretic, using Newlander-Nirenberg theorem;

this actually yields a more general result of Malgrange-Sibuya type. The other proof is

analytic, using a discrete summation process for q-Gevrey divergent series; this yields

an explicit construction of cocycles. Together, these results give a rather complete

solution to the local analytic classification problem.

One remarkable feature of the discrete summation process just mentioned is that

the directions of the classical theory (summation directions, Stokes lines, anti-Stokes

lines ...) are here replaced by points on Eq. Indeed, the kernels of the q-Laplace

operators are made up from theta functions, the zeroes of which have to be taken

avoiding particular q-spirals in C∗, and the latter are the same as points on Eq.

4.2. Local monodromy

Algebraic summation. — It is not presently clear that these transcendental methods

allow a Galoisian interpretation. Therefore, we shall consider an alternative more

algebraic solution that was expounded in [37]. We generalize the directions of discrete

summation (points on Eq) in the following way. We keep the previous notations.

Definition 4.8. — An allowed summation divisor for A0, is a family (Di,j)1≤i<j≤k of

effective divisors over Eq, such that:

deg Di,j = µi − µj and Di,j = Di,l + Dl,j ;

we moreover require that the evaluation evEq
(Di,j) does not belong to the image

(−1)µi−µj
Sp(Ai)
Sp(Aj)

of (−1)µi−µj Sp(Ai)
Sp(Aj)

⊂ C∗ in Eq.

The evaluation of a divisor
∑

ni[ai] on Eq is
∑

niai ∈ Eq (computed using the

group law). The matrix Ai was defined in equation (4.5.1) and we write Sp(Ai) for

its spectrum.

Theorem 4.9. — For each AU , there is a unique F ∈ G(M(C∗)) such that F [A0] =

AU and divEq
(Fi,j) ≥ −Di,j. It is asymptotic to the formal gauge transformation

F̂ (U) (defined just before theorem 4.6).

The notation divEq
(f) makes sense for any meromorphic germ f in a punctured

neighborhood of 0 in C∗ such that the divisor of its zeroes and poles in C∗ is q-

invariant near 0, which obviously holds for the coefficients of Fi,j . The condition
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divEq
(Fi,j) ≥ −Di,j then means that the multiplicities of the poles of these coefficients

are not greater than the corresponding coefficients in Di,j .

We write FD(U) for the F of the theorem and we see it as the result of the summa-

tion of F̂ (U) along the direction D. The condition on the evEq
(Di,j) in the definition

is to be compared to prohibited Stokes directions.

Corollary 4.10. — The sheaf of solutions of AU is locally isomorphic to the sheaf of

solutions of of A0. Hence, it is a vector bundle over Eq.

The triangular structure of FD(U) ∈ G(M(C∗)) has a nice consequence. To each

block corresponding to a pure module Pi, one can naturally associate a vector bundle

that is the tensor product of a line bundle (corresponding to the theta factor) by a flat

vector bundle (corresponding to the Fuchsian part): we call pure such a vector bundle.

The following allows a new and simpler proof of theorem 4.7, although this does not

apply to the more general Malgrange-Sibuya type theorem that the transcendental

methods provide.

Theorem 4.11. — The Stokes sheaf ΛI(M0) has a devissage by pure vector bundles.

Galoisian Stokes operators. — We have two ways to define fibre functors on E
(0)
1 .

To describe them, we shall first introduce functors to the category of vector bundles

over Eq. As noted before, they allow us to define Galois groupoids with base the

algebraic curve Eq; moreover, they convey a nice geometrical picture. However, we

consider more significant the fibre functors to the category of vector spaces obtained by

pulling back these vector bundles to C∗ (where they trivialize), thus getting groupoids

with base C∗. Indeed, the algebraic groupoid with base Eq is obtained from the

transcendental one with base C∗ by some kind of folding through the exponential

map, and some information is thereby lost.

In section 2,we saw how to associate a vector bundle to each object in E
(0)
f . The

process can be extended to E
(0)
mi,1 by sending the rank 1 module (C({z}), z) to a line

bundle of degree 1, then a pure module to a pure bundle in a tensor compatible way.

We therefore get a first fibre functor ω̂(0) by sending M to the vector bundle associated

to gr(M). That we do get a fibre functor follows from theorem 4.4.

Second, we can proceed as we did for Fuchsian modules by restricting to an essential

subcategory where the construction is well behaved. From 4.6, we know that the full

subcategory P
(0)
1 of objects in Birkhoff-Guenther normal form is essential, and it is

easily seen to be a Tannakian subcategory. Then we can use the same construction

as on P(0):
C∗ × Cn

(z, X) ∼A (qz, A(z)X)
→ C∗/qZ = Eq.

We thus obtain another fibre functor ω(0) on E
(0)
1 . Its restriction to E

(0)
mi,1 is ω̂(0) and

both restrict to the previous construction in the case of a Fuchsian module.
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Now, for each allowed summation divisor D and each module M described by a

matrix AU , FD(U) is a meromorphic isomorphism from ω̂(0)(M) to ω(0)(M). While

M  FD(U) is tensor-compatible, it is not, in general functorial. However, if one uses

a divisor D with support one point a ∈ Eq, one does get a tensor isomorphism φa from

ω̂(0) to ω(0). One can prove, moreover, that the φa,a′ = φ−1
a ◦ φa′ provide generators

of Aut⊗(ω̂(0)), the required Galoisian Stokes operators. All these constructions and

results will be detailed in [34].

Vector bundles and classification. — For a Fuchsian module, the associated flat bun-

dle loses no information and the corresponding functor is an equivalence of categories.

This remains true for tamely irregular modules (direct sums of pure modules). How-

ever, it is false when one gets to general irregular modules.

The functor ω(0) from E
(0)
1 to the category of holomorphic vector bundles over Eq

is essentially surjective and faithful, but not fully faithful. Non isomorphic modules

may give rise to isomorphic bundles: the isomorphisms will be lifted to isomorphisms

of trivial bundles over C∗, but these cannot be defined at 0, where, as a rule, they

have wild behaviour.

However, if one gives a bundle together with a devissage by pure bundles and if

one considers morphisms of bundles compatible with this enriched structure, then

one can choose trivialisations on C∗ such that the spaces of morphisms are filtered by

subspaces with prescribed q-Gevrey growth conditions, and these allow one to recover

the morphisms of modules. The corresponding functor is then fully faithful, but its

essential image is unclear.

In the same circle of ideas, one should note that the filtration of q-difference modules

is by no way related to the Harder-Narasimhan filtration on the associated bundle.

Indeed, the slopes of a module have no intrinsic meaning on the side of the bundle.

4.3. Global monodromy. — The previous construction of the vector bundle

ω(0)(M) rests on the existence of a Birkhoff-Guenther normal form for M (theo-

rem 4.6), which yields a matrix that is regular over C∗ (see definition 1.3). This was

obtained only for modules with integral slopes. There is, however, a construction

of ω(0)(M) that is valid without such restrictive assumption. Moreover, it is easily

generalized to cover non local aspects of the monodromy.

Geometric constructions. — We start from a rather general q-difference system:

(4.11.1) σqX = AX , A(z) ∈ GLn(M(C∗)).

Recall that we defined a singularity of A(z) to be either a pole of A(z) or of A−1(z)

in C∗. The set of singularities of A shall be denoted Sing(A).

We write π : C∗ → Eq for the canonical projection and consider a connected open

subset U of C∗, such that:

(4.11.2) π(U) = Eq.
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We note that, while the restriction π : U → Eq is a local isomorphism, it is no longer

a covering.

Let ∼A be the equivalence relation on U × Cn generated by the relations:

∀z ∈ U such that qz ∈ U \ Sing(A) , ∀X ∈ Cn , (z, X) ∼A (qz, A(z)X),

(this means the smallest equivalence relation that contains all relations of the previous

form).

Proposition 4.12. — We moreover assume that

(4.12.1) U ∩ q−1U ∩ Sing(A) = ∅.

Then, U×Cn

∼A
is a holomorphic vector bundle over Eq. The sheaf of sections of this

bundle is given by the following; the OEq
(V )-module of sections over an open subset

V of Eq is:

(4.12.2) FU (V ) = {X ∈ MC∗(π−1(V ))n ∩ OC∗(U) / σqX = AX}.

Actually, the solution X is a priori defined (and holomorphic) on U , but the

functional equation σqX = AX may be used to get a meromorphic extension to

π−1(V ), since we took A to be meromorphic all over C∗. Since a holomorphic vector

bundle over a compact Riemann surface is meromorphically trivial, we get:

Corollary 4.13. — The system (4.11.1) has a fundamental basis of (uniform, mero-

morphic) solutions.

To my knowledge, this basic statement was first proven by Praagman in [23] (also

see [25]).

We shall keep in mind the most important example of an open annulus U =

C(r, R) =
def

{z ∈ C / r < |z| < R}, where r ≥ 0 and R > |q|r. In particular, in

the case where U =
◦

D(0, R) =
def

C(0, R) and R is sufficiently small so that (4.12.1) is

satisfied, we recover the previous local constructions.

Sheaf theoretic constructions. — We now relax the assumption (4.12.1) on the open

domain U . Then, equality (4.12.2) still defines a sheaf FU over Eq, actually, an OEq
-

module. The existence of a fundamental basis of solutions of (4.11.1) was proved

using a “good” domain U , but is valid anyhow. So, we call X0 ∈ GLn(M(C∗)) a

fundamental matrix solution, i.e. σqX0 = AX0.

Lemma 4.14. — With the usual identification of OEq
(V ) with the subring OC∗(π−1(V ))σq

of σq-invariant elements of OC∗(π−1(V )), one has:

X−1
0 FU (V ) = {Φ ∈ MEq

(V )n / X0 Φ is holomorphic on U ∩ π−1(V )}.

This allows a description rather similar as the one with “diviseurs matriciels” in

[42], and one proves:

Theorem 4.15. — The OEq
-module FU is locally free of rank n.
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Thus, one may associate to any q-difference module various holomorphic vector

bundles, depending on the choice of “big domains” U . Since holomorphic vector

bundles over open Riemann surfaces are trivial, the concrete form of the last theorem is

that A(z) is equivalent to some A(U) ∈ GLn(O(C∗)), via a gauge transformation F (U)

that is regular holomorphic on U and meromorphic elsewsere. Moreover, for any two

such open domains U , U ′, there is a corresponding meromorphic gauge transformation

F (U,U ′) carrying A(U) to A(U ′), a kind of generalized connection matrix.

Localizing at intermediate singularities. — The constructions above are all functorial

and tensor compatible, hence they provide us with many fibre functors. For these

to be of any use, we must be able to define tensor isomorphisms between these fibre

functors (pathes in the Galois groupoid).

For simplicity, we shall assume that the singularities z1, . . . , zk of A on C∗ are all

non equivalent modulo qZ (this is easy to realize) and that their moduli are far enough

from each other, that one can choose radii R1 < · · · < Rk such that: |zi| < Ri < |qzi|

for i = 1, . . . , k. Said otherwise, the annuli Ui = C(Ri, Ri+1) separate the singularities

and their boundaries actually split the “singular pairs” (zi, qzi). For convenience, we

take R0 = 0 and Rk+1 = ∞, so that U0 and Uk are respectively neighborhoods of

0 and ∞ in C∗, and one can take as A(U0) and A(Uk) the Birkhoff-Guenther normal

forms (if slopes are integral). In case the singularities are not so nicely scattered,

a similar construction is possible with topological annuli (domains bounded by two

topological circles).

Then, for i = 1, . . . , k, the gauge transform F (Ui−1,Ui) is singular only at zi and

the product of these k matrices is the connection matrix. So, in some sense, we have

a localisation at intermediate singularities, as in 3.2 for the Abelian case. It is also

possible to extract some invariants, either by algebra (invariant factors) or by analysis

(residues). However, so far, we have been unable to extract enough information to

get monodromy as a representation. This is probably for lack of some kind of normal

forms for the matrices A(U). This is to be contrasted with the work of I. Krichever

([22]), which does contain explicit invariants (although with much more restrictive

assumptions).

5. Rudiments of isomonodromy for Fuchsian equations

5.1. Isomonodromy and integrability. — In [21], M. Jimbo and H. Sakai derive

a q-analogue of Painlevé PVI equation from a condition of isomonodromy for a family

of rank 2 rational linear q-difference systems. The salient features of their work are

the following:

1. Although they consider a family (At(z))t indexed by a complex parameter t,

the kind of invariance they require for monodromy is q-constancy: the systems

At and Aqt are assumed to have the same monodromy.
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2. They consider the monodromy as totally encoded in the connection matrix.

Thus, after having put their family in a somewhat rigid form, they only assume

that At and Aqt have the same connection matrix.

3. Although they do not care for local monodromies, it so happens that these are

indeed q-constant. At ∞, one simply has Aqt(∞) = At(∞). At 0, however, one

has Aqt(0) = qAt(0). But, after section 2, this also means that the monodromies

are the same.

4. From the fact that At and Aqt have the same connection matrix, they deduce the

existence of a holomorphic family Bt(z) of gauge transformations Bt : At → Aqt.

The last point deserves some attention. First of all, from Birkhoff theory (as

reinterpreted in the previous sections), we know that the equal monodromy condition

on At and Aqt does imply that there is a gauge transformation Bt as above; what is

stronger is to obtain it as a continuous family.

Second, writing A(t, z) and B(t, z) instead of At(z) and Bt(z), one finds the rela-

tion:

(5.0.1) B(t, qz)A(t, z) = A(qt, z)B(t, z).

This is reminiscent at the same time of a Lax pair and of an integrability condition.

We shall take it as a definition: the family (At(z))t is said to be integrable if there

is a (holomorphic, meromorphic or rational) family (Bt(z))t such that (5.0.1) holds.

Note that, if q → 1, a small formal computation shows that (5.0.1) indeed degenerates

into a classical integrability condition. But, we have other ways of checking that our

definition makes good sense. One may want to define a solution to the system (A, B)

as a function X(t, z) such that

{

X(t, qz) = A(t, z)X(t, z)

X(qt, z) = B(t, z)X(t, z)
.

Then, (5.0.1) expresses the formal compatibility condition for this system. More

geometrically, one may want to consider X(t, z) as a section of some vector bundle

over Eq × Eq. Then, we should quotient C∗ × C∗ × Cn (or some adequate subset)

by the equivalence relation generated by the relations: (t, z, X) ∼ (t, qz, A(t, z)X)

and (t, z, X) ∼ (qt, z, B(t, z)X). Thus, we should like to make C∗ × C∗ × Cn an

equivariant (trivial) holomorphic vector bundle under the action of the group qZ×qZ.

Then, (5.0.1) is a necessary consequence of the commutativity of this group. Last,

note that there exists a notion of discrete connection (the word connection is here

in relation to differential geometry) and (5.0.1) expresses that we have an integrable

discrete connection in the sense of [40].

That integrability implies isomonodromy is almost tautological, since the first ex-

presses that At and Aqt are isomorphic through a holomorphic family of gauge trans-

formations Bt, and the mere existence of the individual transforms Bt implies that
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At and Aqt have the same monodromy. To get a converse theorem, we first remem-

ber that, if At and Aqt have the same monodromy, then they must be isomorphic

through some gauge transformation Bt (this is just Riemann-Hilbert equivalence, as

we adapted it from Birkhoff); then, we should prove that this can be done familywise.

We shall do so generically.

5.2. Pointwise versus familywise isomorphism. — Before giving an idea of the

proof, it is worth making some further remarks about the isomonodromy condition

of Jimbo and Sakai. The fact that the same dilatation factor q acts on the variable

z and the parameter t can be seen as essential or as accidental. In some sense, the

converse theorem can be formulated as follows: if two families (At(z))t and (A′
t(z))t

are pointwise isomorphic, then, they are familywise isomorphic. If this is proven,

then take A′
t = Aqt and get the conclusion. Of course, this should work exactly the

same if one takes A′
t = Aq′t (for some q′ ∈ C∗) or even At+1 (mixing q-difference

equation with constancy in tems of difference equations) or A′
t = At0 (for some fixed

t0). Actually, with a very little bit of algebraic tools, one can even mix q-differences

with derivation by putting A′
t = At+ε, where ε2 = 0 as for dual numbers.

On the other hand(6), we noticed that, in [21], the local family At(0) is not q-

constant, but its monodromy is. Recall that local monodromy sees the eigenvalues of

At(0) only modulo qZ, that is, it sees their images in Eq. This expresses the fact that

the corresponding moduli space is a space of vector bundles over Eq, hence has the

jacobian variety Eq as component. Thus, we have maps from the parameter space in

t to Eq. Declaring, for instance, q′-constancy in t yields maps from Eq′ to Eq, and

these will be trivial if q′ is unrelated to q. In loc. cit.,the relation Aq′t(0) = qAt(0)

would not be possible with a rational family for a generic q′.

Local study. — Let U be an open domain in C. We consider the following ring R of

so-called Hartogs series: these are functions a(t, z) =
∑

k≥k0
ak(t)zk, with the ak holo-

morphic over U and the above series having a uniform positive radius of convergence

rK in z for any compact subset K of U . We shall define a family of q-difference sys-

tems to be an invertible matrix A(t, z) ∈ GLn(R). We say that A(t, z) and B(t, z) are

equivalent if there exists F (t, z) ∈ GLn(R) such that F (t, qz)A(t, z) = B(t, z)F (t, z).

We speak of Birkhoff equivalence if, moreover ∀t ∈ U , F (t, 0) = In.

To motivate the use of Birkhoff equivalence and the following lemma, we should

comment on the basic lemma 1.4. Starting from a Fuchsian system, the first step

is to reduce it, through a rational gauge transformation obtained by a pivot type

algorithm, to a non resonant system A(z). This means that A(0) ∈ GLn(C) and, for

any two distinct eigenvalues c, d of A(0), we have c/d 6∈ qZ. Then one proves that

(6)The following argument was communicated to me by Daniel Bertrand at the end of the talk at

Angers.
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A(z) is Birkhoff equivalent to A(0): there is a unique formal F = In + zF1 + · · · such

that F [A(0)] = A and this F converges.

To study families of systems, some kind of rigidity must be assumed so that the in-

variants depend smoothly on the parameter. For instance, the results of subsection 1.3

were obtained under assumption of non resonance. Here, we do the same.

Lemma 5.1. — Assume that for all t ∈ U , the system A(t, z) is non resonant. Then

the family A(t, z) is Birkhoff equivalent to the family A(t, 0).

Now, to get a local result is rather easy: if two families have, pointwise, the same

local monodromies, then, they are equivalent. The only technical ingredient is the use

of the theorem of invariant factors over the field M(U), to get (generically) a normal

form for all A(t, 0) and all B(t, 0) at the same time.

Global study. — We know that, if two families A(t, z) and B(t, z) of rational systems

have, pointwise, the same monodromies, they are pointwise equivalent. We want to

prove that this stays true familywise. From the local study, we may assume that

A(t, 0) = B(t, 0) and A(t,∞) = B(t,∞). Then, we want to lift the pointwise equiv-

alence of their connection matrix into a familywise equivalence. Again, arguments

from linear algebra entail this generically.

Theorem 5.2. — If the family (At(z))t is integrable, then it is isomonodromic. The

converse is true except for a discrete subset of parameters.

The result thus obtained is rather incomplete in the following sense: it holds only

generically and we have to eliminate a discrete subset of parameters, which, of course,

is unavoidable; but we have not characterized this singular subset, although it prob-

ably can be done.

Remark 5.3. — As kindly pointed out by the referee, there is a striking analogy of

this section with the paper [4], the main result of which can indeed be understood as

an isomonodromy statement.
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Exposé no 141, décembre 1956, in Séminaire Bourbaki, Années 1956/57 -1957/58, Ex-
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[30] , La variété des classes analytiques d’équations aux q-différences dans une classe
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(4) 36 (2003), no. 6, p. 925–968 (2004).

[37] , Algebraic construction of the Stokes sheaf for irregular linear q-difference equa-
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théories galoisiennes, I, Astérisque, vol. 296, Soc. Math. France, Paris, 2004, p. 227–251.

[38] , La filtration canonique par les pentes d’un module aux q-différences et le gradué
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p. 47–87.

J. Sauloy, Laboratoire Emile Picard, CNRS UMR 5580, U.F.R. M.I.G., 118, route de Narbonne,
31062 Toulouse CEDEX 4 • E-mail : sauloy@picard.ups-tlse.fr

Url : http://picard.ups-tlse.fr/~sauloy
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