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Abstract. — We introduce a special property, D-type, for rational functions of one
variable and show that it can be effectively used for a classification of the deforma-
tions of dessins d’enfants related with the construction of algebraic solutions of the
sixth Painlevé equation via the method of RS-transformations. In the framework of
this classification we present a pure geometrical proof, based on the analysis of sym-
metry properties of the deformed dessins, of the nonexistence of some special rational
coverings.

Résumé(Remarques pour une classification des transformations de typeRS
2

4
(3) et des so-

lutions algébriques de la sixième équation de Painlevé)
Nous introduisons une propriété spéciale, dite «de type D», pour les fonctions

rationnelles d’une variable et nous montrons comment celle-ci pourrait être utilisée
pour une classification des déformations de dessins d’enfants rattachée à la construc-
tion de solutions algébriques de l’équation de Painlevé VI via la méthode des RS-
transformations. Dans le cadre de cette classification nous donnons une démonstra-
tion, purement géométrique et basée sur l’analyse des symétries des dessins déformés,
de la non-existence de certains recouvrements rationnels.

1. Introduction

Recently the author introduced a general method of RS-transformations [15] for

special functions of the isomonodromy type (SFITs) [14]. This method applies to

SFITs defining isomonodromy deformations of linear n× n-matrix ODEs of the first

order with rational coefficients and with both regular and essential singular points.

RS-Transformations are just a proper combination of rational transformations (R-

transformations) of the independent variable of the linear ODEs and Schlesinger trans-

formations (S-transformation) of the dependent variable. Solutions of many different
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and seemingly unrelated problems from various areas of the theory of functions get

a unified and systematic approach in the framework of this method and can be re-

duced to the study, construction, and classification of different RS-transformations

for matrix linear ODEs.

This method, e.g., allows one to prove the duplication formula for the Gamma-

function (and most probably the general multiplication formula for the multiple argu-

ment [3]), build higher-order transformations for the Gauss hypergeometric function

and reproduce the Schwarz table for it [2, 17], construct quadratic transformations

for the Painlevé and classical transcendental functions [13, 16], and provide a sys-

tematical method for finding algebraic points at which transcendental SFITs attain

algebraic values [1]. Without doubt, many other interesting problems can be ap-

proached via the method of RS-transformations. In this paper we apply this general

method to the problem of construction and classification of algebraic solutions of the

sixth Painlevé equation.

Recently scanning the literature, I realized that, possibly, the first serious profound

result concerning RS-transformations was obtained by F. Klein [19], who proved that

any scalar Fuchsian equation of the second order with finite monodromy group is a

“pull-back” (R-transformation) of the Euler hypergeometric equation. In this context

instead of the S-transformations the notion of “projective equivalence” is used. The

latter is more restrictive than general S-transformations because in terms of the matrix

ODEs it corresponds to triangular Schlesinger transformations, that finally results in

a more restrictive special choice of the exponent differences (formal monodromy) of

the hypergeometric equation, than when more general S-transformations are allowed.

Klein’s result immediately implies that any solution of the Garnier system and, in

particular the sixth Painlevé equation that corresponds to a finite monodromy group

of the associated Fuchsian equation, is algebraic. It is important to mention that the

converse statement is not true.

In the context of the sixth Painlevé equation the first person who could, theoreti-

cally, apply the “pull-back ideology” was R. Fuchs because it was he who found that

the sixth Painlevé equation governs isomonodromy deformations of the certain scalar

second order Fuchsian ODE and, moreover, received an informative letter from F.

Klein. He actually did it, in a study of algebraic solutions in the so-called Picard case

of the sixth Painlevé equation [10, 11](1).

Recently appeared a paper by Ch. Doran [8] who formulated a more general scheme

(than that used by R. Fuchs) for construction of algebraic solutions of the sixth

Painlevé equation from the pull-back point of view. A more detailed account of the

last work is given in Introduction of [17]. In the following two paragraphs we explain

(1)These works were not known to me and, possibly, to most modern researchers until very recently,

when Yousuke Ohyama called our attention to them.
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why the method of RS-transformations for construction of the algebraic solutions is

more general than the pull-back back one.

For a given R-transformation one can normally associate a few different RS-trans-

formations, due to the possibility of choosing different (not related by the contiguity

transformations) initial hypergeometric equations, which suffer this R-transformation

and, by further application of proper S-transformations, are mapped into the Fuchsian

ODE with four regular points. Each of these RS-transformations generate an alge-

braic solution of the sixth Painlevé equation, which sometimes depends on a complex

parameter. Thus we have a finite number of algebraic solutions associated with each

rational function (R-transformation). On the other hand it is well known that on the

set of algebraic solutions acts the subgroup of RS-transformations with deg R = 1:

it is just a subgroup of compositions of Möbius transformations interchanging three

points 0, 1, and ∞, and those Schlesinger transformations that does not add singu-

larities to the Fuchsian ODE with four singular points. Thus the subset of algebraic

solutions associated with the same R-transformation generate a finite number of orbits

of the algebraic solutions with respect to the action of the subgroup mentioned above.

The minimal subset of algebraic solutions that generate these orbits are called the sub-

set of seed algebraic solutions, and RS-transformations that generate them – the seed

RS-transformations. The seed algebraic solutions corresponding to the same rational

covering (R-transformation) are different, by definition; however, the seed solutions

associated with different rational coverings can coincide. Furthermore, the seed so-

lutions, even corresponding to the same rational covering, can sometimes be related

by some compositions of the quadratic transformations and/or Bäcklund transforma-

tions. Since the quadratic transformations are generated by the RS-transformations

with deg R = 2, and one of the Bäcklund transformations has no realization as the

Schlesinger transformation of the 2 × 2-matrix Fuchsian ODE; we call this special

transformation the Okamoto transformation (see [20] and Appendix [17, 18]).

We call attention of the reader that the possibility of construction of different RS-

transformations starting from the same rational covering mentioned in the previous

paragraph is not considered by the successors of the“pull-back ideology”because of the

projective invariance property which assumes only one particular choice of the formal

monodromy of the initial hypergeometric equation. Therefore, the “pull-back results”

in many cases, namely in those ones where the property of projective equivalence can

be changed to a less restrictive condition of the existence of S-transformation, can be

extended or completed. We discuss this opportunity for construction of higher-order

transformations of the Gauss hypergeometric functions in the Remarks in Sections 4

and 5. However, it seems that the pull-back from the hypergeometric equation, due

to specific properties of the hypergeometric functions, is equivalent to the formally

more general method of RS-transformations. This fact we are planning to discuss in

a separate paper.
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This paper is a continuation of author’s previous work [17]. In [17] we give a general

definition of the one-dimensional deformations of dessins d’enfants and their relation

to the algebraic solutions of the sixth Painlevé equation, construct by this method

numerous examples of different algebraic solutions, and discuss different features of

this technique, e.g., a mechanism of appearance of genus-1 algebraic solutions. In

Section 2 we recall the facts from [17] which are necessary for understanding of this

work. Here we put this technique onto a systematic footing. A new idea we use here

is symmetry preserving and symmetry breaking deformations of the dessins d’enfants

and their relation to uniqueness of the corresponding rational covering.

More precisely, in Section 3 we introduce a notion of the divisor type (D-type) of

rational functions and classify all D-types of the rational functions that generate alge-

braic solutions of the sixth Painlevé equation via the method of RS-transformations

(R4(3)-functions). The divisor type represents a special numerical property of the

critical values of rational functions, more precisely, a property of the set of multiplic-

ities of preimages (ramification patterns) of the critical values. This set we call the

type (R-type) of a rational function. Note that because of our normalization (0 and

∞ are also the critical values) a specification of the divisor type also means a special

property of the divisor of zeroes and poles of our rational functions.

We call the D-series the set of all R4(3)-functions having the same D-type. Among

these D-series there are two ones with finitely many, actually a few, members. This

fact is proved and the corresponding rational functions are explicitly constructed in

Sections 4 and 5. Each of the other D-series, corresponding to the D-types specified

in the classification theorem of Section 3, are infinite.

It is worth noticing that modern personal computers (PC) allows one to construct

all rational coverings that are presented here and in [17] without any advanced al-

gorithms just by the natural method explained in Remark 2.1 of [17]. The time of

calculation with MAPLE code on a relatively powerful PC does not exceed 1 second

for any of these functions. Of course, finding the concise parametrization requires

much more additional time. It is interesting to note that in 1998-2000, when we used

exactly the same calculational scheme but on the Pentium 2 based PC with about 256

Mb RAM, we were not able to construct many interesting functions, even some Belyi

function of degree 8, see [2], we have found only numerically. This remark, however,

does not mean that we do not need any advanced calculational algorithms; explicit

construction of most of the rational coverings with the degree > 12 still represent

substantial difficulties.

To each R4(3)-function we also indicate the number of the seed RS-transformations

and present one algebraic solution whose construction does not require explicit form

of the related Schlesinger transformation. It is exactly the “pull-back” solution, to

get explicitly the other seed solutions one has to construct (explicitly) corresponding

S-transformations. This procedure is absolutely straightforward and does not require
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any advance computer algorithms and we do not consider it here. Numerous examples

of the complete constructions of RS-transformations are given in [1].

This paper is a far-going extension of the second part of my talk in Angers, where

I have only explained some simplest ideas concerning the concept of deformations

of the dessins d’enfants and announced the construction of the solution presented in

Section 4.

In the proofs of sections 4 and 5 we substantially use a graphical representation of

the rational functions introduced in [17], which we call the deformation dessins. The

reader should consult this work for a better understanding of these proofs, however

I hope that the general idea and the scheme of these proofs can be understood even

with the help of the following comments. In case, R4(3)-function exists there is at

least one graph, constructed according the rules given in [17], which represents it. In

the proofs of nonexistence of some rational functions we use the evident fact that if the

graph (the deformation dessin) does not exist, then clearly the rational function does

not exist. In case some deformation dessin exists, it defines R-type, the conjecture,

which is made in [17], says, that in this case rational function also exists. So, the

statement, of existence of certain rational mappings which is based on existence of

the deformation dessins is conventional and assumes the validity of this conjecture.

In fact, for all rational functions, which existence we claim, we give either explicit

formulae, or prove that they can be presented as the composition of explicitly known

functions. So, all our proofs of existence of rational functions are based on explicit

constructions and therefore also does not rely on any hypothesis.

Every deformation dessin can be obtained from a proper Grothendieck’s dessin

d’enfant as a result of the so-called face deformations: the join and cross. We con-

sider also one more face deformation which is called the twist, however the latter

can be treated as a special case of the join. We also consider vertex deformations,

however, they can be avoided, more precisely instead we can always consider proper

face deformations of an equivalent rational function transformed under a proper the

Möbius transforms.

Suppose that for a given R-type there exists a corresponding rational function.

Such rational function normally is not unique. Say, rational functions corresponding

to R4(3)-types often depends on one (sometimes on a few (!)) additional parameters.

Moreover, there always exists a parametrization of these functions that they become

rational functions of these additional parameters. Clearly, the latter parametrization

is not unique: we can make Möbius transformations of the independent variable of

our rational function with the coefficients depending on the additional parameters

and also substitutions of the additional parameters by rational functions of additional

parameters. However, even modulo such transformations the rational functions are

not uniquely defined by their R-types. Some light on this problem is brought by the

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



204 A. V. KITAEV

discussion of symmetry preserving and symmetry breaking deformations of dessins

d’enfants considered in sections 4 and 5.

During the preparation of this paper there appeared two papers by P. Boalch [5, 6],

who is classifying algebraic solutions of the sixth Painlevé equation by developing

the method (or, perhaps, more precisely to say following the trend) suggested by

B. A. Dubrovin and M. Mazzocco [9]. The author has conjectured in [15] that all the

algebraic solutions of PVI can be obtained via the quadratic and Bäcklund transfor-

mations. In [17], the author has already shown that all genus zero algebraic solutions

of PVI presented in [9] can be constructed with the help of the RS-transformations.

Some of the solutions obtained in [5, 6] are equivalent or related to the solutions

already published in [1, 17]. In the forthcoming publication, which will be devoted to

the systematic study of the infinite D-series, we will show how the rest of the solutions

found in [5, 6] can be derived in the framework of the RS-method.

Acknowledgment. — The author is grateful to Michèle Loday and Éric Delabaere,

the organizers of the conference in Angers, for the invitation and prompt resolution

of the organizational problems allowing him to participate to the conference, Kazuo

Okamoto for the invitation to the University of Tokyo, where this work was finished,

and hospitality, Yousuke Ohyama for the invitation to the University of Osaka, where

the final version of this work was presented, and for references [10, 11], Hidetaka

Sakai for valuable discussions and various help during his stay in Tokyo and Philip

Boalch for many discussions of different aspects concerning algebraic solutions.

2. Deformation Dessins

In [17] the author introduced tricolour graphs that will be intensively used in the

following sections, therefore for convenience of the reader we review some important

facts concerning these graphs.

The tricolour graph is a connected graph on the Riemann sphere with black and

white vertices and one blue vertex. The edges connect vertices of different colours.

The faces are homeomorphic to the circles. The boundary of every face should contain

at least one black vertex. The circles should contain at least one black or blue vertex.

The loops are not allowed. The valency of the blue vertex equals 4. More precisely,

the blue vertex is connected by edges with two white and two black vertices(2)

When all valencies of the white vertices equal 2 we are not indicating them and

instead of a tricolour graph get a bicolour graph with all black vertices and only

(2)This property is not clearly indicated in [17]. However, it implicitly presented there too, because

in that work we first define dessins d’enfants and than consider triclour graphs as bicolour with

the additional blue point, in that case the blue point is exactly an intersection of two edges of the

bicolour graph.
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one blue vertex. The latter bicolour graph of course, has nothing to do with the

black-white bicolour graphs of dessin d’enfants, which are also widely used below. In

particular, the black-blue bicolour graph may contain loops. In case, dessin d’enfant

has all valencies of the white vertices equal 2, they are also not indicated and we get

a graph with only black vertices.

We use the notion of the black edge for both dessin’s d’enfants and the tricolour

graphs, as the edge connecting to consecutive black vertices. That means that each

black edge contains exactly one white vertex and may additionally contain the blue

vertex. The black order of face is the number of black edges in the face boundary.

The tricolour graphs can be viewed as obtained from the bicolour ones (dessins

d’enfants) as a result of simple “deformations”, see examples, in [17] and in Sections 4

and 5. Therefore we call them the deformation dessins, or very often, when there is

no cause for a confusion, just the dessins.

Consider these deformations in more details. We consider three major types of the

deformations: face deformations, W - and B-splits. It is convenient to consider three

types of the face deformations: Twist, Join and Cross. The face deformations are

continuous of the dessin d’enfant, it is enough to “move” only one edge of the graph

until it “touches” or crosses some other edge with the appearance at the intersection

point the blue point. In fact, the twist can be viewed as a special case of join and

instead of the cross one can consider the join of some other dessin d’enfant.

The B- and W -splits are just a special procedure of splitting of black and white

vertices, respectively, with the appearance of two vertices of the same colour instead

of the splitting ones. One can find a numerous examples giving actually the precise

definition of these deformations in [17].

In fact, although it is not evident from the very beginning, for the deformation

dessins one can always consider only one type of deformations, say, “face deforma-

tions” and thus essentially we need only one deformation: the join. However, this is

technically inconvenient. The fact that all deformations can be reduced to the defor-

mation of one type only, can be established for the graphs related with the rational

coverings with the help of the fractional-linear transformations (see below). This fact

is actually not used neither in this paper, nor in [17].

Now suppose we have a tricolour graph. From the definition it is clear that there

are two white (and two black) vertices connected with the blue point by the edges. If

we make the reverse process to W -split (B-split), i.e. continuously merge these two

white (black) points together with their connecting edges into the blue point and give

to, thus obtained new point the white (black) colour, then we get nothing but dessin

d’enfant. Therefore every tricolour graph can be obtained from some dessin d’enfant

as a W - or B-split. One can consider of course also the surgery of tricolour graphs:

cutting of the blue point such that one pair of black and white points would be on

one side and another on the other side of the cut, but sometimes this procedure leads
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to a disconnected graph, two dessins d’enfants. Therefore below we use the names:

tricolour graphs and deformation dessins as synonyms.

It is well known that with dessins d’enfants on the Riemann sphere are related

the Belyi functions on the Riemann sphere,i.e., the rational functions mapping the

Riemann sphere onto itself with no more than three critical values normalized at

0, 1, and ∞. With the deformation dessins one can also relate rational functions.

These functions also mapping the Riemann sphere onto itself but has got no more

than four critical values. These functions (see Proposition 2.1 of [17]) depend on

auxiliary complex parameter, one of its critical points has the partition of preimages

|2 + 1 + 1 · · ·+ 1|. The other critical values can be also normalized at 0, 1, ∞. Let us

call for brevity such rational functions as the proper rational functions.

The relation between deformation dessins and the rational coverings were described

in [17] by the following conjectures:

Conjecture 2.1. — For any proper rational function, R, whose first three critical values

are 0, 1 and ∞, there exists a tricolour graph such that:

1. There is a one-to-one correspondence between its faces, white, and black vertices

and critical points of the function R for the critical values 0, 1, and ∞, respectively.

2. Black orders of the faces and valencies of the vertices coincide with multiplicities

of the corresponding critical points.

Remark 2.1. — We can add to the formulation of Conjecture 2.1 that this tricolour

graph can be obtained as a deformation of some dessin d’enfant it was also stated and

assumed in [17], however, not in Conjecture 2.1

We call attention of the reader that there is no uniqueness statement, analogous

to the one known for the dessins d’enfants: uniqueness of R modulo fractional-linear

transformations.The reason is that R actually is the function of two variables, R(z1) =

R(z1, y), where z1, y ∈ CP
1, z1 is the main variable with respect to which we consider

it as a rational function, and y is a parameter, say, location of the forth critical

point. As a function of y, R has different branches. The different tricolour graphs

that homotopic equivalent, can be continuously deformed to each other, constitute

these different branches. In [17] as well as in this work we present examples of

non-homotopic tricolour graphs with that define different functions with the same R-

types. In this connection we discuss symmetric and symmetry breaking deformations

of dessins d’enfants.

The converse statement is given by the following conjecture.

Conjecture 2.2. — For any tricolour graph there exists a function z = R(z1, y), which

is a rational function of z1 ∈ CP
1 with four critical values. Three of them are 0, 1,

and ∞, and the corresponding critical points are related with the tricolour graph as

stated in Conjecture 2.1. The variable y denotes the unique second order critical point
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corresponding to the fourth critical value of z = R(z1, y). R is an algebraic function

of y of the zero genus.

Corollary 2.3. — In the conditions of Conjecture 2.2 There is a representation of the

function R as the ratio of coprime polynomials of z1 such that its coefficients and y

allow a simultaneous rational parametrization.

Conjecture 2.2 actually contains two parts: “existence” and “rational parametriza-

tion”. The “existence” part can be formulated as follows:

Conjecture 2.4. — For any deformation dessin there exists a proper rational function

with four critical values. Three of them can be placed at 0, 1, and ∞, they are related

to the dessin as stated in Conjecture 2.1.

In the proofs of Propositions in Sections 4 and 5 we assume that Conjecture 2.1 is

true. Below we provide the proof of Conjecture 2.1.

Proof. — Consider a simple curve on the Riemann sphere connecting 1 and infinity

and passing through the fourth critical point (different from 0) of a given proper

rational function R. Then R- preimage of this curve will be the tricolour graph on

the Riemann sphere, where the blue point is the preimage of the fourth critical point

and the relation of the other critical points with the tricolour graph are defined in

Conjecture 2.1.

Conjecture 2.2 is actually not used in this work and will be proved in a forthcoming

paper.

3. D-Type of Rational Functions

We begin this part of the lecture with the canonical form of the sixth Painlevé

equation, because we are going to present a few algebraic solutions of this equation

in the explicit form.

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

) (
dy

dt

)2

−
(

1

t
+

1

t− 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)

t2(t− 1)2

(

α6 + β6
t

y2
+ γ6

t− 1

(y − 1)2
+ δ6

t(t− 1)

(y − t)2

)

,(1)

where α6, β6, γ6, δ6 ∈ C are parameters. For a convenience of comparison of the re-

sults obtained here with the ones from the other works we will use also parametrization

of the coefficients in terms of the formal monodromies θ̂k:

α6 =
(θ̂∞ − 1)2

2
, β6 = − θ̂2

0

2
, γ6 =

θ̂2
1

2
, δ6 =

1− θ̂2
t

2
.
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It is well known that every solution of this equation defines an isomonodromy defor-

mation of the 2× 2 matrix Fuchsian ODE on the Riemann sphere with four singular

points.

As a first step in construction of algebraic solutions of Equation (1) via the method

of RS-transformations one has to construct a proper rational covering of the Riemann

sphere. The corresponding rational function has four critical values. Three of them

are supposed to be placed at 0, 1, and ∞. To specify proper rational functions we

use the symbol of their R-type, which consists of three boxes. In these boxes we

consecutively write partitions of multiplicities of preimages of the points 0, 1, and∞,

correspondingly. The fourth critical point has a standard partition of its multiplicities

2 + 1 + · · ·+ 1 which is not indicated in the R-type.

According to [17] the numbers in each box can be presented as a union of two non-

intersecting sets: the apparent set and nonapparent one. The characteristic property

of the apparent set is that g.c.d. of its members is ≥ 2. It might be that nonapparent

set has also nontrivial g.c.d., thus in general a presentation of the box as a union of the

apparent and nonapparent sets is not unique. Moreover, nonapparent set may contain

a number which is divisible by the g.c.d. of the apparent set. When the subdivision of

the boxes in the apparent and nonapparent sets is chosen we have an ordered triplet

of three integer numbers, < m0, m1, m∞ >, the divisors of the apparent sets in the

corresponding boxes, which we call the divisor type (D-type) of the rational function.

Remark 3.1. — In our notation of the D-types we always assume that m0 ≤ m1 ≤
m∞, clearly this can always be achieved by rearranging the points 0, 1, and ∞ by a

fractional-linear transformation. However, in the notation of R-types we do not follow

this agreement, and in most cases we have m0 > m∞ > m1. Actually, we can speak

of the two types of numbering of the boxes in R-types: the natural one, i.e., according

to their position in the R-symbol; and the D-consistent numbering, i.e., according to

the rule: the larger g.c.d., the larger number of the box. Below, in the statements we

always assume the D-consistent numbering, while in the proofs – the natural one.

Another important parameter of the proper rational functions is the total number

of members in all three nonapparent sets. In our case this number is 4. We put this

number as the subscript in the notation of the R-type: R4(. . . | . . . | . . . ) or in short

R4(3). To simplify notation we omit the subscript in situations where it cannot course

a confusion.

Theorem 3.1. — R4(3)-Rational functions have one of the following eight D-types:

< 2, 2, m >, < 2, 3, 3 >, < 2, 3, 4 >, < 2, 3, 5 >, < 2, 3, 6 >, < 2, 3, 7 >, < 2, 3, 8 >,

< 2, 4, 4 >. Where m− 1 ∈ N.
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Proof. — Let n ≥ 2 be the degree of some R4(3) function of D-type < m0, m1, m∞ >.

Denote the sum of numbers in nonapparent sets in the consecutive boxes of a R4(3)

function as σ0, σ1, and σ∞, respectively.

From the Riemann-Hurwitz formula, with a help of Proposition 2.1 of [17], one

deduces the following “master” inequality,

(2)
n− σ0

m0
+

n− σ1

m1
+

n− σ∞

m∞
≥ n− 1.

Clearly the numbers σk satisfy one more inequality

(3) σ0 + σ1 + σ∞ ≥ 4.

We begin with the proof that m0 = 2. Suppose that all numbers mk ≥ 3, then

from the master inequality we deduce,

3n− σ0 − σ1 − σ∞ ≥ 3n− 3 ⇒ σ0 + σ1 + σ∞ ≤ 3,

which contradicts Inequality (3).

Now, suppose that m1 ≥ 5. In this case from the master inequality we get,

n− σ0

2
+

n− σ1

5
+

n− σ∞

5
≥ n− 1 ⇒ 10 ≥ n + 5σ0 + 2σ1 + 2σ∞ ⇒

2 ≥ n + 3σ0 ⇒ σ0 = 0, n = 2.

Since n = 2 the apparent sets in the second and third boxes are empty, thus the

corresponding R4(3)-type reads R(2|1 + 1|1 + 1). The latter transformation can be

treated as belonging to any of the D-types mentioned in the Proposition. Explicit

form of the corresponding RS2
4(3)-transformation can be found in [1] (Section 2).

Consider D-type < 2, 4, m∞ > with m∞ ≥ 5. the master inequality implies:

n− σ0

2
+

n− σ1

4
+

n− σ∞

5
≥ n− 1 ⇒ 20 ≥ n + 10σ0 + 5σ1 + 4σ∞ ⇒

4 ≥ n + 6σ0 + σ1 ⇒ n = 4, σ0 = σ1 = 0, σ∞ = 4, or

n = 2, σ0 = 0, σ1 = σ∞ = 2.

The logical case n = 3 is excluded because it contradicts the condition σ0 = 0

which holds for all n. Thus we get two R4(3)-types: R(2|1 + 1|1 + 1) and R(2 +

2|4| 1 + · · ·+ 1
︸ ︷︷ ︸

4

). The last R-type has an empty apparent set in the last box and,

thus can also be treated as belonging to the D-type < 2|4|4 >. The rational func-

tion with this R-type exists and the corresponding RS2
4(3)-transformation is explicitly

constructed in [1] (Section 4, Subsection 4.1.4).
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Consider finally D-types < 2, 3, m∞ > with m∞ ≥ 9. From the master inequality

we find:

n− σ0

2
+

n− σ1

3
+

n− σ∞

9
≥ n− 1 ⇒ 18 ≥ n + 9σ0 + 6σ1 + 2σ∞ ⇒

10 ≥ n + 7σ0 + 4σ1 ⇒ σ0 = 1, σ1 = 0, n = 3, σ∞ = 3,(4)

σ0 = 0, σ1 = 0, n = 2, . . . , 10;(5)

σ0 = 0, σ1 = 1, n = 2, . . . , 6;(6)

σ0 = 0, σ1 = 2, n = 2.(7)

In the solution given by Equation (4) we excluded the case n = 2, which agrees

with the master inequality, because it contradicts to the condition σ0 = 1. There

is only one R4(3)-type corresponding to solution (4), namely R(2 + 1|3|1 + 1 + 1).

Because the apparent set in the last box is empty this R-type can be associated

with any D-type of the form < 2, 3, m > with arbitrary m ≥ 3, in particular, with

m < 9. The corresponding rational mapping exists and explicit form of the RS2
4(3)-

transformations is given in [1] (Section 3, Subsection 3.1.2).

In the solution (5) n should be divisible by 2 and 3, thus n = 6, the apparent set in

the last box is empty and hence σ∞ = 6. There are two corresponding R4(3)-types:

R(2 + 2 + 2|3 + 3|2 + 2 + 1 + 1) and R(2 + 2 + 2|3 + 3|3 + 1 + 1 + 1). In both cases

the corresponding rational functions exist, see their explicit forms and corresponding

solutions of Equation (1) in [17] (Section 3, Subsection 3.3, Examples 1 and 2). Again

by the analogous reasoning as in the previous case to both rational functions we can

assign the same D-type < 2, 3, m >, with m ≤ 8. Note that in this case we can also

assign to the first function D-type < 2, 2, 3 >, because in this case we can choose

the apparent set in the first box consisting of one number 2, and the nonapparent

one – with two numbers, both equal 2, dividing the rest boxes into the apparent and

nonapparent sets into the natural way we still get the function of R4(3)-type.

Turning to the solution (6). We see that n should be even and has the form

1 + 3k with some integer k. Thus the only possibility is n = σ∞ = 4 and the

apparent set in the last box is empty. The only R4(3)-type is R(2+2|3+1|2+1+1).

The corresponding rational function exists and related RS2
4(3)-transformation are

constructed in [1] (Section 4, Subsection 4.1.7).

Finally, the only R4(3)-type corresponding to Equation (7) is R(2|1 + 1|1 + 1) is

already discussed above.

Remark 3.2. — To each of the D-types, except < 2, 3, 7 > and < 2, 3, 8 >, in Theo-

rem 3.1 correspond infinite series of rational functions of R4(3)-types. There is a finite

number of rational functions of R4(3)-type corresponding to the two exceptional D-

types. The latter D-types are studied in the subsequent Sections 4 and 5, respectively.

It is also not too complicated to describe explicitly the infinite series, we plan to do

it in further publications.
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ON A CLASSIFICATION OF RS
2
4(3)-TRANSFORMATIONS AND PAINLEVÉ VI 211

4. Classification of RS-Transformations of D-Type < 2, 3, 7 >

Proposition 4.1. — There are only three R4(3)-types, with the nonempty apparent set

in the third box, corresponding to the D-type < 2, 3, 7 >, namely(3),

deg R4 = 10 : R4(7 + 1 + 1 + 1| 2 + · · ·+ 2
︸ ︷︷ ︸

5

|3 + 3 + 3 + 1),(8)

deg R4 = 12 : R4(7 + 2 + 1 + 1 + 1| 2 + · · ·+ 2
︸ ︷︷ ︸

6

| 3 + · · ·+ 3
︸ ︷︷ ︸

4

),(9)

deg R4 = 18 : R4(7 + 7 + 1 + · · ·+ 1
︸ ︷︷ ︸

4

| 2 + · · ·+ 2
︸ ︷︷ ︸

9

| 3 + · · ·+ 3
︸ ︷︷ ︸

6

).(10)

Proof. — Put in the master inequality m0 = 2, m1 = 3, and m∞ = 7, then we can

rewrite it as follows:

42− 21σ0 − 14σ1 − 6σ∞ ≥ n.

Taking into account that n ≥ m∞ ≥ 7 and Inequality (3) we obtain,

(11) 18− 8σ1 − 15σ0 ≥ n ≥ 7.

The solution of Diophantine Inequality (11) reads:

σ0 = 0, σ1 = 0, σ∞ ≥ 4, 7 ≤ n ≤ 18,(12)

σ0 = 0, σ1 = 1, σ∞ ≥ 3, 7 ≤ n ≤ 10.(13)

Note that Solutions (12) and (13) completely define the second and third boxes of the

possible R-types.

Consider Solution (12). In this case, n is divisible by 2 · 3 = 6. Thus the only

possibilities are n = 12 or n = 18.

If n = 12 the only possibility is that the apparent set of the first box of the R-type

contains only one element. Thus there is only one R-type in this case, namely, (9).

The corresponding covering and algebraic solution was constructed in my work [17]

Section 3, Subsection 3.4, Example 3 (Cross). The same algebraic solution was also

constructed in about the same time by P. Boalch [7] by an elaboration of the method

of B. Dubrovin and M. Mazzocco [9].

If n = 18 there are two main possibilities:

1. The apparent set of the first box consists of two elements the only possible R-

type is (10), because the second and third boxes are completely defined. Below

we show the deformation dessin for this R-type confirming that the correspond-

ing covering really exists.

2. The apparent set of the first box consists of one element. There are several

logical possibilities corresponding to the partitions of 18 − 7 = 11 into four

(3)In the numbering of boxes we follow the convention of Remark 3.1.
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natural numbers. No one of these R-types corresponds to a rational covering.

Actually, recall that Euler characteristics of the sphere is 2,

(14) V − E + F = 2.

Suppose that there exists a deformation dessin on the sphere corresponding to

some of these R-types: V is the number of black points plus the blue one; F

is the number of faces which is counted as the four faces, corresponding to the

non-apparent set, plus one face from the apparent set; and, finally, the valencies

of the black points are 3 and valency of the blue one is 4, each edge is incidental

to two vertices:

V = 6 + 1 = 7, F = 4 + 1 = 5. and E =
3 · 6 + 4

2
= 11.

Now we have 7− 11 + 5 = 1, this contradicts Equation (14).

Consider now Solution (13). Since σ0 = 0 we have that (n|2) > 1, therefore the

only logical possibilities are n = 8, and n = 10. For n = 8 we must have 8 = 3·k+1 for

some integer k, which is a contradiction. In the case n = 10 we have σ∞ = 10−7 = 3;

together with the facts that σ0 = 0, σ1 = 1, and that the total number of points in

the non-apparent set is 4, this implies that there is only one R-type corresponding to

this case, namely, (8).

Now we turn to the discussion of existence and explicit constructions of rational

functions with the R-types (8) and (10), as is mentioned in the proof the function

with R-type (9) is already constructed in [17].

Consider R-type (10), to confirm the existence of the corresponding covering we

have yet to present the corresponding deformation dessin. Note that the type is

reducible,

R(7 + 7 + 1 + · · ·+ 1
︸ ︷︷ ︸

4

| 2 + · · ·+ 2
︸ ︷︷ ︸

9

| 3 + · · ·+ 3
︸ ︷︷ ︸

6

) =(15)

R(7 + 1 + 1| 2 + · · ·+ 2
︸ ︷︷ ︸

4

+1
∧
|3 + 3 + 3) ◦R(1 + 1|2

∧
|1 + 1)(16)

Remark 4.1. — This is a digression to the theory of the Gauss hypergeometric func-

tions. The irreducible Belyi function R(7 + 1 + 1| 2 + · · ·+ 2
︸ ︷︷ ︸

4

+1|3 + 3 + 3) is of

R3(3)-type and defines the following “seed” RS-transformations (4),

RS2
3





k/7 1/2 1/3

7+1+1 2 +. . .+ 2
︸ ︷︷ ︸

4

+1 3 + 3 + 3



 , k = 1, 2, 3,

(4)The extended notation for RS-transformations that we use below is explained in [17, 2].
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which are equivalent to three seed transformations of the Gauss hypergeometric func-

tions of order 9 and in terms of the θ-triples(5) read:
(

k

7
,
1

2
,
1

3

)

→
(

k

7
,
k

7
,
1

2

)

, k = 1, 2, 3.

Each of these three transformations allows one to enlarge (by two lines) one of the

corresponding Octic Clusters introduced in Section 5 of [17], because to the resulted

hypergeometric function one can apply a proper quadratic transformation.

One of the simplest forms of the first R-function in Equation (16) is

λ1 = 310(16λ
2+7λ+49)

8(32λ3+84λ−35)3 ,

λ1 − 1 = − (512λ
4+256λ

3+2208λ
2+328λ+1799)2(λ−1)

8(32λ3+84λ−35)3 .

For application to the theory of algebraic solutions as well as for the Gauss hyperge-

ometric functions we need the following cumbersome looking normalizations of this

function:

λ1 =
27(13 + 7i

√
7)(λ− 1)(λ− 73

28 − 7·13
28 i
√

7)7

2
(
λ3 + 7

24 (49 + 29i
√

7)λ2 − 73

210 (129 + 29i
√

7)λ + 32·73

215 (72·13
3 − 29i

√
7)

)3 ,

(17)

λ1 =
λ(λ − 1)(λ− 1

2 + 13
98 i
√

7)7

(
λ3 − (3

2 + 29
42 i
√

7)λ2 + (121
294 + 29

42 i
√

7)λ + 13
294 + 29

4802 i
√

7
)3

(18)

We factorized integers in Equation (17) only for the purpose of fitting on one line.

Remark 4.2. — While this paper was under preparation I got an information from

R. Vidūnas about his recent paper [22] on classification of pull-back transformations

for the Gauss hypergeometric functions. This paper is giving a nice and quite profound

account of this subject, in particular, one finds there Equation (18) in a slightly

different notation. Some of the other Belyi functions of R3(3)-type that we discuss

in this work were constructed by R. Vidūnas with the help of the method developed

in his earlier work [23]. The previous Remark 4.1 gives also an illustration to the

statement made in Introduction that RS-transformations seems to be a more general

ones than the algebraic pull-back transformations considered in [22]. Because the

local exponent differences, in the language of [22], for the RS-transformations should

not necessarily be equal to inverse integers as is assumed in [22]: with each rational

covering, in general, we associate a few independent (seed) transformations of the

Gauss hypergeometric function, see Remark 4.1 above and exact examples in [2].

(5) θ-triples, the set of formal monodromies for the matrix form of the hypergeometric equation (see,

[2, 17]), which differ from the standard triples of the local exponents for the canonical (scalar) form

of the Gauss hypergeometric equation by the shift 1 in one of the elements.
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The situation in this respect is similar with the construction of algebraic solutions for

Equation (1). There are also some intersections of [22] with Sections 4 and 5 work

[17].

To get an explicit realization of Equation (15), (16) we have to present a rational

function of the R-type R(1 + 1|21 + 1) in a suitable normalization:

(19) λ =
(1− 2s)(λ2 − t/s)2

(λ2 − t)
, t =

s2

(2s− 1)
.

Note that the rational function λ̂ = λ̂(λ2) ≡ λ−1, where λ is given by Equation (19),

is correctly normalized in the sense of Theorem 2.1 [17]: λ̂ = (1−2s)λ2(λ2−1)
(λ2−t) . Applying

this Theorem we calculate algebraic solution of Equation (1),

(20) t =
s2

2s− 1
. y(t) = s = t +

√

t2 − t,

corresponding to the following θ-tuple,

(21) θ0 = θ1, θt = 1− θ∞,

with two parameters θ0 and θt ∈ C. Substituting λ given by Equation (19) into

Equation (17) one gets a rational function of the R-type (15) correctly normalized in

the sense of Theorem 2.1 of [17]. Clearly the only critical points of such composed

function which depends on s should coincide with the critical points of the function

(19), thus the algebraic solution defined by the composition exactly coincide with

the solution (20), however, now Theorem 2.1 gives for this solution a more restricted

θ-tuple: θ0 = θ1 = θt = 1− θ∞ = 1/7.

Are there any other rational functions of the R-type (10)? To answer the question

let’s study the following problem: how one can get the functions of this type via

deformations of dessins d’enfants?

It will be convenient to define a notion of symmetric dessins. We call a dessin

d’enfant or deformation dessin symmetric if it is homeomorphic to a graph on the

Riemann sphere which is invariant under the involution λ → −λ. In this case the

rational function corresponding to such dessin can be presented as a composition of

a quadratic rational function with a rational function with the twice lower degree

than the original one. In the case of dessins d’enfants both rational functions are,

of course, the Belyi functions, while for the deformation dessins the first function

of the composition is the Belyi function, while the second one is a one dimensional

deformation of the quadratic Belyi function. The latter is unique modulo fractional

linear transformation of the critical points. Suppose we consider deformations of a

symmetric dessin d’enfant. If the deformation dessin is symmetric, then we call it the

symmetry preserving deformation; if the deformation dessin is not symmetric – the

symmetry breaking deformations.
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Proposition 4.2. — Deformation dessins corresponding to the R-type (10) can be ob-

tained only as the symmetry preserving deformations of dessins d’enfants.

Proof. — We begin with the “face” deformations. There are two types of such defor-

mations: the cross and join, since the twist can be regarded as a special case of the

join). First consider the cross. Such deformation is dividing one face of a dessin on

two faces and can increase the black order of a face neighboring with the divided one

(if the latter exists). All in all a dessin before the cross-deformation should have 5

faces. We call “heads” the faces with the black order 1. In case the dessin contains

already four heads its R-type can be only R(14 + 1 + · · ·+ 1
︸ ︷︷ ︸

4

| 2 + · · ·+ 2
︸ ︷︷ ︸

9

| 3 + · · ·+ 3
︸ ︷︷ ︸

6

)

(see Figure 3). Each head contains on the boundary exactly one black point of valency

3 and therefore looks like a balloon on a rope or, as we say, the head on the “neck”.

In this case the only possibility is to cross with a chosen neck one of the heads, the

necks, or the edge connecting the “dumbbells”. The edge and the neck cannot cross

themselves because in this case we have an “illegal”deformation which contains a face

surrounded with this edge and, therefore, having its black order equal 0. Because the

dessins are located on the sphere we have only two different possibilities of crossing

each neck or the edge, all in all (8 = 2 · 4) variants. One checks that none of them

leads to the right face distribution (15). If the dessin before the deformation contains

exactly three heads, then at least two of them located in one large face, because we

cannot have more then 5 faces to get after the deformation 6 ones. The black order

of face with two heads is at least 9, so that the remaining face has the black order

≤ 6. So, after the deformation the black order of the latter face should be increased

to 7. The only way of such increase is when one of the heads entering into it, so that

the neck of this head crosses the boundary of the face. This deformation increases the

black order of the face by 2. This means that the face distribution of the dessin before

the deformation is 18 = 10+5+1+1+1. Such dessin really exists, but its cross defor-

mation of the type we discuss leads to the face distribution 18 = 7+6+2+1+1+1,

see Figure 1.
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&
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%���� ����

H
H

HH

�
�

��
r r rrr
r

R(10+5+1+1+1| 2+. . .+2
︸ ︷︷ ︸

9

| 3+. . .+3
︸ ︷︷ ︸

6

)⇒

⇒ ����
'
&
$
%��������r r rrr rd

R(7+6+2+1+1+1| 2+. . .+2
︸ ︷︷ ︸

9

| 3+. . .+3
︸ ︷︷ ︸

6

)

Figure 1. An illustration to the proof of non-existence of cross-deforma-

tions of the dessins of R-type (15).

Suppose now that a dessin before the cross-deformation contains only two heads.

In this case two more heads should appear as a result of the deformation. The only
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way it can happen is if the dessin consists of the circle with one black point on it.

The rest of the dessin should be located inside of the circle and “live” on the “trunk”

which “grows” on this black point. If there would be a part of the dessin outside the

circle, then the circle should contain one more black point, because the valencies of

all black points equal 3. The deformation in this case is a crossing of the circle by

the trunk such that inside the circle remains only a part of the trunk while all other

parts of the dessin move outside the circle. Because our pictures are drawn on the

Riemann sphere, the dessin before the deformation actually should contain 3 heads

rather than 2! In fact, the face outside the circle where the whole dessin is located is

the head. If the rest of the dessin contains only one more head then, we would have

only three heads as the result of the deformation.

Clearly a dessin before the cross should contain at least two heads, because there

are no one-dimensional deformations that can reduce black orders of three faces.

Deformation of the join type affects only one face and does not change the black

order of other faces. The affected face is divided by two ones. So the only possible

face distributions of the dessins that can be deformed by a join to R-type (15) are:

18 = 7 + 7 + 2 + 1 + 1, 18 = 14 + 1 + 1 + 1 + 1, 18 = 8 + 7 + 1 + 1 + 1. The dessin

with the last face distribution does not exist. In fact, suppose that the last dessin

exists, then it contains three heads. There are two large faces with the black order

equal 8 and 7, therefore two heads are located inside one of them. Their “necks”

are connected either with each other at some point and then this point connected to

the boundary of the surrounding face or with the boundary of the face. Calculating

the black order of such “minimal construction” we get 9 in the first case and 8 in

the second. However, there is one more head. This head should be located in the

other large face because, otherwise it cannot have a black order more than 3. The

last head should be connected with its “neck” to the joint boundary of the large faces

at some point different from the connection points of the other heads, because the

valencies of all connection points equal 3. Therefore, the minimal black order of the

face containing two heads would be 9.

Figures 2 and 3 proves that the first two face deformations really exist.

��
���
�
�
���
��r r r r r r

R(7+7+2 +1+1| 2+. . .+2
︸ ︷︷ ︸

9

| 3+. . .+3
︸ ︷︷ ︸

6

) ⇒

⇒��
��

��
��r r r r r r��

��
��
��d

R(7+7+1+. . .+1
︸ ︷︷ ︸

4

| 2+. . .+2
︸ ︷︷ ︸

9

| 3+. . .+3
︸ ︷︷ ︸

6

)

Figure 2. A symmetry preserving twist of the reducible symmetric dessin.

Note that the deformation dessins in the r.-h.s. of Figures 2 and 3 are homeomor-

phic on the Riemann sphere.
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R(14+1+. . .+1
︸ ︷︷ ︸

4

| 2+. . .+2
︸ ︷︷ ︸
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| 3+. . .+3
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) ⇒

⇒
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r
r

r

r
r

d

R(7+7+1+. . .+1
︸ ︷︷ ︸

4

| 2+. . .+2
︸ ︷︷ ︸

9

| 3+. . .+3
︸ ︷︷ ︸

6

)

Figure 3. A symmetry preserving join of the reducible symmetric dessin.

Besides the face deformations, there are also deformations which we call “splits”,

or, more specifically, B- and W -splits, depending on the color (black or white) of the

splitted vertex. As we will see below not all such splits are equivalent. To distinguish

different splits we use notation LB- or,say, CW -split to denote location of the blue

point after the split, in the first case the blue point belongs to the crossing of two lines,

in the second – of two circles, the last letter means, of course, the color of the splitted

vertex. If the blue vertex belongs to a circle and line we denote such deformation as

CLB-split, if B-vertex is splitted.

In our case we obviously have only two splits: W -split (4=2+2) and B-split

(6=3+3). These deformations are shown on Figures 4 and 5.

"!
# 

"!
# "!

# 

"!
# 
cr rc r c rc c

c
r
c

r
c c

R(7+7+1+· · ·+1
︸ ︷︷ ︸

4

| 2+. . .+2
︸ ︷︷ ︸

7

+4| 3+. . .+3
︸ ︷︷ ︸

6

) ⇒

⇒ "!
# 

"!
# "!

# 

"!
# 
cdcr rc r c rc c

c
r
c

r
c c

R(7+7+1+. . .+1
︸ ︷︷ ︸

4

| 2+. . .+2
︸ ︷︷ ︸

9

| 3+. . .+3
︸ ︷︷ ︸

6

)

Figure 4. A symmetry preserving W -split of the reducible symmetric dessin.

Note that W -split on Figures 4 is homeomorphic in the Riemann sphere to LB-

split on Figure 5. Also CB-split on Figure 5 is homeomorphic on the Riemann sphere

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



218 A. V. KITAEV
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R(7+7+1+. . .+1
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4

| 2+. . .+2
︸ ︷︷ ︸

9

| 3+. . .+3
︸ ︷︷ ︸

6

)

Figure 5. Symmetry preserving CB- and LB-splits of the reducible sym-

metric dessin.

to the twist on Figures 2. Moreover, both deformation dessins on Figure 5 represent

two branches of the same rational covering, because, clearly, they are homotopic,

continuously deformable one into another through the dessin in the l.-h.s. of this

picture.
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4
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R(8+6+1+. . .+1
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4

| 2+. . .+2
︸ ︷︷ ︸

9

| 3+. . .+3
︸ ︷︷ ︸

6

)

Figure 6. “Symmetry breaking” CLB-split of the reducible symmetric dessin.

There is also CLB-split of the dessin on Figure 5 with the right valencies of black

(and, of course, white) vertices (see Figure 6). However the resulted deformation

dessin does not belong to R4-type.
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Finally, consider R-type (8) of Proposition 4.1. It can be obtained as: (1) face

deformations of the following dessins, R(8+1+1| 2+. . .+2
︸ ︷︷ ︸

5

|3+3+3+1) and R(7+2+

1| 2+. . .+2
︸ ︷︷ ︸

5

|3+3+3+1); (2) W - split of R(7+1+1+1|4+2+. . .+2
︸ ︷︷ ︸

4

|3+3+3+1); or (3)

B-splits of R(7 +1+1+1| 2+. . .+2
︸ ︷︷ ︸

5

|3+3+4) and R(7 +1+1+1| 2+. . .+2
︸ ︷︷ ︸

5

|6+3+1).

We leave to the interested reader to prove that all these dessins are homotopic in

the Riemann sphere so that the corresponding deformation dessins represent different

branches of one and the same algebraic function. Instead of studying the dessins we

present below an explicit form of the corresponding rational covering:

λ1 =
1728s12(3s2 − 4s + 4)

(s + 2)14(s− 1)8
(λ2 − 1)(λ2

2 + a1λ2 + a0)

λ2(λ3
2 + c2λ2

2 + c1λ2 + c0)3
, λ2 =

λA

λ− 1 + A
,(22)

where

a0 =
27s4(2s2 − 3s + 2)2

(s + 2)4(s− 1)4(3s2 − 4s + 4)
, a1 = −2(14s5 − 25s4 + 20s3 + 8s2 − 16s + 8)

(s + 2)2(s− 1)2(3s2 − 4s + 4)
,

c0 = −24s4(4s3 − s2 − 4s + 4)

(s + 2)6(s− 1)4
, c1 =

60s6 − 84s5 − 15s4 + 72s3 − 8s2 − 32s + 16

(s + 2)4(s− 1)4
,

c2 = −2(6s3 − 3s2 − 4s + 4)

(s + 2)2(s− 1)2
, and

A =
14s5 − 25s4 + 20s3 + 8(s− 1)2 + 8(s− 1)(s2 − s + 1)w

(s + 2)2(s− 1)2(3s2 − 4s + 4)
, where

(23) w2 = (2s + 1)(1 − s)(s2 − s + 1),

is a solution of the quadratic equation, λ2
2+a1λ2+a0 = 0. Note that the function λ1 =

λ1(λ2) has a rational parametrization, however it is not correctly normalized. After

a normalization, the fractional-linear transformation λ2 = λ2(λ), we get the function

λ1 = λ1(λ), which has an elliptic parametrization. Applying now Theorem 2.1 of

[17], we get an algebraic solution of Equation (1),

y(t) = 1 +
(3s− 2)(s2 − 2s + 4)2

4(s + 2)(s− 1)2(s2 − s + 1)(3s2 − 4s + 4)
×(24)

−14s5 + 25s4 − 20s3 − 8s2 + 16s− 8− 8(s− 1)(s2 − s + 1)w

(2s + 1)(3s3 − 10s2 + 6s− 2)− 14(s− 1)w
,

(25) t =
1

2
−14s9− 105s8+ 252s7− 392s6+ 420s5− 336s4+ 112s3+ 72s2− 96s + 32

16(s + 2)2(s− 1)3(s2 − s + 1)w
,

with w defined in Equation (23), for the following set of θ-parameters:

θ0 =
1

3
, θ1 =

1

7
, θt =

1

7
, θ∞ =

6

7
.
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There are a few other suitable normalizations of the function λ1(λ2), clearly all of them

can be parameterized only by algebraic curves of genus 1. Theorem 2.1 [17] allows

to find an algebraic solution (of genus 1) to each such normalization. However, it is

easy to check that all these solutions are related to each other via so-called Bäcklund

transformations for Equation (1). Thus, Equations (24) and (25) represent the only

“pull-back” seed algebraic solution. The list of the “RS” seed algebraic solutions

is given below in Proposition 4.4. We can summarize our study as the following

Propositions.

Proposition 4.3. — For all R-types specified in Proposition 4.1: (8), (9), and (10),

there exist rational functions with these R-types. Each of these rational functions can

be rationally parameterized by a “deformation” parameter s ∈ CP
1 \ B, where B is a

finite set. The resulting birational functions: λ1 = λ1(λ, s) (Equation (22)), λ1 =

λ1(λ2, s) (Equations (19) and (17), and z = z(z1, s) in [17] Section 3, Subsection 3.4,

Example 3 (Cross), are unique up to fractional-linear transformations of the first

argument and reparametrization of s.

Proposition 4.4. — There are three seed RS-transformations related with R-type (8):

RS2
4





k/7 1/2 1/3

7 + 1 + 1 + 1 2 +. . .+ 2
︸ ︷︷ ︸

5

3 + 3 + 3 + 1



 for k = 1, 2, and 3. Each of these

transformations produces one algebraic genus 1 solution for the following sets of the

θ-parameters:

k = 1, θ0 =
1

3
, θ1 =

1

7
, θ1 =

1

7
, θ∞ =

6

7
,

k = 2, θ0 =
1

3
, θ1 =

2

7
, θ1 =

2

7
, θ∞ =

2

7
,

k = 3, θ0 =
1

3
, θ1 =

3

7
, θ1 =

3

7
, θ∞ =

4

7
.

Proposition 4.5. — There are four seed RS-transformations related with R-type (9):

RS2
4





k/7 1/2 1/3

7 + 2 + 1 + 1 + 1 2 +. . .+ 2
︸ ︷︷ ︸

6

3 +. . .+ 3
︸ ︷︷ ︸

4



 for k = 1, 2, 3, and 7/2. Each of

these transformations produces one algebraic genus 0 solution for the following sets

of the θ-parameters:

k = 1, θ0 =
1

7
, θ1 =

1

7
, θ1 =

1

7
, θ∞ =

5

7
,

k = 2, θ0 =
2

7
, θ1 =

2

7
, θ1 =

2

7
, θ∞ =

4

7
,

k = 3, θ0 =
3

7
, θ1 =

3

7
, θ1 =

3

7
, θ∞ =

1

7
,

k =
7

2
, θ0 =

1

2
, θ1 =

1

2
, θ1 =

1

2
, θ∞ = −5

2
.
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5. Classification of RS-Transformations of D-Type < 2, 3, 8 >

Proposition 5.1. — There is only one R4(3)-type, with the nonempty apparent set in

the third box (6), corresponding to the D-type < 2, 3, 8 >, namely,

(26) R4(8 + 1 + · · ·+ 1
︸ ︷︷ ︸

4

| 2 + · · ·+ 2
︸ ︷︷ ︸

6

| 3 + · · ·+ 3
︸ ︷︷ ︸

4

)

Proof. — We again refer to Master Inequality (2). For our particular divisors after

simple manipulations it can be rewritten as follows:

24− 8σ0 − 5σ1 − 3(σ0 + σ1 + σ∞) ≥ n.

Now, taking into account Inequality (3) and the fact that n ≥ 8, we find that 12 −
8σ0 − 5σ1 ≥ 8. Therefore, σ0 = σ1 = 0 and thus σ∞ ≥ 4. Again returning to Master

Inequality (2) and substituting in it σ0 = σ1 = 0, we obtain, 24 − 3σ∞ ≥ n which

implies that n ≤ 12. On the other hand n ≥ m∞ + σ∞ ≥ 12. Therefore, n = 12, the

only possible R4(3)-type with four non-apparent entries and non-empty apparent set

in the third box is equivalent to (26).

Because the degree of the function (26) is 12 = 2 · 6 = 3 · 4 = 4 · 3 = 6 · 2, we

have to examine whether this rational function can be presented as a composition of

rational functions of the lower degree. Clearly, that one of these functions should be

the Belyi function and the other a one-dimensional deformation of (another) Belyi

function. The latter generates an algebraic solution of the sixth Painlevé equation.

It is easy to see that such composition defines exactly the same algebraic solution of

P6 as its member, the deformed Belyi function.

In the above factorizations of 12 into the divisors we assume that the first function

is the Belyi one, while the second is a deformation, therefore in this sense these decom-

positions are not commutative. By a straightforward analysis, just an examination of

a few possibilities, we find that there is actually only one such composition (see also

Remark 5.2) below) corresponding to the factorization 12 = 6 · 2, namely,

(27) R(8+1+. . .+ 1
︸ ︷︷ ︸

4

| 2+. . .+ 2
︸ ︷︷ ︸

6

| 3+. . .+ 3
︸ ︷︷ ︸

4

) = R(4
∧
+1+1|2+2+2|3+3)◦R(2

∧
|1+1|1+1).

The function R(4+1+1|2+2+2|3+3) itself is also reducible, R(4+1+1|2+2+2|3+3) =

R((2
∧

+1|2+ 1
∧
|3) ◦R(2

∧
|2
∧
|1+1), however it is not important in the following. Explicit

form of the functions in the r.-h.s. of Equation (27) is as follows:

λ2 =
108λ4

1(λ1 − 1)

(λ2
1 − 16λ1 + 16)3

, λ1 = (1− 2s)
(λ− t/s)2

(λ − t)
,

(6)In the numbering of boxes we follow the convention of Remark 3.1. Here the third box comes first

in the natural counting.
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where

t =
s2

2s− 1
, and y(t) = s(28)

is the solution of Equation (1) for the θ-tuple,

θ0 = θ1, θt = θ∞ − 1,(29)

for arbitrary θ0 and θ∞ ∈ C (see Theorem 2.1 of [17]). The r.-h.s. now is easy to

find,

λ1 =
108λ(λ− 1)(λ− t)(λ − t/s)8

(2s− 1)(λ4 + c3λ3 + c2λ2 + c1λ + c0)3
,(30)

c3 = −4(s− 4)

(2s− 1)
, c2 = −2(5s2 + 16s− 8)

(2s− 1)2
, c1 =

4(7s− 4)s2

(2s− 1)3
, c0 =

s4

(2s− 1)4
,

where t is the same as in (28). Applying Theorem 2.1 of [17] we again arrive at

the solution y(t) defined in Equations (28) but now for a particular choice of the

θ-tuple (29), θ0 = θt = 1/8.

It is instructive to confirm the above mentioned analysis that leads to Equation (27)

graphically (see Figure 7).

��
���
�
�
���
��r r r r

R(8+2 +1+1| 2+. . .+2
︸ ︷︷ ︸

6

| 3+. . .+3
︸ ︷︷ ︸

4

) ⇒

⇒��
��

��
��
��
��

��
��dr r r r

R(8+1+ · · ·+1
︸ ︷︷ ︸

4

| 2+. . .+2
︸ ︷︷ ︸

6

| 3+. . .+3
︸ ︷︷ ︸

4

)

Figure 7. A symmetry preserving twist of the reducible dessin for the

Belyi function

There are two more reducible dessins with the symmetry preserving deformations:

R(8+1+. . .+ 1
︸ ︷︷ ︸

4

| 2+. . .+ 2
︸ ︷︷ ︸

4

+4| 3+. . .+ 3
︸ ︷︷ ︸

4

) = R(4
∧
+ 1+ 1|2+ 2+ 2

∧
|3+ 3) ◦R(2

∧
|2
∧
|1+ 1),

R(8+ 1+ · · ·+ 1
︸ ︷︷ ︸

4

| 2+ · · ·+ 2
︸ ︷︷ ︸

6

|3+ 3+ 6) = R(4
∧
+ 1+ 1|2+ 2+ 2|3+ 3

∧
) ◦R(2

∧
|1+ 1|2

∧
).

Their deformation dessins exactly coincide and correspond to another branch of the

solution (28).

The covering constructed above is not the only possible for this R-type. To get

an idea why there should be another solution, we observe that there is the following

deformation:

Remark 5.1. — This is a digression to the theory of the Gauss hypergeometric func-

tions. The Belyi function in the r.-h.s. of Figure 8, as well as the Belyi function from
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&%
'$

&%
'$r rr

&%
'$r

R(9+1+1+1| 2+. . .+2
︸ ︷︷ ︸

6

| 3+. . .+3
︸ ︷︷ ︸

4

) ⇒

=⇒
&%
'$

&%
'$r rr d
&%
'$r

R(8+ 1+. . .+1
︸ ︷︷ ︸

4

| 2+. . .+2
︸ ︷︷ ︸

6

| 3+. . .+ 3
︸ ︷︷ ︸

4

)

Figure 8. A symmetry breaking “face” deformation (LC-Join) of the

dessin for the reducible Belyi function

Figure 7, have in our terminology R3-type and therefore define transformations of or-

der 12 for the Gauss hypergeometric function. Both of these functions are reducible:

R(9+1+1+1| 2+. . .+2
︸ ︷︷ ︸

6

| 3+. . .+3
︸ ︷︷ ︸

4

) = R(3
∧
+1|2+2|3+ 1

∧
) ◦R(3

∧
|1+1+1|3

∧
),(31)

R(8+2+1+1| 2+. . .+2
︸ ︷︷ ︸

6

| 3+. . .+3
︸ ︷︷ ︸

4

)=R(2+1|2+1|3)◦R(2|2|1+1)◦R(2|1+1|2).(32)

In most cases reducibility of R-function means that the corresponding higher order

transformation for the Gauss hypergeometric function is a composition of transfor-

mations of the lower order, namely those that correspond to the R-functions of lower

degree from the decomposition of the original R-function. This happens when all

rational functions in the corresponding decomposition have R3-type. Like it is in the

case of the function (32), for k = 1, 3:

(33) RS2
3





k/8 1/2 1/3

8+2+1+1 2 +. . .+ 2
︸ ︷︷ ︸

6

3 +. . .+ 3
︸ ︷︷ ︸

4



 =

RS2
3

(
k/8 1/2 1/3

2+1 2+1 3

)

◦RS2
3

(
k/4 1/2 k/8

2 2 1+1

)

◦RS2
3

(
k/2 k/8 k/8

2 2 1+1

)

The last transformation is possible because in this case k/2 = 1/2 mod (1). The

resulting θ-triple(7) is
(
k/8, k/8, k/4− 1

)
. The other two “seed” transformations (33)

for k = 2.4 concerns elementary functions, for them the chain of transformations 33

is also working.

As for the Belyi function from Figure 8, the higher order transformations of the

Gauss hypergeometric function associated with it cannot be presented (in general)

as a composition of transformations of the lower order, because the first term of the

(7)see Footnote 5 on page 213.
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composition (31) does not have R3-type. In terms of the θ-triples the corresponding

seed transformations for the Gauss function are as follows:
(

1

2
,
1

3
,
k

9

)

←
(

k

9
,
k

9
,
k

9
− εk

)

, k = 1, 2, 3, 4, ε0 = ε2 = 1− ε1 = 1− ε3 = 0.

Because of the composition character both Belyi functions discussed here are easy

to construct. We present here the function (31), because as follows from the above

discussion it is a useful function in the theory of the Gauss hypergeometric functions:

λ1 =
64(λ3 − 1)

λ3(9λ3 − 8)3
, λ1 = − 192i

√
3λ(λ − 1)(λ− 1−i

√
3

2 )9

(λ− 1+i
√

3
2 )3(λ3 − 3(1+17i

√
3)

2 λ2 − 3(1−17i
√

3)
2 λ + 1)3

The first formula shows how this function is constructed via the composition given

in Equation (31) and the second one - its much more sophisticated form after a

normalization suitable for the construction of the higher order transformation of the

Gauss hypergeometric function.

Turning back to the discussion of Figure 8 it is interesting to notice that although

Equation (27) formally still holds for the R-types the deformation function is indecom-

posibale, see Remark 5.2 below. A direct analysis of the system of algebraic equations

defining this rational covering (see [17], Remark 2.1) reveals another solution:

λ1 =
27(s2 + s + is− i)8

8s2(s4 + 1)3
λ(λ − 1)(λ− t)(λ− a)8

(λ4 + c3λ3 + c2λ2 + c1λ + c0)3
,(34)

a =
(1 + i)(s2 + 1)(s2 + is− s + i)(s2 + 2s− 1)3

8s(s2 + s + is− i)(s2 + i)3
,(35)

c3 =
(s2 + 2s− 1)

2s2(s2 − i)2(s2 + i)3
(s12 + (5 + 7i)s11 + (31i− 13)s10 + (5i− 29)s9

+ (32 + 17i)s8 + (62i− 2)s7 + (28− 28i)s6 + (62− 2i)s5 − (17 + 32i)s4

+ (5− 29i)s3 + (13i− 31)s2 + (7 + 5i)s− i),

c2 =
(s2 + 2s− 1)4

64s4(s2 − i)2(s2 + i)6
(s16+ 8is15 − 68s14− 296is13+ 252s12− 184is11+ 420s10

+ 472is9 + 454s8 + 472is7 + 420s6 − 184is5 + 252s4 − 296is3 − 68s2 + 8is + 1),

c1 = − (s2 + 1)2(s2 + 2s− 1)7

64s4(s2 − i)2(s2 + i)9
(s12 + (7i− 5)s11 − (13 + 31i)s10 + (29 + 5i)s9

+ (32− 17i)s8 + (2 + 62i)s7 + (28 + 28i)s6 − (62 + 2i)s5 + (32i− 17)s4

− (5 + 29i)s3 − (31 + 13i)s2 + (5i− 7)s + i),

c0 =
(s2 − 2s− 1)2(s2 + 1)4(s2 + 2s− 1)10

1024s4(s2 − i)2(s2 + i)10
,
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The solution obtained from the above function via Theorem 2.1 [17] reads,

t = − (s2 + 1)2(s2 + 2s− 1)3(s2 − 2s− 1)3

32s2(s2 + i)3(s2 − i)3
,(36)

y(t) =
(1 + i)(s2 + s− is + i)(s2 − 2s− 1)(s2 + 1)(s2 + 2s− 1)2

8s(s2 + i)(s2 − i)2(s2 − s− is− i))
,(37)

It solves Equation (1) for the following θ-tuple

θ0 = θ1 = θt =
1

8
, θ∞ =

7

8
.

Proposition 5.2. — With each rational function (30) and (34) associated four seed RS-

transformations:

RS2
4





k/8 1/2 1/3

8 + 1 +. . .+ 1
︸ ︷︷ ︸

4

2 +. . .+ 2
︸ ︷︷ ︸

6

3 +. . .+ 3
︸ ︷︷ ︸

4



 for k = 1, 2, 3, and 4. Each of these

transformations produces one algebraic genus-0 solution of Equation (1) for the fol-

lowing sets of the θ-parameters:

k = 1, θ0 = θ1 = θt = 1− θ∞ =
1

8
,

k = 2, θ0 = θ1 = θt = θ∞ =
1

4
,

k = 3, θ0 = θ1 = θt = 1− θ∞ =
3

8
, and

k = 4, θ0 = θ1 = θt = θ∞ =
1

2
.

The solutions for k = 1 corresponding to the functions (30) and (34) are given by

Equations (28) and (36), (37), respectively.

Remark 5.2. — All solutions of Equation (1) which can be produced via Proposi-

tion 5.2 with the help of the function (30) are rational functions of
√

t and
√

t− 1.

The situation with the solutions that are generated via the function (34) is

more interesting: most probably, these solutions (it is not checked yet) coin-

cides with the solution that can be obtained via a successive compositions of

RS2
4

(
1/4 1/2 1/3

4+1+1 2+2+1+1 3+3

)

(See, Subsection 3.3, Example 5 (CW -split) of

[17]) the Okamoto transformation in the sense of Appendix of [18], and one of the

quadratic transformations for Equation (1) at the last page of Appendix of [17]),

such transformations also can be described as the simple quadratic Belyi functions.

Appearance of the Okamoto transformation in this composition makes impossible to

lift it on the level of rational coverings.

The last statement can be easily observed in this particular case. Because, In case

we suppose that these two examples are related with some RS-transformation, then it

would mean that two hypergeometric functions with the θ-triples (1/2, 1/3, 1/8), from
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the above example, and (1/2, 1/3, 1/4, from Subsection 3.3, Example 5 (CW -split)

of [17]), are related with some algebraic transformation, which is impossible, because

the first function does not belong to the Schwarz list [21] while the second is in its

fourth row.

This, possibly, explains the appearance of i in the parametrization (34). Therefore,

although the function (34) defines an algebraic solution which (most probably) can

be obtained from the already known simplier ones by the certain transformations, the

explicit formula for the covering (34) has an independent value. In particular, if we

are interesting not only in the solutions of the sixth Painlevé equation but also in

the solutions of the associated linear ODE the function (34) gives us an additional

opportunity to provide an explicit construction of the latter function in terms of the

hypergeometric ones.
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