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Abstract. — A theoretical foundation for a generalization of the elliptic difference

Painlevé equation to higher dimensions is provided in the framework of birational

Weyl group action on the space of point configurations in general position in a pro-

jective space. By introducing an elliptic parametrization of point configurations, a

realization of the Weyl group is proposed as a group of Cremona transformations

containing elliptic functions in the coefficients. For this elliptic Cremona system, a

theory of τ -functions is developed to translate it into a system of bilinear equations

of Hirota-Miwa type for the τ -functions on the lattice. Application of this approach

is also discussed to the elliptic difference Painlevé equation.

Résumé(Configurations de points, transformations de Cremona et équation de Painlevé aux
différences elliptique)

Dans le cadre de l’action birationnelle du groupe de Weyl sur l’espace des configu-

rations de points en position générale dans un espace projectif on établit des fonde-

ments théoriques en vue d’une généralisation aux dimensions supérieures de l’équa-

tion de Painlevé aux différences elliptique. On réalise le groupe de Weyl comme un

groupe de transformations de Cremona à coefficients fonctions elliptiques grâce à une

paramétrisation elliptique des configurations de points. Une théorie des fonctions τ

permet de traduire ce système de Cremona en un système d’équations bilinéaires de

type Hirota-Miwa pour les fonctions τ sur le réseau. On en donne une application à

l’équation de Painlevé aux différences elliptique.

1. Introduction

The main purpose of this paper is to provide a theoretical foundation for a gen-

eralization of the elliptic difference Painlevé equation to higher dimensions in the

framework of birational Weyl group actions on the spaces of point configurations in

general position in projective spaces.
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Since the pioneering work of Grammaticos, Ramani, Papageorgiou and Hietarinta

[5, 19], discrete Painlevé equations have been studied from various viewpoints. A

large class of second order discrete Painlevé equations, as well as their generalizations,

has been discovered through the studies of singularity confinement property, bilinear

equations, affine Weyl group symmetries and spaces of initial conditions (see [20, 21,

15, 22]. . . ). For historical aspects of discrete Painlevé equations, we refer the reader

to the review of Grammaticos-Ramani [4].

Among many others, we mention here the geometric approach proposed by Sakai

[22] for a class of discrete Painlevé equations arising from rational surfaces. Each

equation in this class is defined by the group of Cremona transformations on a certain

family of surfaces obtained from the projective plane P2(C) by blowing-up. According

to the types of rational surfaces, those discrete Painlevé equations are classified in

terms of affine root systems. Also, their symmetries are described by means of affine

Weyl groups. The elliptic difference Painlevé equation, which is regarded as the

master equation for all discrete Painlevé equations of this class, is a discrete dynamical

system defined on a family of surfaces parametrized by the 9-point configurations in

general position in P2(C); the corresponding group of Cremona transformations is the

affine Weyl group of type E
(1)
8 . As we have shown in [8], this system of difference

equations can be transformed into the eight-parameter discrete Painlevé equation of

Ohta-Ramani-Grammaticos [16], constructed from a completely different viewpoint

of bilinear equations for the τ -functions on the E8 lattice. It is also known by [8] that

the elliptic difference Painlevé equation has special Riccati type solutions obtained

by linearization to the elliptic difference hypergeometric equation. This gives a new

perspective of nonlinear special functions to the elliptic hypergeometric functions

which have been studied for instance by Frenkel-Turaev [3] in the context of elliptic

6-j symbols and by Spiridonov-Zhedanov [23] in the theory of biorthogonal rational

functions on elliptic grids.

Generalizing the geometric approach to the elliptic difference Painlevé equations,

in this paper we investigate the configuration space Xm,n of n points p1, . . . , pn in

general position in the projective space Pm−1(C). It is well-known [2] that the Weyl

group Wm,n associated with the tree T2,m,n−m can be realized as a group of birational

transformations on the configuration space Xm,n. Through the Wm,n-equivariant pro-

jection Xm,n+1 → Xm,n that maps [p1, . . . , pn, q] to [p1, . . . , pn], from the birational

action of Wm,n on Xm,n+1 we obtain a realization of the Weyl group Wm,n as a

group of Cremona transformations on q ∈ Pm−1(C) parameterized by the configura-

tion space Xm,n. Note that in the case when (m,n) = (3, 9), (4, 8) or (6, 9), the Weyl

groupWm,n is the affine Weyl group of type E
(1)
8 , E

(1)
7 or E

(1)
8 , respectively; this group

Wm,n = W (E
(1)
l ) decomposes into the semidirect product of the root lattice Q(El)

and the finite Weyl group W (El). In each of the three cases, through the birational
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action of Wm,n on Xm,n+1, the lattice part of the affine Weyl group provides a dis-

crete Painlevé system on Pm−1(C) with parameter space Xm,n. The discrete Painlevé

system of type (3, 9) thus obtained contains the three discrete Painlevé equations,

elliptic, trigonometric and rational, with W (E
(1)
8 ) symmetry in Sakai’s table.

In this framework of configuration spaces, in Section 4 we construct a Wm,n-

equivariant meromorphic mapping ϕm,n : hm,n →··· Xm,n by means of elliptic func-

tions, where hm,n denotes the Cartan subalgebra of the Kac-Moody Lie algebra as-

sociated with the tree T2,m,n−m. If we regard the birational Wm,n-action on Xm,n

as a system of functional equations for the coordinate functions, a ‘canonical’ ellip-

tic solution is provided by the meromorphic mapping ϕm,n. Its image also specifies

a Wm,n-stable class of n-point configurations in Pm−1(C) in which the n points are

on an elliptic curve. By restricting the point configurations to this class, from the

birational Weyl group action of Wm,n on Xm,n+1 we obtain a realization of Wm,n as

a group of Cremona transformations on Pm−1(C) parametrized by elliptic functions,

which we call the elliptic Cremona system of type (m,n). In Section 5 we develop

a theory of τ -functions for this elliptic Cremona system of type (m,n), and show

that it is translated into a system of bilinear equations of Hirota-Miwa type for the

τ -functions on the lattice. After that we reconsider the case of the elliptic difference

Painlevé system of type (3, 9) in the scope of the general setting of this paper. There

we give explicit description for some of the discrete time evolutions, in terms of ho-

mogeneous coordinates in Section 6, and in the language of geometry of plane curves

in Section 7.

The τ -function approach developed in this paper can be applied effectively to the

study of special hypergeometric solutions of the elliptic Painlevé equation and its

degenerations. Also, it is an important problem to complete the framework of Xm,n

of point configurations in general position, so that it should contain all reasonable

degenerate configurations as in Sakai’s table. These subjects will be investigated in

our subsequent papers.

2. Point configurations and Cremona transformations

Let Xm,n be the configuration space of n points in general position in Pm−1(C)

(n > m > 1). We say that an n-tuple of points (p1, . . . , pn) in Pm−1(C) is in general

position if p1, . . . , pn are mutually distinct, and #(H ∩ {p1, . . . , pn}) < m for any

hyperplaneH in Pm−1(C). We denote by [p1, . . . , pn] the corresponding configuration,

namely, the equivalence class of (p1, . . . , pn) under the diagonal PGLm(C)-action. By

fixing a system of homogeneous coordinates for Pm−1(C), the configuration space

Xm,n may be identified with the double coset space

(1) Xm,n = GLm(C)\Mat∗m,n(C)/Tn,
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where Mat∗m,n(C) stands for the space of all m × n complex matrices whose m ×m

minor determinants are all nonzero, and Tn = (C∗)n for the diagonal subgroup of

GLn(C). The configuration space Xm,n has the structure of an affine algebraic variety,

isomorphic to a Zariski open subset of C(m−1)(n−m−1) (see [25], for instance). Also,

it is known [1], [2] that the Weyl group associated with the tree

(2) c c c c c c

c

α1 α2 αm αm+1 αn−1

α0

T2,m,n−m :

acts birationally on Xm,n. This Weyl group Wm,n = W (T2,m,n−m) is generated by

the simple reflections s0, s1, . . . , sn−1 with the following fundamental relations.

(3) Wm,n = 〈s0, s1, . . . , sn−1〉 :

s2i = 1 αi αj

sisj = sjsi
c c

sisjsi = sjsisj
c c

As we will recall below, Wm,n is realized as a group of birational transformations

of Xm,n by the standard Cremona transformations with respect to m points among

p1, . . . , pn.

Given a set of m points p1, . . . , pm in general position, choose a system of homo-

geneous coordinates x = (x1, . . . , xm) such that

(4) p1 = (1 : 0 : . . . : 0), p2 = (0 : 1 : . . . : 0), . . . , pm = (0 : . . . : 0 : 1).

Then the standard Cremona transformation with respect to (p1, . . . , pm) is the bi-

rational transformation p → p̃ of Pm−1(C) defined by p̃ =
(
x−1

1 : . . . : x−1
m

)
for any

p = (x1 : . . . : xm) with xi 6= 0 (i = 1, . . . ,m). Note that this transformation depends

on the choice of homogeneous coordinates, and is determined only up to the action

of (C∗)m. The birational (right) action of Wm,n on Xm,n is then defined as follows.

Firstly, the symmetric group Sn acts on Xm,n by the permutation of n points:

(5) [p1, . . . , pn].σ = [pσ(1), . . . , pσ(n)] (σ ∈ Sn).

The adjacent transpositions sj = (j, j + 1) (j = 1, . . . , n − 1) provide the simple

reflections attached to the subdiagram of type An−1 in T2,m,n−m. The remaining

simple reflection s0 is given by the (well-defined) birational transformation

(6) [p1, . . . , pn].s0 = [p1, . . . , pm, p̃m+1, . . . , p̃n],

in terms of the standard Cremona transformation p → p̃ with respect to the first m

points (p1, . . . , pm). These birational transformations s0, s1, . . . , sn−1 in fact satisfy

the fundamental relations for the simple reflections of Wm,n. We also remark that,

for each subset {j1, . . . , jm} ⊂ {1, . . . , n} of mutually distinct m indices, the standard

Cremona transformation with respect to (pj1 , . . . , pjm
) is determined as crj1,...,jm

=

σs0σ
−1 ∈Wm,n by a permutation σ ∈ Sn such that σ(a) = ja for a = 1, . . . ,m.
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The right birational action of Wm,n on Xm,n induces a left action of Wm,n on the

field K(Xm,n) of rational functions on Xm,n as a group of automorphisms: For each

ϕ ∈ K(Xm,n) and w ∈ Wm,n, we define w(ϕ) ∈ K(Xm,n) by

(7) w(ϕ)([p1, . . . , pn]) = ϕ([p1, . . . , pn].w)

for any generic [p1, . . . , pn] ∈ Xm,n. Let us consider the set Um,n of all matrices

U ∈ Matm,n(C)∗ of the form

(8) U =




1 . . . 0 0 1 u1,m+2 . . . u1,n

...
. . .

...
...

...
...

...

0 . . . 1 0 1 um−1,m+2 . . . um−1,n

0 . . . 0 1 1 1 . . . 1


 .

It is easily shown that each (GLm(C), Tn)-orbit in Mat∗m,n(C) intersects with Um,n at

one point. By using this transversal Um,n
∼
→ GLm(C)\Matm,n(C)∗/Tn, we identify

Xm,n with a Zariski open subset of the affine space C
(m−1)(n−m−1) with canonical

coordinates u = (ui,j)1≤i≤m−1;m+2≤j≤n. Through the isomorphism K(Xm,n)
∼
→ C(u),

the action of Wm,n on K(Xm,n) can be described explicitly in terms of the u variables.

The following table shows how the simple reflections sk (k = 0, 1, . . . , n−1) transform

the coordinates ui,j (i = 1, . . . ,m− 1; j = m+ 2, . . . , n):

(9)

k = 0 : s0(uij) =
1

uij

,

k = 1, . . . ,m− 2 : sk(uij) = usk(i),j ,

k = m− 1 : sm−1(uij) =





uij

um−1,j

(i = 1, . . . ,m− 2),

1

um−1,j

(i = m− 1),

k = m : sm(uij) = 1 − uij ,

k = m+ 1 : sm+1(uij) =





1

ui,m+2
(j = m+ 2),

uij

ui,m+2
(j = m+ 3, . . . , n),

k = m+ 2, . . . , n− 1 : sk(uij) = ui,sk(j),

where sk(i) stands for the action of the adjacent transposition (k, k+ 1) on the index

i ∈ {1, . . . , n}. From this representation, for each w ∈ Wm,n we obtain a family of

rational functions

(10) w(ui,j) = Sw
i,j(u) (i = 1, . . . ,m− 1; j = m+ 2, . . . , n)

in the u variables; these functions satisfy the consistency relations

(11) S1
i,j(u) = uij , Sww′

i,j (u) = Sw′

i,j (S
w(u))

for any i, j and w,w′ ∈Wm,n.
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If we regard the u variables as dependent variables (unknown functions), (10) or

equivalently (9) can be regarded as a system of functional equations for uij . Typically,

we take a vector space V with canonical coordinates t = (t1, . . . , tN ), assuming that

Wm,n acts linearly on V (from the right). If we regard the coordinate functions tj
of V as the independent variables, then a solution of the system (10) is nothing but

a Wm,n-equivariant mapping ϕ : V → Xm,n. In Section 4, we construct an elliptic

solution of the system (10) in this sense, with V being the Cartan subalgebra hm,n of

the Kac-Moody Lie algebra associated with T2,m,n−m.

3. Tracing the Cremona transformations

Given a generic configuration [p1, . . . , pn] of n points, let us ask how a general

point of Pm−1(C), as well as the configuration itself, is transformed by a successive

application of standard Cremona transformations. In what follows, by a Cremona

transformation we mean a birational transformation of P
m−1(C) obtained by a suc-

cessive application of standard Cremona transformations.

We now consider the relative situation with respect to the projection π : Xm,n+1 →

Xm,n that maps [p1, . . . , pn, pn+1] to [p1, . . . , pn]. This projection is Wm,n-equivariant

relative to the inclusion Wm,n ⊂Wm,n+1 of Weyl groups. We regard Xm,n as the pa-

rameter space for Cremona transformations belonging to Wm,n, and the last point

q = pn+1 as the general point in Pm−1(C) that should be transformed by such

Cremona transformations. (This formulation has been used by [10] in the case

(m,n) = (3, 9).) Then, our question is how to describe [p1, . . . , pn, q].w for each

[p1, . . . , pn, q] ∈ Xm,n+1 and w ∈ Wm,n. By using the coordinates

(12) Ũ =




1 . . . 0 0 1 u1,m+2 . . . u1,n z1
...

. . .
...

...
...

...
...

...

0 . . . 1 0 1 um−1,m+2 . . . um−1,n zm−1

0 . . . 0 1 1 1 . . . 1 1




for Um,n+1, we parametrize the configurations [p1, . . . , pn] ∈ Xm,n and the general

points q ∈ P
m−1(C) as

(13)
p1 = (1 : 0 : . . . : 0), . . . , pm = (0 : . . . : 0 : 1), pm+1 = (1 : . . . : 1 : 1),

pj = (u1,j : . . . : um−1,j : 1) (j = m+ 2, . . . , n), q = (z1 : . . . : zm−1 : 1).

Then for any w ∈ Wm,n the configuration [p1, . . . , pn, q].w = [p̃1, . . . , p̃n, q̃] is given by

(14)

p̃j = pj (j = 1, . . . ,m+ 1),

p̃j = (w(u1,j) : . . . : w(um−1,j) : 1) (j = m+ 2, . . . , n),

q̃ = (w(z1) : . . . : w(zm−1) : 1).
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In this sense, for each w ∈ Wm,n the corresponding Cremona transformation of q =

pn+1 is determined as

(15) w(zi) = Rw
i (u; z) (i = 1, . . . ,m− 1),

in terms of rational functions Rw
i (u; z) in the variables u = (uij)1≤i≤m−1;m+2≤j≤n

and z = (z1, . . . , zm−1). Note also that Rw
i (u; z) satisfy

(16) R1
i (u; z) = zi, Rww′

i (u; z) = Rw′

i (Sw(u);Rw(u; z))

for any i and w,w′ ∈Wm,n. As we will see below, these Rw
i (u; z), regarded as rational

functions in the variable z = (z1, . . . , zm−1), have a characteristic property concerning

their multiplicities of zero at p1, . . . , pn.

Consider a free Z-module

(17) Lm,n = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen

of rank n + 1 with basis {e0, e1, . . . , en}, and define a symmetric bilinear form ( | ) :

Lm,n × Lm,n → Z by

(18)
(e0 | e0) = −(m− 2), (ej | ej) = 1 (j = 1, . . . , n),

(ei | ej) = 0 (i, j = 0, 1, . . . , n; i 6= j).

This lattice Lm,n admits a natural linear action of the Weyl group Wm,n defined by

(19) sk.Λ = Λ − (hk |Λ)hk (Λ ∈ Lm,n)

for each k = 0, 1, . . . , n− 1, where

(20) h0 = e0 − e1 − · · · − em, hk = ek − ek+1 (k = 1, . . . , n).

Note that (hj |hj) = 2 (j = 0, 1, . . . , n−1) and that ((hi |hj))
n−1
i,j=0 is the (generalized)

Cartan matrix associated with the tree T2,m,n−m. For each

(21) Λ = de0 − ν1e1 − · · · − νnen ∈ Lm,n (d, ν1, . . . , νn ∈ Z)

we denote by L(Λ) the vector space over K(Xm,n) consisting of all homogeneous

polynomials f(x) ∈ K(Xm,n)[x] of degree d in m variables x = (x1, . . . , xm) that have

a zero of multiplicity ≥ νj at each pj (j = 1, . . . , n):

(22) deg f(x) = d, ordpj
f(x) ≥ νj (j = 1, . . . , n).

Here we regard x = (x1, . . . , xm) as the homogeneous coordinate system for

Pm−1(K(Xm,n)) such that (z1 : . . . : zm−1 : 1) = (a1x1 : · · · : amxm) for some nonzero

constants ai ∈ K(Xm,n) (i = 1, . . . ,m− 1). Then we have

Theorem 3.1. — (1) Let Mm,n = Wm,n{e1, . . . , en} be the Wm,n-orbit of {e1, . . . , en}

in Lm,n. Then for any Λ ∈Mm,n, one has dimK(Xm,n) L(Λ) = 1.

(2) Given any element w ∈Wm,n, take nonzero polynomials

(23) Fi(x) ∈ L(w.ei), Gi(x) ∈ L(ws0.ei) (i = 1, . . . ,m).
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Then one has

(24) (w(z1) : . . . : w(zm−1) : 1) =
(
c1
G1(x)

F1(x)
: · · · : cm

Gm(x)

Fm(x)

)

for some nonzero constants ci ∈ K(Xm,n) (i = 1, . . . ,m).

This theorem can be proved by decomposing each w ∈ Wm,n into a product of

simple reflections w = sj1 · · · sjp
, and then by lifting each sjk

to the level of homoge-

neous coordinates. We remark that there is no canonical way a priori to define the

action of sj on homogeneous polynomials. This is the reason why we cannot specify

the choice of Fi and Gi. We will return to this point later in Section 5 in the context

of τ -functions for the elliptic Cremona system. In the case (m,n) = (3, 9), for any

Λ ∈Mm,n a nontrivial element in L(Λ) can be constructed as a certain interpolation

determinant(see Section 6).

As we have seen above, the birational action of Wm,n on Xm,n+1 can be expressed

in the form

(25) w(ui,j) = Sw
i,j(u), w(zi) = Rw

i (u; z).

Formula (25) can be thought of as a system of functional equations for the dependent

variables z = (z1, . . . , zm−1) including the u variables as parameters. Theorem 3.1

then implies that such a system of equations can be expressed as

(26) w(zi) = Rw
i (z) =

ci
cm

Gw
i (x)Fw

m(x)

Fw
i (x)Gw

m(x)
(i = 1, . . . ,m− 1)

for each w ∈ Wm,n, by means of homogeneous polynomials Fw
i ∈ L(w.ei) and

Gw
i ∈ L(ws0.ei) that are characterized by the degree and the multiplicities of zero

at p1, . . . , pn. (The dependence on the u variables is suppressed in this formula.)

Note that any abelian subgroup of the Weyl group Wm,n gives rise to a commuting

family of birational transformations on P
m−1(C) parameterized by configurations of

n points. Such a birational dynamical system (for the z-variables) could be called a

discrete Painlevé system associated with point configurations in Pm−1(C).

When the number 4− (m− 2)(n−m− 2) has the sign +, 0, or −, the root system

associated with the tree T2,m,n−m is of finite type, of affine type, or of indefinite

type, respectively, in the sense of [6]. In particular there are three cases (m,n) =

(3, 9), (4, 8) and (6, 9) of affine type; the corresponding root systems are of type E
(1)
8 ,

E
(1)
7 and E

(1)
8 , respectively. In these three cases, the configuration of n points can

be parametrized generically by means of elliptic functions. Note also that the Weyl

group Wm,n = W (E
(1)
l ) is then expressed as the semidirect product of the root lattice

Q(El) of rank l and the finite Weyl group W (El) acting on it. We call the discrete

dynamical system arising from the lattice part of Wm,n the elliptic difference Painlevé

equation of type (m,n).
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ELLIPTIC DIFFERENCE PAINLEVÉ EQUATION 177

4. Linearization of the Wm,n-action in terms of elliptic functions

Let hm,n = Lm,n ⊗Z C the complexification of the lattice Lm,n. In this section we

construct a Wm,n-equivariant meromorphic mapping ϕm,n : hm,n →··· Xm,n by means

of elliptic functions. This mapping specifies a class of configurations of n points on

an elliptic curve in Pm−1(C), which is preserved by the action of Wm,n. In order

to simplify the presentation, we assume m ≥ 3. In this case the symmetric bilinear

form ( | ) : hm,n × hm,n → C is nondegenerate, and hm,n is identified with the Cartan

subalgebra of the Kac-Moody Lie algebra associated with the tree T2,m,n−m.

We define the linear functions εj (j = 0, 1, . . . , n) and αj (j = 0, 1, . . . , n − 1) on

hm,n by

(27) εj(h) = (ej |h), αj(h) = (hj |h) (h ∈ hm,n).

We regard ε = (ε0, ε1, . . . , εn) : hm,n
∼
→ Cn+1 as the canonical coordinates for hm,n.

The linear functions α0, α1, . . . , αn−1 are the simple roots of the root system associated

with T2,m,n−m. Note also that the dual space h∗m,n = Cε0 ⊕ Cε1 ⊕ · · · ⊕ Cεn has

the induced symmetric bilinear form: (εi | εj) = (ei | ej) for any i, j ∈ {0, 1, . . . , n}.

The Weyl group Wm,n acts on hm,n and h∗m,n in a standard way: For each k =

0, 1, . . . , n− 1,

(28) sk.h = h− 〈h, αk〉hk (h ∈ hm,n), sk.λ = λ− 〈hk, λ〉αk (λ ∈ h∗m,n),

where 〈 , 〉 : hm,n × h∗m,n → C is the canonical pairing. When we consider the right

action of Wm,n on hm,n, we use the convention h.w = w−1.h for h ∈ hm,n and

w ∈Wm,n.

We now fix a nonzero holomorphic function on C, denoted by [x], assuming that

[x] is odd ([−x] = −[x] for any x ∈ C), and satisfies the Riemann relation:

(29) [x+y][x−y][u+v][u−v] = [x+u][x−u][y+v][y−v]− [x+v][x−v][y+u][y−u]

for any x, y, u, v ∈ C. If this condition is satisfied, the set Ω = {a ∈ C | [a] = 0}

of zeros of [x] forms a Z-submodule of C, and the function [x] is quasi-periodic with

respect to Ω. There are three classes of such functions; elliptic, trigonometric and

rational, according to the rank of Ω:

Elliptic case: [x] = c eax2

σ(x; Ω) (Ω = Zω1 ⊕ Zω2),

Trigonometric case: [x] = c eax2

sin(πx/ω0) (Ω = Zω0),

Rational case: [x] = c eax2

x (Ω = {0}).

Here σ(x; Ω) denotes the Weierstrass sigma function associated with the period lattice

Ω. In the context of discrete Painlevé equations, these three cases correspond to the

three types of difference equations (elliptic, trigonometric and rational). We will use

this symbol [x] whenever the three cases can be treated simultaneously.
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Taking constants λ ∈ C and µ = (µ1, . . . , µm) ∈ Cm such that [λ] 6= 0 and

[µi −µj ] 6= 0 (1 ≤ i < j ≤ m), we define a holomorphic mapping pλ,µ : C → Pm−1(C)

by

(30)

pλ,µ(t) =
( [λ+ µ1 − t]

[λ][µ1 − t]
: . . . :

[λ+ µm − t]

[λ][µm − t]

)

=
(
[λ+ µ1 − t]

m∏

k=2

[µk − t] : . . . : [λ+ µm − t]

m−1∏

k=1

[µk − t]
)

for any t ∈ C. Thanks to the quasi-periodicity of [x], this mapping induces a holo-

morphic mapping pλ,µ : EΩ = C/Ω → P
m−1(C). We denote by Cλ,µ = pλ,µ(C) ⊂

Pm−1(C) the curve obtained as the closure of the image of pλ,µ. Note that this curve

passes the m coordinate origins in Pm−1(C); in fact we have

(31) pλ,µ(µ1) = (1 : 0 : . . . : 0), . . . , pλ,µ(µm) = (0 : . . . : 0 : 1).

We also remark that Cλ,µ is a smooth elliptic curve when rankΩ = 2, and a singular

elliptic curve with a node (resp. a cusp) when rankΩ = 1 (resp. rankΩ = 0) at

(1 : . . . : 1).

We now consider a configuration of n points on Cλ,µ ⊂ Pm−1(C) defined as

(32) [p1, . . . , pn] = [pλ,µ(ε1), . . . , pλ,µ(εn)]

by the coordinates εj ∈ C (j = 1, . . . , n). Setting ε0 = λ+ µ1 + · · · + µm, we assume

that the parameters ε = (ε0, ε1, . . . , εn) are generic in the sense

(33)
[εi − εj] 6= 0, (1 ≤ i < j ≤ n),

[ε0 − εj1 − · · · − εjm
] 6= 0 (1 ≤ j1 < · · · < jm ≤ n).

Then by the Frobenius formula

(34) det

(
[λ+ xi − yj ]

[λ][xi − yj ]

)m

i,j=1

=

[λ+

m∑

k=1

(xk − yk)]
∏

1≤i<j≤m

[xj − xi][yi − yj ]

[λ]
∏

1≤i,j≤m

[xi − yj ]

for the function [x], we see that the configuration [p1, . . . , pn] defined as above is in

general position, and that its u coordinates are given explicitly by

(35)
ui,j = ui,j(ε) =

[α0 + εm,m+1][εi,m+1]

[εm,m+1][α0 + εi,m+1]

[α0 + εi,j ][εm,j ]

[εi,j ][α0 + εm,j ]

(i = 1, . . . ,m− 1; j = m+ 2, . . . , n)

where εi,j = εi − εj for i, j ∈ {1, . . . , n}, and α0 = ε0 − ε1 − · · · − εm. Note that,

by the passage to the double coset space Xm,n, the dependence of the configuration

on the parameters λ and µ = (µ1, . . . , µm) has been confined in the parameter ε0 =

λ+ µ1 + · · · + µm. Observe also that these functions ui,j(ε) are Ω-periodic in all the

variables εj (j = 0, 1, . . . , n).
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Under the identification of the parameters ε = (ε0, ε1, . . . , εn) with the canoni-

cal coordinates for hm,n, the construction described above implies two meromorphic

mappings

(36)
ϕm,n : hm,n = Lm,n ⊗Z C →··· Xm,n, and

ϕm,n : Em,n = Lm,n ⊗Z (C/Ω) →··· Xm,n.

Note that, when ε = (ε0, ε1, . . . , εn) ∈ hm,n is generic, the corresponding configuration

ϕm,n(ε) = [p1, . . . , pn] ∈ Xm,n is realized by an n-tuple of points on the elliptic

curve Cλ,µ ⊂ Pm−1(C) for any choice of λ and µ = (µ1, . . . , µm) such that ε0 =

λ + µ1 + · · · + µm. The meromorphic mapping ϕm,n is equivariant by construction

under the action of the symmetric group Sn = 〈s1, . . . , sn−1〉. Also, the equivariance

with respect to s0 is clearly seen by the explicit formula (35) for the u coordinates.

Hence we obtain

Theorem 4.1. — The meromorphic mapping ϕm,n : hm,n →··· Xm,n (resp. ϕm,n :

Em,n →··· Xm,n ) defined as above is Wm,n-equivariant with respect to the canoni-

cal linear action of the Weyl group Wm,n on hm,n and its nonlinear birational action

on Xm,n by Cremona transformations.

This theorem means that the Ω-periodic functions (35) satisfy the equations

(37) ui,j(w(ε)) = Sw
i,j(u(ε)) (i = 1, . . . ,m− 1; j = m+ 2, . . . , n)

for any w ∈ Wm,n, where w(ε) = (w(ε0), w(ε1), . . . , w(εn)). Namely, (35) give a

solution of the system of functional equations (10) for the u variables.

As we discussed in the previous section, in the relative situation Xm,n+1 → Xm,n,

the birational action of Wm,n on Xm,n+1 is expressed as

(38) w(ui,j) = Sw
i,j(u), w(zi) = Rw

i (u; z).

By substituting uij = uij(ε) as in (35), we obtain a realization of Wm,n as a group of

automorphisms of the field M(Em,n)(z) of rational functions in z with coefficients in

the field of meromorphic functions on Em,n:

(39) w(zi) = Rw
i (ε; z) (i = 1, . . . ,m− 1),

where we have used the notation Rw
i (ε; z) again instead of Rw

i (u(ε); z). We will refer

to this system (39) of functional equations for the z variables as the elliptic Cremona
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system of type (m,n). The action of the simple reflection sk (k = 0, 1, . . . , n − 1)

on the z variables is now given as follows:

(40)

k = 0 : s0(zi) =
1

zi

,

k = 1, . . . ,m− 2 : sk(zi) = zsk(i),

k = m− 1 : sm−1(zi) =





zi

zm−1
(i = 1, . . . ,m− 2),

1

zm−1
(i = m),

k = m : sm(zi) = 1 − zi,

k = m+ 1 : sm+1(zi) =
zi

ui,m+2(ε)
k = m+ 2, . . . , n− 1 : sk(zi) = zi.

Note that the dependence on the ε variables enters in the action of sm+1. Also, from

Theorem 4.1 for the case of Xm,n+1 with εn+1 = t, we see that the functions

(41) zi(ε; t) =
[α0 + εm,m+1][εi,m+1]

[εm,m+1][α0 + εi,m+1]

[α0 + εi − t][εm − t]

[εi − t][α0 + εm − t]
(i = 1, . . . ,m− 1)

satisfy the functional equations

(42) zi(w(ε); t) = Rw
i (ε; z(ε; t)) (i = 1, . . . ,m− 1),

for any w ∈ Wm,n. Namely, (41) provides a one-parameter family of solutions to the

elliptic Cremona system (39) of type (m,n). This solution will be called the canonical

solution of the elliptic Cremona system, which corresponds to the vertical solutions

in the context of differential Painlevé equations.

5. Tau functions for the elliptic Cremona system

In the case of the elliptic Cremona systems as we introduced above, the homoge-

neous polynomials Fw
i (x) and Gw

i (x) in (26) can be determined without ambiguity

by means of the action of the Weyl group on the τ-functions. In this section, we

introduce a framework of τ -functions for the elliptic Cremona systems, and show that

the Weyl group action is translated into bilinear equations of Hirota-Miwa type for

τ -functions on the lattice.

By using the natural linear action of Wm,n on h∗m,n, we define the set of real roots

by ∆Re
m,n = Wm,n{α0, α1, . . . , αn−1}, and denote by K = C([α];α ∈ ∆Re

m,n) the field of

meromorphic functions on hm,n generated by [α] for all real roots α ∈ ∆Re
m,n.

In order to formulate τ -functions for the elliptic Cremona system of type (m,n), we

use two kinds of variables (indeterminates) f1, . . . , fm, which will be identified with a
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system of homogeneous coordinates for Pm−1(C), and τ1, . . . , τn corresponding to the

n points p1, . . . , pn in the configuration [p1, . . . , pn]. We denote by

(43) L = K(f1, . . . , fm; τ1, . . . , τn)

the field of rational functions in the f variables and the τ variables with coefficients

in K. On this field L, we define the automorphisms s0, s1, . . . sn−1 as follows. These

elements act on the coefficient field K through the canonical Wm,n-action on the real

roots: For each k = 0, 1, . . . , n− 1,

(44) sk([α]) = [sk(α)] = [α− 〈hk, α〉αk] (α ∈ ∆Re
m,n).

The action of sk on τj (j = 1, . . . , n) is defined by

(45)
s0(τj) =

{
τj fj (j = 1, . . . ,m),

τj (j = m+ 1, . . . , n),

sk(τj) = τsk(j) (k = 1, . . . , n− 1; j = 1, . . . , n).

The action of sk on fi (i = 1, . . . ,m) is defined by

(46)

s0(fi) =
1

fi

sk(fi) = fsk(i) (k = 1, . . . ,m− 1),

sk(fi) = fi (k = m+ 1, . . . , n),

and

(47)

sm(fi) =
τm
τm+1

[α0 + εm,m+1][εi,m+1]fi − [α0 + εi,m+1][εm,m+1]fm

[α0][εi,m]

(i = 1, . . . ,m− 1),

sm(fm) =
τm
τm+1

fm.

Theorem 5.1. — The automorphisms s0, s1, . . . , sn−1 of L defined as above satisfy the

fundamental relations for the simple reflections of the Weyl group Wm,n.

This theorem can be proved directly by using the Riemann relation for [x].

We remark that the action of the Weyl group Wm,n preserves the subalgebra

(48) R = S[τ±1
1 , . . . , τ±1

n ] ⊂ L,

where

(49) S =
⊕

d∈Z

Sd, Sd = fd
m K(f1/fm, . . . , fm−1/fm).

Consider the following elements in S0:

(50) zi =
ai

am

fi

fm

, ai =
[εi,m+1]

[α0 + εi,m+1]
(i = 1, . . . ,m),

so that S0 = K(z1, . . . , zm−1) and that (z1 : . . . : zm−1 : 1) = (a1f1 : . . . : amfm).

Then the action of sk (k = 0, 1, . . . , n − 1) on these z variables coincides with the
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one given earlier in (40). In this sense the f variables are thought of as normalized

homogeneous coordinates. We also remark that the f variables and the τ variables

for the canonical solution are given by

(51) fC
i =

[α0 + εi − t]

[εi − t]
(i = 1, . . . ,m), τC

j = [εj − t] (j = 1, . . . , n).

(We have used the superscript C to indicate that they are “canonical”, and also asso-

ciated with the elliptic curve Cλ,µ.)

It is also convenient to introduce another τ variable τ0 and define xi (i = 1, . . . ,m)

by the formula

(52) fi =
τ0 xi

τ1 · · · τm
(i = 1, . . . ,m).

To be more precise, consider the field of rational functions

(53) L̃ = K(x1, . . . , xm; τ0, τ1, . . . , τm)

and identify L with its subfield

(54) L = K(τ0x1, . . . , τ0xm; τ1, . . . , τm)

by the formula (52). The action of the symmetric group Sn = 〈s1, . . . , sn−1〉 can be

extended to L̃ by setting

(55) sk(xi) = xsk(i) (k = 1, . . . ,m− 1), sk(xi) = xi (k = m+ 1, . . . , n− 1)

for i = 1, . . . ,m, and

(56) sm(xi) =
[α0 + εm,m+1][εi,m+1]xi − [α0 + εi,m+1][εm,m+1]xm

[α0][εi,m]

for i = 1, . . . ,m−1 and sm(xm) = xm. The action of Sn on the τ variables are defined

as

(57) sk(τ0) = τ0, sk(τj) = τsk(j) (j = 1, . . . , n)

for any k = 1, . . . , n − 1. Note that the action of s0 ∈ Wm,n is defined only on the

subfield L ⊂ L̃. The products τ0 xi ∈ L are transformed by s0 as follows:

(58) s0(τ0 xi) =
τm−1
0 x1 · · · x̂i · · ·xm

(τ1 · · · τm)m−2
(i = 1, . . . ,m).

We regard x = (x1, . . . , xm) as a normalized homogeneous coordinate system such

that (z1 : . . . : zm−1 : 1) = (a1x1 : . . . : amxm). Note that the canonical solution is

given by

(59) τ0 xi = xC
i (t) = [α0 + εi − t]

∏

1≤k≤m;k 6=i

[εk − t] (i = 1, . . . ,m).

Accordingly, we define the x coordinates of the reference points p1, . . . , pn by

(60) x(pj) = (xC
1 (εj) : . . . : xC

m(εj)), xC
i (εj) = [α0 + εi,j ]

∏

1≤k≤m;k 6=i

[εk,j ],
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for j = 1, . . . , n. For each element

(61) Λ = de0 − ν1e1 − · · · − νnen ∈ Lm,n (d, ν1, . . . , νn ∈ Z),

we define the formal exponential τΛ by

(62) τΛ = τd
0 τ

−ν1

1 · · · τ−νn

n .

Since fi = τh0xi (i = 1, . . . ,m), the algebra R can be expressed alternatively as

(63) R =
⊕

Λ∈Lm,n

K(x)deg(Λ) τ
Λ, K(x)d = xd

m K(x1/xm, . . . , xm−1/xm),

where deg(Λ) stands for the coefficient d of e0 in (61). In the x and τ variables, the

action of the Weyl group on R is described as follows:

(64) s0(τ
Λϕ(x)) = τs0.Λ xd−ν1

1 · · ·xd−νm
m

s0ϕ(x−1)

and

(65) sk(τΛϕ(x)) = τsk.Λ skϕ(sk(x)) (k = 1, . . . , n− 1)

for any ϕ(x) = ϕ(x1, . . . , xm) ∈ K(x)d, where wϕ(x) stands for the polyno-

mial obtained from ϕ(x) by applying w to its coefficients. The expression

sk(x) = (sk(x1), . . . , sk(xm)) (k = 1, . . . , n − 1) should be understood in the

sense of the action of Sn on L̃ described in (55) and (56).

We are now ready to introduce the lattice τ -functions for the elliptic Cremona

system of type (m,n). We consider the Wm,n-orbit of the lattice point en in Lm,n:

(66) Mm,n = Wm,nen = Wm,n{e1, . . . , en} ⊂ Lm,n.

Notice that the stabilizer of en is Wm,n−1, and that τn is Wm,n−1-invariant. Hence,

for each Λ ∈Mm,n we can define an element τ(Λ) = w(τn) ∈ R by taking any element

w ∈Wm,n such that w.en = Λ. This family of (τ(Λ))Λ∈Mm,n
of elements of R, indexed

by the lattice points Mm,n ⊂ Lm,n will be called the lattice τ-functions for the elliptic

Cremona system of type (m,n). These τ -functions are determined by the condition

τ(ej) = τj (j = 1, . . . , n) together with the compatibility condition

(67) w(τ(Λ)) = τ(w.Λ) (Λ ∈Mm,n;w ∈ Wm,n)

with respect to the action of Wm,n on Mm,n. By using

(68) fi =
s0(τi)

τi
=
τ(ei + h0)

τ(ei)
(i = 1, . . . ,m),

from the action of sm (47) on the f variables we obtain the following bilinear relations

for the lattice τ -functions:

(69)

[α0][εi,m]τ(h0 + ei + em − em+1)τ(em+1)

= [α0 + εm,m+1][εi,m+1]τ(h0 + ei)τ(em)

− [α0 + εi,m+1][εm,m+1]τ(h0 + em)τ(ei).
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Figure 1. Bilinear equations for the lattice τ -functions

From this we obtain

Theorem 5.2. — The lattice τ-functions (τ(Λ))Λ∈Mm,n
defined as above satisfy the

following bilinear equations of Hirota-Miwa type : For any choice of mutually distinct

indices i, j, k, l1, . . . , lm−2 ∈ {1, . . . , n},

(70)
[εj,k][λ− εj − εk]τ(ei)τ(Λ − ei) + [εk,i][λ− εk − εi]τ(ej)τ(Λ − ej)

+ [εi,j ][λ− εi − εj]τ(ek)τ(Λ − ek) = 0,

where Λ = e0 − el1 − · · · − elm−2
and λ = (Λ | ·) = ε0 − εl1 − · · · − εlm−2

.

The lattice τ -functions for the canonical solution are given simply by

(71) τC(Λ) = [λ− t] with λ = (Λ | ·) ∈ h∗m,n

for any Λ ∈ Mm,n. In this case the bilinear equations in Theorem 5.2 recover the

Riemann relation for the function [x].

We also remark that these bilinear equations of Hirota-Miwa type characterize the

lattice τ -functions for the elliptic Cremona system. To be more precise, suppose that

the natural action of Wm,n on K is extended to a field K containing K (as that of a

group of automorphisms). If a family of nonzero elements (τ(Λ))Λ∈Mm,n
of K, indexed

by Mm,n, satisfies the two conditions (67) and (70), then the elements

(72) fi =
τ(ei + h0)

τ(ei)
(i = 1, . . . ,m), τj = τ(ej) (j = 1, . . . , n)

of K recover the relations (45)–(47) for the action of Wm,n on L.
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Recall that the algebra R is expressed as

(73) R =
⊕

Λ∈Lm,n

K(x)deg(Λ) τ
Λ.

As in Section 3, for each Λ ∈ Lm,n of the form (61) we define the K-vector subspace

L(Λ) ⊂ K[x]d by

(74) L(Λ) = {f(x) ∈ K[x]d | ordpj
f(x) ≥ νj (j = 1, . . . , n)},

with the reference points pj specified by the x coordinates as in (60). Then one can

show that the subalgebra

(75) S =
⊕

Λ∈Lm,n

L(Λ) τΛ ⊂ R

is preserved under the action of Wm,n. In fact each w ∈ Wm,n induces a C-

isomorphism

(76) w. : L(Λ) τΛ ∼
→ L(w.Λ) τw.Λ

for any Λ ∈ Lm,n. (This fact can be established by examining the cases of simple

reflections s0, s1, . . . , sn−1.) Since τj ∈ L(ej)τ
ej (j = 1, . . . , n), the lattice τ -function

τ(Λ) for Λ ∈Mm,n can be expressed in the form

(77) τ(Λ) = τΛ φ(Λ;x), φ(Λ;x) ∈ L(Λ)

in terms of the original τ variables τ0, τ1, . . . , τn and the homogeneous coordinates

x1, . . . , xm. We remark that this family of homogeneous polynomials φ(Λ;x) (Λ ∈

Mm,n) is determined uniquely by the following properties:

(78)

φ(ej ;x) = 1 (j = 1, . . . , n),

φ(s0.Λ;x) = xd−ν1

1 · · ·xd−νm
m

s0φ(Λ;x−1),

φ(sk.Λ;x) = skφ(Λ; sk(x)) (k = 1, . . . , n− 1),

where Λ = de0 − ν1e1 − · · · − νnen. We sometimes refer to this family of polynomials

φ(Λ;x) as the τ-cocycle. They correspond to what are called φ-factors in [14].

Since fi = τh0xi (i = 1, . . . ,m), the formula (77) is rewritten also into

(79) τ(Λ) = τΛ−deg(Λ)e0 φ(Λ; τ0 x) = τΛ−deg(Λ)h0 φ(Λ; f)

in terms of the variables τ0xi or fi. For Λ as in (61), we have

(80) τ(Λ) =
φ(Λ; τ0x)

τν1

1 · · · τνn
n

=
τd−ν1

1 · · · τd−νm
m

τ
νm+1

m+1 · · · τνn
n

φ(Λ; f).

Note here that φ(Λ;x) is a homogeneous polynomial of degree d having a zero of

multiplicity ≥ νj at each pj (j = 1, . . . , n). In the case of the canonical solution, the

above formula gives rise to

(81) φ(Λ;xC(t)) = [λ− t][ε1 − t]ν1 · · · [εn − t]νn , λ = (Λ | ·).
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In this form, it is clearly seen that φ(Λ;xC(t)) has zeros at p1, . . . , pn with expected

multiplicities.

Note that

(82) fi =
τ(ei + h0)

τ(ei)
=
τ(s0.ei)

τ(ei)
(i = 1, . . . ,m)

implies

(83) w(fi) =
τ(ws0.ei)

τ(w.ei)
=
τws0.ei

τw.ei

φ(ws0.ei;x)

φ(w.ei;x)
= τw.h0

φ(ws0.ei;x)

φ(w.ei;x)

for any w ∈ Wm,n. Hence, the action of w ∈ Wm,n on the variables f1, . . . , fm and

τ1, . . . , τn can be written in a closed form as follows:

(84)
w(fi) = τw.h0−deg(w.h0)h0

φ(ws0.ei; f)

φ(w.ei; f)
(i = 1, . . . ,m),

w(τj) = τw.ej−deg(w.ej)h0 φ(w.ej ; f) (j = 1, . . . , n).

Also, from

(85) (z1 : . . . : zm−1 : 1) = (a1f1 : . . . : amfm), ai =
[εi,m+1]

[α0 + εi,m+1]
,

we obtain

(86) (w(z1) : . . . : w(zm−1) : 1) =
(
w(a1)

φ(ws0.e1;x)

φ(w.e1;x)
: . . . : w(am)

φ(ws0.em;x)

φ(w.em;x)

)

for any w ∈Wm,n. This formula provides a refinement of Theorem 3.1 for the elliptic

Cremona system of type (m,n).

6. Elliptic difference Painlevé equation

In the rest of this article, we confine ourselves to the elliptic Cremona system of

type (3, 9) which has the affine Weyl group symmetry of type E
(1)
8 . The discrete

dynamical system arising from the lattice part of W (E
(1)
8 ) is the elliptic difference

Painlevé equation.

The parameter space for the elliptic Cremona system of type (3, 9) is the 10-

dimensional vector space

(87) h3,9 = Ce0 ⊕ Ce1 ⊕ · · · ⊕ Ce9

with the nondegenerate symmetric bilinear form (· | ·) : h3,9 × h3,9 → C such that

(88)
(e0 | e0) = −1, (ej | ej) = 1 (j = 1, . . . , 9),

(ei | ej) = 0 (i, j ∈ {1, . . . , 9}; i 6= j),

which we regard as the complexification of the lattice L3,9 = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Ze9.

We take the linear functions εj = (ej | ·) (j = 0, 1, . . . , 9) as the canonical coordinates
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for h3,9, so that h∗3,9 = Cε0 ⊕ Cε1 ⊕ · · · ⊕ Cε9. The simple coroots hj ∈ h3,9 and the

simple roots αj = (hj | ·) ∈ h∗3,9 (j = 0, 1, . . . , 8) for this case are

(89)
h0 = e0 − e1 − e2 − e3, hj = ej − ej+1 (j = 1, . . . , 8),

α0 = ε0 − ε1 − ε2 − ε3, αj = εj − εj+1 (j = 1, . . . , 8).

The 9 × 9 matrix (〈hi, αj〉)
8
i,j=0 is the Cartan matrix of type E

(1)
8 with the following

Dynkin diagram.

(90) c c c c c c c c

c

α1 α2 α3 α4 α5 α6 α7 α8

α0

E
(1)
8 :

We denote by

(91) Q3,9 = Zα0 ⊕ Zα1 ⊕ · · · ⊕ Zα8 ⊂ h∗3,9, Q3,9
∼
→ Q(E

(1)
8 ),

the corresponding root lattice. The affine Weyl group W3,9 = 〈s0, s1, . . . , s8〉 of type

E
(1)
8 acts in a standard way on h3,9 and h∗3,9, so that the symmetric bilinear forms of

h3,9 and h∗3,9 are both W3,9-invariant. The canonical central element

(92) c = 3e0 − e1 − · · · − e9 ∈ h3,9

is orthogonal to all hj (j = 0, 1, . . . , 8), and hence W3,9-invariant. The corresponding

W3,9-invariant element in h∗3,9

(93) δ = (c | ·) = 3ε0 − ε1 − · · · − ε9 ∈ h∗3,9

is called the null root; it plays the role of the scaling constant for difference equations

in the context of discrete Painlevé equation. The set ∆Re
3,9 = W3,9{α0, α1, . . . , α8} of

real roots is now given by

(94)
∆Re

3,9 = {±εij + nδ | 1 ≤ i < j ≤ 9, n ∈ Z}

∪ {±εijk + nδ | 1 ≤ i < j < k ≤ 9, n ∈ Z},

where εij = εi − εj and εijk = ε0 − εi − εj − εk for i, j, k ∈ {1, . . . , 9}. For each real

root α ∈ ∆Re
3,9, the reflection sα : h∗3,9 → h∗3,9 with respect to α is defined by

(95) sα(λ) = λ− (α |λ)α (λ ∈ h∗3,9).

Note also wsαw
−1 = sw.α for any α ∈ ∆Re

3,9 and w ∈ W3,9. When α = εij or εijk, we

denote the reflection sα simply by sij or sijk, respectively.

Following [6], for each α ∈ Q3,9 we define the translation Tα : h∗3,9 → h∗3,9 by

(96) Tα(λ) = λ+ (δ |λ)α−
(1

2
(α |α)(δ |λ) + (α |λ)

)
δ (λ ∈ h∗3,9).

Note that

(97)

Tα(β) = β − (α |β) δ (α, β ∈ Q3,9),

TαTβ = TβTα = Tα+β (α, β ∈ Q3,9),

wTαw
−1 = Tw.α (α ∈ Q3,9 and w ∈W3,9).
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For any real root α ∈ ∆Re
3,9, the translation Tα can be expressed as the composition

of two reflections Tα = sδ−αsα. From this fact it follows that Tα ∈ W3,9 for any

α ∈ Q3,9. Furthermore, it is known that the affine Weyl group W3,9 is decomposed

into the semidirect product of the root lattice

(98) Q3,8 = Zα0 ⊕ Zα1 ⊕ · · · ⊕ Zα7 ⊂ Q3,9, Q3,8
∼
→ Q(E8),

and the finite Weyl group W3,8 = 〈s0, s1, . . . , s7〉 of type E8 acting on Q3,8. In fact the

correspondence (α,w) 7→ Tαw induces the isomorphism Q3,8 oW3,8
∼
→W3,9 (see [6]).

We remark that the action of Tα on h3,9 is expressed in the form

(99) Tα(Λ) = Λ + (c |Λ)h−
(1

2
(h |h)(c |Λ) + (h |Λ)

)
c (Λ ∈ h3,9)

by using the element h ∈ h3,9 such that α = (h | ·). When α = εij or εijk, we write

the translation Tα simply as Tij or Tijk, respectively. In this case of (m,n) = (3, 9),

the W3,9-orbit M3,9 = W3,9{e1, . . . , e9} ⊂ L3,9 can be characterized as follows:

(100) M3,9 = {Λ ∈ L3,9 | (c |Λ) = −1, (Λ |Λ) = 1}.

Also, the correspondence α 7→ Tα.e9 induces a bijection Q3,8
∼
→ M3,9. Any element

Λ ∈M3,9 can be expressed in the form

(101) Λ = de0 − ν1e1 − · · · − ν9e9, d ≥ 0, νj ≥ −1 (j = 1, . . . , 9).

In fact, except for the cases Λ = ek (k = 1, . . . , 9), the coefficients νj are all nonnega-

tive.

As in the previous section, we consider the K-algebra

(102) R = S[τ±1
1 , . . . , τ±1

9 ], S =
⊕

d∈Z

fd
3 K(f1/f3, f2/f3)

of f variables and τ variables. The standard Cremona transformation s0 with respect

to (p1, p2, p3) acts on the f variables and τ variables as

(103) s0(fi) =
1

fi

(i = 1, 2, 3), s0(τj) =

{
τjfj (j = 1, 2, 3),

τj (j = 4, 5, 6, 7, 8, 9).

Among the 8 adjacent transpositions sk (k = 1, . . . , 8), s3 acts nontrivially on the f

variables:

(104)

s3(f1) =
τ3
τ4

[ε124][ε14]f1 − [ε234][ε34]f3
[ε123][ε13]

,

s3(f2) =
τ3
τ4

[ε124][ε24]f1 − [ε134][ε34]f3
[ε123][ε23]

,

s3(f3) =
τ3
τ4
f3.

(Note that α0 = ε123.) Recall that the lattice τ -functions (τ(Λ))Λ∈M3,9
are defined as

a family of dependent variables indexed by the W3,9-orbit

(105) M3,9 = W3,9{e1, . . . , e9} = {Λ ∈ L3,9 | (c |Λ) = −1, (Λ |Λ) = 1}.
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These τ -functions τ(Λ) are characterized by the consistency condition

(106) τ(ej) = τj (j = 1, . . . , 9), w(τ(Λ)) = τ(w.Λ) (Λ ∈M3,9;w ∈W3,9)

with respect to the action of W3,9 on M3,9, and the bilinear equations

(107)
[εjk][εjkl]τ(ei)τ(e0 − ei − el) + [εki][εkil]τ(ej)τ(e0 − ej − el)

+ [εij ][εijl]τ(ek)τ(e0 − ek − el) = 0

for any mutually distinct i, j, k, l ∈ {1, . . . , 9}. These bilinear equations guarantee the

equivalence of our formulation of the elliptic difference Painlevé equation of type E
(1)
8

to that of Ohta-Ramani-Grammaticos [16] on the E8 lattice.

We already know that the lattice τ -functions can be expressed in the form

(108) τ(Λ) = τΛ φ(Λ;x) = τΛ−deg(Λ)h0φ(Λ; f), φ(Λ;x) ∈ L(Λ),

where the x coordinates are defined by fi = τh0xi (i = 1, 2, 3). When Λ = de0 −

ν1e1 − · · · − ν9e9, φ(Λ;x) is a homogeneous polynomial of degree d = deg(Λ), and for

each j = 1, . . . , 9 it has a zero of multiplicity ≥ νj at pj ; the x coordinates of pj are

now given by

(109) x(pj) = ([ε23j ][ε2j ][ε3j ] : [ε13j ][ε1j ][ε3j ] : [ε12j ][ε1j ][ε2j ]) (j = 1, . . . , 9).

By the homogeneous polynomials φ(Λ;x), the action of W3,9 on the algebra R is

described as

(110)
w(fi) = τw.h0−deg(w.h0)h0

φ(ws0.ei; f)

φ(w.ei; f)
(i = 1, 2, 3),

w(τj) = τw.ej−deg(w.ej)h0 φ(w.ej ; f) (j = 1, . . . , 9).

Recall that the z variables z = (z1, z2) are recovered from the f variables by the

formula

(111) (z1 : z2 : 1) =
( [ε14]

[ε234]
f1 :

[ε24]

[ε134]
f2 :

[ε34]

[ε124]
f3

)
,

and hence

(112) (w(z1) : w(z2) : 1) =
( [w(ε14)]

[w(ε234)]
w(f1) :

[w(ε24)]

[w(ε134)]
w(f2) :

[w(ε34)]

[w(ε124)]
w(f3)

)

for any w ∈ W3,9. This implies

(113)

w(z1) =
[w(ε14)][w(ε124)]

[w(ε234)][w(ε34)]

Gw
1 (z)Fw

3 (z)

Fw
1 (z)Gw

3 (z)
,

w(z2) =
[w(ε24)][w(ε124)]

[w(ε134)][w(ε34)]

Gw
2 (z)Fw

3 (z)

Fw
2 (z)Gw

3 (z)
,

where Fw
i (z) and Gw

i (z) are the inhomogenizations of φ(w.ei; f) and φ(ws0.ei; f),

respectively, by (111). The formulas (110) (resp. (113)) for the translations w = Tα
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(α ∈ Q3,9) give the elliptic difference Painlevé equation of type (3, 9) in the homoge-

neous form of f and τ variables (resp. in the inhomogeneous form in z variables). In

the following, we will mainly work with the homogeneous form (110).

Note that, for each Λ ∈M3,9, the homogeneous polynomial φ(Λ;x) is characterized

by its degree and the multiplicity of zeros at p1, . . . , p9. Thanks to this fact, we are able

to express φ(Λ;x) by means of an interpolation determinant. For each d = 0, 1, 2, . . . ,

we denote by

(114) md(x) = (xµ)|µ|=d = (xµ1

1 xµ2

2 xµ3

3 )
µ1+µ2+µ3=d

the column vector of monomials of degree d in x = (x1, x2, x3). Note that the number

of such monomials is given by

(115) dimK K[x]d =

(
d+ 2

2

)
=

1

2
(d+ 1)(d+ 2).

For each k = 0, 1, . . . , d we denote by

(116) m
(k)
d (x) = (∂κ

x(xµ))|µ|=d,|κ|=k =
(
∂κ1

x1
∂κ2

x2
∂κ3

x3
(xµ1

1 xµ2

2 xµ3

3 )
)
|µ|=d,|κ|=k

the
(
d+2
2

)
×

(
k+2
2

)
matrix defined by the partial derivatives md(x) of order k. (For

k < 0, we consider m
(k)
d (x) as an empty matrix.) Given an element

(117) Λ = de0 − ν1e1 − · · · − ν9e9 ∈M3,9,

we consider the homogeneous polynomial

(118) F (Λ;x) = det
(
m

(ν1−1)
d (p1), . . . ,m

(ν9−1)
d (p9),md(x)

)

of degree d in x = (x1, x2, x3), where m
(k)
d (pj) stands for the matrix obtained from

m
(k)
d (x) by the substitution x = x(pj) as in (109). Note here that

(119)

(
d+ 2

2

)
−

9∑

j=1

(
νj + 1

2

)
− 1 = −

1

2

(
(c |Λ) + (Λ |Λ)

)
= 0

for any Λ ∈ M3,9; this means that the number of column vectors in (118) is equal

to
(
d+2
2

)
. Also, from dimK L(Λ) = 1 it follows that F (Λ;x) is a nonzero polynomial.

Combining this fact with the normalization condition (71), we obtain the following

theorem.

Theorem 6.1. — For each Λ ∈ M3,9, define the homogeneous polynomial F (Λ;x) in

x = (x1, x2, x3) by the determinant (118). Then, the specialization of F (Λ;x) to the

canonical solution xC(t) is expressed in the form

(120) F (Λ;xC(t)) = CΛ [λ− t]

9∏

j=1

[εj − t]νj , λ = (Λ | ·) ∈ h∗3,9,
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ELLIPTIC DIFFERENCE PAINLEVÉ EQUATION 191

with a nonzero constant CΛ ∈ K. With this normalization constant CΛ, the homoge-

neous polynomial φ(Λ;x) ∈ L(Λ) is expressed as the determinant

(121) φ(Λ;x) = C−1
Λ F (Λ;x).

Let us consider the action of translations w = Tα (α ∈ ∆Re
3,9) on R:

(122)
Tα(fi) = τTα.h0−deg(Tα.h0)h0

φ(Tα.(ei + h0); f)

φ(Tα.ei; f)
(i = 1, 2, 3),

Tα(τj) = τTα.ej−deg(Tα.ej)h0 φ(Tα.ej ; f) (j = 1, . . . , 9).

These formulas are the elliptic difference Painlevé equations of type (3, 9) for the f and

τ variables. The polynomials φ(Λ;x) can be determined either recursively by (78),

or by using the determinants of Theorem 6.1. In this sense, these polynomials are

computable in principle. We will show later some explicit formulas for small φ(Λ;x).

For α ∈ ∆Re
3,9, the translation Tα is defined by

(123) Tα(Λ) = Λ − h+ (1 − (h |Λ))c

for any Λ ∈M3,9, where h ∈ L3,9, α = (h | ·). (Note that (α |α) = 2.) As an example,

we consider the case T78 = Tα7
. (The argument below applies to any Tij = Tεij

for

mutually distinct i, j ∈ {4, 5, 6, 7, 8, 9}). In this case, the discrete time evolution of

the f variables by T78 can be written in the form

(124) T78(fi) =
Gi(f1, f2, f3)

Fi(f1, f2, f3)
(i = 1, 2, 3)

where Fi(x) = φ(T78(ei);x) and Gi(x) = φ(T78(ei + h0);x). For i = 1 we have

(125) T78(e1) = 3e0 − e2 − e3 − e4 − e5 − e6 − 2e7 − e9.

This means that F1(x) = φ(T78(e1);x) is a homogeneous polynomial of degree 3 with

multiplicities of zeros (0, 1, 1) at (p1, p2, p3), and (1, 1, 1, 2, 0, 1) at (p4, p5, p6, p7, p8, p9).

In particular F1(x) can be written in the form

(126) F1(x) = a0x
3
1+a1x

2
1x2+a2x

2
1x3+a3x1x

2
2+a4x1x2x3+a5x1x

2
3+a6x

2
2x3+a7x2x

2
3.

Observe that the monomials x3
2 and x3

3 are missing in this formula; this is because

F1(x) should have zeros at p2 = (0 : 1 : 0) and p3 = (0 : 0 : 1). (The coefficients

ak could be determined in principle from the pattern of multiplicities of zeros at

(p4, . . . , p9).) Similarly from

(127) T78(e1 + h0) = 4e0 − e1 − 2e2 − 2e3 − e4 − e5 − e6 − 2e7 − e9,

we see that Gi(x) is of degree 4. Since s0T78(e1) = T78(e1 + h0), we know that G1(x)

is in fact determined from F1(x) as G1(x) = x3
1x

2
2x

2
3

s0F (x−1). These polynomials

Fi(x) and Gi(x) are in fact too big to write down explicitly. A way to see this time

evolution of the f variables is to decompose T78 into two steps by using the expression

(128) T78 = w2, w = s11′7s22′7s33′7s89s78,
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where {1′, 2′, 3′} = {4, 5, 6}. If we set gi = w(fi), we obtain

(129) gi =
Qi(f1, f2, f3)

Pi(f1, f2, f3)
, T78(fi) =

Si(g1, g2, g3)

Ri(g1, g2, g3)
(i = 1, 2, 3),

where Pi(x) = φ(w(ei);x) and Qi(x) = φ(w(ei + h0);x); Ri(x) and Si(x) are de-

termined as Ri(x) = wPi(x) and Si(x) = wQi(x), by applying w to the coefficients.

Since

(130) w(ei) = e0 − ej′ − ek′ , w(ei + h0) = 2e0 − e1 − e2 − e3 − ej′ − ek′

for {i, j, k} = {1, 2, 3}, we see that the corresponding φ(Λ;x) have degree 1 and 2,

respectively. In fact we have

(131) φ(e0 − ea − eb;x) =
[ε1a][ε1b][ε1ab]

[ε12][ε13][ε123]
x1 −

[ε2a][ε2b][ε2ab]

[ε12][ε23][ε123]
x2 +

[ε3a][ε3b][ε3ab]

[ε13][ε23][ε123]
x3

for 1 ≤ a < b ≤ 9, and

(132)

φ(2e0 − e1 − e2 − e3 − ea − eb;x)

= −
[ε23a][ε23b][ε1ab]

[ε12][ε13][ε123]
x2x3 +

[ε13a][ε13b][ε2ab]

[ε12][ε23][ε123]
x1x3 −

[ε12a][ε12b][ε3ab]

[ε13][ε23][ε123]
x1x2

for 4 ≤ a < b ≤ 9. Hence we obtain the explicit formulas for Pi.Qi, Ri, Si:

(133)

Pi(x) =
[ε1i′ ][ε17][ε1i′7]

[ε12][ε13][ε123]
x1 −

[ε2i′ ][ε27][ε2i′7]

[ε12][ε23][ε123]
x2 +

[ε3i′ ][ε37][ε3i′7]

[ε13][ε23][ε123]
x3,

Qi(x) = −
[ε23i′ ][ε237][ε1i′7]

[ε12][ε13][ε123]
x2x3 +

[ε13i′ ][ε137][ε2i′7]

[ε12][ε23][ε123]
x1x3 −

[ε12i′ ][ε127][ε3i′7]

[ε13][ε23][ε123]
x1x2,

Ri(x) = −
[εi1′ ][ε1′79][ε

−
i1′8]

[ε1′2′ ][ε1′3′ ][ε123]
x1 +

[εi2′ ][ε2′79][ε
−
i2′8]

[ε1′2′ ][ε2′3′ ][ε123]
x2 −

[εi3′ ][ε3′79][ε
−
i3′8]

[ε1′3′ ][ε2′3′ ][ε123]
x3,

Si(x) = −
[εjk1′ ][ε−2′3′8][ε

−
i1′8]

[ε1′2′ ][ε1′3′ ][ε123]
x2x3 +

[εjk2′ ][ε−1′3′8][ε
−
i2′8]

[ε1′2′ ][ε2′3′ ][ε123]
x1x3 −

[εjk3′ ][ε−1′2′8][ε
−
i3′8]

[ε1′3′ ][ε2′3′ ][ε123]
x1x2

for {i, j, k} = {1, 2, 3}, where ε−ij8 = εij8 − δ.

We remark that the translation Tα for any α ∈ ∆Re
3,9 can be expressed as Tα =

v T78 v
−1 for some v ∈ W3,9 such that v(α7) = α. If we introduce the dependent

variables ϕi = v(fi), ψi = v(gi) (i = 1, 2, 3), the discrete time evolution of these

variables by Tα can be expressed in the same form as in the case of T78.

Explicit description for the time evolutions of the elliptic difference Painlevé equa-

tion is discussed also in [17] and [11] from different viewpoints.

7. In terms of geometry of plane curves

The discrete time evolution of type Tij (i, j ∈ {1, . . . , 9}; i 6= j) for the elliptic

difference Painlevé equation can be described by means of geometry of plane cubic
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curves. In this final section we give an explanation of this fact in the scope of this

paper.

Take three constants c1, c2, c3 ∈ C such that

(134) [c1 + c2 + c3] 6= 0, [ci − cj ] 6= 0 (1 ≤ i < j ≤ 3),

and set c0 = −c1−c2−c3. With these constants fixed, let us consider the holomorphic

mapping p : C → P2(C) defined by

(135)
p(u) = (x1(u) : x2(u) : x3(u)) (u ∈ C),

xi(u) = [c0 + ci − u][cj − u][ck − u] ({i, j, k} = {1, 2, 3}).

(By the quasi-periodicity of the function [u], this mapping induces a holomorphic

mapping p : E = C/Ω → P2(C) as well.) We denote by C0 = p(C) the plane curve

obtained by the parametrization (135). The defining equation for this curve C0 is

given explicitly by

(136)

−
[c0 + c3 − c1]

[c3 − c1]
x2

1x2 +
[c0 + c2 − c1]

[c2 − c1]
x2

1x3 +
[c0 + c3 − c2]

[c3 − c2]
x1x

2
2

+ 2
[c0]

[0]′

(
[c0 + c2 − c3]

′

[c2 − c3]
+

[c0 + c3 − c1]
′

[c3 − c1]
+

[c0 + c1 − c2]
′

[c1 − c2]

)
x1x2x3

−
[c0 + c2 − c3]

[c2 − c3]
x1x

2
3 −

[c0 + c1 − c2]

[c1 − c2]
x2

2x3 +
[c0 + c1 − c3]

[c1 − c3]
x2x

2
3 = 0,

where [u]′ stands for the derivative of [u]. (The coefficient of x1x2x3 can be written

in various ways.) We remark that this definition of p and C0 is related to that of pλ,µ

and Cλ,µ for the case m = 3 in Section 4 by the change of variables

(137) λ = c0, µi = ci +
ε0
3

(i = 1, 2, 3), t = u+
ε0
3
.

In particular, the W3,n-equivariant meromorphic mapping ϕ3,n : h3,n →··· X3,n can be

realized by means of point configurations on one single curve C0 ⊂ P2(C):

(138) ϕ3,n(ε) = [p(u1), · · · , p(un)], uj = εj −
ε0
3

(j = 1, . . . , n)

for each generic ε = (ε0, ε1, . . . , εn) ∈ h3,n. Thanks to the condition c0+c1+c2+c3 = 0,

we see that a set of 3d points p(a1), . . . p(a3d) on C0 is realized as the intersection of

C0 and a curve of degree d if and only if [a1 + · · · + a3d] = 0. In particular, three

points p(a1), p(a2), p(a3) on C0 are colinear if and only if [a1 + a2 + a3] = 0. The

affine Weyl group W3,n acts on these variables u1, . . . , un as follows:

(139)
s0(uj) =





uj −
2

3
(u1 + u2 + u3) (j = 1, 2, 3),

uj +
1

3
(u1 + u2 + u3) (j = 4, . . . , n).

sk(uj) = usk(j) (k = 1, . . . , n− 1; j = 1, . . . , n).

Before going further, we remark that any irreducible cubic curve in P2(C) can be

obtained by a projective linear transformation from a curve of the form C0 with [u]

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



194 K. KAJIWARA, T. MASUDA, M. NOUMI, Y. OHTA & Y. YAMADA

and c1, c2, c3 appropriately chosen. In fact the curve C0 is related with the Weier-

strass canonical form of a cubic curve in the following way. Consider the case when

rankΩ = 2, and for [u] take the Weierstrass sigma function σ(u) = σ(u; Ω) associated

with the period lattice Ω = Zω1 ⊕ Zω2. If we set

(140) c0 = −
ω1 + ω2

2
, c1 =

ω1

2
, c2 =

ω2

2
, c3 = 0,

then the parametrization of C0 is given by

(141)

x1 = σ(u)σ(c2 + u)σ(c2 − u) = σ(c2)
2σ(u)3(℘(u) − ℘(c2)),

x2 = σ(u)σ(c1 + u)σ(c1 − u) = σ(c1)
2σ(u)3(℘(u) − ℘(c1)),

x3 = σ(c0 − u)σ(c1 − u)σ(c2 − u) = − 1
2σ(c0)σ(c1)σ(c2)σ(u)3℘′(u),

where ℘(u) = ℘(u; Ω) is the Weierstrass ℘ function associated with Ω. Hence the

curve C0 is transformed into the canonical form

(142) y1y
2
3 = 4(y2 − ℘(c0)y1)(y2 − ℘(c1)y1)(y2 − ℘(c2)y1)

by the projective linear transformation

(143)
x1 = σ(c2)

2(y2 − ℘(c2)y1), x2 = σ(c1)
2(y2 − ℘(c1)y1),

x3 = − 1
2σ(c0)σ(c1)σ(c2)y3.

This implies that any smooth cubic curve can be expressed in the form of C0 up

to a projective linear transformation. Note that through this transformation to the

Weierstrass canonical form, formula (139) recovers the same Weyl group action in the

parametrization by the ℘ function as in [22].

In what follows, we consider the translation T89 ∈ W3,9 as an example, and de-

scribe the corresponding Cremona transformation in the language of geometry of plane

curves. Namely, given an generic configuration [p1, . . . , p9, q] ∈ X3,10, we explain in

geometric terms how to specify p1, . . . , p9 and q in P2(C) such that

(144) [p1, . . . , p9, q].T89 = [p1, . . . , p9, q].

We first consider the case where all the 10 points p1, . . . , p9, q = p10 are on a smooth

cubic curve C. Given four points p, q, p′, q′ ∈ C, we say that p + q = p′ + q′ under

the addition of C if the third intersection point of the line Lp,q, passing through p, q,

with C coincides with that of the line Lp′,q′ .

Lemma 7.1. — Let [p1, . . . , p9, p10] ∈ X3,10 be generic and assume that the 10

points p1, . . . , p9, p10 are on a smooth cubic curve C. Then the action of T89 on

[p1, . . . , p9, p10] is expressed in the form

(145) [p1, . . . , p7, p8, p9, p10].T89 = [p1, . . . , p7, p8, p9, p10]

by using the three points p8, p9, p10 ∈ C that are determined by the following three

conditions.
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(1) The 9 points p1, . . . , p8, p9 form the base points of a pencil of cubic curves.

(2) p8 + p9 = p8 + p9 under the addition of C.

(3) p9 + p10 = p8 + p10 under the addition of C.

In order to prove Lemma 7.1, by a projective linear transformation, we may assume

that this curve C is of the form C0, and that the 10 points are parametrized as

(146) [p1, . . . , p9, p10] = [p(u1), . . . , p(u9), p(u10)].

As we already know, such a configuration is transformed by T89 into

(147)
[p1, . . . , p9, p10].T89 = [p1, . . . , p9, p10],

pj = p(uj), uj = T89(uj) (j = 1, . . . , 10).

Since

(148)

T89(uj) = uj (j = 1, . . . , 7),

T89(u8) = u8 − δ, T89(u9) = u9 + δ,

T89(u10) = u10 + u8 − u9 − δ,

u1 + · · · + u9 = −δ,

the new coordinates uj (j = 1, . . . , 10) are determined by the conditions

(149)

(0) uj = uj (j = 1, . . . , 7),

(1) u1 + · · · + u8 + u9 = 0,

(2) u8 + u9 = u8 + u9,

(3) u9 + u10 = u8 + u10.

Lemma 7.1 is a paraphrase of this characterization of uj (j = 1, . . . , 10) in geometric

terms. We remark that the point p9 is determined only from p1, . . . , p8, and does not

depend on the position of p9, while p8 depends essentially on p9.

Lemma 7.1 can be extended to the general case as follows.

Theorem 7.2. — Let [p1, . . . , p9, q] be a configuration of 10 points in P2(C) in general

position. Suppose that this configuration is generic, and take two smooth cubic curves

C0 and C such that

(150) p1, . . . , p8, p9 ∈ C0, and p1, . . . , p8, q ∈ C,

respectively. Then the action of the translation T89 on the configuration [p1, . . . , p9, q] ∈

X3,10 is expressed as

(151) [p1, . . . , p9, q].T89 = [p1, . . . , p7, p8, p9, q],

in terms of the points p8, p9 on C0 and q ∈ C that are determined by the following

conditions :

(1) The 9 points p1, . . . , p8, p9 ∈ C0 form the base points of a pencil of cubic curves.

(2) Under the addition of C0, p8 + p9 = p8 + p9.

(3) Under the addition of C, p9 + q = p8 + q.

In particular p9 is determined as the ninth point in the intersection of C0 and C.
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From Lemma 7.1 applied to C0, we have

(152) [p1, . . . , p7, p8, p9].T89 = [p1, . . . , p7, p8, p9]

with p8, p9 ∈ C0 determined by the conditions (1), (2) of Theorem 7.2. (This part

does not depend on the tenth point.) Hence, the action of T89 on [p1, . . . , p8, p9, q]

can be written as

(153) [p1, . . . , p7, p8, p9, q].T89 = [p1, . . . , p7, p8, p9, q]

for some q ∈ P2(C). We remark here that T89 can be expressed in the form

(154) T89 = w s89, w = s128s348s567s348s128 ∈W3,8,

where W3,8 = 〈s0, s1, . . . , s7〉. Hence, by applying s89 s9,10 ∈ W3,10 to (153) from the

right, we obtain

(155) [p1, . . . , p7, p8, q, p9].w = [p1, . . . , p7, p9, q, p8] in X3,10.

(Note that s9,10 commute with w ∈W3,8.) Since w ∈W3,8, this formula projects to

(156) [p1, . . . , p7, p8, q].w = [p1, . . . , p7, p9, q] in X3,9.

This implies that q does not depend on p9. (This fact can be seen clearly in formula

(133) for T78. In fact, none of the polynomials Pi, Qi, Ri, Si depends on the parameter

ε8.) Hence, by considering the configuration [p1, . . . , p8, p9, q] on C with p9 replaced

for p9, we have

(157) [p1, . . . , p7, p8, p9, q].T89 = [p1, . . . , p7, p8, p9, q].

(The 8th and 9th components remain invariant since p1, . . . , p8, p9 are already the

base points of a pencil of cubic curves containing C.) Then by applying Lemma 7.1

to C, we conclude that q is determined by condition (3).

Geometric description of discrete time evolutions of type Tij as described above

is proved in [8] by a more geometric argument based on the results of [9] and [12,

13]. We remark that this geometric approach has been employed in the study of

hypergeometric solutions to elliptic and multiplicative discrete Painlevé equations

in [8], [7]. It is also used by [24] in order to clarify the relationship between the

elliptic difference Painlevé equation and the integrable mapping of Quispel-Roberts-

Thompson [18].
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