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DYNAMICS OF THE SIXTH PAINLEVÉ EQUATION

by

Michi-aki Inaba, Katsunori Iwasaki & Masa-Hiko Saito

Abstract. — The sixth Painlevé equation is hiding extremely rich geometric structures
behind its outward appearance. In this article, we give a complete picture of its
dynamical nature based on the Riemann-Hilbert approach recently developed by the
authors and using various techniques from algebraic geometry.

A large part of the contents can be extended to Garnier systems, while this article
is restricted to the original sixth Painlevé equation.

Résumé(Dynamique de la sixième équation de Painlevé). —Malgré une apparente simpli-
cité, l’équation de Painlevé VI cache des structures géométriques très riches. Nous en
décrivons les aspects dynamiques en nous appuyant sur l’approche de type Riemann-
Hilbert récemment développée par les auteurs et en utilisant différentes techniques
issues de la géométrie algébrique.

Une grande partie de ces résultats peut être étendue aux systèmes de Garnier.
Toutefois, dans cet article, nous nous limitons au cas de l’équation de Painlevé VI.

1. Introduction

The sixth Painlevé equation PVI = PVI(κ) is among the six kinds of differential

equations that were discovered by Painlevé [65] and his student Gambier [18] around

the turn of the twentieth century. It is a second-order nonlinear ordinary differential
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equation with an independent variable x ∈ P1 − {0, 1,∞} and an unknown function
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depending on parameters κ = (κ0, κ1, κ2, κ3, κ4) in a 4-dimensional affine space

K = {κ = (κ0, κ1, κ2, κ3, κ4) ∈ C
5 : 2κ0 + κ1 + κ2 + κ3 + κ4 = 1}. (2)

This highly nonlinear and seemingly rather ugly equation is only a small visible

part of a more substantial entity. The large invisible part has extremely rich geometric

structures that are related to symplectic geometry, moduli spaces of stable parabolic

connections, moduli spaces of representations of a fundamental group, Riemann-

Hilbert correspondence, geometry of cubic surfaces, braid and modular groups, simple

isolated singularities and their resolutions of singularities, affine Weyl groups, discrete

dynamical systems, and so on. The aim of this survey article is to discuss various as-

pects of these illuminating structures, giving a complete picture of the sixth Painlevé

equation.

Among other features, Painlevé equation is primarily a dynamical system and a

dynamical system in general is characterized by two aspects: laws and phenomena.

Mathematically, laws refer to equations that govern the dynamics, symmetries of the

system, etc., while phenomena refer to solutions of the equations, (global) behaviors

of trajectories, etc. These two aspects often show a sharp contrast. For example, in

classical mechanics, the simple laws of Newton create extremely rich and complicated

phenomena. The Painlevé dynamics is also in this case, being algebraic in its laws

and transcendental in its phenomena (see Table 1).

aspect contents nature

laws equations, symmetry, ... algebraic

phenomena solutions, trajectories, ... transcendental

Table 1. Two aspects of Painlevé equation

For comparison, we should remark that there exists an interesting dynamics whose

laws are already transcendental, like a dynamics on a K3 surface recently explored by

McMullen [49], who showed that the existence of Siegel disks implies the transcen-

dence of the K3 surface.

Generally speaking, the two principal approaches to dynamical systems are per-

haps:

(L) Lyapunov’s methods, (C) conjugacy methods.
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In Lyapunov’s methods (L), we examine, control, or confine the behaviors of trajec-

tories by estimating suitable functions called “Lyapunov functions”. Main tools of

the methods are estimations by inequalities. On the other hand, in the conjugacy

methods (C), we try to find a “conjugacy map” that converts the difficult dynamical

system we want to study to a more tractable one, to extract informations from the

latter, and to send feedback to the former (see §2.2 for more details). Our approach

to the Painlevé equation, which we call the Riemann-Hilbert approach, falls into this

category (C), making use of Riemann-Hilbert correspondence as a conjugacy map

between Painlevé flow and isomonodromic flow.

Of course, the Riemann-Hilbert approach is closely related to the isomonodromic

approach represented by the classical works of Fuchs [17], Schlesinger [71], Garnier

[20], Jimbo, Miwa and Ueno [37, 38] and others, but differs from the latter in its

definitive employment of the method of conjugacy maps and in its extensive use of a

complete solution to the Riemann-Hilbert problem. The Riemann-Hilbert approach a

priori has a global nature once Riemann-Hilbert correspondence is formulated appro-

priately, while the isomonodromic approach mostly stands on the infinitesimal point

of view and pays little attention to the target space of Riemann-Hilbert correspon-

dence, namely, moduli space of monodromy representations. In the Riemann-Hilbert

appraoch, we consciously distinguish the Painlevé flow on the moduli space of stable

parabolic connections and the isomonodromic flow on the moduli space of monodromy

representations, and build a bridge between them via the Riemann-Hilbert correspon-

dence.

This approach has been explored by Iwasaki [31, 32, 33, 34], Hitchin [24], Kawai

[40, 41], Boalch [5, 6, 7], Dubrovin and Mazzocco [14] and others. Recently it was

thoroughly developed by Inaba, Iwasaki and Saito [29, 28]. The exposition of this

article is largely based on the contents of the last papers. We focus our attention on

the original case of PVI with the aim of presenting, for the most basic model, those

materials which can be expected to be universal throughout various generalizations.

A large part of the contents is extended to Garnier systems, a several-variable version

of PVI; see [29].

In addtion to the general methods represented by approaches (L) and (C), which are

conceivable in general situations, there are also various particular methods applicable

to various particular dynamical systems. For example, for the class of dynamical

systems that are called completely integrable systems, there exist

(CI) methods for complete integration,

which are characterized by such keywords as τ -functions, bilnear equations, Lax pairs,

separations of variables, combinatorics and representation theory, etc. Painlevé equa-

tions are usually thought of as a member of this class and many works have been done

from this point of view. See Conte [10], Noumi [56] and the references therein. But

we shall not touch on this aspect in this article. Among other things, we wish to lay
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a sound foundation on the sixth Painlevé equation to such an extent that it can be

a basis for the investigations into the transcendental nature of PVI. To do so, many

things should be done, even within the general framework of dynamical systems, be-

fore entering into those subjects which are particular to integrable systems. Therefore

the integrable aspects should be discussed later and elsewhere.

Lyapunov-type approaches to Painlevé equations will not at all be discussed in this

article. There have been long traditions as well as recent developments of establishing

Painlevé property by these methods. We refer to Painlevé [65], Hukuhara [25] (see

Okamoto and Takano [64] for a part of these unpublished lectures), Joshi and Kruskal

[39], Steinmetz [76], Shimomura [72], Iwasaki, Kimura, Shimomura and Yoshida [35],

Gromak, Laine and Shimomura [22] and the references therein.

The organization of this article is as follows: In Section 2 we introduce a general

formalism of dynamical systems and cast PVI into this framework. We present the

Guiding Diagram that encodes major dynamical natures of PVI. Section 3 is devoted

to the construction of moduli spaces of stable parabolic connections, which, in the

dynamical context, means the construction of phase spaces of PVI. In Section 4,

after setting up moduli spaces of monodromy representations, we formulate Riemann-

Hilbert correspondence, RH, and settle Riemann-Hilbert problems in suitable ways. In

the dynamical context, theses parts correspond to the construction of conjugacy maps.

In Section 5 we formulate isomonodromic flows FIMF and Painlevé flows FPVI in such

a manner that RH yields analytic conjugacy from FPVI to FIMF. Section 6 is devoted

to the construction of a family of affine cubic surfaces, which enables us to describe

all the previous constructions more explicitly. In Section 7 we give a characterization

of Bäcklund transformations, namely, the symmetries of PVI, in terms of Riemann-

Hilbert correspondence. In Section 8 we describe the nonlinear monodromy or the

Poincaré return map of PVI that extracts the global nature of trajectories of PVI. In

Section 9 we characterize the classical components of PVI, called the Riccati flows,

in terms of singularities on cubic surfaces and their resolutions of singularities. In

Section 10 we construct canonical coordinate systems of moduli spaces (phase spaces)

which make it possible to write down the Painlevé dynamics explicitly. This article

is closed with a brief summary, especially with the Closing Diagram, in Section 11.

2. Painlevé Equation as a Dynamical System

A complete picture of the sixth Painlevé equation is most clearly described in the

framework of dynamical systems, or, more specifically as a time-dependent Hamilto-

nian system with Painlevé property. So we begin by establishing a general formalism

of dynamical systems, based on which we shall develop our whole story.
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Figure 1. Dynamical system with Painlevé property

2.1. General Formalism of Dynamical Systems

Definition 2.1(Time-Dependent Dynamical System). — A time-dependent dynamical

system (M,F) is a fibration π : M → T of complex manifolds together with a

complex foliation F on M that is transverse to each fiber Mt = π−1(t), t ∈ T . The

total space M is referred to as the phase space, while the base space T is called the

space of time-variables. Moreover, the fiber Mt is called the space of initial conditions

at time t.

The space of initial conditions becomes a meaningful concept if the dynamical

system enjoys Painlevé property. It is this property that makes it possible to think of

Poincaré return maps or the nonlinear monodromy, which is the discrete dynamical

system on a space of initial conditions that represents the global nature of a continuous

dynamical system.

Definition 2.2(Geometric Painlevé Property). — We say that a dynamical system

(M,F) has geometric Painlevé property (GPP) if for any path γ in T and any point

p ∈ Mt, where t is the initial point of γ, there exists a unique F -horizontal lift γ̃p of

γ with initial point at p (see Figure 1). Here a curve in M is said to be F -horizontal

if it lies in a leaf of F .
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Remark 2.3(Uniqueness). — Under the transversality assumption, the lifting problem

is reduced to solving a Cauchy problem for a regular ODE along the curve γ. Hence

the local existence and uniqueness of the lift γ̃p always hold, due to the classical

Cauchy theorem on ODE’s. The question in Definition 2.2 is the existence of the

global lift γ̃p for any path γ in T .

Definition 2.4(Poincaré Return Map). — If (M,F) has geometric Painlevé property,

then any path γ in T with initial point t and terminal point t′ induces an isomorphism

γ∗ : Mt →Mt′ , p 7→ p′, (3)

where p′ is the terminal point of the lift γ̃p. When γ is a loop in T with base point at

t, we have an automorphism γ∗ of Mt, which is called the Poincare return map along

the loop γ. Since γ∗ depends only on the homotopy class of γ, we have the group

homomorphism

π1(T, t)→ AutMt, γ 7→ γ∗,

which we call the nonlinear monodromy of the dynamical system (M,F).

Definition 2.5(Hamiltonian System). — A dynamical system (M,F) with Painlevé

property is said to be Hamiltonian if π : M → T is a fibration of symplectic mani-

folds and the map (3) is a symplectic isomorphism for any path γ in T . If (M,F) is

Hamiltonian, then there exists a unique closed 2-form Ω on M , called the fundamental

2-form for (M,F), such that

(1) the form Ω restricted to each fiber Mt yields the symplectic structure Ωt on

Mt,

(2) the form Ω vanishes along the foliation F , that is,

ιvΩ = 0, (4)

for any F -horizontal vector field v, where ιvΩ = Ω(v, ·) stands for the interior

product of Ω by v.

Remark 2.6(Differential Equations). — The condition (4), when expressed in terms

of canonical local coordinates on M , leads to a Hamiltonian system of differential

equations.

There are two definitions of Painlevé property; one is the geometric definition given

in Definition 2.2, which is addressed to a foliation, and the other is the analytic one

addressed to a nonlinear differential equation. As for the latter, a differential equation

is said to have Painlevé property if any solution has no movable singularities other

than movable poles. This traditional but rather ambiguous definition can be made

rigorous by the following definition.
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Figure 2. Conjugacy map

Definition 2.7(Analytic Painlevé Property). — A nonlinear differential equation in a

domain X is said to have analytic Painlevé property (APP) if any meromorphic solu-

tion germ at any point x ∈ X has an analytic continuation as a meromorphic function,

along any path γ in X emanating from x.

Here is a relation between geometric and analytic Painlevé properties.

Remark 2.8(GPP Versus APP). — Given a dynamical system (foliation), assume that

its phase space is an algebraic variety. Then, in terms of affine algebraic coordinates,

the foliation is expressed as a differential equation and the geometric Painlevé property

for the foliation implies the analytic Painlevé property for the differential equation.

In this sense the algebraicity of phase space is an important issue. Remark 2.8 will

be applied to the Hamiltonian system of differential equaitons in Remark 2.6 and in

particular to the Painlevé equation (see Theorem 10.12).

2.2. Conjugacy Maps. — As is mentioned in the Introduction, one of the major

approaches in dynamical system theory is to find out a conjugacy map that converts

a “difficult” dynamical system to an “easy” one; to extract as much information as

possible from the latter; and to send feedback to obtain nontrivial (hopefully striking)

results on the former.

Definition 2.9(Conjugacy). — A conjugacy map Φ between two dynamical systems

(M,F) and (M ′,F ′) is a commutative diagram as in Figure 2 such that

(1) the map Φ is an isomorphism that preserves geometric structures under con-

sideration, e.g., measure, topology, analytic structure, Hamiltonian structure,

etc.,
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(2) the foliation F is the pull-back of F ′ by Φ, that is, Φ∗F ′ = F .

It is expected that a good conjugacy map should be highly transcendental, reflecting

the difficulty of the “difficult” dynamical system. This transcendental nature would

make the problem not so tractable but at the same time so attractive. A few examples

of conjugacy maps are presented in Table 2, with some explanations below.

Example 2.10(Examples of Conjugacy)

(1) The KdV flow is conjugated to an isospectral flow by the scattering map, whose

inversion is the Gel’fand-Levitan-Marchenko procedure; a seminal discovery by

Gardner, Green, Kruskal and Miura [19] which opened up the soliton theory.

(2) The quadratic dynamics Pc(z) = z2 + c on C−Kc is conjugated to the stan-

dard angle-doubling P0(z) = z2 on C − D̄ by the Böttcher function (if Kc is

connected), where Kc is the filled Julia set of Pc and D̄ is the closed unit disk.

Using this fact, Douady and Hubbard [13] made deep studies on Julia sets and

the Mandelbrot set for the quadratic dynamics on C.

(3) If a dynamical system has a transverse homoclinic point, then it admits a

horseshoe subdynamics, which in turn is conjugated to a symbolic dynamics.

This is a famous discovery by Smale [75] which enables us to easily look at

“chaos” generated by a homoclinic tangle.

(4) The Painlevé flow on a moduli space of stable parabolic connections is conju-

gated to an isomonodromic flow on a moduli space of monodromy representa-

tions by a Riemann-Hilbert correspondence.

The fourth example is exactly what is focused on in this article. As is mentioned in

the Introduction, our approach is closely related with the isomonodromic deformation

theory. But the latter has been mainly concerned with infinitesimal deformations of

linear differential equations, without paying serious attentions to the global structure

of Riemann-Hilbert correspondence, RH, especially to its target space, moduli space

of monodromy representations. Let us repeat to say that our objective is to set

up the source and target spaces of RH firmly; to establish a precise correspondence

between them via RH; to interrelate two dynamics on both sides; and to understand

the dynamics of PVI through all these procedures. A similar situation seems to have

occurred with KdV: While the machinery of inverse scattering method had been

known since 1967 ([19]), it was not so soon that the precise correspondence was

established between a class of potentials (of Schrödinger equations) and a class of

scattering data, as in Deift and Trubowitz [11].

According to Definition 2.9, a conjugacy map Φ must be an isomorphism, namely,

a biholomorphism in the case of holomorphic dynamics. However we sometimes come

across such cases where this condition is too restrictive, that is, where the injectivity

of Φ slightly fails to hold. To cover those cases, we make the following definition.
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“difficult” dynamics “easy” dynamics conjugacy map

1 KdV flow isospectral flow scattering map

2 quadratic dynamics angle-doubling map Böttcher function

3 horseshoe dynamics symbolic dynamics Smale’s trick

4 Painlevé flow isomonodromic flow Riemann-Hilbert map

Table 2. Examples of conjugacy maps

Definition 2.11(Semi-Conjugacy). — A semi-conjugacy map Φ between two dynami-

cal systems (M,F) and (M ′,F ′) is a commutative diagram as in Figure 2 such that

the following conditions are satisfied:

(1) the map Φ is a surjective, proper, holomorphic map,

(2) there exists an F ′-invariant, analytic-Zariski closed, proper subset Z ′ ⊂ M ′

such that Φ : M − Z →M ′ − Z ′ is a biholomophism that preserves geometric

structures under consideration, where Z = Φ−1(Z ′),

(3) the foliation F restricted to M − Z is the pull-back of F ′ on M ′ − Z ′,

(4) Φ maps F -trajectories in Z to F ′-trajectories in Z ′.

Here the time-correspondence φ : T → T ′ is assumed to be biholomorphic.

The properness condition on the map Φ in Definition 2.11 has a significant meaning

for the geometric Painlevé property. Indeed the following lemma follows from the

properness of Φ.

Lemma 2.12(Properness and GPP). — Let Φ : (M,F) → (M ′,F ′) be a semi-

conjugacy map. Assume that the target dynamics (M ′,F ′) has geometric Painlevé

property, then so does the source dynamics (M,F).

Proof. — Let γ be any compact path in T with initial point t, and let p be any

point on Mt. By GPP for (M ′,F ′), the path φ(γ) in T ′ is lifted to K ′ = φ̃(γ)Φ(p)

emanating from Φ(p) ∈ M ′
φ(t). Since K ′ is compact, the properness of Φ implies

that K = Φ−1(K ′) is also compact. By conditions (3) and (4) of Definition 2.11,

the Cauchy problem for constructing the lift γ̃p has a solution within K. Since K is

compact, the solution γ̃p exists globally over γ. Hence GPP for (M,F) follows.

Lemma 2.12 is a guiding principle in establishing Painlevé property by the con-

jugacy method: The GPP for a difficult dynamical system follows from that for an

easier one.

It will turn out that the Riemann-Hilbert correspondence is a conjugacy map (in

the strict sense) for generic values of κ ∈ K, but is only a semi-conjugacy map for

nongeneric values of κ ∈ K, due to the presence of what we call the Riccati locus
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(see Definition 4.9). This locus carries classical trajectories that can be linearlized in

terms of Gauss hypergeometric equations (see Theorem 5.15).

2.3. Application to Painlevé Equation. — We apply the general formalism

developed in the previous subsections to the Painlevé equation PVI(κ). In Figure 3

we present the Guiding Diagram that will serve as guidelines on what we shall develop

in the sequel. The main ingredients of the diagram are stated as follows.

Ingredients of Guiding Diagram(Figure 3)

– T is the configuration space of mutually distinct ordered four points in P1,

T = { t = (t1, t2, t3, t4) ∈ P
1 × P

1 × P
1 × P

1 : ti 6= tj for i 6= j },
which serves as the space of time-variables (see also Remark 2.13).

– M(κ) is the moduli space of rank-two stable parabolic connections on P1 having

four regular singular points with fixed local exponents κ ∈ K (see Definitions

3.1 and 3.6). It serves as the phase space of PVI(κ) as a dynamical system

(the Painlevé flow in Theorem 5.10).

– Mt(κ) is the moduli space of stable parabolic connections with singular points

fixed at t ∈ T . It serves as the space of initial conditions at time t for the

Painlevé flow.

– Rt(a) is the moduli space of monodromy representations (up to Jordan equiv-

alence),

ρ : π1(P
1 − {t1, t2, t3, t4}, ∗)→ SL2(C),

with a fixed local monodromy data a ∈ A (see Definition 4.2). It serves as the

space of initial conditions at time t for the isomonodromic flow (see Defini-

tion 5.1).

– R(a) is the disjoint union of Rt(a) over t ∈ T , that is,

πa : R(a) =
∐

t∈T

Rt(a)→ T, (5)

which serves as the phase space of the isomonodromic flow (see Definition 5.1).

– RHκ is the Riemann-Hilbert correspondence that associates to each stable

parabolic connection its monodromy representation (see Definition 4.5). It

plays the role of a (semi-)conjugacy map between the Painlevé flow and the

isomonodromic flow.

– S(θ) is an affine cubic surface, which is a concrete realization of the moduli

space Rt(a) of monodromy representations (see Theorem 6.5).

Some further explanations should be added about the objects on the moduli space

M(κ). Each point Q ∈ M(κ) is representing a rank-two stable parabolic connection

on P1 with four singular points, which is a refined notion of a Fuchsian system with

four regular singular points on P1, consisting of a data on an algebraic vector bundle,

a logarithmic connection on it, a prescribed determinantal structure, and a parabolic
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Figure 3. Guiding Diagram for PVI

structure at the singular points (see Definition 3.1). The map πκ : M(κ) → T is

the canonical projection associaitng to each connection Q its ordered regular singular

points t = (t1, t2, t3, t4).

As for the space of time variables, the following remark should be in order at this

stage.

Remark 2.13(Reduction of Time Variables). — The original Painlevé equation (1) has

only one time-variable x, while our dynamical system has four time-variables t =

(t1, t2, t3, t4). The transition from t to x is achieved by a symplectic reduction that

is explained as follows. The group of Möbius transformations PSL2(C) acts on T

diagonally and this action can be lifted symplectically to the phase space M(κ) in

such a manner that the lifted action is commutative with the Painlevé flow. So the

space of time-variables T can be reduced to the quotient space

T/PSL2(C) ∼= P
1 − {0, 1,∞}.

It is well known that a natural coordinate of the quotient space is given by the cross

ratio

x =
(t1 − t3)(t2 − t4)
(t1 − t2)(t3 − t4)

, (6)

which gives the independent variable of the original Painlevé equation (1). This

reduction amounts to just taking the normalization t1 = 0, t2 = 1, t3 = x, t4 = ∞.

The transition from t to x brings slightly larger symmetry to the Painlevé equation

(see Remark 7.6).
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For the most part, we shall work with four time-variables t = (t1, t2, t3, t4), but

occasionally we shall make use of three time-variables t = (t1, t2, t3) upon putting

t4 =∞, when such a convention is more convenient.

3. Moduli Spaces of Parabolic Connections – Phase Spaces

In our dynamical approach to Painlevé equation, first of all, we have to set up an

appropriate phase space of PVI as a dynamical system. It is realized as the moduli

space of certain stable parabolic connections on P
1. Following Inaba, Iwasaki and

Saito [29] we shall briefly sketch its construction.

Before entering into the subject, we should remark that there exist related works

by Arinkin and Lysenko [1, 3], who introduced moduli spaces of SL(2)-bundles with

connections on P1 in the context of Painlevé equation. Unfortunately, they treated

the moduli spaces mostly as stacks and restricted themselves to generic parameters in

K to avoid reducible or resonant connections. For a full understanding of the Painlevé

equation, however, the locus of nongeneric parameters often plays a significant part.

In order to cover all parameters, we should take parabolic structures into account

(see Remark 3.4 for this and for another reason). Moreover, in order to develop a

good moduli theory in the framework of geometric invariant theory [51], we need the

concept of stability. These demands lead us to consider stable parabolic connections.

3.1. Parabolic Connections. — In what follows, a vector bundle will be identified

with the locally free sheaf associated to it. For a vector bundle E on P1 and a point

x ∈ P
1, we denote by E|x the fiber of E over x (not the stalk at x), namely we have

E|x = E/E(−x) with E(−x) = E ⊗OP1(−x).

Definition 3.1(Parabolic Connection). — Given any (t, κ) ∈ T × K, a (t, κ)-parabolic

connection is a quadruple Q = (E,∇, ψ, l) such that the following conditions are

satisfied:

(1) E is a rank-two vector bundle over P1.

(2) ∇ : E → E ⊗ Ω1
P1(Dt) is a connection, where Dt is the divisor

Dt = t1 + t2 + t3 + t4.

(3) ψ : detE → OP1(−t4) is a horizontal isomorphism, where OP1(−t4) ⊂ OP1

is equipped with the connection dt4 induced from the exterior differentiation

d : OP1 → Ω1
P1 .

(4) l = (l1, l2, l3, l4), where li is a 1-dimensional subspace of the fiber E|ti
over ti

such that

(Resti
(∇)− λi idE|ti

)|li = 0,
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singularity t1 t2 t3 t4

first exponent −λ1 −λ2 −λ3 −λ4

second exponent λ1 λ2 λ3 λ4 − 1

difference κ1 κ2 κ3 κ4

Table 3. Riemann scheme: first exponents correspond to parabolic structures

namely, li is an eigenline of Resti
(∇) with eigenvalue λi, where Resti

(∇) ∈
End(E|ti

) is the residue of ∇ at ti and the parameter λi is defined so that

κi =

{
2λi (i = 1, 2, 3),

2λ4 − 1 (i = 4).
(7)

The data l is called the parabolic structure of the parabolic connection Q.

Remark 3.2(Riemann Scheme). — An eigenvalue of −Resti
(∇) is called a local ex-

ponent of ∇ at ti. By condition (4) of Definition 3.1, one exponent at ti is −λi

corresponding to the parabolic structure li (the first exponent). By condition (3) the

eigenvalues of Resti
(∇) are summed up to the residue Resti

(dt4) of the connection dt4

on the line bundle OP1(−t4). Since

Resti
(dt4) =

{
0 (i = 1, 2, 3),

1 (i = 4),

the exponents of ∇ at each singular point are given as in Table 3. Formula (7) means

that κi is the difference of the second exponent from the first exponent at ti. For

brevity κi is often referred to as the local exponent at ti. We remark that the fourth

singular point t4 is somewhat distinguished from the others.

Remark 3.3(Determinantal Structure). — In condition (3) of Definition 3.1, the hori-

zontal isomorphism ψ : detE → OP1(−t4) is referred to as the determinantal structure

of the parabolic connection Q. Here the choice of OP1(−t4) as the target line bundle

of ψ is just for convenience. More generally, a determinantal structure relative to L is

conceivable for any line bundle L with a connection dL, as a horizontal isomorphism

ψ : detE → L.

There are, at least, two advantages of taking parabolic structures into account.
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Remark 3.4(Advantages of Parabolic Structures)

(1) The Riemann-Hilbert approach and the isomonodromic approach become fea-

sible for all parameters κ ∈ K. Without parabolic structures, people usu-

ally avoid nongeneric parameters for “technical” reasons, but they cannot be

ruled out becuase many interesting phenomena occur at nongeneric parameters

both moduli-theoretically and special-function-theoretically. Moreover, what

is called the technical difficulty is in fact an essential difficulty.

(2) The technique of elementary transformations becomes available. Here elemen-

tary transformations are certain kinds of gauge transformations canonically

associated to parabolic structures (see Definition 3.5). They, together with

the powerful technique of Langton [42], play an important part in solving the

Riemann-Hilbert problem (see Remark 4.13). They also serve as some portions

of the Bäcklund transformations (see Definition 7.2).

Definition 3.5(Elementary Transformation). — Let Q = (E,∇, ψ, l) be a parabolic

connection with a determinantal structure ψ : detE → L and a parabolic structure

l = (l1, l2, l3, l4). The elementary transform of Q at ti is the parabolic connection

Q̃ = (Ẽ, ∇̃, ψ̃, l̃) defined in the following manner (see also Figure 4).

(1) The bundle Ẽ is the subsheaf Ẽ = Ker[E → E|ti
/li ], where E → E|ti

/li is

the composite of the canonical projections E → E/E(−ti) = E|ti
and E|ti

→
E|ti

/li. Note that Ẽ is locally free, and hence is a vector bundle.

(2) The connection ∇̃ = ∇|Ẽ : Ẽ → Ẽ ⊗ Ω1
P1(Dt) is the restriction of ∇ to the

subsheaf Ẽ ⊂ E. This is well-defined because condition (4) of Definition 3.1

implies that ∇ maps Ẽ into Ẽ ⊗ Ω1
P1(Dt).

(3) The determinantal structure ψ̃ = ψ|det Ẽ : det Ẽ → L̃ := L(−ti) is the re-

striction of ψ to the subsheaf det Ẽ ⊂ detE, where L(−ti) = L ⊗ OP1(−ti)
is equipped with the connection dL ⊗ dti

with dti
being the connection on

OP1(−ti) ⊂ OP1 induced from the exterior differentiation d : OP1 → Ω1
P1 . This

is well-defined because one has det Ẽ = (detE)(−ti) and ψ maps (detE)(−ti)
to L(−ti) by condition (4) of Definition 3.1.

(4) The parabolic structure l̃j at tj is defined by

l̃j =

{
E(−ti)/Ẽ(−ti) (j = i),

lj (j 6= i),

where l̃i is well-defined, since l̃i = E(−ti)/Ẽ(−ti) ⊂ Ẽ/Ẽ(−ti) = Ẽ|ti
.

There are other types of elementary transformations defined in similar manners;

see [29]. Elementary transformations were intensively studied by Maruyama [47] and

others. For parabolic structures appearing in various moduli problems, we refer to

Maruyama and Yokogawa [46], Nakajima [52], Inaba [27] and the references therein.
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0 0
y

y

0 −−−−→ E(−ti) −−−−→ Ẽ −−−−→ li −−−−→ 0
∥∥∥

y
y

0 −−−−→ E(−ti) −−−−→ E −−−−→ E|ti
−−−−→ 0

y
y

E|ti
/li E|ti

/liy
y

0 0

Figure 4. Diagram related to an elementary transformation

See also Huybrechts and Lehn [26], Nitsure [55] Simpson [73, 74] for related moduli

problems.

3.2. Stability. — To obtain a good moduli space, namely, to avoid non-Hausdorff

phenomena, we require a concept of stability for parabolic connections.

Definition 3.6(Stability) . — A weight is a sequence of mutually distinct rational num-

bers

α = (α1, α
′
1, . . . , α4, α

′
4) such that 0 < αi < α′

i < 1.

Given a weight α, a parabolic connection Q = (E,∇, ψ, l) is said to be α-stable if for

any proper subbundle F ⊂ E such that ∇(F ) ⊂ F ⊗ Ω1
P1(Dt), one has

pardegF

rankF
<

pardegE

rankE
, (8)

where pardegE and pardegF , called the parabolic degrees, are defined by

pardegE = degE +

4∑

i=1

{αi dim(E|ti
/li) + α′

i dim li} = degE +

4∑

i=1

(αi + α′
i),

pardegF = degF +

4∑

i=1

{αi dim(F |ti
/li ∩ F |ti

) + α′
i dim(li ∩ F |ti

), }

The concept of α-semistability is defined in a similar manner by weakening the condi-

tion (8) so that it allows equality. A weight α is said to be generic if every α-simistable

object is α-stable. Hereafter the weight will be assumed to be generic.
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3.3. Moduli Space of Stable Parabolic Connections. — Based on arguments

from geometric invariant theory, we can establish the following result [29].

Theorem 3.7(Moduli Space). — Fix a generic weight α.

(1) There exists a fine moduli schemeMt(κ) of stable (t, κ)-parabolic connections.

(2) The moduli space Mt(κ) is a smooth, irreducible, quasi-projective surface.

(3) As a relative setting, there exists a family of moduli spaces

π :M→ T ×K, (9)

such that π is a smooth morphism whose fiber over (t, κ) ∈ T×K is justMt(κ).

(4) Fixing an exponent κ ∈ K, one can also speak of the family

πκ :M(κ)→ T. (10)

We insist that the fibration (10) gives a precise phase space of PVI(κ) as a time-

dependent dynamical system. In this regard the following remark should be in order.

Remark 3.8(Connections on Trivial Vector Bundle). — In the isomonodromic ap-

proach to PVI, people usually work with linear Fuchsian systems of the form

dY

dz
= A(z) Y, A(z) =

4∑

i=1

Ai

z − ti
, (11)

namely, Fuchsian connections on the trivial vector bundle, and derive the Schlesinger

system [71],

∂Ai

∂ti
=

∑

k 6=i

[Ai, Ak]

tk − ti
,

∂Ai

∂tj
=

[Ai, Aj ]

tj − ti
(i 6= j), (12)

and then recast it to the Painlevé equation. In that case they are supposing that

the totality of the connections in (11) forms a phase space of PVI(κ). However, it

is only isomorphic to a Zariski-open proper subset of the true phase space, that is,

our moduli spaceM(κ), and some trajectories actually escape from this open subset.

Thus, with such a näıve setting of phase space as in (11), the geometric Painlevé

property is not fulfilled, (although the analytic Painlevé property for the system (12)

holds true as was proved(1) by Malgrange [44] and Miwa [50]). This is why we had

to consider connections on nontrivial vector bundles together with the extra data

of parabolic structures, in order to build a complete phase space. In our setting,

the geometric Painlevé property holds quite naturally and then the analytic Painlevé

property follows from this and the algebraicity of the phase space (see Theorem 5.12,

Remark 2.8 and Theorem 10.12).

(1)under generic conditions on exponents
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3.4. Parabolic φ-Connection. — As the moduli spaceMt(κ) is quasi-projective,

it is natural to pose the following problem.

Problem 3.9(Compactification). — Compactify the moduli spaceMt(κ) in a natural

manner.

This problem is settled by introducing the notion of parabolic φ-connection, which

is a generalized object of parabolic connections, allowing some degeneracy in the exte-

rior differential part. This procedure reminds us of semi-classical limits of Schrödinger

equations as the Planck constant tends to zero; we compactify the moduli space by

adding some “semi-classical” objects.

Definition 3.10(Parabolic φ-Connection). — For a fixed (t, κ) ∈ T × K, a (t, κ)-

parabolic φ-connection is a sextuple Q = (E1, E2, φ,∇, ψ, l) such that the following

conditions are satisfied:

(1) E1 and E2 are rank-two vector bundles over P
1 of the same degree degE1 =

degE2.

(2) φ : E1 → E2 is an OP1-homomorphism.

(3) ∇ : E1 → E2 ⊗ Ω1
P1(Dt) is a C-linear map such that

∇(fs) = φ(s)⊗ df + f∇(s) for f ∈ OP1 , s ∈ E1.

(4) ψ : detE2 → OP1(−t4) is a horizontal isomorphism in the sense that

(ψ ⊗ 1)(φ(s1) ∧∇(s2) +∇(s1) ∧ φ(s2)) = dt4(ψ(φ(s1) ∧ φ(s2))) for s1, s2 ∈ E1.

(5) l = (l1, l2, l3, l4), where li is a 1-dimensional subspace of the fiber E1|ti
over ti

such that

(Resti
(∇)− λi φ|ti

)|li = 0,

where Resti
(∇) ∈ Hom(E1|ti

, E2|ti
) is the residue of ∇ at ti and λi is defined

by formula (7).

We remark that a parabolic φ-connection is isomorphic to a parabolic connection

if φ is an isomorphism, while it is thought of as a degenerate object if φ is not an

isomorphism.

3.5. Stability. — Again, to get a good moduli space, we need a concept of stability

for parabolic φ-connections. The following definition may be intricate at first glance,

but works well in practice.

Definition 3.11(Stability) . — A weight is a sequence α = (α1, α
′
1, . . . , α4, α

′
4) of mu-

tually distinct rational numbers, together with positive integers β1, β2, γ, such that

(β1 + β2)αi < (β1 + β2)α
′
i < β1, γ � 0.
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A (t, κ)-parabolic φ-connection Q = (E1, E2, φ,∇, ψ, l) is said to be (α, β, γ)-stable

if for any proper subbundle (F1, F2) ⊂ (E1, E2) such that φ(F1) ⊂ F2 and ∇(F1) ⊂
F2 ⊗ Ω1

P1(Dt), one has

pardeg(F1, F2)

β1rankF1 + β2rankF2
<

pardeg(E1, E2)

β1rankE1 + β2rankE2
, (13)

where pardeg(E1, E2) and pardeg(F1, F2) are define by

pardeg(E1, E2) = β1 degE1(−Dt) + β2 (degE2 − γ rankE2)

+(β1 + β2)

4∑

i=1

{αi dim(E1|ti
/li) + α′

i dim li} ,

pardeg(F1, F2) = β1 degF1(−Dt) + β2 (degF2 − γ rankF2)

+(β1 + β2)

4∑

i=1

{αi dim(F1|ti
/li ∩ F1|ti

) + α′
i dim(li ∩ F1|ti

)} ,

The concept of (α, β, γ)-semistability is defined in a similar manner by weakening the

condition (13) so that it allows equality. A weight (α, β, γ) is said to be generic if every

(α, β, γ)-simistable object is (α, β, γ)-stable. Hereafter the weight will be assumed to

be generic.

3.6. Moduli Space of Stable Parabolic φ-Connections. — Again, based on

arguments from geometric invariant theory, we have the following result [29].

Theorem 3.12(Moduli Space). — Fix a generic weight (α, β, γ).

(1) There is a coarse moduli schemeMt(κ) of stable (t, κ)-parabolic φ-connections.

(2) The moduli space Mt(κ) is a smooth, irreducible, projective surface.

(3) The moduli spaceMt(κ) is embedded into the compactified spaceMt(κ) by the

natural map

Mt(κ) ↪→Mt(κ), (E,∇, ψ, l) 7→ (E,E, id,∇, ψ, l),
the image of which is the open subscheme of all stable (t, κ)-parabolic φ-

connections Q = (E1, E2, φ,∇, ψ, l) such that φ : E1 → E2 is an isomorphism.

(4) As a relative setting, there exists a family of moduli spaces

π :M→ T ×K,
such that π is a smooth, projective morphism whose fiber over (t, κ) ∈ T × K
is just the compactified moduli space Mt(κ).

(5) There exists a commutative diagram

M embedding−−−−−−−→ M

π

y
yπ

T ×K T ×K.
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DYNAMICS OF THE SIXTH PAINLEVÉ EQUATION 121

3.7. Realization of Moduli Spaces. — The moduli space Mt(κ) of stable

parabolic (t, κ)-connections, together with its compactification Mt(κ), admits a

concrete realization in terms of the Hirzebruch surface Σ2 of degree 2. The surface

Σ2 is the P1-bundle over P1 whose cross section at infinity, denoted by F0, has

self-intersection number −2. Moreover Σ2 − F0 is isomorphic to the line bundle

Ω1
P1(Dt) over P1. Given any t = (t1, t2, t3, t4) ∈ T and i ∈ {1, 2, 3, 4}, let Fi denote

the fiber over ti of the fibration Σ2 → P1. Then we have the following theorem from

Inaba, Iwasaki and Saito [29].

Theorem 3.13(Realization of Moduli Spaces). — Let (t, κ) ∈ T ×K be fixed.

(1) Mt(κ) is an 8-point blow-up of the Hirzebruch surface Σ2 of degree 2, blown

up at certain two points on each fiber Fi, i = 1, 2, 3, 4. The location of the

blowing-up points, possibly infinitely near, is determined by the value of κ.

(2) Mt(κ) has a unique effective anti-canonical divisor

Yt(κ) = 2E0 + E1 + E2 + E3 + E4 ∈
∣∣∣−KMt(κ)

∣∣∣ ,

where Ei is the strict transform of Fi for i = 0, 1, 2, 3, 4. Each irreducible

component Ei of Yt(κ) satisfies the condition

KMt(κ) ·Ei = 0 (i = 0, 1, 2, 3, 4).

(3) Mt(κ) is obtained from Mt(κ) by removing Yt(κ)red.

Note that Mt(κ) is an example of generalized Halphen surfaces (see Defini-

tion 3.14), which were introduced and classified by Sakai [70]; namely, a surface of

type D
(1)
4 in his classification.

Definition 3.14(Generalized Halphen Surface). — A smooth, projective, rational sur-

face S is called a generalized Halphen surface if S has an effective anti-canonical

divisor

Y ∈ | −KS | such that KS · Yi = 0 (i = 1, . . . , r), (14)

where Y1, . . . , Yr are the irreducible components of Y .

This notion was introduced to construct discrete Painlevé equations as Cremona

transformations of generalized Halphen surfaces and to obtain continuous Painlevé

equations as their continuous limits (Cremona approach in Remark 3.17).

Furthermore, the pair (Mt(κ), Yt(κ)) is an instance of Okamoto-Painlevé pairs (see

Definition 3.15), which were introduced and classified by Saito, Takebe and Terajima

[66, 67]; namely, a pair of type D̃4 (or of type I∗0 in Kodaira’s notation) in their

classification.

Definition 3.15(Okamoto-Painlevé Pair). — A pair (S, Y ) is called a generalized

Okamoto-Painlevé pair if S is a smooth, projective surface and Y ∈ | − KS| is an
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Σ2

E1 E2 E3 E4

E0

t1 t2 t3 t4

π

P1

∞-section

Figure 5. 8-point Blow-up of Hirzebruch surface of degree 2

effective anti-canonical divisor satisfying the condition (14). It is called an Okamoto-

Painlevé pair if moreover S−Yred contains an affine plane C
2 as a Zariski open subset

and F := S − C2 is a (reduced) divisor with normal crossings.

This notion was introduced to construct continuous Painlevé equations as Kodaira-

Spencer deformations of Okamoto-Painlevé pairs (Kodaira-Spencer approach in Re-

mark 3.17).

Definitions 3.14 and 3.15 were invented by speculating on the meanings of the

spaces constructed by Okamoto [59]. Here is a comparison of our moduli spaces with

his spaces.

Remark 3.16(Comparison with Okamoto’s space). — Theorem 3.13 implies that our

phase space M(κ) is isomorphic to the space constructed by Okamoto [59]. He con-

structed it by hand, chasing trajectories of differential equation (1)(2), blowing up

the points where distinct trajectories meet together and removing the vertical leaves.

Our construction is more theoretical and intrinsic(3). More importantly, our moduli-

theoretical construction immediately allows us to consider the Riemann-Hilbert cor-

respondence from the constructed space (to a moduli space of monodromy represen-

tations), since each point of which represents a parabolic connection. This means

(2)to be more precise, a Hamitoninan system associated to equation (1).
(3)Painlevé property follows from our construction, while it was presupposed in his construction.
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that we are in a happy situation that the construction of the phase space immediately

results in the construction of a natural conjugacy map.

Digressively, we take this opportunity to collect the major approaches to Painlevé

equations we have ever encountered. Gathering those mentioned in the Introduction

and those remarked after Definitions 3.14 and 3.15, we have (at least) five approaches.

Remark 3.17(Approaches to Painlevé Equations)

(1) Isomonodromic (Fuchs) approach (2) Lyapunov approach

(3) Cremona approach (4) Kodaira-Spencer approach

(5) Riemann-Hilbert approach

As is mentioned in the Introduction, the isomonodromic approach and the Riemann-

Hilbert approach are close relatives. In this context, the meaning of our moduli-

theoretical construction is that we were able to match Okamoto’s spaces with the

isomonodromic picture, which had hitherto existed independently, in the framework

of Riemann-Hilbert approach. On the other hand, his spaces have a priori had their

raison d’être in the Cremona and Kodaira-Spencer approaches, since these approaches

originate from searches for their intrinsic meanings.

4. Riemann-Hilbert Correspondence — Conjugacy Map

In the Riemann-Hilbert approach, undoubtedly, the Riemann-Hilbert correspon-

dence plays a central part, as a (semi-)conjugacy map between the Painlevé flow and

the isomonodromic flow. We start with some basic notions concerning monodromy

representations.

4.1. Monodromy Representations. — Given t ∈ T , we consider representations

of the fundamental group π1(P
1−Dt, ∗) into SL2(C), where the divisorDt is identified

with the 4-point set {t1, t2, t3, t4}. Recall that two representations ρ1 and ρ2 are said

to be isomorphic if there exists a matrix P ∈ SL2(C) such that

ρ2(γ) = Pρ1(γ)P
−1 for any γ ∈ π1(P

1 −Dt, ∗).

For a precise formulation of the Riemann-Hilbert correspondence, we need the concept

of Jordan equivalence of representations, which is closely related to the categorical-

quotient construction in algebraic geometry. We insist that the usual equivalence

up to isomorphisms is not appropriate, because the set of all representations up to

isomorphisms is not an algebraic variety. A more substantial reason will gradually be

clear in the course of discussions: by a categorical-quotient formulation, the Riemann-

Hilbert correspondence will become a resolution of singularities.
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γ1 γ2 γ3

γ4

t1 t2 t3

Figure 6. The loops γi; the fourth point t4 is outside γ4, invisible.

Definition 4.1(Jordan Equivalence). — A semisimplification of a representation ρ is

the associated graded of a composition series of ρ. Two representations ρ1 and ρ2

are said to be Jordan equivalent if they have isomorphic simisimplifications, that is,

if either

(1) they are both irreducible and isomorphic, or

(2) they are both reducible and their semisimplifications ρ′1⊕ρ1/ρ
′
1 and ρ′2⊕ρ2/ρ

′
2

are isomorphic, where ρ′1 and ρ′2 are 1-dimensional subrepresentations of ρ1

and ρ2, respectively.

If there is no danger of confusion, a representation and its Jordan equivalence class

will be denoted by the same symbol. For each t ∈ T let Rt denote the set of all

Jordan equivalence classes of SL2(C)-representarions of π1(P
1 −Dt, ∗). We can also

speak of the family

R =
∐

t∈T

Rt. (15)

Definition 4.2(Local Monodromy Data). — We put A := C4 and consider the map

πt : Rt → A, ρ 7→ a = (a1, a2, a3, a4), ai = Tr ρ(γi). (16)

where γi ∈ π1(P
1 − Dt, ∗) is a loop surrounding the point ti anti-clockwise, leaving

the remaining three points outside, as in Figure 6. Note that ai is well-defined, that

is, it depends only on the Jordan equivalence class of ρ and does not depend on the

choice of loop γi. We call a the local monodromy data of ρ. For each a ∈ A let Rt(a)

denote the fiber of the map (16) over a. As the relative setting of (16) over T , we

have the family

π : R→ T ×A,
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where R is defined by (15). For a fixed a ∈ A we also have the family πa : R(a)→ T

as in (5).

4.2. Riemann-Hilbert Correspondence. — To formulate the Riemann-Hilbert

correspondence, we first set it up in the parameter level.

Definition 4.3(Riemann-Hilbert Correspondence in Parameter Level)
We consider the correspondence of local exponents to local monodromy data

rh : K → A, κ = (κ0, κ1, κ2, κ3, κ4) 7→ a = (a1, a2, a3, a4). (17)

From Table 3 the monodromy matrix ρ(γi) along the loop γi has eigenvalues

exp(±2π
√
−1λi) and hence has trace 2 cos 2πλi. Then (7) and (16) imply that in

terms of exponents κ ∈ K, the local monodromy data of ρ is expressed as

ai =

{
2 cosπκi (i = 1, 2, 3),

−2 cosπκ4 (i = 4).
(18)

The map (17) with (18) is called the Riemann-Hilbert correspondence in the parameter

level.

Definition 4.4(Riemann-Hilbert Correspondence). — Given t ∈ T , any stable

parabolic connection Q = (E,∇, ψ, l) ∈ Mt, upon restricted to P1 − Dt, induces a

flat connection

∇|P1−Dt
: E|P1−Dt

→ E|P1−Dt
⊗ Ω1

P1−Dt
.

Let ρ be the Jordan equivalence class of its monodromy representation. Then the

Riemann-Hilbert correspondence at time t is defined by the holomorphic map

RHt :Mt →Rt, Q 7→ ρ.

By Definition 4.3 there exists a commutative diagram of holomorophic maps

Mt
RHt−−−−→ Rt

πt

y
yπt

K −−−−→
rh

A,

(19)

where πt :Mt → K is the map sending each parabolic connection to its local expo-

nents and the map πt : Rt → A is defined by (16). As the relative setting of (19) over

T , we have the commutative diagram

M RH−−−−→ R

π

y
yπ

T ×K −−−−→
id×rh

T ×A.

(20)
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Since rh : K → A is an infinite-to-one map, so is the base map of (20). This fact

makes the analysis of (20) somewhat difficult. To avoid this, we consider instead

the fiber product R defined by

R −−−−→ R

π

y
yπ

T ×K −−−−→
id×rh

T ×A.
(21)

We now set up three versions of Riemann-Hilbert correspondence that will be used

in what follows.

Definition 4.5(Three Versions of Riemann-Hilbert Correspondence)

(1) From (20) and (21) we have the commutative diagram of holomorphic maps

M RH−−−−→ R

π

y
yπ

T ×K T ×K,

(22)

which is called the full-Riemann-Hilbert correspondence.

(2) Fix an exponent κ ∈ K and put a = rh(κ) ∈ A. Then (20) restricts to the

diagram

M(κ)
RHκ−−−−→ R(a)

πκ

y
yπa

T T,

(23)

which is referred to as the κ-Riemann-Hilbert correspondence.

(3) Moreover, upon fixing a time t ∈ T , diagram (23) further restricts to the map

RHt,κ :Mt(κ)→Rt(a), (24)

which is referred to as the (t, κ)-Riemann-Hilbert correspondence.

Among the three versions above, the importance of (23) and (24) is obvious: (23)

will serve as a (semi-)conjugacy map of Painlevé flow to isomonodromic flow, while

(24) will give a correspondence between the spaces of initial conditions for these two

dynamics. On the other hand, although it is not yet clear, (22) will play an important

part in constructing Painlevé flows based on“codimension-two argument”(see Lemma

4.16 and Remark 5.11).

The Riemann-Hilbert problem usually asks the surjectivity of Riemann-Hilbert

correspondence. But the injectivity and properness are also important issues in our

situation.
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Problem 4.6(Riemann-Hilbert Problem). — We formulate the problems for RHκ in

(23). Those for RH and RHt,κ are formulated in similar manners.

(1) Is RHκ surjective? This question is fundamental for the whole development of

the story.

(2) To what extent RHκ is injective? This question is important for the setup of

RHκ as a (semi-)conjugacy map between the Painlevé flow and the isomon-

odromic flow.

(3) Is RHκ a proper map? This question is important because the properness of

RHκ leads to the geometric Painlevé property of the Painlevé flow (see Lemma

2.12).

In what follows, Riemann-Hilbert problem will often be abbreviated to RHP. Prob-

lems for RH, RHκ and RHt,κ will be referred to as full-RHP, κ-RHP and (t, κ)-RHP,

respectively.

4.3. Affine Weyl Group of Type D
(1)
4 . — Before stating our solution to the

Riemann-Hilbert problem, we introduce an affine Weyl group of type D
(1)
4 acting on

the parameter space K (see Definition 4.7) and characterize the singularities of Rt(a)

in terms of the affine Weyl group structure (see Lemma 4.8). In connection with the

singularity structure, we introduce the concept of Riccati loci (see Defintion 4.9).

Definition 4.7(Affine Weyl Group) . — The parameter space K in (2) is an affine space

modeled on the four-dimensional linear space

K = {k = (k0, k1, k2, k3, k4) ∈ C
5 : 2k0 + k1 + k2 + k3 + k4 = 0},

endowed with the inner product 〈k, k′〉 = k1k
′
1 + k2k

′
2 + k3k

′
3 + k4k

′
4. Let σi be the

orthogonal affine reflection on K having {κ ∈ K : κi = 0} as its reflecting hyperplane.

We observe that the group generated by σ0, σ1, σ2, σ3, σ4 is an affine Weyl group of

type D
(1)
4 (see Figure 7),

W (D
(1)
4 ) = 〈σ0, σ1, σ2, σ3, σ4〉.

The i-th basic reflection σi is expressed as

σi(κj) = κj − κicij , (25)

where C = (cij) is the Cartan matrix of type D
(1)
4 . Let Wall ⊂ K denote the union

of the reflecting hyperplanes of all reflections in W (D
(1)
4 ).

We remark that a more intrinsic presentation of Definition 4.7 is possible along the

line of Arinkin and Lysenko [2], as the Weyl group on the Picard lattice of the moduli

spaceMt(κ).

Let Rs
t(a) be the singular locus and R◦

t (a) = Rt(a) − Rs
t(a) be the smooth locus

of Rt(a), respectively. The affine Weyl group structure allows us to describe the

singularities of Rt(a).
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σ0

σ2

σ4σ3

σ1

C =




2 −1 −1 −1 −1

−1 2 0 0 0

−1 0 2 0 0

−1 0 0 2 0

−1 0 0 0 2




Figure 7. Dynkin diagram and Cartan matrix of type D
(1)
4

Lemma 4.8(Singularity) . — Let κ ∈ K and put a = rh(κ) ∈ A.

(1) The surface Rt(a) is smooth, that is, Rs
t(a) = ∅ if and only if κ 6∈Wall.

(2) If κ ∈Wall, the singular locus Rs
t(a) consists of at most four rational double

points.

The possible types of singularities on Rt(a) will be classified completely in The-

orem 9.4. In connection with the singular loci of the surfaces Rt(a), we make the

following definition.

Definition 4.9(Riccati/Non-Riccati Loci). — The Riccati loci are defined by

R
r =

∐

(t,κ)∈T×K

Rs
t(rh(κ)), Mr = RH−1(Rr).

By Lemma 4.8 the disjoint union may be taken only over T ×Wall. The non-Riccati

loci

R
◦ = R−R

r, M◦ =M−Mr

are the complements to the Riccati loci. These loci are restricted to the subspaces

R(a), Rt(a), M(κ), Mt(κ) with a = rh(κ) in an obvious manner: The Riccati loci

for them are defined by

Rr(a) =
∐

t∈T

Rs
t(a), Mr(κ) = RH−1

κ (Rr(a)),

Rr
t(a) = Rs

t(a), Mr
t(κ) = RH−1

t,κ(Rr
t(a)).

The corresponding non-Riccati loci are the complements to them:

R◦(a) = R(a)−Rr(a), M◦(κ) = M(κ)−Mr(κ),

R◦
t (a) = Rt(a)−Rr

t(a), M◦
t (κ) = Mt(κ)−Mr

t(κ).

It will turn out that Riccati loci are closely related to the so-called Riccati solutions

of the Painlevé equation. This fact motivates the terminology Riccati locus (see §5.5).
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4.4. Solution to Riemann-Hilbert Problem. — We are now in a position to

state our solution to the Riemann-Hilbert problem [29].

Theorem 4.10(Solution to Full-RHP)

(1) RH :M→R is a surjective proper holomorphic map, and

(2) RH :M◦ →R
◦ is a biholomorophism.

Restricting this theorem to each κ ∈ K, we have the following corollary.

Corollary 4.11(Solution to κ-RHP). — Let κ ∈ K and put a = rh(κ) ∈ A.

(1) RHκ :M(κ)→R(a) is a surjective proper holomorphic map, and

(2) RHκ :M◦(κ)→R◦(a) is a biholomorphism.

Furthermore, at each (t, κ)-level we have the following theorem.

Theorem 4.12(Solution to (t, κ)-RHP). — Let (t, κ) ∈ T ×K and put a = rh(κ) ∈ A.

(1) If κ 6∈Wall, then RHt,κ :Mt(κ)→Rt(a) is a biholomorphic map, and

(2) if κ ∈Wall, then RHt,κ :Mt(κ)→Rt(a) is a minimal resolution of singular-

ities having the Riccati locus Mr
t(κ) as its exceptional divisor.

These theorems can be generalized to stable parabolic connections of higher rank,

with more regular singular points, and even on a curve of higher genus. We present

an essence of the proof, focusing on the surjectivity of RH, which remains valid for

such generalizations.

Remark 4.13(How to Prove). — Given a Jordan equivalence class of representations,

(1) choose a “good” representative from the given equivalence class and form the

flat connection associated to it. Since we are working with Jordan equivalence,

we can take a semisimple representation ρ0 as the good representative.

(2) Extend the flat connection to a logarithmic connection by Deligne’s canonical

extension [12] and provide it with a parabolic structure. If the initial repre-

sentation ρ0 is irreducible, the resulting parabolic connection Q0 is stable and

so we are done. If ρ0 is reducible, we cannot stop here because Q0 may be

unstable and we should proceed to step (3).

(3) If ρ0 is reducible, take steps (1) and (2) relatively, so that we obtain a family

of parabolic connections Q = {Qc}c∈C parametrized by some curve C, with

Qc0 = Q0 at the reference point c0 ∈ C, such that the monodromy of Qc is

irreducible for every c ∈ C − {c0}. Then use Langton’s technique in Theorem

4.14 in order to recast Q0 to a stable parabolic connection.

(4) The family Q in step (3) is constructed as follows. Notice that reducible rep-

resentations occur only on a Zariski-closed proper subset B ⊂ A. Let c0 ∈ B
be the local monodromy data of ρ0, take a curve C ⊂ A that meets B only at

c0, and prolong the representation ρ0 along the curve C. Taking steps (1) and

(2) relatively, we obtain the desired family Q.
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Here is the version of Langton’s technique [42] that is needed in the current

situation.

Theorem 4.14(Langton’s Technique). — Let Q = {Qc}c∈C be a family of parabolic

connections parametrized by a curve C. By some applications of elementary trans-

formations, Q can be transformed to a family of stable parabolic connections, if the

monodromy of Qc is irreducible for every c ∈ C − {c0}. This means that the possible

singularity of Q at c0 can be removed by elementary tramsformations, provided that

all the nearby connections are irreducible.

Langton’s theorem reminds us of the removable singularity theorem of Riemann in

complex variable and that of Uhlenbeck in gauge theory. Riemann’s classical theorem

asserts that an isolated singularity of a holomorphic function can be removed, if the

function is bounded around the singular point. Uhlenbeck’s theorem [78] states that

an isolated singularity of a Young-Mills connection can be removed by applying a

gauge transformation, if the curvature of the connection is L2-bounded around the

singular point. Langton’s theorem can be regarded as an algebraic-geometry version

of such removable singularity principles, where the boundedness condition is replaced

by the irreducibility of representations.

Remark 4.15(Family of (−2)-Curves). — By Theorem 4.12, for any (t, κ) ∈ T×Wall,

the (t, κ)-Riemann-Hilbert correspondence RHt,κ : Mt(κ) → Rt(a) gives a minimal

resolution of singularities whose exceptional divisor is just the Riccati locus Mr
t(κ).

Each irreducible component of Mr
t(κ) is a (−2)-curve, that is, a smooth curve C ⊂

Mt(κ) such that

C ' P
1, C · C = −2.

Conversely any (−2)-curve in Mt(κ) arises in this manner, since it must be sent

to a singular point by RHt,κ. Considering this situation relatively for the family

πκ :M(κ)→ T , we see that each irreducible component of the Ricatti locusMr(κ) ⊂
M(κ) is a family of (−2)-curves over T , namely,

πκ : C → T, Ct ⊂Mt(κ) : (−2)-curve. (26)

To apply Hartog’s extension theorem later, we state the following simple lemma.

Lemma 4.16(Codimension Two). — The Riccati locus Mr is of codimension two

in M.

This is intuitively clear: By Lemma 4.8 the Riccati locusMr can lie only over the

codimension-one subset T ×Wall ⊂ T ×K with respect to the fibration (9). On the

other hand Remark 4.15 implies that for each (t, κ) ∈ T ×Wall, the Riccati locus

Mr
t(κ) is of codimension one in Mt(κ). In total, Mr is of codimension two in M.

Lemma 4.16 will be used in Remark 5.11.
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R(a)

ρ

ρ′

T

t

πa
β

Rt(a)

nonlinear

monodromy

braid

Figure 8. Isomonodromic flow

5. Isomonodromic Flow and Painlevé Flow

From our dynamical point of view, we should consiously distingush the Painlevé

flow on the moduli space of stable parabolic connections from the isomonodromic

flow on the moduli space of monodromy representations and throw a bridge between

these two dynamics via the Riemann-Hilbert correspondence. We begin with the

isomonodromic flow.

5.1. Isomonodromic Flow. — Fix a base point t ∈ T and take the loops γi ∈
π1(P

1−Dt, ∗) as in Figure 6. Let U be a sufficiently small simply-connected neighbor-

hood of t in T . Then, having {γi} as common generators, all the fundamental groups

π1(P
1 − Ds, ∗) with s ∈ U are identified with the reference group π1(P

1 − Dt, ∗).
Passing to moduli spaces of representations, we have isomorphisms

ψs
t : Rt(a)→Rs(a) (s ∈ U). (27)

This means that the fibration πa : R(a)→ T is locally trivial, where a local trivializa-

tion over U is given by ψt : Rt(a) × U → R(a)|U , (ρ, s) 7→ ψs
t (ρ). Then there exists

the trivial foliation on R(a)|U whose leaves are the slices ψ({ρ}×U) parametrized by

ρ ∈ Rt(a). These local foliations for various simply-connected open subsets U ⊂ T

are patched together to form a global foliation on R(a). Moreover, patching together

various local isomorphisms of the form (27), we can associate to each path ` in T an

isomorphism

`∗ : Rt(a)→Rs(a), (28)
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where t and s are the initial and terminal points of `, respectively. Note that the

isomorphism `∗ depends only on the homotopy class of the path `.

Definition 5.1(Isomonodromic Flow). — The foliation onR(a) induced from the local

triviality of the fibration π : R(a) → T is called the a-isomonodromic flow and is

denoted by FIMF(a) (see Figure 8). It is a time-dependent Hamiltonian dynamics

in the sense of Definition 2.5. Namely each fiber Rt(a) is a symplectic manifold

possibly with singularities, whose symplectic structure ΩRt(a) will be described in

§5.2, and the isomorphism (28) is a symplectic isomorphism. The dynamical system

(R(a),FIMF(a)) is denoted by IMF(a), whose fundamental 2-form ΩR(a) is defined by

the following conditions:

(1) ΩR(a) is restricted to the symplectic structure ΩRt(a) on Rt(a) for every t ∈ T .

(2) ιvΩR(a) = 0 for any FIMF(a)-horizontal vector filed v.

We give relative versions of Definition 5.1, which will also be used later.

Definition 5.2(Family of Isomonodromic Flows)

(1) There exists a (unique) family IMF = (R,FIMF) of isomonodromic flows over

A, where FIMF is a relative foliation on the fibration R → A that restricts

to the foliation FIMF(a) on each fiber R(a). Moreover there exists a relative

2-form ΩR on R that restricts to the fundamental 2-form ΩR(a) on R(a).

(2) By the fiber-product morphism (21), IMF is pulled back to a relative foliation

IMF = (R,FIMF) on R, with the corresponding relative 2-form ΩR.

Although it is almost trivial from the purely topological nature of the isomon-

odromic flow, the following lemma is worth stating explicitly.

Lemma 5.3(Geometric Painlevé Property). — For each a ∈ A, the isomonodromic

flow IMF(a) has geometric Painlevé property.

It is clear from the construction that the Riccati locus Rr(a) and the non-Riccati

locus R◦(a) are stable under the isomonodromic flow IMF(a).

Definition 5.4(Riccati/Non-Riccati Flow). — For each a ∈ A (actually for each a ∈
rh(Wall)),

(1) the isomonodromic flow IMF(a) restricted to the Riccati locus Rr(a) is referred

to as the Riccati flow and is denoted by IMFr(a), and

(2) the isomonodromic flow IMF(a) restricted to the non-Riccati locus R◦(a) is

referred to as the non-Riccati flow and is denoted by IMF◦(a).

5.2. Symplectic Structure on Rt(a). — The symplectic nature of moduli spaces

of monodromy representations was first discussed by Goldman [21]. It has been used

to study Painlevé-type equations by Iwasaki [31, 32], Hitchin [24], Kawai [40, 41],

Boalch [6] and others. Now we recall the topological description of the symplectic
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DYNAMICS OF THE SIXTH PAINLEVÉ EQUATION 133

C1

C4

C2 C3

D

Xt ' C = ∂D

Lρ = Ad ◦ ρ

Figure 9. The Riemann sphere with four disks deleted

structure ΩRt(a) on the smooth locus of Rt(a) (under some generic condition on a).

A more comprehensive sheaf-cohomological description, which allows for every values

of a ∈ A, can be found in Inaba, Iwasaki and Saito [29].

In general, given a topological space X , let R(X) denote the set of all Jordan

equivalence classes of SL2(C)-representations of π1(X). In stead of using the 4-

punctured Riemann sphere P1−Dt, we employ a homotopically equivalent domain(4)

D obtained from P1 by deleting four disjoint open disks centered at t1, t2, t3, t4. The

boundary C of D consists of four disjoint circles C1, C2, C2, C4, (see Figure 9). Then

R(D) is identified with Rt = R(P1 −Dt), while R(C) is identified with A = C
4
a by

the isomorphism

R(C)→ A, ρ 7→ a = (Tr ρ(C1), Tr ρ(C2), Tr ρ(C3), Tr ρ(C4)).

Restricting representations of π1(D) to π1(C), we have the restriction mapping

r : R(D)→R(C), ρ 7→ ρ|C .

Then Rt(a) is identified with the fiber r−1(a) over a ∈ A = R(C) and the Zariski

tangent space to Rt(a) at a point ρ ∈ Rt(a) is given by

TρRt(a) = Ker [ (dr)ρ : TρR(D)→ Tr(ρ)R(C) ].

Let Lρ be the locally constant system on D associated to the representation Ad◦ρ,
where Ad : SL2(C) → GL(sl2(C)) is the adjoint representation of SL2(C). Then

the standard infinitesimal deformation theory tells us that the Zariski tangent spaces

TρR(D) and Tr(ρ)R(C) are identified with the first cohomology groups H1(D,Lρ)

(4)somewhat confusing notation: D should not be confused with Dt.
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and H1(C;Lρ), and that the tangent map (dr)ρ is identified with the homomor-

phism j∗ in the cohomology long exact sequence

H0(C;Lρ)
δ∗

−−−−→ H1(D,C;Lρ)
i∗−−−−→ H1(D;Lρ)

j∗−−−−→ H1(C;Lρ)

for the pair of spaces (D,C) with coefficients in Lρ. Thus we have an isomorphism

TρRt(a) ∼= Ker [ j∗ : H1(D;Lρ)→ H1(C;Lρ) ], (29)

Moreover the cohomology long exact sequence yields another isomorphism induced

by i∗,

TρRt(a) ∼=
H1(D,C;Lρ)

δ∗H0(C;Lρ)
. (30)

By the Poincaré-Lefschetz duality, there exists a nondegenerate bilinear form

H1(D;Lρ)⊗H1(D,C;Lρ)
cup product−−−−−−−−→ H2(D,C;Lρ ⊗ Lρ)

Killing form−−−−−−−−→ H2(D,C; CD) ∼= C,

which induces a nondegenerate pairing between the righthand sides of (29) and

(30), and hence a nondegenerate skew-symmetric bilinear form on the tangent space

TρRt(a) at ρ,

ΩRt(a), ρ : TρRt(a)× TρRt(a)→ C.

In this manner we have obtained an alomost symplectic structure ΩRt(a) on Rt(a),

which in fact is a symplectic structure. This fact, namely, the closedness of ΩRt(a) is

trivial in our 4-point case where Rt(a) is a surface. It can be proved in the general

n-point situation on a Riemann surface of arbitrary genus ([32]).

5.3. Nonlinear Monodromy of Isomonodromic Flow. — Given a base point

t ∈ T , we consider isomorphisms (28) when the `’s are loops in T with base point at

t. Then they become automorphisms of Rt(a) and yield a group homomorphism

π1(T, t)→ AutRt(a), ` 7→ `∗, (31)

which is nothing but the nonlinear monodromy of the isomonodromic flow IMF(a)

(see Definition 2.4). This homomorphism can be described in terms of braid groups

on three strings (see Dubrovin and Mazzocco [14], Iwasaki [34] and Boalch [5, 7]).

To recall this description, we put t4 at infinity and redefine the time-variable space

as the configuration space of distinct ordered three points in C, that is,

T = { t = (t1, t2, t3) ∈ C
3 : ti 6= tj for i 6= j }. (32)

Then the fundamental group π1(T, t) is isomorphic to the pure braid group P3 on

three strings. If T is replaced by the configuration space of distinct unordered three

points in C, then π1(T, t) is isomorphic to the ordinary braid group B3 on three

strings (see e.g. Birman [4]). Recall that there exists the natural exact sequence

1→ P3 → B3 → S3 → 1, where S3 represents the permutations of t1, t2, t3. For later

convenience, we employ the following terminology.
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Definition 5.5(Full-Monodromy and Half-Monodromy) . — Monodromy in terms of

pure braids are referred to as full-monodromy, while monodromy in terms of ordinary

braids are referred to as half-monodromy, respectively.

Using half-monodromy will be convenient for shorter presentation and the full-

monodromy is just obtained by restricting the ordinary braid group to its pure sub-

group. The full-monodromy in (31) makes sense for each individual IMF(a), while

the half-monodromy only makes sense for IMF. To describe the half-monodromy, we

introduce the following natural action of B3 on Rt.

Definition 5.6(Action of Braids on Representations). — The action of the braid group

B3 on the moduli Rt of monodromy representations,

B3 ×Rt →Rt, (β, ρ) 7→ ρβ ,

is defined by the following condition, which we call the global isomonodromy condition,

ρβ(γβ) = ρ(γ). (33)

Here γ 7→ γβ is the natural action of β ∈ B3 on π1(Xt, ∗) defined as in Definition 5.7,

where we put

Xt = C− {t1, t2, t3}.

Definition 5.7(Action of Braids on Fundamental Group). — Let βi be the braid as in-

dicated in Figure 10, where (i, j, k) is any cyclic permutation of (1, 2, 3). Then the

braid group B3 is generated by the basic braids β1, β2, β3. On the other hand the

fundamental group π1(Xt, ∗) is the free group generated by the loops γ1, γ2, γ3 in

Figure 6. Thus we have

B3 = 〈β1, β2, β3〉, π1(Xt, ∗) = 〈γ1, γ2, γ3〉.

In terms of these generators, the action of B3 on π1(Xt, ∗) is given as in Figure 11.

Namely the action of the i-th basic braid βi : (γi, γj , γk) 7→ (γ′i, γ
′
j , γ

′
k) is expressed as

γ′i = γ−1
i γjγi, γ′j = γ′i, γ′k = γk.

where the composition of loops is taken from right to left.

The following theorem is clear from the manner in which the action is defined as

in (33).

Theorem 5.8(Nonlinear Monodromy). — The half-monodromy of IMF is given by the

B3-action on Rt in Definition 5.6 and the full-monodromy of IMF(a) is the P3-action

on Rt(a) that is the restriction of the B3-action above to P3 (seeTable 4).

As in Dubrovin and Mazzocco [14] and Iwasaki [34], we make the following remark.
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t′i

tj tk

βi

t′j t′k

ti

Figure 10. Basic braid βi, where (i, j, k) is a cyclic of (1, 2, 3)

ti tj tk

γi γj γk

t′j t′kt′i

γ′kγ′i

γ′j

Xt

Xt

Xt

Figure 11. The braid action βi : (γi, γj , γk) 7→ (γ′

i, γ
′

j , γ
′

k)
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half-monodromy full-monodromy

B3 y Rt P3 y Rt(a)

Table 4. Half-monodromy of IMF and full-monodromy of IMF(a)

Remark 5.9(Reduction to Modular Group) . — It is well known that the center Z(B3)

of B3 is the infinite cyclic group 〈(βiβj)
3〉 generated by (βiβj)

3 and the quotient group

B3/Z(B3) is isomorphic to the full modular group Γ ' PSL(2,Z). An inspection

shows that our braid group action is trivial on the center Z(B3). Hence it is reduced

to an action of the full modular group Γ onRt. In view of Remark 2.13, this reduction

is quite possible since the fundamental group of P1 − {0, 1,∞} is isomorphic to the

level-two principal congruence subgroup Γ (2) of Γ . The resulting modular group

action will be described explicitly in Definition 8.1.

5.4. Painlevé Flow. — From our point of view, the Painlevé flow should be defined

as the pull-back of the isomonodromic flow by the Riemann-Hilbert correspondence.

This standpoint was first adopted by Iwasaki [31, 32], though things were still looked

at locally. Currently a completely global formulation is feasible, now that we have

such a neat result as in Theorem 4.10.

Theorem 5.10(Painlevé Flow). — For any κ ∈ K, put a = rh(κ) ∈ A.

(1) There exists a unique holomorphic foliation FPVI(κ) on M(κ) such that the κ-

Riemann-Hilbert correspondence RHκ :M(κ)→ R(a) gives a semi-conjugacy

RHκ : (M(κ), FPVI(κ))→ (R(a), FIMF(a)). (34)

The dynamical system PVI(κ) = (M(κ),FPVI(κ)) is called the κ-Painlevé flow.

(2) The semi-conjugacy map (34) induces a conjugacy map

RHκ : (M◦(κ), FPVI(κ))→ (R◦(a), FIMF(a)),

when restricted to the non-Riccati locus.

(3) The fundamental 2-form ΩM(κ) for the κ-Painlevé flow PVI(κ) is the unique

holomorophic 2-form on M(κ) that satisfies the condition

ΩM(κ) = RH∗
κ ΩR(a) on M◦(κ).

The point of Theorem 5.10 is explained in the following manner.

Remark 5.11(Codimension-Two Argument). — If κ ∈ K −Wall, this theorem imme-

diately follows from Corollary 4.11, since in this case there is no Riccati locus and

RHκ :M(κ) → R(a) is a biholomorphic map. However, if κ ∈Wall, things are not

so simple because RHκ fails to be injective on the Riccati locus Mr(κ), which is of

codimension one in M(κ). In this case it is not immediately clear as to whether the
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Painlevé flow extends to the Riccati locus. To avoid this difficulty, we should consider

the full-Riemann-Hilbert correspondence RH :M→R in (22). By Definition 5.2 we

have relative foliation FIMF and relative 2-form ΩR on R. Since RH :M◦ →R
◦ is

biholomorphic by Theorem 4.10, FIMF and ΩR can be pulled back to a holomorphic

relative foliation FPVI and to a holomorphic relative 2-form ΩM on M◦. Since the

complementMr =M−M◦ is of codimension two inM (see Lemma 4.16), Hartog’s

extension theorem implies that FPVI and ΩM can be extended to the whole spaceM
holomorophically. Restricting these extensions to each M(κ) yields a holomorphic

flow FPVI(κ) and a holomorphic 2-form ΩM(κ) onM(κ). These are just what we have

been seeking.

Theorem 5.12(Geometric Painlevé Property). — For any κ ∈ K the Painlevé flow

PVI(κ) enjoys geometric Painlevé property.

This theorem readily follows from the geometric Painlevé property for the isomon-

odromic flow IMF(a) with a = rh(κ) (see Lemma 5.3) and from the fact that RHκ is

a semi-conjugacy map between PVI(κ) and IMF(a), especially from the properness of

the map RHκ (see Lemma 2.12).

It is clear that the Riccati locus Mr(κ) and the non-Riccati locus M◦(κ) are

stable under the Painlevé flow PVI(κ). As a counterpart of Definition 5.4 we make

the following definition.

Definition 5.13(Riccati/Non-Riccati Flow). — For each κ ∈ K (actually for each κ ∈
Wall),

(1) the Painlevé flow PVI(κ) restricted to the Riccati locusMr(κ) is referred to as

the Riccati flow and is denoted by Pr
VI(κ), and

(2) the Painlevé flow PVI(κ) restricted to the non-Riccati locusM◦(κ) is referred

to as the non-Riccati flow and is denoted by P◦
VI(κ).

The assertion (2) of Theorem 5.10 is now restated as follows.

Theorem 5.14(Conjugacy for Non-Riccati Flows). — For any κ ∈ K put a = rh(κ) ∈
A. The Riemann-Hilbert correspondence RHk yields a conjugacy between the non-

Riccati Painlevé flow P◦
VI(κ) and the non-Riccati isomonodromic flow IMF◦(a). In

particular the nonlinear monodromy of P◦
VI(κ) is faithfully represented by that of

IMF◦(a), where the latter is described by Theorem 5.8 restricted to the non-Riccati

loci.

The discussions of this subsection are summarized as follows. The Riemann-Hilbert

correspondence gives an analytic semi-conjugacy between the Painlevé flow and the

isomonodromic flow. It gives an analytic conjugacy in the strict sense outside the

Riccati locus, while it collapses the Riccati locus to a family of singularities. Thus we

have almost arrived at the situation described in the Guiding Diagram in Figure 3,

though subtle details on the Riccati flow are not depicted there. One point yet to be
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discussed in Figure 3 is the isomorphism Rt(κ) ' S(θ), which will be established in

Theorem 6.5.

5.5. Riccati Flows and Hypergeometric Equations. — This subsection is de-

voted to the linearization of Riccati-Painlevé flows. This procedure will clearly explain

why Riccati flows are called so. Throughout this subsection we fix κ ∈Wall.

The Riccati-Painlevé flow Pr
VI(κ) is confined in the Riccati locus Mr(κ). By Re-

mark 4.15 each irreducible component C ⊂Mr(κ), which is stable under the flow, is a

family of (−2)-curves over T as in (26). Thus Pr
VI(κ) restricts to a dynamical system

on the P1-bundle πκ : C → T . For this, we have the following theorem.

Theorem 5.15(Hypergeometric Equation). — On each irreducible component of

Mr(κ) the Riccati-Painlevé flow Pr
VI(κ) is linearizable in terms of a Gauss hypergeo-

metric equation.

To understand what this means, we should recall the following famous theorem.

Theorem 5.16(Fuchs-Poincaré). — Let F (x, y, z) be a polynomial of (y, z) whose co-

efficients are meromorphic functions of x in a domain U ⊂ C. Let g be the genus of

the affine algebraic curve

Cx = { (y, z) ∈ C
2 : F (x, y, z) = 0 }

at a generic point x ∈ U . If the first-order nonlinear differential equation

F (x, y, y′) = 0, y′ = dy/dx, (35)

has analytic Painlevé property, then there exists the following trichotomy:

(1) if g = 0 then (35) can be reduced to a Riccati equation

y′ = a(x) y2 + b(x) y + c(x), (36)

(2) if g = 1 then (35) can be reduced to the differential equation of an elliptic curve

(y′)2 = 4 y3 − g2 y − g3,

(3) if g ≥ 2 then (35) can be solved by algebraic quadratures.

This theorem means that first-order dynamical systems with Painlevé property are

classified by the genera of spaces of initial conditions. In the case of genus zero, it

asserts that the dynamics is governed by a Riccati equation. The Riccati equation

(36) is linearized as

y = − 1

a(x)

Y ′

Y
, a(x)Y ′′ − {a′(x) + a(x) b(x)} Y ′ + a2(x) c(x)Y = 0. (37)

Let us return to the situation in Theorem 5.15, where we were discussing the

Riccati-Painlevé flow Pr
VI(κ) restricted to an irreducible component C ⊂Mr(κ). Then
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obviously we are in the genus-zero case of Theorem 5.16(5). If we use the coordinate

expression of PVI(κ), we can see that in our case the linear equation (37) is (essentially)

a Gauss hypergeometric equation. Here the coordinate expression of PVI(κ) will be

given in Theorem 10.10. Since using coordinate expressions is not beautiful, we may

pose the following problem.

Problem 5.17(Linearization) . — For each irreducible component C ⊂ Mr(κ) of the

Riccati locus, show that there exist a rank-two vector bundle E on (P1)4 and an

integrable connection ∇ on it, having regular singularities along the diagonal (P1)4−
T , such that the Riccati-Painlevé flow Pr

VI(κ) restricted to C is the flat projective

connection induced from the flat linear connection (E,∇)|T .

Of course we have to solve it conceptually without using coordinate expressions.

In any case, it is now clear that classifying Riccati solutions amounts to classifying

irreducible components of Riccati loci. We may consider this problem at a fixed

t ∈ T . So the problem is to classify (−2)-curves on moduli spacesMt(κ), κ ∈Wall.

Originally, the relation between Riccati solutions to Painlevé equations and (−2)-

curves on spaces of initial conditions was clarified by Saito and Terajima [68] and

Sakai [70]. In particular Saito and Terajima gave a complete classification of (−2)-

curves. We can now amplify their viewpoint by the picture of resolution of singularities

by Riemann-Hilbert correspondence. To do so we should pose the following problem.

Problem 5.18(Classification of(−2)-Curves). — Given any (t, κ) ∈ T×Wall, classify

all (−2)-curves on Mt(κ) in connection with the resolution of singularities by the

Riemann-Hilbert correspondence RHt,κ :Mt(κ)→Rt(a).

This problem will be settled in Theorem 9.4. This subsection is closed with the

following historical remark.

Remark 5.19(History) . — Attempts at generalizing Theorem 5.16 to second-order

equations led Painlevé to discover his famous equations.

6. Family of Affine Cubic Surfaces

All the constructions described so far can be made more explicit if we consider a

family of affine cubic surfaces defined as a certain categorical quotient. We present

the construction of the family, following Iwasaki [34]. Throughout this section we fix

a time t ∈ T .

(5)To apply Theorem 5.16, we should recast the bundle πκ : C → T to a P
1-bundle over U =

P
1 − {0, 1,∞} by using the symplectic reduction in Remark 2.13.
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6.1. Categorical Quotient. — Let Homt = Hom(π1(P
1 −Dt, ∗), SL2(C)) be the

set of all representations of π1(P
1 −Dt, ∗) into SL2(C). Then Homt is naturally an

affine algebraic variety and admits the adjoint action

Ad : SL2(C)×Homt → Homt, (P, ρ) 7→ Ad(P )ρ,

defined by (Ad(P )ρ)(γ) = Pρ(γ)P−1 for γ ∈ π1(P
1 − Dt, ∗). It is known (see e.g.

Simpson [73, 74]) that the moduli space Rt of Jordan equivalence classes of repre-

sentations is isomorphic to the categorical quotient

Homt//Ad = Spec
(
C[Homt]

Ad
)
,

where C[Homt]
Ad is the Ad-invariant coordinate ring on Homt. If the generators γi

of π1(Xt, ∗) are chosen as in Figure 6, then Homt can be identified with

R = {M = (M1,M2,M3,M4) ∈ SL2(C)4 : M4M3M2M1 = I },

through the map Homt → R , ρ 7→ M , defined by Mi = ρ(γi). With this identifica-

tion, the moduli space of representations Rt is isomorphic to the categorical quotient

R//Ad = Spec
(
C[R ]Ad

)
, (38)

where Ad represents the diagonal adjoint action of SL2(C) on R .

The invariant ring C[R ]Ad has generators (x, a) = (x1, x2, x3, a1, a2, a3, a4) given

by
{
xi = Tr(MjMk) ({i, j, k} = {1, 2, 3}),

ai = TrMi (i = 1, 2, 3, 4).

Note that a = (a1, a2, a3, a4) ∈ A is just the local monodromy data defined in (16).

We may refer to x = (x1, x2, x3) ∈ C3
x as the global monodromy data, since xi comes

from the monodromy matrix MjMk along the global loop γiγj surrounding the two

points ti and tj simultaneously. The generators (x, a) have only one algebraic re-

lation f(x, θ(a)) = 0, where f(x, θ) is the cubic polynomial of x with coefficients

θ = (θ1, θ2, θ3, θ4) defined by

f(x, θ) = x1x2x3 + x2
1 + x2

2 + x2
3 − θ1x1 − θ2x2 − θ3x3 + θ4, (39)

which can be found in the book [16] of Fricke and Klein. In terms of local monodromy

data a ∈ A, the coefficients θ = θ(a) are expressed as

θi =

{
aia4 + ajak (i = 1, 2, 3),

a1a2a3a4 + a2
1 + a2

2 + a2
3 + a2

4 − 4 (i = 4).
(40)

Let Θ := C4
θ denote the complex 4-space parametrizing the coefficients θ of f(x, θ).
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6.2. Correspondences of Parameters. — So far, we have encountered three

kinds of parameters, that is, the parameters κ ∈ K of PVI, which is nothing but

the exponents of parabolic connections; the local monodromy data a ∈ A; and the

coefficients θ ∈ Θ of the cubic polynomial f(x, θ). Relations among them are depicted

in Table 5, where κ 7→ a is given by (18) and a 7→ θ is given by (40), respectively.

parameters of local mono- parameters

Painlevé VI dromy data of cubics

κ ∈ K 7−→ a ∈ A 7−→ θ ∈ Θ

Table 5. Correspondences of parameters

In many respects the parameters θ ∈ Θ of cubics surfaces are more essential than

the local monodromy data a ∈ A. One reason for this lies in the following observation

due to Terajima [77].

Lemma 6.1(Basis ofW (D
(1)
4 )-Invariants) . — As a function of exponents κ ∈ K, the

coefficients θ = (θ1, θ2, θ3, θ4) of the cubic polynomial f(x, θ) form a basis of W (D
(1)
4 )-

invariants.

Here, by θ being a basis of W (D
(1)
4 )-invariants, we mean that any W (D

(1)
4 )-

invariant entire functions on K is an entire function of θ. So far the map rh : K → A

in (17) has been called the Riemann-Hilbert correspondence in the parameter level

(see Definition 4.3). However, in view of Lemma 6.1 the following revised definition

would be more appropriate.

Definition 6.2(Riemann-Hilbert Correspondence in Parameter Level)
From now on the composite K → Θ of two maps K → A in (17) and A→ Θ in (40)

is referred to as the Riemann-Hilbert correspondence in the parameter level. Hereafter

we write rh : K → Θ.

6.3. Family of Affine Cubic Surfaces. — The cubic equation f(x, θ) = 0 defines

a family of affine cubic surfaces, that is, the variety

S = { (x, θ) ∈ C
3
x ×Θ : f(x, θ) = 0 },

together with the projection π : S → Θ, (x, θ) 7→ θ. The previous discussions imply

that the categorical quotient R//Ad in (38) is realized as the fiber product of S and

A over Θ relative to the natural projections π : S → Θ and A→ Θ. Namely we have

isomorphisms

Rt ' R//Ad ' S ×Θ A. (41)
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We write fθ(x) = f(x, θ) regarding it as a polynomial of x depending on parameters

θ. For each θ ∈ Θ the fiber of π : S → Θ over θ is an affine cubic surface

S(θ) = { x ∈ C
3 : fθ(x) = 0 }.

Now (41) means that Rt(a) is isomorphic to the cubic surface S(θ) provided that θ

is given by (40) in terms of a. Thus we have the following definition.

Definition 6.3(Reformulation of RH). — The isomorphism (41) and Definition 6.2 al-

low us to reformulate the t-Riemann-Hilbert correspondence (19) as the commutative

diagram

Mt
RHt−−−−→ S

πt

y
yπ

K −−−−→
rh

Θ

In a similar manner the (t, κ)-Riemann-Hilbert correspondence (24) is reformulated

as

RHt,k :Mt(κ)→ S(θ), θ = rh(κ). (42)

Definition 6.4(Poincaré Residue). — A natural symplectic structure or an area form

on the cubic surface S(θ) is the Poincaré residue defined by

ωθ =
dxi ∧ dxj

(∂fθ/∂xk)
,

where (i, j, k) is any cyclic permutation of (1, 2, 3); it does not depends on the cyclic

permutation chosen. The smooth and singular loci of S(θ) are denoted by S◦(θ) and

Ss(θ), respectively. Then the Poincaré residue ωθ is holomorphic on S◦(θ), having

singularities along Ss(θ).

A complete characterization of the singular locus Ss(θ) will be presented in Sec-

tion 9. The following theorem is found in [34].

Theorem 6.5(Moduli of Representations and Cubic Surface). — For any (t, a) ∈ T ×
A, let θ = θ(a) be defined by (40). Then there exists an identification of symplectic

manifolds

i : (Rt(a), ΩRt(a)) ' (S(θ), ωθ). (43)

The main ingredient of the proof is the de Rham theorem. At the end of this

section, the following remark would be of some interests.

Remark 6.6(Moduli of Cubic Surfaces). — It is well known in classical algebraic ge-

ometry that the isomorphism classes of cubic surfaces in P3 have a 4-dimensional

moduli space and that there exists a 4-parameter family of general cubic surfaces,

known as Cayley’s normal form [9]. Some computations imply that our family S and
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Cayley’s normal form, as modified by Naruki and Sekiguchi [53, 54], have a com-

mon algebraic cover and hence our family captures general moduli (see Iwasaki [33]

and Terajima [77]). Thus the family S can be taken as another normal form than

Cayley’s. It is remarkable that general sixth Painlevé equations are connected with

general cubic surfaces through the Riemann-Hilbert correspondence.

7. Bäcklund Transformations — Symmetry

Symmetries of the Painlevé equation are called Bäcklund transformations. Näıvely,

a Bäcklund transformation is a birational transformation that converts one Painlevé

equation PVI(κ) to another Painlevé equation PVI(κ
′), where κ and κ′ may differ.

More precisely, it is a birational map from one phase space M(κ) to another phase

space M(κ′) that commutes with the Painlevé flows. There are at least two ap-

proaches to understand Bäcklund transformations.

Remark 7.1(Two Approaches to Bäcklund Transformations)

(1) birational canonical transformations,

(2) covering transformations of the Riemann-Hilbert correspondence.

The first approach (1) has been employed by such authors as Lukashevich and

Yablonski [43] Fokas and Ablowitz [15] and Okamoto [63] in the style of explicit

calculations. In particular, Okamoto discovered that PVI admits affine Weyl group

symmetries of type D
(1)
4 . He expressed them as birational canonical transformations

of Hamiltonian systems; Noumi and Yamada [58] systematized them by a symmetric

description in terms of a new Lax pair; Arinkin and Lysenko [2] geometrized them

as isomorphisms between moduli spaces of SL2(C)-connections; Sakai [70] also ge-

ometrized them in his Cremona framework; Saito and Umemura [69] characterized

them as flops. In fact, these various viewpoints are too diverse to be tagged with the

same label.

Nonetheless, they still have a common feature to the effect that they look only

on a one-side of the Riemann-Hilbert correspondence, that is, the moduli space of

parabolic connections or its relatives (spaces where PVI is defined), with no attentions

to the moduli space of representations. On the other hand, the second approach

(2) is interested in the interaction between the source space and the target space

of Riemann-Hilbert correspondence, asking what the Bäcklund transformations look

like through the telescope of Riemann-Hilbert correspondence. In this section we take

approach (2), following the exposition of Inaba, Iwasaki and Saito [28].

Take any κ ∈ K and put θ = rh(κ) ∈ Θ. Given any element σ ∈ W (D
(1)
4 ), we

consider the Riemann-Hilbert correspondences (42) for the parameter κ and for its

σ-translate σ(κ),

RHt,κ :Mt(κ)→ S(θ), RHt,σ(κ) :Mt(σ(κ))→ S(σ(θ)).
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Mt(κ)
sσ−−−−−→ Mt(σ(κ))

RHt,κ

y
yRHt,σ(κ)

S(θ) −−−−−→
identity

S(σ(θ))

Figure 12. Bäcklund transformations

By our solution to the Riemann-Hilbert problem (see Theorem 4.12), both of them

are biholomorphic maps if κ 6∈ Wall, and are minimal resolutions of singularities if

κ ∈Wall, respectively; in any case they are bimeromorhpic morphisms. On the other

hand, by the W (D
(1)
4 )-invariance of θ (see Lemma 6.1), we have θ = σ(θ) and hence

the cubic surfaces S(θ) and S(σ(θ)) are identical. Therefore there exists a unique

bimeromorphic map

sσ :Mt(κ)→Mt(σ(κ)) (44)

that makes the diagram in Figure 12 commutative, that is, the unique lift that covers

the identity on S(θ) = S(σ(θ)) through the Riemann-Hilbert correspondence. In the

sprit of approach (2) it is natural to define the concept of Bäcklund transformations

in the following manner.

Definition 7.2(Bäcklund Transformation) . — By a Bäcklund transformation, we

mean the lift sσ of an element σ ∈ W (D
(1)
4 ) as in (44). The group of Bäcklund

transformations is, by definition, the group consisting of all those lifts sσ with

σ ∈ W (D
(1)
4 ), that is,

G = 〈 sσ |σ ∈W (D
(1)
4 ) 〉 = 〈s0, s1, s2, s3, s4〉 'W (D

(1)
4 ).

where si is the lift of the basic reflection σi for i = 0, 1, 2, 3, 4 (see (25) and Fig-

ure 7); we refer to si as the i-th basic Bäcklund transformation. For each t ∈ T the

group G acts on the moduli spaceMt over K in such a manner that there exists the

commutative diagram

Mt
G−−−−→ Mt

πt

y
yπt

K −−−−−→
W (D

(1)
4 )

K

Remark 7.3(Advantage and Disadvantage). — The following two advantages of Defi-

nition 7.2 are clear.

(1) The character of Bäcklund transformations is transparent, as the covering

transformations of the Riemann-Hilbert correspondence, in the sense of Fig-

ure 12.
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(2) The origin of the affine Weyl group structure of Bäcklund transformations is

clear: It just comes from the fact that the Riemann-Hilbert correspondence in

the parameter level rh : K → Θ is a branched W (D
(1)
4 )-covering.

There is also a disadvantage of this definition.

(3) The birational character of Bäcklund transformations is far from trivial, be-

cause our definition makes use of the Riemann-Hilbert correspondence which

is highly transcendental. From Definition 7.2 we only know that Bäcklund

transformations are bimeromorphic, while their birationality is a priori clear

from the viewpoints of approach (1).

So we are obliged to discuss the relation between these two approaches and to unify

them. In this respect, Inaba, Iwasaki and Saito [28] proved the following result.

Theorem 7.4(Coincidence of Two Approaches). — The two approaches in Remark 7.1

coincide. Namely the Bäcklund transformations in the sense of Definition 7.2 are

exactly those which have been known as the birational canonical transformations.

We remark that a different proof of this theorem was given later by Boalch [7].

There exists an explicit formula for the basic Bäcklund transformations si in terms of

certain canonical coordinates onM(κ) (see Theorem 10.13). We can calculate the lift

si of σi, overcoming the transcendental nature of the Riemann-Hilbert correspondence

(see [28]). As a matter of fact, s1, s2, s3, s4 are easy to handle and the true difficulty

lies in the treatment of s0. As for this the following remark might be helpful.

Remark 7.5(Gauge Transformations). — Let W ′ be the subgroup of W (D
(1)
4 ) stabi-

lizing the local monodromy data a = a(κ) as a function of κ (see (17) and (18)). The

subgroup G′ ⊂ G corresponding to W ′ is called the group of gauge transformations.

Note that a Bäcklund transformation is a gauge transformation if and only if it does

not change monodromy.

(1) s1, s2, s3, s4 are very simple gauge transformations; see e.g. [28].

(2) s0 is not a gauge transformation. Arinkin and Lysenko [2] described it in

the level of abstract isomorphism between moduli spaces of SL(2)-connections.

Boalch [7] was able to characterize it as a concrete transformation of 2 × 2

Fuchsian systems (11), passing through a 3× 3 irregular singular systems via

Fourier transformation. It is desirable to realize it as a natural transformation

of moduli functors of stable parabolic connections.

As in [63, 2, 58, 5], the following remark should be made at this stage.

Remark 7.6(Extended Affine Weyl Group). — The affine Weyl group symmetry can

be enlarged to an extended affine Weyl group symmetry, if we allow some permu-

tations of time variables t = (t1, t2, t3, t4). Let Kl ' Z2 × Z2 be Klein’s 4-group
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of permutations Kl = { 1, (12)(34), (13)(24), (14)(23) } ⊂ S4 acting on T × K by

permuting their components. Note that the semi-direct product

Kl nW (D
(1)
4 ) = W̃ (D

(1)
4 ).

is the extended affine Weyl group of type D
(1)
4 acting on T ×K. This action is lifted

to the moduli spaceM over T ×K through the Riemann-Hilbert correspondence, as

M eG−−−−→ M

π

y
yπ

T ×K −−−−−→
fW (D

(1)
4 )

T × K.

The original independent variable of PVI in (1), namely, the cross ratio x in (6) is

Kl-invariant and hence remains invariant under the W̃ (D
(1)
4 )-symmetry. Moreover, if

one allows the full S4-permutations of t = (t1, t2, t3, t4), one gets the full W (F
(1)
4 )-

symmetry of PVI. Its connection with the mapping class group of the 4-holed sphere

is discussed in Remark 12 of Boalch [7].

8. Nonlinear Monodromy — Poincaré Return Maps

The nonlinear monodromy of the Painlevé flow, or more precisely, that of the non-

Riccati Painlevé flow, can be represented explicitly in terms of a certain modular

group action on cubic surfaces. In this seciton we are concerned with this description.

8.1. Modular Group Action. — The action is first defined on the ambient space

C7 = C3
x × Θ and then restricted to S. In what follows (i, j, k) stands for any cyclic

permutation of (1, 2, 3). We start with the symmetric group S3 of degree 3 acting on

Θ by permuting the first three components of θ = (θ1, θ2, θ3, θ4). If τi = (ij) ∈ S3

denotes the transposition(6) of θi and θj , then S3 is generated by τ1, τ2, τ3,

S3 = 〈τ1, τ2, τ3〉.

Next we introduce a lift of τi to C7 relative to the second projection C7 = C3
x×Θ→ Θ.

Definition 8.1(Group of Polynomial Automorphisms). — For each i = 1, 2, 3, let

gi : C
7 → C

7, (x, θ) 7→ (x′, θ′)

be the polynomial automorphism defined by the formula

(x′i, x
′
j , x

′
k, θ

′
i, θ

′
j, θ

′
k, θ

′
4) = (θj − xj − xkxi, xi, xk, θj , θi, θk, θ4).

(6)Note that τ3 is not (34) but (31).
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Moreover let G denote the transformation group(7) generated by g1, g2, g3, that is,

G = 〈g1, g2, g3〉.

A direct check shows that the generators satisfy the three relations

gigjgi = gjgigj , (gigj)
3 = 1, gk = gigjg

−1
i ,

which are exactly the defining relations of the full modular group

Γ = PSL2(Z) =

{
z 7→ az + b

cz + d
: a, b, c, d ∈ Z, ad− bc = 1

}
.

So, there exists a group homomorphism Γ → G, through which the modular group Γ

acts on C7. This action is restricted to the principal congruence subgroup of level 2,

Γ (2) =

{
z 7→ az + b

cz + d
∈ Γ : a ≡ d ≡ 1, b ≡ c ≡ 0 (mod 2)

}
.

The subgroup of G corresponding to Γ (2) ⊂ Γ is given by

G(2) = 〈g2
1 , g

2
2 , g

2
3〉,

which is referred to as the transformation group of level 2. Note that there exists the

natural homomorphism G→ S3 defined by gi 7→ τi = (ij), whose kernel is just G(2).

Thus we have a 4-parameter family of Γ (2)-actions on C3
x parametrized by θ ∈ Θ.

We observe that the polynomial f(x, θ) in (39) is gi-invariant and hence the family

of cubic surfaces S is stable under the action of G. Moreover, for each θ ∈ Θ, the

cubic surface S(θ) is stable under the action of Γ (2). So the above action can be

restricted to cubic surfaces.

Definition 8.2(Modular Group Actions)

(1) The symmetric group S3 of degree 3 acts on the base space Θ by permuting

the first three components (θ1, θ2, θ3) of θ, while keeping the fourth component

θ4 always fixed.

(2) The full modular group Γ acts on the family π : S → Θ of affine cubic surfaces

through the transformation group G, covering the action of S3 on Θ.

(3) The congruence subgroup Γ (2) of level 2 acts on each cubic surface S(θ)

through the transformation group G(2), area-preservingly with respect to the

Poincaré residue ωθ.

A full picture of these actions is presented in Figure 13. The identification of these

actions with those in §5.3 (see Table 4) is stated in the following manner.

Lemma 8.3(Braid Versus Modular Group Actions) . — With the isomorphisms (41)

and (43), the braid group actions and the modular group actions are identified,

including their symplectic structures, as in Table 6.

(7)The group of Bäcklund transformations is also denoted by G in §7, but no confusion might occur.
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S(θ) S(τ(θ))

π

Θ

S

θ τ(θ) = θ′

ωθ

ωτ(θ)

g

G(2) ⊂ G y

Γ (2) ⊂ Γ

{1} ⊂ S3 y

area form

(x, θ)

(x′, θ′)

Figure 13. A full picture of the modular group action

half-monodromy full-monodromy area form

braid group action B3 y Rt P3 y Rt(a) ΩRt(a)

modular group action Γ y S Γ (2) y S(θ) ωθ

Table 6. Identification of the braid and modular group actions

8.2. Nonlinear Monodromy of Painlevé Flow. — Having Theorem 5.14 and

Lemma 8.3 in hands, we can easily describe the nonlinear monodromy of the non-

Riccati part of PVI in terms of the modular group action in Definition 8.2.

Theorem 8.4(Nonlinear Monodromy). — For any κ ∈ K, put θ = rh(κ) ∈ Θ. Then

the nonlinear monodromy of the non-Riccati Painlevé flow P◦
VI(κ) is faithfully repre-

sented by the Γ (2)-action on the smooth locus S◦(θ) of the cubic surface S(θ) through

the Riemann-Hilbert correspondence RHt,κ. Namely we have the intertwining isomor-

phism

[ NM of P◦
VI(κ) yM◦

t (κ) ]
RHt,κ−−−−→ [Γ (2) y S◦(θ) ], (45)

where NM stands for the nonlinear monodromy. An image picture of (45) is given in

Figure 14.
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Remark 8.5(Dichotomy). — Theorem 8.4 means that the global nature of PVI is well

understood according to the dichotomy into the Riccati and non-Riccati components.

(1) On the Riccati component Pr
VI, the flows are linearizable in terms of Gauss

hypergeometric equations (see Theorem 5.15), whose global nature is well un-

derstood classically.

(2) On the non-Riccati component P◦
VI, the nonlinear monodromy is faithfully

represented by an explicit modular group action on cubic surfaces, from which

we can extract the global nature of P◦
VI.

After giving a complete picture of Riccati solutions in §9, we shall give a more com-

plete description of the nonlinear monodromy of PVI(κ), when it contains the Riccati

component, in Theorem 9.9.

M◦
t (κ)

t

RHκM◦(κ) R◦(a)

R◦
t (a) ' S◦(θ)

T T

πκ πa

Q
ρ

t

Painlevé flow Isomonodromic flow

=

Q′ ρ′

β β

Figure 14. Nonlinear monodromy of P◦

VI(κ)

The monodromy problem for PVI was discussed in Dubrovin and Mazzocco [14]

for a special one-parameter family and in Iwasaki [34] for the full-family. Then the

solution in Iwasaki [34] has been completed in Inaba, Iwasaki and Saito [29] by

solving the Riemann-Hilbert problem precisely and is now presented in this article.

The global nature of PVI can also be investigated from a more analytical point of

view, as the connection problem. For the latter subject we refer to the important

papers by Jimbo [36] and Guzzetti [23]. We also remark that Jimbo’s asymptotic

formula was corrected by Boalch [7].

9. Singularities and Riccati Solutions — Classical Trajectories

We shall classify (−2)-curves on moduli spaces in terms of resolutions of singulari-

ties of cubic surfaces by Riemann-Hilbert correspondence. Together with the modular
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group action on cubic surfaces, this makes it possible to get a full picture of Riccati

solutions to PVI.

9.1. Singularities of Cubic Surfaces. — For our family of cubic surfaces, the

discriminant locus was calculated by Iwasaki [33].

Definition 9.1(Discriminant) . — Let ∆(θ) be the discriminant of the cubic surface

S(θ), which is an irreducible polynomial of θ ∈ Θ. Viewed as a function of a ∈ A
through the map A→ Θ in (40), the discriminant ∆(θ) factors as

∆(θ) = w(a)2
4∏

i=1

(a2
i − 4),

w(a) =
∏

ε1ε2ε3=1

(ε1a1 + ε2a2 + ε3a3 + a4)−
3∏

i=1

(aia4 − ajak),

where εi = ±1 and {i, j, k} = {1, 2, 3}.

Lemma 9.2(Discriminant Locus). — The Riemann-Hilbert correspondence in the pa-

rameter level, rh : K → Θ, maps Wall onto the discriminant locus

V = { θ ∈ Θ : ∆(θ) = 0 }

(see Figure 15). For any θ ∈ Θ, the cubic surface S(θ) is singular if and only if θ ∈ V .

rh

∆(θ) = 0

K-space Θ-space
Wall

V

Figure 15. Riemann-Hilbert correspondence in the parameter level

In order to classify the singularities of S(θ), we introduce a stratification of K.

Definition 9.3(Stratification) . — Let I denote the set of all proper subsets of

{0, 1, 2, 3, 4} including the empty set ∅. For each subset I ∈ I we put

KI = W (D
(1)
4 )-translates of the subset {κ ∈ K : κi = 0 (i ∈ I) },

DI = Dynkin subdiagram of D
(1)
4 that has nodes precisely in I.
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Let KI be the set obtained from KI by removing the sets KJ with |J | = |I|+1. Then

the parameter space K admits a stratification

K =
⋃

I∈I

KI , K∅ = K −Wall (the nonsingular locus).

Here either KI = KI′ or KI∩KI′ = ∅ holds for any I, I ′ ∈ I. Those Dynkin diagrams

which are realized as DI for some I ∈ I are precisely the proper subdiagrams of D
(1)
4 ,

tabulated in Table 7. We are interested not only in the subdiagram DI but also in

the inclusion pattern DI ↪→ D
(1)
4 . Some typical patterns are illustrated in Table 8.

number of nodes 4 3 2 1 0

Dynkin diagram D4 A3 A2 A1 ∅

A⊕4
1 A⊕3

1 A⊕2
1 − −

Table 7. Dynkin types of singularities

Using the stratification in Definition 9.3, we can clearly describe all the possible

singularities.

Theorem 9.4(Classfication of Singularities). — For any I ∈ I −{∅} and any κ ∈ KI ,

the surface S(θ) with θ = rh(κ) has simple singularities of type DI .

In this situation the Riemann-Hilbert correspondence RHt,κ :Mt(κ)→ S(θ) gives

a minimal resolution of singularities (Theorem 4.12). Thus the exceptional divisor of

RHt,k, namely, the Riccati locusMr
t(κ) ⊂Mt(κ) has the dual graph of Dynkin type

DI . We give an example for which a singularity of D4-type occurs.

Example 9.5(Singularity of Type D4). — For θ = (8, 8, 8, 28) the cubic surface S(θ)

has a simple singularity of type D4. If κ is a W (D
(1)
4 )-translate of (0, 0, 0, 0, 1), then

one has rh(κ) = θ and the (t, κ)-Riemann-Hilbert correspondence RHt,κ : Mt(κ) →
S(θ) gives a minimal resolution of singularity as in Figure 16. In this case we have

the Riccati locus of type D4,

Mr
t(κ) = e0 ∪ e1 ∪ e2 ∪ e3. (46)

9.2. A Complete Picture of Riccati Solutions. — As is mentioned in §5.5,

Saito and Terajima [68] established the relation between (−2)-curves and Riccati

solutions; this is an event on the Painlevé equation side. On the other hand, on the

cubic surface side, Iwasaki [33, 34] pointed out that the singular points on S(θ) are

precisely the fixed points of the Γ (2)-action. Then Inaba, Iwasaki and Saito [29] added

one more piece, namely, the aspect of resolution of singularities by Riemann-Hilbert
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1 2

3 4

0

1 2

3 4

0

D4 : I = {0, 1, 2, 3} A⊕4
1 : I = {1, 2, 3, 4}

1 2

3 4

0

1 2

3 4

0

A3 : I = {0, 1, 2} A⊕3
1 : I = {1, 2, 3}

1 2

3 4

0

1 2

3 4

0

A2 : I = {0, 1} A⊕2
1 : I = {1, 2}

1 2

3 4

0

1 2

3 4

0

A1 : I = {0} A1 : I = {1}

Table 8. Examples of strata

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



154 M. INABA, K. IWASAKI & M.-H. SAITO

e0

e1

e2

e3

moduli space cubic surface

RHt,κ

resolution of

singularity

S(θ)

Mt(κ)

D4

p1

p2

p3

Figure 16. A singularity of type D4 for κ = (0, 0, 0, 0, 1) and θ = (8, 8, 8, 28)

correspondence, which throws a bridge between the previous two aspects. Combining

all these three, we are now able to get a full picture of Riccati solutions.

Theorem 9.6(A Complete Picture). — Let (t, κ) ∈ T ×Wall and put θ = rh(κ) ∈ Θ.

(1) The germs at t of Riccati solutions to PVI(κ) are in one-to-one correspondence

with the points on the (−2)-curves on the moduli space Mt(κ).

(2) Each (−2)-curve on the moduli space Mt(κ) is sent to a singular point on the

cubic surface S(θ) by the Riemann-Hilbert correspondence RHt,κ : Mt(κ) →
S(θ).

(3) Conversely, any (−2)-curve on the moduli spaceMt(κ) arises as an irreducible

component of the exceptional divisor of the minimal resolution of singularities

RHt,κ :Mt(κ)→ S(θ).

(4) The singular points on S(θ) are exactly the fixed points of the Γ (2)-action on

S(θ).

(5) The singular points on S(θ), as well as the (−2)-curves on Mt(κ), are com-

pletely classified as in Theorem 9.4.

Theorem 9.6 is visualized as in Figure 17. The following is a simple application.

Corollary 9.7(Single-Valued Solutions). — Any single-valued solution to PVI is a Ric-

cati solution and moreover it is a rational solution.

Proof. — The proof is very easy by now. Not a Riccati solution implies not a fixed

point, implies not a single-valued solution, since the Riemann-Hilbert correspondence

is one-to-one outside the Riccati locus. Hence any single-valued solution must be

Riccati. Now recall that a Riccati solution is a logarithmic derivative of a hypergeo-

metric function (see Theorem 5.15). Such a function of regular singular type can be

single-valued only if it is a rational function. The proof is complete.
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Riccati solutions of PVI

Singular points of

cubic surface

(−2)-curves on moduli space Fixed points of Γ (2)-action

resolution of singularity

Painlevé side Cubic surface sideRH

Figure 17. A complete picture of Riccati solutions

The rational solutions to PVI were classified by Mazzocco [48].

Example 9.8(Some Rational Solutions). — In Example 9.5 any solution on the (−2)-

curve e0 is rational. Indeed, any half-monodromy α preserves the Riccati configuration

(46) and hence induces an automorphism (a Möbius transformation) β of e0 ' P
1

which just permutes the three points p1, p2, p3 in Figure 16. If α is a full-monodromy,

then the corresponding β fixes each of p1, p2, p3 and hence is identity on e0. This

means that any solution on e0 is single-valued. By Corollary 9.7 it is a rational

solution.

We refer to Lukashevich and Yablonski [43], Fokas and Ablowitz [15], Okamoto

[63], Watanabe [79], Gromak, Laine and Shimomura [22] and the references therein

for explicit calculations of Riccati solutions.

Having established a complete picture of Riccati solutions, especially of their con-

nection with Klein sigularities, we shall revisit the nonlinear monodromy of PVI dis-

cussed in §8. For any κ ∈ K−Wall, Theorem 8.4 completely describes the nonlinear

monodromy of PVI(κ), since PVI(κ) has no Riccati locus. We now deal with the case

where κ ∈Wall. While the Riemann-Hilbert correspondence RHt,κ :Mt(κ)→ S(θ)

with θ = rh(κ) is an analytic minimal resolution of singularities, there exists such a

standard algebraic minimal resolution S̃(θ)→ S(θ) that was constructed by Brieskorn

[8] for Klein singularities. By the minimality, the Riemann-Hilbert correspondence

lifts up to a biholomorphism

RHt,κ :Mt(κ)→ S̃(θ), (47)

and the action of Γ (2) on S(θ) can also be lifted to S̃(θ) uniquely. Combining these

facts with Theorem 8.4, we have the following theorem.
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Theorem 9.9(Nonlinear Monodromy Revisited). — For any κ ∈ Wall, put θ =

rh(κ) ∈ Θ. Then the nonlinear monodromy of PVI(κ) is faithfully represented by the

Γ (2)-action lifted on S̃(θ).

An even more complete picture is obtained if one settles the following problem.

Problem 9.10(A Moduli Problem) . — Construct S̃(θ) as a moduli space of mon-

odromy representations with “parabolic structures” and set up the Riemann-Hilbert

correspondence (47) directly without passing through the resolutions of singularities.

10. Canonical Coordinates

The moduli spaceM(κ) admits a natural canonical coordinate system whose local

charts are laveled by the affine Weyl groupW (D
(1)
4 ). In this section we shall construct

such coordinates and write down the Painlevé dynamics explicitly in terms of them.

The principle of producing canonical coordinates is the Wronskian construction that

converts a stable parabolic connection to a second-order single Fuchsian differntial

equation. In this section we mean by T the configuration space of distinct ordered

three points in C as in (32) upon putting t4 =∞; hence

t = (t1, t2, t3) = (t1, t2, t3,∞) ∈ T.

10.1. Space of Fuchsian Equations. — We start with spaces of Fuchsian equa-

tions from which local coordinates are to be extracted.

Definition 10.1(Fuchsian Equations). — For any κ ∈ K, let E(κ) be the set of all

second-order Fuchsian differential equations of the form

d2f

dz2
− v1(z)

df

dz
+ v2(z)f = 0, (48)

with four regular singular points t = (t1, t2, t3, t4) ∈ T and an apparent singular point

q, having Riemann scheme as in Table 9, where κ is fixed while t and q may vary in

such a manner that q does not meet any of t1, t2, t3, t4.

singularity t1 t2 t3 t4 =∞ q

first exponent 0 0 0 κ0 0

second exponent κ1 κ2 κ3 κ4 + κ0 2

Table 9. Riemann Scheme

The affine linear relation 2κ0+κ1+κ2+κ3+κ4 = 1 in (2) is exactly Fuchs’ relation

for Fuchsian differential equation (48). The classical Fuchs-Frobenius method in the
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theory of Fuchsian differential equations allows us to determine the coefficients v1(z)

and v2(z) as

v1(z) =
1

z − q +

3∑

i=1

κi − 1

z − ti
, v2(z) =

p

z − q +

3∑

i=1

Hi(κ)

z − ti
. (49)

The condition that q is apparent with exponents 0 and 2 implies that Hi(κ) =

Hi(q, p, t;κ) is a function of (q, p, t, κ). This function, called the i-th Hamiltonian,

is explicitly determined as follows.

Lemma 10.2(Hamiltonians). — The i-th Hamiltonian Hi(κ) = Hi(q, p, t;κ) is given

by

(tijtik)Hi(κ) = (qiqjqk)p2 − {(κi − 1)qjqk + κjqkqi + κkqiqj}p+ κ0(κ0 + κ4)qi, (50)

with {i, j, k} = {1, 2, 3}, where qi := q − ti and tij := ti − tj.

Remark 10.3(Polynomial Hamiltonians). — Note that Hamiltonians (50) are polyno-

mials of (q, p). This is because one exponent at each finite singular point, t1, t2, t3,

q, is zero in the Riemann scheme of Table 9. We call (50) polynomial Hamiltonians

(see Okamoto [60, 61]).

Formulas (49) and (50) tell us that for a fixed κ, the Fuchsian equation (48) is

determined uniquely by the data (q, p, t). Thus the following definition is natural.

Definition 10.4(Canonical Coordinates). — The set E(κ) is identified with the affine

variety

U = { (q, p, t) ∈ Cq × Cp × C
3
t : q 6= ti, ti 6= tj for i 6= j }, (51)

having coordinates (q, p, t), on which the fundamental 2-form is defined by

ΩE(κ) = dq ∧ dp−
3∑

i=1

dHi(q, p;κ) ∧ dti (52)

10.2. Wronskian Construction. — First we shall define the concept of apparent

singular point of a stable parabolic connection. Let Q = (E,∇, ψ, l) ∈ M(κ) be any

stable parabolic connection. By the stability of Q, we can show that there exists a

unique line subbundle F ⊂ E of maximal degree. The line bundle F is called the

maximal subbundle of E and the quotient bundle L = E/F is called the minimal

quotient bundle of E. Note that F and L are of degrees 0 and −1, respectively. Let

π : E → L = E/F (53)

be the canonical projection. We see that the composite u : F → L ⊗ Ω1
P1(Dt) of the

sequence

F
inclusion−−−−−→ E

∇−−−−→ E ⊗ Ω1
P1(Dt)

π⊗1−−−−→ L⊗ Ω1
P1(Dt)

is an OP1 -homomorphism and gives a holomorphic section of the line bundle

Hom(F,L) ⊗ Ω1
P1(Dt), where t ∈ T is the regular singular points of Q. Then
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the stability of Q implies that u is a nontrivial section. Since the line bundle

Hom(F,L) ⊗ Ω1
P1(Dt) is of degree one, the nontrivial section u has a unique simple

zero q. Since the construction so far is canonical, the point q = q(Q) ∈ P1 is uniquely

determined by Q ∈ M(κ). Hence we have a well-defined morphism

q :M(κ)→ P
1, Q 7→ q = q(Q). (54)

Definition 10.5(Apparent Singular Point). — The point q = q(Q) ∈ P1 in (54) is

called the apparent singular point of the stable parabolic connection Q ∈M(κ).

Using the morphism (54), we can consider the locus Mid(κ) ⊂ M(κ) where the

apparent singular point q does not meet any regular singular point ti, i = 1, 2, 3, 4:

Mid(κ) = {Q ∈ M(κ) : q(Q) 6= ti(Q) (i = 1, 2, 3, 4) },
where ti = ti(Q) denotes the i-th regular singular point of Q.

Next we proceed to the Wronskian construction that recast each stable parabolic

connection in Mid(κ) to a Fuchsian differential equation in E(κ). Given a stable

parabolic connection Q = (E,∇, ψ, l) ∈M(κ), we consider the locally constant sheaf

L′ = Ker
[
∇|P1−Dt

: E|P1−Dt
→ E|P1−Dt

⊗ Ω1
P1−Dt

]

of ∇-horizontal sections on P1 − Dt. By the stability of Q we can show that the

canonical projection π in (53) induces an isomorphism of locally constant sheaves on

P1 −Dt,

π : L′ → π(L′) ⊂ L|P1−Dt

On the other hand, since the line bundle L−1 is of degree one, there exists a unique

connection δ : L−1 → L−1⊗Ω1
P1(Dt) whose residue at each singular point is given by

Resti
(δ) =

{
−λi (i = 1, 2, 3),

λ1 + λ2 + λ3 − 1 (i = 4),

where λi is given by (7) in terms of κi. Let L′′ be the locally constant sheaf

L′′ = Ker
[
δ|P1−Dt

: L−1|P1−Dt
→ L−1|P1−Dt

⊗ Ω1
P1−Dt

]
⊂ L−1|P1−Dt

.

of δ-horizontal sections on P1 − Dt. Tensoring π(L′) with L′′, we have a locally

constant sheaf

LQ = π(L′)⊗ L′′ ⊂ OP1−Dt
, (55)

canonically associated to the stable parabolic connection Q ∈M(κ) (see Remark 10.7

for the meaning of the tensoring with L′′). The construction so far is valid for any

Q ∈M(κ), but we have to put Q in Mid(κ) to obtain the following theorem.

Theorem 10.6(Wronskian Isomorphism). — For a stable parabolic connection Q ∈
Mid(κ), with singular points at t ∈ T , we consider the second-order, single, monic

differential equation on P1 −Dt whose solution sheaf is given by the locally constant

sheaf LQ in (55). Then it is exactly such a Fuchsian differential equation that is
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formulated in Definition 10.1 with apparent singular point at q = q(Q) given by (54).

Therefore there exists a well-defined morphism

Φκ :Mid(κ)→ E(κ). (56)

This morphism becomes an isomorphism.

Combined with the identification E(κ) ' U in Definition 10.4, where the set U is

defined by (51), the isomorphism (56) yields a local coordinate mapping

Ψκ :Mid(κ)→ U, Q 7→ (q, p, t). (57)

At the end of this subsection we emphasize that stability has been used many times

in the Wronskian construction. Lastly the following technical remark may be helpful.

Remark 10.7(Shift of Exponents). — The essential factor in (55) is the rank-two local

system π(L′), which is tensored with the rank-one local system L′′ just for shifting

the exponents. By the tensoring with L′′, the exponents in Table 3 are shifted to

those in Table 9 by the vector (λ1, λ2, λ3, 1− λ1 − λ2 − λ3) at t = (t1, t2, t3, t4). This

process is needed to obtain polynomial Hamiltonians as in (50) (see Remark 10.3).

10.3. Canonical Coordinate System. — Combined with Bäcklund transforma-

tions, Theorem 10.6 produces a canonical coordinate system on the moduli space

M(κ). To see this, for each σ ∈W (D
(1)
4 ), consider the open subset

Mσ(κ) = s−1
σ (Mid(σ(κ))) ⊂M(κ),

where sσ :M(κ)→M(σ(κ)) is the Bäcklund transformation corresponding to σ (see

Figure 12). Then there exists an open covering of the moduli spaceM(κ),

M(κ) =
⋃

σ∈W (D
(1)
4 )

Mσ(κ)

On each open subset Mσ(κ) we have an isomorphism

Φσ
κ :Mσ(κ)→ E(σ(κ)), (58)

defined as the composite of the sequence of isomorphisms

Mσ(κ)
sσ−−−−→ Mid(σ(κ))

Φσ(κ)−−−−→ E(σ(κ)).

To see that (58) is a Poisson isomorphism, we make use of the following theorem.

Theorem 10.8(Pull-Back Principle). — Let κ ∈ K and put a = rh(κ) ∈ A. We define

the local Riemann-Hilbert correspondence RHσ
κ : E(σ(κ)) →R(a) as the composite of

the sequence

E(σ(κ))
(Φσ

κ)−1

−−−−−→ Mσ(κ) ↪→M(κ)
RHκ−−−−→ R(a).

Then the fundamental 2-form ΩE(σ(κ)) on E(σ(κ)) is the pull-back of ΩR(a) by RHσ
κ,

ΩE(σ(κ)) = (RHσ
κ)∗ΩR(a).
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This theorem is due to Iwasaki [32], where the map RHσ
κ is defined(8) directly

without passing through the moduli space M(κ). Hence we have the commutative

diagram

Mσ(κ)
inclusion−−−−−→ M(κ)

Φσ
κ

y
yRHκ

E(σ(κ)) −−−−→
RHσ

κ

R(a),

where RHκ is Poisson by Theorem 5.10 while RHσ
κ is also Poisson by Theorem 10.8

respectively. Therefore Φσ
κ becomes a Poisson isomorphism as desired.

Definition 10.9(Canonical Coordinate System). — By the same procedure as in (57)

the Poisson isomorphisms (58) induce local coordinate mappings

Ψσ
κ :Mσ(κ)→ Uσ, Q 7→ (qσ, pσ, t) (σ ∈W (D

(1)
4 )), (59)

where Uσ is a copy of U endowed with the coordinates (qσ, pσ, t). Note that we have

Ψσ
κ = Ψσ(κ) ◦ sσ with Ψκ given by (57). The collection of maps (59) is referred to as

the canonical coordinate system on the moduli spaceM(κ).

We are now in a position to derive a Hamiltonian system of differential equations

for PVI(κ) on each local chartMσ(κ) ' Uσ based on the idea in Remark 2.6.

Theorem 10.10(Hamiltonian System). — In terms of the canonical coordinates

(qσ, pσ, t) on Mσ(κ) ' Uσ, the Painlevé flow PVI(κ) is expressed as the Hamil-

tonian system Hσ
VI(κ) of differential equations,

∂qσ
∂ti

=
∂Hi(σ(κ))

∂pσ

,
∂pσ

∂ti
= −∂Hi(σ(κ))

∂qσ
, (60)

with Hamiltonians Hi(σ(κ)) = Hi(qσ, pσ, t;σ(κ)) where Hi(q, p, t;κ) is given

by (50).

Proof. — The Painlevé flow PVI(κ) is characterized by the condition that ιvΩM(κ) =

0 for every FPVI(κ)-horizontal vector field v. Since (58) is a Poisson isomorphism, this

condition is equivalent to ιvΩE(σ(κ)) = 0, from which system (60) readily follows.

Remark 10.11(Malmquist Expression). — Malmquist [45] obtained a Hamiltonian

expression for PVI as early as 1923. Our expression (60) is just a symmetric form

of his expression that can be reduced to his original by the symplectic reduction in

Remark 2.13. Malmquist’s expression was rediscovered by Okamoto [60, 61, 62]

in the isomonodromic context. Deriving Hamiltonian systems as in (60) by the

pull-back principle in Theorem 10.8 is due to Iwasaki [32], where he works on a

Riemann surface of arbitrary genus.

(8)To be more precise, it is formulated only for σ = id, but the modification for a general σ is obvious.
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Theorem 10.12(Analytic Painlevé Property). — For any κ ∈ K and σ ∈ W (D
(1)
4 ) the

Hamiltonian system Hσ
VI(κ) has analytic Painlevé property.

This theorem immediately follows from the geometric Painlevé property of the

Painlevé flow FPVI(κ) (see Theorem 5.12) and the algebraicity of the phase space

M(κ) (see Remark 2.8).

Theorem 10.13(Basic Bäcklund Transformations). — In terms of canonical coordi-

nate charts in (57),

Mid(κ) ' U 'Mid(σi(κ)) (i = 0, 1, 2, 3, 4),

the i-th basic Bäcklund transformation si is expressed as the birational canonical trans-

formation

si(κj) = κj − κi cij , si(tj) = tj , si(qj) = qj +
κi

qi
uij . (61)

where C = (cij) is the Cartan matrix of type D
(1)
4 (see Figure 7) and

qi =

{
p (i = 0),

q − ti (i = 1, 2, 3, 4),
uij = {qi, qj} =

∂qi
∂p

∂qj
∂q
− ∂qi
∂q

∂qj
∂p

.

As is mentioned after Theorem 7.4, it is not so straightforward to derive the formula

(61) for s0 from our definition of Bäcklund transformations in Definition 7.2. Our

strategy is the coalescence of regular singular points along isomonodromic flow; see

Inaba, Iwasaki and Saito [28].

Such coordinate expressions as in (60) and (61) have been the starting point of

the traditional story. The other way round, in our story, we end up with coordinate

expressions as concrete realizations of the abstract dynamical system PVI that is

defined conceptually.

Remark 10.14(Gluing by Bäcklund Transformations). — The moduli space M(κ) is

made up of local charts glued by Bäcklund transformations. Indeed it is clear from

Definition 10.9 that for σ, σ′ ∈W (D
(1)
4 ) the transition function fromMσ(κ) ' Uσ to

Mσ′

(κ) ' Uσ′ is just the Bäcklund transformation sσ′σ−1 = sσ′s−1
σ . Noumi, Takano

and Yamada [57] showed that their “manifold of Painlevé system”can be constructed

in this way. Their empirical observation is trivial from our point of view, or even

from the meta-physics: the phase space of a dynamical system should be made up of

inertial coordinates glued together by symmetries of the system.

The construction of moduli spaces and that of canonical coordinates lead to the

following remark.

Remark 10.15(Systems or Single Equations?). — In doing isomonodromic deforma-

tions, some people work with first-order linear systems as in (11), while others work

with second-order single equations as in (48). We may ask which approach is better.

The answer is that both are important and necessary. Systems are sophisticated
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to stable parabolic connections and are used to construct the phase space of the

Painlevé dynamical system, while single equations are used to construct canonical

coordinates of the phase space that make it possible to get a concrete realization of

the dynamics. Therefore both are important and necessary.

11. Summary

In this article we have observed the natural manner in which the continuous Hamil-

tonian system PVI induces two discrete Hamiltonian systems:

(1) Bäcklund transformations as convering transformations of the Riemann-

Hilbert correspondence. They describe the symmetries of PVI.

(2) Poincaré return maps (or the nonlinear monodromy). Through the

Riemann-Hilbert correspondence, they are realized as an area-preserving ac-

tion of the modular group on smooth affine cubic surfaces, or on the minimal

desingularizations of singular affine cubic surfaces. They describe the global

structures, especially the multi-valuedness, of the trajectories of PVI.

Here we recall that the geometric Painlevé property is needed in order for the Poincaré

return maps to be well-defined. In this respect we have shown by the conjugacy

method that

(3) the geometric Painlevé property of the Painlevé flow follows from that of

the isomonodromic flow, which holds trivially, through the Riemann-Hilbert

correspondence.

As to the Riccati component of PVI comprising the classical torajectories that can be

linearized in terms of Gauss hypergeometric equations, we have given

(4) a complete picture of Riccati solutions in terms of resolutions of singu-

larities by the Riemann-Hilbert correspondence.

Concerning the concrete realization of the Painlevé dynamics, we have constructed

(5) a canonical coordinate system via the Wronskian construction, in terms of

which Hamiltonian systems and Bäcklund transformations are written down

explicitly. The nonlinear monodromy is also made explicit in terms of cubic

surfaces as in item (2).

We started the main body of this article with the Guiding Diagram in Figure 3.

We wish to close the article with the Concluding Diagram in Figure 18. Located in

the central position of the diagram, as well as of the development of our story, is the

Riemann-Hilbert correspondence

RHκ : (M(κ),ΩM(κ))→ (R(a),ΩR(a))

in the precise moduli-theoretical setting. The Painlevé dynamics encoded in this

abstract object is concretized on both sides of the diagram: Hamiltonian systems and
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(Mσ(κ), ΩM(κ))
inclusion−−−−−→ (M(κ), ΩM(κ))

Φσ
κ

y
yRHκ

(E(σ(κ)), ΩE(σ(κ))) −−−−→
RHσ

κ

(R(a), ΩR(a))
inclusion←−−−−− (Rt(a), ΩRt(a))

yi

[
σ ∈ W (D

(1)
4 )

]
(S(θ), ωθ)

Figure 18. Concluding Diagram: bold-faced are concrete objects

Bäcklund transformations on the left-hand side, while nonlinear monodromy on the

right-hand side, respectively.
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[12] P. Deligne – Équations différentielles à points singuliers réguliers, Lecture Notes in
Math., vol. 163, Springer-Verlag, Berlin, 1970.

[13] A. Douady & J. H. Hubbard – Itération des polynômes quadratiques complexes,
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VI equation, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, p. 131–135.

[34] , An area-preserving action of the modular group on cubic surfaces and the
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Aspects of Mathematics, E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.

[36] M. Jimbo – Monodromy problem and the boundary condition for some Painlevé equa-
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J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), no. 3, p. 575–618.
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[71] L. Schlesinger – Über eine Klasse von Differentialsystemen beliebiger Ordnung mit
festen kritischen Punkten, J. Reine Angew. Math. 141 (1912), p. 96–145.
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