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SIX RESULTS ON PAINLEVÉ VI

by

Philip Boalch

Abstract. — After recalling some of the geometry of the sixth Painlevé equation,
we describe how the Okamoto symmetries arise naturally from symmetries of
Schlesinger’s equations and summarise the classification of the Platonic Painlevé six
solutions.

Résumé(Six résultats sur Painlevé VI). — Après quelques rappels sur la géométrie de
la sixième équation de Painlevé, nous expliquons comment les symétries d’Okamoto
résultent de façon naturelle des symétries des équations de Schlesinger et comment
elles conduisent à la classification des solutions platoniques de la sixième équation de
Painlevé.

1. Background

The Painlevé VI equation is a second order nonlinear differential equation which

governs the isomonodromic deformations of linear systems of Fuchsian differential

equations of the form

(1)
d

dz
−

(
A1

z
+

A2

z − t
+

A3

z − 1

)
, Ai ∈ g := sl2(C)

as the second pole position t varies in B := P1\{0, 1,∞}. (The general case —varying

all four pole positions— reduces to this case using automorphisms of P1.)

By ‘isomonodromic deformation’ one means that as t varies the linear monodromy

representation

ρ : π1(P
1 \ {0, t, 1,∞})→ SL2(C)

of (1) does not change (up to overall conjugation). Of course, this is not quite well-

defined since as t varies one is taking fundamental groups of different four-punctured
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2 P. BOALCH

spheres, and it is crucial to understand this in order to understand the global be-

haviour (nonlinear monodromy) of Painlevé VI solutions. For small changes of t there

are canonical isomorphisms between the fundamental groups: if t1, t2 are in some disk

∆ ⊂ B in the three-punctured sphere then one has a canonical isomorphism

π1(P
1 \ {0, t1, 1,∞}) ∼= π1(P

1 \ {0, t2, 1,∞})
coming from the homotopy equivalences

P
1 \ {0, t1, 1,∞} ↪→ {(t, z) ∈ ∆× P

1
∣∣z 6= 0, t, 1,∞}←↩ P

1 \ {0, t2, 1,∞}.
(Here we view the central space as a family of four-punctured spheres parameterised

by t ∈ ∆ and are simply saying that it contracts onto any of its fibres.)

In turn, by taking the space of such ρ’s, i.e., the space of conjugacy classes of SL2(C)

representations of the above fundamental groups, one obtains canonical isomorphisms:

Hom(π1(P
1 \ {0, t1, 1,∞}), G)/G ∼= Hom(π1(P

1 \ {0, t2, 1,∞}), G)/G

where G = SL2(C). Geometrically this says that the spaces of representations

M̃t := Hom(π1(P
1 \ {0, t, 1,∞}), G)/G

constitute a ‘local system of varieties’ parameterised by t ∈ B. In other words, the

natural fibration

M̃ := {(t, ρ)
∣∣ t ∈ B, ρ ∈ M̃t }−→B

over B (whose fibre over t is M̃t) has a natural flat (Ehresmann) connection on it.

Moreover, this connection is complete: over any disk in B any two fibres have a

canonical identification.

To get from here to Painlevé VI (PVI) one pulls back the connection on the fibre

bundle M̃ along the Riemann–Hilbert map and writes down the resulting connection

in certain coordinates. Consequently we see immediately that the monodromy of

PVI solutions corresponds (under the Riemann–Hilbert map) to the monodromy of

the connection on the fibre bundle M̃ . However, since this connection is flat and

complete, its monodromy is given by the action of the fundamental group of the base

π1(B) ∼= F2 (the free group on 2 generators) on a fibre M̃t ⊂ M̃ , which can easily be

written down explicitly.

Before describing this in more detail let us first restrict to linear representations ρ

having local monodromies in fixed conjugacy classes:

Mt := {ρ ∈ M̃t

∣∣ ρ(γi) ∈ Ci, i = 1, 2, 3, 4} ⊂ M̃t

where Ci ⊂ G are four chosen conjugacy classes, and γi is a simple positive loop

in P1 \ {0, t, 1,∞} around ai, where (a1, a2, a3, a4) = (0, t, 1,∞) are the four pole

positions. (By convention we assume the loop γ4 · · · γ1 is contractible, and note that

Mt is two-dimensional in general.) The connection on M̃ restricts to a (complete flat

Ehresmann) connection on the fibration

M := {(t, ρ)
∣∣ t ∈ B, ρ ∈Mt } → B
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SIX RESULTS ON PAINLEVÉ VI 3

whose fibre over t ∈ B is Mt. The action of F2 = π1(B) on the fibre Mt (giving

the monodromy of the connection on the bundle M and thus the monodromy of

the corresponding PVI solution) is given explicitly as follows. Let w1, w2 denote the

generators of F2, thought of as simple positive loops in B based at 1/2 encircling 0

(resp. 1) once. Then, wi acts on ρ ∈ Mt as the square of ωi where ωi acts by fixing

Mj for j 6= i, i + 1, (1 6 j 6 4) and

(2) ωi(Mi, Mi+1) = (Mi+1, Mi+1MiM
−1
i+1)

where Mj = ρ(γj) ∈ G is the jth monodromy matrix. Indeed, F2 can naturally be

identified with the pure mapping class group of the four-punctured sphere and this

action comes from its natural action (by push-forward of loops) as outer automor-

phisms of π1(P
1 \ {0, t, 1,∞}), cf. [5]. (The geometric origins of this action in the

context of isomonodromy can be traced back at least to Malgrange’s work [28] on the

global properties of the Schlesinger equations.)

On the other side of the Riemann–Hilbert correspondence we may choose some

adjoint orbits Oi ⊂ g := sl2(C) such that

exp(2π
√
−1Oi) = Ci

and construct the space of residues:

O := O1 × · · · × O4//G =
{

(A1, . . . A4) ∈ O1 × · · · × O4

∣∣ ∑
Ai = 0

}
/G

where, on the right-hand side, G is acting by diagonal conjugation: g · (A1, . . . A4) =

(gA1g
−1, . . . , gA4g

−1). This space O is also two-dimensional in general. To construct

a Fuchsian system (1) out of such a four-tuple of residues one must also choose a value

of t, so the total space of linear connections we are interested in is:

M∗ := O ×B

and we think of a point (A, t) ∈ M∗, where A = (A1, . . . , A4), as representing the

linear connection

∇ = d−Adz, where A =

3∑

1

Ai

z − ai
, (a1, a2, a3, a4) = (0, t, 1,∞)

or equivalently the Fuchsian system (1).

If we think of M∗ as being a (trivial) fibre bundle over B with fibre O then,

provided the residues are sufficiently generic (e.g., if no eigenvalues differ by positive

integers), the Riemann–Hilbert map (taking linear connections to their monodromy

representations) gives a bundle map

ν :M∗ →M.

Written like this the Riemann–Hilbert map ν is a holomorphic map (which is in fact

injective if the eigenvalues are also nonzero cf. e.g., [25, Proposition 2.5] ). We may
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4 P. BOALCH

then pull-back (restrict) the nonlinear connection on M to give a nonlinear connection

on the bundle M∗, which we will refer to as the isomonodromy connection.

The remarkable fact is that even though the Riemann–Hilbert map is transcenden-

tal, the connection one obtains in this way is algebraic. Indeed Schlesinger [31] showed

that locally horizontal sections A(t) : B →M∗ are given (up to overall conjugation)

by solutions to the Schlesinger equations:

(3)
dA1

dt
=

[A2, A1]

t
,

dA2

dt
=

[A1, A2]

t
+

[A3, A2]

t− 1
,

dA3

dt
=

[A2, A3]

t− 1

which are (nonlinear) algebraic differential equations.

To get from the Schlesinger equations to PVI one proceeds as follows (cf. [24,

Appendix C]). Label the eigenvalues of Ai by ±θi/2 (thus choosing an order of the

eigenvalues or equivalently, if the reader prefers, a quasi-parabolic structure at each

singularity), and suppose A4 is diagonalisable. Conjugate the system so that

A4 = −(A1 + A2 + A3) = diag(θ4,−θ4)/2

and note that Schlesinger’s equations preserve A4. Since the top-right matrix entry

of A4 is zero, the top-right matrix entry of

(4) z(z − 1)(z − t)

3∑

1

Ai

z − ai

is a degree one polynomial in z. Define y(t) to be the position of its unique zero on

the complex z line.

Theorem -1(see[24]). — If A(t) satisfies the Schlesinger equations then y(t) satisfies

PVI:

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

) (
dy

dt

)2

−
(

1

t
+

1

t− 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)

2 t2(t− 1)2

(
(θ4 − 1)2 − θ2

1 t

y2
+

θ2
3(t− 1)

(y − 1)2
+

(1− θ2
2)t(t− 1)

(y − t)2

)
.

Phrased differently, for each fixed t, the prescription above defines a function y on

O, which makes up half of a system of (canonical) coordinates, defined on a dense

open subset. A conjugate coordinate x can be explicitly defined and one can write the

isomonodromy connection explicitly in the coordinates x, y on O to obtain a coupled

system of first-order nonlinear equations for x(t), y(t) (see [24], where our x is denoted

z̃). Then, eliminating x yields the second order equation PVI for y. (One consequence

is that if y solves PVI there is a direct relation between x and the derivative y′, as in

equation (6) below.)

In the remainder of this article the main aims are to:

•1) Explain how Okamoto’s affine F4 Weyl group symmetries of PVI arise from

natural symmetries of Schlesinger equations, and
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SIX RESULTS ON PAINLEVÉ VI 5

•2) Describe the classification of the Platonic solutions to PVI (i.e., those solutions

having linear monodromy group equal to the symmetry group of a Platonic

solid).

The key step for •1) (which also led us to •2)) is to use a different realisation of PVI,

as controlling isomonodromic deformations of certain 3 × 3 Fuchsian systems. Note

that these results have been written down elsewhere, although the explicit formulae of

Remarks 6 and 7 are new and constitute a direct verification of the main results about

the 3×3 Fuchsian realisation. Note also that the construction of the Platonic solutions

has evolved rapidly recently (e.g., since the author’s talk in Angers and since the first

version of [13] appeared). For example, there are now simple explicit formulae for all

the Platonic solutions (something that we had not imagined was possible for a long

time(1)).

Remark 1. — Let us briefly mention some other possible directions that will not be

discussed further here. Firstly, by describing PVI in this way the author is trying

to emphasise that PVI is the explicit form of the simplest non-abelian Gauss–Manin

connection, in the sense of Simpson [34], thereby putting PVI in a very general context

(propounded further in [9, section 7], especially p. 192). For example, suppose we

replace the above family of four-punctured spheres (over B) by a family of projective

varieties X over a base S, and choose a complex reductive group G. Then (by the

same argument as above), one again has a local system of varieties

MB = Hom(π1(Xs), G)/G

over S and one can pull-back along the Riemann–Hilbert map to obtain a flat con-

nection on the corresponding family MDR of moduli spaces of connections. Simpson

proves this connection is again algebraic, and calls it the non-abelian Gauss–Manin

connection, since MB and MDR are two realisations of the first non-abelian cohomol-

ogy group H1(Xs, G), the Betti and De Rham realisations.

Also, much of the structure found in the regular (-singular) case may be generalised

to the irregular case. For example, as Jimbo–Miwa–Ueno [25] showed, one can also

consider isomonodromic deformations of (generic) irregular connections on a Riemann

surface and obtain explicit deformation equations in the case of P
1. This can also be

described in terms of nonlinear connections on moduli spaces and there are natural

symplectic structures on the moduli spaces which are preserved by the connections

[9, 7]. Perhaps most interestingly, one obtains extra deformation parameters in the

irregular case (one may vary the ‘irregular type’ of the linear connections as well as

the moduli of the punctured curve). These extra deformation parameters turn out to

be related to quantum Weyl groups [10].

(1)Mainly because the 18 branch genus one icosahedral solution of [18] took 10 pages to write down

and we knew quite early on that the largest icosahedral solution had genus seven and 72 branches.
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6 P. BOALCH

As another example, in the regular (-singular) case non-abelian Hodge theory [33]

gives a third “Dolbeault” realisation of H1(Xs, G) as a moduli space of Higgs bundles,

closely related to the existence of a hyperKähler structure on the moduli space. The

moduli spaces of (generic) irregular connections on curves may also be realised in

terms of Higgs bundles and admit hyperKähler metrics [4].

2. Affine Weyl group symmetries

If we subtract off y′′ = d2y
dt2 from the right-hand side of the PVI equation and

multiply through by t2(t− 1)2y(y − 1)(y − t) then we obtain a polynomial

P (t, y, y′, y′′, θ) ∈ C[t, y, y′, y′′, θ1, θ2, θ3, θ4]

where θ = (θ1, θ2, θ3, θ4) are the parameters.

Suppose Π is a Riemann surface equipped with a holomorphic map t : Π→ U onto

some open subset U ⊂ B := P1 \ {0, 1,∞}, with non-zero derivative (so t is always a

local isomorphism). (For example, one could take Π = U with t the inclusion, or take

Π to be the upper half-plane, and t the universal covering map onto U = B.) Then,

a meromorphic function y on Π will be said to be a solution to PVI if

(5) P (t, y, y′, y′′, θ) = 0

as functions on Π, for some choice of θ, where y′ = dy
dt , y′′ = d2y

dt2 are defined by using

t as a local parameter on Π. (With this t-dependence understood we will abbreviate

(5) as P (t, y, θ) = 0 below.) By definition, the finite branching solutions to PVI are

those with Π a finite cover of B, i.e., so that t is a Belyi map. Such Π admits a

natural compactification Π, on which t extends to a rational function. The solution

is “algebraic” if y is a rational function on Π. Given an algebraic solution (Π, y, t) we

will say the curve Π is “minimal”or is an“efficient parameterisation”if y generates the

function field of Π as an extension of C(t). The “degree” (or number of “branches”)

of an algebraic solution is the degree of the map t : Π → P1 (for Π minimal) and

the genus of the solution is the genus of the (minimal) curve Π. (The genus can

easily be computed in terms of the nonlinear monodromy of the PVI solution using

the Riemann–Hurwitz formula, i.e., in terms of the explicit F2 action above on the

linear monodromy data.)

Four symmetries of PVI (which we will label R1, . . . , R4) are immediate:

P (t, y, θ) = P (t, y,−θ1, θ2, θ3, θ4)(R1)

= P (t, y, θ1,−θ2, θ3, θ4)(R2)

= P (t, y, θ1, θ2,−θ3, θ4)(R3)

= P (t, y, θ1, θ2, θ3, 2− θ4)(R4)

since P only depends on the squares of θ1, θ2, θ3 and θ4 − 1.

Okamoto [30] proved there are also much less trivial symmetries:

SÉMINAIRES & CONGRÈS 14



SIX RESULTS ON PAINLEVÉ VI 7

Theorem 0. — If P (t, y, θ) = 0 then

P (t, y + δ/x, θ1 − δ, θ2 − δ, θ3 − δ, θ4 − δ) = 0(R5)

where δ =
∑4

1 θi/2 and

(6) 2x =
(t− 1) y′ − θ1

y
+

y′ − 1− θ2

y − t
− t y′ + θ3

y − 1
.

Remark 2. — This can be verified directly by a symbolic computation in differential

algebra. On actual solutions however it is not always well-defined since, for example,

one may have y = t (identically) or find x is identically zero. It seems one can avoid

these problems by assuming y is not a Riccati solution (cf. [35]). For example, if

one finds x = 0 then we see y solves a first order (Riccati) equation, so was a Riccati

solution. Moreover, the Riccati solutions are well understood and correspond to the

linear representations ρ which are either reducible or rigid, so little generality is lost.

Remark 3. — In terms of the symmetries s0, . . . , s4 of [29], R1, . . . R4 are s4, s0, s3, s1

respectively and R5 is conjugate to s2 via R1R2R3R4, where the parame-

ters α4, α0, α3, α1 of [29] are taken to be θ1, θ2, θ3, θ4 − 1 respectively, and

p = x +
∑3

1 θi/(y − ai).

A basic observation (of Okamoto) is that these five symmetries generate a group

isomorphic to the affine Weyl group of type D4. More precisely let ε1, . . . , ε4 be

an orthonormal basis of a Euclidean vector space VR with inner product ( , ) and

complexification V , and consider the following set of 24 unit vectors

D−

4 = {±εi, (±ε1 ± ε2 ± ε3 ± ε4)/2}.

This is a root system isomorphic to the standard D4 root system

D4 = {±εi ± εj(i < j)}

but with vectors of length 1 rather than
√

2. (Our main reference for root systems

etc. is [14]. One may identify D−

4 with the group of units of the Hurwitzian integral

quaternions [15], and then identify with D4 by multiplying by the quaternion 1 + i.)

Each root α ∈ D−

4 determines a coroot α∨ = 2α
(α,α) (= 2α here) as well as a hyperplane

Lα in V :

Lα := { v ∈ V
∣∣ (α, v) = 0 }.

In turn α determines an orthogonal reflection sα, the reflection in this hyperplane:

sα(v) = v − 2
(α, v)

(α, α)
α = v − (α∨, v)α.

The Weyl group W (D−

4 ) ⊂ O(V ) is the group generated by these reflections:

W (D−

4 ) = 〈 sα

∣∣ α ∈ D−

4 〉
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8 P. BOALCH

which is of order 192. Similarly the choice of a root α ∈ D−

4 and an integer k ∈ Z

determines an affine hyperplane Lα,k in V :

Lα,k := { v ∈ V
∣∣ (α, v) = k }

and the reflection sα,k in this hyperplane is an affine Euclidean transformation

sα,k(v) = sα(v) + kα∨.

The affine Weyl group Wa(D−

4 ) ⊂ Aff(V ) is the group generated by these reflec-

tions:

Wa(D−

4 ) = 〈 sα,k

∣∣ α ∈ D−

4 , k ∈ Z 〉
which is an infinite group isomorphic to the semi-direct product of W (D−

4 ) and the

coroot lattice Q((D−

4 )∨) (which is the lattice in V generated by the coroots α∨ ∈
(D−

4 )∨ = D+
4 = 2D−

4 ). By definition the connected components of the complement

in VR of all the (affine) reflection hyperplanes are the D−

4 alcoves. The closure A in

VR of any alcove A is a fundamental domain for the action of the affine Weyl group;

every Wa(D−

4 ) orbit in VR intersects A in precisely one point.

Now, if we write a point of V as
∑

θiεi (i.e., the parameters θi are being viewed as

coordinates on V with respect to the ε-basis) then, on V , the five symmetries above

correspond to the reflections in the five hyperplanes:

θ1 = 0, θ2 = 0, θ3 = 0, θ4 = 1,
∑

θi = 0.

The reflections in these hyperplanes generate Wa(D−

4 ) since the region:

θ1 < 0, θ2 < 0, θ3 < 0, θ4 < 1,
∑

θi > 0

that they bound in VR is an alcove. (With respect to the root ordering given by taking

the inner product with the vector 4ε4 −
∑3

1 εi, the roots −ε1,−ε2,−ε3,
∑

εi/2 are a

basis of positive roots of D−

4 , and the highest root is ε4, so by [14, p. 175] this is an

alcove.)

In fact, as Okamoto showed, the full symmetry group of PVI is the affine Weyl

group of type F4. (The F4 root system is the set of 48 vectors in the union of D4 and

D−

4 .) This is not surprising if one recalls that Wa(F4) is the normaliser of Wa(D−

4 )

in the group of affine transformations; Wa(F4) is the extension of Wa(D−

4 ) by the

symmetric group on four letters, S4 thought of as the automorphisms of the affine D4

Dynkin diagram (a central node with four satellites). This extension breaks into two

pieces corresponding to the exact sequence

1 −→ K4 −→ S4 −→ S3 −→ 1

where K4
∼= (Z/2)2 is the Klein four-group. On one hand the group of translations

is extended by a K4; the lattice Q(D+
4 ) is replaced by Q(F∨

4 ) = Q(D4). (In general

[14, p. 176] one replaces Q(R∨) by P (R∨) = Q(R)∗.) On the other hand the Weyl

group is extended by an S3, thought of as the automorphisms of the usual D4 Dynkin
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SIX RESULTS ON PAINLEVÉ VI 9

diagram; W (D−

4 ) is replaced by the full group of automorphisms A(D−

4 ) of the root

system, which in this case is equal to W (F4).

Likewise, the corresponding symmetries of PVI break into two pieces. First, one has

an S3 permuting θi (i = 1, 2, 3) generated, for example, by the symmetries (denoted

x1, x3 respectively in [30, p. 361]):

P (t, y, θ) = 0 =⇒ P (1− t, 1− y, θ3, θ2, θ1, θ4) = 0

P (t, y, θ) = 0 =⇒ P

(
t

t− 1
,
t− y

t− 1
, θ2, θ1, θ3, θ4

)
= 0.

We remark that Wa(D−

4 ) already contains transformations permuting θ by the

standard Klein four group (mapping θ to (θ3, θ4, θ1, θ2) etc.), and so we already ob-

tain all permutations of θ just by adding the above two symmetries.(2) To obtain

the desired K4 extension we refine the possible translations by adding the further

symmetry (denoted x2 in [30]):

P (t, y, θ) = 0 =⇒ P (1/t, 1/y, θ4 − 1, θ2, θ3, θ1 + 1) = 0.

Combined with x1, x3 this generates an S4 which may be thought of as permuting the

set of values of θ1, θ2, θ3, θ4 − 1. (Note that, modulo the permutations of θ, we now

have translations of the form θ 7→ (θ1 + 1, θ2, θ3, θ4 − 1), generating Q(D4).)

Remark 4. — One can also just extend by the K4 and get an intermediate group, often

called the extended Weyl group W ′

a(D−

4 ) = W (D−

4 )nP ((D−

4 )∨) which is normal in

Wa(F4) and is the maximal subgroup that does not change the time t in the above

action on PVI. The quotient group S3 should thus be thought of as the automorphisms

of P1 \ {0, 1,∞}.

Our aim in the rest of this section is to explain how these symmetries arise naturally

from symmetries of the Schlesinger equations. The immediate symmetries are:

• (twisted) Schlesinger transformations,

• negating the θi independently, and

• arbitrary permutations of the θi.

In more detail, the Schlesinger transformations (see [24]) are certain rational gauge

transformations which shift the eigenvalues of the residues by integers. Applying such

a transformation and then twisting by a logarithmic connection on the trivial line

bundle (to return the system to sl2) is a symmetry of the Schlesinger equations. (This

procedure of “twisting” clearly commutes with the flows of the Schlesinger equations:

in concrete terms it simply amounts to adding an expression of the form
∑3

1 ci/(z−ai),

for constant scalars ci, to the Fuchsian system (1). Recall (a1, a2, a3) = (0, t, 1).)

(2)For example, R5r1r3R5r2r4 produces the permutation written, where ri is the Okamoto trans-

formation negating θi —i.e., ri = Ri for i = 1, 2, 3 and r4 = R5(R1R2R3)R5(R1R2R3)R5.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



10 P. BOALCH

Secondly, the eigenvalues of the residues are only determined by the abstract Fuch-

sian system up to sign (i.e., one chooses an order of the eigenvalues of each residue to

define θi, and these choices can be swapped).

Finally, if we permute the labels a1, . . . , a4 of the singularities of the Fuchsian sys-

tem arbitrarily and then perform the (unique) automorphism of the sphere mapping

a1, a3, a4 to 0, 1,∞ respectively, we obtain another isomonodromic family of systems,

which can be conjugated to give another Schlesinger solution.

As an example, consider the case of negating θ4. Suppose we have a solution of

the Schlesinger equations A(t) for a given choice of θ and have normalised A4 as

required in Theorem -1 (this is where the sign choice is used). If we conjugate A by

the permutation matrix ( 0 1
1 0 ) we again get a solution of the Schlesinger equations,

and by Theorem -1 this yields a solution to PVI with parameters (θ1, θ2, θ3,−θ4). This

gives the corresponding Okamoto transformation in terms of Schlesinger symmetries.

(It is a good, if unenlightening, exercise to compute the explicit formula —in effect

computing the position of the zero of the bottom-left entry of (4) in terms of x, y— and

check it agrees with the action of the corresponding word in the given generators of

Wa(D−

4 ), although logically this verification is unnecessary since a) This is a symmetry

of PVI and b) Okamoto found all symmetries, and they are determined by their action

on {θ}.)
However, one easily sees that the group generated by these immediate symmetries

does not contain the transformation R5 of Theorem 0. To obtain this symmetry we

will recall (from [12]) how PVI also governs the isomonodromic deformations of certain

rank three Fuchsian systems and show that R5 arises from symmetries of the corre-

sponding Schlesinger equations (indeed it arises simply from the choice of ordering of

the eigenvalues at infinity). (Note that Noumi–Yamada [29] have also obtained this

symmetry from an isomonodromy viewpoint, but only in terms of an irregular (non-

Fuchsian) 8×8 system whose isomonodromy deformations, in a generalised sense, are

governed by PVI. Note also that Arinkin and Lysenko ([2, Corollary 2]) give a nice

explicit description of R5 as an isomorphism of the abstract varieties underlying the

(compactified) moduli spaces of linear connections.)

To this end, let V = C3 be a three-dimensional complex vector space and suppose

B1, B2, B3 ∈ End(V ) are rank one matrices. Let λi = Tr(Bi) and suppose that

B1 + B2 + B3 is diagonalisable with eigenvalues µ1, µ2, µ3, so that taking the trace

implies

(7)

3∑

1

λi =

3∑

1

µi.

Consider connections of the form

(8) ∇ = d− B̂dz, B̂(z) =
B1

z
+

B2

z − t
+

B3

z − 1
.

The fact is that the isomonodromic deformations of such connections are also gov-

erned by PVI (one might expect such a thing since the corresponding moduli spaces
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are again two-dimensional). One proof of this ([11]) is to show directly that the cor-

responding Schlesinger equations are equivalent to those arising in the original 2× 2

case (this may be done easily by writing out the isomonodromy connections explicitly

in terms of the coordinates on the spaces of residues given by the invariant functions,

and comparing the resulting nonlinear differential equations).

The second proof of this result directly gives the function that solves PVI; First

conjugate B1, B2, B3 by a single element of GL3(C) such that

B1 + B2 + B3 = diag(µ1, µ2, µ3).

(Note this uses the choice of ordering of eigenvalues of B1 + B2 + B3.) Consider the

polynomial defined to be the (2, 3) matrix entry of

(9) z(z − 1)(z − t)B̂(z).

By construction, this is a linear polynomial, so has a unique zero on the complex

plane. Define y = y23 to be the position of this zero.

Theorem 1([12, p. 201]). — If we vary t and evolve B̂ according to Schlesinger’s equa-

tions then y(t) satisfies the PVI equation with parameters

(10) θ1 = λ1 − µ1, θ2 = λ2 − µ1, θ3 = λ3 − µ1, θ4 = µ3 − µ2.

The proof given in [12] uses an extra symmetry of the corresponding Schlesinger

equations ([12, Proposition 16]) to pass to the 2 × 2 case. Note that [12] also gives

the explicit relation between the 2× 2 and 3× 3 linear monodromy data, not just the

relation between the Fuchsian systems.

Remark 5. — Apparently, ([16]), this procedure of [12] is essentially N. Katz’s

middle-convolution functor [26] in this context. For us it originated by considering

the effect of performing the Fourier–Laplace transformation, twisting by a flat line

bundle λdw/w and transforming back (reading [3] carefully to see what happens to

the connections and their monodromy). It is amusing that the middle-convolution

functor first arose through the l-adic Fourier transform, essentially in this way it

seems, and was then translated back into the complex analytic world, rather than

having been previously worked out directly.

If we now conjugate B̂(z) by an arbitrary 3× 3 permutation matrix (i.e., a matrix

which is zero except for precisely one 1 in each row and column), we obtain another

solution of the Schlesinger equations, but with the µi permuted accordingly. The

happy fact that this S3 transitively permutes the six off-diagonal entries yields:

Corollary. — Let (i, j, k) be some permutation of (1, 2, 3). Then, the position yjk of

the zero of the (j, k) matrix entry of (9) satisfies PVI with parameters

(11) θ1 = λ1 − µi, θ2 = λ2 − µi, θ3 = λ3 − µi, θ4 = µk − µj .
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12 P. BOALCH

Proof. — Conjugate by the corresponding permutation matrix and apply Theo-

rem 1.

For example, the permutation swapping µ2 and µ3 thus amounts to negating θ4

(indeed one may view the original 2× 2 picture as embedded in this 3× 3 picture as

the bottom-right 2×2 submatrices, at least after twisting by a logarithmic connection

on a line bundle to make A1, A2, A3 rank one matrices).

More interestingly, let us compute the action on the θ parameters of the permuta-

tion swapping µ1 and µ3:

θ = (λ1 − µ1, λ2 − µ1, λ3 − µ1, µ3 − µ2),

θ′ = (λ1 − µ3, λ2 − µ3, λ3 − µ3, µ1 − µ2).

Thus θ′i = θi − δ with δ = µ3 − µ1. However, using the relation (7) we find

4∑

1

θi =
3∑

1

λi − 3µ1 + µ3 − µ2 = 2(µ3 − µ1)

so that δ =
∑4

1 θi/2 as required for R5. This leads to:

Theorem 2([12, p. 202]). — The permutation swapping µ1 and µ3 yields the Okamoto

transformation R5. In other words if y = y23 and δ =
∑4

1 θi/2 and

2x =
(t− 1) y′ − θ1

y
+

y′ − 1− θ2

y − t
− t y′ + θ3

y − 1

then

y21 = y +
δ

x
.

Remark 6. — Of course, if one had a suitable parameterisation of the space of such

3 × 3 linear connections (8) in terms of x and y, this could be proved by a direct

computation. Such a parameterisation may be obtained as follows (lifted from the

2×2 case in [24] using [12, Prop. 16]). (In particular, this shows how one might have

obtained the transformation formula of Theorem 0 directly.) Fix λi, µi for i = 1, 2, 3

such that
∑

λi =
∑

µi. We wish to write down the matrix entries of B1, B2, B3 as

rational functions of x, y, t, λi, µi. The usual 2 × 2 parameterisation of Jimbo–Miwa

[24] will appear in the bottom-right corner if µ1 = 0. First define θi as in Theorem 1.

Then, define zi, ui for i = 1, 2, 3 as the unique solution to the 6 equations:

y = tu1z1, x =
∑

zi/(y − ai),
∑

zi = µ1 − µ3,

∑
uizi = 0,

∑
wi = 0,

∑
(t− ai)uizi = 1,

where wi = (zi + θi)/ui and (a1, a2, a3) = (0, t, 1) (cf. [24] and [8, Appendix A]).

Now, define c1, c2, c3 as the solution to the 3 linear equations:
∑

cizi = 0,
∑

ciwi = 0,
∑

(t− ai)cizi = 1.
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The determinant of the corresponding 3×3 matrix is generically nonzero so this yields

explicit formulae for the ci (using, for example, the formula for the inverse of a 3× 3

matrix) —we will not write them since they are somewhat clumsy and easily derived

from the above equations.(3) Using zi, ui, wi, ci we construct forms βi and vectors fi

for i = 1, 2, 3 by setting

βi = (0, wi,−zi) ∈ V ∗, fi =




ci

ui

1


 ∈ V.

(The meaning of the above 9 equations is simply that if we set B0
i = fi⊗βi ∈ End(V )

and B̃0 = z(z − 1)(z − t)B̂0 where B̂0 =
∑

B0
i /(z − ai) then

∑
B0

i = diag(µ1, µ2, µ3)− µ1, −B̂0
33

∣∣
z=y

= x, B̃0
23 = z − y

and the coefficient of z in the top-right entry B̃0
13 is also 1.)

The fi are in general linearly independent and we can define the dual basis f̂i ∈ V ∗,

with f̂i(fj) = δij , explicitly. The desired matrices are then

Bi = fi ⊗ (βi + µ1f̂i) ∈ End(V ).

Clearly, Bi is a rank-one matrix and one may check that Tr(Bi) = λi and that∑
Bi = diag(µ1, µ2, µ3). Moreover, generically, any such triple of rank-one matrices

is conjugate to the triple B1, B2, B3 up to overall conjugation by the diagonal torus,

for some values of x and y. Now, if we define yij to be the value of z for which the

i, j matrix entry of B̃ := z(z − 1)(z − t)B̂ vanishes, where B̂ =
∑3

1 Bi/(z − ai) then

one may check explicitly (e.g., using Maple) that y23 = y and y21 = y + (µ3 − µ1)/x

as required. Also x may be defined in general, as a function on the space of such

connections, by the prescription:

x =
µ1 − µ3

µ3
B̂33

∣∣
z=y

which may be checked to hold in the above parameterisation, and specialises to the

usual definition of x in the 2 × 2 case when µ1 = 0. Moreover, one may check x is

preserved under R5 and this agrees with the fact that one also has

x =
µ3 − µ1

µ1
B̂11

∣∣
z=y+δ/x

in the above parameterisation. We should emphasise that this parameterisation is

such that if y solves PVI (with parameters θ) and x is defined by (6) then the family

of connections (8) is isomonodromic as t varies. Indeed one may obtain a solution

(3)For the reader’s convenience a text file with some Maple code to verify the assertions of this

remark (and some others in this article) is available at www.dma.ens.fr/˜boalch/files/sps.mpl (or

alternatively with the source file of arxiv:math.AG/0503043).
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14 P. BOALCH

to Schlesinger’s equations by also doing two quadratures as follows. (This amounts

to varying the systems appropriately under the adjoint action of the diagonal torus,

which clearly only conjugates the monodromy.) By construction, the above parame-

terisation is transverse to the torus orbits. We will parameterise the torus orbits by

replacing Bi above by hBih
−1 where h = diag(l, k, 1) for parameters l, k ∈ C∗. One

then finds the new residues Bi solve Schlesinger’s equations provided also

(12)
d

dt
log k =

θ4 − 1

t(t− 1)
(y − t)

(as in [24, p. 445]) and

(13)
d

dt
log l =

δ − 1

t(t− 1)

(
y − t− δ − θ4

p

)

where p = x +
∑3

1 θi/(y − ai). As a consistency check one can observe that the

equations (12) and (13) are exchanged by the transformation swapping µ1 and µ2.

Indeed the corresponding Okamoto transformation (R1R2R3)R5(R1R2R3) maps y to

y − δ−θ4

p and changes θ4 into δ.

Remark 7. — The parameterisation of the 3× 3 Fuchsian systems given in the previ-

ous remark is tailored so that one can see how the Okamoto transformation R5 arises

and see the relation to Schlesinger’s equations (i.e., one may do the two quadratures

to obtain a Schlesinger solution). However, when written out explicitly, the matrix

entries are complicated rational functions of x, y, t, λi, µi (the 2 × 2 case in [24] is

already quite complicated). If one is simply interested in writing down an isomon-

odromic family of Fuchsian system (starting from a PVI solution y) then one may

conjugate the above family of Fuchsian systems into a simpler form, as follows. First,

if we write each Bi of the previous remark with respect to the basis {fi}, then Bi will

only have non-zero matrix entries in the ith row. Then, one can further conjugate by

the diagonal torus to obtain the following, simpler, explicit matrices:

(14) B1 =




λ1 b12 b13

0 0 0

0 0 0


 , B2 =




0 0 0

b21 λ2 b23

0 0 0


 , B3 =




0 0 0

0 0 0

b31 b32 λ3




where

b12 = λ1 − µ3y + (µ1 − xy)(y − 1), b32 = (µ2 − λ2 − b12)/t,

b13 = λ1t− µ3y + (µ1 − xy)(y − t), b23 = (µ2 − λ3)t− b13,

b21 = λ2 +
µ3(y − t)− µ1(y − 1) + x(y − t)(y − 1)

t− 1
, b31 = (µ2 − λ1 − b21)/t.
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Thus if y(t) solves PVI (with parameters θ as in (10)) and we define x(t) via (6)

and construct the matrices Bi from the above formulae, then the family of Fuchsian

systems

(15)
d

dz
−

(
B1

z
+

B2

z − t
+

B3

z − 1

)

will be isomonodromic as t varies, since it is conjugate to a Schlesinger solution. This

seems to be the simplest way to write down explicit isomonodromic families of rank

three Fuchsian systems from PVI solutions (an example will be given in the following

section).

3. Special solutions

Another application of the 3 × 3 Fuchsian representation of PVI is that it allows

us to see new finite-branching solutions to PVI. The basic idea is that, due to (2),

if a Fuchsian system has finite linear monodromy group then the solution to the

isomonodromy equations, controlling its deformations, will only have a finite number

of branches. For example, this idea was used in the 2 × 2 context by Hitchin [20,

21] to find some explicit solutions with dihedral, tetrahedral and octahedral linear

monodromy groups. (Also there are 5 solutions in [17, 18, 27] equivalent to solutions

with icosahedral linear monodromy groups.)

One can also try to use the same idea in the 3 × 3 context. The first question

to ask is: what are the possible finite monodromy groups of rank 3 connections of

the form (8)? Well (at least if λi 6∈ Z), the local monodromies around 0, t, 1 will

be conjugate to the exponentials of the residues, which will be matrices of the form

“identity + rank one matrix”, i.e., they will be pseudo-reflections. Moreover, the finite

groups generated by such pseudo-reflections, often called complex reflection groups,

have been classified by Shephard and Todd [32]. Looking at their list we immediately

see that we get a richer class of finite groups than the finite subgroups of SL2(C), and

so expect to get new PVI solutions.

For example, the smallest non-real exceptional complex reflection group is the

Klein reflection group of order 336 (which is a two-fold cover of Klein’s simple group

of holomorphic automorphisms of Klein’s quartic curve). This leads to:

Theorem 3([12]). — The rational functions

y = −
(
5 s2 − 8 s + 5

) (
7 s2 − 7 s + 4

)

s (s− 2) (s + 1) (2 s− 1) (4 s2 − 7 s + 7)
, t =

(
7 s2 − 7 s + 4

)2

s3 (4 s2 − 7 s + 7)
2 ,

constitute a genus zero solution to PVI with 7 branches and parameters θ =

(2, 2, 2, 4)/7. It governs isomonodromic deformations of a rank 3 Fuchsian connec-

tion of the form (8) with linear monodromy group isomorphic to the Klein reflection

group and parameters λi = 1/2, (µ1, µ2, µ3) = (3, 5, 13)/14. Moreover, this solution
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16 P. BOALCH

is not equivalent to (or a simple deformation of) any solution with finite 2× 2 linear

monodromy group.

As an example application of the formulae of remark 7 it is now easy to write

down the corresponding isomonodromic family of rank three Fuchsian systems having

monodromy equal to the Klein complex reflection group (we have conjugated the

resulting system slightly to make it easier to write). The result is that for any s such

that t(s) 6= 0, 1,∞ the system (15), with t = t(s) as in Theorem 3, has monodromy

equal to the Klein reflection group, generated by reflections, where the residues Bi

are given by (14) with each λi = 1/2 and

b12 =
14 s3 − 21 s2 + 24 s− 22

21s (4 s2 − 7 s + 7)
, b13 =

22 s3 − 24 s2 + 21 s− 14

21(7 s2 − 7 s + 4)
,

b21 =
14 s3 − 21 s2 + 24 s + 5

21 (s− 1) (4 s2 − s + 4)
, b23 =

22 s3 − 42 s2 + 39 s− 5

21(7 s2 − 7 s + 4)
,

b31 =
14− 21 s + 24 s2 + 5 s3

21 (s− 1) (4 s2 − s + 4)
, b32 =

22− 42 s + 39 s2 − 5 s3

21s (4 s2 − 7 s + 7)
.

Observe that

t =

(
7 s2 − 7 s + 4

)2

s3 (4 s2 − 7 s + 7)
2 = 1−

(
4 s2 − s + 4

)2
(s− 1)3

s3 (4 s2 − 7 s + 7)
2

so that the matrix entries of the the residues Bi are all nonsingular whenever t(s) 6=
0, 1,∞. (Up to conjugation, at the value s = 5/4 this system equals that of [12,

Corollary 31] although there is a typographical error just before ([12, p. 200]) in that

the values of b23b32 = Tr(B2B3) and b13b31 = Tr(B1B3) have been swapped.)

Unfortunately, most of the other three-dimensional complex reflection groups do

not seem to lead to new solutions of PVI. However, the largest exceptional complex

reflection group does give new solutions. In this case the group is the Valentiner

reflection group of order 2160 (which is a 6-fold cover of the group A6 of even per-

mutations of six letters). Now, one finds there are three inequivalent solutions that

arise, all of genus one. (Choosing the linear monodromy representation amounts to

choosing a triple of generating reflections, and in this case there are three inequivalent

triples that can be chosen.)

Theorem 4([13]). — There are three inequivalent triples of reflections generating the

Valentiner complex reflection group. The PVI solutions governing the isomonodromic

deformations of the corresponding Fuchsian systems are all of genus one. They have

15, 15, 24 branches and parameters

(µ1, µ2, µ3) = (5, 11, 29)/30, (5, 17, 23)/30, (2, 5, 11)/12,

respectively (with all λi = 1/2). The explicit solutions appear in [13].
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Somewhat surprisingly when pushed down to the equivalent 2×2 perspective these

solutions all correspond to Fuchsian systems with linear monodromy generating the

binary icosahedral group in SU2, and they are not equivalent to any of the 5 solutions

already mentioned. (The 3 icosahedral solutions of Dubrovin and Mazzocco [17, 18],

with 10, 10, 18 branches respectively do fit into this framework and correspond to the

three inequivalent choices of generating reflections of the icosahedral reflection group,

cf. also [12, pp. 181-183].)

This led to the question of seeing what other such ‘icosahedral solutions’ might

occur (e.g., is the 24 branch solution the largest?). The classification was carried out

in [13]. (Another motivation was to find other interesting examples on which to apply

the machinery of [23, 12] to construct explicit solutions.) At first glance one finds

there is a huge number of such linear representations; one is basically counting the

number of conjugacy classes of triples of generators of the binary icosahedral group,

and an old formula of Hall [19] says there are 26688. However, this is drastically

reduced if we agree to identify solutions if they are related by Okamoto’s affine F4

action (since after all there is a simple algebraic procedure to relate any two equivalent

solutions, using the formulae for the Okamoto transformations).

Theorem 5(see[13]). — There are exactly 52 equivalence classes of solutions to PVI

having linear monodromy group equal to the binary icosahedral group.

• The possible genera are: 0, 1, 2, 3, 7, and the largest solution has 72 branches.

• The first 10 classes correspond to the ten icosahedral entries on Schwarz’s list of

algebraic solutions to the hypergeometric equation,

• The next 9 solutions have less than 5 branches and are simple deformations of

known (dihedral, tetrahedral or octahedral) solutions,

The remaining 33 solutions are all now known explicitly, namely there are:

• The 5 already mentioned of Dubrovin, Mazzocco and Kitaev in [17, 18, 27],

• The 20 in [13] including the three Valentiner solutions, and

• The 8 in [6], constructed out of previous solutions via quadratic transformations.

In particular, all of the icosahedral solutions with more than 24 branches (and in

particular all the icosahedral solutions with genus greater than one) were obtained

from earlier solutions using quadratic transformations, so in this sense the 24 branch

Valentiner solution is the largest ‘independent’ icosahedral solution (it was certainly

the hardest to construct).

The main idea in the classification was to sandwich the equivalence classes between

two other, more easily computed, equivalence relations (geometric and parametric

equivalence), which in this case turned out to coincide. A key step was to understand

the relation between the linear monodromy data of Okamoto-equivalent solutions,

for which the geometric description in Theorem 2 of the transformation R5 was very

useful (see also [22]).
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Examining the list of icosahedral solutions carefully it turns out that there is one

solution which is “generic” in the sense that its parameters lie on none of the reflection

hyperplanes of the F4 or D4 affine Weyl groups. This is closely related to the fact

that the icosahedral rotation group A5 has four non-trivial conjugacy classes: one can

choose a triple of pairwise non-conjugate elements generating A5 whose product is in

the fourth non-trivial class. Viewing this triple as a representation of the fundamental

group of a four-punctured sphere and choosing a lift to SL2(C) arbitrarily, gives the

monodromy data of a Fuchsian system with such generic parameters.

Corollary ([13]). — There is an explicit algebraic solution to the sixth Painlevé equa-

tion whose parameters lie on none of the reflecting hyperplanes of Okamoto’s affine

F4 (or D4) action.

This contrasts, for example, with the Riccati solutions whose parameters always

lie on an affine D−

4 hyperplane (and needless to say no other explicit generic solutions

are currently known).

One can also carry out the analogous classification for the tetrahedral and octahe-

dral groups, and this led to five new octahedral solutions. In more detail:

Theorem 6(see[8]). — There are exactly 6 (resp. 13) equivalence classes of solutions

to PVI having linear monodromy group equal to the binary tetrahedral (resp. octahe-

dral) group.

• The first two solutions of each type correspond to the two entries of the same

type on Schwarz’s list of algebraic solutions to the hypergeometric equation,

• The next solutions (with less than 5 branches) were previously found by Hitchin

[20, 21] and Dubrovin [17] (up to equivalence/simple deformation),

• A six-branch genus zero tetrahedral solution and two genus zero octahedral solu-

tions (with 6 and 8 branches resp.) were found by Andreev and Kitaev [1, 27],

• All the solutions have genus zero except for one 12 branch octahedral solution of

genus one. The largest octahedral solution has 16 branches and is currently the largest

known genus zero solution.
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ysis (Bombay, 1992), Tata Inst. Fund. Res., Bombay, 1995, p. 151–185.

[21] , A lecture on the octahedron, Bull. London Math. Soc. 35 (2003), p. 577–600.

[22] M. Inaba, K. Iwasaki & M.-H. Saito – Bäcklund transformations of the sixth
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solutions of the sixth Painlevé and Gauss hypergeometric equations, Algebra i Analiz
17 (2005), no. 1, p. 224–275, nlin.SI/0309078.
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Séminaire E.N.S. Mathématique et Physique (Boston) (L. Boutet de Monvel, A. Douady
& J.-L. Verdier, eds.), Progress in Math., vol. 37, Birkhäuser, 1983, p. 401–426.
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with ŝo(8), in Microlocal Analysis and Complex Fourier Analysis (K. F. T. Kawai, ed.),
World Scientific, 2002.
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