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FAMILIES OF LINEAR DIFFERENTIAL EQUATIONS ON

THE PROJECTIVE LINE

by

Maint Berkenbosch & Marius van der Put

Abstract. — The aim is to extend results of M.F. Singer on the variation of differential
Galois groups. Let C be an algebraically closed field of characteristic 0. One consid-
ers certain families of connections of rank n on the projective line parametrized by
schemes X over C. Let G ⊂ GLn be an algebraic subgroup. It is shown that X(= G),
the set of closed points with differential Galois group G, is constructible for all fam-
ilies if and only if G satisfies a condition introduced by M.F. Singer. For the proof,
techniques for handling families of vector bundles and connections are developed.

Résumé(Familles d’équations différentielles linéaires sur la droite projective)
Le but est de compléter des résultats de M.F. Singer concernant la variation des

groupes de Galois différentiels. Soit C un corps algébriquement clos, de caractéris-
tique 0. On considère des familles de connections de rang n sur la droite projective,
paramétrisées par des schémas X sur C. Soit G ⊂ GLn un sous-groupe algébrique.
On montre que X(= G), l’ensemble des points fermés de X avec G comme groupe de
Galois différentiel, est constructible pour toute famille si et seulement si le groupe G

satisfait une condition introduite par M.F. Singer. Pour la démonstration, des tech-
niques concernant des familles de fibrés vectoriels et des connections sont développées.

1. Introduction

C is an algebraically closed field of characteristic 0 and X denotes a scheme of finite

type over C. We fix a vector space V of dimension n over C and an algebraic subgroup

G of GL(V ). We will define families of linear differential equations on the projective

line C, parametrized by X . These families are of a more general nature than the

moduli spaces, defined in [Ber02]. For each closed point x of X (i.e., x ∈ X(C)), the

differential equation corresponding to x has a differential Galois group, denoted by

Gal(x). It is shown that the condition “Gal(x) ⊂ G” for closed points x of X defines

a closed subset of X . This generalizes Theorem 4.2 of [Ber02], where this statement

is proved for moduli spaces.
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40 M. BERKENBOSCH & M. VAN DER PUT

The aim is to show that the set of closed points x ∈ X for which the differential

Galois group Gal(x) of the corresponding equation is equal to G is a constructible

subset of X , i.e., of the form ∪n
i=1(Oi ∩ Fi) for open sets Oi and closed sets Fi.

This statement (and the earlier one) has to be made more precise by providing a

suitable definition of“family of differential equations”and a meaning for the expression

Gal(x) ⊂ G. Moreover, a condition on the group G is essential.

In his paper [Sin93], M.F. Singer defines a set of differential operators, by giving

some local data. He proves that under a certain condition on G, the subset of the

differential equations with Galois group equal to (a conjugate of) G is constructible.

This condition on G will be called the Singer condition. We consider the same prob-

lem, in our context of families of differential equations parametrized by a scheme X .

We will construct for any group G that does not satisfy the “Singer condition” an

example of a moduli family M such that {x ∈ M | Gal(x) = G} is not constructible.

Finally, from these constructions one deduces an alternative description of the Singer

condition.

2. The Singer condition

Let G be a linear algebraic group over C. First we will recall the Singer condition

on G, as given in [Sin93]. A character χ of G is a morphism of algebraic groups

χ : G → Gm, where Gm stands for the multiplicative group C∗. The set X(G)

of all characters is a finitely generated abelian group. Let ker X(G) denote the

intersection of the kernels of all χ ∈ X(G). This intersection is a characteristic

(closed) subgroup of G. As usual, Go denotes the connected component of the identity

of G. The group ker X(Go) is a normal, closed subgroup of Go and of G. Let

χ1, . . . , χs generate X(Go). Then ker X(Go) is equal to the intersection of the kernels

of χ1, . . . , χs. In other words ker X(Go) is the kernel of the morphismGo → Gs
m, given

by g 7→ (χ1(g), . . . , χs(g)). The image is a connected subgroup of Gs
m and therefore a

torus T . Hence Go/ker X(Go) is isomorphic to T . Moreover, by definition, T is the

largest torus factor group of Go. One considers the exact sequence:

1 −→ G0/ker X(G0) −→ G/ker X(G0) −→ G/G0 −→ 1.

Since G0/ker X(G0) is abelian, this sequence induces an action of G/G0 on

G0/ker X(G0) by conjugation.

Definition 2.1. — A linear algebraic group G satisfies the Singer Condition if the

action of G/G0 on G0/ker X(G0) is trivial.

The Singer condition can be stated somewhat simpler, using U(G) ⊂ G, the subgroup

generated by all unipotent elements in G.

Lemma 2.2. — U(G) = U(Go) is equal to ker X(Go) and the Singer condition is

equivalent to “Go/U(G) lies in the center of G/U(G)”.
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Proof. — Fix an embedding G ⊂ GL(V ), where V is a finite dimensional vector space

over C. First we prove that U(G) is a closed connected normal subgroup of G. Let

I + B, B 6= 0 be a unipotent element of G. Then I + B = eD, for some nilpotent

element D =
∑

(−1)i−1 Bi

i ∈ End(V ). The Zariski closure {(I +B)n|n ∈ Z} of the

group generated by I + B lies in G and is equal to the group {etD|t ∈ C}, which

is isomorphic to the additive group Ga over C. Hence U(G) is generated by these

connected subgroups of G and by Proposition 2.2.6 of [Spr98] the group U(G) is

closed and connected. Further U(G) is a normal subgroup and even a characteristic

subgroup, since the set of unipotent elements of G is stable under any automorphism

of G. The connectedness of U(G) implies Go ⊃ U(G) = U(Go).

Now we will show that Go/U(Go) is a torus. Since the unipotent radical Ru(Go)

lies in U(Go), we may divide Go by Ru(Go) and assume that Go to be reductive. Then

by [Spr98][corollary 8.1.6] we have Go = R(Go) · (Go, Go), where R(Go) is the radical

of Go, and where (Go, Go) is the commutator subgroup of Go. The latter group is a

semi-simple subgroup, according to the same corollary. By [Spr98][theorem 8.1.5] we

get that (Go, Go) is generated by unipotent elements, so (Go, Go) ⊂ U(Go). Since

R(Go) is a torus, its image Go/U(Go) is a torus, too. This proves U(Go) ⊃ ker X(Go).

The other inclusion follows from the observation that every unipotent element lies in

the kernel of every character.

Finally, the triviality of the action of G/Go on Go/U(Go) is clearly equivalent to

Go/U(Go) lies in the center of G/U(Go).

Remarks 2.3
(1) Let G ⊂ GL(V ) be an algebraic subgroup. For the moment we admit the

following items (see 3.4, 3.5 (2), 4.1 and 4.2):

– The definition of a family of differential equations, parametrized by X .

– The meaning of Gal(x) ⊂ G for x ∈ X(C).

– {x ∈ X(C) | Gal(x) ⊂ G} is closed.

– {x ∈ X(C) |Gal(x) ⊂ hGh−1 for some h ∈ GL(V )} is constructible.

Consider the following finiteness condition for the group G: (∗) G has finitely many

proper closed subgroups H1, . . . , Hs, such that every proper closed subgroup is con-

tained in a conjugate of one of the Hi. One easily deduces: If G satisfies (∗), then

{x ∈ X(C) | Gal(x) = G} is constructible.

(2) If G satisfies (∗), then G/U(G) is a finite group and in particular G satisfies

the Singer condition. Indeed, (∗) also holds for G/U(G). If T := Go/U(G) 6= {1},

then one can produce infinitely many proper normal subgroups of G/U(G). Namely,

for any integer m > 1 the subgroup T [m], consisting of the m-torsion elements of T ,

is a normal subgroup. One concludes that G/U(G) is finite.

(3) Consider G := SL2(C). The classification of the proper closed subgroups H

of G states that H is either contained in a Borel subgroup or in a conjugate of the

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2006



42 M. BERKENBOSCH & M. VAN DER PUT

infinite dihedral group DSL2
∞ or is conjugated to one of the special finite groups: the

tetrahedral group, the octahedral group, the icosahedral group. Thus G satisfies (∗)

and moreover, G/U(G) = {1}.

(4) The infinite dihedral group G = DSL2
∞ has the properties: Go = Gm, U(Go) = 1

and G/Go acts non-trivially on Go. Thus G does not satisfy the Singer condition.

For this group one can produce moduli spaces M such that {x ∈ M(C) | Gal(x) = G}

is not constructible (see example 2.6).

(5) For the following two examples, namely moduli spaces and the groups G3
a and,

Gn
m, the Singer condition is valid, but (∗) does not hold. We will show explicitly that

these groups define constructible subsets.

Example 2.4(A moduli space with differential Galois groups inG3
a)

Moduli spaces of the type considered here are defined in [Ber02]. V is a 4-

dimensional vector space over C with basis e1, . . . , e4. The element N ∈ End(V )

is given by N(ei) = 0 for i = 1, 2, 3 and N(e4) = e1. The data for the moduli problem

are:

– Three distinct singular points a1, a2, a3 ∈ C∗. The point ∞ is allowed to have

a, non prescribed, regular singularity.

– For each singular point ai, the differential operator d
d(z−ai)

+ N
z−ai

.

Some calculations lead to an identification GL(4, C) × GL(4, C) → M, where M is

the moduli space of the problem. Let m := (φ2, φ3) denote a closed point of the first

space, then the corresponding universal differential operator is

d

dz
+

N

z − a1
+
φ2Nφ

−1
2

z − a2
+
φ3Nφ

−1
3

z − a3
.

Let G := G3
a the subgroup of GL(V ) consisting of the maps of the form I+B, Be1 = 0

andBei ∈ Ce1 for i = 2, 3, 4. The condition Gal(m) ⊂ G3
a can be seen to be equivalent

to φ2(e1), φ3(e1) ∈ Ce1. This describes the set {m ∈ M | Gal(m) ⊂ G} completely.

The above differential operator evaluated at a point of {m ∈ M | Gal(m) ⊂ G} has

the form

d

dz
+









0 h1 h2 h3

0 0 0 0

0 0 0 0

0 0 0 0









, where

(h1, h2, h3) =
1

z − a1
(0, 0, 1) +

1

z − a2
(f1, f2, f3) +

1

z − a3
(g1, g2, g3).

Moreover, f1, f2, f3 are polynomials of degree ≤ 2 in the entries of φ2 and the g1, g2, g3
are polynomials of degree ≤ 2 in the entries of φ3.

Now G has infinitely many (non-conjugated) maximal proper closed subgroups and

there is no obvious reason why {m ∈ M | Gal(m) = G} should be constructible. We

continue the calculation. The differential Galois group Gal(m), with m such that
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Gal(m) ⊂ G, is in fact the differential Galois group for the three inhomogeneous

equations y′i = hi, i = 1, 2, 3 over C(z). Thus Gal(m) is a proper subgroup of

G if and only if there is a non trivial linear combination c1h1 + c2h2 + c3h3 with

c1, c2, c3 ∈ C such that y′ = c1h1 + c2h2 + c3h3 has a solution in C(z). Now y

exists if and only if c1h1 + c2h2 + c3h3 has residue 0 at the points a1, a2, a3. The

existence of such a linear combination translates into a linear dependence and the

explicit equation f1(a2)g2(a3) − f2(a2)g1(a3) = 0. This defines a closed subset of

{m ∈ M | Gal(m) ⊂ G} and so {m ∈ M | Gal(m) = G} is constructible. We note

that every linear subspace of G3
a
∼= C3, which contains (0, 0, 1), occurs as differential

Galois group.

Example 2.5(A moduli space with differential Galois groups inGn
m)

The data for the moduli problem are:

– A vector space V of dimension n over C and basis e1, . . . , en.

– Singular points a1, . . . , as, different from 0 and ∞, We allow ∞ to have a non-

prescribed regular singularity.

– Local differential operators d
d(z−ai)

+ Mi

z−ai
, where e1, . . . , en are eigenvectors for

all Mi ∈ End(V ).

The moduli space M can be identified with GL(V )s−1. At a closed point m =

(φ2, . . . , φs) ∈ GL(V )s−1 the universal differential operator reads

d

dz
+

s
∑

i=1

φiMiφ
−1
i

z − ai
,

where φ1 = I. The group Gn
m

∼= G ⊂ GL(V ) consists of the maps for which each ei

is an eigenvector. Above the closed subset {m ∈ M | Gal(m) ⊂ G} the differential

operator has the form

L :=
d

dz
+

s
∑

i=1

Ni

z − ai
,

with N1 = M1 and each Ni is a diagonal matrix w.r.t. the basis e1, . . . , en and having

the same eigenvalues asMi. The space {m ∈ M | Gal(m) ⊂ G} has positive dimension

and is rather large if there is at least one Mi with i > 1 having an eigenvalue with

multiplicity > 1. However the number of differential operators L is finite! Thus

only a finite number of algebraic subgroups of G ∼= Gn
m occur as differential Galois

group Gal(m). One concludes that for every algebraic subgroup H ⊂ G, the set

{m ∈ M | Gal(m) = H} is constructible.

This example is the general pattern for “families” with differential Galois groups

contained in some torus T . Again, there are only finitely many distinct differential

operators L possible and therefore only finitely many possibilities for the differential

Galois group. This implies that for every algebraic subgroup H ⊂ T the set of the

points with differential Galois group equal to H is constructible.
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Example 2.6(A moduli space with differential Galois groups inDSL2
∞ )

Let V = Ce1 + Ce2. By DSL2
∞ we will denote the subgroup of SL(V ) consisting of

the maps which permute the lines Ce1, Ce2. The data for the moduli problem are:

– Singular points a1, . . . , a4 ∈ C, and ∞ is supposed to be regular.

– For each i the differential operator d
d(z−ai)

+ 1
z−ai

(

1
4

0

0 −1
4

)

with respect to the

basis e1, e2.

The moduli space M for this problem can be made explicit. The universal differential

equation has 4 regular singular points with local exponents 1/4 and −1/4. This is

essentially the Lamé equation. It has a closed subset {m ∈ M | Gal(m) ⊂ DSL2
∞ }.

Let DSL2
n ⊂ DSL2

∞ denote the dihedral subgroup (of order 4n). It turns out that DSL2
∞

and DSL2
n for n ≥ 2 occur as differential Galois groups Gal(m) for closed points. The

conclusion is that {m ∈ M | Gal(m) = DSL2
∞ } is not constructible (provided that C is

uncountable). Indeed, this set is the complement in {m ∈ M | Gal(m) ⊂ DSL2
∞ } of a

countable union of closed subsets (see the proof of Proposition 5.3 for more details).

One way to understand this is to consider the case where C is the field of the

complex numbers. Since the ai are regular singular points, the differential Galois

group is the algebraic closure of the monodromy group. This monodromy group is

generated by four elements A1, . . . , A4 ∈ SL2(C) having product 1 and such that each

A2
i = −I. Above the moduli space M essentially all groups with these generators and

relations do occur. Therefore all DSL2
n and DSL2

∞ occur as differential Galois group.

A more algebraic approach is to consider the elliptic curve E, given as the covering

of degree two of the projective line and ramified in the four points a1, . . . , a4. The

points of the moduli space corresponding to the differential Galois groups DSL2
n (any

n) correspond to the points of finite order on the elliptic curve. For an algebraically

closed field (countable or not) C of characteristic 0, the complement in E(C) of the

points of finite order is not constructible. This implies that for any algebraically closed

field C of characteristic 0, the set {m ∈ M | Gal(m) = DSL2
∞ } is not constructible. A

detailed study of this moduli family, by F. Loray, M. van der Put and F. Ulmer, is in

preparation.

3. Families of differential equations

We will now come to the definition of families of linear differential equations on

the projective line, parametrized by a scheme X . We first recall some facts on formal

differential modules.

3.1. Formal connections and semi-simple modules. — C is again an alge-

braically closed field of characteristic 0. The usual differentiation on the field of

formal Laurent series C((u)) is given by the formula
∑

anu
n 7→ d

du

(

∑

anu
n
)

:=
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∑

annu
n−1. For notational convenience we will use (in this section) the differentia-

tion f 7→ δ(f) := u d
duf . A differential module M over C((u)) is a finite dimensional

vector space over C((u)) provided with an additive map δ = δM : M →M satisfying

δ(fm) = fδ(m) + δ(f)m. Put Q :=
⋃

m≥1 z
−1/mC[z−1/m]. The Galois group of the

algebraic closure of C((u)) acts on Q. Take q ∈ Q and let m ≥ 1 be minimal such

that q ∈ u−1/mC[u−1/m]. The differential module E(q) over C((u1/m)) is defined by

E(q) = C((u1/m))e and δ(e) = qe. This module can also be viewed as a differential

module of dimension m over C((u)). As such, it depends only on the Galois orbit oq of

q in Q. We write E(oq) for E(q) considered as a differential module over C((u)). We

note that E(oq) is an irreducible differential module. The classification of differential

modules over C((u)) can be formulated as follows:

Every differential module M over C((u)) can be written uniquely in the form

⊕s
i=1E(oqi) ⊗Mi, where the oq1, . . . , oqs are distinct Galois orbits in Q and where

the Mi are regular singular differential modules.

We recall that a differential module N is regular singular if there exists a basis

b1, . . . , br of N over C((u)) such that the free C[[u]]-module Λ := C[[u]]b1+· · ·+C[[u]]br
is invariant under δ. One associates to a regular singular N a semi-simple regular sin-

gular differential module Nss by the following construction. (compare [Lev75]).

The operator δ leaves umΛ invariant for each m ≥ 0. Thus δ induces a C-linear

endomorphism on δm on Λ/umΛ. The additive Jordan decomposition of δm is written

as δm = δm,ss + δm,nilp. Here ss denotes the semi-simple part and nilp denotes the

nilpotent part. It is easily seen that the families of endomorphisms {δm,ss} and

{δm,nilp} form projective systems. Now we write δss and δnilp the induced maps on

Λ. One verifies that δnilp is C[[u]]-linear and that δss(fm) = fδss(m) + δ(f)m for

f ∈ C[[u]] and m ∈ Λ. Both operators are extended to N . The vector space N

provided with δss is denoted by Nss. It is a differential module over C((u)) and it is

semi-simple in the sense that every submodule of Nss has a complement.

In terms of matrix differential equations this construction has an easy translation.

One knows that N contains a basis such that the corresponding matrix differential

equation has the form u d
du + A, where A is a constant matrix (i.e., has entries in

C). Then Nss corresponds (on the same basis) with the matrix differential equation

u d
du +Ass, where A = Ass +Anilp is the usual Jordan decomposition of A. We note

that the “classical”solution space for the matrix differential equation u d
du +A contains

logarithmic terms if Anilp 6= 0.

For a differential moduleM overC((u)) with canonical decomposition⊕s
i=1E(oqi)⊗

Mi we define Mss := ⊕s
i=1E(oqi) ⊗Mi,ss. Thus Mss is equal to M as vector space

over C((u)). One has δM = δMss
+ E where E is a nilpotent endomorphism of

M commuting with δMss
and δM . In particular, every submodule of M is also a

submodule of Mss. Moreover, the differential module Mss is semi-simple.
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A formal connection is a connection ∇ : N → C[[u]]u−kdu ⊗ N , where N is a

free C[[u]]-module of finite rank. One associates to N the differential module M =

C((u)) ⊗N (with δM induced by ∇u d
du

). The formal connection Nss is now defined

as the connection on N induced by the δMss
on Mss. We will call Nss and Mss the

semi-simplifications of N and M . Suppose that R ⊂ N is a C[[u]]-submodule such

that N/R is free and ∇R ⊂ C[[u]]u−kdu⊗R. Then also ∇ssR ⊂ C[[u]]u−kdu⊗R.

3.2. Defining families. — The statement that we want to prove concerns the

closed points of X and therefore we may suppose that X is reduced. For the same

reason we may suppose (at every stage of the proof) that X is irreducible and affine.

Assume that X = Spec(R) with R reduced and finitely generated over C. We have

not investigated the technical complications involved in moveable singularities and

we will consider families for which the singular points (apparent or not) lie in a fixed

subset {a1, . . . , as} of P1
C . For convenience we suppose that 0,∞ 6∈ {a1, . . . , as}.

A first attempt to define a family parametrized by X = Spec(R), is to consider

a matrix differential equation d
dz + A where A is an R

[

z, 1
(z−a1)···(z−as)

]

-linear

endomorphism of R
[

z, 1
(z−a1)···(z−as)

]

⊗C V . More explicitely, A has the form
∑s

j=1

∑k
i=1

A(i,j)
(z−aj)i where each A(i, j) is an R-linear endomorphism of R ⊗ V . For

every closed point x of X , i.e., x ∈ X(C), one writes A(x) for the C
[

z, 1
(z−a1)···(z−as)

]

-

linear endomorphism of C
[

z, 1
(z−a1)···(z−as)

]

⊗ V , obtained by applying x : R → C

to A. In this way, d
dz + A is a family of differential equations on the projective line

over C. The equation d
dz + A is regular at z = 0. One considers R[[z]] ⊗C V and the

canonical map

Modz : R[[z]] ⊗C V −→ R[[z]] ⊗C V/(z)
∼=
−→ R⊗C V.

Lemma 3.1. — Consider the kernels:

S = ker
( d

dz
+A,R[[z]] ⊗C V

)

and S(x) = ker
( d

dz
+A(x), C[[z]] ⊗C V

)

.

The maps Modz : S → R ⊗C V and Modz : S(x) → V are bijections. Moreover, the

image of S under the map R[[z]] ⊗C V → C[[z]] ⊗C V , induced by x : R → C, is equal

to S(x).

Proof. — One considers an endomophism F = F0 + zF1 + · · · of R[[z]] ⊗C V (i.e.,

each Fi is an endomorphism of R ⊗C V ) with F0 = 1. One requires that F is a

“fundamental matrix”, which means that F ′+AF = 0. Put A = A0 +A1z+ · · · . This

leads to equations

(n+ 1)Fn+1 +A0Fn +A1Fn−1 + · · · +AnF0 = 0 for all n ≥ 0.

Clearly F exists and is unique. This implies that Modz : S → R⊗C V is a bijection.

Let F (x), for a closed point x, be obtained from F by the map x : R → C; then F (x)
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is a fundamental matrix for d
dz +A(x). The other two statements of the lemma follow

from this.

d
dz +A(x) is viewed as differential equation over the ring C

[

z, 1
(z−a1)···(z−as)

]

. Let

PV R(x) denote the subring of C[[z]] generated over C
[

z, 1
(z−a1)···(z−as)

]

by all the

entries of F (x) and the inverse of the determinant of F (x). Then PV R(x) is a

Picard–Vessiot ring for d
dz + A(x). Let Gal(x) denote the group of the differen-

tial automorphisms of PV R(x) over C
[

z, 1
(z−a1)···(z−as)

]

. By construction S(x) =

ker
(

d
dz +A(x), PV R(x)⊗C V

)

and Gal(x) acts faithfully on S(x). Using the isomor-

phism Modz : S(x) → V , one finds a faithful action of Gal(x) on V . We conclude that

the above contructions provide a canonical way to embed every Gal(x) into GL(V ).

The next lemma will not be used in the proof of the main result. However, its

contents and the ideas behind it are closely related to our main theme. In what

follows we will prove a converse of this lemma.

Lemma 3.2(Specialization of the differential Galois group). — We use the above no-

tation. Suppose that R is a domain with field of fractions K. Then d
dz + A can

be considered as a differential equation over K
[

z, 1
(z−a1)···(z−as)

]

. Let K denote an

algebraic closure of K. Then the following holds:

(a) the differential Galois group HK over the field of constants K descends to an

algebraic subgroup H of GL(K ⊗ V ),

(b) the schematic closure HR of H as algebraic subgroup of GL(R ⊗ V ), has the

property: for every closed point x, with corresponding maximal ideal mx, there

is an inclusion Gal(x) ⊂ (HR ⊗R/x).

We note that this lemma and its proof are rather close to a result of O. Gabber

(see [Kat90, Thm 2.4.1 on page 39]).

Proof

(a) The solution space ker( d
dz + A,K[[z]] ⊗C V ) is equal to K ⊗R S. Let PV R

denote the subring of K[[z]], generated over K
[

z, 1
(z−a1)···(z−as)

]

by the entries of F

and the inverse of the determinant of F . Then K ⊗K PV R is a Picard–Vessiot ring

and we write HK for its differential Galois group. The latter is characterized as the

group of the K
[

z, 1
(z−a1)···(z−as)

]

-linear differential automorphisms of K⊗PV R. The

group HK acts faithfully on K ⊗C V . Choose a basis of V over C. The affine ring of

GL(K⊗CV ) can be written asK
[

{Xi,j}n
i,j=1,

1
det

]

, where det denotes the determinant

of the matrix (Xi,j). The ideal J defining HK is the kernel of the K-homomorphism

φ : K
[

{Xi,j}n
i,j=1,

1
det

]

→ K ⊗ PV R, given by φ(Xi,j) is equal to Fi,j (the (i, j)-

entry of the matrix F ). Since φ “descends” to K, the ideal J descends to an ideal I

of K
[

{Xi,j}n
i,j=1,

1
det

]

. The latter defines an algebraic subgroup H of GL(K ⊗C V )

satisfying H ⊗K K coincides with HK .
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(b) The schematic closure HR of H is the group scheme over R given by the

ideal IR := I ∩ R
[

{Xi,j}n
i,j=1,

1
det

]

. This explains the terminology of the lemma.

We will show that the inclusion Gal(x) ⊂ HR ⊗ R/mx follows from a combina-

tion of Chevalley’s theorem and some properties of matrix differential operators (or

connections). The expression d
dz + A is seen as a regular differential operator on

Spec(R) × (P1
C \ {a1, . . . , as}). Let V a

b denote the tensor product V ∗ ⊗ · · · ⊗ V ∗ ⊗

V ⊗ · · · ⊗ V (of a copies of the dual V ∗ of V and b copies of V .) There is a K-

subspace W of some finite direct sum K ⊗C ⊕iV
ai

bi
such that H is the stabilizer of

W . The differential operator d
dz +A on R

[

z, 1
(z−a1)···(z−as)

]

⊗C V induces a differen-

tial operator d
dz +B on R

[

z, 1
(z−a1)···(z−as)

]

⊗C ⊕iV
ai

bi
. By differential Galois theory,

K
[

z, 1
(z−a1)···(z−as)

]

⊗K W is invariant under d
dz +B.

Put W̃ := W ∩ (R ⊗C ⊕iV
ai

bi
). Then W̃ is invariant under HR and moreover

R
[

z, 1
(z−a1)···(z−as)

]

⊗R W̃ is invariant under d
dz + B. The regularity of this dif-

ferential operator implies that W̃ is a projective R-module (see [Kat90, p. 39],

for more details). Let x ∈ X(C). The group R/mx ⊗ HR is defined by the in-

variance of the subspace R/mx ⊗R W̃ of R/mx ⊗C ⊕iV
ai

bi
= ⊕iV

ai

bi
. Furthermore,

the space C
[

z, 1
(z−a1)···(z−as)

]

⊗C (R/mx ⊗R W̃ ) is invariant under d
dz + B(x). By

differential Galois theory, the group Gal(x) leaves R/mx ⊗R W̃ invariant. Hence

Gal(x) ⊂ (R/mx ⊗HR).

In our present setup the result that we want to prove is not valid. This is illustrated

by the rather obvious example: R = C[t] and the differential operator d
dz + t

z−a1
. If

the value of t is rational number of the form p
q with q ≥ 1 and (p, q) = 1, then

the differential Galois is a cyclic group of order q. For other values of t in C, the

differential Galois group is the multiplicative group Gm. However, the group Gm

satisfies the “Singer condition”.

In order to avoid this and other examples of this sort we will suppose that there are

only finitely many possibilities for the semi-simplification of the formal local structure

of d
dz + A(x) at any of the singular points a1, . . . , as. Again this is not sufficient for

our goal, namely the statement that the set of closed points x with Gal(x) = G is

constructible. The new problem is that the formal isomorphism between d
dz +A(x) at

aj and one of the prescribed formal connections can have a pole at aj of arbitrarely

high order. A remedy for this is the introduction of connections on the projective

line over C. In order to work out this idea the following (probably known) result

on vector bundles on P1
X := X × P1

C is needed. We introduce some notation. Let

pr1 : X × P1
C → X and pr2 : X × P1

C → P1
C denote the two projections. For vector

bundles A and B on X and P1
C we write A ⊗ B for the vector bundle pr∗1A ⊗ pr∗2B.

The line bundle of degree d on P1
C is denoted by O(d). For OX ⊗ O(d) = pr∗2O(d)

we also write OX(d). We recall that any vector bundle of rank n on P1
C has the form

O(k1) ⊕O(k2) ⊕ · · · ⊕ O(kn) with unique k1 ≥ k2 ≥ · · · ≥ kn. We call the sequence

k1 ≥ · · · ≥ kn the type of the vector bundle.
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Proposition 3.3. — Let X be a scheme of finite type over C and let M be a vector

bundle on P1
X of rank n. Let x ∈ X be a closed point. Suppose that the induced vector

bundle M(x) on PC is free. Then there exists an open neighbourhood U of x such

that the restriction of M to P1
U is free.

Proof. — We remark that M(x) denotes the vector bundle on P1
C obtained by evaluat-

ing M at x. More precisely, write jx : Spec(C) → X for the morphism corresponding

to x and write gx = jx × id : P1
C = Spec(C) × P1

C → X × P1
C . Then M(x) is defined

as g∗xM.

One may suppose that X is affine. Let D0 and D∞ denote the divisors X × {0}

and X ×{∞}. Define the sheaf N = O(−D∞)⊗M and consider the covering of P1
X

by the affine sets U0 = P1
X −D∞ and U∞ = P1

X − D0. Put U0,∞ = U0 ∩ U∞. The

following sequence

0 −→ H0(N ) −→ N (U0) ⊕N (U∞)
α

−→ N (U0,∞) −→ H1(N ) −→ 0

is exact. The two O(X)-modules H0(N ) and H1(N ) are finitely generated. Indeed,

since the natural projection pr : P1
X → X is proper one has that pr∗N and R1pr∗N

are coherent. Moreover, H0(N ) = H0(X, pr∗N ) and H1(N ) = H0(X,R1pr∗N ) (by

Leray’s spectral sequence). Let mx denote the maximal ideal of O(X) corresponding

to the closed point x. The assumption that M(x) is free implies that H0(N (x)) =

H1(N (x)) = 0. This implies that the map α⊗O(X) O(X)/mx is a bijection. Hence x

does not lie in the support of the O(X)-module H1(N ). After shrinking X , we may

assume that H1(N ) = 0 and that α is surjective. The O(U0,∞)-module N (U0,∞) is

projective. Therefore N (U0,∞) is also a projective module over the ring O(X). Hence

the exact sequence of O(X)-modules

0 −→ H0(N ) −→ N (U0) ⊕N (U∞)
α

−→ N (U0,∞) −→ 0

splits. The bijectivity of the map α ⊗O(X) O(X)/mx implies that the module

H0(N ) ⊗O(X) O(X)/mx = 0. After shrinking X , we may suppose that H0(N ) = 0.

Define the sheaf Q by the exactness of

0 −→ N −→ M −→ Q −→ 0.

Then Q = M/(O(−D∞)⊗M) and therefore Q is a vector bundle on X ∼= X ×{∞}.

The rank n of Q is the same as the rank of M. After shrinking X , we may suppose

that Q is a free vector bundle on X . The above exact sequence of sheaves yields:

H0(M) = H0(X,Q) = O(X)n and H1(M) = 0. It suffices now to show that M is

generated at every closed point w of P1
X by its group of global sections H0(M). This

property is equivalent to the surjectivity of the map H0(M) → Mw/mwMw, where

mw denotes the maximal ideal of the local ring OP1
X

,w. The point w lies on a divisor

D = X × {p} for some closed point p of P1
C . Put w = (q, p). Define the sheaf S by

the exact sequence

0 −→ O(−D) ⊗M −→ M −→ S −→ 0.
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We note that O(−D) is isomorphic to O(−D∞). As before one concludes that S is a

vector bundle on X ∼= X×{p} and that H0(M) → H0(X×{p}, S) is surjective. Since

X×{p} is affine, the map H0(X×{p}, S) → Sq/mqS (where mq denotes the maximal

ideal corresponding to the point w = (q, p)) is surjective. Finally, Mw/mwMw →

Sq/mqSq is an isomorphism.

Remarks 3.4(More on vector bundles onP1
X )

(1) We start with an example showing that the type of a vector bundle on P1
X

is not locally constant, i.e., the type of M(x) is not locally constant in X . Take

X = Spec(C[t]) and consider a vector bundle M of rank 2 on P1
X . Let z denote

the usual global parameter on P1
C . Write again D0 = X × {0}, D∞ = X × {∞},

U0 = P1
X − D∞ and U∞ = P1

X − D0. The restriction of M to the two affine sets

U0, U∞ is free (since every projective module over a polynomial ring is free). Hence

M is given by a matrix A ∈ GL(2, C[t][z, z−1]). This matrix defines a unique double

coset GL(2, C[t][z]) · A · GL(2, C[t][z−1]). On the other hand each double coset, as

above, defines a vector bundle of rank 2 on P1
X . We consider now the vector bundle

associated to

A =

(

z 0

t z−1

)

.

For t = 0, this defines the vector bundle O(1)⊕O(−1) on P1
C . For t 6= 0, this defines

the free vector bundle on P1
C . Indeed,

A =

(

1 t−1z

0 1

) (

0 −t−1

t z−1

)

.

(2) Let M be a vector bundle on P1
X of rank n. Then the set of closed points

x ∈ X(C), such that M(x) has type a1 ≥ a2 ≥ · · · ≥ an, is a constructible subset.

We sketch the proof of this result. It suffices to consider the case where X is affine

and connected. For a point x ∈ X(C), the type a1 ≥ · · · ≥ an of the vector bundle

M(x) is determined by the dimensions hi(k, x), i = 0, 1 of the cohomology groups

Hi(P1
C ,M(x) ⊗ O(k)), for all k ∈ Z. The degree D of M(x) is independent of

x ∈ X(C). By Riemann-Roch, h0(k, x) − h1(k, x) = D + n for all k. There exists

an integer N , depending on M, such that for k ≥ N one has h1(k, x) = 0 and for

k ≤ −N one has h0(k, x) = 0. Hence the type of M(x) is determined by the values

of h1(k, x) for −N < k < N . Therefore we have to investigate the dependence of

h1(k, x) on x. For convenience we consider h1(0, x). The proof of Proposition 3.3

asserts that H1(P1
C ,M(x)) = O(X)/mx ⊗ H1(M), where mx denotes the maximal

ideal corresponding to x. This implies that for any integer d ≥ 0 the set {x ∈

X(C)| h1(0, x) ≤ d} is open. From this observation the above statement follows.

(3) The defect of a vector bundle on P1
C of type a1 ≥ · · · ≥ an is defined as

a1 − an. The reasoning in (2) above implies that for any integer d ≥ 0 the set
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{x ∈ X(C)| the defect of M(x) is ≤ d} is open. This generalizes the statement of

Proposition 3.3.

(4) Suppose that X is a reduced, irreducible scheme of finite type over C. Let M

be a vector bundle on P1
X . Suppose that there exists a closed point x0 ∈ X such that

M(x0) is free. Then the set of closed points x such that M(x) is not free is either

empty or equal to a divisor on X .

Sketch of the proof. — We may suppose that X = Spec(R) with R a finitely gen-

erated C-algebra having no zero-divisors. We will use the notation of the proof of

Proposition 3.3. The statement that we want to prove is equivalent to: the R-module

H1(N ) is either 0, or its support is a divisor on X . Consider again the exact sequence

0 −→ H0(N ) −→ N (U0) ⊕N (U∞)
α

−→ N (U0,∞) −→ H1(N ) −→ 0

The assumption that M(x0) is free implies that α becomes an isomorphism after

localizing R at a suitable non-zero element. Thus H0(N ) = 0 (since R has no zero-

divisors) and H1(N ) is a finitely generated torsion module over R. The modules

N (U0) ⊕N (U∞) and N (U0,∞) are projective R-modules of infinite rank. The above

exact sequence is therefore a resolution of H1(N ) by projective modules of infinite

rank. Consider an exact sequence

0 −→ V1
f

−→ V0 −→ H1(N ) −→ 0

with V0 a finitely generated free R-module. Then V1 is a projective R-module (of

finite rank). After replacing Spec(R) by the elements of an open affine covering, we

may suppose that V1 is a free R-module, too. Furthermore, V1 and V0 have the same

rank. The support of H1(N ) is equal to the closed subset defined by det(f) = 0. This

finishes the proof.

The above result is also valid in the complex analytic case. A proof is given by

B. Malgrange in [Mal83], Section 4.

(5) In trying to classify the vector bundles on X×P1
C , one encounters the question

whether a vector bundle M of rank n on X × P1
C has, at least locally with respect to

X , the property that the restrictions of M to the affine sets Spec(R) × (P1
C − {∞})

and Spec(R) × (P1
C − {0}) are free. If the answer is positive, then M is (locally

with respect to X) defined by a double coset GL(n,R[z]) · A · GL(n,R[z−1]) with

A ∈ GL(n,R[z, z−1]). This seems a useful way to present M. The above question is

directly related to the following question posed by H. Bass and D. Quillen:

Let R be a regular noetherian ring. Does every finitely generated projective module

over R[z] come from a finitely generated projective module over R?

There are partial answers to this question (see [Lin78]). It seems that the general

problem remains unsolved.
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Definition 3.5(A family of differential equations on the projective line P1, parametrized
by X)

Distinct points {a1, . . . , as} ⊂ P1
C \ {0,∞} are given. Moreover, a finite set I of

semi-simple formal connections ∇i : C[[u]]n → C[[u]]u−kdu ⊗ C[[u]]n (with i ∈ I) is

given. This collection will be called the local data. The next items are X,M,∇, V

where:

(i) X is a reduced scheme of finite type over C.

(ii) M is a vector bundle on P1
X of the form OX ⊗N , where N is a vector bundle

on P1
C .

(iii) V is a C-vector space of dimension n and an isomorphism N0/(z) → V is given.

(iv) A connection ∇ : M → Ω(k[a1] + · · · + k[as]) ⊗M.

For every point x ∈ X(C), one defines the vector bundle M(x) on P1
C by M(x) =

j∗x(M) where jx : P1
C = {x} × P1

C → P1
X . The above data induce a connection

∇(x) : M(x) → Ω(k[a1]+ · · ·+k[as])⊗M(x). For every point x ∈ X(C) and every j,

we write u for the local parameter z − aj. We require that the semi-simplification of

the formal connection ∇̂(x)j : M̂(x)aj
→ C[[u]]u−kdu ⊗ M̂(x)aj

is isomorphic to ∇i

for some i ∈ I. More precisely, there exists a C[[u]]-linear isomorphism M̂(x)aj ,ss →

C[[u]]n that is compatible with the connections.

Remarks 3.6

(1) A more precise formulation of part (iv) is:

∇ : M −→ ΩP1
X

/X

(

∑

k[X × {ai}]
)

⊗M,

where the [X × {ai}] are divisors on P1
X . Moreover, the integer k occuring here can

be replaced by any integer ` ≥ k without changing the family.

(2) A moduli space, as defined in [Ber02], is a special case of a family. It is a family,

parametrized by X = M and with M = OP1
X
⊗ V and ∇ such that (M,∇, {φi}) is

the universal connection.

(3) Let a family, parametrized by X be given. For every x ∈ X(C), there is a full

solution space W (x) of ∇(x) inside M̂(x)0. We want to identify W (x) with V . The

induced map W (x) → M̂(x)0/(z) = M(x)0/(z) is an isomorphism. By (ii), M(x)

is canonically isomorphic to N . Moreover, in (iii) an isomorphism N0/(z) → V is

given. Combining these one obtains the isomorphism W (x) → V . The differential

Galois group Gal(x), which acts in a natural way on W (x) is, via this isomorphism,

embedded in GL(V ).

(4) Let a family, parametrized by, say, X = Spec(R), be given. We will make

some changes to this family. The given isomorphism V → N0/(z) can be lifted to

an injective C-linear map V → N0. One replaces N with N 1 := N (`[b1]+· · · `[br]), for
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suitable ` > 0 and points b1, . . . , br (different from 0), such that V ⊂ H0(N 1). Then

we consider the free vector bundle F := OP1
X
⊗ V , subbundle of N 1, and the free

vector bundle FX .

In general, ∇(F)X ⊂ Ω
(
∑s

i=1 k[ai]
)

⊗FX does not hold. At the cost of introducing

some points {as+1, . . . , at} as new (apparent) singularities and adding finitely many

new items to the local data, one obtains a new family, parametrized by X , with

∇ : FX −→ Ω

( t
∑

i=1

k[ai]

)

⊗FX (for a suitable, large enough k > 0).

One of the new singular points aj might be the point ∞. An automorphism of P1
C ,

which fixes 0, takes care of that. The original family is closely related to this new

family. In particular, for the constructibility result that we want to prove, we may

replace the original family by the new one. In what follows we may therefore (at any

stage of the proof) assume that the vector bundle M on P1
X is equal to OX ⊗N with

N a free vector bundle on P1
C . Moreover V is identified with H0(N ). In other terms

M = OX ⊗ (OP1
C
⊗ V ).

(5) For an algebraic subgroup H of GL(V ) we write X(⊂ H) (resp. X(H ⊂)) for

the set of closed points x ∈ X such that Gal(x) ⊂ H (resp. H ⊂ Gal(x)). For two

algebraic subgroups H1 ⊂ H2 we will write X(H1 ⊂,⊂ H2) for X(H1 ⊂)∩X(⊂ H2).

Furthermore, X(= H) := X(H ⊂,⊂ H). The main result of this paper is the

following.

Theorem 3.7. — Suppose that the linear algebraic subgroup G ⊂ GL(V ) satisfies the

“Singer condition”. Let a family of linear differential equation, parametrized by X be

given. Then X(= G) is a constructible subset of X.

In the proof we follow some of the steps of the proof given in [Sin93]. However,

we like to point out some important differences. In our setup, the differential Galois

group Gal(x) is given as a subgroup of GL(V ), whereas in [Sin93] this group is only

determined up to conjugacy in GL(V ). The bounds B and real algebraic subspaces

L(n,m,B) of L(n,m) are not present in our proof. The prescribed local connections

and the type of the vector bundle M provide the necessary bounds on the degrees of ∇-

invariant line bundles. The “constructions of linear algebra”, needed in the proof, are

rather involved for differential operators (especially when one has to produce another

“cyclic vector”). Here the constructions are the natural ones, known for differential

modules. Our proof can be adapted to the case where the singular points are not

fixed. However we prefer to avoid the technical complications introduced by “moving

singularities”. Finally, Singer’s result applies to certain sets of differential operators.

It seems possible to make a translation between these sets of differential operators

and our families of connections on P1, allowing this time moving singularities.
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4. Proof of Singer’s theorem for families

4.1. The set X(⊂ G) is closed. — As before, we denote by V a
b the tensor product

of a copies of the dual V ∗ of V and of b copies of V . One considers a subspace

W of dimension d of a finite sum ⊕iV
ai

bi
. Then G := {g ∈ GL(V )| gW = W} is

an algebraic subgroup of GL(V ). According to Chevalley’s theorem, every algebraic

subgroup of GL(V ) has this form. Put Z := Λd(⊕iV
ai

bi
) and L := ΛdW . Then G is

equal to {g ∈ GL(V )| gL = L}, too. The subgroups of GL(V ), conjugated to G, are

the stabilizers of the lines hL ⊂ Z with h ∈ GL(V ). This family of lines in Z is a

constructible subset of P(Z). Write L = Cz0. Then the set {hz0| h ∈ GL(V )} is also

constructible. Indeed, the action of GL(V ) on Z and P(Z) is algebraic.

Proposition 4.1. — Let a family of differential equations on the projective line,

parametrized by X, be given. Then X(⊂ G) is closed.

Proof. — We have to extend the proofs of [Ber02] to the present more general sit-

uation. We suppose that X is reduced, irreducible and affine. Furthermore, we will

suppose (as we may) that M = OX ⊗ (OP1
C
⊗ V ). Let G be given as above as the

stabilizer of a (special) line L in a construction Z. Each step in the construction of

Z can be supplemented by a new family of differential equations parametrized by the

same X . Indeed, for the dual V ∗ one constructs from the given family, a new family

obtained by taking everywhere duals. This works well since the free vectorbundle

OP1
C
⊗ V has an obvious dual OP1

C
⊗ V ∗. For a tensor product, like V a

b , one can form

the tensor product of the corresponding vector bundles (including their connections

and the local data). Direct sums and exterior powers are treated in the obvious way.

Thus we find a family, parametrized by X and corresponding to Z, consisting of a free

vector bundle N , identified with OX ⊗ (OP1
C
⊗ Z), a connection ∇ on N and a new

finite set of prescribed semi-simple formal connections over C[[u]]. Then, according to

[Ber02][Lemma 4.0.3], the set X(⊂ G) consists of the closed points x such that there

is a line bundle L, contained in N (x) and satisfying:

(i) L is invariant under ∇(x),

(ii) N (x)/L is again a vector bundle,

(iii) L0/zL0 is equal to L.

We follow closely the proof of [Ber02][Theorem 4.2]. Write L = Cv0. Let −d ≤ 0

denote the degree of a putative L. Then one finds an equation for the generator

v0 + v1z + · · · + vdz
d of L(d · [∞]) (see the proof of [Ber02, Theorem 4.2]). This

equation has the form
(

d

dz
+

s
∑

i=1

k
∑

j=1

Bi,j(x)

(z − ai)j
− T

)( d
∑

i=0

viz
i

)

= 0,

where the Bi,j are endomorphisms of O(X) ⊗ Z; Bi,j(x) is the evaluation of Bi,j at

x, and T :=
∑ gi,j

(z−ai)j with gi,j ∈ C. We note that T does not depend on x ∈ X(C).
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There are finitely many possibilities for T and each possibility yields at most one

value for d (see [Ber02, Lemma 4.0.4] and Definition 3.4). Now we consider a fixed

choice for the term T . The equation
(

d

dz
+

s
∑

i=1

k
∑

j=1

Bi,j

(z − ai)j
− T

)

(

∑

i≥0

viz
i
)

= 0,

with the prescribed v0 ∈ Z and vi ∈ O(X)⊗Z for i ≥ 1 has a unique solution (which

is denoted by the same symbols). One can see vi, for i ≥ 1, as a morphism from X to

Z. This determines a closed subset, say X(T ) of X , defined by vi(x) = 0 for i > d.

In other words, X(T ) is the intersection ∩i>dv
−1
i (0). Finally, X(⊂ G) is the union of

the finitely many closed sets X(T ).

Corollary 4.2. — Let a family (M,∇, V, {∇i}i∈I) of differential equations, para-

metrized by X, be given.

(1) Consider a vector space Z of the form Λd(⊕iV
ai

bi
) and a constructible subset S

of Z \ {0}. The set of the closed points x ∈ X(C) such that Gal(x) ⊂ GL(V )

fixes a line Cs ⊂ Z with s ∈ S (for the induces action of Gal(x) on Z), is

constructible.

(2) Let G be an algebraic subgroup of GL(V ). The set of the closed points x ∈ X(C),

such that Gal(x) lies in a conjugate of G, is constructible.

Proof

(1) As in the proof of Proposition 4.1, one supposes that M is equal to OX ⊗

(OP1
C
⊗ V ). There is an induced family (N ,∇, Z, local data). As in that proof, a

fixed choice for the term T is made. The element v0 is not fixed but lies in a given

constructible subset S of Z \ {0}. The elements vi with i ≥ 1 are now viewed as

morphisms S ×X → Z. The set ∩i>dv
−1
i (0) is a closed subset of S ×X . Its image

X(T, S), under the projection S×X → X , is constructible. The union of the finitely

many X(T, S) is the set of the closed points x such that Gal(x) ⊂ GL(V ) fixes, for

its action on Z, a line L of the form L = Cs with s ∈ S.

(2) Take Z as in (1) and a line L ⊂ Z such that G = {g ∈ GL(V )| gL = L}.

Write L = Cv0. Then (1), applied to the constructible set S = {hv0| h ∈ GL(V )},

yields (2).

4.2. Galois invariant subspaces and subbundles. — Let a family of differential

equations (M,∇, V, {∇i}), parametrized by a reduced, irreducible, affine X be given.

Let W be a subspace of V such that W is invariant under all Gal(x). Our aim is to

prove that M has a subbundle, invariant under ∇, corresponding to W . We start by

discussing the special case where W = Ce (with e 6= 0) and we suppose (as we may)

that M is equal to OX ⊗ (OP1
C
⊗ V ). Then ∇ d

dz
has the explicit form

d

dz
+A =

d

dz
+

∑

i,j

Ai,j

(z − aj)i
,
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where the Ai,j are O(X)-linear endomorphisms of O(X) ⊗C V and
∑

j A1,j = 0. We

return to the proof and the terminology of Proposition 4.1 and [Ber02, Theorem 4.2].

For a fixed x ∈ X(C), there is a term T =
∑

i,j
gi,j

(z−aj)i with all gi,j ∈ C such

that
∑

j g1,j is an integer d ≥ 0 and there is a solution v0 + v1z + · · · + vdz
d of

(

d
dz + A(x)

)

(v0 + v1z + · · · + vdz
d) = T (v0 + v1z + · · · + vdz

d), such that v0 = e and

vd 6= 0. Moreover, there are only finitely many possibilities for T . Now we fix T

and consider the equation
(

d
dz + A

)

(

∑

i≥0 viz
i
)

= T
(

∑

i≥0 viz
i
)

with v0 = e and

vi ∈ O(X) ⊗ V for i ≥ 1. This equation has a unique solution. The closed subset of

X given by vi(x) = 0 for i > d, is denoted by X(T ). By assumption X is the union

of the finitely many sets X(T ). Since X is irreducible, X is equal to a single X(T ).

We continue with this T .

Let v0 + v1z + · · · + vdz
d denote the solution corresponding to this T (with again

v0 = e and vi ∈ O(X) ⊗C V for i ≥ 1). It is, a priori, possible that vd is identical

zero. Let ` be maximal such that v` is not identical zero. It is also possible that

v0 + v1z + · · · + v`z
` is divisible by some (z − aj). We divide v0 + v1z + · · · + v`z

`

by (z − a1)
m1 · · · (z − as)

ms with m1, . . . ,ms ≥ 0 as large as possible (this changes

the T as well). The result is a section, say v0 + w1z + · · · + wrz
r, of M(r · [∞])

such that none of the expressions wr and v0 + w1aj + · · · + wra
r
j for j = 1, . . . , s,

is identical zero. Let X ′ be the open, non-empty, subset of X given by wr(x) 6= 0

and the v0 + w1(x)aj + · · · + wr(x)a
r
j 6= 0 for j = 1, . . . , r. We claim that the

section v0 + w1z + · · · + wrz
r of M(r · [∞]) does not vanish on X ′ × P1

C . For points

(x,∞) or (x, aj) with x a closed point of X ′, this is obvious. For a point (x, a) with

a 6∈ {a1, . . . , as,∞} and x ∈ X ′(C), the expression v0 + w1(x)z + · · · + wr(x)z
r is a

solution of the differential operator d
dz +A(x)−T . Since this operator is regular at a,

the vanishing of v0 +w1(x)a+ · · ·+wr(x)a
r implies that v0 +w1(x)z + · · ·+wr(x)z

r

is identical zero. This contradicts wr(x) 6= 0.

In what follows, X is already replaced with a non-empty open subset of X ′. In the

next steps, we will shrink X even further. Let F = OX ⊗OP1
C
. The line bundle F is

embedded into M(r·[∞]) by sending the global section 1 of OP1
C

to v0+w1z+· · ·+wrz
r.

This induces a connection on F and local data for L. Moreover, we identify (OP1
C
)0/(z)

with Cv0, by sending 1 to v0 = e. Now we consider L := F(−r ·[∞]) = OX ⊗OP1
C
(−r ·

[∞]). The above data make (L,∇, Cv0, local data) into a family, parametrized by X .

The quotient Q := M/L is a vector bundle on P1
X with an induced connection

and induced local data. After shrinking X , there exists a vector bundle N on P1
C

such that Q = OX ⊗N . A choice of an isomorphism λ : N0/(z) → V/Ce induces an

isomorphism Q0/(z) → OX ⊗ (V/Ce). We require that this map is induced by the

given isomorphism M0/(z) → OX ⊗ V .

For every closed point x of X , there is an induced exact sequence of connections

0 → L(x) → M(x) → Q(x) → 0 on P1
C . The action of Gal(x) on V induces the
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actions on Ce and V/Ce for the connections L(x) and Q(x). We come now to the

general result.

Proposition 4.3. — Let (M,∇, V, {∇i}) be a family, parametrized by a reduced, irre-

ducible scheme X of finite type over X. Let W ⊂ V be a proper subspace such that

W is invariant under Gal(x) for all x ∈ X(C).

Then, after repacing X with a non-empty open subset, there exists family

(N ,∇∗,W, local data), parametrized by X, such that:

(i) N is a subbundle of M, invariant under ∇. Moreover, ∇∗, the local data of N

and the isomorphism N0/(z) → OX ⊗W are induced by those of M.

(ii) The sheaf Q := M/N is a vector bundle on P1
X , isomorphic to OX ⊗ S for

a suitable vector bundle S on P1
C. Moreover, Q can be made into a family,

parametrized by X, with connection, local data, and isomorphism Q0/(z) →

OX ⊗ (V/W ), induced by those of the family M.

(iii) For every closed point x ∈ X(C), the exact sequence

0 −→ N (x) −→ M(x) −→ Q(x) −→ 0 of connections on P1
C ,

has the property that the action of Gal(x) on V induces the actions of the dif-

ferential Galois groups on W and V/W , that are produced by N (x) and Q(x).

Proof. — As before we may suppose that M = OX⊗(OP1
C
⊗V ). Put d = dimW . The

case d = 1 is discussed above. For the general case one considers L = ΛdW ⊂ ΛdV

and the family (ΛdM, . . . ) associated to ΛdV . One finds a line bundle L ⊂ ΛdM

(above a suitable open subset of X) with the required properties. This line bundle

is decomposable since the line L ⊂ ΛdV is decomposable. Thus there exists a vector

bundle N ⊂ M (above a suitable open subset of X) with ΛdN = L and N has

the required properties. In particular, Q is a connection on P1
X . It is not difficult

to provide N and Q with the additional structure, which makes them into families,

parametrized by X . This proves (i) and (ii). Part (iii) follows from the explicit

construction.

Proposition 4.3 is a sort of converse of Lemma 3.2. Indeed, let K denote the

function field of X . The assumption that W is invariant under all Gal(x) implies that

the differential Galois group H ⊂ GL(K ⊗ V ) of the generic differential equation on

Spec(K) ⊗ P1
C leaves the subspace K ⊗C W invariant.

4.3. Constructions of linear algebra. — Let H be an algebraic subgroup of

GL(V ). In other words, V is a faithful H-module. Let W be another H-module. It

is well known that W can be obtained by a “construction of linear algebra” from V .

Explicitly, W ∼= W2/W1, where W1 ⊂W2 are H-invariant subspaces of a finite direct

sum ⊕iV
mi
ni

.
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Proposition 4.4. — Let a family (M,∇, V, {∇i}), parametrized by a reduced, irre-

ducible scheme X of finite type over C, be given. Let H be an algebraic subgroup

of GL(V ) and suppose that Gal(x) ⊂ H for every closed point x ∈ X. For

any construction of linear algebra W := W2/W1, as above, there exists a family

(N ,∇,W, local data), parametrized by a non-empty open subset U of X such that:

(i) For every closed point x ∈ U(C), the connection (N (x),∇(x)) on P1
C is obtained

by the same construction.

(ii) The action of Gal(x) on W , induced by the construction of linear algebra, coin-

cides with the action of the differential Galois group of the connection N (x) on

W .

Proof. — We may suppose that M is free (at the cost of enlarging the set of singular

points and the local data). For an H-module of the form Ṽ = ⊕iV
ai

bi
the construction

of the new family, parametrized by X , is discussed before. For a H-submodule W2

we apply Proposition 4.3 and we have to replace X with an open subset of X . For

a H-submodule W1 of W2 one applies Proposition 4.3 again. The result is a family,

parametrized by an open subset of X , corresponding to the H-module W2/W1. The

construction of (N ,W, . . . ) implies at once the properties (i) and (ii).

4.4. The set X(U(Go) ⊂) is constructible. — We introduce some notation. Let

H be a linear algebraic group over C acting upon a finite dimensional vector space

W over C. For every character χ : H → Gm = C∗ one defines Wχ := {w ∈ W | hw =

χ(h)w for all h ∈ H}. This is a subspace of W . Let χ1, . . . , χr denote the distinct

characters of H such that Wχi
6= 0. Then

∑r
i=1Wχi

⊂ W is in fact a direct sum

⊕r
i=1Wχi

. This space is denoted by ChH(W ).

As before, an algebraic subgroup G ⊂ GL(V ) is given. The group U(Go) = U(G)

denotes, as before, the algebraic subgroup ofG generated by all the unipotent elements

of G. Any character of Go is trivial on U(Go) and Go/U(Go) is a torus. It easily

follows that for any G-module W one has ChGo(W ) = WU(Go) (i.e., the set of U(Go)-

invariant elements w ∈W ). An essential result is the following.

Theorem 4.5(M.F. Singer). — There exists a faithful G-module W such that for every

algebraic subgroup H of G the following statements are equivalent.

(1) U(Go) ⊂ H.

(2) ChGo(W ) = ChH∩Go(W ).

We note that ChGo(W ) ⊂ ChH∩Go(W ) is valid for any G-module W . Moreover,

for any G-module W , the implication (1)⇒(2) holds. Indeed, U(Go) ⊂ H implies

that U(Go) ⊂ Ho ⊂ H ∩ Go. Since Go/U(Go) is a torus, one has U(Go) = U(Ho).

Hence

ChH∩Go(W ) ⊂ ChHo (W ) = WU(Ho) = WU(Go) = ChGo(W ).
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For the rather involved proof of the existence of a faithful G-module W for which the

implication (2)⇒(1) holds, we refer to [Sin93].

Corollary 4.6. — Put m := [G : Go]. For the faithful G-module W of Theorem 4.5 the

following statements for any algebraic subgroup H of G are equivalent.

(i) U(Go) ⊂ H.

(ii) For every r ≤ mm and for every H-invariant decomposable line L = Cu1⊗u2⊗

· · · ⊗ ur ⊂ SymrW , the elements u1, . . . , ur belong to ChGo(W ).

Proof. — (i)⇒(ii). As remarked above, the implication (1)⇒(2) in Theorem 4.5 holds

for every G-module. This implication, applied to the symmetric power SymrW , yields

that u1 ⊗ · · · ⊗ ur lies in (SymrW )U(Go). Let x1, . . . , xn denote a basis of W over C.

The algebra ⊕m≥0SymmW is identified with C[x1, . . . , xn]. The group G acts linearly

on C[x1, . . . , xn] and the element u := u1 ⊗ · · · ⊗ ur is a homogeneous polynomial

which is a product of homogeneous linear terms. From the U(Go)-invariance of u,

the connectedness of U(Go) and the unicity of the decomposition of u (up to scalars

and order) , one deduces that g(ui) is a C∗-multiple of ui for every g ∈ U(Go) and

every i. Then all ui are invariant under U(Go), since U(Go) is generated by unipotent

elements.

(ii)⇒(i). We will show that (ii) implies condition (2) of Theorem 4.5. It suffices

to show that any H ∩ Go-invariant line Cu ⊂ W belongs to ChGo(W ). The group

H ∩ Go is a subgroup of H of index at most m := [G : Go]. There is a normal

subgroup H̃ of H contained in H ∩Go, such that [H : H̃ ] ≤ mm. Let 1 = h1, . . . , hr

denote representatives of H/H̃ . Then the line h1u ⊗ h2u ⊗ · · · ⊗ hru ∈ SymrW is

decomposable and invariant under H . By (ii), u ∈ ChGo(W ).

Proposition 4.7. — Let a family (M,∇, V, {∇i}), parametrized by an irreducible, re-

duced X, be given. Let G be an algebraic subgroup of GL(V ). Suppose that Gal(x) ⊂ G

holds for every closed point x of X. There exists an open non-empty subset X ′ such

that the set X ′(U(Go) ⊂) is constructible.

Proof. — As always, we may suppose that M is free. Let W be the G-module

having the properties of Theorem 4.5 and Corollary 4.6. By Proposition 4.4, there

corresponds to W a family (N ,∇,W, . . . ), parametrized by an open non-empty subset

X ′ of X . Again we may suppose that N is free. Consider some integer r with 1 ≤

r ≤ mm, where m := [G : Go]. The set S(r) of elements u = u1 ⊗ · · · ⊗ ur ∈ SymrW

with all ui 6= 0, and not all ui belonging to ChGo(W ), is constructible. By part (1)

of Corollary 4.2, the set X ′(r), consisting of the closed points x ∈ X ′(C) such that

Gal(x) fixes a line Cu ⊂ SymrW with u ∈ S(r), is constructible. X ′(U(Go) ⊂) is

constructible since it is, by Corollary 4.6, the complement in X ′ of
⋃

1≤r≤mm X ′(r).
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4.5. The final step, involving the Singer condition. — As before, an algebraic

subgroup G ⊂ GL(V ) is given. We suppose that G satisfies the “Singer condition”.

Let a family F := (M,∇, V, local data), parametrized by an irreducible, reduced

X , be given. We will show, by induction on the dimension of X , that X(= G) is

constructible.

We have shown that there exists an open non-emptyX ′ ⊂ X such thatX ′(U(Go) ⊂

,⊂ G) is constructible. By induction, {x ∈ X \ X ′ | Gal(x) = G} is constructible.

After replacing X with an irreducible component of X ′(U(Go) ⊂,⊂ G), one has

U(Go) ⊂ Gal(x) ⊂ G for all x ∈ X .

Consider a faithful G/U(Go)-module W . The family F induces a family G :=

(N ,∇,W, local data), parametrized by X . For every x ∈ X(C), one has Gal(x) ⊂

G/U(Go). For the family G, we have to prove that X(= G/U(Go)) is constructible.

We change the notation and write G for G/U(Go) and V for W . If G is finite, then

an application of Proposition 4.1 finishes the proof. If G is infinite, then Go is a torus

and Go lies in the center of G (this is precisely the Singer condition).

We continue the proof. For a closed point x and a singular point aj one obtains

a differential module M(x, aj) := C((z − aj)) ⊗ M̂(x)aj
over the differential field

C((z−aj)). Let PV F (x, aj) denote a Picard–Vessiot field for this differential module.

The formal local Galois group Gal(x, aj) is the group of the differential automorphisms

of PV F (x, aj)/C((z − aj)). Let PV F ⊃ C(z) denote the Picard-Vessiot field for the

generic differential module M(x)ξ over C(z). The differential Galois group Gal(x) is

the group of the differential automorphisms of PV F/C(z). This group is canonical

embedded into GL(V ) by our constructions. There exists a C(z)-linear embedding

PV F ⊂ PV F (x, aj). This induces an injective algebraic homomorphism Gal(x, aj) →

Gal(x). Another embedding changes this homomorphism by conjugation (with an

element in Gal(x)). The connected component of the identity Gal(x, aj)
o is mapped

to a subgroup of Gal(x)o ⊂ Go, and lies therefore in the center of G and Gal(x). In

particular, the image of Gal(x, aj)
o in G does not depend on the chosen embedding

PV F → PV F (x, aj).

We note that the local connection M(x, aj) is semi-simple since the formal local

differential Galois group does not contain Ga. Therefore there are finitely many

possibilities for the equivalence class of M(x, aj). It is easily seen that this equivalence

class depends in a constructible way on x. Therefore there exists an open non-empty

subset of X , where the equivalence classes of M(x, aj) does not depend on x. After

restricting to this open subset, all the differential modules M(x, aj) are isomorphic.

In particular, PV F (x, aj) and Gal(x, aj) do not depend on x. We will write PV F (aj)

and Gal(aj) for these objects. For a fixed embedding PV F → PV F (aj), one has a

fixed image of the groups Gal(x, aj) = Gal(aj) into Gal(x). Moreover, the image of

Gal(x, aj)
o into Gal(x) does not depend on any choice and is independent of x.
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Let H ⊂ Go denote the subgroup, generated by the images of all Gal(aj)
o. Then

H does not depend on x and H is a connected normal subgroup of G. Now we take a

faithful G/H-module W and its corresponding family, parametrized by a non-empty

open subset X ′ of X . For notational convenience, we replace G with G/H . For this

new family, parametrized by X ′, one has:

(i) the differential Galois groups are contained in G,

(ii) the formal local differential Galois groups are finite,

(iii) the singularities are regular singular,

(iv) the group Gal(x) is generated (as an algebraic group) by the finite local differ-

ential Galois groups.

We have to show that X ′(= G) is constructible.

By [BS64] Lemme 5.11 (also known as Platonov’s Theorem), there is a finite sub-

group E ⊂ G that maps surjectively to G/Go. The surjective map G̃ := Go ×E → G

has a finite kernel. The group G̃ has the property: any subgroup generated by s

subgroups, each one of order bounded by some D, is finite (and in fact contained in

Go[m] × E for a suitable m depending in D). Thus the same statement holds for G.

It follows that all Gal(x) are finite. If Go 6= {1}, then X ′(= G) = ∅. If Go = {1},

then G is finite and therefore X ′(= G) is constructible.

5. Non-constructible sets X(= G)

The aim of this section is to produce for any linear algebraic G that does not satisfy

the “Singer condition”, a family of differential equations, parametrized by some X ,

such that X(= G) is not constructible. We start by investigating a rather special case

namely, G is a semi-direct productG = ToE. HereE is a finite group and T is a torus.

Furthermore, there is given a homomorphism of groups ψ : E → Aut(T ). The group

structure of G is then defined by the formula ete−1 = ψ(e)(t). The induced action φ

of E on the character group X(T ) of T , is given by the formula (φ(e)χ)(t) = χ(e−1te).

Lemma 5.1. — The following properties of G = T o E are equivalent.

(i)
∑

e∈E im(φ(e) − 1) has finite index in X(T ).

(ii)
⋂

e∈E ker(φ(e) − 1) = 0.

(iii) The E-module X(T )⊗ Q does not contain the trivial representation.

(iv) The center of G is finite.

Proof. — The vector space X(T )⊗Q is an E-module and can be written as a direct

sum of irreducible E-modules I1, . . . , Ir. Consider a non-trivial irreducible represen-

tation ρ : E → GL(W ) over Q. Then the submodule
∑

e∈E im(ρ(e) − 1) of W is not

zero and hence equal to W . Moreover,
⋂

e∈E ker(ρ(e)−1) is a proper submodule of W

and hence equal to {0}. For the trivial, 1-dimensional representation ρ : E → GL(Q),
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one has that
∑

e∈E im(ρ(e) − 1) = 0 and
⋂

e∈E ker(ρ(e) − 1) = Q. This proves the

equivalence of (i),(ii) and (iii).

The elements of T can be considered as group homomorphisms t : X(T ) → C∗.

If t lies in the center of G then χ(e−1te) = χ(t) for every χ and every e ∈ E. This

translates into: t is equal to 1 on the submodule
∑

e∈E im(φ(e)− 1). This proves the

equivalence of (i) and (iv).

Lemma 5.2. — As above G = ToE. Suppose that X(T )⊗Q is a non-trivial irreducible

E-module. Let H be an algebraic subgroup of G which maps surjectively to E. Then:

(i) If H 6= G, then there exists an integer n ≥ 1 such that H ⊂ T [n] o E. Here

T [n] denotes the subgroup of T consisting of the elements with order dividing n.

(ii) Let e ∈ E have order m > 1 and let t ∈ T be given as a homomorphism

t : X(T ) → X(T )/ ker(φ(e) − 1) → C∗. Then (te)m = 1.

(iii) There exist integers N,M ≥ 1 and subgroups Gn ⊂ T [n] o E for all n ≥ 1 such

that the following holds.

(a) The index of Gn in T [n] o E is bounded by a constant independent of n.

(b) G and every Gn is generated, as an algebraic subgroup, by N elements of

order ≤M .

Proof

(i) Since H → E is surjective, H ∩ T and the subtorus (H ∩ T )o of T are invariant

under the action of E on T . There exists a unique submodule N ⊂ X(T ) such that

X(T )/N has no torsion and (H ∩ T )o consists of the homomorphisms t : X(T ) → C∗

which are 1 on N . If N = X(T ), then H is finite and clearly contained in T [n] o E

for some n ≥ 1. If N 6= X(T ), then N = 0 and H = G.

(ii) One verifies that

(te)m = t · ψ(e)(t) · ψ(e2)(t) · · ·ψ(em−1)(t).

For any character χ one finds

χ((te)m) = χ(t) · (φ(e−1)χ)(t) · · · (φ(e−m+1χ)(t).

Therefore we have to show that t has value 1 on the submodule (1 + φ(e−1) + · · · +

φ(e−m+1))X(T ) of X(T ). Since this submodule is contained in ker(φ(e−1) − 1) =

ker(φ(e) − 1), one concludes that (te)m = 1.

(iii) For G one takes as set of generators E and an element te, with e ∈ E of order

m, t ∈ T of infinite order and te of order m. It follows from (i) that G is generated,

as an algebraic subgroup, by this set.

Consider an integer n > 1. Let Gn be the subgroup of T [n] o E generated by E

and for every e ∈ E a collection of products te, with t ∈ T , that we now describe.

Let e ∈ E have order m > 1. Take a Z-basis b1, . . . , br of X(T )/ ker(φ(e) − 1) and

define the homomorphisms h1, . . . , hr : X(T )/ ker(φ(e) − 1) → C∗ by hi(bj) = 1 if

i 6= j and hi(bi) = ζn for i = 1, . . . , r and with ζn a fixed nth root of unity. The tie
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that we use as generators of Gn are ti : X(T ) → X(T )/ ker(φ(e) − 1)
hi→ C∗. Part

(b) is clear. For the proof of part (a) we consider the obvious map α : X(T ) →

M := ⊕e∈EX(T )/ ker(φ(e) − 1). This map is injective by Lemma 5.1. For every

homomorphism h : M → µn, (here µn denotes the group of the nth roots of unity),

the element t = h ◦ α belongs to Gn. Let N denote the smallest submodule of

M such that im α ⊂ N and M/N has no torsion. The image of Hom(M,µn) →

Hom(X(T ), µn) = T [n] is contained in Gn. Further, Hom(M,µn) → Hom(N,µn) is

surjective. Now (a) follows from [N : im α] <∞.

Proposition 5.3. — Suppose that C is the field of the complex numbers C. Let G =

T o E and suppose that X(T ) ⊗ Q is a non-trivial irreducible E-module. There is a

moduli space M such that M(= G) is not constructible.

Proof. — Let G ⊂ GL(V ) be a faithful irreducible representation. Fix a finite subset

{a1, . . . , as} of C∗ and integers di > 1 for i = 1, . . . , s. Let π1 denote the fundamental

group of P1
C
\ {a1, . . . , as} with base point 0. Take loops λ1, . . . , λs ∈ π1 around the s

points such that π1 is generated by λ1, . . . , λs and such that the only relation between

these generators is λ1 · · ·λs = 1. From Lemma 5.2 it follows that for a suitable choice

of s and the di, there exist homomorphisms ρ, ρn : π1 → G ⊂ GL(V ) with the

following properties:

(a) ρ(λi) and the ρn(λi) have order di (for i = 1, . . . , s),

(b) the image of ρ is Zariski dense in G and Gn = im ρn for every n.

The Riemann-Hilbert correspondence attaches to each ρn a differential module

Mn
∼= C(z) ⊗ V over C(z) (unique up to conjugation). For each Mn and each i one

chooses the local data at ai of the form d
d(z−ai)

+ Ai

z−ai
, where Ai is a diagonal map with

diagonal entries in [0, 1) ∩ Q (independent of n) and such that the local monodromy

has order di. This defines a unique connection (Mn,∇) with generic differential

module Mn. Now Mn is in general not free, but has the form O(k1) ⊕ · · · ⊕ O(kv)

with k1 ≥ · · · ≥ kv and v := dimV . The sum k1 + · · · + kv is fixed since the local

exponents of ΛvMn are given. Since ρn is irreducible the defect of Mn is uniformely

bounded (see [MvdP03, Proposition 6.21]). It follows that there is an infinite subset

I ⊂ N such that Mn type k1 ≥ · · · ≥ kv for all n ∈ I. The embedding of V

in Mn and the regularity of Mn at the point z = 0 yield a canonical isomorphism

C[z](z) ⊗ V → (Mn)0. One defines now a moduli problem by fixing the type of the

vector bundle M (namely k1 ≥ · · · ≥ kv), an identification C[z](z) → M0 and the

above local data. There is a universal family, parametrized by a variety M. Then

M(= Gn) is not empty for n ∈ I. We remove from M(⊂ G) the union of the finitely

many closed subsets M(⊂ T o E′) with E′ a proper subgroup of E. For notational

convenience we call the result again M(⊂ G). The set M(= G) is the complement in

M(⊂ G) of the sets Zn := M(⊂ T [n!] o E) for n ≥ 1. It suffices now to show that
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∪n≥1Zn is not constructible. Indeed, M(= G) is the complement in the closed set

M(⊂ G) of the non-constructible set ∪n≥1Zn.

By construction, {Zn} is an increasing (not stationary) sequence of closed sets.

Suppose that this union is equal to ∪d
i=1Oi∩Fi with open sets Oi and closed sets Fi’s.

For some i the sets Zn ∩ (Oi ∩Fi) from again an increasing (not stationary) sequence

of closed subsets. After replacing Oi ∩Fi by a suitable irreducible component, say Y ,

we have an increasing sequence of closed subsets Yn = Zn ∩Y with union Y and such

that each Yn 6= Y . We may suppose that Y is affine of dimension d > 0 and consider a

finite morphism Ad
C
→ Y . It follows that Ad(C) is a countable union of proper Zariski

closed subsets. This is not possible because the field C is uncountable.

Remarks 5.4
(1) The moduli space M occuring in the proof of Proposition 5.3 is in general not

the one studied in detail in [Ber02], since the vector bundle M need not be free.

Suppose that one of the local data d
d(z−ai)

+ Ai

z−ai
is such that the eigenvalues of Ai

have multiplicity 1, then one can change each Mn (with n ∈ I) into a free vector

bundle by shifting the eigenvalues of Ai over integers. There are only finitely many

ways to do this. Thus for some infinite subset I ′ ⊂ I one single change of Ai will

make all Mn with n ∈ I ′ into a free vector bundle. Now one can define the moduli

space M by a free vector bundle M with H0(P1
C
,M) identified with V and with the

prescribed local data.

(2) Proposition 5.3 remains valid for the case where C is any uncountable algebraically

closed field of characteristic 0. Indeed, one may replace C be a subfield, still uncount-

able and algebraically closed, of cardinality less than or equal to that of C. Then C is

embedded into C. The moduli space M of the proof descends to C, i.e., M = N⊗C C

for a suitable space N. The group G is given as an algebraic subgroup of GL(V ) where

V is a vector space over C. One easily verifies that M(⊂ G ⊗C C) = N(⊂ G) ⊗C C.

The same statement is valid for the groups Gn. It follows that N(= G) is not con-

structible.

Suppose that the algebraically closed field C is countable. Then any algebraic

variety Z, of finite type over C, is the countable union of its finite (closed) subsets.

It seems possible that Proposition 5.3 and Theorem 5.5 do not hold for C. However,

Example 2.6 remains valid for this C.

We now give the proof of the general result, omitting some of the more obvious

details.

Theorem 5.5. — Let C be the field of the complex numbers C. Suppose that the linear

algebraic group G does not satisfy the Singer condition. Then there is a moduli space

M such that M(= G) is not constructible.

SÉMINAIRES & CONGRÈS 13
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Proof. — As we will show, it suffices to prove this theorem for a linear algebraic group

G′ for which there exists a surjective morphism G′ → G with finite kernel. According

to a result of Platonov, there exists a finite subgroup E of G such that E → G/Go

is surjective. Thus we may replace G with Go o E. The group Go/U(Go) is a torus.

We will need the following lemma.

Lemma 5.6. — (We use the above notations.) There is a torus T ⊂ Go, invariant

under conjugation by the elements of E, such that T → Go/U(Go) is surjective and

has finite kernel.

Proof. — First we will assume that Go is reductive. Then, by [Sp98] Corollary 8.1.6

(Go, Go) is semi-simple and Go = (Go, Go) ·R(Go), where R(Go) is the radical of Go.

By [Sp98] Proposition 7.3.1, R(Go) is a central torus and R(Go) ∩ (Go, Go) is finite.

Furthermore, by [Sp98] Theorem 8.1.5, we have (Go, Go) ⊂ U(Go). The surjectivity

of the morphism R(Go) → Go/(Go, Go) implies that Go/(Go, Go) is a torus and thus

(Go, Go) = U(Go). Now R(Go) is a characteristic subgroup of Go and in particular

eR(Go)e−1 = R(Go) for all e ∈ E. Thus we can take T = R(Go) in this case.

We now consider the general case. We take T to be a maximal torus in R(Go).

We have R(Go) = Ru(Go) o T , where Ru(Go) is the unipotent radical of Go. The

image of R(Go) under the map π : Go → Go/Ru(Go) is the radical of Go/Ru(Go).

Thus π(T ) = π(R(Go)) is the radical of Go/Ru(Go). It follows that T → Go/U(Go)

is surjective and has a finite kernel.

We are left with showing that there exists a maximal torus T ′′ which is invari-

ant under conjugation by the elements of E. We use the following notation: H1 =

R(Go), U1 = Ru(Go); let U1 ⊃ · · · ⊃ Ua = 0 be a decreasing family of closed charac-

teristic subgroups such that each Ui/Ui+1 is an abelian group and hence isomorphic

to a C-vector space. Since the Ui are characteristic subgroups, they are invariant

under conjugation with the elements of E. In particular, Ui/Ui+1 has a linear action

of the group E. In other words, Ui/Ui+1 is an E-module.

As above, we fix a maximal torus T . Every maximal torus is conjugated to T by an

element which can be chosen in U1. Thus for e ∈ E there is an element c(e) ∈ U1 such

that eT e−1 = c(e)Tc(e)−1. Let N denote the linear subspace of U1/U2 consistsing

of the elements n such that nTn−1 and T are equal modulo U2. We claim that N

is an E-submodule of U1/U2. Indeed, e−1neT (e−1ne)−1 = e−1nc(e)Tc(e)−1n−1e =

e−1c(e)nTn−1c(e)−1e = e−1c(e)Tc(e)−1e = T . Let C(e) ∈ (U1/U2)/N denote the

image of c(e). By construction, C(e) does not depend on the choice of c(e). The

map e 7→ C(e) is a 1-cocycle with values in the E-module (U1/U2)/N , i.e., C(e1e2) =

C(e1) ·e1C(e2)e
−1
1 . This 1-cocycle is trivial because (U1/U2)/N is a vector space over

a field of characteristic 0. We conclude that there exists a conjugate T ′ of T such

that for every e ∈ E the two tori eT ′e−1 and T ′ are equal modulo U2. Now one

considers the subgroup U2 o T ′ with its E-action. By induction (with respect to a)
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one concludes that U2 o T ′ contains a maximal torus T ′′ invariant under the action

of E.

We continue the proof of the theorem. T is chosen as in the above Lemma. We

may replace Go with U(Go) o T . Since G does not satisfy the Singer condition, the

character group X(T ) of T contains a, non-trivial, irreducible E-submodule N such

that X(T )/N has no torsion. After replacing T with a torus T ′ such that T ′ → T is

surjective and has a finite kernel, one can write T as a product of two tori T1 and T2,

both invariant under conjugation by E and such that the group T2 o E satisfies the

assumptions of Lemma 5.2.

The result after these changes is a group G′ of the form

(U(Go) o T1) o (T2 o E)

which maps surjectively to G and has a finite kernel. We will produce a moduli space

M such that M(= G) is not constructible.

One takes a finite subset {b1, . . . , bt, a1, . . . , as} in C∗. The fundamental group

π1 of the complement of this set in P1
C
, with base point 0, is given generators

µ1, . . . , µt, λ1, . . . , λs according to loops around these points. The only relation is

µ1 · · ·µtλ1 · · ·λs = 1. We will consider homomorphisms ρ : π1 → G′ by assigning im-

ages for these t+ s generators. For notational convenience we will ignore the relation

between the generators of π1. The trick which allows us to do so is the following.

One doubles the finite set by adding new points a∗s, . . . , a
∗
1, b

∗
t , . . . , b

∗
1. The funda-

mental group has now generators µ1, . . . , µt, λ1, . . . , λs, λ
∗
s, . . . , λ

∗
1, µ

∗
t , . . . , µ

∗
1. The

only relation is their product being 1. Suppose that we want to assign elements

g1, . . . , gt, h1, . . . , hs ∈ G′ to µ1, . . . , λs. Then for the larger fundamental group, we

complete this by assigning h−1
s , . . . , h−1

1 , g−1
t , . . . , g−1

1 to the generators λ∗s, . . . , µ
∗
1.

The homomorphisms ρ′n : π1 → G′ that interest us are given by:

(a) ρ′n(µ1), . . . , ρn(µt−1) ∈ U(Go); these elements are unipotent, 6= 1 and they

generate U(Go) as an algebraic group. Moreover, these elements will not depend

on n.

(b) ρ′n(µt) ∈ T1 which generates T1 as an algebraic group. Moreover, this element

will not depend on n.

(c) ρ′n(λ1), . . . , ρ
′
n(λs) ∈ T2 o E are chosen as in the proof of Proposition 5.3.

As indicated above, this is completed by assigning values to µ∗
t , . . . , λ

∗
1. The ho-

momorphism ρn : π1 → G are obtained by composing ρ′n with G′ → G. We take

an irreducible faithful G-module V . Riemann-Hilbert produces a differential module

Mn = C(z) ⊗ V with singularities in the set {b1, . . . , a1, . . . , a
∗
s, . . . , b

∗
t , . . . , b

∗
1}.

The local monodromies at the points b1, . . . , bt are fixed and we choose local con-

nections for these singular points. For the local connections at the regular singular

points a1, . . . , as we make a choice which fits infinitely many of the ρn. The local

data at the other points a∗s, . . . , b
∗
1 are just the negatives of the corresponding points
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in {b1, . . . , as}. As in the proof of Proposition 5.3, there exists an infinite subset

I of N, such that the corresponding vector bundles Mn have the same type. This

defines the moduli problem and the moduli family, parametrized by some space M.

According to Proposition 4.7, M(U(Go) ⊂,⊂ G) is constructible. Let H denote the

image of the group U(Go) o T1 in G. Then it can be seen that M(H ⊂,⊂ G) is also

constructible. The final part of the proof of Proposition 5.3 applies here as well and

the result is that M(= G) is not constructible.

Remarks 5.7. — Another formulation of the Singer condition.

(1) The constructions in Lemma 5.1, Lemma 5.2, Proposition 5.3 and Theorem 5.5

lead to the following observation:

A linear algebraic group G does not satisfy the Singer condition if and only if it

has a factor group H of dim ≥ 1 with the following properties: There exist integers

N,M, I > 1 such that every algebraic subgroup K ⊂ H which is mapped surjectively

to H/Ho contains an algebraic subgroup of index ≤ I which is, as algebraic group,

generated by N elements of order ≤M .

(2) Theorem 5.5 remains valid for an algebraically closed field C that is not algebraic

over Q (See Remarks 5.4).

(3) For Theorem 3.6 to hold, it is essential to consider families of differential equations

on P1. Consider for example an elliptic curve E over C and a family of connections

of rank 1 above this curve, parametrized by a suitable X . For every closed point x,

one has Gal(x) ⊂ Gm,C = C∗. In [S93, p.384], a family of this type is given such that

X(= C∗) is not constructible. The reason is the following. The family can be pushed

down, by the canonical morphism E → P1, to a family of rank two connections on

P1 parametrized by, say, Y . This produces essentially the Lamé family of Example

2.6. As we have seen, the set Y (= DSL2
∞ ), which coincides with X(= C∗), is not

constructible.
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