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FORMALIZED PROOF, COMPUTATION, AND THE

CONSTRUCTION PROBLEM IN ALGEBRAIC GEOMETRY

by

Carlos Simpson

Abstract. — This is an informal discussion of how the construction problem in alge-

braic geometry, that is the problem of constructing algebraic varieties with various

topological behaviors, motivates the search for methods of doing mathematics in a

formal, machine-checked way. I also include a brief discussion of some of my work on

the formalization of category theory within a ZFC-like environment in the Coq proof

assistant.

Résumé(Les preuves formalisées, le calcul, et le problème de la construction en géométrie
algébrique)

Ceci est une discussion informelle de la façon dont le problème de la construc-

tion des variétés algébriques avec diverses comportements topologiques, motive la

recherche des méthodes formelles dans l’écriture des mathématiques vérifée sur ma-

chine. Aussi incluse est une discussion brève de mes travaux sur la formalisation de

la théorie des catégories dans un environnement « ZFC » en utilisant l’assistant de

preuves Coq.

It has become a classical technique to turn to theoretical computer science to

provide computational tools for algebraic geometry. A more recent transformation

is that now we also get logical tools, and these too should be useful in the study of

algebraic varieties. The purpose of this note is to consider a very small part of this

picture, and try to motivate the study of computer theorem-proving techniques by

looking at how they might be relevant to a particular class of problems in algebraic

geometry. This is only an informal discussion, based more on questions and possible

research directions than on actual results.

This note amplifies the themes discussed in my talk at the “Arithmetic and Dif-

ferential Galois Groups” conference (March 2004, Luminy), although many specific

points in the discussion were only finished more recently.
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c© Séminaires et Congrès 13, SMF 2006



368 C. SIMPSON

I would like to thank: André Hirschowitz and Marco Maggesi, for their invaluable

insights about computer-formalized mathematics as it relates to algebraic geometry

and category theory; and Benjamin Werner, M. S. Narasimhan, Alain Connes, Andy

Magid and Ehud Hrushowski for their remarks as explained below.

1. The construction problem

One of the basic problems we currently encounter is to give constructions of alge-

braic varieties along with computations of their topological or geometric properties.

We summarize here some of the discussion in [Sim04a].

Hodge theory tells us much about what cannot happen. However, within the

restrictions of Hodge theory, we know very little about natural examples of what

can happen. While a certain array of techniques for constructing varieties is already

known, these don’t yield sufficiently many examples of the complicated topological

behavior we expect. And even for the known constructions, it is very difficult to

calculate the properties of the constructed varieties.

This has many facets. Perhaps the easiest example to state is the question of

what collections of Betti numbers (or Hodge numbers) can arise for an algebraic

variety (say, smooth and maybe projective)? For the present discussion we pass

directly on to questions about the fundamental group. What types of π1 can arise?

We know a somewhat diverse-sounding collection of examples: lattices, braid groups

(in the quasiprojective case) [MT88], all kinds of virtually abelian groups, solvable

groups [SVdV86], plenty of calculations for plane complements of line arrangements

and other arrangements in low degrees [Lib82] [CO00] [ACT02], Kodaira surfaces,

many examples of non-residually finite groups [Tol93]. Which π1’s have nontrivial

representations? Recall for example an old result:

Theorem. — Any nonrigid representation of a Kähler group in PSL(2, C) comes by

pullback from a curve.

Conversely, there exist nonrigid representations of rank > 2 which don’t come by

pullback from curves. However, in a more extended sense all of the known examples

of representations come from rigid representations (which conjecturally are motivic)

and from representations on curves, by constructions involving Grothendieck’s “six

operations” (cf. [Moc03]). In particular, the irreducible components of moduli vari-

eties of flat connexions MDR which are known, are all isomorphic to moduli varieties

of representations on curves.

An early example of this phenomenon was Lawrence’s construction of represen-

tations of the braid group [Law90]. For braid groups or generalized mapping class

groups, Kontsevich has a conjecture dating from around 15 years ago, which would

give an explicit description of what all representations should be in terms of higher

direct images. (These two things should have been mentionned in [Sim04a]).
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Nonetheless, over general quasiprojective varieties it seems likely that there are

other “new” representations but that we don’t know about them because it is difficult

to master the computational complexity of looking for them.

An intermediate construction might be as follows: suppose we have a family

{Vt} of local systems on X , such that there is a closed locus Z ⊂ MDR(X) where

dimHi(Xy, Vt) jumps for t ∈ Z. Then the family {Riπ∗}t∈Z might be a compo-

nent of the moduli space of local systems on Y . Thus the whole topic of variation

of differential Galois groups could lead to some “semi-new” components in this way.

Nonetheless, this doesn’t go too far toward the basic question of finding cases where

there are lots of representations for a general reason.

2. Logic and calculation

The construction problem results in a complex logical and computational situa-

tion, not directly amenable either to pure theoretical considerations, or to brute-force

calculation. This could open up the road to a new type of approach, in a direction

which was forseen by the INRIA group in Rocquencourt, when they baptised their

research group “Logi-Cal”. The idea behind this name was that it is becoming neces-

sary to combine logic and calculation. The origins of this requirement lay in computer

science, exemplified for example by the notions of “proof-carrying code” and verified

and extracted programs. The “Logi-Cal” idea was very cogently explained by Ben-

jamin Werner in an exposé in Nice a few years ago, in which he described its possible

applications to pure mathematics using the example of the four-color theorem. He

explained that it would be good to have a proof of the four-color theorem which

combines computer verification of the theoretical details of the argument, with the

computer computations which form the heart of the proof. He said that we could hope

to have the whole thing contained in a single document verified by a single program.

In a spectacular advance, this project has recently been completed by G. Gonthier,

who gives a full computer-verified proof of the four-color theorem in Coq [Gon04].

Thomas Hales’ “Flyspeck project” [Hal] is another current example of a project in

the direction of using computer proof techniques to combine theory with calculation,

in that case for the proof of the Kepler conjecture.

It seems clear that this very nice idea should have repercussions for a much wider

array of topics. The possibility of combining logic and computation will open up new

routes in algebraic geometry. This is because there are questions such as those related

to the construction problem above, which are susceptible neither to pure reasoning

nor to pure computation. At this conference Andy Magid mentionned an interesting

case: he had tried some time ago to compute examples of positive-dimensional repre-

sentation varieties for finitely presented groups with more relations than generators

(cf. [AB00] [Gro89] [Cat96]). He reported that the computational complexity of
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the question (which depends on parameters like the number of generators, the num-

ber and length of the relations, and the value of n if we look for representations

in GL(n)) became overwhelming even for very small parameters. In the algebraic-

geometric case, we might want to take concrete varieties, compute presentations for

their fundamental groups (using braid-group techniques for example) and then com-

pute the representation spaces. Magid’s remarks suggest that a brute-force approach

to this computation will not be feasible. On the other hand, purely theoretical tech-

niques are unlikely to answer the most interesting question in this regard, namely: are

there new or exceptional examples which are not accounted for by known theoretical

reasons? Thus the interest of looking for a mixed approach combining theory and

computation. Implementation of such an approach could be significantly enhanced

by computer-formalized proof techniques providing an interface between theory and

calculation.

Another example seen in this conference was Ehud Hrushowski’s talk about al-

gorithmic solutions to the problem of computing differential Galois groups. While

showing that in principle there were algorithms to make the computation, it ap-

peared likely that the complexity of the algorithms would be too great to permit their

direct implementation. It would be good to have precise information about the com-

plexity of this kind of question. This undoubtedly would require substantial input

from algorithmic complexity theory. Some things are known for related problems, see

[vdDS84] for example. The known bounds tend to be be high, so again one would

like to envision a mixed approach in which theory provides shortcuts in determina-

tion of the answers. An interesting theoretical question is then to what extent there

is a relation between proof complexity for the theory part [Bus98], and algorithmic

complexity for the calculational part.

Of course mixing between theory and computation has always taken place within

mathematical work, a good example is [GP78]. There have also recently been ad-

vances in the use of algorithmic methods to attack problems such as the topology of

real varieties [Bas03] [BPR03]. The editor points out [Bro87] which constitutes a

striking example (for the case of the Nullstellensatz) where mathematical theory can

considerably improve computational bounds.

The relevance of computerized formulation of the theory part is that it might

well permit the process to go much farther along, as it would make available the

advances in computational power to both sides of the interaction. Currently we

can benefit from advanced computational power on the calculation side, but this

can outstrip the capacity of theory to keep up. This phenomenon was emphasized

by Alain Connes in his talk (and subsequent comments) at the PQR conference in

Brussels, June 2003. He pointed out that with computer algebra programs he could

come up with new identities which took pages and pages just to print out; and that

it would be good to have tools for interpreting this new information which often
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surpasses our classical human sensory capacities. It is possible that interface tools

could be of some help, but likely in the end that we would want to connect these

things directly to theoretical proof software—a step which might on some levels bypass

human understanding altogether.

A related area in which it might be useful to have a mixture of theory and compu-

tation when looking for construction results is the Hodge conjecture. There are many

concrete situations in which we expect to find certain algebraic cycles, but don’t

in general know that they exist. For example, the Lefschetz operators or Kunneth

projectors are automatically Hodge cycles. It would be interesting to take explicit

varieties and search for algebraic cycles representing these Hodge classes. As in the

search for representations, a brute-force approach would probably run out of steam

pretty fast, and it would be interesting to see what a mixed approach could attain.

A related question is the search for constructions of varieties where the Lefschetz or

Kunneth operators are topologically interesting, namely cases where the cohomology

is not mostly concentrated in the middle dimension.

Finally we mention a more vague direction. In the above examples we are looking

for constructions with a certain desired topological or geometrical behavior. However,

it may also be interesting to consider the question of what we get when we look

at an arbitrary algebraic-geometric construction process or algorithm. This type of

question is related to the field of dynamical systems, and has been popularized by S.

Wolfram. There are probably many places to look for interesting processes in algebraic

geometry. Insofar as a given process produces an infinite, combinatorially arranged

collection of output, it opens up questions of asymptotic behavior, and more generally

the arrangement of results with respect to measurable properties on the output, as

well as dependence on the algorithm in question. For this type of research it would

seem essential to have tools relating theoretical properties in algebraic geometry to

algorithmic questions.

3. The Bogomolov-Gieseker inequality for filtered local systems

We go back to look more closely at the computational issues in constructing rep-

resentations of algebraic fundamental groups. There are various different possible

approaches:

–construct the representations directly on a presentation of π1;

–construct directly the connections (E,∇) or the Higgs bundles (E, θ);

–in the quasiprojective case, construct directly parabolic bundles, logarithmic con-

nections, or “filtered local systems”.

Most work up to now on the first approach has already had the flavor of mixing

computation and theory [MT88] [PS02] [Lib82] [GLS98] [DN01] [Bro83]. For

the second and third approaches, there is a Bogomolov-Gieseker inequality lurking

about. The basic example is the classical 3c2 − c2
1 ≥ 0 for surfaces of general type,
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with equality implying uniformization by the ball (and in particular the uniformiza-

tion gives a representation π1 → SU(2, 1)). This was used in Livné’s construction

[Moi77]. Subsequent results, as is well-known, concern stable vector bundles and

extensions to the cases of Higgs and parabolic structures [Don85] [UY86] [Biq96]

[Li00] [LN99] [LW99] [Moc03] [Nak96] [Sim90] [SW01]. In all these cases, we

only obtain representations in the case of equality, so it is hard to find numerical

genericity conditions which imply existence. The Bogomolov-Gieseker inequalities

come up in a fundamental way in the analysis of the quasiprojective case, where it

seems to be a problem of finding special configurations, say of divisors in the plane,

as well as special configurations of filtrations and weights to assign to the divisors, so

that equality will hold in the BGI.

For parabolic vector bundles, this problem has been considered and solutions were

found in D. Panov’s thesis [Pan05]. His investigation is deeper than the general

remarks we make below. One interesting point, showing the need for computer verifi-

cation of the interface between theory and computation, is that in order to successfully

get at the problem of looking for solutions, Panov had to spend some time and en-

ergy correcting a computational or typographical error in Biswas’ calculation of the

parabolic Chern classes [Bis97].

We will look at one facet of the problem—the case of filtered local systems—for

which at least the basic definitions are elementary. By a filtration of a vector space

we shall mean a filtration indexed by real numbers cf. [Sim90]. In particular grα
F

is nonzero for only a finite number of reals α. A filtration can be multiplied by a

positive real number λ: define (λF)α := F)λ−1α.

Fix a surface X with a divisor D which we shall assume (at first) to have normal

crossings. A filtered local system is a local system L on U := X − D together with a

filtration Fi at the nearby fiber to each irreducible component of D. Recall that if

Di is a component and Ti a tubular neighborhood of Di in Ui then the nearby fiber

is a fiber of the local system at a point Pi ∈ Ti. We require that the filtration Fi be

invariant under the monodromy over Ti. A parabolic version of the Riemann-Hilbert

correspondence makes filtered local systems correspond to parabolic logarithmic con-

nexions (this was pointed out for curves in [Sim90] and presumably it works similarly

in higher dimensions; also it was well-known in D-module theory for the case of integer

filtrations). We obtain the Chern classes of a filtered local system denoted ci(L,F)

which could be defined as the parabolic Chern classes of the corresponding parabolic

logarithmic connexion. We have the following formulae. The first Chern class is given

(as a cycle on X) by

c1(L,F) = −
∑

α,i

α dim
(

grFi
α (LPi

)
)

· Di.

The second Chern class combines a sum over intersection points Q of the divisors,

plus self-intersection contributions of the components and the square of c1. For each

intersection point choose an ordering of the two associated indices and note them
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by jQ, kQ. Let Q′ denote a point nearby to Q (in the intersection of the tubular

neighborhoods TjQ
and TkQ

). Define the local contribution

c2(L,F)Q := −
∑

α,β

αβdim
(

gr
FjQ
α gr

FkQ

β (LQ′)
)

,

then

c2(L,F) =
1

2
c1(L,F)2 −

1

2

∑

α,i

dim
(

grFi
α (LPi

)
)

· α2(Di.Di) −
∑

Q

c2(L,F)Q · Q.

The Chern classes allow us to define stability and semistability in the usual way

by comparing the slope with slopes of subobjects. These conditions should be equiv-

alent on filtered local systems and parabolic logarithmic connexions. Finally, there

should be a harmonic theory comparing these objects with parabolic logarithmic Higgs

bundles—where T. Mochizuki’s work [Moc02] [Moc03] comes in. We won’t say any-

thing about that here(1) except to say that it should lead to a Bogomolov-Gieseker

inequality (BGI) which we describe in a conjectural way. Here I would like to thank

M. S. Narasimhan for pointing out recently that it would be good to investigate the

BGI for logarithmic objects. He had in mind the logarithmic Higgs bundle case, but

it seems likely that all three cases would be interesting and the simplest to explain

and think about is filtered local systems.

The BGI would say that if (L,F) is a filtered local system which is semistable with

c1(L,F) = 0 then c2(L,F) ≥ 0 and in case of equality we get some kind of plurihar-

monic metric. The pluriharmonic metric should allow us to make a correspondence

with parabolic Higgs bundles and to use the transformations discussed in [Sim91] to

obtain other different representations of π1(U).

The first case to look at is when L is a trivial local system of rank r which we

denote by C r. It is easiest to understand the filtrations in this case, and also in this

way we don’t presuppose having any representations of π1(U). Even in this case, if

equality could be obtained in the BGI then the transformations of [Sim91] would

yield nontrivial representations. By tensoring with a rank one filtered local system,

we can assume that the filtrations are balanced:
∑

α

αdim(grFα (C r)) = 0.

This guarantees that the first Chern class will vanish. Now define the product of two

filtrations by

〈F ,G〉 :=
∑

α,β

αβdim
(

grFα grGβ (C r)
)

.

(1)A glance at his papers should convince the average reader of the value of having the help of a

computer to digest the argument.
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In this case the second Chern class (as a number) becomes

c2(C
r,F) = −

1

2

∑

i,j

〈Fi,Fj〉Di.Dj .

The stability condition is that if V ⊂ C r is any proper subspace, then
∑

α,i

αdim(grFi
α (V ))deg(Di) < 0.

The BGI can be stated as a theorem in this case:

Theorem. — If {Fi} is a collection of filtrations satisfying the stability condition,

then c2(C
r,F) ≥ 0, and if equality holds then there are irreducible representations of

π1(X − D).

The theorem in this case is a consequence of what is known for parabolic vector

bundles. Indeed, the collection of filtrations also provides a parabolic structure for

the trivial vector bundle (with the same Chern classes). If we use small multiples

{εFi}, then the stability condition as described above implies stability of the parabolic

bundle, so the Bogomolov-Gieseker inequality (plus representations in case of equality)

for parabolic bundles [Li00] [LN99] [Bis97] [Pan05] gives the statement of the

theorem.

It may be interesting to think of the minimum of c2(C
r,F) as some kind of measure

of how far we are from having representations of π1(U). We need to be more precise

because scaling the filtrations by a positive real number doesn’t affect stability and

it scales the second Chern class by the square. Put

‖F‖2 :=
∑

i,α

‖α‖2dim(grFi
α ) · deg(Di),

and

Υ(X, D, r) := min
{Fi}

c2(C
r,F)

‖F‖2

where the minimum is taken over collections of filtrations which give a nontrivial

stable filtered structure with c1(C
r ,F) = 0 on the constant local system C r . The

BGI says that Υ(X, D, r) ≥ 0 and in case of equality, there should(2) exist nontrivial

representations of π1(X − D).

The above considerations lead to the question of how Υ(X, D, r) behaves for ac-

tual normal crossings configurations on surfaces X . For simplicity, (X, D) might come

from a plane configuration after blowing up (for example, a plane configuration with

only multiple intersections, where we blow up once at each intersection point). The

first problem is computing Υ(X, D, r) and in particular calculating the local contri-

butions to the second Chern class at points which are not normal crossings (discussed

(2)This would require proving that the minimum is attained.
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in [Li00]). Computation of Υ(X, D, r) involves searching through the possible con-

figurations of filtrations. Most importantly, we would like to create configurations of

divisors Di in the plane which are interesting with respect to the invariant Υ.

This might be algorithmic: given some process for generating plane configurations,

what are the distribution, asymptotic behavior and other properties of the result-

ing numbers Υ? But even before we get to infinite families of configurations, the

simple problem of thoroughly analyzing what happens for specific configurations is

a nontrivial computational problem. Calculation of algebro-geometric and specially

topological properties of plane configurations goes back to Zariski and Hirzebruch,

and much work in this direction continues (see Teicher et al. [MT88] [RT97] . . . ).

One of the main characteristics of these computations is that they require significant

amounts of reasoning. Similarly, the computation of Donaldson invariants has re-

quired a significant amount of theoretical work [ELPS96] [OT02]. The problem we

are proposing above, consideration of the behavior of the BGI and the minima Υ in

the setting of a configuration, will quite likely fit into the same mold.

Back to the theoretical level, it might be interesting to look at whether we could

have a Gromovian phenomenon [Gro03] of simply connected varieties which look ap-

proximately non-simply-connected, which is to say that their “isoperimetric inequali-

ties” are very bad, with relatively small loops being the boundaries only of very large

homotopies. Also whether Bogomolov-Gieseker quantities such as Υ(X, D, r) being

small (but nonzero) might detect it. And again, we would like to have information

about the distribution of this phenomenon in combinatorial families of varieties.

4. The foundations of category theory

Unfortunately, the visions sketched above contrast with the rather limited state of

progress on the problem of computer formalization of theoretical mathematics such

as algebraic geometry. The space between what we would like to do, and what we

can concretely do right now is still much too big, but we have to start somewhere.

It is of course necessary to give a thorough overview of the many projects working

in this direction all over the globe; but this has been or is in the process of being

treated in other documents. In this note I will rather just describe the current state

of my own progress on this matter.

There are two Coq develoments attached to the source file of the arxiv version

of the present preprint.(3) One is a short self-contained file fmachine.v which is a

little demonstration of how pure computer-programming can be done entirely within

the Coq environment (we don’t even need Coq’s program-extraction mechanism).

(3)Go to the arxiv preprint’s abstract page, then to “other formats” and download the “Source”

format. The result is a tar archive containing the tex source file for the preprint but also the *.v

files in question. Compiles with v8.0 of the Coq proof assistant.
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The example which is treated is a forward-reasoning program for a miniature style

of first-order logic (compare [Rid04]). Programs such as this one itself may or may

not be useful for proof-checking in the future. The main point of interest is that

we can write a program entirely within Coq; this might point the way for how to

treat the programming side of things when we want to integrate computation with

mathematical theory. The notion of Coq as a programming language was mentionned

by S. Karrmann on the Coq-club mailing list [Kar04].

The other development continues with the environment described in [Sim04b]

where we axiomatized a very classical-looking ZFC within the type-theoretical envi-

ronment of Coq, maintaining access to the type-theory side of things via the realization

parameter R. This is based on a small set of axioms which purport to correspond

to how types are implemented as sets, following Werner’s paper [Wer97] —we don’t

give any argument other than refering to [Wer97] for why these axioms should be

consistent (and from [MW03] it appears that giving a full proof of this would not be

entirely straightforward).

Here we build on this by adding basic category theory. Newer—slightly updated–

versions of the files from [Sim04b] are included with the present development (in

particular one has to use the versions included here and not the older ones).(4) We

treat the notions of category, functor and natural transformation. We construct the

category of functors between two given categories. Then we treat limits and colimits,

and give examples of categories.

Most of what we have done here—and more—has already been done some time

ago in different contexts: Huet and Saibi, in Coq, in the context of “setoids” [HS00];

several articles in Mizar [BBT+]; and also(5) [BW90] [CLW95] [CW91] [FGR03]

[Geh94] [MMP+94] [Moh97] [RB88] [WS82]. We don’t actually claim that our

present treatment has any particular advantages over the other ones; the reason for

doing it is that we hope it will furnish a solid foundation for future attempts to treat

a wider range of mathematical theories.

(4)With this method of making public a continuing mathematical theory development project, the

files bundled with a given preprint do not all represent new material: some are copies of previous

ones possibly with slight modifications, while others are new but even the new ones will themselves

be recopied in the future.
(5)There is an extensive discussion of references about mechanizing category theory in a thread of

the QED mailing list, circa 1996, in response to a question posted by Clemens Ballarin. David

Rydeheard mentions work in the systems Alf, LEGO and Coq, and work by Dyckhoff, Goguen,

Hagino, Aczel, Cockett, Carmody and Walters, Fleming, Gunther, Rosebrugh, Gray, Watjen and

Struckmann, Hasegawa, and Gehrke. Masami Hagiya mentions work of his student Takahisa Mohri.

Ingo Dahn mentions a number of Mizar articles by Byĺınski, Trybulec, Muzalewski, Bancerek, Dar-

mochwal. Roger B. Jones mentions some work of his own. Pratt mentions work by Bruckland and

Walters, and tools for computation with finite categories by Rosebrugh. And Amokrane Saibi men-

tions his work with Huet in Coq. Evidently this list would have considerably to be expanded for

work up to the present day.
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We use the following approach to defining the notion of category. A category is

an uplet (with entries named over strings using the file notation.v as was explained

in [Sim04b]) consisting of the set of objects, the set of morphisms, the composition

function, the identity function, and a fifth place called the “structure”which is a hook

allowing us to add in additional structure in the future if called for (e.g. monoidal cat-

egories will have the tensor product operation encoded here; closed model categories

will have the fibration, cofibration and equivalence sets encoded here; sites will have

the Grothendieck topology encoded here etc.). The elements of the set of morphisms

are themselves assumed to be “arrows”which are triplets having a “source”, a “target”

and an “arrow” (to take care of the information about the morphism). In particular,

the functions source and target don’t depend on which category we are in. Func-

tors and natural transformations are themselves arrows, so the functions source and

target do a lot of work.

We treat limits in detail, and colimits by dualizing limits. The main technical work

is directed toward the formalized proof of the following standard theorem.

Theorem. — If a, b, and c are categories such that b admits limits over c, then

functor_cat a b also admits limits over c.

The proof is done in the file fc_limits.v. Intricacy comes from the need to use

the universal property of the pointwise limits in order to construct the structural mor-

phisms for the limiting functor, and then further work is needed to show that the func-

tor constructed in this way is actually a limit. The corresponding result for colimits is

obtained almost immediately by dualizing—the only subtlety being that opp (func-

tor_cat a b) is not equal but only isomorphic to functor_cat (opp a) (opp b).

Because of this we need to make a preliminary study of the invariance of limiting prop-

erties under isomorphisms of categories. This discussion will have to be amplified in

the future when we are able to treat equivalences of categories.

The importance of this theorem is its corollary that presheaf categories admit limits

and colimits. This will (in the future) be essential to theories of sheaves and hence

topoi; and theories of closed model categories, because many useful closed model

categories take presheaf categories as their underlying categories, and one of the main

conditions for a closed model category is that it should admit (at least finite) limits

and colimits.

One task which is worth mentionning is that we construct examples of categories

by various different methods, in the file cat_examples.v. The methods include sub-

categories of other categories; defining a category by its object set together with the

set of arrows between each pair of objects; and function categories which come in

two flavors, depending on whether we look at functions between the objects as sets

themselves or functions between their underlying sets (denoted U x).

A different approach is called for when we want to construct and manipulate finite

categories—important for example in relating classical limit constructions such as
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equalizers and fiber products, to the notion of limit as defined in general (done for

(co)equalizers in equalizer.v and (co)fiber-products in fiprod.v). It doesn’t seem

efficient to manipulate finite sets by directly constructing them, but instead to build

them with Coq’s inductive type construction and then bring them into play using the

realization parameter. This allows us to list the elements of a finite type by name,

and then to manipulate them with the match construction. To bridge from here to

the notion of category, we need to discuss the construction of categories (also functors

and natural transformations) starting from type-theoretic data: these constructions

catyd, funtyd and nttyd occupy a large place in little_cat.v.

We finish by pointing out how a theoretical category-theory development such as

presented here, is relevant for some of the more long-range projects discussed in the

beginning. This discussion is very related to L. Chicli’s thesis [Chi03] in which he

used Huet-Saibi’s category theory as the basis for the definition and construction of

affine schemes. The basic point is that to manipulate the fundamental objects of

modern (algebraic, analytic or even differential) geometry, we need to know what

a ringed space is, and better yet a ringed site or ringed topos. Thus we need a

theory of sheaves, and in particular a well-developed category theory, with functor

categories, limits and colimits, etc. The next items which need to be treated in the

present development are equivalences of categories, adjoint functors (and even fancier

things like Kan extensions), over-categories, monomorphisms and epimorphisms, then

sheaves and topoi.

If we want to access more recent developments in geometry, it will be essential to

have good theories of (possibly monoidal) closed model categories starting with the

small-object argument. On a somewhat different plane, it is clear that to manipulate

many of the geometric questions discussed above, we will need to have a good devel-

opment of linear algebra. This presents a number of categoric aspects, for example in

the notions of additive and abelian categories (again possibly with tensor structures).

There remain some thorny notational dilemmas still to be worked out before we can

do all of this. One example is that the right notion of “presheaf” is probably slightly

different from that of a functor: we probably don’t want to include the data of the

target category. This is because in general the target category will be a big category

for the universe we want to work in, whereas we would also like our presheaves to

be elements of the universe, and indeed we don’t necessarily want to specify which

universe it is for a given presheaf. So we will probably have to define a presheaf as

being a modified version of a functor where the target element of the arrow triple is

set by default to emptyset. This is the kind of thing which is easy to say in a few

phrases, but which in practice requires writing a whole new file containing material

similar (but not identical) to what is in functor.v.

It seems likely that once the definitional work is finished, subsequent geometrical

manipulations of these objects should be fairly easy to take care of, compared with
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the amount of foundational work necessary just to give the definitions. Unfortunately,

as best as I know nobody has gotten far enough to test this out.

5. Finite categories

The work on formalization of category theory, a priori a waypoint along the path

to formalizing algebraic geometry, also suggests its own research directions. When we

are forced to look very closely at the foundational details of a subject, there stand

out certain questions which would otherwise be overlooked in the usual rush to get on

with the abstract theory. An example, strongly representative of the general problem

of relating theory and computation, is the classification of finite categories [Til87].

For a given finite integer N , how many categories are there with N morphisms? What

do diagrams or other standard categorical constructions (functors, natural transfor-

mations, limits, adjoints, Kan extensions . . . ) look like in these categories, perhaps

in terms of asymptotic behavior with respect to N but also maybe just for small fixed

values? What additional structures can these categories have?

The question of classification of finite categories has been treated in [Til87] [Ste99]

[ST03] [Jon96] [Kie92] from a universal-algebra point of view. Their idea is to

define notions of variety or pseudovariety which are collections of objects closed under

direct product and subquotient,(6) and from these references we know a lot about the

structure and classification of pseudovarieties of finite categories. For example, Tilson

proves a classification theorem for locally trivial categories, those being the ones with

only identity endomorphisms of each object: the answer is that they are subquotients

of products of the two-arrow category whose limits are equalizers [Til87]. Related

are [ABLR02], [AW98] [AS04] [JP92] [Pin95] [PPW02] [Sta83] [Rho99]. And

[RSW], [EO04] discuss a similar question of classification of finite tensor categories

(but the word “finite” has a slightly different meaning there).

One might also ask more detailed questions about finite categories which are not

invariant under the process of taking subquotients, and we get a situation in many

ways analogous to the algebraic-geometric questions discussed above, leading among

other things to the question of how to construct finite categories having given proper-

ties. We can also think of further questions by analogy with the algebraic-geometric

ones. For example, the analogue of the the moduli space MB could be defined as

follows. If Γ is a finite (or even finitely presented) category, define the moduli stack

MB(Γ) as the stack associated to the prestack of functors

MB(Γ)pre(A) := Hom(Γ,Mod
proj
A )

(6)These notions might be modifiable so as to be relevant to the problem of classifying representations

of algebraic fundamental groups.
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where Mod
proj
A is the category of projective A-modules. This could have variants

where we look at all A-modules or even U -coherent sheaves on Spec(A) in the sense

of [Hir89]. There would also be n-stack versions where we look at maps into stacks

of complexes or other things (and indeed we could fix any ∞-stack G and look at

Hom(Γ,G)). It isn’t our purpose to get into the details of this type of construction here

but just to note that these should exist. We can hope in some cases to get geometric

stacks—for example the 1-stack MB(Γ) as defined above is Artin-algebraic (or more

precisely its 1-groupoid interior is algebraic). We can also hope that these stacks

have natural open substacks with coarse moduli varieties which could be denoted

generically by MB(Γ).

Invariants of these moduli varieties (to start with, their dimensions and irreducible

components . . . ) would become invariants of the finite category, and we would like

to know something about their distribution, bounds, etc., and also whether we can

construct finite categories such that the moduli varieties have given behavior. In the

case when Γ is a finitely presented category which is free over a graph, MB(Γ) is the

same thing as the moduli space of quivers, and in general the moduli space will be a

subspace of the space of quivers on the arrows of the category, so there is already a

big theory about this (and we can expect semistability for quivers to lead to the open

substack required above). It is certainly also related to work by Lusztig, MacPherson

and Vilonen and others on combinatorial descriptions of perverse sheaves [Lus91]

[MV86] [GMV96] [Vil94] [BG99]. Which finite categories arise as specialization

categories for stratifications (and particularly naturally arising stratifications)? We

can also ask which varieties arise as moduli spaces MB(Γ): this might be relevant as

a process for constructing algebraic varieties.

These and any number of similar questions of differing levels of difficulty might

provide a good proving ground for tools combining theory and calculation.
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