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Abstract — Geometric considerations identify what properties we desire of the canon-
ical sequence of finite groups that are used to define modular towers. For instance, we
need the groups to have trivial center for the Hurwitz spaces in the modular tower to
be fine moduli spaces. The Frattini series, constructed inductively, provides our se-
quence: each group is the domain of a canonical epimorphism, which has elementary
abelian p-group kernel, having the previous group as its range. Besides satisfying
the desired properties, this choice is readily analyzable with modular representation
theory.

Each epimorphism between two groups induces (covariantly) a morphism between
the corresponding Hurwitz spaces. Factoring the group epimorphism into interme-
diate irreducible epimorphisms simplifies determining how the Hurwitz-space map
ramifies and when connected components have empty preimage. Only intermediate
epimorphisms that have central kernel of order p matter for this. The most impor-
tant such epimorphisms are those through which the universal central p-Frattini cover
factors; the elementary abelian p-Schur multiplier classifies these.

This paper, the second of three in this volume on the topic of modular towers,
reviews for arithmetic-geometers the relevant group theory, culminating with the
current knowledge of the p-Schur multipliers of our sequence of groups.
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344 D. SEMMEN

Résumé(Théorie des groupes pour les tours modulaires). —Des considérations géomé-
triques permettent d’identifier quelles propriétés nous souhaitons pour la suite cano-
nique de groupes finis qui sont utilisés pour définir les tours modulaires. Par exemple,
les groupes doivent étre de centre trivial pour que les espaces de Hurwitz constituant
la tour modulaire soient des espaces de modules fins. Notre suite est donnée par la
série de Frattini, qui est définie inductivement : chaque groupe est le domaine d’un
épimorphisme canonique, lequel a comme noyau un p-groupe abélien élémentaire, et
le groupe précédent comme image. En plus de satisfaire les propriétés désirées, ce
choix s’interprete naturellement en termes de théorie des représentations modulaires.

Chaque épimorphisme entre deux groupes induit (de maniére covariante) un mor-
phisme entre les espaces de Hurwitz correspondants. La factorisation de I’épimor-
phisme de groupes en épimorphismes irréductibles intermédiaires permet de déter-
miner plus simplement comment ’application entre espaces de Hurwitz se ramifie
et quand les composantes connexes ont des images inverses vides. Pour cela, seuls
comptent les épimorphismes intermédiaires qui ont un noyau central d’ordre p. Les
plus importants de ces épimorphismes sont ceux & travers lesquels le p-revétement
universel de Frattini se factorise ; ils sont classifiés par le p-groupe élémentaire abélien
des multiplicateurs de Schur.

Cet article, le deuxiéme de trois sur les tours modulaires dans ce volume, revient,
a l'intention des arithméticiens-géometres, sur la théorie des groupes nécessaire a
cette théorie, pour aboutir & 1’état actuel des connaissances sur les p-groupes de
multiplicateurs de Schur de notre suite de groupes.
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1. Introduction

This survey broadly divides into two parts. The first part (§2 and §3) recaps Debes’
presentation [Déb] of the universal p-Frattini cover and of modular towers. In partic-
ular, §2 illustrates difficulties arising from the use of Zorn’s lemma in the “top-down”
construction of the universal p-Frattini cover, while §3 concentrates on the conse-
quences which the properties of the finite groups GG,, have on the modular towers they

SEMINAIRES & CONGRES 13



THE GROUP THEORY BEHIND MODULAR TOWERS 345

define. The second part constructs the groups GG,, and derives their properties from
the “bottom-up”, using modular representation theory and, especially, the categorical
equivalence of Gruenberg and Roggenkamp [Gru76, §10.5]. The appendix displays
the functors for this categorical equivalence, since it doesn’t seem to be well-known.

Despite relatively few explicit citations herein, many of the results surveyed have
been comprehensively catalogued (and produced) by Fried in his work on modular
towers. His series of papers on the subject are a primary source: [Fri95], [FK97],
[Fri02], [BF02], [Fri], and [F'S]. I have tried to introduce required results from mod-
ular representation theory steadily but gently; for a general reference, I recommend
Benson’s text [Ben98a].

Before proceeding, recall some elementary categorical definitions.

Definition 1.1 — In any category, for any objects X and Y, a morphism ¢ €
Hom (X,Y) is epic iff, for all objects Z and for all morphisms 1,12 € Hom (Y, Z),
if ¢1 0 p = b9 0 P then Y1 = 1.

This purely categorical definition is synonymous with “surjective” in the categories
of abstract groups, profinite groups, and modules.

Definition 1.2 — An object P of a category C is projective iff, for any objects X
and Y of C, any morphism ¢ € Hom (P,Y), and any epic morphism ¢ € Hom (X,Y),
there exists a morphism 7 € Hom (P, X) such that ¢ o 7 = 1, as illustrated in the
following commutative diagram:

p

—
EE W |
X — Y

An object F' of C is Frattini iff every morphism to F' is epic, i.e., for any object X
of C and any morphism ¢ € Hom (X, F'), ¢ is epic.

Given an object X of a category C, a cover of X is defined to be an epic mor-
phism in Hom (Y, X) for some object Y. The collection of covers of X comprise
the class of objects of a category whose morphisms are as follows — given two cov-
ers, o1 € Hom (Y, X) and ¢o € Hom (Z, X), Hom (¢1, ¢2) is defined to be the set
of morphisms ¢ in Hom (Y, Z) such that ¢2 09 = ¢1. We also sometimes consider
subcategories where we restrict the covers under consideration, but in these cases the
set of morphisms between two objects remains the same as in the full category of
covers, i.e., these subcategories are full in the technical sense. In the categories of
covers we will consider, epic morphisms will always turn out to be surjective. Hence,
equivalences between these categories pass along surjectivity of morphisms.

Conventions. The number p is always a positive prime rational integer, G is always
a finite group, and k is always a field with characteristic p. The cyclic group of order
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n is Cy,, the dihedral group of order 2n is D,,, the alternating group on n letters is
A,, and the symmetric group on n letters is S,,. The conjugate gag~"' of one element
a of G by another element g is denoted by Ya. The commutator [g, k] of two elements
g and h of G is g~*h~'gh. All modules are finitely generated left-modules. The ring
of p-adic integers is denoted by Z,, and the field with g elements by IF,.

2. The universal p-Frattini cover

Fix a finite group G and consider the category of covers of G within the category
of profinite groups; call this category of covers C(G). A projective Frattini object in
this category is called the universal Frattini cover of GG, as is its domain, which
is given the notation G. The first construction of this, due to Cossey, Kegel, and
Kovécs [CKK80, Statement 2.4], used Zorn’s lemma: projective profinite groups are
precisely those isomorphic to closed subgroups of free profinite groups [FJ05, Propo-
sition 22.4.7], so take a minimal closed subgroup mapping onto G in any epimorphism
onto G with domain a free profinite group. The kernel of the universal Frattini cover
is (pro-)nilpotent by the Frattini Argument from which its name derives. Hence, it
is the product of its p-Sylows; being closed subgroups of a projective profinite group,
they will have to be projective as well, and projective pro-p groups must be free as
pro-p groups [FJ05, Proposition 22.7.6].

Now consider pé , the quotient of G by the p’-Hall subgroup of the kernel of G — G,
i.e., the product of all of the s-Sylows of the kernel, where s denotes a rational prime
distinct from p. This quotient profinite group is called the universal p-Frattini
cover of GG, as is the natural map to G which it inherits. This map is also characterized
by being a projective Frattini object in the full subcategory Cpe(G) of C(G) whose
objects are precisely those objects of C(G) with kernel a pro-p group. The kernel of
the universal p-Frattini cover is a free pro-p group called keryp.

The easiest example is when G is a p-group; then, pé is a free pro-p group with the
same minimal number of (topological) generators as G. As a consequence of Schur-
Zassenhaus, if G merely has a normal p-Sylow P, then G is a semi-direct product
P>H, where H ~ G/P; we say G is p-split. When G is p-split, pé ~ F,(p)>H,
where n is the minimal number of generators of the p-Sylow P of G and F, (p) is the
pro-p completion of the free group on n generators. The rank (minimal number of
topological generators) of kerg is 1 + (n — 1)|P|, by the Schreier formula.

Example 2.1 — The alternating group on four elements is isomorphic to V4>Cj,
where a given generator g of C3 acts on the Klein four-group V4 by cyclically permut-
ing the three non-trivial elements. Two (topological) generators a and b of F5(2) may
be chosen so that conjugation by g on F5(2) (in A4 ~ F5(2)>iCs) is given by 9a = b
and 9b = b~ la=!. Clearly, a and b generate a discrete, dense, free subgroup Fy of
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F5(2) which is stabilized by C5. We get the following commutative diagram of exact
sequences:
1 — B — >3 — (O3 — 1
| ||
1 — FQ(Z) — 2A~4 — (3 — 1
By the Schreier formula, kerg has rank 5 and its intersection with F5 is a free group
F5 of rank 5, normal inside of F5. There is another commutative diagram of exact

sequences:
1 — Fy — FB>C3 — Ay — 1

| | ||
1 — ]3‘5(2) — 2144 — Ay — 1

where the vertical maps are dense group monomorphisms.

In general, the approach we’ve been following so far fails to provide detailed in-
formation about the universal p-Frattini cover, the preceding example being a rare
counterexample describable by a discrete analogue. Even p-split groups can often not
be described this way. One reason to expect this failure is the non-constructiveness of
using Zorn’s lemma to create the universal cover. Consider two examples illustrating
the limitations.

Example 2.2 — Our first example comes from Holt and Plesken [HP89]. Embedding
Ay into As leads to an embedding of ;A4 into A5 and the following commutative
diagram of exact sequences:

1—>F5(2)—>2144—>A4—>1
1 — B2 — 45 — Ay — 1

The leftmost vertical map is an isomorphism. However, there is NO group I" which
can fit into a commutative diagram of exact sequences of the following form, where
the vertical maps are dense monomorphisms:

1 — FF — I' — A5 — 1

| Lo

1—>F5(2)—>2145—>A5—>1
The proof examines the character of the 2-adic Frattini lattice (cf. §7) of SLa(F5) and

is beyond the scope of these limited notes.

Example 2.3 — A result of Dyer and Scott [DS75] says that, for any automorphism
o of prime order s acting on a discrete free group F, there is a basis X of F' such that
one of the following holds for every z in X:

i) o(x) ==z
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ii) x belongs to a subset of X containing exactly s elements which are cyclically
permuted by o
iii) x belongs to asubset {x1,...,2s_1} of X such that o(z;) = xj41 when j < s—1,

while o(ws_1) =2, - 2yt

As a corollary, the induced action of o on the free abelian group (and hence Z{c)-
module) F/[F, F] would force the latter to be a direct sum of copies of the trivial
module Z, the group ring Z{o), and the augmentation ideal of the group ring.

Now let G = Fg><IF§, where Fg denotes the additive group of the field, Fg denotes
the multiplicative group, and the action of the latter on the former is multiplication.
Then, G ~ (Cy x Cy x Cq)>1C7, where a generator g of C; cyclically permutes the non-
trivial elements of the 2-Sylow of G. The universal 2-Frattini cover 2@ is isomorphic
to F3(2)><107, but there is no automorphism of order 7 of the discrete free group Fs.

Furthermore, kery will be a free pro-2 group of rank 17. Recall that, for a com-
mutative ring R and a group I', an RI-lattice is an RI-module that is free as an
R-module. Conjugation by a lift of g in ,G produces a natural Z,Cr-lattice structure
on kerg /[kerg, kerg], whose fixed points under the action of C7 form a sublattice of
rank 2. Suppose there was a group I' that fit into a commutative diagram of exact
sequences of the following form, where the vertical maps are dense monomorphisms:

1 — Fy — I' — G — 1

L L

1 — kerg — o,G — G — 1

Then Fi7/[Fi7, Fi7] would be a ZCr-lattice with a dense monomorphism into
kerq /[kerg, kerp]; the fixed points of the action of C7 on Fy7/[Fi7, Fi7] would thus
form a sublattice of rank 2. However, the result of Dyer-Scott would force the fixed
point sublattice to have rank at least 5, a contradiction.

3. Modular towers

A modular tower is a canonical sequence of Hurwitz spaces H (G, C)in attached
to any choice of finite group G and r-tuple of p’-conjugacy classes of G, i.e., conjugacy
classes whose elements have order prime to p; the groups G,, are certain canonical
quotients of pé.

For any group G and r-tuple C = (C1, ..., C.) of conjugacy classes of G, the inner
Nielsen class Ni (G, C)in is defined to be the set of equivalence classes of r-tuples
(91, ---,9r) of G satisfying:

i) {g1,...,9r} generates G,
ii) g1---gr =1, and
iii) there exists o € S, such that, for all 4, g(;, € C;
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two r-tuples (g1, ...,9-) and (g1, ..., g,.) are equivalent iff there exists h € G such that
("g1,...,"g.) = (g4, ...,9.). The space P"(C) \ D, parametrizes subsets of P*(C) of
cardinality . The Hurwitz monodromy group H, := m1(P"(C) \ D,) has generators
@1, - .., qr—1 with a right action on Ni (G, C)™:

(gla . "7gr)qi = (gla . --7gi—1,9igi+1gflvgz‘,9i+2, . ..,gr)-

This permutation representation of H, produces an unramified cover H (G, C)in —»
P"(C) \ D, with fibre Ni (G, C)"™, whose domain is called a Hurwitz space; connected
components of the Hurwitz space correspond one-to-one to orbits of the action of H,.
on the inner Nielsen class. When G has trivial center (i.e., no non-trivial element of
G commutes with all elements of ), this is a fine moduli space for equivalence classes
of Galois covers X — P1(C) together with an identification of the monodromy group
with G such that the ramification data is described by an element of Ni (G, C)™ —
the equivalence of covers here must be G-equivariant.

Now to the definition of the groups G,,. The Frattini subgroup ®(P) of a pro-p
group P is equal to PP[P, P], the closure of the subgroup generated by the p-th powers
and commutators of elements of P. Iteratively defining ®"1(P) := ®(®"(P)) yields
the Frattini series, a descending series of closed subgroups of P. The intersection
of the members of the Frattini series is trivial since this holds true in any finite p-
group. Define iteratively ker,; := ®(ker,), beginning with the kernel kery of the
map from pé down to G, and define G, to be pé / ker,,. Each canonical epimorphism
¢n ¢ Gpy1 — Gy is a projective Frattini object in the full subcategory Cr,c(G) of
C(G) whose objects have elementary abelian p-group kernel.

Whenever Hy — Hj is a group epimorphism with p-group kernel, every p'-
conjugacy class of H; has a unique lift to a p’-conjugacy class of Hy. Hence (cf. [Déb,
Lifting Lemma 1.1]), if C is an r-tuple of p’-conjugacy classes, there is a canonical
modular tower

s H (g1, C) 25 H (G, C) —
where the map 1, between Hurwitz spaces is induced by applying the epimorphism
©n : Gpy1 — G, coordinatewise to the inner Nielsen class Ni (G41, C)in.

The property of G, +1 — G, having a p-group kernel allows for the definition of
a modular tower. Two other properties of this group epimorphism have convenient
consequences for the modular tower. First, if G is p-perfect (i.e., has no non-trivial
p-group quotient) and has trivial center then, for all natural numbers n, G,, is also
p-perfect and has trivial center (see Proposition 4.8 below); in this case, all of the
Hurwitz spaces of the modular tower will be fine moduli spaces.

Second, since the epimorphism is Frattini, only the product-one condition (part (ii)
in the definition of the inner Nielsen class) can cause obstruction: a connected compo-
nent O of H (Gn, C)™ is called obstructed if its preimage under t,, is empty. Namely,
let (g1,...,9-) be a representative of an element of the H,-orbit of Ni (G, C)in cor-
responding to O and let (gi,...,g;) be an element of G}, ; such that, for all i,
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©n(g}) = g; and g, has order prime to p. Then, the tuple (g1, ..., g.) will already sat-
isfy conditions (i) and (iii) in the definition of the inner Nielsen class Ni (G 41, C)in.
The lifting invariant v,41(0O) (cf [Déb, §1.4]) encapsulates this idea (O is obstructed
iff 1 € v,11(0)) and also provides a means to distinguish components.

Fried and Kopeliovich [FK97, Obstruction Lemma 3.2] reduced the determina-
tion of obstruction to a sequence of smaller steps. Fix a G,-composition series of
ker,, / ker, 1. For any two adjacent entries No C Ny of the series, there is a canonical
cover

Iy := Gpy1 /N2 - Ty := Gpy1 /My

whose kernel will be a simple F,I'1-module (in fact, a simple F,G-module). The map
1y, factors into a sequence of irreducible maps

H(Gps1,C)™ — -+ = H(2,C)" - H(I1,C)" = -+ = H(Gn, C)™.

Note that even if all of the groups G,, have trivial center, many of the intermediate
groups will not (see Fact 6.3 below).

Fact 3.1([FK97]). — If the kernel of T's — T is in the center of I's, then
H (T2, C)" — H([y, C)™ is injective. Otherwise, it is surjective.

Idea of proof. — Use the invariance of the lifting invariant under powers of g; - - - ¢, €
H, and the fact that, for any set of generators {g,...,g-} of I'1 and any simple kT';-
module S having non-trivial I'j-action, S equals the sum of the vector subspaces
(9 —1)S. O

Thus, only intermediate epimorphisms I's — I'; with central kernel can produce
obstruction. These intermediate epimorphisms with central kernel can also influence
genus computations through the ramification of the map that 1, induces between
compactified Hurwitz spaces (cf. [BF02, §9.7]). These observations motivated the
analysis leading to Fact 6.3. Unfortunately, the simple subquotients lying deep in a
composition series of ker,, / ker,, 1 are inaccessible at the moment; fortunately, Weigel
has recently observed that the only subquotients that matter for obstruction are those
classified by the elementary abelian p-Schur multiplier, i.e., those that can occur at
the top of a composition series.

Specifically, Weigel has shown (cf [Wei05, Theorem A]) that there is, independent
of n, an orientable p-Poincaré duality group I' of dimension 2 such that the elements
of Ni (G, C)in correspond to conjugacy classes of epimorphisms from I' to G,,. The
obstruction to lifting an element of Ni (G, C)™ to Ni(Gp41,C)™ thus lies in the
elementary abelian p-Schur multiplier of G,,.
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4. The p-Frattini module

Modular representation theory is the right context to produce the canonical se-
quence of finite groups G,, whose projective limit is the universal p-Frattini cover, as
this approach is entirely constructive.

Let R be a commutative ring with 1. Every group ring RG has a rank-one trivial
simple module, a copy of R on which every element of G acts as the identity; we
denote it by 1gg, omitting the subscript when the context is obvious. The kernel of
the canonical RG-module epimorphism from RG to lgrg, sending every element of
G to 1, is called the augmentation ideal and is denoted by wgrg. We also omit the
subscript on this object when the context is obvious.

For any RG-module M, let Cra (M) be the category of covers of M (in the category
of RG-modules). Let Cre(G) represent the category of covers I' - G of G (in
the category of groups) whose kernels are abelian groups with a specified R-module
structure that commutes with conjugation (by elements of T'); note that these kernels
are naturally RG-modules where the action of an element g € G is conjugation by
any element of T" in the preimage of {g}. The morphisms in this category are those
morphisms of the covers that restrict to RG-module homomorphisms on the kernels.

Fact 4.1(Gruenberg-Roggenkamp) — There is an equivalence of categories between
Cra(G) and Cra(wra) under which corresponding objects have isomorphic kernels.

Note: When R is Z or F),, the group structure of the kernel determines its R-module
structure. If R is Z (or Z,) and the kernel is a finitely (topologically) generated
R-module, the domain of the cover is naturally a profinite group; conversely, if the
domain of the cover is given a profinite group structure, the kernel will inherit a
canonical Z-module structure. Finally, note that the finite-index subgroups of any
finitely (topologically) generated profinite group are closed (cf Nikolov-Segal [NS03)),
so when R is Z and the kernel is a finitely (topologically) generated R-module, the
group structure of the domain will determine the topology. Of course, this assumes
that G is finite, as was our assumption; the Gruenberg-Roggenkamp equivalence holds
without this assumption, but these last comments obviously don’t.

Remark 4.2 — Forming the categories Crg(G) and Crag(wre) is functorial in G. For
any homomorphism ¢ : H — G, there is a covariant functor res, from Cra(G) to
Cru(H) given by taking the fibre product with ¢. There is a covariant functor res,
from Cra(wra) to Cru(wrm) given by taking the fibre product with the natural
RH-module homomorphism wry — wrg. These two functors commute with the
Gruenberg-Roggenkamp categorical equivalence.

For every finitely generated kG-module M, there exists a projective Frattini object
in Crg(M). The domain of such an object is a projective kG-module denoted by
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Prc(M); the kernel of a projective Frattini object in Crg (M) is denoted by Qra M.
The process of assigning such a kernel to a module is called the Heller operator
(denoted by Qg of course), and iterations of it are defined inductively™™: QP! M :=
Qe (QeM).

By the Gruenberg-Roggenkamp categorical equivalence, there is a projective Frat-
tini object in Cp,c(G); the domain of this object is denoted by Iljé and is called
the universal elementary abelian p-Frattini cover of G. The sequence of finite
groups used in the definition of a modular tower can be defined inductively from this:

;}‘"1@ = 11, (;}é)

Theorem 4.3 — For every natural number n, G,, ~ Zé, and so pé ~ limgé.

Proof. — The second isomorphism follows from the first because pé ~ limG,. (By

convention, 2@ = (G.) Note that if H — G is Frattini with p-group kernel, what we
call a p-Frattini cover, then ,H ~  G. The first isomorphism will thus be proven by
induction once it is shown that G ~ 117@, but this is true because both groups are the
domain of a projective Frattini object in Cr,q(G). O

One can specify the isomorphism class of the kernel (the p-Frattini module)
of the universal elementary abelian p-Frattini cover of G precisely in terms of the
modular representation theory of G:

Theorem 4.4[Gas54). — The p-Frattini module of G is isomorphic to Q]%pcl.

Proof. — Since projective kG-modules are precisely those isomorphic to a direct sum-
mand of a free kG-module, there is a projective F,G-module N such that F,G ~
N & ]P)Fpg(l) and hence WF,G ™ N & Q]Fpgl. Thus, ]P)IFPG(WIFPG) ~ N P]FPG(QIFPG]-)
and the result follows from the equivalence of Gruenberg and Roggenkamp. (]

Remark 4.5 — A minor corollary of the theorem is that the p-Frattini module has
dimension congruent to 1 modulo the order of the p-Sylow P of G, since |P| must
divide the dimension of any projective kG-module (cf. [Ben98a, §3.14]).

Projective kG-modules are injective (cf. [Ben98a, §1.6]) so, by dimension-shifting,
H2(G, 9% o1) ~ Exti o(1,02 o1)

Ext]%pg(l, lel‘pcl)

Homp,¢(1,1)

~ [

12

12

p

and there is a unique group (up to isomorphism) providing a non-split extension of
G by its p-Frattini module. This must be ;G.

(D Note that some authors use the subscript to denote iterations of the Heller operator.
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Recall the concepts of restriction and induction. Fix a subgroup H of G. The
restriction M| g of a kG-module M to kH simply means: regard M as a kH-module
via the canonical inclusion of kH in kG. Given a kH-module M, the induced kG-
module M1T*% is the tensor product kG @ M. Since projective modules are exactly
those isomorphic to direct summands of free modules, over a group ring both the
restriction and induction of a projective module are projective.

It is easy to determine the number of simple F,G-modules. The Priifer group Z has
a natural action on the set of elements of G that have order prime to p: 1 sends each
element to its p-th power. The monomorphism of the absolute Galois group G kO,
of kN, into the absolute Galois group of F,, followed by the identification of the
latter group with Z that sends the absolute Frobenius to 1, provides a natural action
of G kiF, O the set of elements of G that have order prime to p — and hence on the
set of p’-conjugacy classes of G. The number of kaﬁp-orbits in the latter set equals
the number of simple kG-modules (cf. [Ben98a, §5.3]). Notice the analogy with the
Branch Cycle Argument 1.5 in Débes’ article [Déb].

Example 4.6 — For odd primes p, the modular curve Y7 (p"*1) is isomorphic over Q
to the reduced Hurwitz space associated to D,»+1 with 7 = 4 and each conjugacy
class the set of involutions (cf. [BF02, §2.8.2]). Let’s see that D,n+1 is a universal
elementary abelian p-Frattini cover of Dp» when n > 1.

There are two simple F,Dpn-modules: the trivial module 1 and the sign module
Sgn,,, which consists of a copy of F;, with the involutions of Dy~ acting as mul-
tiplication by —1 and the other elements acting trivially. Let H be a 2-Sylow of
D,n. By the Nakayama relations (aka Frobenius reciprocity, cf [Ben98a, Proposi-
tion 3.3.1]), there is an epimorphism from SLFPHT]FPDP" to S. Since any F, H-module
is projective, S |r,u Fp Dpn
S|y, H F»Dpr oquals the order of a p-Sylow of Dpn. Tt is straightforward to calculate
that Ext%p D, (1,1) is zero and that Ext]%p D, (1,5gn,,) has dimension one, so that
Pr,pD,n (Sgnp) ~ Pp,p,n (QFP Dpn 1). Conclude from counting dimensions that the p-
Frattini module for Dy is one-dimensional (in fact, it is Sgn,,); the dihedral groups are

is isomorphic to Pr,p,. (S), because the dimension of

a model for the very restricted class of groups for which this happens (see Fact 6.1).
Now note that the natural map Dpnt1 — Dpn is Frattini and, since its kernel is
one-dimensional, must be a universal elementary abelian p-Frattini cover.

Proposition 4.7 — Let p : H — G be a p-Frattini cover. Then, H is p-perfect iff G
is p-perfect.

Proof. — 1t is clear that H is not p-perfect if G is not. So, suppose that H has
a normal subgroup N such that H/N is a non-trivial p-group. Since ¢ is Frattini,
©(N) # G and so G/p(N) is a non-trivial p-group. O

SOCIETE MATHEMATIQUE DE FRANCE 2006



354 D. SEMMEN

At this point, we can prove the previously referenced property that ensures the
Hurwitz spaces in a modular tower are fine moduli spaces.

Proposition 4.8 — If G is p-perfect and has trivial center then, for all natural numbers
n, ,G has trivial center.

Proof. — Using induction, it suffices to prove this is true for n = 1. A finite group G
is p-perfect iff H'(G, 1g,¢) = 0. Since H'(G, 1g,¢) ~ Exty ¢(1,1), Pr,c(Qr,¢1) will
not have a quotient isomorphic to 1. This implies that the p-Frattini module of G
has no non-zero element fixed by every element of GG, since every simple submodule
of a projective F,G-module is isomorphic to a quotient of the projective module
(cf. [Ben98a, Theorem 1.6.3]). As G had trivial center, we conclude that ;CNT' does
also. O

Remark 4.9 — Using Facts 6.1 and 6.2, it is straightforward to show that, for any
p-Frattini cover H — G, %,H has trivial center if G is p-perfect and has trivial center.

In the sequel, to remove the notational heaviness, Zé will be denoted by G,, and
2
Q]Fp; Gl by M,.

5. Restriction to the normalizer of a p-Sylow

There are explicit methods for computing the p-Frattini module of a p-split group
(i.e., a group with normal p-Sylow), e.g. through the use of an expansion of Jennings’
theorem [SemO05]. I omit these here for reasons of brevity, but will show a relationship
between the p-Frattini module of the normalizer of a p-Sylow and that of the whole
group. We will also see more intricate examples of p-Frattini modules.

Lemmab.1 — Let H be a subgroup of G. The pullback of H in the cover IleNT' - G
is a projective object in Cp,p(H). There is a projective F,H-module N such that
MOL]FPHZ N @ Q%le.

Proof. — The pullback of H in the group cover corresponds under the Gruenberg-
Roggenkamp equivalence to the pullback of wr,y in the cover ]P)]P‘pg(w]}i‘pg) hd e’
(cf.  Remark 4.2). There is a free FyH-module N’ such that wr,¢ lr,p> N’ @
wr, - Since N’ is projective, it splits in the cover ¢ (regarded as an F,H-module
homomorphism), and so Pr,¢(wr,c)lF,z is a direct sum of N’ and some projective
cover of wr, ir: this latter projective cover corresponds to the pullback of H. The final
statement follows from the decomposition of this projective cover into the direct sum
of a projective module N and Pg, H(w]pp ") O

Remember that a module is indecomposable iff it has no non-trivial direct sum
decomposition. It is straightforward to see that a kG-module M is indecomposable
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and non-projective iff QM is. Hence, the p-Frattini module of G is indecomposable
and non-projective when p divides the order of G.

Together, the next lemma and the fact following it show a dichotomy between level
0 and the higher levels. The notation Ng(H) denotes the subgroup of elements of G
that normalize a given subgroup H of G.

Lemmab5.2 — Let P be a p-Sylow of G. Then, My is isomorphic to a direct summand
of (92, wom)1C.

Proof. — Every F,G-module M is a direct summand of M |p, n( P)T]FPG by mapping
m € M to the element
1 -1
R ey ® m
G ey 2 1O

gNa(P)CG

of F,G ®F, ne(p) M; the number (G : Ng(P)) is the index of Ng(P) in G, ie.,
|G|/|Na(P)|. Now, by Lemma 5.1, MolIFPNG(P)TFPG is isomorphic to a direct sum of

(Q]%p Na( P)l) 1F»C and some projective F,G-module. Since My is indecomposable and

non-projective, it must be a direct summand of (Q]%p No P)l) TG o

Those versed in Green’s correspondence will note that it commutes with the Heller
operator, and recognize the previous lemma as a special case.

Fact 5.3([Sem). — Let n > 1. Regard M,_1 as a subgroup of G,. Let H be any
subgroup of Gy, containing My_1. Then My |p,u is isomorphic to the p-Frattini
module of H. In particular, this holds when H is the normalizer of a p-Sylow of G,,.

The next three examples consider As for the three rational primes dividing its order.
There are systematic ways of computing its p-Frattini module, using its isomorphisms
with SLo(F4) and PSLo(F5) or, perhaps, using the theory of Specht modules; for ex-
ample, Weigel [Wei, §3] has computed the isomorphism class of the ¢-Frattini module
of PSLy(FF,) except when ¢ is divisible by, but not equal to, £ — in the latter case, he
has still determined the dimension of the module. Here I will keep the computation
and notation elementary (and hence ad hoc).

Recall that, for every finite group G with a split BN-pair of characteristic p (and
in particular for a Chevalley group over a finite field of characteristic p), there is
a projective simple kG-module called the Steinberg module. When G is PSLy(F,)
or SLy(FF,), this is the quotient of a permutation module by the one-dimensional
submodule of elements fixed by G, the G-set defining the permutation module being
the projective line P*(F,) with the natural action of G.

Example 5.4 — Let p = 5. There are three isomorphism classes of simple F5Aj5-
modules: 1, the Steinberg module Sts (via the isomorphism of As with PSLy(F5)),
and a three-dimensional module W (the adjoint representation of PSLy(F5)). The
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latter is a subquotient of a permutation module: the As-set defining 1p, 4, 7754 is
{1,2,3, 4,5} with the usual action of As5. There is a homomorphism ¢ from 1, 4,1%545
to 1 given by taking an element of the former module to the sum of its coefficients
(with respect to the permutation basis just described); the simple module W is the
quotient of ker(¢) by the one-dimensional submodule of elements fixed by As.

The normalizer of the 5-Sylow of As is isomorphic to D5 and its 5-Frattini module
is the sign module Sgns of Example 4.6. The induced module Sgns [F545 is six-
dimensional, so, by Remark 4.5, My can be either one-dimensional (and hence 1)
or the entire induced module; the former can’t happen because Mo |r,p,2 Sgns, by
Lemma 5.1. (Fact 6.1 also shows that My cannot be one-dimensional in this case.)
A simple use of the Nakayama relations shows that My has neither a submodule nor
a quotient isomorphic to 1. Therefore, My has one simple submodule, a copy of W,
and its quotient by this submodule is also isomorphic to W.

Example 5.5 — Let p = 3. There are three isomorphism classes of simple F3As5-
modules: 1, a four-dimensional module S, and a six-dimensional module T. The
normalizer of the 5-Sylow of Aj is isomorphic to D5 and T is isomorphic to N1Fs4s
where N is a one-dimensional F3Ds-module on which the involutions of Dy act as
multiplication by —1 and the other elements of Ds act trivially. The As-set defining
the permutation module 1p, 4, 17345 is {1,2,3,4,5} with the usual action of A5 —
S is isomorphic to the quotient of this module by the one-dimensional submodule of
elements fixed by As.

The normalizer of the 3-Sylow of A5 is isomorphic to D3 and its 3-Frattini module
is the sign module Sgny of Example 4.6. The induced module Sgng 17345 is ten-
dimensional and is isomorphic to S @ 7', as can be seen using the Nakayama relations
together with Mackey decomposition (cf. [Ben98a, Theorem 3.3.4]). Since T is pro-
jective, My must be isomorphic to S.

Example 5.6 — Let p = 2. There are three isomorphism classes of simple FyAjs-
modules: 1, a four-dimensional simple module U, and the Steinberg module Sty (via
the isomorphism of As with SLa(FF4)). The simple module U is just the natural module
for SLy(F4), a copy of F%, but regarded as a vector space over [Fs.

The methods presented in this paper are insufficient to derive the 2-Frattini module
of A5 but can still describe it. The normalizer of the 2-Sylow of Ajs is isomorphic to
Ay, a 2-split group. As noted in Example 2.1, the kernel of the universal 2-Frattini
cover of A4 will have rank 5, and so the 2-Frattini module will have dimension 5. The
2-Frattini module M, for As also has dimension 5 and so My|p, 4, Q%Z 4,1; on the
other hand, inducing Q%Z 4,1 up to A5 produces a module with dimension 25. The 2-
Frattini module M can also be (spuriously) described as a quotient of a permutation
module by 1: the Ajs-set defining the permutation module 1p,p, T¥245 is the set of
5-Sylows of As acted on by conjugation — M is isomorphic to the quotient of this
module by the one-dimensional submodule of elements fixed by As. It turns out that
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My has one simple submodule, a copy of U, and its quotient by this submodule is
isomorphic to 1. See [Fri95, §IL.E] for the details of the derivation of this Frattini
module.

Finally, it should be noted that a cocycle in H*(G, M) defining the universal
elementary abelian p-Frattini cover can be computed using the Eckmann-Shapiro
lemma ([Ben98a, Corollary 2.8.4]):

Fy = B (Na(P), 3, vo(m1) = BA(G, (92, n (1) 17€)

via the exterior trace map. The latter cohomology group is isomorphic to H (G, My),
since (QIQFP Na( P)l) 1¥2G is isomorphic to the direct sum of My and some projective

F,G-module. Thus, some cocycle in the image (under the exterior trace map) of a
generator of H*(Ng(P), Q]QFP Na( P)l) will take values in My. When the restriction of
My to the normalizer of a p-Sylow is isomorphic to the p-Frattini module of this nor-
malizer (as in Example 5.6), and in particular for computing cocycles in H*(G,,, M,,)

when n > 1, the computation can be done directly with the transfer map instead.

6. Asymptotics of the p-Frattini modules M,

The first recursive formula was hinted at in Fact 5.3. If M, is regarded as a p-
group, then its universal p-Frattini cover is a free pro-p group of rank equal to the
dimension of M,,. The Schreier formula takes the form:

dimg, (My11) = 1+ |M,| [dimg, (M,) —1].

Since |M,,| is equal to p raised to the power of the dimension of M, this forces the
dimension of M, to rise very rapidly with n via recursive exponentiation, provided
dimp, (Mo) > 1; but if dimg, (Mo) is 0 or 1 then dimg, (M,,) is the same for all natural
numbers n. Of course, dimg, (My) = 0 iff p does not divide the order of G, while
Griess and Schmid ([GS78, Theorem 3]) determined precisely the rare circumstance
when dimp, (Mp) = 1. For the maximal normal p’-subgroup (i.e., having order prime
to p) of G, group theorists use the notation O, (G).

Fact 6.1([GS79). — The p-Sylow of G/Oy (G) is non-trivial, cyclic, and normal iff
dimg, (Mo) = 1.

The dihedral groups (Example 4.6) provide the natural example of Fact 6.1.

The group G,, does not necessarily act faithfully on the module M,,; Griess and
Schmid also determined the kernel of this action, the set Ceng, (M,,) of elements of
G, that centralize M,,. Let ¢ : G - G/O, (G) denote the natural quotient and let
H be the maximal normal p-subgroup of G/O, (G); the subgroup Op,(G) of G is
defined to be ¢~ 1(H).
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Opp(Gr) if dimg, (M,) =1

Fact 6.2([GS79). — CenGn(Mn){ opf()Gn i dime (M) # 1

In some sense, we can reduce to the case where O, (G) = 1. Let H = G/Op (G).
Then G, is isomorphic to the fibre product over H of Zf{ and G; the cover G,, » G
induces an isomorphism O, (Gy,) ~ O, (G) for all n.

The final result here is an asymptotic result on the composition series. Every
normal p-subgroup of a finite group I' acts trivially on every simple kI'-module; hence,
the simple kG,-modules are naturally simple kG-modules. The number of times a
simple module S appears as a subquotient in a given composition series of a kG,,-
module M is an invariant of M denoted by #g(M); the density os(M) of S in M is
defined to be #g(M)/dimy (M).

Fact 6.3([Sem). — If dimg, (M) > 1 then, for any simple F,G-module S,
lim o5(M,) = 05(FpG/Op(G)). In particular, for large enough n, every sim-
ple F,G /Oy (G)-module is a composition factor of M,.

The proof of Fact 6.3 provides precise recursive formulae for #g(M,,).

7. The p-Schur multiplier

Recall that an element g of a group I' is central iff ¢ commutes with all elements
of I'. Every finite group G has a universal central p-Frattini cover, i.e., a projective
Frattini object in the full subcategory of Cz, G (G) consisting of objects whose kernels
are central. A finite group G is p-perfect iff its universal central p-Frattini cover is
finite (cf. [Sem)]); in this case, the kernel of the universal central p-Frattini cover is
what we call the p-Schur multiplier.

Even when G is not p-perfect, it will possess a finite universal elementary abelian
central p-Frattini cover, which can be obtained from a quotient of a universal elemen-
tary abelian p-Frattini cover of G. Analogously, the kernel is called the elementary
abelian p-Schur multiplier and is computed by modular representation theory to be
H2(G, 1r,c). Use dimension shifting or inspection of the p-Frattini module to see that
H(G, 1r,q) is isomorphic to (Q%pcl)/(wppgfl%pcl).

Whenever N is a normal subgroup of a group G and M is an RG-module (R being
a commutative ring), the action of G on N by conjugation induces an R(G/N)-module
structure on Hy, (N, M |rn) (cf. [Bro94, I11.8.2]). The maximal quotient on which
G/N acts trivially is denoted by H,,(N, M|rn)c/N-

Proposition 7.1 — For every natural number n,

Ho(Gry1, r,6,00) = Ho(My, 1, 01,) G, -
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Proof. — This reflects Fact 5.3, i.e., that (Qﬂ%pcnﬂl) YF,M, Ql%pMnl. The action
of G,, on (Q%‘pMnl)/(WleMn Q%pMnl) is induced from the action of G, 11 on Q]%pcnﬂl

and, hence,

Ho(My, Ip,0r,)e, = (9,6, 1)/ (0r,6001 9%, 6,0 D)
Ho (G, 1r,G,.,)- O

12

Therefore, computing the elementary abelian p-Schur multiplier of G,41 re-
duces to computing the F,G,-module structure of Ha(Mpy, 1, a,); note that
Hy (M, 1r, 01, )| F, 01, is the head (i.e., maximal semi-simple quotient) of My 1]F, s,
and so some quotient of Hy(M,,, 1r,az,) is the head of M, ;. Every group ring AT
has a Hopf algebra structure, which provides a canonical way to extend the action
of kT" to the tensor product (over k) of two kI-modules: let the group elements act
diagonally and then extend linearly; this also provides an action of kI" on the exterior
product. The universal coefficient theorem (a special case of Kiinneth’s formula)
yields the following exact sequence of F,G\,-modules:

(1) 0 — A*M,, — Ho(My, 15, 01,) — M, — 0.

For example, see the discussion preceding Theorem V.6.6 of Brown’s text [Bro94].
This exact sequence can also be derived using Jennings’ theorem, and an elementary
presentation of this sequence will come after Fact 7.3.

The quotient module isomorphic to M, is best described as the “antecedent”
quotient of M, y; coming from multiplication by p in the p-adic Frattini lattice
Q%,,Gn 1z,G,. The finite group G, possesses a universal abelian p-Frattini cover,
i.e., a projective Frattini object G,, — G, in Cz,c,(Grn). The kernel of this cover
is a Z,Gp-lattice (i.e., a Z,Gy-module that is a free Z,-module) which I shall denote
by L,. Notice that M, ~ L,/pL, ~ pL,/p*L, as F,G,-modules. Consider the
following commutative diagram of exact sequences:

0 — pL,/p*’L, — én/pQLn — Gp+1 — O
7 ) |

0 — Mn+1 — Gn+2 — GnJrl — 0

The up-arrows come from the defining property of the bottom row and must be group
epimorphisms because the surjection in the top row is a Frattini cover. The com-
mutative diagram forces the epimorphism M, — an/pQLn to be one of F,Gyy1-
modules; since the subgroup M, of G,, 11 acts trivially on pL,, /p*L,, this epimorphism
factors through Ha (M, 1r, 11, ).

For a finite group G, the dual Hy(G, 1p, )" is naturally isomorphic to H*(G, Ir,c),
which parametrizes equivalence classes of simple central p-extensions of G, group
extensions of G having central kernel of order p:

0—1p,g—S—G—1
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two such extensions are equivalent if there is a group isomorphism between the mid-
dle terms that induces the identity maps between the other terms of the exten-
sions. A simple central p-extension of G, is called antecedent if the element of
Ho (M, 1r, 01, )~ defining the extension factors through the antecedent quotient (as a
map on Ha (M, 1g,ar,)). Note that H' (M, 1r, 11, ) and the dual M,,” are isomorphic
as F,G,-modules; the linear map Hl(Mn,leMn) — HQ(Mn,leMn) whose image
consists of the antecedent elements is known as the Bockstein (cf. [Ben98b, §4.3]).

Proposition 7.2 — A simple central p-extension ¢ : H — Gpi1 is antecedent iff
o 1 (M,,) is abelian.

Proof. — If ¢=1(M,,) is abelian, the universal abelian p-Frattini cover of G,, factors
through the composition of ¢ and the canonical map from G, 1 to G,,. Conversely, if
the extension is antecedent, o~ (M,,) will be isomorphic to a quotient of L, /p*L,,. O

Hence, Fried also calls antecedent simple central p-extensions abelian.

There is a natural correspondence between the simple central p-extensions of G,
and the antecedent simple central p-extensions of G, i: both are defined by an
element of Homr, g, (Mn, 1r,c, ). We can phrase this correspondence as: each abelian
simple central p-extension of G, 1 is antecedent to a unique simple central p-extension
of G,,.

The height of a simple central p-extension S — G of G is the supremum of the
positive rational integers n for which there exists a central p-Frattini cover of G that
both factors through S — G and has cyclic kernel of order p™. Constructing the
antecedent simple central p-extensions via the p-adic Frattini lattice easily yields:

Fact 7.3([FS]). — The height of a non-split abelian simple central p-extension of Gp41
equals the height of the simple central p-extension of G, to which it is antecedent.

Let us return to the exact sequence (1) that follows Proposition 7.1. Consider the
universal elementary abelian central p-Frattini cover of M,,:

0 — Hy(My, 1g,01,) — 2 My — My, — 1

where we regard the group operation in M,, and },Mn as multiplicative. There is a
natural homomorphism from G, i to the automorphism group of ;Mn, where the
action of G, 41 comes from conjugation via the following commutative diagram:
117M” — M,
l 1
G2/ (wr,nt, Mnt1) —  Grgr.

The induced actions of G,, on M,, and Hy(M,, 1p, M, ) are the usual ones.

Fix a subset {z1,...,zn} of 11,]\;[" that maps bijectively via ¢ to a basis (over
F,) of M,,. The set of elements of the form either z¥ or [z;,z,] (for i < j) is a
basis of Hy(M,,, 1r,az, ). Since they are central, the set of elements of the form [x;, ;]
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generates the entire commutator subgroup of 117M”5 the action of GG,, makes it naturally
isomorphic to A2M,, as an F,G,,-module.

The exact sequence (1) splits when p is odd. Let  and y be arbitrary elements of
;Mn; then zPy? = (xy)P[z,y]PP~1/2. Hence, when p is odd, the p-th powers form a
characteristic subgroup of },Mn and the action of GG,, makes this subgroup naturally
isomorphic to M,,. In terms of the universal coefficient theorem, this occurs because
a canonical vector space splitting exists when p is odd; in the context of Jennings’
theorem, it is because the p-th powers reside in a lower socle layer of Q]%p ar, 1 than
do the commutators. In even characteristic, the squares generate %Mn, this is just
the well-known fact that a group is abelian if all of its non-trivial elements have
order 2. The formula z2y? = (zy)?[z, y] then allows computation of the FoG,,-module
Ho (M, 1r,01,,)-

This dichotomy between p being even or odd mirrors the dichotomy in the cohomol-
ogy rings H*(M,,, 1r,az, ) (which are graded-commutative rings using the cup product
for multiplication). When p is odd, the homogeneous part of degree two separates into
a direct sum of two pieces, one being the set of cup products of degree-one elements
and the other the image of the Bockstein map.

When p is even, the cup products of degree-one elements yield the entire homo-
geneous part of degree two, as the Bockstein of a degree-one element is just the cup
product of that element with itself when p = 2. In fact, the homogeneous part of
degree one is isomorphic to M, and generates the cohomology ring, which is a poly-
nomial ring over Fy with generating degree-one indeterminates given by a basis of
M,". Since G, acts as algebra automorphisms of the cohomology ring, there is an
FoG,,-module epimorphism M, ® M, il H? (M, 1p,,,) given by the cup prod-
uct. Dualizing shows that Ha(M,,, 1, s, ) is isomorphic to the kernel of the canonical
epimorphism M,, ® M,, — AZM,,.

The following examples end this article by illustrating the behavior with n of the
elementary abelian p-Schur multiplier of ;}/15. This may suggest the behavior in
the general case, but the ad hoc nature of these arguments prevents straightforward
extrapolation.

Example 7.4 — Let us begin with p = 3, the case where the structure of My (and
hence Hy(Mo, 1r,01,)) is simplest. Refer to Example 5.5 for notation, where it was
seen that My is isomorphic to the simple F3 As-module S ~ 1g, 4,17345 /1. There is
a basis of My that A, permutes in the natural fashion. Then, /\QMOL]FS((mg» is a free
module; since {(123)) is a 3-Sylow of A5, A2My must be a projective F3 As-module. By
inspection, (12)(34) doesn’t fix any non-zero vector in the two-dimensional subspace
fixed by (123). Thus, A2Mj cannot be Pg, 4. (1). It also cannot be Pp, 4. (S) because
the latter is nine-dimensional. Therefore, A2My ~ T and Ha (Mo, 1p,pr,) ~ S & T.
Hence, the 3-Schur multiplier is zero for §As.
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By the Schreier formula, the dimension of M; is 244; the isomorphism class of
M lies outside of comfortable hand-calculation. Since S @ T is a quotient of M,
(SeT)® A%(S @ T) will be a quotient of Ha (M, 1r,ar,) and, hence, of My. The
exterior product A?(S@®T) decomposes into a direct sum of S®T', A2S, and A2T'. Since
T is projective, so is S @ T (cf. [Ben98a, Proposition 3.1.5]), and Brauer character
calculations (cf. [Ben98a, §5.3]) show it to be isomorphic to T' @ Pp, 4.(5)?. We
already know that A%2S ~ T. It is easy to find a basis of T that is permuted freely
by a 3-Sylow of As; the induced basis on A2T is thus also permuted freely, and so
AT is projective. Another Brauer character calculation shows A?T ~ T & Pg, 4, (S).
Therefore, My has a quotient isomorphic to S @ T* @ Pr, 4, (S)3. Since this is a small
part of M; @ A2Mj, it is possible that 3A5 has non-zero 3-Schur multiplier.

But now we know that M3 has a quotient isomorphic to the direct sum of three
copies of Pp, 4, (S) ® Pr,a,(S). Yet another Brauer character calculation will show
that P, a, (S) @ Prya, (S) ~ T% @ Pp,a,(S)® @ Pr,a, (1)%. So, the elementary abelian
3-Schur multiplier of §A5 has dimension at least six.

A similar procedure will show that the elementary abelian p-Schur multiplier of Z/Ig,
will have dimension at least two when n > 2, for all rational primes p dividing the
order of As. In each case, a direct calculation of A%2M; will show it to have a projective
summand P. In even characteristic, the exact sequence (1) may not split, but P will
still float to the top of the second-homology. Hence, for each p, Ha(Mo, 1, nz,) will
have a quotient isomorphic to My @ P. As in the case of p = 3, take the direct sum of
this module with its exterior product, and iterate this procedure until multiple copies
of P(1) appear.

For any group G, if the dimension of the elementary abelian p-Schur multiplier of
Gy, is m > 1 then the dimension of the elementary abelian p-Schur multiplier of G,41
is at least m(m + 1)/2. This is a corollary of exact sequence (1) when p is odd, and
of the the exact sequence

0 — Ho(My, 1,01, ) — My, @ My, — A2M,, — 0

when p is even: if M’ is a quotient of M, on which G, acts trivially, then
Hy (M, 1p,01,) will have a quotient isomorphic to M’ @ A2M’'.  Therefore, the
dimensions of the elementary abelian p-Schur multipliers of ;}45 have no bound.

Example 7.5 — The composition series of a p-Frattini module may be loaded with
trivial simple modules, but the p-Frattini module may still have no non-trivial quotient
with trivial group action. Consider p = 5; refer to Example 5.4 for notation. The
5-Frattini module M, of As is isomorphic to Sgng 1¥545 2 module which strongly
resembles the simple F3 As-module T. (They are both reductions of the same ZAs;-
lattice.) It is easy to find a basis of My that consists of one vector fixed by the action of
a 5-Sylow and another five vectors that are cyclically permuted by the same 5-Sylow.
Since the induced basis of A2Mj is acted on freely by the 5-Sylow, A2Mj is projective
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and a Brauer character calculation shows it to be isomorphic to Pg, 4, (W) @ Sts.
Therefore, the head of M; is isomorphic to W?2 @ Sts. However, the Schreier formula
shows that the dimension of M; is 78126, while the recursive formulas for #g(M,,)
(alluded to after Fact 6.3) show that any composition series of M; contains exactly
6476 simple factors isomorphic to 1g, 4.

For any finite group G, the modules M,, all have isomorphic socle (i.e., maximal
semi-simple submodule) since H'(H,S) ~ H'(G, S) for any simple F,H-module S
and any p-Frattini cover H — G (cf. [Sem]); in the case of G = A5 and p = 5, the
socle is W. Above, we calculated the head of M; to have dimension 11. Furthermore,
using Jennings’ theorem on M1 |r, s, it is easy to see that M7 has at most 75 radical
layers, so at least one of these layers must have dimension greater than 1070. The
shape of M; is thus like a spindle, with a fat middle, but pointy at each end. This
is not so unusual, since projective indecomposable modules will also have this shape,
but it suggests that we cannot expect the heads of the M,, to grow quickly.

Example 7.6 — Finally, p = 2, n = 0, and G = Aj together provide an example of
the exact sequence (1) being non-split. This sequence would split if and only if it
split on restriction to a 2-Sylow Vj of As. The 2-Frattini module of V} is isomorphic
to Molr,v,, so this example is in fact minimal for showing non-splitness. There is a

basis {z1,...,z5} of My such that two generators a and b of Vj act as follows:
ol — X1 X1 = o
Ty > I T2 H— I
a xr3 > X4 b r3 +H— T4
T4 = T3 T4 = T3
Ts5 Z?:1 Ly s T

Inside Ha (Mo, 1p,0, ), use z; again to denote the square of a pullback of z; in the
universal elementary abelian central 2-Frattini cover of My; use x; Az, to denote the
commutator of pullbacks of x; and x3. The actions of a and b are then given by:

ry = I xr1 — X2
To +H— T2 o +H— X7
a{ T3 — X4 b x3 +— x4
Ty XT3 Ty +— I3
5
Ty Y T +Zl§j<k§5 xz; N\ xp, Ts5 — s

where both a and b fix 37, ., ;5 %; A zx. Hence, the cocycle in Extg, v, (Mo lr,v,,
(A2My)lr,v,) takes its values in a copy of 1. The six-dimensional F3V;-module extend-
ing Molr,v, by this copy of 1 will be isomorphic to I]Fz(a)T]F?A“lFQVN where A4 is the
normalizer of V. (This isomorphism is seen through some elementary manipulation
of the matrices for @ and b defining the action of V; on this six-dimensional module.)
Since 1, (q) 1F244) 5 1 is isomorphic to a direct sum of three indecomposable Fo V-
modules of dimension two, while My|r,v, is indecomposable, the cocycle must not be
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a coboundary. Using the transfer map to compute the cocycle in Ext]}?2 A5 (Mo, A2 M)
shows that the values of the cocycle lie in a copy of 1p, 4, .

Appendix A
The Gruenberg-Roggenkamp equivalence

Define the functor ® : Cra(G) — Cra(wra) as follows. Let f : H — G be an object
of Cra(G) with kernel K. The action of H on the module wzpy.x 1= wzp/(wzkwzir)
has kernel K, so the natural epimorphism wzg.x — wzg induced by f is one of ZG-
modules. The kernel is naturally isomorphic to K|z¢g via the map sending k € K to

k—1:= (k — 1) + wr Wz H:

(k/’l — 1) + (kg — 1) = (k/’lkg — 1)
and
g =D - =1

for all g € G and k, k1, ks € K. Since wzglz is free, the sequences are exact in the
following pushout diagram (induced by the multiplication map RG®zq(K|zg) — K):

0 — RGQus (Klzg) — RG ®z¢ (wzH.K) — wrg —0

| ! I ;

0 — K — (RG®ZG(WZH;K))/I (m wra —0

I is the submodule generated by elements of the form [r ® (k- 1)} — [1 ® (rk — 1)},
where r € R and k € K. Given a morphism ¢ € Hom (f1, f2) between objects
fi: Hi — G and fy: Hy - G, ®(p) is induced by the natural action of ¢ that sends
an element of wzy, to one of wzy,.

The functor ¥ : Cra(wre) — Cra(G) is even easier to construct. Let s : M — wgra
be an object in Crg(wre). There is a group monomorphism 6 from G to the semi-
direct product wre>IG that sends g € G to (g — 1,g). Using this, ¥(s) comes from
the fiber product (i.e., pullback) in the following commutative diagram:

4 (s)
(s, )7HO(G)) — G
l 1o
(s,1)
M>G —»  wWra><G

where (s,1)(m,g) = (s(m),g) for all (m,g) € M>G. Given a morphism ¢ €
Hom (s1, s2) between objects s1 : M1 — wpe and sy : My — wrg, Y(¥) is the
restriction to (s1,1)71(6(G)) of the map (1, 1) : M1><G — My><G.
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