
Séminaires & Congrès

11, 2005, p. 75–110

ON CURVES OVER FINITE FIELDS

by

Arnaldo Garcia

Abstract. — In these notes we present some basic results of the Theory of Curves over
Finite Fields. Assuming a famous theorem of A. Weil, which bounds the number of
solutions in a finite field (i.e., number of rational points) in terms of the genus and

the cardinality of the finite field, we then prove several other related bounds (bounds
of Serre, Ihara, Stohr-Voloch, etc.). We then treat Maximal Curves (classification
and genus spectrum). Maximal curves are the curves attaining the upper bound of
A. Weil. If the genus of the curve is large with respect to the cardinality of the
finite field, Ihara noticed that Weil’s bound cannot be reached and he introduced
then a quantity A(q) for the study of the asymptotics of curves over a fixed finite
field. This leads to towers of curves and we devote special attention to the so-called
recursive towers of curves. We present several examples of recursive towers with
good asymptotic behaviour, some of them attaining the Drinfeld-Vladut bound. The
connection with the asymptotics of linear codes is a celebrated result of Tsfasman-
Vladut-Zink, which is obtained via Goppa’s construction of codes from algebraic
curves over finite fields.

Résumé (Courbes sur des corps finis). — Nous présentons des résultats élémentaires
sur les courbes sur les corps finis et leurs points rationnels. Nous avons fait un ef-
fort pour donner une présentation aussi simple que possible, la rendant accessible
aux non spécialistes. Parmi ces résultats se trouvent : le théorème de Weil (l’hypo-
thèse de Riemann dans ce contexte), son amélioration donnée par Serre, la borne
de Ihara sur le genre pour les courbes maximales, genre et classification des courbes
maximales, théorie de Stohr-Voloch des ordres de Frobenius pour les courbes planes,
constructions de courbes sur les corps finis ayant beaucoup de points rationnels, les
formules explicites de Serre, étude asymptotique des courbes sur les corps finis et
des codes correcteurs d’erreurs (la connexion entre elles est un célèbre théorème de
Tsfasman-Vladut-Zink), tours récursives de courbes et certaines tours particulière-
ment intéressantes (atteignant la borne de Drinfeld-Vladut sur des corps finis de
cardinal un carré ou atteignant la borne de Zink sur des corps finis de cardinal un
cube).

2000Mathematics Subject Classification. — 14H05, 11G20 , 14G05.
Key words and phrases. — Algebraic curves, finite fields, rational points, genus, linear codes, asymp-
totics, tower of curves.

The author was partially supported by PRONEX # 662408/1996-3 (CNPq-Brazil).

c© Séminaires et Congrès 11, SMF 2005



76 A. GARCIA

1. Introduction

These notes reflect very closely the lectures given by the author at a “European

School on Algebraic Geometry and Information Theory”, held at C.I.R.M. – Luminy

- France in May 2003. They are intended as an invitation to the subject of curves

over finite fields. At several points we have sacrificed rigorness (without mention) in

favour of clarity or simplicity. Assuming to start with a very deep theorem of André

Weil (equivalent to the validity of Riemann’s Hypothesis for the situation of zeta

functions associated to nonsingular projective curves over finite fields) we then prove

several interesting related results with elementary methods (bounds of Serre, Ihara,

Stöhr-Voloch, Drinfeld-Vladut, etc.), and we give also several examples illustrating

those results.

These notes are organized as follows: Section 2 contains several bounds on the

number of rational points of curves over finite fields (see Theorems 2.2, 2.3, 2.14 and

2.17) and examples of curves attaining those bounds. Specially interesting here are

the curves attaining Weil’s bound, the so-called maximal curves; for these curves

there is a genus bound due to Ihara (see Proposition 2.8) which originated two basic

problems on maximal curves: the genus spectrum problem (see Theorem 2.11) and the

classification problem (see Theorems 2.10 and 2.12). For the classification problem a

very important tool is the Stöhr-Voloch theory of Frobenius – orders of morphisms

of curves over finite fields, and this theory is illustrated here just for projective plane

curves (see Theorem 2.17). Section 3 contains two simple and related methods for

the construction of curves with many rational points with respect to the genus (called

good curves). Both constructions lead to projective curves that are Kummer covers

of the projective line (or of another curve), and we also present a “recipe” due to

Hasse for the genus calculation for such covers. Several examples illustrating both

constructions are also presented.

Section 4 explains the basic facts on the asymptotic behaviour of curves and also

of linear codes over finite fields. The relation between the two asymptotics (of curves

and of codes) is a result due to Tsfasman-Vladut-Zink and this result represents

an improvement on the so-called Gilbert-Varshamov bound. We also prove here an

asymptotic bound due to Drinfeld-Vladut (see Proposition 4.3) which is obtained as

an application of a method of Serre (see Theorem 4.1). This motivates the definition of

towers of curves over finite fields which is the subject of Section 5. After introducing

the concepts of ramification locus and splitting locus, we explain their significance

when the tower is a tame tower (see Theorem 5.1). We then define recursive towers

and we give several examples illustrating applications of Theorem 5.1. Wild towers

are much harder to deal with than tame towers, and we give at the end of these notes

two very interesting examples of wild towers (see Examples 5.8 and 5.9). Example

5.9 is specially interesting since it is over finite fields with cubic cardinalities, and it

SÉMINAIRES & CONGRÈS 11



ON CURVES OVER FINITE FIELDS 77

gives in particular a generalization of a famous lower bound, on the asymptotics of

curves, due to T. Zink.

2. Bounds for the number of rational points

Let f(X,Y ) ∈ Fq[X,Y ] be an absolutely irreducible polynomial (i.e., f(X,Y ) is

also irreducible over Fq the algebraic closure of the finite field Fq). The associated

affine plane curve C is defined by

C := {(a, b) ∈ Fq × Fq | f(a, b) = 0}
and we denote by C(Fq) the set of rational points; i.e.,

C(Fq) = {(a, b) ∈ C | a, b ∈ Fq}.

Goal. — Study the cardinality #C(Fq) with respect to the genus g(C).

The genus g(C) of a plane curve C satisfies

g(C) 6 (d− 1)(d− 2)/2,

where d :=deg f(X,Y ) is the degree of the irreducible polynomial defining the curve C.

The next lemma gives a simple criterion for absolute irreducibility.

Lemma 2.1(See[27]). — Let f(X,Y ) ∈ Fq[X,Y ] be a polynomial of the following type

f(X,Y ) = a0 · Y n + a1(X) · Y n−1 + · · · + an−1(X) · Y + an(X)

with a0 ∈ F∗
q and with a1(X), . . . , an−1(X), an(X) ∈ Fq[X ].

Suppose that gcd(n, deg an(X)) = 1 and that

deg an(X)

n
>

deg ai(X)

i
for each 1 6 i 6 n− 1,

then the polynomial f(X,Y ) is absolutely irreducible.

We are going to deal with more general algebraic curves, not just an affine plane

curve. Given n−1 polynomials f1(X1, . . . , Xn), f2(X1, . . . , Xn), . . . , fn−1(X1, . . . , Xn)

in the polynomial ring Fq[X1, . . . , Xn], they in general define an affine algebraic

curve C as

C := {(a1, a2, . . . , an) ∈ F
n

q | fj(a1, . . . , an) = 0 for all j = 1, 2, . . . , n− 1}
and its set C(Fq) of rational points as C(Fq) := {(a1, . . . , an) ∈ C | a1, a2, . . . , an ∈ Fq}.

A point P of a curve C is called nonsingular if there exists a tangent line to the

curve C at the point P . For example if P = (a, b) ∈ Fq × Fq is a point of the plane

curve associated to the polynomial f(X,Y ) ∈ Fq[X,Y ] (i.e., if we have f(a, b) = 0),

then the point P is called nonsingular when

fX(a, b) 6= 0 or fY (a, b) 6= 0,
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where fX and fY denote the partial derivatives. The curve C is called nonsingular if

every point P ∈ C is a nonsingular point. Also, we will deal with projective curves

here rather than with affine curves. For example, if C is the plane curve associated to

the polynomial f(X,Y ) in Fq[X,Y ] with d := deg f(X,Y ), then we define

F (X,Y, Z) = Zd · f (X/Z, Y/Z) and C̃ := {(a : b : c) ∈ P2(Fq) | F (a, b, c) = 0}.

The curve C̃ is a projective model for the affine curve C associated to f(X,Y ).

If the projective plane curve C̃ is nonsingular, then we have the equality g(C̃) =

(d− 1)(d− 2)/2. A point (a : b : c) of C̃ is said to be at infinity when c = 0.

The next theorem is due to A. Weil and it is the main result in this theory:

Theorem 2.2(See[33] and [30], Theor. V.2.3). — Let C be a projective and nonsingular,

absolutely irreducible curve defined over the finite field Fq with q elements. Then we

have

#C(Fq) 6 1 + q + 2
√
q · g(C).

Theorem 2.2 is a very deep result. It was proved in the particular case of elliptic

curves (i.e., the case g(C) = 1) by H. Hasse and in the general case by A. Weil

(see [33]). Theorem 2.2 says that the zeros of a certain “Congruence Zeta Function”

(associated to the curve by E. Artin in analogy with Dedekind’s Zeta Function for

quadratic number fields) all lie on the critical line Re(s) = 1/2. We can rewrite

Theorem 2.2 as follows

Theorem 2.3(See[33] and [30], Cor. V.1.16). — Let C be a projective and nonsingular,

absolutely irreducible algebraic curve defined over Fq and let g := g(C) denote its

genus. Then there exist algebraic integers α1, α2, . . . , α2g ∈ C with absolute value

|αj | =
√
q, for 1 6 j 6 2g, such that

#C(Fq) = q + 1 −
2g∑

j=1

αj .

Clearly, the bound in Theorem 2.2 follows from the equality in Theorem 2.3 by

taking αj = −√
q, for all values of j with 1 6 j 6 2g. We now define

Definition 2.4. — Let q = `2 be a square. We say that the curve C is Fq-maximal if it

attains the bound in Theorem 2.2; i.e., if it holds that

#C(Fq) = `2 + 1 + 2` · g(C).

Example 2.5(Hermitian curve over F`2). — Consider the projective plane curve C de-

fined over the finite field F`2 by the affine equation

f(X,Y ) = Y ` + Y −X`+1 ∈ F`2 [X,Y ].
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ON CURVES OVER FINITE FIELDS 79

We have g(C) = `(` − 1)/2; indeed, the curve C is a nonsingular plane curve with

degree d satisfying d = ` + 1. The number of Fq-rational points (with q = `2) is

given by

#C(Fq) = 1 + `3 = 1 + `2 + 2` · `(`− 1)

2
;

i.e., the curve C is F`2-maximal. Indeed, the associated homogeneous polynomial is

F (X,Y, Z) = Y `Z + Y Z` −X`+1

and the point (0 : 1 : 0) is the unique point at infinity on the curve C. The affine

points are the points (a, b) ∈ Fq × Fq such that

b` + b = a`+1.

Observing that a`+1 is the norm for the extension F`2/F` and that b` + b is the trace

for F`2/F`, we conclude that

#C(F`2) = 1 + `3.

The next proposition, due to J.-P. Serre, enables one to construct other Fq-maximal

curves from known ones.

Proposition 2.6(See[26]). — Let ϕ : C → C1 be a surjective morphism defined over a

finite field Fq (i.e., both curves C and C1, and also the map ϕ are all defined over the

finite field Fq) and suppose that the curve C is Fq-maximal. Then the curve C1 is also

Fq-maximal.

Example 2.7. — Let C1 be the curve defined over F`2 by the following equation

f(X,Y ) = Y ` + Y −Xm, with m a divisor of `+ 1.

This curve C1 is F`2-maximal. Indeed, this follows from Proposition 2.6 since we have

the following surjective morphism (with n := (`+ 1)/m)

ϕ : C −→ C1

(a, b) 7−→ (an, b),

where the curve C is the one given in Example 2.5.

The genus of C1 satisfies (see Example 3.1 in Section 3)

g(C1) = (` − 1)(m− 1)/2.

One can check directly that the curve C1 is Fq-maximal with q = `2. Indeed, let us

denote by H the multiplicative subgroup of F∗
`2 with order |H | = (`− 1) ·m. We then

have:

(1) a ∈ H ∪ {0} implies that am ∈ F`.

Since b` + b = am for an affine point (a, b) ∈ C1 and since b` + b is the trace for the

extension F`2/F`, we get from the assertion in (1) that

#C1(F`2) > 1 + [1 +m(`− 1)] · `.
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But we also have that

1 + [1 +m(`− 1)] · ` = 1 + `2 + 2` · (` − 1)(m− 1)/2.

Let C be an absolutely irreducible algebraic curve (projective and nonsingular) of

genus g defined over the finite field Fq and let

αj ∈ C with |αj | =
√
q for j = 1, 2, . . . , 2g,

be the algebraic integers mentioned in the statement of Theorem 2.3. Then for each

n ∈ N we have (see [30], Cor.V.1.16)

(2) #C(Fqn) = qn + 1 −
2g∑

j=1

αn
j .

Proposition 2.8(See[23]). — Let C be a projective, nonsingular and absolutely irre-

ducible, algebraic curve defined over Fq with q = `2. If C is a Fq-maximal curve,

then

g(C) 6 `(`− 1)/2.

Proof. — If C is F`2-maximal, then

αj = −`, for each j = 1, 2, . . . , 2g.

Hence α2
j = `2, for each j = 1, 2, . . . , 2g.

Clearly we have that

#C(Fq2) > #C(Fq).

Using now the equality in (2) for n = 1 and n = 2, we conclude that

1 + `4 − 2g · `2 > 1 + `2 + 2g · `,
and hence that 2g(C) 6 `(`− 1).

Remark 2.9. — Proposition 2.8 says that the genus of a F`2-maximal curve C satisfies

g(C) 6 `(`− 1)/2.

The bound above is sharp. The Hermitian curve given in Example 2.5 is F`2-maximal

with genus g(C) = `(`− 1)/2.

The following result is the starting point for the classification problem of maximal

curves over finite fields.

Theorem 2.10(See[28]). — Let C be a maximal curve over F`2 with genus satisfying

g(C) = `(`−1)/2. Then the curve C is isomorphic over the field F`2 with the projetive

curve given by the affine equation

f(X,Y ) = Y ` + Y −X`+1 ∈ F`2 [X,Y ].

Not every natural number g with g 6 `(` − 1)/2 is the genus of a F`2-maximal

curve. Indeed we have the following very interesting result:
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ON CURVES OVER FINITE FIELDS 81

Theorem 2.11(See[9]). — Let C be a maximal curve over the finite field F`2 with genus

satisfying g(C) 6= `(`− 1)/2. Then we have

g(C) 6
(` − 1)2

4
.

According to Theorem 2.11 the second possible biggest genus g2 of a F`2-maximal

curve is given by

g2 =

{
`(`− 2)/4 if ` is even

(`− 1)2/4 if ` is odd.

In case ` is odd we have that the equation

(3) Y ` + Y = X(`+1)/2 over F`2

defines a F`2-maximal curve C1 of genus g = (` − 1)2/4. In case ` is even (i.e., ` is a

power of p = 2) we have that the equation

(4) Y `/2 + Y `/4 + · · · + Y 2 + Y = X`+1 over F`2

defines a F`2 -maximal curve C0 of genus g = `(`− 2)/4. The curve C1 given by Eq.(3)

above was already considered in Example 2.7. The curve C0 given by Eq.(4) above

is also a quotient of the Hermitian curve C over F`2 given in Example 2.5. In fact

consider the map ϕ below

ϕ : C −→ C0

(a, b) 7−→ (a, b2 + b).

It is straighforward to check that if the point (a, b) satisfies b` + b = a`+1, then the

point (a, b2 +b) satisfies Equation (4) above. It then follows from Proposition 2.6 that

the curve C0 is also F`2 -maximal. Here again we have uniqueness:

Theorem 2.12(See[8], [1] and [25]). — Let C be a maximal curve over F`2 with the

second biggest genus g2 :=
[
(` − 1)2/4

]
. Then the curve C is isomorphic over F`2

either to the curve C1 given by Eq.(3) if ` is odd, or to the curve C0 given by Eq.(4)

if ` is even.

Remark 2.13. — Besides the action of Frobenius on the Jacobian Variety of a maximal

curve (which is the main tool in proving Theorem 2.10), the other important ingredient

in the proof of Theorem 2.12 is the theory due to Stöhr-Voloch of Frobenius – orders

of morphisms of curves over finite fields (see [31]).

We are now going to explain an improvement of Theorem 2.2 due to J.-P. Serre.

For an algebraic curve of genus g defined over the finite field Fq, we denote by

α1, α2, . . . , α2g the algebraic integers with |αj | =
√
q mentioned in the statement
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of Theorem 2.3. It is possible to show that (see [30], Theor.V.1.15)

2g∏

j=1

(1 − αjt) ∈ Z[t]

and that one can rearrange α1, α2, . . . , α2g so that

αg+j = αj for each j = 1, 2, . . . , g,

where αj denotes the complex conjugate of αj ∈ C.

Theorem 2.14(See[29]). — Let C be a projective, nonsingular and absolutely irre-

ducible, algebraic curve defined over Fq. Then we have

#C(Fq) 6 1 + q + [2
√
q] · g(C),

where [2
√
q] denotes the integer part of 2

√
q.

Proof. — We fix an ordering of α1, α2, . . . , α2g satisfying

αg+j = αj for each j = 1, 2, . . . , g.

Since αj · αj = q we then have

αg+j = αj = q/αj for j = 1, 2, . . . , g.

Setting βj = αj + αj + [2
√
q] + 1, for each j = 1, 2, . . . , g, we see that

βj ∈ R and βj > 0.

Since αj is an algebraic integer, we have that βj is also an algebraic integer, for

each j = 1, 2, . . . , g. Consider now the number field E generated by α1, . . . , α2g; i.e.,

consider

E := Q(α1, . . . , α2g).

The extension E/Q is Galois since E is the splitting field over Q of the polynomial∏2g
j=1(1 − αjt) ∈ Z[t]. Hence if σ belongs to the Galois group; i.e., if σ ∈ Aut(E/Q),

then σ induces a permutation of the set {α1, . . . , α2g}. Suppose that σ(αi) = αj .

Then

σ(αi) = σ(q/αi) =
σ(q)

σ(αi)
=

q

αj
= αj .

Hence we have σ(βi) = βj and the automorphism σ also induces a permutation of

the set {β1, . . . , βg}. The element
(∏g

j=1 βj

)
is then left fixed by all automorphisms

σ of Aut(E/Q), and hence
(∏g

j=1 βj

)
∈ Q. Since each βj (for j = 1, 2, . . . , g) is

an algebraic integer, we conclude that
(∏g

j=1 βj

)
∈ Z. Since βj > 0, we have that

(∏g
j=1 βj

)
> 1. From the inequality below relating arithmetic and geometric mean

1

g
·
( g∑

j=1

βj

)
>

( g∏

j=1

βj

)1/g

,
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we then get
g∑

j=1

(αj + αj + [2
√
q] + 1) > g

and hence that
2g∑

j=1

αj > −g · [2√q].

The inequality above and Theorem 2.3 finish the proof of Theorem 2.14.

Exercise. — Using similar arguments as in the proof of Theorem 2.14 with

β̃j := −(αj + αj) + [2
√
q] + 1, for j = 1, 2, . . . , g,

show that the following lower bound holds:

#C(Fq) > 1 + q − [2
√
q] · g(C).

Example 2.15(Klein quartic) . — Consider the case

q = 8 and g(C) = 3.

In this case the bound in Theorem 2.14 is

#C(F8) 6 24.

Consider the projective curve C over F8 given by the affine equation

f(X,Y ) = Y 3 +X3Y +X ∈ F8[X,Y ].

The projective plane curve C is nonsingular and hence

g(C) =
(d− 1)(d− 2)

2
=

(4 − 1)(4 − 2)

2
= 3.

The points at infinity on the curve C are

Q1 = (1 : 0 : 0) and Q2 = (0 : 1 : 0),

and the point Q3 = (0 : 0 : 1) is the other point (a : b : c) on C satisfying a · b · c = 0.

We want to show that

#C(F8) = 24;

i.e., the curve C above attains Serre’s bound over the finite field with 8 elements. We

have the points Q1, Q2 and Q3 above, and we still need to find 21 points (a : b : 1) on

C(F8); i.e., we still need to find 21 points (a, b) ∈ F∗
8 × F∗

8 such that it holds

b3 + a3b+ a = 0.

Multiplying the equality above by a6 we get (since a7 = 1 and a9 = a2)

w3 + w + 1 = 0 with w = a2b.

The three solutions of w3 + w + 1 = 0 are elements of F8, and to each a ∈ F∗
8 and

each w ∈ F∗
8 satisfying w3 +w+ 1 = 0, one defines b := w/a2. This then gives us the

21 points (a, b) belonging to the set C(F8).
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Exercise. — Let C be a curve (projective and nonsingular) of genus g attaining Serre’s

bound over the finite field Fq; i.e., we have the equality

#C(Fq) = 1 + q + [2
√
q] · g.

(a) With notation as in the proof of Theorem 2.14, show that

βj = 1, for each j = 1, 2, . . . , g.

Hint. Use that the inequality relating arithmetic and geometric mean is an equality

if and only if we have that β1 = β2 = · · · = βg.

(b) Setting γ := [2
√
q], show that

α2
i + α2

i = γ2 − 2q, for each i = 1, 2, . . . , g.

(c) With similar arguments as the ones used in the proof of Proposition 2.8, show

that

g 6
q2 − q

γ2 + γ − 2q
.

(d) Show that
2g∏

j=1

(1 − αjt) = (1 + γt+ qt2)g.

We are now going to introduce another method for counting and bounding the num-

ber of rational points on curves (projective, nonsingular and absolutely irreducible)

over finite fields. This method is due to Stöhr and Voloch (see [31]), and it gives

in particular also a proof of Theorem 2.2. This theory of Stöhr and Voloch is sim-

ilar to Weierstrass Point Theory and here we are going to illustrate it just for the

case of nonsingular projective plane curves. Let then C be a nonsingular projective

plane curve with degree equal to d (i.e., the genus is g(C) = (d − 1)(d − 2)/2), and

let F (X,Y, Z) ∈ Fq[X,Y, Z] be the corresponding homogeneous polynomial of degree

equal to d. For a projective point P = (a : b : c) ∈ P2(Fq) belonging to the curve C;

i.e., for a point P = (a : b : c) such that F (a, b, c) = 0, we denote by TP (C) the

tangent line to C at P which is the line defined by the following linear equation

FX(a, b, c) ·X + FY (a, b, c) · Y + FZ(a, b, c) · Z = 0,

where FX , FY and FZ denote the partial derivatives. For a point P = (a : b : c) ∈
P2(Fq) we denote by

Fr(P ) := (aq : bq : cq).

Because the equation F (X,Y, Z) defining the curve C has coefficients in the finite field

Fq, it is clear that P ∈ C implies that Fr(P ) ∈ C.

Roughly speaking the method of Stöhr and Voloch instead of counting Fq-rational

points; i.e., instead of investigating the cardinality of the set

{P ∈ C | Fr(P ) = P},
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it investigates the cardinality of the following possibly bigger set

(5) {P ∈ C | Fr(P ) ∈ TP (C)}.
We must avoid the situation where the set given in (5) above is not a finite set;

i.e., we must avoid the situation where it holds that the set given in (5) is the whole

curve C.

Example 2.16. — Let C be the Hermitian curve over F`2 introduced in Example 2.5;

i.e., the corresponding homogeneous polynomial F (X,Y, Z) is given by

F (X,Y, Z) = Y `Z + Y Z` −X`+1 ∈ F`2 [X,Y, Z].

In this case we have that the set given in (5) is the whole curve C; i.e.,

C = {P ∈ C | Fr(P ) ∈ TP (C)}.
Indeed at an affine point P = (a : b : 1) belonging to the curve C we have that the

tangent line TP (C) has the following linear equation

Y − a`X + b`Z = 0.

Also we have Fr(P ) = (a`2 : b`
2

: 1) and we have to check that the following equality

holds

b`
2 − a` · a`2 + b` = 0.

The equality above follows from b` + b = a`+1 by raising it to the `-th power.

Theorem 2.17(See[31]). — Suppose that f(X,Y ) ∈ Fq[X,Y ] is an absolutely irre-

ducible polynomial of degree d which defines a nonsingular projective plane curve C
over the finite field Fq. Suppose moreover that

(X −Xq)fX(X,Y ) + (Y − Y q)fY (X,Y ) 6≡ 0 mod f(X,Y ).

Then

#C(Fq) 6
1

2
· d · (d+ q − 1).

Remark 2.18. — The hypothesis

(X −Xq)fX(X,Y ) + (Y − Y q)fY (X,Y ) 6≡ 0 mod f(X,Y )

is equivalent to the hypothesis that the set {P ∈ C | Fr(P ) ∈ TP (C)} is not the whole

curve C. Here if P = (a : b : c) then Fr(P ) = (aq : bq : cq).

Proof of Theorem 2.17. — We will need some simple properties of intersection num-

bers of plane projective curves (see [10], Ch. III). For an affine point (a, b) ∈ Fq × Fq

and for two relatively prime polynomials f(X,Y ) and h(X,Y ), the symbol I(P ; f∩h)
denotes the intersection number at the point P of the curve given by f = 0 with the

one given by the equation h = 0. It satisfies the following two properties:

Property a) I(P ; f ∩ h) > 0 if and only if f(P ) = h(P ) = 0.
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Property b) I(P ; f ∩ h) > 2 if we have TP (f) = TP (h); i.e., if we have that the

curves given by f = 0 and h = 0 have the same tangent line at P .

Let now f(X,Y ) ∈ Fq[X,Y ] be as in the statement of Theorem 2.17, and set

h(X,Y ) := (X −Xq)fX(X,Y ) + (Y − Y q)fY (X,Y ).

Since f(X,Y ) is irreducible and h 6≡ 0 mod f , we have that f(X,Y ) and h(X,Y ) are

relatively prime polynomials. Also clearly

deg h(X,Y ) 6 q + d− 1, with d = deg f(X,Y ).

If P = (a, b) ∈ Fq × Fq is a rational point on the curve C (i.e., we have f(a, b) = 0)

then we also have that h(P ) = h(a, b) = 0. We are going to show that the curves

f = 0 and h = 0 have the same tangent line at the point P ; i.e., we are going to show

that

fX(a, b) = hX(a, b) and fY (a, b) = hY (a, b).

From this and from Property b) above we conclude

I(P ; f ∩ h) > 2 for each rational point P ∈ C(Fq).

Indeed we have

hX(X,Y ) = (X −Xq)fXX + (Y − Y q)fXY + fX

hY (X,Y ) = (X −Xq)fXY + (Y − Y q)fY Y + fY

and hence for a point (a, b) ∈ Fq × Fq we have

hX(a, b) = fX(a, b) and hY (a, b) = fY (a, b).

Now we conclude that

#C(Fq) 6
1

2

∑

P

I(P ; f ∩ h),

where P runs over all points of the curve C.

From Bezout’s Theorem (see [10], Ch.V) we know
∑

P

I(P ; f ∩ h) = deg f · deg h 6 d · (q + d− 1).

This finishes the proof of Theorem 2.17.

Example 2.19. — Consider the projective curve C over F5 given by the affine equation

f(X,Y ) = X4 + Y 4 − 2 ∈ F5[X,Y ].

The projective curve C is nonsingular and hence g(C) = 3. Any point (a, b) ∈ F∗
5 ×F∗

5

belongs to the curve C and it is easy to check that

#C(F5) = 4 · 4 = 16 =
1

2
· 4 · (4 + 5 − 1);

i.e., the curve C attains the bound in Theorem 2.17. We leave to the reader to check

that the hypothesis of Theorem 2.17 are satisfied in our case.
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Example 2.20. — Consider the projective curve C over F13 given by the affine equation

f(X,Y ) = w2X4 + Y 4 + w ∈ F13[X,Y ],

where w ∈ F13 satisfies w2 + w + 1 = 0. The set of rational points over F13 on the

affine part of the curve C is the union of the following two sets:

{(a, b) | a4 = b4 = 1} and {(a, b) | a4 = w and b4 = w2}.

Hence we have

#C(F13) = 16 + 16 =
1

2
· 4 · (4 + 13 − 1);

i.e., the curve C attains the bound in Theorem 2.17. We leave again to the reader to

check that the hypothesis of Theorem 2.17 are satisfied also in this case.

The following proposition substitutes the hypothesis in Theorem 2.17

h(X,Y ) := (X −Xq)fX(X,Y ) + (Y − Y q)fY (X,Y ) 6≡ 0 mod f(X,Y ),

by the more natural hypothesis below:

fXX · f2
Y − 2fXY · fX · fY + fY Y · f2

X 6≡ 0 mod f.

Proposition 2.21. — Let h(X,Y ) be the polynomial defined above. If h(X,Y ) ≡ 0

mod f(X,Y ), then we also have that

fXX · f2
Y − 2fXY · fX · fY + fY Y · f2

X ≡ 0 mod f.

Proof. — For two polynomials g1(X,Y ) and g2(X,Y ) we will write g1 ≡ g2 if we have

that the polynomial f(X,Y ) divides the difference (g2 − g1).

The hypothesis h ≡ 0 means that

(X −Xq)fX ≡ −(Y − Y q)fY .

We then have also

(X −Xq)2 · (fXX · f2
Y − 2fXY · fX · fY + fY Y · f2

X)

≡ f2
Y · [(X −Xq)2 · fXX + 2(X −Xq)(Y − Y q) · fXY + (Y − Y q)2 · fY Y ].

Hence it is enough to show that

(X −Xq)2 · fXX + 2(X −Xq)(Y − Y q) · fXY + (Y − Y q)2 · fY Y ≡ 0.

Again from the hypothesis h ≡ 0 we have that

(X −Xq)fX + (Y − Y q)fY = f · g, for some polynomial g.

Taking partial derivative with respect to the variable X of the equality above and

multiplying afterwards by (X −Xq), we get

(X −Xq)2 · fXX + (X −Xq)(Y − Y q) · fXY ≡ (X −Xq)(g − 1) · fX .
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Similarly taking partial derivative with respect to the variable Y and multiplying

afterwards by (Y − Y q), we get

(Y − Y q)2 · fY Y + (X −Xq)(Y − Y q) · fXY ≡ (Y − Y q)(g − 1) · fY .

Summing up the last two congruences we then get

(X −Xq)2 · fXX + 2(X −Xq)(Y − Y q) · fXY + (Y − Y q)2 · fY Y ≡ 0,

since we have that h(X,Y ) = (X −Xq)fX + (Y − Y q)fY ≡ 0 by the hypothesis.

We return now to maximal curves over F`2 . The results already presented here

(specially Prop. 2.8 and Theorem 2.10) lead to two natural problems on maximal

curves:

Genus Spectrum. — Asks for the determination of the set of genus of maximal curves

over F`2 ; i.e., the determination of the set

Λ(`2) = {g(C) | C is F`2-maximal}.

Classification. — For an element g ∈ Λ(`2) one asks for the determination of all

maximal curves C over F`2 (up to isomorphisms) with genus g(C) = g.

The main tool for the genus spectrum problem is Proposition 2.6 (see [17] and also

[6]). The main tool for the classification problem is Stöhr-Voloch theory of Frobenius-

orders of morphisms of curves over finite fields (see [31]). A very particular case of

this general theory is given here in Theorem 2.17. Another interesting question on

maximal curves is the following (compare with Prop. 2.6):

Question. — Let C1 be a F`2-maximal curve. Does there exist a surjective morphism

defined over the finite field F`2

ϕ : C −→ C1,

where the curve C is the Hermitian curve over F`2 presented in Example 2.5?

An interesting result connected to the question above is that every maximal curve

over F`2 is contained in a Hermitian Variety of degree (`+1) (see [24]). Another very

interesting paper, leading to the construction of many maximal curves, is due to van

der Geer and van der Vlugt (see [19]).

3. Some constructions of good curves

The constructions we are going to present here lead to Kummer covers of the

projective line (or fibre products of such covers) and we are going to need the following

recipe due to Hasse for the determination of the genus (see [22] or [30], Section III.7):
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Recipe. — Let C be the nonsingular projective model of the curve given by the equa-

tion below

Y m = f(X) with f(X) ∈ Fq(X),

where m ∈ N satisfies gcd(m, q) = 1. Write the rational function f(X) as

f(X) =
g(X)

h(X)
with g(X), h(X) ∈ Fq[X ]

and with g(X) and h(X) relatively prime polynomials. For an element α ∈ Fq define

m(α) := mult(α | g · h) and d(α) := gcd(m,m(α)),

where mult(α | g ·h) means the multiplicity of the element α as a root of the product

polynomial g(X) · h(X). For α = ∞ we also define

m(∞) := | deg g − deg h| and d(∞) := gcd(m,m(∞)).

Then the genus g(C) of the curve C is given by

2g(C) − 2 = −2m+
∑

α

(m− d(α)),

where the sum is over the elements α ∈ Fq ∪ {∞}. The sum above is actually a finite

sum: either α = ∞ or the element α ∈ Fq is a root of the product g(X) · h(X).

Example 3.1. — We show here that the genus g(C1) of the curve C1 in Example 2.7

satisfies

g(C1) = (` − 1)(m− 1)/2.

Interchanging the variables X and Y , the curve C1 is then given by (here m divides

`+ 1 and hence gcd(m, `) = 1) :

Y m = X` +X over F`2 .

At the elements α ∈ F` such that α` + α = 0, we have m(α) = 1 and d(α) = 1. For

the element α = ∞, we have m(∞) = ` and d(∞) = gcd(m, `) = 1. Using the recipe

above we then get

2g(C1) − 2 = −2m+ (`+ 1)(m− 1), and hence g(C1) = (` − 1)(m− 1)/2.

Exercise. — Show that the genus of the curve C0 given by (see Eq.(4)):

Y `+1 = X`/2 +X`/4 + · · · +X2 +X, with ` a power of 2,

satisfies g(C0) = (`− 2)`/4.

Exercise. — Consider the projective plane curve C̃ over F`2 given by the following

affine equation (here ` is an odd prime power):

f(X,Y ) = X(`+1)/2 + Y (`+1)/2 − 1 ∈ F`2 [X,Y ].
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One can check that the curve C̃ is nonsingular and hence that

g(C̃) =
(d− 1)(d− 2)

2
=

( `+1
2 − 1)( `+1

2 − 2)

2
=

(`− 1)(`− 3)

8
.

Prove the genus formula above using the recipe given in the beggining of Section 3.

Remark. — The curve C̃ in the above exercise is a maximal curve over F`2 . It can

be shown (see [5]) that it is the unique maximal curve over F`2 having genus g =

(` − 1)(` − 3)/8 that possesses a nonsingular projective plane model over the finite

field F`2 .

Exercise. — Consider the projective plane curve C given by the following affine equa-

tion

f(X,Y ) = X`+1 + Y `+1 − 1 ∈ F`2 [X,Y ].

Prove that the curve C is F`2-maximal with genus g(C) = `(`− 1)/2.

Remark. — It follows from Theorem 2.10 that the projective plane curve C in the

exercise above is F`2-isomorphic to the Hermitian curve of Example 2.5. Indeed

choose two elements α, β ∈ F`2 such that

α` + α = β`+1 = −1.

Set

X1 :=
1

Y − βX
and Y1 := βXX1 − α.

One can show easily that if the variables X and Y satisfy

X`+1 + Y `+1 − 1 = 0,

then the functions X1 and Y1 defined above satisfy

Y `
1 + Y1 −X`+1

1 = 0.

Method of Construction. — We are going to consider Kummer covers of the

projective line over the finite field Fq; i.e., projective curves given by an affine equation

of the type:

Y m = f(X) ∈ Fq(X), with m a divisor of (q − 1).

The idea behind the method is to construct suitable rational functions f(X) with

“few zeros and poles” such that f(α) = 1 for “many elements” α in Fq.

Construction 1 (see [20]). — Let R(X) ∈ Fq[X ] be a polynomial having all roots in

the finite field Fq, and split it as below

R(X) = g(X) − h(X) with g(X), h(X) ∈ Fq[X ].

For a divisor m of (q − 1) one considers the projective curve C given by the affine

equation

Y m =
g(X)

h(X)
.
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– If α ∈ Fq is such that R(α) = 0 and g(α) 6= 0, then g(α)/h(α) = 1 and hence we

have

#C(Fq) > m · #{α | R(α) = 0 and g(α) 6= 0}.
– The genus g(C) is obtained with the recipe given in the beggining of this section.

In order to obtain a curve C of small genus one needs the following property :

Desired property. — The product g(X) · h(X) is highly inseparable.

In other words, in order to get a curve C of small genus one needs that the product

polynomial g(X) ·h(X) has just a few number of distinct roots. This assertion follows

directly from the recipe for the genus of Kummer covers.

Example 3.2. — Consider the polynomial R(X) = X16 +X ∈ F16[X ]. We split it as

R(X) = g(X) − h(X) with g(X) = X16 +X2 and h(X) = X2 +X,

and we then consider the projective curve C given by

Y 15 =
(X8 +X)2

(X2 +X)
.

The rational function g(X)/h(X) has a simple zero at the elements α ∈ F2, it has a

double zero at the elements α ∈ F8 r F2 and it has a pole of order 14 at α = ∞. In

any case we have that

d(α) = gcd(15,m(α)) = 1.

Hence the recipe for the genus gives

2g(C)− 2 = 15(−2) + 9 · (15 − 1) and hence that g(C) = 49.

For the F16-rational points we have

#C(F16) > 15 · (16 − 2) = 210.

Adding the points (0, 0) and (1, 0), and also the point at infinity, we get

#C(F16) = 213.

Remark. — To check that the curve constructed is a good curve (i.e., it has many

rational points with respect to its genus) one should look at the tables of curves over

finite fields in [18]. For a fixed pair q and g the information on this table is given as

A 6 N 6 B.

This means that B is the best upper bound known for the number N of Fq-rational

points on curves over Fq having genus = g, and that one knows the existence of a

curve C over Fq of genus g with #C(Fq) > A. For example looking at the table in [18]

for q = 16 and g = 49, one finds there the information A = 213. This information is

provided by the projective curve C considered in Example 3.2 above.
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Construction 2 (see [12] and [11]). — This construction is a variant of Construc-

tion 1. We start again with a polynomial R(X) ∈ Fq[X ] having all roots in the finite

field Fq. For a polynomial g(X) ∈ Fq[X ] which is not a multiple of R(X), we perform

the euclidean algorithm; i.e., we have

g(X) = t(X) ·R(X) + h(X)

where t(X), h(X) ∈ Fq[X ] and deg h(X) < degR(X).

We then consider the curve C (projective and nonsingular) having the following

affine plane equation :

Y m =
g(X)

h(X)
with m a divisor of (q − 1).

If α ∈ Fq is such that R(α) = 0 and g(α) 6= 0, then we have g(α)/h(α) = 1 and

hence

#C(Fq) > m · #{α | R(α) = 0 and g(α) 6= 0}.
One difficulty here is to choose the pair of polynomials R(X) and g(X) in Fq[X ]

leading to a product g(X) · h(X) which is “highly inseparable”.

Example 3.3. — Consider the polynomial R(X) below

R(X) =
X16 +X

X4 +X
= X12 +X9 +X6 +X3 + 1 ∈ F16[X ].

The roots of R(X) are the elements α ∈ F16 r F4. For the polynomial g(X) =

(X3 +X2 + 1)4 we get from the euclidean algorithm

g(X) = R(X) +X3(X + 1)3(X3 +X + 1).

Note that the remainder h(X) = X3(X + 1)3(X3 +X + 1) is highly inseparable. We

then consider the projective curve C over F16 given by the affine equation

Y 3 =
(X3 +X2 + 1)4

X3(X + 1)3(X3 +X + 1)
.

This curve C defined over F16 satisfies the equalities g(C) = 4 and #C(F16) = 45.

Indeed, we have in our situation

#{α | R(α) = 0 and g(α) 6= 0} = 12, and hence #C(F16) > 3.12 = 36.

We still need to find 9 rational points on C(F16) and they should have first coordinate

α ∈ F4 or α = ∞. If α ∈ F4 r F2 (i.e., if α2 + α+ 1 = 0) then α3 = 1 and

(X3 +X2 + 1)4

X3(X + 1)3(X3 +X + 1)
(α) = α.

Since the equation Y 3 = α has no solution in the finite field F16 if α ∈ F4 r F2, we

have to look for rational points on C(F16) with first coordinate α ∈ F2 or α = ∞.
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One can show that in each case (α = 0, 1 or ∞) there are 3 rational points on C(F16)

with first coordinate equal to the element α. Hence

#C(F16) = 36 + 3.3 = 45.

Substituting Z := XY (X + 1)/(X3 +X2 + 1) we see easily that the curve C can

also be given by the affine equation in X and Z below

Z3 =
X3 +X2 + 1

X3 +X + 1
.

The zeros of the product (X3 + X2 + 1) · (X3 + X + 1) are exactly the elements

α ∈ F8 r F2 and they are simple zeros. The recipe then gives

2g(C)− 2 = 3 · (−2) + 6 · (3 − 1) and hence that g(C) = 4.

Example 3.4. — Consider the curve C over F25 given by the following equation

Y 8 = X(X − 1)3(X + 2).

This curve C satisfies

g(C) = 7 and #C(F25) = 84.

The point here is to explain that the equation for the curve C above is obtained from

our method. Let R(X) = (X2 + 2) · (X2 − 2) · (X2 + 2X − 2) · (X2 − 2X − 2) in the

polynomial ring F25[X ]. Note that R(X) is a product of four irreducible polynomials

of degree 2 over the finite field F5. Considering g(X) = X3(X + 2)3(X − 1)9 we then

get

g(X) = t(X) ·R(X) + 1, with t(X) = (X + 1)(X − 2)2(X4 + 2X2 − 2).

So we are lead by our construction to consider the equation Y 24 = X3(X+2)3(X−1)9

and, taking the 3rd root of it,we arrive at the equation in the beggining of Example

3.4.

In order to produce other examples of curves with many rational points, one should

also consider fibre products of curves obtained from the constructions above (see

Section 6 in [11]). Let again R(X) ∈ Fq[X ] be a polynomial having all roots in the

finite field Fq. For two polynomials g1(X) and g2(X) in Fq[X ], each one of them not

divisible by R(X), we perform the euclidean algorithm:

g1(X) = t1(X) · R(X) + h1(X) with deg h1 < degR,

g2(X) = t2(X) · R(X) + h2(X) with deg h2 < degR.

We then get a curve C1 over Fq given by

Y m1

1 =
g1(X)

h1(X)
with m1 a divisor of (q − 1),

and a curve C2 over Fq given by

Y m2

2 =
g2(X)

h2(X)
with m2 a divisor of (q − 1).
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We denote by C the curve which is the fibre product of the curves C1 and C2 above.

Similarly we get here that the set C(Fq) of Fq-rational points on the curve C satisfies:

#C(Fq) > m1 ·m2 · #{α | R(α) = 0 and (g1 · g2)(α) 6= 0}.

The genus g(C) is obtained by generalizing the recipe given in the beggining of this

section.

Example 3.5. — Let C be the fibre product of the curves over F16 given by

Y 5
1 = (X4 +X)3 and by Y 3

2 =
(X2 +X + 1)3 · (X3 +X + 1)2

X(X + 1) · (X3 +X2 + 1)3
.

This curve C satisfies

g(C) = 34 and #C(F16) = 183.

The two equations defining the fibre product curve C are obtained by considering

R(X) = (X16 + X)/(X4 + X), g1(X) = (X4 + X)3 and g2(X) = (X2 + X + 1)3 ·
(X3 +X + 1)2. In our case we have

#{α | R(α) = 0 and (g1 · g2)(α) 6= 0} = 12

and hence #C(Fq) > m1 ·m2 · 12 = 5 · 3 · 12 = 180.

We have 3 other rational points corresponding to X = α with α = 0, 1 or ∞.

Remark. — The best result for the pair q = 16 and g = 34 (before the curve given in

Example 3.5) was a curve with 161 rational points over F16 with genus 34.

Remark. — The constructions presented here give rise to curves of Kummer type, in

particular each ramification is tame. One can also give constructions leading to curves

of Artin-Schreier type, and here each ramification is wild. One has also a recipe due

to Hasse for the determination of the genus of Artin-Schreier covers of the projective

line (see [22] and [30], Section III.7). A very interesting construction of curves of

Artin-Schreier type is given in [19], where many new interesting examples of maximal

curves are presented.

4. Asymptotic results on curves and on codes

In this section we are going to explain the asymptotics on curves over a fixed finite

field and also the asymptotics on codes over a fixed finite field, and relate them to

each other.
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Asymptotics on curves. — Let Fq be a fixed finite field. We denote by

Nq(g) = max
C

#C(Fq),

where C runs over the curves defined over Fq whose genus satisfies g(C) = g. The

asymptotics of curves over the fixed field Fq with q elements, with genus g tending to

infinity, is described by the quantity A(q) below

A(q) = lim sup
g→∞

Nq(g)/g.

It follows from Theorem 2.2 that

A(q) 6 2
√
q.

Ihara was the first one to observe that the bound above for the quantity A(q)

can be improved significantly. He showed that A(q) 6
√

2q. Based on Ihara’s ideas,

Drinfeld and Vladut (see [7]) proved the following bound (see Proposition 4.3 here):

A(q) 6
√
q − 1, for any prime power q.

The bound of Drinfeld-Vladut above is sharp since it is attained whenever q is a

square; i.e., we have the following equality

A(`2) = `− 1, for any prime power `.

The equality above was proved firstly by Ihara in [23] (see also [32]) and his proof

involves the consideration of the theory of modular curves. A more elementary proof

of this equality can be seen in [13] (see also Example 5.2 here).

As for lower bounds on the quantity A(q) we mention a result of T. Zink (see [35]):

A(p3) >
2(p2 − 1)

p+ 2
, with p any prime number.

The proof of T. Zink involves degeneration of modular surfaces (à la Shimura), and

a much more elementary proof can be seen in [4]. In [4] we have also a generalization

of the result of Zink; i.e., we have the lower bound

A(q3) >
2(q2 − 1)

q + 2
, with q any prime power.

The advantage of the proofs in [13] and in [4] is that the infinite sequence of

curves, respectively their genera and their rational points, are all explicitely given by

equations, respectively by their formulas and by their coordinates. This makes them

more suitable for applications in Coding Theory and Cryptography.

Asymptotics on codes. — A linear code C over the finite field Fq is just a linear

subspace of Fn
q . Given a vector v = (v1, v2, . . . , vn) in Fn

q we define its weight wt(v)

as below

wt(v) := #{i | 1 6 i 6 n and vi 6= 0}.
For a linear code C in Fn

q we have 3 basic parameters:
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– n = n(C) is called the length of C; it is the dimension of the ambient space Fn
q

of the linear code C.

– k = k(C) is called the dimension of C; it is the dimension of the linear code C

as a Fq-vector space, that is, we have k(C) := dimFq
(C).

– d = d(C) is called the mimimum distance of C; it is the minimal weight of a

nonzero codeword, that is, we have d(C) := min{wt(v) | v ∈ C r {0}}.
We have also two relative parameters:

– R = R(C) is called the transmission rate of C; it is given by R(C) := k(C)/n(C).

– δ = δ(C) is called the relative distance of C; it is given by δ(C) := d(C)/n(C).

We then consider the map ϕ below

ϕ : {Fq-linear codes} −→ [0, 1]× [0, 1]

C 7−→ (δ(C), R(C)).

We are interested in the accumulation points of the image Imϕ of the map ϕ above.

We define, for a fixed value of δ with 0 6 δ 6 1:

αq(δ) := max{R | (δ,R) is an accumulation point of Imϕ}.

The function αq : [0, 1] → [0, 1] defined above controls the asymptotics of linear codes

over the finite field Fq. It satisfies the following bound:

Gilbert-Varshamov bound(See[30], Prop. VII.2.3). — Let 0 6 δ 6 1 − q−1, then

αq(δ) > 1 −Hq(δ),

where Hq(δ) = δ logq(q − 1) − δ logq δ − (1 − δ) logq(1 − δ) is the so-called entropy

function.

Relation between the asymptotics. — This relation was established by

Tsfasman-Vladut-Zink via Goppa’s construction of linear codes from algebraic curves

over finite fields (see [32]). If Fq is a finite field such that A(q) > 1, then for each

real number δ satisfying 0 6 δ 6 1 −A(q)−1, we have the inequality

αq(δ) > 1 −A(q)−1 − δ.

The lower bound above on the function αq(δ) caused a big sensation among the

coding theorists, since it represents (for q a square with q > 49) an improvement on

the Gilbert-Varshamov bound for values of δ in a certain small interval.

Our aim now is to present a proof of the Drinfeld-Vladut bound:

A(q) 6
√
q − 1, for any prime power q.

This bound will be obtained here using a method due to Serre (the so-called Explicit

Formulas). It will be convenient to introduce the following notation:

Nr := #C(Fqr ),
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where C is a curve (projective and nonsingular) defined over the finite field Fq and

r ∈ N.

In the proof of Proposition 2.8 we have used the simple fact that N2 > N1; the

method of Serre below uses that Nr > N1 for any r ∈ N.

We will consider nonzero polynomials Ψ(t) with positive real coefficients. We write

Ψ(t) =

m∑

r=1

cr · tr ∈ R[t]

where cr ∈ R and cr > 0. Since Ψ(t) is nonzero we have cr > 0 for some index r.

To such a polynomial Ψ(t) ∈ R[t] we associate the rational function f(t) ∈ R(t)

f(t) := 1 + Ψ(t) + Ψ(t−1).

Clearly we have

f(γ) ∈ R, for each γ ∈ C with |γ| = 1.

Theorem 4.1(Explicit Formulas) . — Let Ψ(t) ∈ R[t] be a nonzero polynomial with pos-

itive coefficients, and let f(t) = 1 + Ψ(t) + Ψ(t−1) ∈ R(t) be the associated rational

function. Suppose that

f(γ) > 0 for each γ ∈ C with |γ| = 1.

Then for a curve C defined over Fq we have

#C(Fq) 6
g(C)

Ψ(q−1/2)
+

Ψ(q1/2)

Ψ(q−1/2)
+ 1.

Proof. — We denote by (see Theorem 2.3)

α1, α2, . . . , αg, αg+1, . . . , α2g

the algebraic integers with |αj | =
√
q, and we again order them so that

αg+j = αj , for each j = 1, 2, . . . , g.

For r ∈ N, we have the equality (see Eq.(2))

Nr = 1 + qr −
g∑

j=1

(αr
j + αr

j).

Multiplying this equality by q−r/2, we obtain

Nr · q−r/2 = q−r/2 + qr/2 −
g∑

j=1

(αj · q−1/2)r + (αj · q−1/2)r.

If we denote γj := αj · q−1/2, we have |γj | = 1 and γj = γ−1
j ; hence we have

Nr · q−r/2 = q−r/2 + qr/2 −
g∑

j=1

(γr
j + γ−r

j ).
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Denoting Ψ(t) =
m∑

r=1

cr · tr and multiplying the equality above by the coefficient cr,

and summing up for r = 1, 2, . . . ,m, we get
m∑

r=1

Nr · cr · q−r/2 = Ψ(q−1/2) + Ψ(q1/2) + g −
g∑

j=1

f(γj),

where f(t) is the associated rational function.

Adding N1 ·Ψ(q−1/2) to both sides of the last equality, we can rewrite it as follows

N1 · Ψ(q−1/2) = Ψ(q−1/2) + Ψ(q1/2) + g −R,

where R is defined as below

R :=

g∑

j=1

f(γj) +

m∑

r=1

(Nr −N1)cr · q−r/2.

Since we have cr > 0, Nr > N1 and also f(γj) > 0 for each j = 1, 2, . . . , g, we have

that R > 0 and hence that

N1 = #C(Fq) 6
g

Ψ(q−1/2)
+

Ψ(q1/2)

Ψ(q−1/2)
+ 1.

Example 4.2. — For a natural number e ∈ N define

q0 := 2e and q := 22e+1.

Consider the projective curve C over Fq associated to the polynomial f(X,Y ) below

f(X,Y ) := Y q − Y −Xq0 · (Xq −X) ∈ Fq[X,Y ].

It can be easily seen that the curve C has just one point at infinity, and moreover

#C(Fq) = 1 + q2.

The genus of this curve C satisfies

g(C) = q0 · (q − 1) =
q1/2

√
2

· (q − 1).

Let us denote by g0 := q0 · (q − 1). It follows from Theorem 4.1 that

#C0(Fq) 6 1 + q2,

for any curve C0 over Fq with genus g0. Indeed, consider the polynomial

Ψ0(t) =
1√
2
· t+ 1

4
· t2.

For a complex number γ = eiθ = cos θ+ i sin θ with |γ| = 1, and using the following

cosine equality cos 2θ = 2 cos2 θ − 1, we have

f(γ) =

(
1√
2

+ cos θ

)2

> 0,

where f(t) := 1 + Ψ0(t) + Ψ0(t
−1) is the associated rational function.
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The assertion now follows from the equality

g0
Ψ0(q−1/2)

+
Ψ0(q

1/2)

Ψ0(q−1/2)
+ 1 = 1 + q2.

Exercise. — Let C be the curve over the finite field Fq given in Example 4.2 above.

With notations as in the proof of Theorem 4.1, show that:

(a) N2 = N1 and f(γj) = 0 for each j = 1, 2, . . . , g.

(b) Using that f(γj) =
(

1√
2

+ cos θj

)2

, conclude that

γj = − 1√
2
± i · 1√

2
, for each j = 1, 2, . . . , g.

(c) Conclude then that

2g∏

j=1

(1 − αjt) = (1 + 2q0t+ qt2)g.

We are now going to use Theorem 4.1 to derive the following bound (due to Drinfeld

and Vladut) on the asymptotics of curves over a fixed finite field Fq with q elements:

Proposition 4.3(See[7]). — The quantity A(q) satisfies the so-called Drinfeld-Vladut

bound; i.e., we have

A(q) 6
√
q − 1.

Proof. — For each m ∈ N we consider the polynomial

Ψm(t) =

m∑

r=1

(
1 − r

m

)
· tr ∈ R[t].

Note that deg Ψm(t) = m− 1, and also that for t 6= 1 we have

Ψm(t) =
t

(t− 1)2
·
(
tm − 1

m
+ 1 − t

)
.

Indeed the equality above is equivalent to the validity of the equality below (and

this validity can be checked by comparing the coefficients of terms with the same

degrees):

(t− 1)2 ·
m∑

r=1

(
1 − r

m

)
· tr−1 =

1

m
· tm − t+

(
1 − 1

m

)
.
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Then we have for the associated rational function fm(t) ∈ R(t):

fm(t) = 1 + Ψm(t) + Ψm(t−1)

= 1 +
t

(t− 1)2
·
(
tm − 1

m
+ 1 − t

)

+
t−1

(t−1 − 1)2
·
(
t−m − 1

m
+ 1 − t−1

)

=
t

(t− 1)2
· t

m − 1

m
+

t−1

(t−1 − 1)2
· t

−m − 1

m
.

We have clearly the equalities below

t

(t− 1)2
=

t−1

(t−1 − 1)2
=

−1

(t− 1)(t−1 − 1)

and hence we conclude that

fm(t) =
2 − (tm + t−m)

m(t− 1)(t−1 − 1)
.

If γ ∈ C with γ 6= 1 and |γ| = 1, then (γ− 1)(γ−1− 1) is a positive real number. Also

|γm + γ−m| 6 |γm| + |γ−m| = 1 + 1 = 2,

and this shows that fm(γ) > 0 for each γ ∈ C with |γ| = 1. We then conclude from

Theorem 4.1 that (for each m ∈ N):

Nq(g)

g
6

1

Ψm(q−1/2)
+

1

g

(
Ψm(q1/2)

Ψm(q−1/2)
+ 1

)
.

From the following equality

Ψm(t) =
t

(t− 1)2
·
(
tm − 1

m
+ 1 − t

)
,

we get that the limit below holds true

lim
m→∞

Ψm(q−1/2) =
1√
q − 1

.

Given a real number ε > 0, we then fix a natural number n = n(ε) such that

Ψn(q−1/2)−1 <
√
q − 1 + ε/2.

For each ε > 0, having fixed n = n(ε) as above, we can choose g0 = g0(ε) such that

1

g
·
(

Ψn(q1/2)

Ψn(q−1/2)
+ 1

)
<
ε

2
if g > g0.

Hence for each real number ε > 0, there exists g0 = g0(ε) such that

Nq(g)

g
<

(√
q − 1 +

ε

2

)
+
ε

2
=

√
q − 1 + ε
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holds for every choice of g satisfying g > g0. This then implies that

lim sup
g→∞

Nq(g)

g
6

√
q − 1.

5. Towers of curves over finite fields

As we have done already, we will use simply the word curve to mean an algebraic

curve, projective and nonsingular, defined and absolutely irreducible over a finite field

Fq with q elements. A tower F over Fq is just an infinite sequence

F =
(
. . .Cn

ϕn−1−→−→ Cn−1 � · · · ϕ2−→−→ C2
ϕ1−→−→ C1

)

of curves Cn and surjective maps ϕn : Cn+1 → Cn, both the curves and the maps are

all defined over Fq, such that g(Cn) → ∞ as n→ ∞. We will always assume that all

the maps ϕn : Cn+1 � Cn are separable. Then the assumption that g(Cn) → ∞ can

be replaced by the assumption that there exists n ∈ N with g(Cn) > 2.

The limit λ(F) of the tower exists; i.e., the following limit does exist (see [14]):

λ(F) := lim
n→∞

#Cn(Fq)/g(Cn).

We have clearly

λ(F) 6 A(q), for any tower F over Fq.

Let π : C → C1 be a surjective and separable map of curves C and C1 defined over

an algebraically closed field k (in what follows the field k will be taken as Fq the

algebraic closure of the finite field Fq). For a point P ∈ C1(k) on the curve C1 we

denote by

π−1(P ) = {Q1, Q2, . . . , Qr} ⊆ C(k)

the set of points of C having image under the map π equal to P . For each j =

1, 2, . . . , r, we have natural numbers e(Qj|P ), called the ramification index of Qj over

P , such that
r∑

j=1

e(Qj|P ) = deg π.

The point P is called unramified for the map π if we have r = deg π; i.e., P is

unramified if π−1(P ) has exactly deg π elements. The points P on the curve C1 such

that

#π−1(P ) < deg π

are called ramified points for the morphism π. The number of ramified points for the

morphism π is always finite. We denote by V (π) the ramification locus for the map π;

i.e.,

V (π) := {P ∈ C1(k) | #π−1(P ) < deg π}.
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For a tower F = (. . . Cn

ϕn−1

� Cn−1 � · · ·
ϕ2

� C2

ϕ1

� C1) of curves over the finite field

Fq, and denoting for each n ∈ N

πn := ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕn−1 : Cn −→−→ C1

the composite morphism, we define the ramification locus V (F) of the tower by

V (F) :=

∞⋃

n=2

V (πn).

In other words, a point P ∈ C1(k) with k = Fq belongs to V (F) if and only if there

exists n ∈ N and a point P̃ belonging to the curve Cn such that

πn(P̃ ) = P and #ϕ−1
n (P̃ ) < degϕn,

where ϕn : Cn+1 � Cn is the map appearing in the definition of the tower F .

For a morphism π : C � C1 and a point P ∈ V (π), the point P is said to be tame

if the characteristic p = char(Fq) does not divide the ramification index e(Qj |P ),

for each j = 1, 2, . . . , r. The point P is said to be wild, otherwise. The morphism

π : C � C1 is called tame if every point P ∈ V (π) is a tame point. A tower F of curves

over the finite field Fq is called tame if each morphism (for n ∈ N) ϕn : Cn+1 � Cn in

the definition of the tower F is a tame morphism.

For a tower of curves F over Fq we let again πn : Cn � C1 denote the composite

morphism as before. For a point P ∈ C1(Fq), which is Fq-rational and which does

not belong to V (πn), we have #π−1
n (P ) = deg πn. The rational point P on the first

curve C1 is said to be πn-split if P /∈ V (πn) and if π−1
n (P ) consists of Fq-rational

points on Cn; i.e., the point P is πn-split if we have

P /∈ V (πn) and π−1
n (P ) ⊆ Cn(Fq).

For a tower F over Fq we define the splitting locus S(F) as below

S(F) := {P ∈ C1(Fq) | P is πn-split, ∀n ∈ N}.

The ramification locus V (F) and the splitting locus S(F) of a tower F of curves

over a finite field are specially interesting for tame towers.

Theorem 5.1. — Let F be a tame tower of curves over Fq. Suppose that

(a) The ramification locus V (F) is a finite set.

(b) The splitting locus S(F) is a nonempty set.

Then the limit λ(F) satisfies

λ(F) >
2 · #S(F)

2g(C1) − 2 + #V (F)
.

Proof. — The result follows easily from Hurwitz genus formula (see [16]).
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In order to give some examples illustrating Theorem 5.1 we will introduce now

the concept of recursive towers. Let f(X,Y ) ∈ Fq[X,Y ] be an absolutely irreducible

polynomial with coefficients in the finite field Fq (i.e., the polynomial f(X,Y ) remains

irreducible over the algebraic closure Fq). We say that the tower F is recursively

defined by the polynomial f(X,Y ) if:

– The first curve C1 is the projective line P1 with affine coordinate X1.

– The second curve C2 is the nonsingular projective model for the affine plane curve

given by f(X1, X2) = 0.

– The third curve C3 is the nonsingular projective model for the affine space curve

given by f(X1, X2) = f(X2, X3) = 0.

– The fourth curve C4 is the nonsingular projective model for the curve in the

4-dimensional affine space given by f(X1, X2) = f(X2, X3) = f(X3, X4) = 0.

– and so on...

Example 5.2. — Consider the tower F over the finite field Fq with q = `2, defined

recursively by the equation

f(X,Y ) = Y ` + Y − X`

1 +X`−1
.

One can show (see [14]) that its limit over F`2 satisfies

λ(F) = `− 1;

i.e., the tower F attains the Drinfeld-Vladut bound over the finite field with `2 ele-

ments. This gives a more elementary proof of the equality

A(`2) = `− 1, for any prime power `.

The determination of the limit

λ(F) = `− 1

in Example 5.2 is quite involved. One cannot use here Theorem 5.1, since each

ramification occuring in the tower in Example 5.2 is wild.

One has the following result due to J.-P. Serre (proved using Class Field Theory):

A(q) > 0, for any prime power q.

The next example gives an elementary proof (for q nonprime) of this result.

Example 5.3(See[16]). — Let q be a power of a prime number p and suppose that

q 6= p. Consider the tower F over the finite field Fq given recursively by

f(X,Y ) = Y m − (X + 1)m + 1, with m =
q − 1

p− 1
.

The limit of this tower satisfies

λ(F) >
2

q − 2
> 0.
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Proof. — It follows from the theory of Kummer extensions (see [30], Section III.7)

that the point at infinity on C1 = P1 is splitting in the tower F ; i.e., the set S(F) is

nonempty and hence #S(F) > 1. The ramification locus satisfies

V (F) ⊆ {P ∈ C1(Fq) | X1(P ) ∈ Fq}

and hence #V (F) 6 q. It then follows from Theorem 5.1 that

λ(F) >
2#S(F)

#V (F) − 2
>

2

q − 2
.

The particular case where q = 4 is very interesting. In this particular case the tower F
is recursively given over F4 by the equation

f(X,Y ) = Y 3 − (X + 1)3 + 1 ∈ F4[X,Y ],

and its limit satisfies λ(F) > 2/(4 − 2) = 1. We also have A(4) 6
√

4 − 1 = 1, and

hence the tower in Example 5.3 with q = 4 attains the Drinfeld-Vladut bound over

F4.

Example 5.4. — Let p be an odd prime number and let q = p2. Consider the tower

F of curves over Fq given recursively by the equation

f(X,Y ) = Y 2 − X2 + 1

2X
.

The limit of this tower satisfies

λ(F) = p− 1;

i.e., the tower F attains the Drinfeld-Vladut bound over the finite field with p2 ele-

ments.

Proof. — It is easy to see that the ramification locus V (F) of the tower is

V (F) = {P ∈ C1 | X1(P ) = 0,∞,±1 or ± i}

where i ∈ Fp2 satisfies i2 = −1. Hence

#V (F) = 6.

Because p is an odd prime number, the tower F is a tame tower. If we can show that

#S(F) = 2(p− 1),

then it follows from Theorem 5.1 that

λ(F) >
2 · 2(p− 1)

6 − 2
= p− 1;

i.e., the tower F attains the Drinfeld-Vladut bound. The hard part here is to show

#S(F) = 2(p− 1).
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The determination of the splitting locus S(F) involves the investigation of the ra-

tionality in the finite field Fp2 of the roots of the following polynomial H(X), the

so-called Deuring polynomial (see [15]):

H(X) :=

(p−1)/2∑

j=0

(p−1
2

j

)2

·Xj ∈ Fp[X ].

Example 5.5(See[16]). — For q = `2 consider the tower F over Fq given recursively

by

f(X,Y ) = Y `−1 + (X + 1)`−1 − 1.

Similarly to Example 5.3 we have here that the point at infinity of C1 = P1 is splitting

over F`2 in the tower F , and hence the splitting locus satisfies

#S(F) > 1;

we also have here that #V (F) 6 ` and, more concretely, the ramification locus satisfies

V (F) ⊆ {P ∈ C1 | X1(P ) ∈ F`}.
It now follows from Theorem 5.1 that the limit of F over the finite field F`2 satisfies:

λ(F) >
2 · #S(F)

#V (F) − 1
>

2

`− 2
.

The case when ` = 3 is particularly interesting. In this case we get a tower F of

curves over the finite field F9 given by f(X,Y ) = Y 2 +(X+1)2−1 ∈ F9[X,Y ], which

attains the Drinfeld-Vladut bound.

Remark. — Not every polynomial g(X,Y ) ∈ Fq[X,Y ] defines recursively a tower F of

curves over the finite field Fq. For example, let m be a divisor of (q− 1) and consider

the polynomial

g(X,Y ) = Y m −Xm − 1 ∈ Fq[X,Y ].

One starts to go upwards in the “possible tower” defined by the polynomial g(X,Y )

above (where p denotes the characteristic):

Xm
2 = Xm

1 + 1; Xm
3 = Xm

2 + 1 = Xm
1 + 2;

Xm
4 = Xm

3 + 1 = Xm
1 + 3 and Xm

p+1 = Xm
p + 1 = Xm

1 + p = Xm
1 .

The equality Xm
p+1 = Xm

1 shows that the polynomial g(X,Y ) = Y m−Xm−1 does

not define recursively a tower of curves. One can show that (see [34]) the polynomial

f(X,Y ) = Y m + a(X + b)m + c ∈ Fq[X,Y ],

withm and q relatively prime, defines a tower of curves over Fq if and only if a·b·c 6= 0.

If we have the condition that a, b, c ∈ F∗
q satisfy the equality

a · bm + c = 0,

then it is very easy to see that the polynomial f(X,Y ) ∈ Fq[X,Y ] as above defines

indeed a tower of curves over Fq. This is so since the point X1 = 0 of the first curve

C1 = P1 is totally ramified in the tower.
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Example 5.6(See[15]). — Let q be a power of a prime number p and suppose that p

is odd. Let β ∈ Fq with β2 6= 1. Consider the tower F over the finite field Fq given

by

f(X,Y ) = Y 2 − X(X + β2)

X + 1
.

The two points P of C1 = P1 with X1(P ) = ±β are splitting in the tower over Fq.

Indeed we have the equalities below

β(β + β2)

β + 1
= β2 =

−β(−β + β2)

−β + 1
.

Since p is assumed to be an odd prime number, then the tower F here is a tame tower.

If the finite field Fq is chosen so that the ramification locus V (F) is a finite set, then

it follows from Theorem 5.1 that the limit over Fq satisfies

λ(F) >
2 · #S(F)

#V (F) − 2
>

4

#V (F) − 2
.

This is the case if we choose q = 9. In this case we get #V (F) = 8 and hence we also

get that its limit satisfies λ(F) > 4/(8 − 2) = 2/3.

Tame towers are easier since we have at least the criteria in Theorem 5.1 ensuring

that the limit λ(F) is a positive number. Wild towers F with S(F) nonempty and

with V (F) finite, can have limit λ(F) equal to zero.

For example consider the tower F0 over Fq, with q = pp and p a prime number,

given by

f(X,Y ) = Y p − Y − (X + 1)(Xp−1 − 1)

Xp−1
.

There are at least p points of C1 = P1 which are splitting in the tower over Fpp ; we

have

S(F0) ⊇ {P ∈ C1 | (Xp
1 −X1 − 1)(P ) = 0} and hence #S(F0) > p.

One can check that the ramification locus V (F0) is a finite set; indeed we have

V (F0) = {P ∈ C1 | X1(P ) ∈ Fp or X1(P ) = ∞}.

In case p = 2 the tower F0 is the same as the tower in Example 5.2 with ` = 2,

and hence it attains the Drinfeld-Vladut bound over F4. In case p > 3, the limit of

the tower F0 satisfies λ(F0) = 0, for each prime p > 3. This result that λ(F0) = 0 is

obtained in [2] from the following result on the classification of recursive Artin-Schreier

towers: Let Fq be the finite field with q elements and denote by p = char(Fq). Let

ϕ(Y ) = Y p + αY ∈ Fq[Y ] be a separable additive polynomial (i.e., α 6= 0) with all

roots in the finite field Fq. Suppose that F is a recursive tower defined over Fq by an

equation

f(X,Y ) = ϕ(Y ) − ψ(X) with ψ(X) ∈ Fq(X).
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If the tower F is good over Fq; i.e., if the limit over Fq satisfies λ(F) > 0, then the

rational function ψ(X) has degree equal to p and it is of one of the following three

types:

Type A. — ψ(X) = c+ (X − b)p/ψ1(X), with elements b, c ∈ Fq and with ψ1(X) ∈
Fq[X ] a polynomial satisfying deg(ψ1(X)) 6 p and ψ1(b) 6= 0.

Type B. — ψ(X) = ψ0(X)/(X − b)p, with b ∈ Fq and with ψ0(X) ∈ Fq[X ] a polyno-

mial satisfying deg(ψ0(X)) 6 p and ψ0(b) 6= 0.

Type C. — ψ(X) = c+ 1/ψ1(X), with c ∈ Fq and with ψ1(X) ∈ Fq[X ] a polynomial

satisfying deg(ψ1(X)) = p.

All known good towers given recursively by f(X,Y ) = ϕ(Y )− ψ(X) as above, are

towers of Type A (see Example 5.2).

The rational function ψ(X) = (X + 1)(Xp−1 − 1)/Xp−1 in the definition of the

tower F0 above is not of Type A, B or C if the characteristic p satisfies p 6= 2, and

hence λ(F0) = 0.

Example 5.7. — Consider the tower F1 over F8 given recursively by (see [21])

f(X,Y ) = Y 2 + Y +
(X + 1)2

X
+ 1.

This is a tower of Type A and its limit over the finite field with 8 elements satisfies

λ(F1) =
2 · (22 − 1)

2 + 2
=

3

2
.

We have that the splitting locus is given by

S(F1) = {P ∈ C1 | X1(P ) ∈ F8 r F2}

and that the ramification locus satisfies

V (F1) = {P ∈ C1 | X1(P ) ∈ F4 or X1(P ) = ∞}.

The hard point here is to show that the limit genus γ(F1) is finite and equal to 4;

i.e., the hard part is to show that the following equality holds

γ(F1) := lim
n→∞

g(Cn)

deg πn
= 4,

where πn : Cn → C1 is the composite morphism.

We now present two new towers of curves. One tower is over finite fields F`2 with

square cardinalities and it attains the Drinfeld-Vladut bound; the other tower is over

finite fields F`3 with cubic cardinalities and it gives in particular a generalization of the

bound of Zink. The new feature of both towers above is that the maps ϕn : Cn+1 � Cn

are non-Galois maps, if the characteristic is odd.
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Example 5.8(See[3]). — Consider the tower F2 over Fq with q = `2 given recursively

by

f(X,Y ) =
Y − 1

Y `
− X` − 1

X
.

We have here that the splitting locus is given by

S(F2) = {P ∈ C1 | (X`
1 +X1 − 1)(P ) = 0}

and that the ramification locus satisfies

V (F2) = {P ∈ C1 | X1(P ) = 0, 1 or ∞}.
The hard part here is to show that the limit genus γ(F2) is finite; i.e., the hard

part is to show the equality below

γ(F2) := lim
n→∞

g(Cn)

deg πn
=

`

`− 1
.

We then conclude that the limit λ(F2) over the finite field F`2 satisfies

λ(F2) = `− 1;

i.e., it attains the Drinfeld-Vladut bound. This tower F2 of Example 5.8 is a subtower

of the tower F of Example 5.2. Indeed using the equation

W ` +W =
V `

1 + V `−1

and defining X := (1+V `−1)−1 and Y := (1+W `−1)−1, one checks easily that those

functions X and Y defined above satisfy the equation

Y − 1

Y `
=
X` − 1

X
.

This gives another proof that λ(F2) = `− 1 (see [14]).

Example 5.9(See[4]). — Consider the tower F3 over Fq with q = `3 given recursively

by

f(X,Y ) =
1 − Y

Y `
− X` +X − 1

X
.

We have here that the ramification locus satisfies

V (F3) = {P ∈ C1 | (X`
1 +X1 − 1)(P ) = 0 or X1(P ) = 0, 1,∞},

and hence #V (F3) = `+ 3.

Denoting by S0 = {α ∈ Fq | α`+1 = α− 1}, we have that S0 is contained in Fq and

that

S(F3) ⊇ {P ∈ C1 | X
`
1 +X1 − 1

X1
(P ) = α with α ∈ S0},

and hence the cardinality of the splitting locus satisfies #S(F3) > ` · (`+ 1).

Again the hard matter here is to show the equality below

γ(F3) := lim
n→∞

g(Cn)

deg πn
=

`

`− 1
· `+ 2

2
.
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We then conclude that the limit λ(F3) over the finite field F`3 satisfies

λ(F3) >
2(`2 − 1)

`+ 2
.

The inequality above implies that

A(`3) >
2(`2 − 1)

`+ 2
, for any prime power `.

This generalizes a result of Zink (see [35]) which corresponds to the particular case

when ` is a prime number.

The tower F3 given here in Example 5.9 in the particular case when ` = 2, is the

same as the tower F1 given in Example 5.7. Indeed just perform the substitutions

X 7−→ 1

X
and Y 7−→ 1

Y
.
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