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HOMOMORPHISMS OF ABELIAN VARIETIES

by

Yuri G. Zarhin

Abstract. — We study Galois properties of points of prime order on an abelian va-

riety that imply the simplicity of its endomorphism algebra. Applications of these

properties to hyperelliptic jacobians are discussed.

Résumé (Homomorphismes des variétés abéliennes). — Nous étudions les propriétés

galoisiennes des points d’ordre fini des variétés abéliennes qui impliquent la sim-

plicité de leur algèbre d’endomorphismes. Nous discutons ceux-ci par rapport aux

jacobiennes hyperelliptiques.

It is well-known that an abelian variety is (absolutely) simple or is isogenous to a

self-product of an (absolutely) simple abelian variety if and only if the center of its

endomorphism algebra is a field. In this paper we prove that the center is a field if

the field of definition of points of prime order ` is “big enough”.

The paper is organized as follows. In §1 we discuss Galois properties of points of

order ` on an abelian variety X that imply that its endomorphism algebra End0(X)

is a central simple algebra over the field of rational numbers. In §2 we prove that

similar Galois properties for two abelian varieties X and Y combined with the linear

disjointness of the corresponding fields of definitions of points of order ` imply that

X and Y are non-isogenous (and even Hom(X,Y ) = 0). In §3 we give applications to

endomorphism algebras of hyperelliptic jacobians. In §4 we prove that if X admits

multiplications by a number field E and the dimension of the centralizer of E in

End0(X) is “as large as possible” then X is an abelian variety of CM-type isogenous

to a self-product of an absolutely simple abelian variety.

Throughout the paper we will freely use the following observation [21, p. 174]: if

an abelian variety X is isogenous to a self-product Zd of an abelian variety Z then

a choice of an isogeny between X and Zd defines an isomorphism between End0(X)

and the algebra Md(End0(Z)) of d × d matrices over End0(Z). Since the center of
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190 YU.G. ZARHIN

End0(Z) coincides with the center of Md(End0(Z)), we get an isomorphism between

the center of End0(X) and the center of End0(Z) (that does not depend on the choice

of an isogeny). Also dim(X) = d · dim(Z); in particular, both d and dim(Z) divide

dim(X).

1. Endomorphism algebras of abelian varieties

Throughout this paper K is a field. We write Ka for its algebraic closure and

Gal(K) for the absolute Galois group Gal(Ka/K). We write ` for a prime different

from char(K). If X is an abelian variety of positive dimension over Ka then we write

End(X) for the ring of all its Ka-endomorphisms and End0(X) for the corresponding

Q-algebra End(X) ⊗ Q. If Y is (may be, another) abelian variety over Ka then we

write Hom(X,Y ) for the group of all Ka-homomorphisms from X to Y . It is well-

known that Hom(X,Y ) = 0 if and only if Hom(Y,X) = 0.

If n is a positive integer that is not divisible by char(K) then we write Xn for the

kernel of multiplication by n in X(Ka). It is well-known [21] that Xn is a free Z/nZ-

module of rank 2 dim(X). In particular, if n = ` is a prime then X` is an F`-vector

space of dimension 2 dim(X).

If X is defined over K then Xn is a Galois submodule in X(Ka). It is known

that all points of Xn are defined over a finite separable extension of K. We write

ρn,X,K : Gal(K) → AutZ/nZ(Xn) for the corresponding homomorphism defining the

structure of the Galois module on Xn,

G̃n,X,K ⊂ AutZ/nZ(Xn)

for its image ρn,X,K(Gal(K)) and K(Xn) for the field of definition of all points of Xn.

Clearly, K(Xn) is a finite Galois extension of K with Galois group Gal(K(Xn)/K) =

G̃n,X,K . If n = ` then we get a natural faithful linear representation

G̃`,X,K ⊂ AutF`
(X`)

of G̃`,X,K in the F`-vector space X`.

Remark 1.1. — If n = `2 then there is the natural surjective homomorphism

τ`,X : G̃`2,X,K −→−→ G̃`,X,K

corresponding to the field inclusion K(X`) ⊂ K(X`2); clearly, its kernel is a finite `-

group. Clearly, every prime dividing #(G̃`2,X,K) either divides #(G̃`,X,K) or is equal

to `. If A is a subgroup in G̃`2,X,K of index N then its image τ`,X(A) in G̃`,X,K is

isomorphic to A/A
⋂

ker(τ`,X). It follows easily that the index of τ`,X(A) in G̃`,X,K

equals N/`j where `j is the index of A
⋂

ker(τ`,X) in ker(τ`,X). In particular, j is a

nonnegative integer.
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We write EndK(X) for the ring of all K-endomorphisms of X . We have

Z = Z · 1X ⊂ EndK(X) ⊂ End(X)

where 1X is the identity automorphism of X . Since X is defined over K, one may

associate with every u ∈ End(X) and σ ∈ Gal(K) an endomorphism σu ∈ End(X)

such that σu(x) = σu(σ−1x) for x ∈ X(Ka) and we get the group homomorphism

κX : Gal(K) −→ Aut(End(X)); κX(σ)(u) = σu ∀σ ∈ Gal(K), u ∈ End(X).

It is well-known that EndK(X) coincides with the subring of Gal(K)-invariants in

End(X), i.e., EndK(X) = {u ∈ End(X) | σu = u ∀σ ∈ Gal(K)}. It is also

well-known that End(X) (viewed as a group with respect to addition) is a free com-

mutative group of finite rank and EndK(X) is its pure subgroup, i.e., the quotient

End(X)/EndK(X) is also a free commutative group of finite rank. All endomor-

phisms of X are defined over a finite separable extension of K. More precisely [31], if

n > 3 is a positive integer not divisible by char(K) then all the endomorphisms of X

are defined over K(Xn); in particular,

Gal(K(Xn)) ⊂ ker(κX) ⊂ Gal(K).

This implies that if ΓK := κX(Gal(K)) ⊂ Aut(End(X)) then there exists a surjective

homomorphism κX,n : G̃n,X � ΓK such that the composition

Gal(K) −→−→ Gal(K(Xn)/K) = G̃n,X

κX,n−→−→ ΓK

coincides with κX and

EndK(X) = End(X)ΓK .

Clearly, End(X) leaves invariant the subgroup X` ⊂ X(Ka). It is well-known that

u ∈ End(X) kills X` (i.e. u(X`) = 0) if and only if u ∈ ` · End(X). This gives us a

natural embedding

EndK(X) ⊗ Z/`Z ⊂ End(X) ⊗ Z/`Z ↪−→ EndF`
(X`);

the image of EndK(X)⊗ Z/`Z lies in the centralizer of the Galois group, i.e., we get

an embedding

EndK(X) ⊗ Z/`Z ↪−→ EndGal(K)(X`) = End eG`,X,K
(X`).

The next easy assertion seems to be well-known (compare with Prop. 3 and its proof

on pp. 107–108 in [19]) but quite useful.

Lemma 1.2. — If End eG`,X,K
(X`) = F` then EndK(X) = Z.

Proof. — It follows that the F`-dimension of EndK(X) ⊗ Z/`Z does not exceed 1.

This means that the rank of the free commutative group EndK(X) does not exceed 1

and therefore is 1. Since Z · 1X ⊂ EndK(X), it follows easily that EndK(X) =

Z · 1X = Z.
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192 YU.G. ZARHIN

Lemma 1.3. — If End eG`,X,K
(X`) is a field then EndK(X) has no zero divisors, i.e.,

EndK(X) ⊗ Q is a division algebra over Q.

Proof. — It follows that EndK(X) ⊗ Z/`Z is also a field and therefore has no zero

divisors. Suppose that u, v are non-zero elements of EndK(X) with uv = 0. Dividing

(if possible) u and v by suitable powers of ` in EndK(X), we may assume that both

u and v do not lie in `EndK(X) and induce non-zero elements in EndK(X) ⊗ Z/`Z

with zero product. Contradiction.

Let us put End0(X) := End(X) ⊗ Q. Then End0(X) is a semisimple finite-

dimensional Q-algebra [21, §21]. Clearly, the natural map Aut(End(X)) →
Aut(End0(X)) is an embedding. This allows us to view κX as a homomorphism

κX : Gal(K) −→ Aut(End(X)) ⊂ Aut(End0(X)),

whose image coincides with ΓK ⊂ Aut(End(X)) ⊂ Aut(End0(X)); the subalgebra

End0(X)ΓK of ΓK-invariants coincides with EndK(X) ⊗ Q.

Remark 1.4

(i) Let us split the semisimple Q-algebra End0(X) into a finite direct product

End0(X) =
∏

s∈I
Ds of simple Q-algebras Ds. (Here I is identified with the set of

minimal two-sided ideals in End0(X).) Let es be the identity element of Ds. One

may view es as an idempotent in End0(X). Clearly,

1X =
∑

s∈I

es ∈ End0(X), eset = 0 ∀ s 6= t.

There exists a positive integer N such that all N · es lie in End(X). We write Xs for

the image Xs := (Nes)(X); it is an abelian subvariety in X of positive dimension.

Clearly, the sum map

πX :
∏

s

Xs −→ X, (xs) 7−→
∑

s

xs

is an isogeny. It is also clear that the intersection Ds

⋂
End(X) leaves Xs ⊂ X

invariant. This gives us a natural identification Ds
∼= End0(Xs). One may easily

check that eachXs is isogenous to a self-product of (absolutely) simple abelian variety.

Clearly, if s 6= t then Hom(Xs, Xt) = 0.

(ii) We write Cs for the center of Ds. Then Cs coincides with the center of

End0(Xs) and is therefore either a totally real number field of degree dividing dim(Xs)

or a CM-field of degree dividing 2 dim(Xs) [21, p. 202]; the center C of End0(X) co-

incides with
∏

s∈I
Cs = ⊕s∈SCs.

(iii) All the sets

{es | s ∈ I} ⊂ ⊕s∈IQ · es ⊂ ⊕s∈ICs = C
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HOMOMORPHISMS OF ABELIAN VARIETIES 193

are stable under the Galois action Gal(K)
κX−→ Aut(End0(X)). In particular, there

is a continuous homomorphism from Gal(K) to the group Perm(I) of permutations

of I such that its kernel contains ker(κX) and

eσ(s) = κX(σ)(es) = σes,
σ(Cs) = Cσ(s),

σ(Ds) = Dσ(s) ∀σ ∈ Gal(K), s ∈ I.

It follows that Xσ(s) = Neσ(s)(X) = σ(Nes(X)) = σ(Xs); in particular, abelian

subvarieties Xs and Xσ(s) have the same dimension and u 7→ σu gives rise to an

isomorphism of Q-algebras End0(Xσ(s)) ∼= End0(Xs).

(iv) If J is a non-empty Galois-invariant subset in J then the sum
∑

s∈J Nes

is Galois-invariant and therefore lies in EndK(X). If J ′ is another Galois-invariant

subset of I that does not meet J then
∑

s∈J Nes also lies in EndK(X) and∑
s∈J Nes

∑
s∈J′ Nes = 0. Assume that EndK(X) has no zero divisors. It follows

that I must consist of one Galois orbit; in particular, all Xs have the same dimension

equal to dim(X)/#(I). In addition, if t ∈ I, Gal(K)t is the stabilizer of t in Gal(K)

and Ft is the subfield of Gal(K)t-invariants in the separable closure of K then it

follows easily that Gal(K)t is an open subgroup of index #(I) in Gal(K), the field

extension Ft/K is separable of degree #(I) and
∏

s∈S Xs is isomorphic over Ka

to the Weil restriction ResFt/K(Xt). This implies that X is isogenous over Ka to

ResFt/K(Xt).

Theorem 1.5. — Suppose that ` is a prime, K is a field of characteristic 6= `. Suppose

that X is an abelian variety of positive dimension g defined over K. Assume that

G̃`,X,K contains a subgroup G such EndG(X`) is a field.

Then one of the following conditions holds:

(a) The center of End0(X) is a field. In other words, End0(X) is a simple Q-

algebra.

(b)

(i) The prime ` is odd;

(ii) there exist a positive integer r > 1 dividing g, a field F with

K ⊂ K(X`)
G =: L ⊂ F ⊂ K(X`), [F : L] = r

and a g/r-dimensional abelian variety Y over F such that End0(Y ) is a simple

Q-algebra, the Q-algebra End0(X) is isomorphic to the direct sum of r copies

of End0(Y ) and the Weil restriction ResF/L(Y ) is isogenous over Ka to X.

In particular, X is isogenous over Ka to a product of g/r-dimensional abelian

varieties. In addition, G contains a subgroup of index r;

(c)

(i) The prime ` = 2;

(ii) there exist a positive integer r > 1 dividing g, fields L and F with

K ⊂ K(X4)
G ⊂ L ⊂ F ⊂ K(X4), [F : L] = r
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and a g/r-dimensional abelian variety Y over F such that End0(Y ) is a simple

Q-algebra, the Q-algebra End0(X) is isomorphic to the direct sum of r copies

of End0(Y ) and the Weil restriction ResF/L(Y ) is isogenous over Ka to X.

In particular, X is isogenous over Ka to a product of g/r-dimensional abelian

varieties.In addition, there exists a nonnegative integer j such that 2j divides r

and G contains a subgroup of index r/2j > 1.

Proof. — We will use notations of Remark 1.4. Let us put n = ` if ` is odd and n = 4

if ` = 2. Replacing K by K(X`)
G , we may and will assume that

G̃`,X,K = G.

If ` is odd then let us put L = K and H := Gal(K(X`)/K) = G = Gal(L(X`)/L).

If ` = 2 then we choose a subgroup H ⊂ G̃4,X,K of smallest possible order such

that τ2,X(H) = G̃2,X,K = G and put L := K(X4)
H ⊂ K(X4). It follows easily that

L(X4) = K(X4) and Gal(L(X2)/L) = Gal(K(X2)/K), i.e.,

H = G̃4,X,L, G̃2,X,L = G.

The minimality property of H combined with Remark 1.1 implies that if H ⊂ G̃4,X,L

is a subgroup of index r > 1 then τ2,X(H) has index r/2j > 1 in G̃2,X,L for some

nonnegative index j.

In light of Lemma 1.3, EndL(X) has no zero divisors. It follows from Remark

1.4(iv) that Gal(L) acts on I transitively. Let us put r = #(I). If r = 1 then I
is a singleton and I = {s}, X = Xs,End0(X) = Ds, C = Cs. This means that

assertion (a) of Theorem 1.5 holds true.

Further we assume that r > 1. Let us choose t ∈ I and put Y := Xt. If F := Ft is

the subfield of Gal(L)t-invariants in the separable closure of K then it follows from

Remark 1.4(iv) that Ft/L is a separable degree r extension, Y is defined over F and X

is isogenous over La = Ka to ResF/L(Y ).

Recall (Remark 1.4(iii)) that ker(κX) acts trivially on I. It follows that Gal(L(Xn))

acts trivially on I. This implies that Gal(L(Xn)) lies in Gal(L)t. Recall that Gal(L)t

is an open subgroup of index r in Gal(L) and Gal(L(Xn)) is a normal open subgroup

in Gal(L). It follows that H := Gal(L)t/Gal(L(Xn)) is a subgroup of index r in

Gal(L)/Gal(L(Xn)) = Gal(L(Xn)/L) = G̃n,X,L.

If ` is odd then n = ` and G̃n,X,L = G̃`,X,L = G contains a subgroup of index r > 1.

It follows from Remark 1.4 that assertion (b) of Theorem 1.5 holds true.

If ` = 2 then n = 4 and G̃n,X,L = G̃4,X,L contains a subgroup H of index r > 1.

But in this case we know (see the very beginning of this proof) that G̃2,X,L = G and

τ2,X(H) has index r/2j > 1 in G̃2,X,L for some nonnegative integer j. It follows from

Remark 1.4 that assertion (c) of Theorem 1.5 holds true.
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Before stating our next result, recall that a perfect finite group G with center Z
is called quasi-simple if the quotient G/Z is a simple nonabelian group. Let H be a

non-central normal subgroup in quasi-simple G. Then the image of H in simple G/Z
is a non-trivial normal subgroup and therefore coincides with G/Z. This means that

G = ZH . Since G is perfect, G = [G,G] = [H,H ] ⊂ H . It follows that G = H . In

other words, every proper normal subgroup in a quasi-simple group is central.

Theorem 1.6. — Suppose that ` is a prime, K is a field of characteristic different

from `. Suppose that X is an abelian variety of positive dimension g defined over K.

Let us assume that G̃`,X,K contains a subgroup G that enjoys the following properties:

(i) EndG(X`) = F`;

(ii) The group G does not contain a subgroup of index 2.

(iii) The only normal subgroup in G of index dividing g is G itself.

Then one of the following two conditions (a) and (b) holds:

(a) There exists a positive integer r > 2 such that:

(a0) r divides g and X is isogenous over Ka to a product of g/r-dimensional

abelian varieties;

(a1) If ` is odd then G contains a subgroup of index r;

(a2) If ` = 2 then there exists a nonnegative integer j such that G contains a

subgroup of index r/2j > 1.

(b)

(b1) The center of End0(X) coincides with Q. In other words, End0(X) is a

matrix algebra either over Q or over a quaternion Q-algebra.

(b2) If G is perfect and End0(X) is a matrix algebra over a quaternion Q-

algebra H then H is unramified at every prime not dividing #(G).

(b3) Let Z be the center of G. Suppose that G is quasi-simple, i.e. it is per-

fect and the quotient G/Z is a simple group. If End0(X) 6= Q then there exist

a perfect finite (multiplicative) subgroup Π ⊂ End0(X)∗ and a surjective homo-

morphism Π � G/Z such that every prime dividing #(Π) also divides #(G).

Proof. — Let us assume that the center C of End0(X) is not a field. Applying

Theorem 1.5, we conclude that the condition (a) holds.

Assume now that the center C of End0(X) is a field. We need to prove (b). Let

us define n and L as in the beginning of the proof of Theorem 1.5. We have

G = G̃`,X,L, End eG`,X,L
(X`) = F`.

In addition, if ` = 2 and H ⊂ G̃4,X,L is a subgroup of index r > 1 then τ2,X(H) has

index r/2j > 1 in G̃2,X,L = G for some nonnegative integer j. This implies that the

only normal subgroup in G̃n,X,L = G̃4,X,L of index dividing g is G̃n,X,L itself. It is

also clear that G̃n,X,L does not contain a subgroup of index 2. It follows from Remark

1.1 that if G is perfect then G̃4,X,L is also perfect and every prime dividing #(G̃4,X,L)
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must divide #(G), because (thanks to a celebrated theorem of Feit-Thompson) #(G)

must be even. (If ` is odd then n = ` and G̃n,X,L = G.)

It follows from Lemma 1.2 that EndL(X) = Z and therefore EndL(X) ⊗ Q = Q.

Recall that EndL(X) ⊗ Q = End0(X)Gal(L) and κX : Gal(L) → Aut(End0(X)) kills

Gal(L(Xn)). This gives rise to the homomorphism

κX,n : G̃n,X,L = Gal(L(Xn)/L) = Gal(L)/Gal(L(Xn)) −→ Aut(End0(X))

with κX,n(G̃n,X,L) = κX(Gal(L)) ⊂ Aut(End0(X)) and End0(X)
eGn,X,L = Q. Clearly,

the action of G̃n,X,L on End0(X) leaves invariant the center C and therefore defines a

homomorphism G̃n,X,L → Aut(C) with C
eGn,X,L = Q. It follows that C/Q is a Galois

extension and the corresponding map

G̃n,X,L −→ Aut(C) = Gal(C/Q)

is surjective. Recall that C is either a totally real number field of degree dividing g

or a purely imaginary quadratic extension of a totally real number field C+ where

[C+ : Q] divides g . In the case of totally real C let us put C+ := C. Clearly, in both

cases C+ is the largest totally real subfield of C and therefore the action of G̃n,X,L

leaves C+ stable, i.e. C+/Q is also a Galois extension. Let us put r := [C+ : Q]. It is

known [21, p. 202] that r divides g. Clearly, the Galois group Gal(C+/Q) has order r

and we have a surjective homomorphism (composition)

G̃n,X,L −→−→ Gal(C/Q) −→−→ Gal(C+/Q)

of G̃n,X,L onto order r group Gal(C+/Q). Clearly, its kernel is a normal subgroup

of index r in G̃n,X,L. This contradicts our assumption if r > 1. Hence r = 1,

i.e. C+ = Q. It follows that either C = Q or C is an imaginary quadratic field and

Gal(C/Q) is a group of order 2. In the latter case we get the surjective homomorphism

from G̃n,X,L onto Gal(C/Q), whose kernel is a subgroup of order 2 in G̃n,X,L, which

does not exist. This proves that C = Q. It follows from Albert’s classification [21,

p. 202] that End0(X) is either a matrix algebra Q or a matrix algebra Md(H) where

H is a quaternion Q-algebra. This proves assertion (b1) of Theorem 1.6.

Assume, in addition, that G is perfect. Then, as we have already seen, G̃n,X,L

is also perfect. This implies that Γ := κX,n(G̃n,X,L) is a finite perfect subgroup of

Aut(End0(X)) and every prime dividing #(Γ) must divide #(G̃n,X,L) and therefore

divides #(G). Clearly,

(1) Q = End0(X)Γ.

Assume that End0(X) 6= Q. Then Γ 6= {1}. Since End0(X) is a central simple

Q-algebra, all its automorphisms are inner, i.e., Aut(End0(X)) = End0(X)∗/Q∗.

Let ∆ � Γ be the universal central extension of Γ. It is well-known that ∆ is a

finite perfect group and the set of prime divisors of #(∆) coincides with the set of

prime divisors of #(Γ). The universality property implies that the inclusion map

Γ ⊂ End0(X)∗/Q∗ lifts (uniquely) to a homomorphism π : ∆ → End0(X)∗. The
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equality (1) means that the centralizer of π(∆) in End0(X) coincides with Q and

therefore ker(π) does not coincide with ∆. It follows that the image Γ0 of ker(π) in Γ

does not coincide with the whole Γ. It also follows that if Q[∆] is the group Q-algebra

of ∆ then π induces the Q-algebra homomorphism π : Q[∆] → End0(X) such that

the centralizer of the image π(Q[∆]) in End0(X) coincides with Q.

I claim that π(Q[∆]) = End0(X) and therefore End0(X) is isomorphic to a direct

summand of Q[∆]. This claim follows easily from the next lemma that will be proven

later in this section.

Lemma 1.7. — Let E be a field of characteristic zero, T a semisimple finite-

dimensional E-algebra, S a finite-dimensional central simple E-algebra, β : T → S

an E-algebra homomorphism that sends 1 to 1. Suppose that the centralizer of the

image β(T ) in S coincides with the center E. Then β is surjective, i.e. β(T ) = S.

In order to prove (b2), let us assume that End0(X) = Md(H) where H is a

quaternion Q-algebra. Then Md(H) is isomorphic to a direct summand of Q[∆].

On the other hand, it is well-known that if q is a prime not dividing #(∆) then

Qq[∆] = Q[∆]⊗Q Qq is a direct sum of matrix algebras over (commutative) fields. It

follows that Md(H) ⊗Q Qq also splits. This proves the assertion (b2).

In order to prove (b3), let us assume that G is a quasi-simple finite group with

center Z. Let us put Π := π(∆) ⊂ End0(X)∗. We are going to construct a surjective

homomorphism Π � G/Z. In order to do that, it suffices to construct a surjective

homomorphism Γ � G/Z. Recall that there are surjective homomorphisms

τ : G̃n,X,L −→−→ G̃`,X,L = G, κX,n : G̃n,X,L −→−→ Γ.

(If ` is odd then τ is the identity map; if ` = 2 then τ = τ2,X .) Let H0 be the kernel

of κX,n : G̃n,X,L � Γ. Clearly,

(2) G̃n,X,L/H0
∼= Γ.

Since Γ 6= {1}, we have H0 6= G̃n,X,L. It follows that τ(H0) 6= G. The surjectivity of

τ : G̃n,X,L � G implies that τ(H0) is normal in G and therefore lies in the center Z.

This gives us the surjective homomorphisms

G̃n,X,L/H0 −→−→ τ(G̃n,X,L)/τ(H0) = G/τ(H0) −→−→ G/Z,
whose composition is a surjective homomorphism G̃n,X,L/H0 � G/Z. Using (2), we

get the desired surjective homomorphism Γ � G/Z.

Proof of Lemma 1.7. — Replacing E by its algebraic closure Ea and tensoring T

and S by Ea, we may and will assume that E is algebraically closed. Then S = Mn(E)

for some positive integer n. Clearly, β(T ) is a direct sum of say, b matrix algebras

over E and the center of β(T ) is isomorphic to a direct sum of b copies of E. In

particular, if b > 1 then the centralizer of β(T ) in S contains the b-dimensional center

of β(T ) which gives us the contradiction. So, b = 1 and β(T ) ∼= Mk(E) for some
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positive integer k. Clearly, k 6 n; if the equality holds then we are done. Assume

that k < n: we need to get a contradiction. So, we have

1 ∈ E ⊂ β(T ) ∼= Mk(E) ↪−→ Mn(E) = S.

This provides En with a structure of faithful β(T )-module in such a way that En

does not contain a non-zero submodule with trivial (zero) action of β(T ). Since

β(T ) ∼= Mk(E), the β(T )-module En splits into a direct sum of say, e copies of a

simple faithful β(T )-module W with dimE(W ) = k. Clearly, e = n/k > 1. It follows

easily that the centralizer of β(T ) in S = Mn(E) coincides with

Endβ(T )(W
e) = Me(Endβ(T )(W )) = Me(E)

and has E-dimension e2 > 1. Contradiction.

Corollary 1.8. — Suppose that ` is a prime, K is a field of characteristic different

from `. Suppose that X is an abelian variety of positive dimension g defined over K.

Let us assume that G̃`,X,K contains a perfect subgroup G that enjoys the following

properties:

(a) EndG(X`) = F`;

(b) The only subgroup of index dividing g in G is G itself.

If g is odd then either End0(X) is a matrix algebra over Q or p = char(K) > 0 and

End0(X) is a matrix algebra Md(Hp) over a quaternion Q-algebra Hp that is ramified

exactly at p and ∞ and d > 1. In particular, if char(K) does not divide #(G) then

End0(X) is a matrix algebra over Q.

Proof of Corollary 1.8. — Let us assume that End0(X) is not isomorphic to a matrix

algebra over Q. Then End0(X) is (isomorphic to) a matrix algebra Md(H) over a

quaternion Q-algebra H. This means that there exists an absolutely simple abelian

variety Y over Ka such that X is isogenous to Y d and End0(Y ) = H. Clearly, dim(Y )

is odd. It follows from Albert’s classification [21, p. 202] that p := char(Ka) =

char(K) > 0. By Lemma 4.3 of [23], if there exists a prime q 6= p such that H is

unramified at q then 4 = dimQ H divides 2 dim(Y ). Since dim(Y ) is odd, 2 dim(Y )

is not divisible by 4 and therefore H is unramified at all primes different from p. It

follows from the theorem of Hasse-Brauer-Noether that H ∼= Hp.

Now, assume that d = 1, i.e. End0(X) = Hp. We know that End0(X)∗ = H∗
p

contains a nontrivial finite perfect group Π. But this contradicts to the following

elementary statement, whose proof will be given later in this section.

Lemma 1.9. — Every finite subgroup in H∗
p is solvable.

Hence End0(X) 6= Hp, i.e. d > 1.

Assume now that p does not divide #(G). It follows from Theorem 1.6 that H

is unramified at p. This implies that H can be ramified only at ∞ which could not

be the case. The obtained contradiction proves that End0(X) is a matrix algebra

over Q.
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Proof of Lemma 1.9. — If p 6= 2 then H∗
p ⊂ (Hp ⊗Q Q2)

∗ ∼= GL(2,Q2) and if p = 2

then H∗
2 ⊂ (H2 ⊗Q Q3)

∗ ∼= GL(2,Q3). Since every finite subgroup in GL(2,Q2) (resp.

GL(2,Q3)) is conjugate to a finite subgroup in GL(2,Z2) (resp. GL(2,Z3)), it suffices

to check that every finite subgroup in GL(2,Z2) and GL(2,Z3) is solvable.

Recall that both GL(2,F2) and GL(2,F3) are solvable and use the Minkowski-Serre

lemma ([28, pp. 124–125]; see also [32]). This lemma asserts, in particular, that if q

is an odd prime then the kernel of the reduction map GL(n,Zq) → GL(n,Fq) does

not contain nontrivial elements of finite order and that all periodic elements in the

kernel of the reduction map GL(n,Z2) → GL(n,F2) have order 1 or 2.

Indeed, every finite subgroup Π ⊂ GL(2,Z3) maps injectively in GL(2,F3) and

therefore is solvable. If Π ⊂ GL(2,Z2) is a finite subgroup then the kernel of the

reduction map Π → GL(2,F2) consists of elements of order 1 or 2 and therefore is an

elementary commutative 2-group. Since the image of the reduction map is solvable,

we conclude that Π is solvable.

Corollary 1.10. — Suppose that ` is a prime, K is a field of characteristic different

from `. Suppose that X is an abelian variety of dimension g defined over K. Let us

put g′ = max(2, g). Let us assume that G̃`,X,K contains a perfect subgroup G that

enjoys the following properties:

(a) EndG(X`) = F`;

(b) The only subgroup of index dividing g in G is G itself.

(c) If Z is the center of G then G/Z is a simple nonabelian group.

Suppose that End0(X) ∼= Md(Q) with d > 1. Then there exist a perfect finite subgroup

Π ⊂ GL(d,Z) and a surjective homomorphism Π � G/Z such that every prime

dividing #(Π) also divides #(G).

Proof of Corollary 1.10. — Clearly, End0(X)∗ = GL(n,Q). One has only to recall

that every finite subgroup in GL(n,Q) is conjugate to a finite subgroup in GL(n,Z)

and apply Theorem 1.6(iii).

2. Homomorphisms of abelian varieties

Theorem 2.1. — Let ` be a prime, K a field of characteristic different from `, X and Y

abelian varieties of positive dimension defined over K. Suppose that the following

conditions hold:

(i) The extensions K(X`) and K(Y`) are linearly disjoint over K.

(ii) End eG`,X,K
(X`) = F`.

(iii) The centralizer of G̃`,Y,K in EndF`
(Y`) is a field.

Then either Hom(X,Y ) = 0,Hom(Y,X) = 0 or char(K) > 0 and both abelian

varieties X and Y are supersingular.
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Remark 2.2. — Theorem 2.1 was proven in [43] under an addititional assumption that

the Galois modules X` and Y` are simple.

In order to prove Theorem 2.1, we need first to discuss the notion of Tate module.

Recall [21, 29, 47] that this is a Z`-module T`(X) defined as the projective limit of

Galois modulesX`m . It is well-known that T`(X) is a free Z`-module of rank 2 dim(X)

provided with the continuous action

ρ`,X : Gal(K) −→ AutZ`
(T`(X)).

There is the natural isomorphism of Galois modules

(3) X` = T`(X)/`T`(X),

so one may view ρ̃`,X as the reduction of ρ`,X modulo `. Let us put

V`(X) = T`(X) ⊗Z`
Q`;

it is a 2 dim(X)-dimensional Q`-vector space. The group T`(X) is naturally identified

with the Z`-lattice in V`(X) and the inclusion AutZ`
(T`(X)) ⊂ AutQ`

(V`(X)) allows

us to view V`(X) as representation of Gal(K) over Q`. Let Y be (may be, another)

abelian variety of positive dimension defined overK. Recall [21, §19] that Hom(X,Y )

is a free commutative group of finite rank. Since X and Y are defined over K,

one may associate with every u ∈ Hom(X,Y ) and σ ∈ Gal(K) an endomorphism
σu ∈ Hom(X,Y ) such that

σu(x) = σu(σ−1x) ∀x ∈ X(Ka)

and we get the group homomorphism

κX,Y : Gal(K) → Aut(Hom(X,Y )); κX,Y (σ)(u) = σu ∀σ ∈ Gal(K), u ∈ Hom(X,Y ),

which provides the finite-dimensional Q`-vector space Hom(X,Y )⊗Q` with the nat-

ural structure of Galois module.

There is a natural structure of Galois module on the Q`-vector space

HomQ`
(V`(X), V`(Y ))

induced by the Galois actions on V`(X) and V`(Y ). On the other hand, there is a

natural embedding of Galois modules [21, §19],

Hom(X,Y ) ⊗ Q` ⊂ HomQ`
(V`(X), V`(Y )),

whose image must be a Gal(K)-invariant Q`-vector subspace. It is also clear that

HomZ`
(T`(X), T`(Y )) is a Galois-invariant Z`-lattice in HomQ`

(V`(X), V`(Y )). The

equality (3) gives rise to a natural isomorphism of Galois modules

(4) HomZ`
(T`(X), T`(Y )) ⊗Z`

Z`/`Z` = HomF`
(X`, Y`).
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Proof of Theorem 2.1. — Let K(X`, Y`) be the compositum of the fields K(X`) and

K(Y`). The linear disjointness of K(X`) and K(Y`) means that

Gal(K(X`, Y`)/K) = Gal(K(Y`)/K) × Gal(K(X`)/K).

Let X∗
` = HomF`

(X`,F`) be the dual of X` and ρ∗n,X,K : Gal(K) → Aut(X∗
` ) the dual

of ρn,X,K . One may easily check that ker(ρ∗n,X,K) = ker(ρn,X,K) and therefore we

have an isomorphism of the images

G̃∗
`,X,K := ρ∗n,X,K(Gal(K)) ∼= ρn,X,K(Gal(K))) = G̃`,X,K .

One may also easily check that the centralizer of Gal(K) in EndF`
(X∗

` ) still coincides

with F`. It follows that if A1 is the F`-subalgebra in EndF`
(X∗

` ) generated by G̃∗
`,X,K

then its centralizer in EndF`
(X∗

` ) coincides with F`. Let us consider the Galois module

W1 = HomF`
(X`, Y`) = X∗

` ⊗F`
Y` and denote by τ the homomorphism Gal(K) →

Aut(W1) that defines the Galois module structure onW1. One may easily check that τ

factors through Gal(K(X`, Y`)/K) and the image of τ coincides with the image of

G̃∗
`,X,K × G̃`,X,Y ⊂ Aut(X∗

` ) × Aut(Y`) −→ Aut(X∗
` ⊗F`

Y`) = Aut(W1).

Let A2 be the F`-subalgebra in EndF`
(Y`) generated by G̃`,Y,K . Recall that the

centralizer of Gal(K) in EndF`
(Y`) is a field, say F. Clearly, the centralizer of A2 in

EndF`
(Y`) coincides with F. One may easily check that the subalgebra of EndF`

(W1)

generated by the image of Gal(K) coincides with

A1 ⊗F`
A2 ⊂ EndF`

(X∗
` ) ⊗F`

EndF`
(Y`) = EndF (X∗

` ⊗F`
Y`) = EndF`

(W1).

It follows from Lemma (10.37) on p. 252 of [3] that the centralizer of A1 ⊗F`
A2 in

EndF (X∗
` ⊗F`

Y`) coincides with F` ⊗F`
F = F. This implies that the centralizer of

Gal(K) in EndF (X∗
` ⊗F`

Y`) = EndF`
(W1) is the field F.

Let us consider the Q`-vector space V1 = HomQ`
(V`(X), V`(Y )) and the free Z`-

module T1 = HomZ`
(T`(X), T`(Y )) provided with the natural structure of Galois

modules. Clearly, T1 is a Galois-stable Z`-lattice in V1. By (4), there is a natural

isomorphism of Galois modules W1 = T1/`T1. Let us denote by D1 the centralizer

of Gal(K) in EndQ`
(V1). Clearly, D1 is a finite-dimensional Q`-algebra. Therefore in

order to prove that D1 is a division algebra, it suffices to check that D1 has no zero

divisors.

Suppose that D1 has zero divisors, i.e. there are non-zero u, v ∈ D1 with uv = 0.

We have u, v ⊂ D1 ⊂ EndQ`
(V1). Multiplying u and v by proper powers of `, we

may and will assume that u(T1) ⊂ T1, v(T1) ⊂ T1 but u(T1) is not contained in

`T1 and v(T1) is not contained in `T1. This means that u and v induce non-zero

endomorphisms u, v ∈ End(W1) that commute with Gal(K) and uv = 0. Since both

u and v are non-zero elements of the field F, we get a contradiction that proves that

D1 has no zero divisors and therefore is a division algebra.
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End of the proof of Theorem 2.1. — We may and will assume that K is finitely

generated over its prime subfield (replacing K by its suitable subfield). Then the

conjecture of Tate [34] (proven by the author in characteristic > 2 [36, 37], Falt-

ings in characteristic zero [5, 6] and Mori in characteristic 2 [17]) asserts that the

natural representation of Gal(K) in V`(Z) is completely reducible for any abelian

variety Z over K. In particular, the natural representations of Gal(K) in V`(X) and

V`(Y ) are completely reducible. It follows easily that the dual Galois representa-

tion in HomQ`
(V`(X),Q`) is also completely reducible. Since Q` has characteristic

zero, it follows from a theorem of Chevalley [1, p. 88] that the Galois representation

in the tensor product HomQ`
(V`(X),Q`) ⊗Q`

V`(Y ) = HomQ`
(V`(X), V`(Y )) =: V1

is completely reducible. The complete reducibility implies easily that V1 is an irre-

ducible Galois representation, because the centralizer is a division algebra. Recall that

Hom(X,Y ) ⊗ Q` is a Galois-invariant subspace in HomQ`
(V`(X), V`(Y )) = V1. The

irreducibility of V1 implies that either Hom(X,Y )⊗Q` = 0 or Hom(X,Y )⊗Q` = V1.

If Hom(X,Y ) ⊗ Q` = 0 then Hom(X,Y ) = 0 and therefore Hom(Y,X) = 0.

If Hom(X,Y ) ⊗ Q` = V1 then the rank of the free commutative group Hom(X,Y )

coincides with the dimension of the Q`-vector space V1. Clearly, V1 has dimen-

sion 4 dim(X) dim(Y ). It is proven in proposition 3.3 of [43] that if A and B are

abelian varieties over an algebraically closed field K and the rank of Hom(A,B) equals

4 dim(A) dim(B) then char(K) > 0 and both A and B are supersingular abelian va-

rieties. Applying this result to X and Y , we conclude that char(K) = char(Ka) > 0

and both X and Y are supersingular abelian varieties.

3. Hyperelliptic jacobians

In this section we deal with the case of ` = 2. Suppose that char(K) 6= 2. Let

f(x) ∈ K[x] be a polynomial of degree n > 3 without multiple roots. Let Rf ⊂ Ka

be the set of roots of f . Clearly, Rf consists of n elements. Let K(Rf) ⊂ Ka be the

splitting field of f . Clearly, K(Rf)/K is a Galois extension and we write Gal(f) for

its Galois group Gal(K(Rf )/K). By definition, Gal(K(Rf )/K) permutes elements of

Rf ; further we identify Gal(f) with the corresponding subgroup of Perm(Rf ) where

Perm(Rf ) is the group of permutations of Rf .

We write F
Rf

2 for the n-dimensional F2-vector space of maps h : Rf → F2. The

space F
Rf

2 is provided with a natural action of Perm(Rf ) defined as follows. Each

s ∈ Perm(Rf ) sends a map h : Rf → F2 to sh : α 7→ h(s−1(α)). The permutation

module F
Rf

2 contains the Perm(Rf )-stable hyperplane

(F
Rf

2 )0 =
{
h : Rf → F2 | ∑

α∈Rf
h(α) = 0

}

and the Perm(Rf )-invariant line F2 ·1Rf
where 1Rf

is the constant function 1. Clearly,

(F
Rf

2 )0 contains F2 · 1Rf
if and only if n is even.
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If n is even then let us define the Gal(f)-module QRf
:= (F

Rf

2 )0/(F2 · 1Rf
). If n

is odd then let us put QRf
:= (F

Rf

2 )0. If n 6= 4 the natural representation of Gal(f)

is faithful, because in this case the natural homomorphism Perm(Rf ) → AutF2(QRf
)

is injective.

Remark 3.1. — It is known [15, Satz 4], that EndGal(f)(QRf
) = F2 if either n is odd

and Gal(f) acts doubly transitively on Rf or n is even and Gal(f) acts 3-transitively

on Rf .

The canonical surjection Gal(K) � Gal(K(Rf )/K) = Gal(f) provides QRf
with a

natural structure of Gal(K)-module. Let Cf be the hyperelliptic curve y2 = f(x) and

J(CF ) its jacobian. It is well-known that J(CF ) is a [(n− 1)/2]-dimensional abelian

variety defined over K. It is also well-known that the Gal(K)-modules J(Cf )2 and

QRf
are isomorphic (see for instance [25, 27, 39]). It follows that if n 6= 4 then

Gal(f) = G̃2,J(Cf ).

It follows from Remark 3.1 that if either n is odd and Gal(f) acts doubly transitively

on Rf or n is even and Gal(f) acts 3-transitively on Rf then

End eG2,J(Cf )
(J(Cf )2)) = F2.

It is also clear that K(J(Cf )2)) ⊂ K(Rf). (The equality holds if n 6= 4.)

The next assertion follows immediately from Theorem 1.6, Corollaries 1.8 and 1.10

(applied to X = J(Cf ), ` = 2,G = Gal(f)).

Theorem 3.2. — Let K be a field of characteristic different from 2, let n > 5 be an

integer, g = [(n− 1)/2] and f(x) ∈ K[x] a polynomial of degree n. Suppose that

either n is odd and Gal(f) acts doubly transitively on Rf or n is even and Gal(f)

acts 3-transitively on Rf . Assume also that Gal(f) is a simple nonabelian group that

does not contain a subgroup of index dividing g except Gal(f) itself. If g is odd then

End0(J(Cf )) enjoys one of the following properties:

(i) End0(J(Cf )) is isomorphic to the matrix algebra Md(Q) where d divides g. If

d > 1 there exist a finite perfect group Π ⊂ GL(d,Z) and a surjective homomorphism

Π � Gal(f) such that every prime dividing #(Π) also divides #(Gal(f)).

(ii) p := char(K) is a prime dividing #(Gal(f)) and End0(J(Cf )) is isomorphic

to the matrix algebra Md(Hp) where d > 1 divides g.

Example 3.3. — Suppose that n = 5 and Gal(f) is the alternating group A5 acting

doubly transitively on Rf . Clearly, g = 2 and Gal(f) is a simple nonabelian group

without subgroups of index 2. Applying Theorem 3.2, we conclude that End0(J(Cf ))

is either Q or M2(Q) or M2(H) where H is a quaternion Q-algebra unramified outside

{∞, 2, 3, 5}; in addition H ∼= Hp if p := char(K) > 0. Suppose that End(J(Cf )) 6= Z

and therefore End0(J(Cf )) 6= Q. If End0(J(Cf )) = M2(Q) then GL(2,Q) = M2(Q)∗

contains a finite group, whose order divides 5, which is not the case. This implies
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that End0(J(Cf )) = M2(H). This means that J(Cf ) is supersingular and therefore

p := char(K) > 0. This implies that p = 3 or p = 5.

We conclude that either End(J(Cf ) = Z or char(K) ∈ {3, 5} and J(Cf ) is a

supersingular abelian varietiy. In fact, it is known [46] that if char(K) = 5 then

End(J(Cf ) = Z. On the other hand, one may find a supersingular J(Cf ) in charac-

teristic 3 [46].

Example 3.3 is a special case of the following general result proven by the author

[38, 42, 46]. Suppose that n > 5 and Gal(f) is the alternating group An acting on

Rf . If char(K) = 3 we assume additionally that n > 7. Then End(J(Cf ) = Z.

We refer the reader to [18, 19, 11, 12, 16, 13, 38, 40, 42, 41, 44, 45] for

a discussion of other known results about, and examples of, hyperelliptic jacobians

without complex multiplication.

Corollary 3.4. — Suppose that n = 7 and Gal(f) = SL3(F2) ∼= PSL2(F7) acts doubly

transitively on Rf . Then End0(J(Cf )) = Q and therefore End(J(Cf )) = Z.

Proof. — We have g = dim(J(Cf )) = 3. Since PSL2(F7) is a simple nonabelian

group it does not contain a subgroup of index 3. So, we may apply Theorem 3.2. We

obtain that if End0(J(Cf )) 6= Q then either End0(J(Cf )) = M3(Q) and there exist

a finite perfect group Π ⊂ GL(3,Z) and a surjective homomorphism Π � Gal(f) =

PSL2(F7) or End0(J(Cf )) = M3(Hp) where p = char(K) is either 3 or 7. The case of

End0(J(Cf )) = M3(Hp) means that J(Cf ) is supersingular, which is not true ([46],

Th. 3.1). Hence End0(J(Cf )) = M3(Q) and GL(3,Z) contains a finite group of order

dividing 7. It follows that GL(3,Z) contains an element of order dividing 7, which

is not true. The obtained contradiction proves that End0(J(Cf )) = Q and therefore

End(J(Cf )) = Z.

Corollary 3.5. — Suppose that n = 11 and Gal(f) = PSL2(F11) acts doubly transi-

tively on Rf . Then End0(J(Cf )) = Q and therefore End(J(Cf )) = Z.

Proof. — We have g = dim(J(Cf )) = 5. It is known [2] that PSL2(F11) is a simple

nonabelian subgroup not containing a subgroup of index 5. So, we may apply Theorem

3.2. We obtain that if End0(J(Cf )) 6= Q then either End0(J(Cf )) = M5(Q) and

there exist a finite perfect group Π ⊂ GL(5,Z) and a surjective homomorphism Π �

Gal(f) = PSL2(F11) or End0(J(Cf )) = M5(Hp) where p = char(K) is either 3 or 5

or 11.

Assume that End0(J(Cf )) = M5(Q). Then GL(5,Z) contains a finite group, whose

order is divisible by 11. It follows that GL(5,Z) contains an element of order 11, which

is not true. Hence End0(J(Cf )) 6= M5(Q)

Assume that End0(J(Cf )) = M5(Hp) where p is either 3 or 5 or 11. This implies

that J(Cf ) is a supersingular abelian variety.
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Notice that every homomorphism from simple PSL2(F11) to GL(4,F2) is trivial,

because 11 divides #(PSL2(F11)) but #(GL(4,F2)) is not divisible by 11. Since

4 = g − 1, it follows from Theorem 3.3 of [46] (applied to g = 5, X = J(Cf ), G =

Gal(f) = PSL2(F11)) that there exists a central extension π1 : G1 → PSL2(F11) such

that G1 is perfect, ker(π1) is a cyclic group of order 1 or 2 and M5(Hp) is a direct

summand of the group Q-algebra Q[G1]. It follows easily that G1 = PSL2(F11) or

SL2(F11). It is known [10, 7] that Q[PSL2(F11)] is a direct sum of matrix algebras

over fields. Hence G1 = SL2(F11) and the direct summand M5(Hp) corresponds to a

faithful ordinary irreducible character χ of SL2(F11) with degree 10 and Q(χ) = Q.

This implies that in notations of [4, §38], χ = θj where j is an odd integer such

that 1 6 j 6 (11 − 1)/2 = 5 and either 6j is divisible by 11 + 1 = 12 or 4j is divisible

by 12 ([7], Th. 6.2 on p. 285). This implies that j = 3 and χ = θ3. However, the

direct summand attached to θ3 is ramified at 2 ([10, the case (c) on p. 4]; [7, theorem

6.1(iii) on p. 284]). Since p 6= 2, we get a contradiction which proves that J(Cf ) is not

supersingular. This implies that End0(J(Cf )) = Q and therefore End(J(Cf )) = Z.

Corollary 3.6. — Suppose that n = 12 and Gal(f) is the Mathieu group M11 acting

3-transitively on Rf . Then End(J(Cf )) = Z.

Proof. — Let α be a root of f(x) and K1 = K(α). Clearly, the stabilizer of α

in Gal(f) = M11 is PSL2(F11) acting doubly transitively on the roots of f1(x) =

f(x)/(x− α) ∈ K1[x]. Let us put h(x) = f1(x + α) ∈ K1[x], h(x) = x11h(1/x) ∈
K1[x]. Clearly, deg(h1) = 11 and Gal(h1) = PSL2(F11) acts doubly transitively on

the roots of h1. By Corollary 3.5, End(J(Ch1 )) = Z. On the other hand, the standard

substitution x1 = 1/(x − α), y1 = y/(x − α)6 establishes a birational isomorphism

between Cf and Ch1 : y2
1 = h1(x1). This implies that J(Cf ) ∼= J(Ch1 ) and therefore

End(J(Cf )) = Z.

In characteristic zero the assertions of Corollaries 3.4, 3.5 and 3.6 were earlier

proven in [46, 39].

Corollary 3.7. — Suppose that deg(f) = n where n = 22, 23 or 24 and Gal(f) is the

corresponding (at least) 3-transitive Mathieu group Mn ⊂ Perm(Rf ) ∼= Sn. Then

End(J(Cf )) = Z.

Proof. — First, assume that n = 23 or 24. We have g = dim(J(Cf )) = 11. It is

known that both M23 and M24 do not contain a subgroup of index 11 [2]. So, we

may apply Theorem 3.2 and obtain that if End(J(Cf ) 6= Z then End0(J(Cf )) 6= Q

and one of the following conditions holds:

(i) End0(J(Cf )) = M11(Q) and there exist a finite perfect group Π ⊂ GL(11,Z)

and a surjective homomorphism Π � Gal(f) = Mn;

(ii) p = char(K) ∈ {3, 5, 7, 11, 23} and End0(J(Cf )) = M11(Hp).
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Assume that the condition (i) holds. Then End0(J(Cf )) = M11(Q) and GL(11,Z)

contains a finite group, whose order is divisible by 23. It follows that GL(11,Z)

contains an element of order 23, which is not true. The obtained contradiction proves

that the condition (i) is not fulfilled.

Hence the condition (ii) holds. Then p = char(K) ∈ {3, 5, 7, 11, 23} and there

exist a finite perfect subgroup Π ⊂ End0(J(Cf ))∗ = GL(11,Hp) and a surjective

homomorphism π : Π � Mn. Replacing Π by a suitable subgroup, we may and will

assume that no proper subgroup of Π maps onto Mn. By tensoring Hp to the field of

complex numbers (over Q), we obtain an embedding

Π ⊂ GL(11,Hp) ⊂ GL(22,C).

In particular, the (perfect) group Π admits a non-trivial projective 22-dimensional

representation over C. Recall that Mn has Schur’s multiplier 1 (since n = 23 or 24)

[2] and therefore all its projective representations are (obtained from) linear repre-

sentations. Also, all nontrivial linear representations of M24 have dimension > 23,

because the smallest dimension of a nontrivial linear representation of M24 is 23.

It follows from results of Feit–Tits [8] that Π cannot have a non-trivial projective

representation of dimension < 23. This implies that n 6= 24, i.e. n = 23.

Recall that 22 is the smallest possible dimension of a nontrivial representation of

M23 in characteristic zero, because its every irreducible representation in character-

istic zero has dimension > 22 [2]. It follows from a theorem of Feit–Tits ([8], pp. 1

and §4; see also [14]) that the projective representation

Π −→ GL(11,Hp)/Q
∗ ⊂ GL(22,C)/C∗

factors through ker(π). This means that ker(π) lies in Q∗ and therefore Π is a central

extension of M23. Now the perfectness of Π implies that π is an isomorphism, i.e. Π ∼=
M23.

Let us consider the natural homomorphism Q[M23] ∼= Q[Π] → M11(Hp) induced

by the inclusion ∆ ⊂ M11(Hp)
∗. It is surjective, because otherwise one may construct

a (complex) nontrivial representation of M23 of dimension < 22. This implies that

M11(Hp) is isomorphic to a direct summand of Q[M23]. But this is not true, since

Schur indices of all irreducible representations of M23 are equal to 1 [7, §7] and

therefore Q[M23] splits into a direct sum of matrix algebras over fields. The obtained

contradiction proves that the condition (ii) is not fulfilled. So, End(J(Cf ) = Z.

Now let n = 22. Then g = 10. It is known that M22 is a simple nonabelian group

not containing a subgroup of index 10 [2]. Let us assume that End0(J(Cf )) 6= Q.

Applying Theorem 1.6, we conclude that there exists a positive integer d dividing 10

such that either d > 1 and End0(J(Cf ) = Md(Q) or End0(J(Cf )) = Md(H) where H

is a quaternion Q-algebra unramified outside ∞ and the prime divisors of #(M22).

In addition, there exist a finite perfect subgroup Π ⊂ End0(J(Cf ))∗ and a surjective

homomorphism π : Π � M22. Replacing Π by a suitable subgroup, we may and will

assume (without losing the perfectness) that no proper subgroup of Π maps onto Mn.
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By Lemma 3.13 on pp. 200–201 of [41], every homomorphism from Π to PSL(10,R)

is trivial. The perfectness of Π implies that every homomorphism from Π to

PGL(10,R) is trivial. Since Md(Q)∗ = GL(d,Q) ⊂ GL(10,R), we conclude that

End0(J(Cf )) 6= Md(Q) and therefore End0(J(Cf )) = Md(H).

If d = 10 then p := char(K) > 0 and J(Cf ) is a supersingular abelian variety.

Assume that d 6= 10, i.e. d = 1, 2 or 5. If H is unramified at ∞ then there exists

an embedding H ↪→ M2(R). This gives us the embeddings

Π ⊂ Md(H)∗ ↪−→ M2d(R)∗ = GL(2d,R) ⊂ GL(10,R)

and therefore there is a nontrivial homomorphism from Π to PGL(10,R). The ob-

tained contradiction proves that H is ramified at ∞.

There exists an embedding H ↪→ M4(Q) ⊂ M4(R). This implies that if d = 1 or 2

then there are embeddings

Π ⊂ Md(H)∗ ↪−→ M4d(R)∗ = GL(4d,R) ⊂ GL(10,R)

and therefore there is a nontrivial homomorphism from Π to PGL(10,R). The ob-

tained contradiction proves that d = 5. This means that there exists an abelian

surface Y over Ka such that J(Cf ) is isogenous to Y 5 and End0(Y ) = H. However,

there do not exist abelian surfaces, whose endomorphism algebra is a definite quater-

nion algebra over Q. This result is well-known in characteristic zero (see, for instance

[24]); the positive characteristic case was done by Oort [23, Lemma 4.5 on p. 490].

Hence d 6= 5. This implies that d = 10 and J(Cf ) is a supersingular abelian variety.

Since M22 is a simple group and 11 | #(M22), every homomorphism from M22

to GL(9,F2) is trivial, because #(GL(9,F2)) is not divisible by 11. Since 9 = g − 1,

it follows from Theorem 3.3 of [46] (applied to g = 10, X = J(Cf ), G = Gal(f) =

M22) that there exists a central extension π1 : G1 → M22 such that G1 is perfect,

ker(π1) is a cyclic group of order 1 or 2 and there exists a faithful 20-dimensional

absolutely irreducible representation of G1 in characteristic zero. However, such a

central extension with 20-dimensional irreducible representation does not exist [2].

Combining Corollary 3.7 with previous author’s results [39, 42] concerning small

Mathieu groups, we obtain the following statement.

Theorem 3.8. — Suppose that n ∈ {11, 12, 22, 23, 24} and Gal(f) is the corresponding

Mathieu group Mn ⊂ Perm(Rf ) ∼= Sn. Then End(J(Cf )) = Z.

In characteristic zero the assertion of Theorem 3.8 was earlier proven in [39, 41].

Theorem 3.9. — Suppose that n = 15 and Gal(f) is the alternating group A7 acting

doubly transitively on Rf . Then either End(J(Cf )) = Z or J(Cf ) is isogenous over

Ka to a product of elliptic curves.

Proof. — We have g = 7. Unfortunately, A7 has a subgroup of index 7. However,

A7 is simple nonabelian and does not have a normal subgroup of index 7. Applying
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Theorem 1.6 to X = J(Cf ), g = 7, ` = 2,G = Gal(f) = A7, we obtain that either

J(Cf ) is isogenous to a product of elliptic curves (case (a)) or End0(J(Cf )) is a central

simple Q-algebra (case (b)). If End0(J(Cf )) is a matrix algebra over Q then either

End0(J(Cf )) = Q (i.e., End(J(Cf )) = Z) or End0(J(Cf )) = M7(Q) (i.e., J(Cf ) is

isogenous to the 7th power of an elliptic curve without complex multiplication).

If the central simple Q-algebra End0(J(Cf )) is not a matrix algebra over Q

then there exists a quaternion Q-algebra H such that either End0(J(Cf )) = H or

End0(J(Cf )) = M7(H). If End0(J(Cf )) = M7(H) then J(Cf ) is a supersingular

abelian variety and therefore is isogenous to a product of elliptic curves.

Let us assume that End0(J(Cf )) = H. We need to arrive to a contradiction. Since

7 = dim(J(Cf )) is odd, p = char(K) > 0. The same arguments as in the proof of

Corollary 1.8 tell us that H = Hp. By Theorem 1.6(b3), there exist a perfect finite

group Π ⊂ End0(J(Cf ))∗ = H∗
p and a surjective homomorphism Π � A7. But Lemma

1.9 asserts that every finite subgroup in H∗
p is solvable. The obtained contradiction

proves that End0(J(Cf )) 6= H.

Theorem 3.10. — Suppose that n = q + 1 where q > 5 is a prime power that is

congruent to ±3 modulo 8. Suppose that Gal(f) = PSL2(Fq) acts doubly transitively

on Rf (where Rf is identified with the projective line P1(Fq)). Then End0(J(Cf )) is

a simple Q-algebra, i.e. J(Cf ) is either absolutely simple or isogenous to a power of

an absolutely simple abelian variety.

Proof. — Since n = q + 1 is even, g = (q − 1)/2. It is known [20] that the Gal(f) =

PSL2(Fq)-module QRf
is simple and the centralizer of PSL2(Fq) in EndF2(QRf

) is

the field F4. On the other hand, PSL2(Fq) is a simple nonabelian group: we need to

inspect its subgroups. The following statement will be proven later in this section.

Lemma 3.11. — Let q > 5 be a power of an odd prime. Then PSL2(Fq) does not

contain a subgroup of index dividing (q − 1)/2 except PSL2(Fq) itself.

Recall that G̃2,J(Cf ) = Gal(f) = PSL2(Fq). Now Theorem 3.10 follows readily

from Theorem 1.5 combined with Lemma 3.11.

Proof of Lemma 3.11. — Since PSL2(Fq) is a simple nonabelian subgroup, it does

not contain a subgroup of index 6 4 except PSL2(Fq) itself. This implies that in the

course of the proof we may assume that (q − 1)/2 > 5, i.e., q > 11.

Recall that #(PSL2(Fq)) = (q + 1)q(q − 1)/2. Let H 6= PSL2(Fq) be a subgroup

in PSL2(Fq). The list of subgroups in PSL2(Fq) given in [33, theorem 6.25 on p. 412]

tells us that #(H) divides either q ± 1 or q(q − 1)/2 or 60 or (b + 1)b(b − 1) where

b < q is a positive integer such that q is an integral power of b. This implies that if

the index of H is a divisor of (q − 1)/2 then either

(1) (q + 1)q divides 60, or

(2) (q + 1)q(q − 1)/2 6
q−1
2 (

√
q + 1)

√
q(
√
q − 1) = q−1

2 (q − 1)
√
q.

SÉMINAIRES & CONGRÈS 11
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In the case (1) we have q = 5 which contradicts our assumption that q > 11. So,

the case (2) holds. Clearly, (q + 1)
√
q 6 (q − 1) which is obviously not true.

Theorem 3.12. — Let K be a field of characteristic different from 2. Suppose that

f(x) and h(x) are polynomials in K[x] enjoying the following properties:

(i) deg(f) > 3 and the Galois group Gal(f) acts doubly transitively on the set Rf

of roots of f . If deg(f) is even then this action is 3-transitive;

(ii) deg(h) > 3 and the Galois group Gal(h) acts doubly transitively on the set Rh

of roots of h. If deg(h) is even then this action is 3-transitive;

(iii) The splitting fields K(Rf) of f and K(Rh) of h are linearly disjoint over K.

Let J(Cf ) be the jacobian of the hyperelliptic curve Cf : y2 = f(x) and J(Ch) be the ja-

cobian of the hyperelliptic curve Ch : y2 = h(x). Then either Hom(J(Cf ), J(Ch)) = 0,

Hom(J(Ch), J(Cf )) = 0 or char(K) > 0 and both J(Cf ) and J(Ch) are supersingular

abelian varieties.

Proof. — Let us put X = J(Cf ), Y = J(Ch). The transitivity properties imply

that End eG2,X
(X2) = F2 and End eG2,Y

(Y2) = F2. The linear disjointness of K(Rf)

and K(Rh) implies that the fields K(X2) = K((J(Cf )2) ⊂ K(Rf) and K(Y2) =

K((J(Ch)2) ⊂ K(Rh) are also linearly disjoint over K. Now the assertion follows

readily from Theorem 2.1 with ` = 2.

4. Abelian varieties with multiplications

Let E be a number field. Let (X, i) be a pair consisting of an abelian variety X of

positive dimension over Ka and an embedding i : E ↪→ End0(X). Here 1 ∈ E must

go to 1X . It is well known [26] that the degree [E : Q] divides 2 dim(X), i.e.

d = dX :=
2 dim(X)

[E : Q]

is a positive integer. Let us denote by End0(X, i) the centralizer of i(E) in End0(X).

Clearly, i(E) lies in the center of the finite-dimensional Q-algebra End0(X, i). It

follows that End0(X, i) carries a natural structure of finite-dimensional E-algebra.

If Y is (possibly) another abelian variety over Ka and j : E ↪→ End0(Y ) is an

embedding that sends 1 to the identity automorphism of Y then we write

Hom0((X, i), (Y, j)) = {u ∈ Hom0(X,Y ) | ui(c) = j(c)u ∀ c ∈ E}.

Clearly, End0(X, i) = Hom0((X, i), (X, i)). If m is a positive integer then we write

i(m) for the composition E ↪→ End0(X) ⊂ End0(Xm) of i and the diagonal inclusion

End0(X) ⊂ End0(Xm) = Mm(End0(X)). Clearly,

End0(Xm, i(m)) = Mm(End0(X, i)) ⊂ Mm(End0(X)) = End0(Xm).
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Remark 4.1. — The E-algebra End0(X, i) is semisimple. Indeed, in notations of Re-

mark 1.4 End0(X) =
∏

s∈I
Ds where all Ds = End0(Xs) are simple Q-algebras. If

prs : End0(X) � Ds is the corresponding projection map and Ds,E is the centralizer

of prs i(E) in Ds then one may easily check that End0(X, i) =
∏

s∈I
Ds,E . Clearly,

prs i(E) ∼= E is a simple Q-algebra. It follows from Theorem 4.3.2 on p. 104 of [9]

that Ds,E is also a simple Q-algebra. This implies that Ds,E is a simple E-algebra

and therefore End0(X, i) is a semisimple E-algebra. We write is for the composition

prs i : E ↪→ End0(X) � Ds
∼= End0(Xs). Clearly, Ds,E = End0(Xs, is) and

(5) End0(X, i) =
∏

s∈I

End0(Xs, is).

It follows that End0(X, i) is a simple E-algebra if and only if End0(X) is a simple

Q-algebra, i.e., X is isogenous to a self-product of (absolutely) simple abelian variety.

Theorem 4.2

(i) dimE(End0((X, i)) 6 4 · dim(X)2/[E : Q]2;

(ii) Suppose that dimE(End0((X, i)) = 4 · dim(X)2/[E : Q]2. Then:

(a) X is isogenous to a self-product of an (absolutely) simple abelian variety.

Also End0((X, i) is a central simple E-algebra, i.e., E coincides with the center

of End0((X, i). In addition, X is an abelian variety of CM-type.

(b) There exist an abelian variety Z, a positive integer m, an isogeny ψ :

Zm → X and an embedding k : E ↪→ End0(Z) that sends 1 to 1Z such that:

(1) End0(Z, k) is a central division algebra over E of dimension

(2 dim(Z)/[E : Q])
2

and ψ ∈ Hom0((Zr, k(m)), (X, i)).

(2) If char(Ka) = 0 then E contains a CM subfield and 2 dim(Z) =

[E : Q]. In particular, [E : Q] is even.

(3) If E does not contain a CM-field (e.g., E is a totally real

number field) then char(Ka) > 0 and X is a supersingular abelian

variety.

Proof. — Recall that d = 2 dim(X)/[E : Q]. First, assume that X is isogenous to

a self-product of an absolutely simple abelian variety, i.e., End0(X, i) is a simple

E-algebra. We need to prove that

N := dimE(End0(X, i)) 6 d2.

Let C be the center of End0(X). Let E′ be the center of End0(X, i). Clearly,

C ⊂ E′ ⊂ End0(X, i) ⊂ End0(X).

Let us put e = [E′ : E]. Then End0(X, i) is a central simple E′-algebra of di-

mension N/e. Then there exists a central division E′-algebra D such that End0(X, i)

is isomorphic to the matrix algebra Mm(D) of size m for some positive integer m.

Dimension arguments imply that

m2 dimE′(D) =
N

e
, dimE′(D) =

N

em2
.
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Since dimE′(D) is a square,

N

e
= N2

1 , N = eN2
1 , dimE′(D) =

(
N1

m

)2

for some positive integer N1. Clearly, m divides N1.

Clearly, D contains a (maximal) field extension L/E′ of degree (N1)/m and

End0(X, i) ∼= Mm(D) contains every field extension T/L of degree m. This implies

that

End0(X) ⊃ End0(X, i) ⊃ T

and the number field T has degree [T : Q] = [E′ : Q]· N1

m ·m = [E : Q]eN1. But [T : Q]

must divide 2 dim(X) (see [30, proposition 2 on p. 36]); if the equality holds then X is

an abelian variety of CM-type. This implies that eN1 divides d = 2 dim(X)/[E : Q].

It follows that (eN1)
2 divides d2; if the equality holds then [T : Q] = 2 dim(X) and

therefore X is an abelian variety of CM-type. But (eN1)
2 = e2N2

1 = e(eN2
1 ) =

eN = e · dimE(End0(X, i)). This implies that dimE(End0(X, i)) 6 d2/e 6 d2, which

proves (i).

Assume now that dimE(End0(X, i)) = d2. Then e = 1 and

(eN1)
2 = r2, N1 = d, [T : Q] = [E : Q]eN1 = [E : Q]d = 2 dim(X);

in particular, X is an abelian variety of CM-type. In addition, since e = 1, we have

E′ = E, i.e. End0(X, i) is a central simple E-algebra. We also have C ⊂ E and

dimE(D) = dimE′(D) =

(
N1

m

)2

=

(
d

m

)2

.

Since E is the center of D, it is also the center of the matrix algebra Mm(D). Clearly,

there exist an abelian variety Z over Ka, an embedding j : D ↪→ End0(Z) and an

isogeny ψ : Zm → X such that the induced isomorphism

ψ∗ : End0(Zm) ∼= End0(X), u 7−→ ψuψ−1

maps j(Mm(D)) := Mm(j(D)) ⊂ Mm(End0(Z)) = End0(Zm) onto End0(X, i). Since

E is the center of Mm(D) and i(E) is the center of End0(X, i), the isomorphism ψ∗

maps j(E) ⊂ j(Mm(D)) = Mm(j(D)) ⊂ End0(Zm) onto i(E) ⊂ End0(X). In other

words, ψ∗j(E) = i(E). It follows that there exists an automorphism σ of the field E

such that i = ψ∗jσ on E. It follows easily that if we put k := jσ : E ↪→ End0(Z)

then ψ ∈ Hom((Zm, k(m)), (X,ψ)).

Clearly, k(E) = j(E) and therefore j(D) ⊂ End0(Z, k). Since Mm(End0(Z, k)) ∼=
End0(X, i) ∼= Mm(D), the dimension arguments imply that j(D) = End0(Z, k) and

therefore End0(Z, k) ∼= D is a division algebra. Clearly,

dim(Z) =
dim(X)

m
, dimE(D) =

(
d

m

)2

=

(
2 dim(X)

[E : Q]m

)2

=

(
2 dim(Z)

[E : Q]

)2

.

Let B be an absolutely simple abelian variety overKa such that X is isogenous to a

self-productBr ofB where the positive integer r = dim(X)/dim(B). Then End0(B) is
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a central division algebra over C; we define a positive integer g0 by dimC(End0(B)) =

g2
0 . Since End0(X) contains a field of degree 2 dim(X), it follows from Propositions 3

and 4 on pp. 36–37 in [30] (applied to A = X , K = C, g = g0, m = dim(B),

f = [C : Q]) that 2 dim(B) = [C : Q] · g0. Let T0 be a maximal subfield in the

g2
0-dimensional central division algebra End0(B). Well-known properties of maximal

subfields of division algebras imply that T0 contains the center C and [T0 : C] = g0.

It follows that [T0 : Q] = [C : Q][T0 : C] = [C : Q] · g0 = 2 dim(B) and therefore

End0(B) contains a field of degree 2 dim(B). This implies that B is an absolutely

simple abelian variety of CM-type; in terminology of [22], B is an absolutely simple

abelian variety with sufficiently many complex multiplications.

Assume now that char(Ka) = 0. We need to check that 2 dim(Z) = [E : Q] and E

contains a CM-field. Indeed, since D is a division algebra, it follows from Albert’s

classification [21, 23] that dimQ(D) divides 2 dim(Z) = 2 dim(X)/m = [E : Q]d/m.

On the other hand, dimQ(D) = [E : Q] dimE(D) = [E : Q] (d/m)
2
. Since m divides d,

we conclude that d/m = 1, i.e., dimE(D) = 1, D = E, 2 dim(Z) = [E : Q]. In other

words, End0(Z) contains the field E of degree 2 dim(Z). It follows from Theorem 1

on p. 40 in [30] (applied to F = E) that E contains a CM-field.

Now let us drop the assumption about char(Ka) and assume instead that E does

not contain a CM subfield. It follows that char(K) > 0. Since C lies in E, it is totally

real. Since B is an absolutely simple abelian variety with sufficiently many complex

multiplications it is isogenous to an absolutely simple abelian variety W defined over

a finite field [22] and End0(B) ∼= End0(W ). In particular, the center of End0(W )

is isomorphic to C and therefore is a totally real number field. It follows from the

Honda–Tate theory [35] that W is a supersingular elliptic curve and therefore B is

also a supersingular elliptic curve. Since X is isogenous to Br, it is a supersingular

abelian variety.

Now let us consider the case of arbitrary X . Applying the already proven case of

Theorem 4.2(i) to each Xs, we conclude that

dimE(End0(Xs, i)) 6

(
2 dim(Xs)

[E : Q]

)2

.

Applying (5), we conclude that

dimE(End0(X, i)) =
∑

s∈I

dimE(End0(Xs, is))

6
∑

s∈I

(
2 dim(Xs)

[E : Q]

)2

6
(2

∑
s∈I

dim(Xs))
2

[E : Q]2
=

(2 dim(X))2

[E : Q]2
.

It follows that if the equality dimE(End0(X, i)) = (2 dim(X))2/[E : Q]2 holds then

the set I of indices s is a singleton, i.e. X = Xs is isogenous to a self-product of an

absolutely simple abelian variety.
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5. Corrigendum to [46]

Page 629, proof of Lemma 6.1 (i). First, the Hasse–Witt/Cartier–Manin matrix

of the hyperelliptic curve C is M (1/3). (The exponent was inadvertently distorted.)

Second, the jacobian J(C) is a supersingular abelian surface if and only ifMM (3) = 0.

(The product was mistakenly transposed.) Clearly,

det(MM (3)) = det(M) det(M)3 = det(M)4 = (a1a5)
4.

Hence, if MM (3) = 0 then a1 = 0, because a5 6= 0. Suppose that a1 = 0. Then

M =

(
a2 0

a5 0

)
, M (3) =

(
a3
2 0

a3
5 0

)
, MM (3) =

(
a4
2 0

a5a
3
2 0

)
.

We conclude that MM (3) = 0 if and only if a1 = a2 = 0. It follows that J(C) is a

supersingular abelian surface if and only if a1 = a2 = 0. Since M 6= 0, the jacobian

J(C) is not isomorphic to a product of two supersingular elliptic curves.
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Lewis, in Séminaire de Théorie des Nombres (Paris, 1979-80) (M.-J. Bertin, ed.),
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SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2005



214 YU.G. ZARHIN
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