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HOMOMORPHISMS OF ABELIAN VARIETIES

by

Yuri G. Zarhin

Abstract — We study Galois properties of points of prime order on an abelian va-
riety that imply the simplicity of its endomorphism algebra. Applications of these
properties to hyperelliptic jacobians are discussed.

Résumé (Homomorphismes des variétés abéliennes). — Nous étudions les propriétés
galoisiennes des points d’ordre fini des variétés abéliennes qui impliquent la sim-
plicité de leur algébre d’endomorphismes. Nous discutons ceux-ci par rapport aux
jacobiennes hyperelliptiques.

It is well-known that an abelian variety is (absolutely) simple or is isogenous to a
self-product of an (absolutely) simple abelian variety if and only if the center of its
endomorphism algebra is a field. In this paper we prove that the center is a field if
the field of definition of points of prime order ¢ is “big enough”.

The paper is organized as follows. In §1 we discuss Galois properties of points of
order £ on an abelian variety X that imply that its endomorphism algebra End"(X)
is a central simple algebra over the field of rational numbers. In §2 we prove that
similar Galois properties for two abelian varieties X and Y combined with the linear
disjointness of the corresponding fields of definitions of points of order ¢ imply that
X and Y are non-isogenous (and even Hom(X,Y) = 0). In §3 we give applications to
endomorphism algebras of hyperelliptic jacobians. In §4 we prove that if X admits
multiplications by a number field £ and the dimension of the centralizer of E in
EndO(X ) is “as large as possible” then X is an abelian variety of CM-type isogenous
to a self-product of an absolutely simple abelian variety.

Throughout the paper we will freely use the following observation [21, p.174]: if
an abelian variety X is isogenous to a self-product Z? of an abelian variety Z then
a choice of an isogeny between X and Z? defines an isomorphism between End”(X)
and the algebra My(End"(Z)) of d x d matrices over End”(Z). Since the center of
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End’(Z) coincides with the center of Mg(End®(Z)), we get an isomorphism between
the center of End’(X) and the center of End”(Z) (that does not depend on the choice
of an isogeny). Also dim(X) = d - dim(Z); in particular, both d and dim(Z) divide
dim(X).

1. Endomorphism algebras of abelian varieties

Throughout this paper K is a field. We write K, for its algebraic closure and
Gal(K) for the absolute Galois group Gal(K,/K). We write ¢ for a prime different
from char(K). If X is an abelian variety of positive dimension over K, then we write
End(X) for the ring of all its K,-endomorphisms and End’(X) for the corresponding
Q-algebra End(X) ® Q. If Y is (may be, another) abelian variety over K, then we
write Hom(X,Y") for the group of all K,-homomorphisms from X to Y. It is well-
known that Hom(X,Y") = 0 if and only if Hom(Y, X) = 0.

If n is a positive integer that is not divisible by char(K) then we write X,, for the
kernel of multiplication by n in X (K,). It is well-known [21] that X, is a free Z/nZ-
module of rank 2dim(X). In particular, if n = ¢ is a prime then X, is an Fy-vector
space of dimension 2 dim(X).

If X is defined over K then X,, is a Galois submodule in X (K,). It is known
that all points of X,, are defined over a finite separable extension of K. We write
Pnx.r : Gal(K) — Autgz/,z(X,) for the corresponding homomorphism defining the
structure of the Galois module on X,

Gn,x,x C Auty/nz(Xn)

for its image p,, x x(Gal(K)) and K (X,,) for the field of definition of all points of X,,.
Clearly, K(X,,) is a finite Galois extension of K with Galois group Gal(K (X,,)/K) =
Gn x,k- If n =/ then we get a natural faithful linear representation

ég,XJ( C Aut]pe (Xg)

of éax,K in the IFy-vector space X,.

Remark 1.1 — If n = ¢2 then there is the natural surjective homomorphism
Ty, X - GEZ,X,K — GZ,X,K

corresponding to the field inclusion K(X,) C K(X;2); clearly, its kernel is a finite ¢-
group. Clearly, every prime dividing #(6327 x, k) either divides #(é& Xx,K) or is equal
to £. If A is a subgroup in 6421)(71( of index N then its image 7¢,x (4) in ég,XJ( is
isomorphic to A/A(ker(ry.x). It follows easily that the index of 74 x (A) in Gy x k
equals N/¢7 where ¢/ is the index of A(\ker(y x) in ker(7 x). In particular, j is a
nonnegative integer.
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We write Endg (X) for the ring of all K-endomorphisms of X. We have
7 =7 1x C Endg(X) C End(X)

where 1x is the identity automorphism of X. Since X is defined over K, one may
associate with every u € End(X) and o € Gal(K) an endomorphism “u € End(X)
such that “u(z) = ou(o~1z) for x € X(K,) and we get the group homomorphism
kx : Gal(K) — Awt(End(X)); kx(o)(u) =u Vo € Gal(K),u € End(X).
It is well-known that Endg(X) coincides with the subring of Gal(K)-invariants in
End(X), ie., Endg(X) = {u € End(X) | “u = v Vo € Gal(K)}. It is also
well-known that End(X) (viewed as a group with respect to addition) is a free com-
mutative group of finite rank and Endg (X) is its pure subgroup, i.e., the quotient
End(X)/Endg(X) is also a free commutative group of finite rank. All endomor-
phisms of X are defined over a finite separable extension of K. More precisely [31], if
n > 3 is a positive integer not divisible by char(K’) then all the endomorphisms of X
are defined over K(X,,); in particular,

Gal(K (X)) C ker(kx) C Gal(K).
This implies that if 'k := kx(Gal(K)) C Aut(End(X)) then there exists a surjective
homomorphism kx , : Gn,x = 'k such that the composition

KX n

Gal(K) —» Gal(K(X,)/K) = Gn.x —> T'g
coincides with xx and
Endg (X) = End(X)"*.
Clearly, End(X) leaves invariant the subgroup X, C X(K,). It is well-known that
u € End(X) kills Xy (i.e. u(Xg) = 0) if and only if v € £- End(X). This gives us a
natural embedding

Endg(X)®Z/0Z C End(X) ® Z/{Z — Endg,(X,);

the image of Endg (X) ® Z/{Z lies in the centralizer of the Galois group, i.e., we get
an embedding

EndK(X> X Z/EZ — EndGal(K) (Xg) = Endéz,x,x (Xg)

The next easy assertion seems to be well-known (compare with Prop.3 and its proof
on pp. 107-108 in [19]) but quite useful.

Lemmal.2 — IfEndg, (X)) =F¢ then Endg(X) =Z.

Proof. — Tt follows that the Fy-dimension of Endg(X) ® Z/¢Z does not exceed 1.
This means that the rank of the free commutative group End g (X) does not exceed 1
and therefore is 1. Since Z - 1x C Endg(X), it follows easily that Endg(X) =
Z- -1x =7. O
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Lemmal.3 — If Endg,  (X¢) is a field then Endk (X) has no zero divisors, i.e.,
Endg(X) ® Q is a division algebra over Q.

Proof. — Tt follows that Endg (X) ® Z/¢Z is also a field and therefore has no zero
divisors. Suppose that u,v are non-zero elements of Endg (X) with uv = 0. Dividing
(if possible) u and v by suitable powers of ¢ in Endg (X)), we may assume that both
uw and v do not lie in £ Endg (X) and induce non-zero elements in Endg (X) ® Z/¢Z
with zero product. Contradiction. o

Let us put End’(X) := End(X) ® Q. Then End’(X) is a semisimple finite-
dimensional Q-algebra [21, §21]. Clearly, the natural map Aut(End(X)) —
Aut(End’(X)) is an embedding. This allows us to view kx as a homomorphism

rx : Gal(K) — Aut(End(X)) C Aut(End’(X)),

whose image coincides with I'x € Aut(End(X)) ¢ Aut(End’(X)); the subalgebra
EndO(X)FK of T'g-invariants coincides with Endg (X) ® Q.

Remark 1.4

(i) Let us split the semisimple Q-algebra End”(X) into a finite direct product
End’(X) = [I,cz Ds of simple Q-algebras Ds. (Here Z is identified with the set of
minimal two-sided ideals in End’(X).) Let e, be the identity element of D,. One
may view e, as an idempotent in End®(X). Clearly,

1x = Zes € EndO(X), ese; = 0Vs £t
seZ
There exists a positive integer N such that all N - e, lie in End(X). We write X, for
the image X, := (Neg)(X); it is an abelian subvariety in X of positive dimension.
Clearly, the sum map

Tx : HXS — X, (acs)»—>z,rs

is an isogeny. It is also clear that the intersection Dg[End(X) leaves X, C X
invariant. This gives us a natural identification D, = End"(X,). One may easily
check that each X is isogenous to a self-product of (absolutely) simple abelian variety.
Clearly, if s # t then Hom (X, X;) = 0.

(ii) We write Cs for the center of Ds. Then C, coincides with the center of
End®(X,) and is therefore either a totally real number field of degree dividing dim(X)
or a CM-field of degree dividing 2 dim(X,) [21, p.202]; the center C' of End’(X) co-
incides with [[ .7 Cs = ®sesCs.

(iii) All the sets

{65 | s € Z} C ®S€IQ ces C @SEICS =C
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are stable under the Galois action Gal(K) ~% Aut(End’(X)). In particular, there
is a continuous homomorphism from Gal(K) to the group Perm(Z) of permutations
of Z such that its kernel contains ker(xx ) and

€o(s) = Iix(O')(es) = 665, U(CS) = Co(s) U(DS) = Da(s) Vo e Gal(K),s cl.

It follows that X,y = Ney(s)(X) = o(Nes(X)) = o(X,); in particular, abelian
subvarieties X and X (5) have the same dimension and u — “u gives rise to an
isomorphism of Q-algebras End" (Xo(s)) = End®(X,).

(iv) If J is a non-empty Galois-invariant subset in J then the sum  _; Ne,
is Galois-invariant and therefore lies in Endg (X). If J’ is another Galois-invariant
subset of Z that does not meet J then }  _; Ne, also lies in Endg(X) and
YosesNesd e Nes = 0. Assume that Endg (X) has no zero divisors. It follows
that Z must consist of one Galois orbit; in particular, all X have the same dimension
equal to dim(X)/#(Z). In addition, if t € Z, Gal(K); is the stabilizer of ¢ in Gal(K)
and F; is the subfield of Gal(K);-invariants in the separable closure of K then it
follows easily that Gal(K); is an open subgroup of index #(Z) in Gal(K), the field
extension Fy/K is separable of degree #(Z) and [], ¢ X, is isomorphic over K,
to the Weil restriction Resp,,j(X¢). This implies that X is isogenous over K, to
Resp, /i (X¢).

Theorem 1.5 — Suppose that £ is a prime, K is a field of characteristic # £. Suppose
that X is an abelian variety of positive dimension g defined over K. Assume that
657)(,}( contains a subgroup G such Endg(X,) is a field.
Then one of the following conditions holds:
(a) The center of End”(X) is a field. In other words, End®(X) is a simple Q-
algebra.
(b)
(i) The prime ¢ is odd;
(ii) there exist a positive integer r > 1 dividing g, o field F with

KCKX) =LCcFCK(X,), [F:L=r

and a g/r-dimensional abelian variety Y over F such that End®(Y) is a simple
Q-algebra, the Q-algebra EndO(X) s isomorphic to the direct sum of r copies
of End°(Y) and the Weil restriction Resp/r(Y) is isogenous over K, to X.
In particular, X is isogenous over K, to a product of g/r-dimensional abelian
varieties. In addition, G contains a subgroup of index r;
(c)
(i) The prime £ =2;
(ii) there exist a positive integer r > 1 dwiding g, fields L and F with

KCKX)9CLCFCK(Xy), [F:Ll=r
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and a g/r-dimensional abelian variety Y over F such that End®(Y) is a simple
Q-algebra, the Q-algebra EndO(X) s isomorphic to the direct sum of r copies
of End’(Y) and the Weil restriction Resp,r(Y) is isogenous over K, to X.
In particular, X is isogenous over K, to a product of g/r-dimensional abelian
varieties. In addition, there exists a nonnegative integer j such that 27 divides r
and G contains a subgroup of index r/27 > 1.

Proof. — We will use notations of Remark 1.4. Let us put n = £ if £ is odd and n = 4
if £ = 2. Replacing K by K(X,)Y, we may and will assume that

éé,X,K =G.

If ¢ is odd then let us put L = K and H := Gal(K(X,)/K) =G = Gal(L(X,)/L).

If £ = 2 then we choose a subgroup H C C~¥47 x,k of smallest possible order such
that 7 x (H) = éQ,X,K =G and put L := K(X4)" c K(X,). It follows easily that
L(X4) = K(X4) and Gal(L(X2)/L) = Gal(K (X>2)/K), i.e.,

H = é4,X,La GQ,X,L =4G.

The minimality property of H combined with Remark 1.1 implies that if H C C~v'4, X,L
is a subgroup of index r > 1 then 79 x(H) has index r/27 > 1 in C~¥27X1L for some
nonnegative index j.

In light of Lemma 1.3, Endz(X) has no zero divisors. It follows from Remark
1.4(iv) that Gal(L) acts on Z transitively. Let us put r = #(Z). If r = 1 then 7
is a singleton and Z = {s},X = X,,End’(X) = D,,C = C,. This means that
assertion (a) of Theorem 1.5 holds true.

Further we assume that » > 1. Let us choose t € Z and put Y := X;. If F := F} is
the subfield of Gal(L);-invariants in the separable closure of K then it follows from
Remark 1.4(iv) that F;/L is a separable degree r extension, Y is defined over F and X
is isogenous over L, = K, to Resp/r(Y).

Recall (Remark 1.4(iii)) that ker(kx) acts trivially on Z. Tt follows that Gal(L(X,,))
acts trivially on Z. This implies that Gal(L(X,,)) lies in Gal(L);. Recall that Gal(L);
is an open subgroup of index r in Gal(L) and Gal(L(X})) is a normal open subgroup
in Gal(L). It follows that H := Gal(L);/ Gal(L(X,)) is a subgroup of index r in

Gal(L)/ Gal(L(X,)) = Gal(L(X,))/L) = Gn.x.L-

If 7 is odd then n = ¢ and émx,L = éax,L = G contains a subgroup of index r > 1.
It follows from Remark 1.4 that assertion (b) of Theorem 1.5 holds true.

If =2 then n = 4 and én,X,L = (?41X7L contains a subgroup H of index r > 1.
But in this case we know (see the very beginning of this proof) that é2,X,L = G and
72 x (H) has index r/27 > 1 in (~¥2_, x,1, for some nonnegative integer j. It follows from
Remark 1.4 that assertion (c) of Theorem 1.5 holds true. O
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Before stating our next result, recall that a perfect finite group G with center Z
is called quasi-simple if the quotient G/Z is a simple nonabelian group. Let H be a
non-central normal subgroup in quasi-simple G. Then the image of H in simple G/Z
is a non-trivial normal subgroup and therefore coincides with G/Z. This means that
G = ZH. Since G is perfect, G = [G,G] = [H,H] C H. Tt follows that G = H. In
other words, every proper normal subgroup in a quasi-simple group is central.

Theorem 1.6 — Suppose that £ is a prime, K is a field of characteristic different
from £. Suppose that X is an abelian variety of positive dimension g defined over K.
Let us assume that ég,XJ( contains a subgroup G that enjoys the following properties:

(i) Endg(X,) = F;

(ii) The group G does not contain a subgroup of index 2.

(iii) The only normal subgroup in G of index dividing g is G itself.

Then one of the following two conditions (a) and (b) holds:

(a) There exists a positive integer r > 2 such that:

(a0) r divides g and X is isogenous over K, to a product of g/r-dimensional
abelian varieties;

(al) If ¢ is odd then G contains a subgroup of index r;

(a2) If £ = 2 then there exists a nonnegative integer j such that G contains a
subgroup of index r/27 > 1.

(b)

(b1) The center of End®(X) coincides with Q. In other words, End’(X) is a
matriz algebra either over Q or over a quaternion Q-algebra.

(b2) If G is perfect and EndO(X) 18 a matrix algebra over a quaternion Q-
algebra H then H is unramified at every prime not dividing #(G).

(b3) Let Z be the center of G. Suppose that G is quasi-simple, i.e. it is per-
fect and the quotient G/ Z is a simple group. If End®(X) # Q then there exist
a perfect finite (multiplicative) subgroup II C End®(X)* and a surjective homo-
morphism I1 — G/ Z such that every prime dividing #(I1) also divides #(G).

Proof. — Let us assume that the center C' of End’(X) is not a field. Applying
Theorem 1.5, we conclude that the condition (a) holds.

Assume now that the center C' of End’(X) is a field. We need to prove (b). Let
us define n and L as in the beginning of the proof of Theorem 1.5. We have

G=Gixr, Endg (X)) =Fy

In addition, if £ = 2 and H C (?41X7L is a subgroup of index r > 1 then 7o x(H) has
index r/27 > 1 in 527 x,. = G for some nonnegative integer j. This implies that the
only normal subgroup in én,x,L = 641X7L of index dividing g is én,x,L itself. It is
also clear that én x,1, does not contain a subgroup of index 2. It follows from Remark

1.1 that if G is perfect then C~¥47X1L is also perfect and every prime dividing #(64,X,L)
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must divide #(G), because (thanks to a celebrated theorem of Feit-Thompson) #(G)
must be even. (If £ is odd then n = ¢ and G, x., = G.)

It follows from Lemma 1.2 that Endy(X) = Z and therefore End(X) ® Q = Q.
Recall that End(X) ® Q = End’(X)%() and kx : Gal(L) — Aut(End’(X)) kills
Gal(L(X,,)). This gives rise to the homomorphism

kxn: Gnx.o = Gal(L(X,)/L) = Gal(L)/ Gal(L(X,)) — Aut(End°(X))

with £x n(Gn.x.0.) = rix(Gal(L)) C Aut(End®(X)) and End®(X)»x.t = Q. Clearly,
the action of én X, on EndO(X ) leaves invariant the center C' and therefore defines a
homomorphism émeL — Aut(C) with CGnx = Q. Tt follows that C/Q is a Galois
extension and the corresponding map

Gnx.. — Aut(C) = Gal(C/Q)

is surjective. Recall that C is either a totally real number field of degree dividing g
or a purely imaginary quadratic extension of a totally real number field C* where
[CT : Q] divides g . In the case of totally real C' let us put C* := C. Clearly, in both
cases C'T is the largest totally real subfield of C and therefore the action of én X,L
leaves C't stable, i.e. C1/Q is also a Galois extension. Let us put r := [CT : Q]. It is
known [21, p.202] that r divides g. Clearly, the Galois group Gal(C*/Q) has order r
and we have a surjective homomorphism (composition)

Gn,x,. — Gal(C/Q) —» Gal(C*/Q)

of én x,1 onto order r group Gal(CT/Q). Clearly, its kernel is a normal subgroup
of index r in én,X7L. This contradicts our assumption if » > 1. Hence r = 1,
i.e. CT = Q. It follows that either C = Q or C is an imaginary quadratic field and
Gal(C/Q) is a group of order 2. In the latter case we get the surjective homomorphism
from én,X,L onto Gal(C'/Q), whose kernel is a subgroup of order 2 in én,X,L, which
does not exist. This proves that C = Q. It follows from Albert’s classification [21,
p.202] that End®(X) is either a matrix algebra Q or a matrix algebra My(H) where
H is a quaternion Q-algebra. This proves assertion (bl) of Theorem 1.6.

Assume, in addition, that G is perfect. Then, as we have already seen, én X,
is also perfect. This implies that I' := HX7n(én,X7L) is a finite perfect subgroup of
Aut(End’(X)) and every prime dividing #(I') must divide #(én x,r) and therefore
divides #(G). Clearly,

(1) Q =End’(X)".

Assume that End”(X) # Q. Then I' # {1}. Since End’(X) is a central simple
Q-algebra, all its automorphisms are inner, i.e., Aut(End”(X)) = End’(X)*/Q*.
Let A — T be the universal central extension of I'. It is well-known that A is a
finite perfect group and the set of prime divisors of #(A) coincides with the set of

prime divisors of #(I"). The universality property implies that the inclusion map
I' ¢ End’(X)*/Q* lifts (uniquely) to a homomorphism 7 : A — End"(X)*. The
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equality (1) means that the centralizer of m(A) in End”(X) coincides with Q and
therefore ker(7) does not coincide with A. It follows that the image I'g of ker(w) in T’
does not coincide with the whole I'. Tt also follows that if Q[A] is the group Q-algebra
of A then 7 induces the Q-algebra homomorphism 7 : Q[A] — End’(X) such that
the centralizer of the image 7(Q[A]) in End’(X) coincides with Q.

I claim that 7(Q[A]) = End®(X) and therefore End’(X) is isomorphic to a direct
summand of Q[A]. This claim follows easily from the next lemma that will be proven
later in this section.

Lemmal.7 — Let E be a field of characteristic zero, T a semisimple finite-
dimensional E-algebra, S a finite-dimensional central simple E-algebra, 3 : T — S
an E-algebra homomorphism that sends 1 to 1. Suppose that the centralizer of the
image B(T) in S coincides with the center E. Then [ is surjective, i.e. 3(T) = S.

In order to prove (b2), let us assume that End’(X) = My(H) where H is a
quaternion Q-algebra. Then Mgy(H) is isomorphic to a direct summand of Q[A].
On the other hand, it is well-known that if ¢ is a prime not dividing #(A) then
Q,[A] = Q[A] ®g Qq is a direct sum of matrix algebras over (commutative) fields. It
follows that My (H) ®q Qg also splits. This proves the assertion (b2).

In order to prove (b3), let us assume that G is a quasi-simple finite group with
center Z. Let us put IT := m(A) € End’(X)*. We are going to construct a surjective
homomorphism II — G/Z. In order to do that, it suffices to construct a surjective
homomorphism I" = G/Z. Recall that there are surjective homomorphisms

T:Gnx — Gex,p =G, kKxn:Gnxip—1I.

(If ¢ is odd then 7 is the identity map; if £ = 2 then 7 = 73 x.) Let Hp be the kernel

of kxn : Gn,x, = I'. Clearly,
(2) Gnx./Ho =T,

Since T # {1}, we have Hy # émx’b It follows that 7(Hy) # G. The surjectivity of
T : Gp x,1, — G implies that 7(Hp) is normal in G and therefore lies in the center Z.
This gives us the surjective homomorphisms

Gux.p/Hy — 7(G,x.L)/7(Ho) = G/7(Ho) —> G/Z,
whose composition is a surjective homomorphism (?meL/HO — G/Z. Using (2), we
get the desired surjective homomorphism I' - G/ Z. O

Proof of Lemma 1.7. — Replacing E by its algebraic closure E, and tensoring T
and S by E,, we may and will assume that F is algebraically closed. Then S = M,,(E)
for some positive integer n. Clearly, 5(T) is a direct sum of say, b matrix algebras
over E and the center of 3(T) is isomorphic to a direct sum of b copies of E. In
particular, if b > 1 then the centralizer of 3(T") in S contains the b-dimensional center
of B(T") which gives us the contradiction. So, b = 1 and G(T") = M (FE) for some
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positive integer k. Clearly, k& < n; if the equality holds then we are done. Assume
that £ < n: we need to get a contradiction. So, we have

1€ ECB(T)ZMg(E) — M,(E)=S5.

This provides E™ with a structure of faithful S(T)-module in such a way that E™
does not contain a non-zero submodule with trivial (zero) action of B(T'). Since
B(T) = Mg(FE), the S(T)-module E™ splits into a direct sum of say, e copies of a
simple faithful §(T")-module W with dimg (W) = k. Clearly, e = n/k > 1. It follows
easily that the centralizer of S(T) in S = M, (E) coincides with

Endﬁ(T) (We) = Me(EndB(T)(W)) = Me(E)

and has E-dimension e2 > 1. Contradiction. O

Corollary 1.8 — Suppose that £ is a prime, K is a field of characteristic different
from £. Suppose that X is an abelian variety of positive dimension g defined over K.
Let us assume that é&X’K contains a perfect subgroup G that enjoys the following
properties:

(a) Endg(Xg) = F@,’

(b) The only subgroup of index dividing g in G is G itself.
If g is odd then either End®(X) is a matriz algebra over Q or p = char(K) > 0 and
End’(X) is a matriz algebra My(H,) over a quaternion Q-algebra H, that is ramified
exactly at p and oo and d > 1. In particular, if char(K) does not divide #(G) then
End®(X) is a matriz algebra over Q.

Proof of Corollary 1.8. — Let us assume that EndO(X) is not isomorphic to a matrix
algebra over Q. Then End’(X) is (isomorphic to) a matrix algebra My(H) over a
quaternion Q-algebra H. This means that there exists an absolutely simple abelian
variety Y over K, such that X is isogenous to Y% and End®(Y") = H. Clearly, dim(Y")
is odd. It follows from Albert’s classification [21, p.202] that p := char(K,) =
char(K) > 0. By Lemma 4.3 of [23], if there exists a prime ¢ # p such that H is
unramified at ¢ then 4 = dimg H divides 2dim(Y"). Since dim(Y’) is odd, 2dim(Y")
is not divisible by 4 and therefore H is unramified at all primes different from p. It
follows from the theorem of Hasse-Brauer-Noether that H = H,.

Now, assume that d = 1, i.e. End’(X) = H,. We know that End’(X)* = H
contains a nontrivial finite perfect group II. But this contradicts to the following
elementary statement, whose proof will be given later in this section.

Lemma 1.9 — Ewery finite subgroup in Hy is solvable.

Hence End’(X) # H,, i.e. d > 1.
Assume now that p does not divide #(G). It follows from Theorem 1.6 that H
is unramified at p. This implies that H can be ramified only at co which could not

be the case. The obtained contradiction proves that End”(X) is a matrix algebra
over Q. O
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Proof of Lemma 1.9. — If p # 2 then H} C (H, ®g Q2)* = GL(2,Q2) and if p = 2
then Hj C (Hs ®g Q3)* = GL(2,Q3). Since every finite subgroup in GL(2,Q2) (resp.
GL(2,Q3)) is conjugate to a finite subgroup in GL(2, Z2) (resp. GL(2,Zs)), it suffices
to check that every finite subgroup in GL(2,Z3) and GL(2, Zs) is solvable.

Recall that both GL(2,F3) and GL(2,F3) are solvable and use the Minkowski-Serre
lemma ([28, pp. 124-125]; see also [32]). This lemma asserts, in particular, that if ¢
is an odd prime then the kernel of the reduction map GL(n,Z,) — GL(n,F,) does
not contain nontrivial elements of finite order and that all periodic elements in the
kernel of the reduction map GL(n,Z3) — GL(n,Fs) have order 1 or 2.

Indeed, every finite subgroup II C GL(2,Zs3) maps injectively in GL(2,F3) and
therefore is solvable. If II C GL(2,Z3) is a finite subgroup then the kernel of the
reduction map IT — GL(2,Fs) consists of elements of order 1 or 2 and therefore is an
elementary commutative 2-group. Since the image of the reduction map is solvable,
we conclude that II is solvable. o

Corollary 1.1Q0 — Suppose that ¢ is a prime, K is a field of characteristic different
from 0. Suppose that X is an abelian variety of dimension g defined over K. Let us
put ¢ = max(2,g). Let us assume that Gy x k contains a perfect subgroup G that
enjoys the following properties:

(a) Endg(Xg) = F@,’

(b) The only subgroup of index dividing g in G is G itself.

(¢c) If Z is the center of G then G/Z is a simple nonabelian group.
Suppose that End®(X) = My(Q) with d > 1. Then there exist a perfect finite subgroup

I1 ¢ GL(d,Z) and a surjective homomorphism Il — G/Z such that every prime
dividing #(I1) also divides #(G).

Proof of Corollary 1.10. — Clearly, End’(X)* = GL(n,Q). One has only to recall
that every finite subgroup in GL(n,Q) is conjugate to a finite subgroup in GL(n,Z)
and apply Theorem 1.6(iii). O

2. Homomorphisms of abelian varieties

Theorem 2.1 — Let ¢ be a prime, K a field of characteristic different from £, X andY
abelian varieties of positive dimension defined over K. Suppose that the following
conditions hold:

(i) The extensions K(Xy) and K(Y;) are linearly disjoint over K.
(ii) End@YX’K(Xg) = Fg;
(iii) The centralizer of Gy, kx in Endg,(Y?) is a field.

Then either Hom(X,Y) = 0,Hom(Y, X) = 0 or char(K) > 0 and both abelian
varieties X and Y are supersingular.
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Remark 2.2 — Theorem 2.1 was proven in [43] under an addititional assumption that
the Galois modules Xy and Yy are simple.

In order to prove Theorem 2.1, we need first to discuss the notion of Tate module.
Recall [21, 29, 47] that this is a Zy-module T;(X) defined as the projective limit of
Galois modules X;m. It is well-known that T;(X) is a free Z,-module of rank 2 dim(X)
provided with the continuous action

pe.x : Gal(K) — Autz, (Ty(X)).
There is the natural isomorphism of Galois modules
(3) Xo = Ty(X)/Ty(X),
so one may view pg x as the reduction of py x modulo ¢. Let us put
Ve(X) = Ti(X) ®z, Q4

it is a 2 dim(X )-dimensional Qg-vector space. The group T;(X) is naturally identified
with the Z-lattice in V;(X) and the inclusion Autz, (7(X)) C Autg, (Vz(X)) allows
us to view Vp(X) as representation of Gal(K) over Q. Let Y be (may be, another)
abelian variety of positive dimension defined over K. Recall [21, §19] that Hom(X,Y")
is a free commutative group of finite rank. Since X and Y are defined over K,
one may associate with every v € Hom(X,Y) and o € Gal(K) an endomorphism
7w € Hom(X,Y) such that

“u(z) = ou(c'r) Vre X(K,)
and we get the group homomorphism
kxy : Gal(K) — Aut(Hom(X,Y)); kx,y(o)(u) =uVo € Gal(K),u € Hom(X,Y),

which provides the finite-dimensional Qg-vector space Hom(X,Y) ® Q, with the nat-
ural structure of Galois module.
There is a natural structure of Galois module on the Q,-vector space

Homg, (W(X)a VZ(Y))

induced by the Galois actions on V;(X) and V4(Y). On the other hand, there is a
natural embedding of Galois modules [21, §19],

Hom(X,Y) ® Q¢ C Homg, (Ve(X), Vi (Y)),

whose image must be a Gal(K)-invariant Qg-vector subspace. It is also clear that
Homgz, (T;(X),T¢(Y)) is a Galois-invariant Z,-lattice in Homg, (V¢(X), Ve(Y)). The
equality (3) gives rise to a natural isomorphism of Galois modules

(4) HOIDZE (Tg(X), Tg(Y)) Rz, Zg/fZg = Hom]FE (Xg, Y})
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Proof of Theorem 2.1. — Let K(X,,Y;) be the compositum of the fields K (X,) and
K (Y;). The linear disjointness of K(X/,) and K(Y;) means that

Gal(K (X, Yy)/K) = Gal(K (Yy)/K) x Gal(K (X,)/K).

Let X = Homy, (X, /) be the dual of X, and p;,  j : Gal(K) — Aut(X7) the dual
of P, x,x- One may easily check that ker(p;, x ;) = ker(p, x k) and therefore we
have an isomorphism of the images

GZ,X,K = Pn.x.x(Gal(K)) =27, x (Gal(K))) = éé,X,K-

One may also easily check that the centralizer of Gal(K') in Endg,(X;) still coincides
with Fy. It follows that if A; is the Fy-subalgebra in Endp, (X ;) generated by éz X.K
then its centralizer in Endg,(X) coincides with Fy. Let us consider the Galois module
Wi = Homp,(X,,Yr) = X ®r, Y; and denote by 7 the homomorphism Gal(K) —
Aut(7) that defines the Galois module structure on Wi. One may easily check that 7
factors through Gal(K(Xy,Yy)/K) and the image of 7 coincides with the image of

Gixxc % Goxy C Aut(X)) x Aut(Yy) — Aut(X; @r, Yz) = Aut(W)).

Let Ay be the Fy-subalgebra in Endy,(Y?) generated by ém@K. Recall that the
centralizer of Gal(K) in Endy,(Y7) is a field, say F. Clearly, the centralizer of Ay in
Endp, (Yr) coincides with F. One may easily check that the subalgebra of Endg, (W7)
generated by the image of Gal(K) coincides with

Aq Xr, Ay C End]F[ (Xz) Xr, EndF[(Yg) = EndF(X; X, }/4) = Endm (Wl)

It follows from Lemma (10.37) on p.252 of [3] that the centralizer of A; ®p, A2 in
Endr(X; ®r, Ye) coincides with F; ®r, F = F. This implies that the centralizer of
Gal(K) in Endr(X; ®r, Yz) = Endg,(W1) is the field F.

Let us consider the Qg-vector space Vi = Homg, (Ve(X), V2(Y)) and the free Z,-
module 77 = Homg, (T¢(X),T,(Y)) provided with the natural structure of Galois
modules. Clearly, T; is a Galois-stable Z,-lattice in V3. By (4), there is a natural
isomorphism of Galois modules Wy = T7/¢T;. Let us denote by D; the centralizer
of Gal(K) in Endg, (V1). Clearly, D; is a finite-dimensional Qg-algebra. Therefore in
order to prove that D, is a division algebra, it suffices to check that D; has no zero
divisors.

Suppose that D; has zero divisors, i.e. there are non-zero u,v € Dy with uv = 0.
We have u,v C Dy C Endg,(V1). Multiplying v and v by proper powers of ¢, we
may and will assume that w(T}) C Ti,v(Ty) C Ty but u(T}y) is not contained in
0Ty and v(Th) is not contained in ¢T7. This means that v and v induce non-zero
endomorphisms @, € End(W7) that commute with Gal(K) and wo = 0. Since both
w and v are non-zero elements of the field F, we get a contradiction that proves that
D; has no zero divisors and therefore is a division algebra.
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End of the proof of Theorem 2.1. — We may and will assume that K is finitely
generated over its prime subfield (replacing K by its suitable subfield). Then the
conjecture of Tate [34] (proven by the author in characteristic > 2 [36, 37|, Falt-
ings in characteristic zero [5, 6] and Mori in characteristic 2 [17]) asserts that the
natural representation of Gal(K) in V4(Z) is completely reducible for any abelian
variety Z over K. In particular, the natural representations of Gal(K) in Vp(X) and
Ve(Y) are completely reducible. It follows easily that the dual Galois representa-
tion in Homg, (V¢(X), Q) is also completely reducible. Since Q, has characteristic
zero, it follows from a theorem of Chevalley [1, p.88] that the Galois representation
in the tensor product Homg, (Vz(X), Qr) ®q, Ve(Y) = Homg, (Ve(X),Vi(Y)) = V4
is completely reducible. The complete reducibility implies easily that V; is an irre-
ducible Galois representation, because the centralizer is a division algebra. Recall that
Hom(X,Y) ® Qg is a Galois-invariant subspace in Homg, (V;(X), Ve(Y)) = V4. The
irreducibility of V; implies that either Hom(X,Y)® Q, = 0 or Hom(X,Y) ® Q; = V4.

If Hom(X,Y) ® Q; = 0 then Hom(X,Y) = 0 and therefore Hom(Y, X) = 0.

If Hom(X,Y) ® Q¢ = Vi then the rank of the free commutative group Hom(X,Y')
coincides with the dimension of the Q-vector space Vj. Clearly, V; has dimen-
sion 4dim(X)dim(Y"). It is proven in proposition 3.3 of [43] that if A and B are
abelian varieties over an algebraically closed field K and the rank of Hom(A, B) equals
4dim(A) dim(B) then char(K) > 0 and both A and B are supersingular abelian va-
rieties. Applying this result to X and Y, we conclude that char(K) = char(K,) > 0
and both X and Y are supersingular abelian varieties. O

3. Hyperelliptic jacobians

In this section we deal with the case of £ = 2. Suppose that char(K) # 2. Let
f(z) € K[z] be a polynomial of degree n > 3 without multiple roots. Let Ry C K,
be the set of roots of f. Clearly, R consists of n elements. Let K (Ry) C K, be the
splitting field of f. Clearly, K(R;)/K is a Galois extension and we write Gal(f) for
its Galois group Gal(K (Rf)/K). By definition, Gal(KX (J)/K) permutes elements of
Ry; further we identify Gal(f) with the corresponding subgroup of Perm(R) where
Perm(y) is the group of permutations of R;.

We write F;Rf for the n-dimensional Fa-vector space of maps h : Ry — 5. The
space F?f is provided with a natural action of Perm() defined as follows. Each
s € Perm(Ry) sends a map h : Ry — Fy to sh : a — h(s7(a)). The permutation
module F?f contains the Perm (R )-stable hyperplane

(F57)° = {h: Ry = F2 | e, hla) =0}

and the Perm(Ry)-invariant line F2- 1z, where 1g, is the constant function 1. Clearly,

(F3)° contains Fy - 1y, if and only if n is even.
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If n is even then let us define the Gal(f)-module Qux, := (F?f)o/(Fg 1w, ). Ifn
is odd then let us put Qu, = (F?f)o. If n # 4 the natural representation of Gal(f)
is faithful, because in this case the natural homomorphism Perm(qRy) — Autr, (Qwx,)
is injective.

Remark 3.1 — It is known [15, Satz 4], that Endgai(s)(Qn,) = F2 if either n is odd

and Gal(f) acts doubly transitively on 9y or n is even and Gal(f) acts 3-transitively
on NRy.

The canonical surjection Gal(K) — Gal(K (9Ry)/K) = Gal(f) provides Qmn, with a
natural structure of Gal(K)-module. Let C be the hyperelliptic curve y? = f(z) and
J(CF) its jacobian. It is well-known that J(CFr) is a [(n — 1)/2]-dimensional abelian
variety defined over K. It is also well-known that the Gal(K)-modules J(Cf)2 and
Qm; are isomorphic (see for instance [25, 27, 39]). It follows that if n # 4 then

Gal(f) = éz,J(cf)-
It follows from Remark 3.1 that if either n is odd and Gal(f) acts doubly transitively
on Ry or n is even and Gal(f) acts 3-transitively on 9 then

Endé&‘](cf) (J(Cf)Q)) = IF2_

It is also clear that K(J(Cf)2)) C K(Ry). (The equality holds if n # 4.)
The next assertion follows immediately from Theorem 1.6, Corollaries 1.8 and 1.10
(applied to X = J(Cy),¢ =2,G = Gal(f)).

Theorem 3.2 — Let K be a field of characteristic different from 2, let n > 5 be an
integer, g = [(n—1)/2] and f(x) € K[x] a polynomial of degree n. Suppose that
either n is odd and Gal(f) acts doubly transitively on Ry or n is even and Gal(f)
acts 3-transitively on Ry. Assume also that Gal(f) is a simple nonabelian group that
does not contain a subgroup of index dividing g except Gal(f) itself. If g is odd then
End’(J(Cy)) enjoys one of the following properties:

(i) End°(J(C})) is isomorphic to the matriz algebra Ma(Q) where d divides g. If
d > 1 there exist a finite perfect group Il C GL(d,Z) and a surjective homomorphism
IT — Gal(f) such that every prime dividing #(I1) also divides #(Gal(f)).

(ii) p := char(K) is a prime diiding #(Gal(f)) and End"(J(C})) is isomorphic
to the matriz algebra Mq(Hy,) where d > 1 divides g.

Example 3.3 — Suppose that n = 5 and Gal(f) is the alternating group As acting
doubly transitively on Ry. Clearly, g = 2 and Gal(f) is a simple nonabelian group
without subgroups of index 2. Applying Theorem 3.2, we conclude that End’(.J(C )
is either Q or M3(Q) or My(H) where H is a quaternion Q-algebra unramified outside
{0,2,3,5}; in addition H = H, if p := char(K) > 0. Suppose that End(J(C})) # Z
and therefore End”(J(C})) # Q. If End’(J(C})) = M2(Q) then GL(2,Q) = M2(Q)*
contains a finite group, whose order divides 5, which is not the case. This implies
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that End’(J(C})) = Ma(H). This means that J(C}) is supersingular and therefore
p := char(K) > 0. This implies that p =3 or p = 5.

We conclude that either End(J(Cy) = Z or char(K) € {3,5} and J(Cy) is a
supersingular abelian varietiy. In fact, it is known [46] that if char(K) = 5 then
End(J(Cy) = Z. On the other hand, one may find a supersingular J(Cy) in charac-
teristic 3 [46].

Example 3.3 is a special case of the following general result proven by the author
[38, 42, 46]. Suppose that n > 5 and Gal(f) is the alternating group A, acting on
Ry. If char(K) = 3 we assume additionally that n > 7. Then End(J(Cy) = Z.

We refer the reader to [18, 19, 11, 12, 16, 13, 38, 40, 42, 41, 44, 45] for
a discussion of other known results about, and examples of, hyperelliptic jacobians
without complex multiplication.

Corollary 3.4 — Suppose that n = 7 and Gal(f) = SL3(F3) = PSLy(F7) acts doubly
transitively on Ry. Then End®(J(Cy)) = Q and therefore End(J(Cy)) = Z.

Proof. — We have g = dim(J(Cy)) = 3. Since PSLy(F7) is a simple nonabelian
group it does not contain a subgroup of index 3. So, we may apply Theorem 3.2. We
obtain that if End’(J(C})) # Q then either End’(J(Cf)) = M3(Q) and there exist
a finite perfect group II C GL(3,Z) and a surjective homomorphism IT — Gal(f) =
PSLy(F7) or End®(J(Cy)) = M3(H,,) where p = char(K) is either 3 or 7. The case of
End’(J(C})) = M3(H,) means that J(Cy) is supersingular, which is not true ([46],
Th.3.1). Hence End"(J(C})) = M3(Q) and GL(3,Z) contains a finite group of order
dividing 7. Tt follows that GL(3,Z) contains an element of order dividing 7, which
is not true. The obtained contradiction proves that End’(J(C})) = Q and therefore
End(J(Cy)) = Z. O

Corollary 3.5 — Suppose that n = 11 and Gal(f) = PSLa(FF11) acts doubly transi-
tively on Ry. Then End®(J(C})) = Q and therefore End(J(Cy)) = Z.

Proof. — We have g = dim(J(Cy)) = 5. It is known [2] that PSLy(F11) is a simple
nonabelian subgroup not containing a subgroup of index 5. So, we may apply Theorem
3.2. We obtain that if End’(J(C})) # Q then either End’(J(C})) = M5(Q) and
there exist a finite perfect group II C GL(5,7Z) and a surjective homomorphism II —
Gal(f) = PSLy(F11) or End”(J(C})) = M5(H,) where p = char(K) is either 3 or 5
or 11.

Assume that End’(J(C})) = M5(Q). Then GL(5,Z) contains a finite group, whose
order is divisible by 11. It follows that GL(5, Z) contains an element of order 11, which
is not true. Hence End’(J(C})) # M5(Q)

Assume that End®(J(C})) = Ms(H,) where p is either 3 or 5 or 11. This implies
that J(Cy) is a supersingular abelian variety.
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Notice that every homomorphism from simple PSLa(F11) to GL(4,F2) is trivial,
because 11 divides #(PSL2(F11)) but #(GL(4,F2)) is not divisible by 11. Since
4 =g —1, it follows from Theorem 3.3 of [46] (applied to g = 5, X = J(Cy),G =
Gal(f) = PSLa(FF11)) that there exists a central extension m : G; — PSLy(F11) such
that G1 is perfect, ker(m) is a cyclic group of order 1 or 2 and M5(H,) is a direct
summand of the group Q-algebra Q[G1]. It follows easily that G; = PSLa(FF11) or
SLa2(Fy1). It is known [10, 7] that Q[PSLg(IF11)] is a direct sum of matrix algebras
over fields. Hence G; = SLy(F11) and the direct summand Ms(H,) corresponds to a
faithful ordinary irreducible character x of SLo(F11) with degree 10 and Q(x) = Q.
This implies that in notations of [4, §38], x = 6#; where j is an odd integer such
that 1 < j < (11 — 1)/2 = 5 and either 65 is divisible by 114+ 1 = 12 or 47 is divisible
by 12 ([7], Th.6.2 on p.285). This implies that j = 3 and x = 65. However, the
direct summand attached to 63 is ramified at 2 ([10, the case (c¢) on p.4]; [7, theorem
6.1(iil) on p.284]). Since p # 2, we get a contradiction which proves that J(C) is not
supersingular. This implies that End’(J(C})) = Q and therefore End(J(C})) = Z.

O

Corollary 3.6 — Suppose that n = 12 and Gal(f) is the Mathieu group My acting
3-transitively on Ry. Then End(J(Cy)) = Z.

Proof. — Let a be a root of f(z) and Ky = K(«). Clearly, the stabilizer of «
in Gal(f) = My, is PSLy(F11) acting doubly transitively on the roots of f1(z) =
f(@)/(x —a) € Ki[z]. Let us put h(z) = fi(zx + «) € Ki[z],h(z) = 2''h(1/x) €
K;[z]. Clearly, deg(hy) = 11 and Gal(h;) = PSLy(F11) acts doubly transitively on
the roots of hy. By Corollary 3.5, End(J(Ch,)) = Z. On the other hand, the standard
substitution x1 = 1/(x — a),y1 = y/(z — «)® establishes a birational isomorphism
between C; and C, : y? = hq(x1). This implies that J(Cy) = J(Cy,) and therefore
End(J(C})) = Z. O

In characteristic zero the assertions of Corollaries 3.4, 3.5 and 3.6 were earlier
proven in [46, 39].

Corollary 3.7. — Suppose that deg(f) = n where n = 22,23 or 24 and Gal(f) is the
corresponding (at least) 3-transitive Mathieu group M, C Perm(Ry) = S,,. Then
End(J(Cy)) = Z.

Proof. — First, assume that n = 23 or 24. We have g = dim(J(Cy)) = 11. Tt is
known that both Mss and My do not contain a subgroup of index 11 [2]. So, we
may apply Theorem 3.2 and obtain that if End(J(C}) # Z then End’(J(C})) # Q
and one of the following conditions holds:

(i) End®(J(C})) = M11(Q) and there exist a finite perfect group II ¢ GL(11,2)
and a surjective homomorphism II — Gal(f) = M,;

(ii) p = char(K) € {3,5,7,11,23} and End®(J(Cy)) = My, (H,).
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Assume that the condition (i) holds. Then End’(J(C})) = M;;(Q) and GL(11,Z)
contains a finite group, whose order is divisible by 23. It follows that GL(11,Z)
contains an element of order 23, which is not true. The obtained contradiction proves
that the condition (i) is not fulfilled.

Hence the condition (ii) holds. Then p = char(K) € {3,5,7,11,23} and there
exist a finite perfect subgroup II € End’(J(C))* = GL(11,H,) and a surjective
homomorphism 7 : IT - M,,. Replacing II by a suitable subgroup, we may and will
assume that no proper subgroup of II maps onto M,,. By tensoring H, to the field of
complex numbers (over QQ), we obtain an embedding

IT ¢ GL(11,H,) C GL(22,C).

In particular, the (perfect) group II admits a non-trivial projective 22-dimensional
representation over C. Recall that M, has Schur’s multiplier 1 (since n = 23 or 24)
[2] and therefore all its projective representations are (obtained from) linear repre-
sentations. Also, all nontrivial linear representations of My, have dimension > 23,
because the smallest dimension of a nontrivial linear representation of Moy is 23.
It follows from results of Feit—Tits [8] that IT cannot have a non-trivial projective
representation of dimension < 23. This implies that n # 24, i.e. n = 23.

Recall that 22 is the smallest possible dimension of a nontrivial representation of
M3 in characteristic zero, because its every irreducible representation in character-
istic zero has dimension > 22 [2]. It follows from a theorem of Feit-Tits ([8], pp.1
and §4; see also [14]) that the projective representation

I — GL(11,H,)/Q* C GL(22,C)/C*

factors through ker(m). This means that ker(w) lies in Q* and therefore II is a central
extension of Ma3. Now the perfectness of IT implies that 7 is an isomorphism, i.e. IT &
M23.

Let us consider the natural homomorphism Q[Mos3] = Q[II] — My (H,) induced
by the inclusion A C Myq(H,,)*. It is surjective, because otherwise one may construct
a (complex) nontrivial representation of Mg of dimension < 22. This implies that
M (H,) is isomorphic to a direct summand of Q[Msz]. But this is not true, since
Schur indices of all irreducible representations of Mss are equal to 1 [7, §7] and
therefore Q[Mag3] splits into a direct sum of matrix algebras over fields. The obtained
contradiction proves that the condition (ii) is not fulfilled. So, End(J(Cy) = Z.

Now let n = 22. Then g = 10. It is known that Mss is a simple nonabelian group
not containing a subgroup of index 10 [2]. Let us assume that End’(J(C})) # Q.
Applying Theorem 1.6, we conclude that there exists a positive integer d dividing 10
such that either d > 1 and End®(J(C}) = Mg(Q) or End®(J(C})) = My (H) where H
is a quaternion Q-algebra unramified outside oo and the prime divisors of #(Mag).
In addition, there exist a finite perfect subgroup I C End’(J(C}))* and a surjective
homomorphism 7 : IT — Mass. Replacing II by a suitable subgroup, we may and will
assume (without losing the perfectness) that no proper subgroup of I maps onto M,,.
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By Lemma 3.13 on pp. 200201 of [41], every homomorphism from IT to PSL(10, R)
is trivial. The perfectness of II implies that every homomorphism from II to
PGL(10,R) is trivial. Since M4(Q)* = GL(d,Q) € GL(10,R), we conclude that
End’(J(Cy)) # Mg(Q) and therefore End®(J(C})) = My (H).

If d = 10 then p := char(K) > 0 and J(Cy) is a supersingular abelian variety.

Assume that d # 10, i.e. d = 1,2 or 5. If H is unramified at oo then there exists
an embedding H < Mz (R). This gives us the embeddings

I € My(H)* — Myg(R)* = GL(2d,R) C GL(10,R)

and therefore there is a nontrivial homomorphism from II to PGL(10,R). The ob-
tained contradiction proves that H is ramified at co.

There exists an embedding H < M4(Q) C My (R). This implies that if d = 1 or 2
then there are embeddings

I1 € My(H)* — Myg(R)* = GL(4d,R) C GL(10,R)

and therefore there is a nontrivial homomorphism from II to PGL(10,R). The ob-
tained contradiction proves that d = 5. This means that there exists an abelian
surface Y over K, such that J(Cy) is isogenous to Y° and End’(Y) = H. However,
there do not exist abelian surfaces, whose endomorphism algebra is a definite quater-
nion algebra over Q. This result is well-known in characteristic zero (see, for instance
[24]); the positive characteristic case was done by Oort [23, Lemma 4.5 on p.490].
Hence d # 5. This implies that d = 10 and J(CYy) is a supersingular abelian variety.

Since Mas is a simple group and 11 | #(Mas), every homomorphism from Mas
to GL(9,TF3) is trivial, because #(GL(9,F2)) is not divisible by 11. Since 9 = g — 1,
it follows from Theorem 3.3 of [46] (applied to g = 10, X = J(Cf),G = Gal(f) =
M) that there exists a central extension w1 : G5 — Moo such that G is perfect,
ker(m) is a cyclic group of order 1 or 2 and there exists a faithful 20-dimensional
absolutely irreducible representation of G1 in characteristic zero. However, such a
central extension with 20-dimensional irreducible representation does not exist [2]. O

Combining Corollary 3.7 with previous author’s results [39, 42] concerning small
Mathieu groups, we obtain the following statement.

Theorem 3.8 — Suppose that n € {11,12,22,23,24} and Gal(f) is the corresponding
Mathieu group M,, C Perm(Ry) = S,,. Then End(J(Cy)) = Z.

In characteristic zero the assertion of Theorem 3.8 was earlier proven in [39, 41].

Theorem 3.9 — Suppose that n = 15 and Gal(f) is the alternating group A; acting
doubly transitively on Ry. Then either End(J(Cy)) = Z or J(Cy) is isogenous over
K, to a product of elliptic curves.

Proof. — We have g = 7. Unfortunately, A7 has a subgroup of index 7. However,
Az is simple nonabelian and does not have a normal subgroup of index 7. Applying
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Theorem 1.6 to X = J(Cf),g = 7,£ = 2,G = Gal(f) = A7, we obtain that either
J(CY}) is isogenous to a product of elliptic curves (case (a)) or End®(J(Cy)) is a central
simple Q-algebra (case (b)). If End’(J(C})) is a matrix algebra over Q then either
End’(J(Cy)) = Q (i.e., End(J(C})) = Z) or End®(J(C})) = M7(Q) (i.e., J(Cy) is
isogenous to the 7th power of an elliptic curve without complex multiplication).

If the central simple Q-algebra End"(J(C})) is not a matrix algebra over Q
then there exists a quaternion Q-algebra H such that either End’(J(Cy)) = H or
End’(J(Cy)) = M7(H). If End’(J(Cf)) = Mz(H) then J(Cj) is a supersingular
abelian variety and therefore is isogenous to a product of elliptic curves.

Let us assume that End®(J(C)) = H. We need to arrive to a contradiction. Since
7 = dim(J(Cy)) is odd, p = char(K) > 0. The same arguments as in the proof of
Corollary 1.8 tell us that H = H,. By Theorem 1.6(b3), there exist a perfect finite
group IT € End®(J(C}))* = H and a surjective homomorphism IT — A7. But Lemma
1.9 asserts that every finite subgroup in Hj, is solvable. The obtained contradiction
proves that End’(J(C})) # H. O

Theorem 3.10 — Suppose that n = q + 1 where ¢ > 5 is a prime power that is
congruent to £3 modulo 8. Suppose that Gal(f) = PSLa(F,) acts doubly transitively
on Ry (where Ry is identified with the projective line P*(F,)). Then End°(J(Cy})) is
a simple Q-algebra, i.e. J(Cy) is either absolutely simple or isogenous to a power of
an absolutely simple abelian variety.

Proof. — Since n = g+ 1 is even, g = (¢ — 1)/2. It is known [20] that the Gal(f) =
PSLy(F,)-module Qg, is simple and the centralizer of PSLy(F,) in Endr,(Qn,) is
the field F4. On the other hand, PSLy(FF,) is a simple nonabelian group: we need to
inspect its subgroups. The following statement will be proven later in this section.

Lemma3.11 — Let ¢ > 5 be a power of an odd prime. Then PSLo(F,) does not
contain a subgroup of index dividing (¢ — 1)/2 except PSLy(F,) itself.

Recall that C~¥27J(Cf) = Gal(f) = PSLy(F,). Now Theorem 3.10 follows readily
from Theorem 1.5 combined with Lemma 3.11. O

Proof of Lemma 8.11. — Since PSLy(F,) is a simple nonabelian subgroup, it does
not contain a subgroup of index < 4 except PSLo(IFy) itself. This implies that in the
course of the proof we may assume that (¢ —1)/2 > 5, i.e., ¢ > 11.

Recall that #(PSLa(Fy)) = (¢ + 1)g(q¢ — 1)/2. Let H # PSLy(F,) be a subgroup
in PSLy(F,). The list of subgroups in PSLy(F,) given in [33, theorem 6.25 on p.412]
tells us that #(H) divides either ¢ £ 1 or ¢(¢ — 1)/2 or 60 or (b+ 1)b(b — 1) where
b < q is a positive integer such that ¢ is an integral power of b. This implies that if
the index of H is a divisor of (¢ — 1)/2 then either

(1) (¢ + 1)q divides 60, or
(2) (g+Dalg—1)/2< G (/7+1)a(va—1) = G g - 1)/
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In the case (1) we have ¢ = 5 which contradicts our assumption that ¢ > 11. So,
the case (2) holds. Clearly, (¢ +1)/q < (¢ — 1) which is obviously not true. O

Theorem 3.12 — Let K be a field of characteristic different from 2. Suppose that
f(x) and h(zx) are polynomials in K[z] enjoying the following properties:

(i) deg(f) = 3 and the Galois group Gal(f) acts doubly transitively on the set Ry
of roots of f. If deg(f) is even then this action is 3-transitive;

(ii) deg(h) = 3 and the Galois group Gal(h) acts doubly transitively on the set Ry,
of roots of h. If deg(h) is even then this action is 3-transitive;

(iii) The splitting fields K(Ry) of f and K(Rn) of h are linearly disjoint over K.
Let J(Cy) be the jacobian of the hyperelliptic curve Cy : y* = f(x) and J(C},) be the ja-
cobian of the hyperelliptic curve Cy, : y*> = h(x). Then either Hom(J(Cy), J(Ch)) =
Hom(J(Ch), J(Cy)) = 0 or char(K) > 0 and both J(Cy) and J(C4) are supersingular
abelian varieties.

Proof. — Let us put X = J(Cf),Y = J(Ch). The transitivity properties imply
that End~ (XQ) = [y and End~ (Yg) = F;. The linear disjointness of K (Ry)
and K(i)%h) nnphes that the fields K(Xg) = K((J(Cf)2) C K(PRy) and K(Y2) =
K((J(Ch)2) C K(Ry,) are also linearly disjoint over K. Now the assertion follows
readily from Theorem 2.1 with ¢ = 2. o

4. Abelian varieties with multiplications

Let E be a number field. Let (X, ) be a pair consisting of an abelian variety X of
positive dimension over K, and an embedding ¢ : F — EndO(X ). Here 1 € E must
go to 1x. It is well known [26] that the degree [F : Q] divides 2 dim(X), i.e.

2 dim(X)
[E: Q]
is a positive integer. Let us denote by End®(X, ) the centralizer of i(F) in End’(X).

Clearly, i(E) lies in the center of the finite-dimensional Q-algebra End’(X,i). It
follows that End’(X,4) carries a natural structure of finite-dimensional E-algebra.

d:dX =

If Y is (possibly) another abelian variety over K, and j : E — End’(Y) is an
embedding that sends 1 to the identity automorphism of Y then we write

Hom’((X,4), (Y, §)) = {u € Hom"(X,Y) | wi(c) = j(c)u Ve € E}.

Clearly, End®(X,4) = Hom®((X,14), (X,4)). If m is a positive integer then we write
(™) for the composition E — Endo( ) C End’(X™) of i and the diagonal inclusion
End’(X) € End’(X™) = M,,,(End’(X)). Clearly,

End’(X™,i(™) = M,,,(End’(X, 7)) C M, (End’(X)) = End’(X™).
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Remark 4.1 — The E-algebra End’(X, ) is semisimple. Indeed, in notations of Re-
mark 1.4 End’(X) = [I,cz Ds where all Dy = End’(X,) are simple Q-algebras. If
pr, : End’(X) — D, is the corresponding projection map and D, g is the centralizer
of pr,i(F) in D, then one may easily check that End’(X,i) = [I,cz Ds,e. Clearly,
pryi(F) = E is a simple Q-algebra. It follows from Theorem 4.3.2 on p.104 of [9]
that D, g is also a simple Q-algebra. This implies that D, g is a simple E-algebra
and therefore End’ (X, ) is a semisimple E-algebra. We write i, for the composition
pryi: E < End’(X) - D, = End’(X,). Clearly, D, p = End®(X,, i) and

(5) End’(X,i) = [ End®(X,, is).

seT
It follows that End®(X,4) is a simple E-algebra if and only if End”(X) is a simple
Q-algebra, i.e., X is isogenous to a self-product of (absolutely) simple abelian variety.

Theorem 4.2
(i) dimg(End®((X,7)) < 4 -dim(X)?/[E : Q]%;
(i) Suppose that dimg(End’((X,i)) = 4 - dim(X)?/[E : Q2. Then:
(a) X is isogenous to a self-product of an (absolutely) simple abelian variety.
Also End®((X,4) is a central simple E-algebra, i.e., E coincides with the center
of End°((X,4). In addition, X is an abelian variety of CM-type.
(b) There exist an abelian variety Z, a positive integer m, an isogeny v :
Z™ — X and an embedding k : E — End®(Z) that sends 1 to 15 such that:

(1) End®(Z, k) is a central division algebra over E of dimension
(2dim(2)/[E : Q])* and ¢ € Hom"((Z", k™), (X, 1)).

(2) Ifchar(K,) = 0 then E contains a CM subfield and 2 dim(Z) =
[E: Q. In particular, [E : Q] is even.

(3) If E does not contain a CM-field (e.g., E 1is a totally real
number field) then char(K,) > 0 and X is a supersingular abelian
variety.

Proof. — Recall that d = 2dim(X)/[E : Q]. First, assume that X is isogenous to
a self-product of an absolutely simple abelian variety, i.e., End®(X,4) is a simple
FE-algebra. We need to prove that

N := dimg(End’ (X, 1)) < d%
Let C be the center of End’(X). Let E’ be the center of End’(X, ). Clearly,
C C E' c End’(X,4) C End’(X).

Let us put e = [E’ : E]. Then End®(X,4) is a central simple E’-algebra of di-
mension N/e. Then there exists a central division E’-algebra D such that End’(X, )
is isomorphic to the matrix algebra M,, (D) of size m for some positive integer m.
Dimension arguments imply that

N

N

2 7 .

m*dimg (D) = — dimg/ (D) = —.
! E() 6, ! E( ) em2
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Since dimp (D) is a square,

2
N_ N2, N =eN?, dimg (D)= <&>
e m
for some positive integer N;. Clearly, m divides V;.

Clearly, D contains a (maximal) field extension L/E’ of degree (Ni)/m and
End®(X,4) 2 M,,(D) contains every field extension T'/L of degree m. This implies
that

End’(X) D End’(X,i) D> T
and the number field T has degree [T : Q] = [E' : Q]- % ‘m = [E: Q]eN;. But [T : Q]
must divide 2 dim(X) (see [30, proposition 2 on p. 36]); if the equality holds then X is
an abelian variety of CM-type. This implies that eNy divides d = 2dim(X)/[E : Q).
It follows that (eN7)? divides d?; if the equality holds then [T : Q] = 2dim(X) and
therefore X is an abelian variety of CM-type. But (eN7)? = 2N = e(eN}) =
eN = e - dimg(End’(X,)). This implies that dimg(End’(X,)) < d?/e < d?, which
proves (i).
Assume now that dimg(End®(X,4)) = d?. Then e = 1 and

(eN1)> =7 N1 =d, [T:Q]=[E:QleN;, = [E: Qld = 2dim(X);
in particular, X is an abelian variety of CM-type. In addition, since e = 1, we have
E'=E, i.e. End’(X,1) is a central simple E-algebra. We also have C' C E and
N\?  d\?
dimpg(D) = dimg: (D) = <—1> = <_) _

m m

Since E is the center of D, it is also the center of the matrix algebra M,, (D). Clearly,
there exist an abelian variety Z over K,, an embedding j : D < End’(Z) and an
isogeny ¢ : Z™ — X such that the induced isomorphism

¥, : End’(Z2™) =2 End’(X), u+— ugp~!

maps j(M,,(D)) := M,,(j(D)) € M,,(End’(Z)) = End®(Z™) onto End®(X,4). Since
E is the center of M,, (D) and i(E) is the center of End’(X,4), the isomorphism v,
maps j(E) C j(M,,(D)) = M,,(5(D)) € End*(Z™) onto i(E) C End”(X). In other
words, ¥.j(E) = i(E). It follows that there exists an automorphism o of the field F
such that ¢ = ¥,jo on E. It follows easily that if we put k := jo : E — EndO(Z)
then ¢ € Hom((Z™, k™), (X,v)).

Clearly, k(F) = j(E) and therefore j(D) € End’(Z, k). Since M,,(End®(Z, k)) =
End’(X,4) 2 M,,(D), the dimension arguments imply that j(D) = End’(Z, k) and
therefore EndO(Z, k) = D is a division algebra. Clearly,

, dim(X) d\> [2dim(X)\> [2dim(Z)\”
dm(7) = S, ame) = (1) = (rgn) = Crrg)

Let B be an absolutely simple abelian variety over K, such that X is isogenous to a

self-product B” of B where the positive integer r = dim(X)/dim(B). Then End®(B) is
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a central division algebra over C’; we define a positive integer go by dime(End®(B)) =
g3. Since End®(X) contains a field of degree 2dim(X), it follows from Propositions 3
and 4 on pp.36-37 in [30] (applied to A = X, K = C, g = go, m = dim(B),
f =1[C :Q)]) that 2dim(B) = [C : Q] - go. Let Ty be a maximal subfield in the
g3-dimensional central division algebra End’(B). Well-known properties of maximal
subfields of division algebras imply that Ty contains the center C and [Ty : C] = go.
It follows that [Tp : Q] = [C' : Q][To : C] = [C : Q] - go = 2dim(B) and therefore
End’(B) contains a field of degree 2dim(B). This implies that B is an absolutely
simple abelian variety of CM-type; in terminology of [22], B is an absolutely simple
abelian variety with sufficiently many complex multiplications.

Assume now that char(K,) = 0. We need to check that 2dim(Z) = [E': Q] and F
contains a CM-field. Indeed, since D is a division algebra, it follows from Albert’s
classification [21, 23] that dimg(D) divides 2dim(Z) = 2dim(X)/m = [E : Q]d/m.
On the other hand, dimg(D) = [E : Q] dimg(D) = [E : Q] (d/m)*. Since m divides d,
we conclude that d/m =1, i.e., dimg(D) = 1,D = E,2dim(Z) = [E : Q]. In other
words, End’(Z) contains the field E of degree 2dim(Z). It follows from Theorem 1
on p.40 in [30] (applied to F' = E) that E contains a CM-field.

Now let us drop the assumption about char(K,) and assume instead that E does
not contain a CM subfield. It follows that char(K) > 0. Since C lies in E, it is totally
real. Since B is an absolutely simple abelian variety with sufficiently many complex
multiplications it is isogenous to an absolutely simple abelian variety W defined over
a finite field [22] and End’(B) = End®(W). In particular, the center of End®(W)
is isomorphic to C' and therefore is a totally real number field. It follows from the
Honda—Tate theory [35] that W is a supersingular elliptic curve and therefore B is
also a supersingular elliptic curve. Since X is isogenous to B”, it is a supersingular
abelian variety.

Now let us consider the case of arbitrary X. Applying the already proven case of
Theorem 4.2(i) to each X, we conclude that

, 0 v 2 dim(X,)\”
dimpg (End” (X,,14)) < (7[E@] > .

Applying (5), we conclude that

dimp(End’(X,4)) = dimp(End’(X,, i,))

seZ
2dim(X,)\? _ 23 ,c7dim(X,)?  (2dim(X))?
<Z< E:q > STOEQr | [E:QR

It follows that if the equality dimg(End®(X,)) = (2dim(X))?/[F : Q]* holds then
the set Z of indices s is a singleton, i.e. X = X is isogenous to a self-product of an
absolutely simple abelian variety. O
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5. Corrigendum to [46]

Page 629, proof of Lemma 6.1 (i). First, the Hasse-Witt/Cartier-Manin matrix
of the hyperelliptic curve C' is M1/3). (The exponent was inadvertently distorted.)
Second, the jacobian J(C) is a supersingular abelian surface if and only if MM ®) = 0.
(The product was mistakenly transposed.) Clearly,

det(MM®) = det(M) det(M)® = det(M)* = (ayas)*.
Hence, if MM®) =0 then a; = 0, because as # 0. Suppose that a; = 0. Then

M = as 0 M(?’): G/% 0 MM(?’): a% 0 .
as 0/’ ai 0/)’ asa3 0

We conclude that MM®) = 0 if and only if a1 = as = 0. It follows that J(C) is a
supersingular abelian surface if and only if a; = a2 = 0. Since M # 0, the jacobian
J(C) is not isomorphic to a product of two supersingular elliptic curves.
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