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ON THE BILINEAR COMPLEXITY OF THE

MULTIPLICATION IN FINITE FIELDS

by

Stéphane Ballet & Robert Rolland

Abstract. — The aim of this paper is to introduce the bilinear complexity of the mul-

tiplication in finite fields and to give a brief exposition of the recent results obtained

in this part of algebraic complexity theory. In particular we present the new results

obtained using the Chudnovsky-Chudnovsky algorithm and its generalizations.

Résumé (Sur la complexité bilinéaire de la multiplication dans lescorps finis)
L’objectif de cet article est de présenter la complexité bilinéaire de la multiplication

dans les corps finis et de faire un bref tour d’horizon des résultats récents obtenus dans

cette partie de la théorie de la complexité algébrique. En particulier, nous présentons

les résultats nouveaux qui découlent de l’utilisation de l’algorithme de Chudnovsky-

Chudnovsky et de ses généralisations.

1. Introduction

The aim of this paper is to introduce the bilinear complexity of the multiplication

in finite fields and to give a brief exposition of the recent results obtained in this part

of algebraic complexity theory. The best general reference here is [8].

In this section we introduce the problem, we set up notation and terminology

and we review some of the standard results on the multiplication of two polynomials

modulo a given polynomial.

In section 2, we summarize without proof the algorithm of D.V.Chudnovski and

G.V.Chudnovski (cf. [9]). This algorithm results in the linearity of the bilinear

complexity of the multiplication. We explain that, in some sense, the algorithm of

D.V.Chudnovski and G.V.Chudnovski is not so far from a Fourier Transform. We

give also lower and upper asymptotic estimates of the bilinear complexity, due to

Shparlinski, Tsfasman, Vladut (cf. [15]). We present the results obtained by the use

of the D.V.Chudnovski and G.V.Chudnovski algorithm with elliptic curves (cf. [14]).
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In section 3, we introduce a generalization of the D.V.Chudnovski and G.V.Chud-

novski algorithm (cf. [6]), and the recent results we have obtained on the upper bounds

for the bilinear complexity of the multiplication. We also describe some towers of

algebraic function fields used to obtain the different estimates.

1.1. The bilinear complexity of the multiplication. — Let Fq be a finite field

with q = pr elements where p is a prime number. Let Fqn be a degree n extension

of Fq. The multiplication m in the finite field Fqn is a bilinear map from Fqn × Fqn

into Fqn , thus it corresponds to a linear map M from the tensor product Fqn ⊗ Fqn

into Fqn . One can also represent M by a tensor tM ∈ F
∗
qn ⊗ F

∗
qn ⊗ Fqn where F

∗
qn

denotes the algebraic dual of Fqn . Each decomposition

(1) tM =
k∑

i=1

a∗
i ⊗ b∗i ⊗ ci

of the tensor tM , where a∗
i , b

∗
i ∈ F

∗
qn and ci ∈ Fqn , brings forth a multiplication

algorithm

x · y = tM (x ⊗ y) =

k∑

i=1

a∗
i (x) ⊗ b∗i (x) ⊗ ci.

The bilinear complexity of the multiplication in Fqn over Fq, denoted by µq(n), is

the minimum number of summands in the decomposition (1). Alternatively, we can

say that the bilinear complexity of the multiplication is the rank of the tensor tM
(cf. [15], [2]).

1.2. Complexity and bilinear complexity of the multiplication. — Let us

remark that the bilinear complexity of the multiplication is far from being the global

complexity of the multiplication. If we use the decomposition (1), all the operations

involved in the linear part of the computation, namely the computations of x∗
i (x) and

y∗
i (y), are not taken in account for the bilinear complexity. But in fact these opera-

tions can have a heavy cost. If we take for example the multiplication of polynomials

with complex coefficients, and if we use a well fitted Fourier transform, the bilinear

complexity is linear, but the complexity of the fast Fourier transforms which consti-

tute the linear part of the algorithm is O(n ln(n)). However, it is suitable to count

separately the linear complexity and the bilinear complexity. Indeed, if we want to

multiply two variables x and y we have to design a general algorithm of multiplica-

tion, but if we want to multiply a given constant a by a variable x, the algorithm

can be simpler, because we can adapt the algorithm to the particular value a (think

for example to the particular case a = 1). In the paper, our purpose is to study the

bilinear complexity. No attempt has been made here to develop a study of the linear

complexity.
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1.3. Old classical results. — Let

P (u) =

n∑

i=0

aiu
i

be a monic irreducible polynomial of degree n with coefficients in a field F . Let

R(u) =

n−1∑

i=0

xiu
i and S(u) =

n−1∑

i=0

yiu
i

be polynomial of degree 6 n − 1 where the coefficients xi and yi are indeterminates.

As a consequence of a result of Fiduccia and Zalestein (cf. [10], [8] p. 367 prop. 14.47)

the bilinear complexity of the multiplication R(u)×S(u) is > 2n−1. When the field F

is infinite, an algorithm reaching exactly this bound was previously given by Toom

in [16]. Winograd described in [17] all the algorithms reaching the bound 2n − 1.

Moreover, Winograd proved in [18] that up to some transformation every algorithm

for computing the coefficients of R(u)×S(u) mod P (u) which is of bilinear complexity

2n − 1, necessarily computes the coefficients of R(u) × S(u), and consequently uses

one of the algorithms described in [17]. These algorithms use interpolation technics

and cannot be performed if the cardinality of the field F is < 2n − 2. In conclusion

we have the following result:

Theorem 1.1. — If the cardinality of F is < 2n − 2, every algorithm computing the

coefficients of R(u) × S(u) mod P (u) has a bilinear complexity > 2n− 1.

Applying the results of Winograd and Theorem 1.1 to the multiplication in a finite

extension Fqn of a finite field Fq we obtain:

Theorem 1.2. — The bilinear complexity µq(n) of the multiplication in the finite field

Fqn over Fq verifies

µq(n) > 2n− 1,

with equality holding if and only if

n 6
q

2
+ 1.

This result does not give any estimate of an upper bound for µq(n), when n is

large. In [13], Lempel, Seroussi and Winograd proved that µq(n) has a quasi-linear

upper bound. More precisely:

Theorem 1.3. — The bilinear complexity of the multiplication in the finite field Fqn

over Fq verifies:

µq(n) 6 fq(n)n,

where fq(n) is a very slowly growing function, namely

fq(n) = O(logq logq · · · logq
︸ ︷︷ ︸

k times

(n))

for any k > 1.
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2. Interpolation on algebraic curves

We have seen in the previous section that if the number of points of the ground

field is too low, we cannot perform the multiplication by the Winograd interpolation

method. D.V. and G.V.Chudnowski have designed in [9] an algorithm where the

interpolation is done on points of an algebraic curve over the groundfield with a

sufficient number of rational points. Using this algorithm, D.V. and G.V.Chudnowski

proved that the bilinear complexity of the multiplication in finite extensions of a finite

field is linear.

2.1. Linearity of the bilinear complexity of the multiplication

2.1.1. The D.V Chudnovski and G.V.Chudnovski algorithm. — Let us introduce first

the D.V Chudnovski and G.V.Chudnovski theorems proved in [9].

Theorem 2.1. — Let

– F/Fq be an algebraic function field,

– Q be a degree n place of F/Fq,

– D be a divisor of F/Fq,

– P = {P1, . . . , PN} be a set of places of degree 1.

We suppose that Q, P1, . . . , PN are not in the support of D and that:

(a) The evaluation map

EvQ : L(D) −→ Fqn ' FQ

is onto (where FQ is the residue class field of Q),

(b) the application

EvP :

{

L(2D) −→ F
N
q

f 7−→ (f(P1), . . . , f(PN ))

is injective.

Then

µq(n) 6 N.

Sketch of proof. — Let x an y be two elements of Fqn . We know that the residue

class field FQ is isomorphic to Fqn , hence x and y can be considered as element of FQ.

From the condition a), there exist two algebraic functions f and g in L(D) such that

f(Q) = x and g(Q) = y. Now we can evaluate f and g on the points P1, . . . , PN . In

this way we can compute with N bilinear multiplications the evaluation of h = f · g
on these points:

(h(P1) · · ·h(PN )) = (f(P1)g(P1), . . . , f(PN )g(PN )) .

We know that h ∈ L(2D), hence, using the condition b) we can find h. Now we

can conclude by computing h(Q) which is in fact f(Q)g(Q) = xy. The only bilinear

computation is the computation of the N products f(Pi)g(Pi).
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Using this algorithm with a good sequence of algebraic function fields, D.V.Chud-

novski and G.V.Chudnovski proved the linearity of the bilinear complexity of the

multiplication:

Theorem 2.2. — For any prime power q, there exists a constant Cq such that

µq(n) 6 Cqn.

2.1.2. Asymptotic bounds. — Shparlinski, Tsfasman, Vladut have given in [15] many

interesting remarks on the algorithm of D.V. and G.V.Chudnovski. They have linked

the algorithm with coding theory, and more precisely with the notion of supercode.

They have also obtained in the same paper asymptotic bounds for the bilinear com-

plexity. Following the authors, let us define

Mq = lim sup
k→∞

µq(k)

k
and mq = lim inf

k→∞

µq(k)

k
.

Let us summarize the estimates given in [15]:

(1) q = 2

3.52 6 m2 6 35/6.

M2 6 27.

(2) q > 9 is a square

2 +
1

q − 1
6 mq 6 2

(

1 +
1√

q − 2

)

.

Mq 6 2

(

1 +
1√

q − 2

)

.

(3) q > 2

2 +
1

q − 1
6 mq 6 3

(

1 +
1

q − 2

)

.

Mq 6 6

(

1 +
1

q − 2

)

.

2.1.3. The use of elliptic curves. — Applying the D.V. and G.V.Chudnovski algo-

rithm with well fitted elliptic curves, Shokrollahi has shown (cf. [14]) that:

Theorem 2.3. — The bilinear complexity µq(n) of the multiplication in the finite ex-

tension Fqn of the finite field Fq is equal to 2n for

(2)
1

2
q + 1 < n <

1

2
(q + 1 + ε(q))

where ε is the function defined by:

ε(q) =

{
greatest integer 6 2

√
q prime to q, if q is not a perfect square

2
√

q, if q is a perfect square.

We do not know if the converse is true. More precisely the question is: suppose

that µq(n) = 2n, are the inequalities (2) true?
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2.2. Link to Fourier and Laplace transforms. — Let us examine the proof

of Theorem 2.1. This proof consists in an algorithm, the so-called Chudnovski-

Chudnovski algorithm. Let us follow, the different transforms applied to the element x

(or y). First, we associate to x a function f in L(D). This is very similar to a discrete

Laplace transform (sometimes called Z-transform). Then we evaluate the function f

on the points P1, . . . , PN . This is very similar to a discrete Fourier transform, where

we evaluate the Laplace transform on the unit roots.

3. Upper bounds for the bilinear complexity

3.1. Extensions of the algorithm. — In order to obtain good estimates for the

constant Cq, Ballet has given in [1] some easy to verify conditions allowing the use of

the D.V and G.V algorithm, then Ballet and Rolland [6] have improved the algorithm

using places of degree 1 and 2. Let us set the last version of the theorem:

Theorem 3.1. — Let

– F/Fq be an algebraic function field,

– Q be a degree n place of F/Fq,

– D be a divisor of F/Fq,

– P = {P1, . . . , PN1
, Q1, . . . , QN2

} be a set of places of degree 1 and 2.

We suppose that Q, P1, . . . , PN , Q1, . . . , QN2
are not in the support of D and that:

(a) The application

EvQ : L(D) −→ Fqn ' FQ

is onto,

(b) the application

EvP :

{

L(2D) −→ F
N1
q × F

N2

q2

f 7−→ (f(P1), . . . , f(PN1
, f(Q1), . . . , f(QN2

))

is injective.

Then

µq(n) 6 N1 + 3N2.

Let us remark that the algorithm given in [9] by D.V. and G.V.Chudnovski is the

case N2 = 0. The generalization introduced here is useful. Indeed, we know good

towers of function fields, with many rational points, over Fq2 and not over Fq. So, if

we want to obtain good results for the multiplication over Fq we need to interpolate

not only on places of degree 1 but also on places of degree 2. At a first glance it seems

that places of degree greater than two cannot give us better results.
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3.2. The main theorem. — From the results of [1] and the previous algorithm,

we obtain (cf. [1], [6]):

Theorem 3.2. — Let q be a prime power and let n be an integer > 1. Let F/Fq be an

algebraic function field of genus g and Nk the number of places of degree k in F/Fq.

If F/Fq is such that 2g + 1 6 q(n−1)/2(q1/2 − 1) then:

(1) if N1 > 2n + 2g − 2, then

µq(n) 6 2n + g − 1,

(2) if there exists a non-special divisor of degree g−1 and N1 +2N2 > 2n+2g−2,

then

µq(n) 6 3n + 3g,

(3) if N1 + 2N2 > 2n + 4g − 2, then

µq(n) 6 3n + 6g.

3.3. Towers of algebraic function fields. — In this section, we introduce some

towers of algebraic function fields. Theorem 3.2 applied to the algebraic functions

fields of these towers gives us bounds for the bilinear complexity. A given curve

cannot permit to multiply in every extension of Fq, just for n lower than some value.

With a tower of function fields we can adapt the curve to the degree of the extension.

The important point to note here is that in order to obtain a well adapted curve it

will be desirable to have a tower for which the quotients of two consecutive genus are

as small as possible, namely a “dense” tower.

For any algebraic function field F/Fq defined over the finite field Fq, we denote

by g(F/Fq) the genus of F/Fq and by Nk(F/Fq) the number of places of degree k in

F/Fq.

3.3.1. Garcia-Stichtenoth tower of Artin-Schreier algebraic function field extensions

We present now a modified Garcia-Stichtenoth’s tower (cf. [11], [3], [6]) having

good properties. Let us consider a finite field Fq2 with q = pr > 3 and r an odd

integer. Let us consider the Garcia-Stichtenoth’s elementary abelian tower T1 over

Fq2 constructed in [11] and defined by the sequence (F0, F1, F2, . . . ) where

Fk+1 := Fk(zk+1)

and zk+1 satisfies the equation :

zq
k+1 + zk+1 = xq+1

k

with

xk := zk/xk−1 in Fk(for k > 1).

Moreover F0 := Fq2(x0) is the rational function field over Fq2 and F1 the Hermitian

function field over Fq2 . Let us consider the completed Garcia-Stichtenoth tower

T2 = F0,0 ⊆ F0,1 ⊆ · · · ⊆ F0,r ⊆ F1,0 ⊆ F1,1 ⊆ · · · ⊆ F1,r · · ·
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considered in [3] such that Fk ⊆ Fk,s ⊆ Fk+1 for any integer s such that s = 0, . . . , r,

with Fk,0 = Fk and Fk,r = Fk+1. Recall that each extension Fk,s/Fk is Galois of

degree ps with full constant field Fq2 . Now, we consider the tower studied in [6]

T3 = G0,0 ⊆ G0,1 ⊆ · · · ⊆ G0,r ⊆ G1,0 ⊆ G1,1 ⊆ · · · ⊆ G1,r, . . .

defined over the constant field Fq and related to the tower T2 by

Fk,s = Fq2Gk,s for all k and s,

namely Fk,s/Fq2 is the constant field extension of Gk,s/Fq. Note that the tower T3 is

well defined by [6] and [7]. From the existence of these towers, we have the following

result by [6], [7] and [5]:

Proposition 3.3. — Let q be a prime power > 5. Then for any integer n >
1
2 (q + 1 + ε(q)) where ε(q) is the greatest integer < 2

√
q,

(1) there exists an algebraic function field Fk,s/Fq2 of genus g(Fk,s/Fq2) such that

2g(Fk,s/Fq2) + 1 6 qn−1(q − 1) and N1(Fk,s/Fq2) > 2n + 2g(Fk,s/Fq2) − 2,

(2) there exists an algebraic function field Gk,s/Fq of genus g(Gk,s/Fq) such that

2g(Gk,s/Fp) + 1 6 q(n−1)/2(q1/2 − 1) and N1(Gk,s/Fq) + 2N2(Gk,s/Fq) > 2n +

2g(Gk,s/Fq) − 2 and containing a non-special divisor of degree g(Gk,s/Fq) − 1.

3.3.2. Garcia-Stichtenoth tower of Kummer function field extensions. — In this sec-

tion we present a Garcia-Stichtenoth’s tower (cf. [4]) having good properties. Let Fq

be a finite field of characteristic p > 3. Let us consider the tower T over Fq that is

defined recursively by the following equation, studied in [12]:

y2 =
x2 + 1

2x
.

The tower T/Fq is represented by the sequence of function fields (T0, T1, T2, . . . )

where Tn = Fq(x0, x1, . . . , xn) and x2
i+1 = (x2

i + 1)/2xi holds for each i > 0. Note

that T0 is the rational function field. For any prime number p > 3, the tower T/Fp2

is asymptotically optimal over the field Fp2 , i.e. T/Fp2 reaches the Drinfeld-Vladut

bound. Moreover, for any integer k, Tk/Fp2 is the constant field extension of Tk/Fp.

From the existence of this tower, we can obtain the following proposition [4]:

Proposition 3.4. — Let p be a prime number > 5. Then for any integer n >
1
2 (p + 1 + ε(p)) where ε(p) is the greatest integer < 2

√
p,

(1) there exists an algebraic function field Tk/Fp2 of genus g(Tk/Fp2) such that

2g(Tk/Fp2) + 1 6 pn−1(p − 1) and N1(Tk/Fp2) > 2n + 2g(Tk/Fp2) − 2,

(2) there exists an algebraic function field Tk/Fp of genus g(Tk/Fp) such that

2g(Tk/Fp)+1 6 p(n−1)/2(p1/2−1) and N1(Tk/Fp)+2N2(Tk/Fp) > 2n+2g(Tk/Fp)−2

and containing a non-special divisor of degree g(Tk/Fp) − 1.
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3.4. Results. — From these towers of algebraic functions fields satisfying Theorem

3.2, it was proved in [1], [3], [6], [7], [5] and [4]:

Theorem 3.5. — Let q = pr a power of the prime p. The bilinear complexity µq(n)

of multiplication in any finite field Fqn is linear with respect to the extension degree,

more precisely:

µq(n) 6 Cqn

where Cq is the constant defined by:

Cq =







if q = 2 then 54. [1]

else if q = 3 then 27. [1]

else if q = p > 5 then 3(1 + 4
q−3 ) [4]

else if q = p2 > 25 then 2(1 + 2√
q−3 ) [4]

else if q = p2k > 16 then 2(1 + p√
q−3 ) [3]

else if q > 16 then 3(1 + 2p
q−3 ) [6],[7], and [5]

else if q > 3 then 6(1 + p
q−3 ) [3].
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