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POINTLESS CURVES OF GENUS THREE AND FOUR

by

Everett W. Howe, Kristin E. Lauter & Jaap Top

Abstract. — A curve over a field k is pointless if it has no k-rational points. We show

that there exist pointless genus-3 hyperelliptic curves over a finite field Fq if and only

if q 6 25, that there exist pointless smooth plane quartics over Fq if and only if either

q 6 23 or q = 29 or q = 32, and that there exist pointless genus-4 curves over Fq if

and only if q 6 49.

Résumé (Courbes de genre3 et 4 sans point). — Une courbe sur un corps k est

appelée une courbe sans point si elle n’a aucun point k-rationnel. Nous prouvons

qu’il existe des courbes hyperelliptiques de genre trois sans point sur un corps fini Fq

si et seulement si q 6 25, qu’il existe des quartiques planes sans point sur un corps

fini Fq si et seulement si q 6 23, q = 29 ou q = 32, et qu’il existe des courbes de genre

quatre sans point sur un corps fini Fq si et seulement si q 6 49.

1. Introduction

What is the largest number of rational points there can be on a curve of genus g

over a finite field Fq? Researchers have been studying variants of this question for

several decades. As van der Geer and van der Vlugt write in the introduction to their

biannually-updated survey of results related to certain aspects of this subject, the

attention paid to this question is

motivated partly by possible applications in coding theory and cryptogra-

phy, but just as well by the fact that the question represents an attractive

mathematical challenge. [4]

The complementary question — What is the smallest number of rational points there

can be on a curve of genus g over a finite field Fq? — seems to have sparked little
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interest among researchers, perhaps because of the apparent lack of possible applica-

tions in coding theory and cryptography for curves with few points. But despite the

paucity of applications, there are still mathematical challenges associated with such

curves. In this paper, we address one of them:

Problem. — Given an integer g > 0, determine the finite fields Fq over which there

exists a curve of genus g having no rational points.

We will call a curve over a field k pointless if it has no k-rational points. Thus

the problem we propose is to determine, for a given genus g, the finite fields Fq over

which there is a pointless curve of genus g.

The solutions to this problem for g 6 2 are known. There are no pointless curves

of genus 0 over any finite field; this follows from Wedderburn’s theorem, as is shown

by [18, § III.1.4, exer. 3]. The Weil bound for curves of genus 1 over a finite field,

proven by Hasse [5], shows that there are no pointless curves of genus 1 over any

finite field. If there is a pointless curve of genus 2 over a finite field Fq then the Weil

bound shows that q 6 13, and in 1972 Stark [19] showed that in fact q < 13. For

each q < 13 there do exist pointless genus-2 curves over Fq; a complete list of these

curves is given in [14, Table 4].

In this paper we provide solutions for the cases g = 3 and g = 4.

Theorem 1.1. — There exists a pointless genus-3 curve over Fq if and only if either

q 6 25 or q = 29 or q = 32.

Theorem 1.2. — There exists a pointless genus-4 curve over Fq if and only if q 6 49.

In fact, for genus-3 curves we prove a statement slightly stronger than Theorem 1.1:

Theorem 1.3. — There exists a pointless genus-3 hyperelliptic curve over Fq if and

only if q 6 25; there exists a pointless smooth plane quartic curve over Fq if and only

if either q 6 23 or q = 29 or q = 32.

The idea of the proofs of these theorems is simple. For any given genus g, and

in particular for g = 3 and g = 4, the Weil bound can be used to provide an upper

bound for the set of prime powers q such that there exist pointless curves of genus

g over Fq. For each q less than or equal to this bound, we either provide a pointless

curve of genus g or use the techniques of [8] to prove that none exists.

We wrote above that the question of how few points there can be on a genus-g curve

over Fq seems to have attracted little attention, and this is certainly the impression

one gets from searching the literature for references to such curves. On the other

hand, the question has undoubtedly occurred to researchers before. Indeed, the third

author was asked this very question for the special case g = 3 by both N.D. Elkies

and J.-P. Serre after the appearance of his joint work [1] with Auer. Also, while it

is true that there seem to be no applications for pointless curves, it can be useful
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to know whether or not they exist. For example, Leep and Yeomans were concerned

with the existence of pointless plane quartics in their work [13] on explicit versions of

special cases of the Ax-Kochen theorem. Finally, we note that Clark and Elkies have

recently proven that for every fixed prime p there is a constant Ap such that for every

integer n > 0 there is a curve over Fp of genus at most Apnpn that has no places of

degree n or less.

In Section 2 we give the heuristic that guided us in our search for pointless curves.

In Section 3 we give the arguments that show that there are no pointless curves of

genus 3 over F27 or F31, no pointless smooth plane quartics over F25, no pointless

genus-3 hyperelliptic curves over F29 or F32, and no pointless curves of genus 4 over

F53 or F59. Finally, in Sections 4 and 5 we give examples of pointless curves of genus

3 and 4 over every finite field for which such curves exist.

Conventions. — By a curve over a field k we mean a smooth, projective, geometrically

irreducible 1-dimensional variety over k. When we define a curve by a set of equations,

we mean the normalization of the projective closure of the variety defined by the

equations.

Acknowledgments. — The first author spoke about the work [8] at AGCT-9, and he

thanks the organizers Yves Aubry, Gilles Lachaud, and Michael Tsfasman for inviting

him to Luminy and for organizing such a pleasant and interesting conference. The

first two authors thank the editors for soliciting this paper, which made them think

about other applications of the techniques developed in [8].

In the course of doing the work described in this paper we used the computer

algebra system Magma [2]. Several of our Magma programs are available on the web:

start at

http://www.alumni.caltech.edu/~however/biblio.html

and follow the links related to this paper. One of our proofs depends on an explicit

description of the isomorphism classes of unimodular quaternary Hermitian forms over

the quadratic ring of discriminant −11. The web site mentioned above also contains

a copy of a text file that gives a list of the six isomorphism classes of such forms; we

obtained this file from the web site

http://www.math.uni-sb.de/~ag-schulze/Hermitian-lattices/

maintained by Rainer Schulze-Pillot-Ziemen.

2. Heuristics for constructing pointless curves

To determine the correct statements of Theorems 1.1 and 1.2 we began by searching

for pointless curves of genus 3 and 4 over various small finite fields. In this section

we explain the heuristic we used to find families of curves in which pointless curves
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might be abundant. We begin with a lemma from the theory of function fields over

finite fields.

Lemma 2.1. — Let L/K be a degree-d extension of function fields over a finite field k,

let M be the Galois closure of L/K, let G = Gal(M/K), and let H = Gal(M/L).

Let S be the set of places p of K that are unramified in L/K and for which there is

at least one place q of L, lying over p, with the same residue field as p. Then the

set S has a Dirichlet density in the set of all places of K unramified in L/K, and this

density is

δ :=
# ∪τ∈G Hτ

#G
.

We have δ > 1/d, with equality precisely when L is a Galois extension of K. Further-

more, we have δ 6 1 − (d − 1)/#G.

Proof. — An easy exercise in the class field theory of function fields (cf. [6, proof of

Lem. 2]) shows that the set S is precisely the set of places p whose Artin symbol

(p, L/K) lies in the union of the conjugates of H in G. The density statement then

follows from the Chebotarev density theorem.

Since H is an index-d subgroup of G, we have

# ∪τ∈G Hτ

#G
>

#H

#G
=

1

d
.

If L/K is Galois then H is trivial and the first relation in the displayed equation

above is an equality. If L/K is not Galois then H is a non-normal subgroup of G, so

the first relation above is an inequality.

To prove the upper bound on δ, we note that two conjugates Hσ and Hτ of H are

identical when σ and τ lie in the same coset of H in G, so when we form the union

of the conjugates of H we need only let τ range over a set of coset representatives

of the d cosets of H in G. Furthermore, the identity element lies in every conjugate

of H , so the union of the conjugates of H contains at most d ·#H − (d− 1) elements.

The upper bound follows.

Note that the density mentioned in Lemma 2.1 is a Dirichlet density. If the constant

field of K is algebraically closed in the Galois closure of L/K, then the set S also has

a natural density (see [10]). In particular, the set S has a natural density when L/K

is a Galois extension and L and K have the same constant field.

Lemma 2.1 leads us to our main heuristic:

Heuristic. — Let C → D be a degree-d cover of curves over Fq, let L/K be the cor-

responding extension of function fields, and let δ be the density from Lemma 2.1. If

the constant field of the Galois closure of L/K is equal to Fq, then C will be pointless

with probability (1− δ)#D(Fq). In particular, if C → D is a Galois cover, then C will

be pointless with probability (1 − 1/d)#D(Fq).
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Justification. — Lemma 2.1 makes it reasonable to expect that with probability 1−δ,

a given rational point of D will have no rational points of C lying over it. Our heuristic

follows if we assume that all of the points of D behave independently.

Consider what this heuristic tells us about hyperelliptic curves. Since a hyperel-

liptic curve is a double cover of a genus-0 curve, we expect that a hyperelliptic curve

over Fq will be pointless with probability (1/2)q+1. However, if the hyperelliptic curve

has more automorphisms than just the hyperelliptic involution, it will be more likely

to be pointless. For instance, suppose C is a hyperelliptic curve whose automorphism

group has order 4. This automorphism group will give us a Galois cover C → P
1

of degree 4. Then our heuristic suggests that C will be pointless with probability

(3/4)q+1.

This heuristic suggested two things to us. First, to find pointless curves it is helpful

to look for curves with larger-than-usual automorphism groups. We decided to focus

on curves whose automorphism groups contain the Klein 4-group, because it is easy

to write down curves with this automorphism group and yet the group is large enough

to give us a good chance of finding pointless curves. Second, the heuristic suggested

that we look at curves C that are double covers of curves D that are double covers

of P
1. The Galois group of the resulting degree-4 cover C → P

1 will typically be the

dihedral group of order 8, and the heuristic predicts that C will be pointless with

probability (5/8)q+1. For a fixed D, if we consider the family of double covers C → D

with C of genus 3 or 4, our heuristic predicts that C will be pointless with probability

(1/2)#D(Fq). If #D(Fq) is small enough, this probability can be reasonably high.

The curves that we found by following our heuristic are listed in Sections 4 and 5.

3. Proofs of the theorems

In this section we prove the theorems stated in the introduction. Clearly Theo-

rem 1.1 follows from Theorem 1.3, so we will only prove Theorems 1.2 and 1.3.

Proof of Theorem 1.3. — The Weil bound says that a curve of genus 3 over Fq has

at least q + 1 − 6
√

q points, and it follows immediately that if there is a pointless

genus-3 curve over Fq then q < 33. In Section 4 we give examples of pointless genus-3

hyperelliptic curves over Fq for q 6 25 and examples of pointless smooth plane quartics

for q 6 23, for q = 29, and for q = 31. To complete the proof, we need only prove the

following statements:

(1) There are no pointless genus-3 curves over F31.

(2) There are no pointless genus-3 curves over F27.

(3) There are no pointless smooth plane quartics over F25.

(4) There are no pointless genus-3 hyperelliptic curves over F32.

(5) There are no pointless genus-3 hyperelliptic curves over F29.
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Statement 1. — Theorem 1 of [12] shows that every genus-3 curve over F31 has at

least 2 rational points, and statement 1 follows.

Statement 2. — To prove statement 2, we begin by running the Magma program

CheckQGN described in [8]. The output of CheckQGN(27,3,0) shows that if C is a

pointless genus-3 curve over F27 then the real Weil polynomial of C (see [8]) must be

(x− 10)2(x− 8). (To reach this conclusion without relying on the computer, one can

adapt the reasoning on ‘defect 2’ found in [11, §2].) Applying Proposition 13 of [8],

we find that C must be a double cover of an elliptic curve over F27 with exactly 20

rational points.

Up to Galois conjugacy, there are two elliptic curves over F27 with exactly 20

rational points; one is given by y2 = x3 +2x2 + 1 and the other by y2 = x3 +2x2 + a,

where a3 − a + 1 = 0. By using the argument given in the analogous situation in [8,

§6.1], we see that every genus-3 double cover of one of these two E’s can be obtained

by adjoining to the function field of E an element z that satisfies z2 = f , where

f is a function on E of degree at most 6 that is regular outside ∞, that has four

zeros or poles of odd order, and that has a double zero at a point Q of E that is

rational over F27. In fact, it suffices to consider Q’s that represent the classes of

E(F27)/2E(F27). The first E given above has four such classes and the second has

two. We can also demand that the representative points Q not be 2-torsion points.

The divisor of the function f is

P1 + P2 + P3 + P4 + 2Q − 6∞

for some geometric points P1, . . . , P4. We are assuming that the double cover C has

no rational points, so none of the Pi can be rational over F27. In particular, none of

the Pi is equal to the infinite point. Since Q is also not the infinite point (because we

chose it not to be a 2-torsion point), we see that the degree of f is exactly 6.

It is easy to have Magma enumerate, for each of the six (E, Q) pairs, all of the

degree-6 functions f on E that have double zeros at Q. For each such f we can check

to see whether there is a rational point P on E such that f(P ) is a nonzero square;

if there is such a point, then the double D cover of E given by z2 = f would have a

rational point. For those functions f for which such a P does not exist, we can check

to see whether the divisor of f has the right form. If the divisor of f does have the

right form, we can compute whether the curve D has a rational point lying over Q or

over ∞.

We wrote Magma routines to perform these calculations; they are available on the

web at the URL mentioned in the acknowledgments. As it happens, no (E, Q) pair

gives rise to a function f that passes the first two tests described in the preceding

paragraph, so we never had to perform the third test.

Our conclusion is that there are no pointless genus-3 curves over F27, which com-

pletes the proof of statement 2.
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Statement 3. — To prove statement 3 we start by running CheckQGN(25,3,0). We

find that the real Weil polynomial of a pointless genus-3 curve over F25 is either

f1 := (x− 10)2(x− 6) or f2 := (x− 10)(x2 − 16x+62) or f3 := (x− 10)(x− 9)(x− 7)

or f4 := (x − 10)(x − 8)2. (This list can also be obtained by using Table 4 and

Theorem 1(a) of [8].)

We begin by considering the real Weil polynomial f1 = (x − 10)2(x − 6). Suppose

C is a genus-3 curve over F25 with real Weil polynomial equal to f1. Arguing as in

the proof of [8, Cor. 12], we find that there is an exact sequence

0 −→ ∆ −→ A × E −→ JacC −→ 0,

where A is an abelian surface with real Weil polynomial (x − 10)2, where E is an

elliptic curve with real Weil polynomial x − 6, where ∆ is a self-dual finite group

scheme that is killed by 4, and where the projections from A × E to A and to E

give monomorphisms ∆ ↪→ A and ∆ ↪→ E. Furthermore, there are polarizations λA

and λE on A and E whose kernels are the images of ∆ under these monomorphisms,

and the polarization on JacC induced by the product polarization λA × λE is the

canonical polarization on JacC.

Since ∆ is isomorphic to the kernel of λE and since ∆ is killed by 4, we see that

if ∆ is not trivial then it is isomorphic to either E[2] or E[4]. If ∆ were trivial then

JacC would be equal to A × E and the canonical polarization on JacC would be a

product polarization, and this is not possible. Therefore ∆ is isomorphic either to E[2]

or E[4]. Since the Frobenius endomorphism of A is equal to the multiplication-by-5

map on A, the group of geometric 4-torsion points on A is a trivial Galois module.

But E[4] is not a trivial Galois module, so we see that ∆ must be isomorphic to E[2].

Arguing as in the proof of [8, Prop. 13], we find that there must be a degree-2 map

from C to E.

Thus, to find the genus-3 curves over F25 whose real Weil polynomials are equal to

(x − 10)2(x − 6), we need only look at the genus-3 curves that are double covers of

elliptic curves over F25 with 20 points and with three rational points of order 2. There

are two such elliptic curves, and, as in the proof of statement 2, we can use Magma

to enumerate their genus-3 double covers with no points. (Our Magma program is

available at the URL mentioned in the acknowledgments.) We find that there is

exactly one such double cover: if a is an element of F25 with a2 − a + 2 = 0, then the

double cover C of the elliptic curve y2 = x3 + 2x given by setting z2 = a(x2 − 2) has

no points.

The curve C is clearly hyperelliptic, because it is a double cover of the genus-0

curve z2 = a(x2 − 2). By parametrizing this genus-0 curve and manipulating the

resulting equation for C, we find that C is isomorphic to the curve y2 = a(x8 + 1),

which is the example presented below in Section 4.

Next we show that there are no pointless genus-3 curves over F25 with real Weil

polynomial equal to f2 or f3 or f4.
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Suppose C is a pointless genus-3 curve over F25 whose real Weil polynomial is f2

or f3 or f4. By applying Proposition 13 of [8], we find that C must be a double cover

of an elliptic curve over F25 having either 16 or 17 points. There is one elliptic curve

over F25 of each of these orders. As we did above and in the proof of statement 2, we

can easily have Magma enumerate the genus-3 double covers of these elliptic curves.

The only complication is that for the curve with 16 points, we cannot assume that

the auxiliary point Q mentioned in the proof of statement 2 is not a 2-torsion point.

The Magma program we used to enumerate these double covers can be found at

the web site mentioned in the acknowledgments. Using this program, we found that

the curve with 17 points has no pointless genus-3 double covers. On the other hand,

we found two functions f on the curve E with 16 points such that the double cover

of E defined by z2 = f is a pointless genus-3 curve. But when we computed an upper

bound for the number of points on these curves over F625, we found that both of the

curves have at most 540 points over F625. This upper bound is not consistent with

any of the three real Weil polynomials we are considering. (In fact, one can show by

direct computation that the two curves are isomorphic to the curve y2 = a(x8 + 1)

that we found earlier, whose real Weil polynomial is f1.) Thus, there are no pointless

genus-3 curves over F25 with real Weil polynomial equal to f2 or f3 or f4.

This proves statement 3.

Statement 4. — Suppose that C is a pointless genus-3 curve over F32. If C were

hyperelliptic, then its quadratic twist would be a genus-3 curve over F32 with 66

rational points. But [11, Thm.1] shows that no such curve exists.

We give a second proof of statement 4 as well, which provides us with a little extra

information and foreshadows some of our later arguments. This same proof is given

in [3, §3.3] and attributed to Serre.

Suppose that C is a pointless genus-3 curve over F32. Then C meets the Weil-

Serre lower bound, and (as Serre shows in [17]) its Jacobian is therefore isogenous to

the cube of an elliptic curve E over F32 whose trace of Frobenius is 11. Note that

the endomorphism ring of this elliptic curve is the quadratic order O of discriminant

112 − 4 · 32 = −7. The polarizations of abelian varieties isogenous to a power of a

single elliptic curve whose endomorphism ring is a maximal order can be understood

in terms of Hermitian modules (see the appendix to [12]). Since the endomorphism

ring O is a maximal order and a PID, there is exactly one abelian variety in the

isogeny class of E3, namely E3 itself. Furthermore, the theory of Hermitian modules

shows that the principal polarizations of E3 correspond to the isomorphism classes

of unimodular Hermitian forms on the O-module O3. Hoffmann [7] shows that there

is only one isomorphism class of indecomposable unimodular Hermitian forms on O3,

so there is at most one Jacobian in the isogeny class of E3, and hence at most one

genus-3 curve over F32 with no points. The example we give in Section 4 is a plane
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quartic, so there are no pointless genus-3 hyperelliptic curves over F32. This proves

statement 4.

Statement 5. — We wrote a Magma program to find (by enumeration) all pointless

genus-3 hyperelliptic curves over an arbitrary finite field Fq of odd characteristic with

q > 7. We applied our program to the field F29, and we found no curves. Our Magma

program is available at the URL mentioned in the acknowledgments.

Note that in the course of proving Theorem 1.3 we showed that the pointless

genus-3 curves over F25 and F32 exhibited in Section 4 are the only such curves over

their respective fields. Also, our program to enumerate pointless genus-3 hyperelliptic

curves shows that there is only one pointless genus-3 hyperelliptic curve over F23.

Proof of Theorem 1.2. — It follows from Serre’s refinement of the Weil bound [16,

Thm.1] that if a curve of genus 4 over Fq has no rational points, then q 6 59. In

Section 5 we give examples of pointless genus-3 curves over Fq for all q with q 6 49,

so to prove the theorem we must show that there are no pointless genus-4 curves over

F53 or F59.

Combining the output of CheckQGN(53,4,0) with Theorem 1(b) of [8], we find

that a pointless genus-4 curve over F53 must be a double cover of an elliptic curve

E over F53 with exactly 42 points. (Again, the information obtained by running

CheckQGN can also be obtained without recourse to the computer by modifying the

‘defect 2’ arguments in [11, §2].)

There are four elliptic curves E over F53 with exactly 42 points. Following the

arguments of [8, §6.1], we find that every genus-4 double cover of such an E can be

obtained by adjoining to the function field of E a root of an equation z2 = f , where f

is a function on E whose divisor is of the form

P1 + · · · + P6 + 2Q − 8∞,

where Q is a rational point of E that is not killed by 2, and where it suffices to con-

sider Q that cover the residue classes of E(F53) modulo 3E(F53). As in the preceding

proof, we wrote Magma programs to enumerate the genus-4 double covers of the four

possible E’s and to check to see whether all of these covers had rational points. Our

programs, available at the URL mentioned in the acknowledgments, showed that ev-

ery genus-4 double cover of these E’s has a rational point. Thus there are no pointless

genus-4 curves over F53.

Next we show that there are no pointless curves of genus 4 over F59. If C were such

a curve, then C would meet the Weil-Serre lower bound, and therefore the Jacobian

of C would be isogenous to the fourth power of an elliptic curve E over F59 with

45 points. Note that there is exactly one such E, and its endomorphism ring O
is the quadratic order of discriminant −11. As in the proof of statement 4 of the

proof of Theorem 1.3, we see that there is only one abelian variety in the isogeny

class of E4, and principal polarizations of E4 correspond to the isomorphism classes
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of unimodular Hermitian forms on the O-module O4. Schiemann [15] states that

there are six isomorphism classes of unimodular Hermitian forms on the module O4.

We were unable to find a listing of these isomorphism classes at the URL mentioned

in [15], but we did find them by following links from the URL

http://www.math.uni-sb.de/~ag-schulze/Hermitian-lattices/

We have placed a copy of the page listing these six forms on the web site mentioned

in the acknowledgments.

Three of the isomorphism classes of unimodular Hermitian forms on O4 are decom-

posable, and so do not come from the Jacobian of a curve. The three indecomposable

Hermitian forms can each be written as a matrix with an upper left entry of 2. Argu-

ing as in the proof of [8, Prop. 13], we find that our curve C must be a double cover

of the curve E.

We are again in familiar territory. As above, it is an easy matter to write a Magma

program to enumerate the genus-4 double covers of the given elliptic curve E and to

check that they all have a rational point. (Our Magma programs are available at the

URL mentioned in the acknowledgments.) Our computation showed that there are

no pointless curves of genus 4 over F59.

4. Examples of pointless curves of genus 3

In this section we give examples of pointless curves of genus 3 over the fields where

such curves exist. We only consider curves whose automorphism groups contain the

Klein 4-group V . We begin with the hyperelliptic curves.

Suppose C is a genus-3 hyperelliptic curve over Fq whose automorphism group

contains a copy of V , and assume that the hyperelliptic involution is contained in V .

Then V modulo the hyperelliptic involution acts on C modulo the hyperelliptic in-

volution, and gives us an involution on P
1. By changing coordinates on P

1, we may

assume that the involution on P
1 is of the form x 7→ n/x for some n ∈ F

∗

q . (When q is

odd we need consider only two values of n, one a square and one a nonsquare. When

q is even we may take n = 1.)

It follows that when q is odd the curve C can be defined either by an equation

of the form y2 = f(x + n/x), where f is a separable quartic polynomial coprime to

x2−4n, or by an equation of the form y2 = xf(x+n/x), where f is a separable cubic

polynomial coprime to x2 − 4n. However, the latter possibility cannot occur if C is

to be pointless. When q is even, if we assume the curve if ordinary then it may be

written in the form y2 + y = f(x + 1/x), where f is a rational function with 2 simple

poles, both nonzero.
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q curve

2 y2 + y = (x4 + x2 + 1)/(x4 + x3 + x2 + x + 1)

3 y2 = −x8 + x7 − x6 − x5 − x3 − x2 + x − 1

4 y2 + y = (ax4 + ax3 + a2x2 + ax + a)/(x4 + ax3 + x2 + ax + 1)

where a2 + a + 1 = 0

5 y2 = 2x8 + 3x4 + 2

7 y2 = 3x8 + 2x6 + 3x4 + 2x2 + 3

8 y2 + y = (x4 + a6x3 + a3x2 + a6x + 1)/(x4 + x3 + x2 + x + 1)

where a3 + a + 1 = 0

9 y2 = a(x8 + 1)

where a2 − a − 1 = 0

11 y2 = 2x8 + 4x6 − 2x4 + 4x2 + 2

13 y2 = 2x8 + 3x7 + 3x6 + 4x4 + 3x2 + 3x + 2

16 y2 + y = (a3x4 + a3x3 + a14x2 + a3x + a3)/(x4 + a3x3 + x2 + a3x + 1)

where a4 + a + 1 = 0

17 y2 = 3x8 − 2x5 + 4x4 − 2x3 + 3

19 y2 = 2x8 − x6 − 8x4 − x2 + 2

23 y2 = 5x8 + x6 + 6x5 + 7x4 − 6x3 + x2 + 5

25 y2 = a(x8 + 1)

where a2 − a + 2 = 0

Table 1. Examples of pointless hyperelliptic curves of genus 3 over Fq

with automorphism group containing the Klein 4-group. For q 6= 23, the

automorphism x 7→ 1/x of P
1 lifts to give an automorphism of the curve;

for q = 23, the automorphism x 7→ −1/x lifts.

We wrote a simple Magma program to search for pointless hyperelliptic curves of

this form. We found such curves for every q in

{2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25}.
We give examples in Table 1.

Now we turn to the pointless smooth plane quartics. We searched for pointless

quartics of the form

ax4 + by4 + cz4 + dx2y2 + ex2z2 + fy2z2 = 0

over finite fields of odd characteristic, because the automorphism groups of such quar-

tics clearly contain the Klein group. We found pointless quartics of this form over Fq

for q in

{5, 7, 9, 11, 13, 17, 19, 23, 29}.
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q curve

5 x4 + y4 + z4 = 0

7 x4 + y4 + 2z4 + 3x2z2 + 3y2z2 = 0

9 x4 − y4 + a2z4 + x2y2 = 0

where a2 − a − 1 = 0

11 x4 + y4 + z4 + x2y2 + x2z2 + y2z2 = 0

13 x4 + y4 + 2z4 = 0

17 x4 + y4 + 2z4 + x2y2 = 0

19 x4 + y4 + z4 + 7x2y2 − x2z2 − y2z2 = 0

23 x4 + y4 + z4 + 10x2y2 − 3x2z2 − 3y2z2 = 0

29 x4 + y4 + z4 = 0

Table 2. Examples of pointless smooth plane quartics over Fq (with q

odd) with automorphism group containing the Klein 4-group.

We present sample curves in Table 2.

Over F3 there are many pointless smooth plane quartics; for instance, the curve

x4 + xyz2 + y4 + y3z − yz3 + z4 = 0

has no points.

We know from the proof of Theorem 1.3 that there is at most one pointless genus-3

curve over F32, and its Jacobian is isomorphic to the cube of an elliptic curve whose

endomorphism ring has discriminant −7. This suggests that we should look at twists

of the reduction of the Klein quartic, and indeed we find that the curve

(x2 + x)2 + (x2 + x)(y2 + y) + (y2 + y)2 + 1 = 0

has no points over F32. (This fact is noted in [3, §3.3].) For the other fields of

characteristic 2, we find examples by modifying the example for F32. We list the

results in Table 3.

We close this section by mentioning a related method of constructing pointless

genus-3 curves. Suppose C is a genus-3 curve over a field of characteristic not 2, and

suppose that C has a pair of commuting involutions (like the curves we considered in

this section). Then either C is an unramified double cover of a genus-2 curve, or C is

a genus-3 curve of the type considered in [9, §4], that is, a genus-3 curve obtained by

‘gluing’ three elliptic curves together along portions of their 2-torsion. This suggests

a more direct method of constructing genus-3 curves with no points: We can start

with three elliptic curves with few points, and try to glue them together using the

construction from [9, §4]. This idea was used by the third author to construct genus-3

curves with many points [20].
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q curve

2 (x2 + xz)2 + (x2 + xz)(y2 + yz) + (y2 + yz)2 + z4 = 0

4 (x2 + xz)2 + a(x2 + xz)(y2 + yz) + (y2 + yz)2 + a2z4 = 0

where a2 + a + 1 = 0

8 (x2 + xz)2 + (x2 + xz)(y2 + yz) + (y2 + yz)2 + a3z4 = 0

where a3 + a + 1 = 0

16 (x2 + xz)2 + a(x2 + xz)(y2 + yz) + (y2 + yz)2 + a7z4 = 0

where a4 + a + 1 = 0

32 (x2 + xz)2 + (x2 + xz)(y2 + yz) + (y2 + yz)2 + z4 = 0

Table 3. Examples of pointless smooth plane quartics over Fq (with q

even) with automorphism group containing the Klein 4-group.

5. Examples of pointless curves of genus 4

We searched for pointless genus-4 curves by looking at hyperelliptic curves whose

automorphism group contained the Klein 4-group; however, we found that for q > 31

no such curves exist. Since we need to find pointless genus-4 curves over Fq for every

q 6 49, we moved on to a different family of curves with commuting involutions.

Suppose q is an odd prime power and suppose f and g are separable cubic poly-

nomials in Fq[x] with no factor in common. An easy ramification computation shows

that then the curve defined by y2 = f and z2 = g has genus 4. Clearly the automor-

phism group of this curve contains a copy of the Klein 4-group. It is easy to check

whether a curve of this form is pointless: For every value of x in Fq, at least one

of f(x) and g(x) must be a nonsquare, and exactly one of f and g should have a

nonsquare as its coefficient of x3. We found pointless curves of this form over every

Fq with q odd and q 6 49. Examples are given in Table 4.

We mention two points of interest about curves of this form. First, if the Fq-vector

subspace of Fq[x] spanned by the cubic polynomials f and g contains the constant

polynomial 1, then the curve C defined by the two equations y2 = f and z2 = g is

trigonal: If we have af +bg = 1, then (x, y, z) 7→ (y, z) defines a degree-3 map from C

to the genus-0 curve ay2 + bz2 = 1. Second, if q ≡ 1 mod 3 and if the coefficients of x

and x2 in f and g are zero, then the curve C has even more automorphisms, given by

multiplying x by a cube root of unity. (Likewise, if q is a power of 3 and if f and g

are both of the form a(x3 − x) + b, then x 7→ x + 1 gives an automorphism of C.)

When it was possible, we chose the examples in Table 4 to have these properties. In

Table 5 we provide trigonal models for the curves in Table 4 that have them.

It remains for us to find examples of pointless genus-4 curves over F2, F4, F8, F16,

and F32.
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q curve

3 y2 = x3 − x − 1 z2 = −x3 + x − 1

5 y2 = x3 − x + 2 z2 = 2x3 − 2x

7 y2 = x3 − 3 z2 = 3x3 − 1

9 y2 = x3 − x + 1 z2 = a(x3 − x − 1)

where a2 − a − 1 = 0

11 y2 = x3 − x − 3 z2 = 2x3 − 2x − 5

13 y2 = x3 + 1 z2 = 2x3 − 5

17 y2 = x3 + x z2 = 3x3 − 8x2 − 3x + 5

19 y2 = x3 + 2 z2 = 2x3 + 1

23 y2 = x3 + x + 6 z2 = 5x3 + 9x2 − 3x + 10

25 y2 = x3 + x + 1 z2 = a(x3 + x2 + 2)

where a2 − a + 2 = 0

27 y2 = x3 − x + a5 z2 = −x3 + x + a5

where a3 − a + 1 = 0

29 y2 = x3 + x z2 = 2x3 + 12x + 14

31 y2 = x3 − 10 z2 = 3x3 + 9

37 y2 = x3 + x + 4 z2 = 2x3 − 17x2 + 5x + 15

41 y2 = x3 + x + 17 z2 = 3x3 − x2 − 12x − 16

43 y2 = x3 − 9 z2 = 2x3 + 18

47 y2 = x3 + 5x − 12 z2 = 5x3 + 2x2 + 19x − 9

49 y2 = x3 + 4 z2 = a(x3 + 2)

where a2 − a + 3 = 0

Table 4. Examples of pointless curves of genus 4 over Fq (with q odd)

with automorphism group containing the Klein 4-group.

Let q be a power of 2. An easy argument shows that a genus-4 hyperelliptic curve

over Fq provided with an action of the Klein group must have a rational Weierstraß

point, and so will not be pointless. Thus we decided simply to enumerate the genus-4

hyperelliptic curves (with no rational Weierstraß points) over the remaining Fq and

to check for pointless curves. We found pointless hyperelliptic curves over Fq for

q ∈ {2, 4, 8, 16}; the examples we give in Table 6 are all twists over Fq of curves that

can be defined over F2.

Our computer search also revealed that every genus-4 hyperelliptic curve over F32

has at least one rational point. So to find an example of a pointless genus-4 curve over

F32, we decided to look for genus-4 double covers of elliptic curves E. Our heuristic
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q curve involutions of P
1

3 v3 − v = (u4 + 1)/(u2 + 1)2 u 7→ −u u 7→ 1/u

5 v3 − v = −2(u2 − 2)2/(u2 + 2)2 u 7→ −u u 7→ 2/u

7 v3 = 2u6 + 2 u 7→ −u u 7→ 1/u

9 v3 − v = (u4 + a2)/(u2 + a5)2 u 7→ −u u 7→ a/u

where a2 − a − 1 = 0

11 v3 − v = (3u4 + 4u2 + 3)/(u2 + 1)2 u 7→ −u u 7→ 1/u

13 v3 = 4u6 + 6 u 7→ −u u 7→ 2/u

19 v3 = 2u6 + 2 u 7→ −u u 7→ 1/u

27 v3 − v = a18(u4 + 1)/(u2 + 1)2 u 7→ −u u 7→ 1/u

where a3 − a + 1 = 0

31 v3 = 5u6 − 11u4 − 11u2 + 5 u 7→ −u u 7→ 1/u

43 v3 = 7u6 + 8u4 + 8u2 + 7 u 7→ −u u 7→ 1/u

49 v3 = 2u6 + a u 7→ −u u 7→ a3/u

where a2 − a + 3 = 0

Table 5. Trigonal forms for some of the curves in Table 4. The third

and fourth columns give two involutions of P
1 that lift to give commuting

involutions of the curve.

q curve

2 y2 + y = t + (x4 + x3 + x2 + x)/(x5 + x2 + 1)

4 y2 + y = t + (x3 + 1)/(x5 + x2 + 1)

8 y2 + y = t + (x4 + x3 + x2 + x)/(x5 + x2 + 1)

16 y2 + y = t + (x3 + 1)/(x5 + x2 + 1)

Table 6. Examples of pointless genus-4 hyperelliptic curves over Fq (with

q even). On each line, the symbol t refers to an arbitrary element of Fq

whose trace to F2 is equal to 1.

suggested that we might have good luck finding pointless curves if E had few points,

but for the sake of completeness we examined every E over F32.

We found that up to isomorphism and Galois conjugacy there are exactly two

pointless genus-4 curves over F32 that are double covers of elliptic curves. The first
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can be defined by the equations

y2 + y = x + 1/x + 1

z2 + z =
a7x4 + a30x3y + a13x2 + x + a23xy + a6

x3 + a15x2 + x + a28

and the second by

y2 + y = x + a7/x

z2 + z =
a4x4 + a7x3y + a3x3 + a23x2y + a28x2 + a28xy + a16

x3 + a25x2 + a22x + a25
,

where a5 + a2 + 1 = 0.
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